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Abstract

Comparing to open surgery, Minimally Invasive Surgery (MIS) has less operative trauma,
faster recovery time, and reduced pain. Percutaneous Coronary Intervention (PCI) is one of
the MIS procedures, which is commonly used for treating Coronary Artery Disease (CAD).
During a PCI procedure, catheters are steered to recanalize the coronary arteries and open up
the occlusion. However, the positioning precision of the catheter tip is negatively affected by
hysteresis. Improper motion and potential puncture of the vessels can be fatal.

To avoid unnecessary tissue damage due to the imprecise positioning, the governing hys-
teresis needs to be understood and compensated for. This work investigates the feasibility
to model and compensate for the hysteresis of catheters with a Long Short-Term Memory
(LSTM) network. To access the value of the LSTM approach, a Deadband Rate-Dependent
Prandtl-Ishlinskii (DRDPI) model and a Support Vector Regression (SVR) model were es-
tablished. Hysteresis data is collected from a bench-top Pneumatic Artificial Muscle (PAM)
actuated catheter. Afterwards, the DRDPI, the SVR, and the LSTM models are validated on
this experimental setup.

The LSTM was tested using four groups of test data sets containing diverse patterns. The
results demonstrated that the LSTM is able to predict the tip bending angle with sub-degree
precision. The LSTM outperformed the SVR model and the DRDPI model by 60.1% and
36.0%, in arbitrarily varying signals, respectively.

Furthermore, a Control Long Short-Term Memory (c-LSTM) model and an Inverse Dead-
band Rate-Dependent Prandtl-Ishlinskii (IDRDPI) model were proposed and validated. To
compensate the hysteresis, four different types of trajectories were tested on these proposed
models. The results demonstrated that the c-LSTM model outperformed the IDRDPI model by
at least 75% and is able to predict the catheter distal response merely based on proximal input
without including sensory feedback. The proposed c-LSTM makes it possible to steer catheters
with high precision in free space, which enables a few clinical applications e.g. steering
catheters with high accuracy during endovascular interventions. While demonstrated upon
hysteretic PAMs, the proposed method is believed to be fairly general and also applicable to
other drive methods such as cable-based or SMA-actuation which are also known to exhibit
non-negligible friction and are commonly used to drive robotic catheters.
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1 Introduction

Coronary Artery Disease (CAD) is one of the most prevalent forms of heart disease. It is
one of the leading causes of death worldwide. It is the leading cause of death in the United
States in both men and women. One-third of deaths over 35 years old have been attributed
to CAD [1]. CAD happens when the arteries that supply blood to the heart muscle become
narrow and close. Atherosclerosis is responsible for occlusion of the coronary. The buildup of
cholesterol and other material on the inner walls is called plaque (see Figure 1.1).

Figure 1.1: Coronary Artery Disease (CAD) [2]

The coronary arteries supply blood, oxygen and nutrients to the heart muscle. A buildup
of plaque can narrow these arteries, decreasing blood flow and oxygen supply to the heart
muscle. If left untreated, the reduced blood flow may cause chest pain (angina), shortness of
breath, or other coronary artery disease signs and symptoms. A complete blockage can cause
a heart attack, even sudden death [3].

To treat CAD patients in a minimal invasive fashion, treatment with guide wires and
catheters, a so-called Percutaneous Coronary Intervention (PCI), can be adopted. Comparing
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1 Introduction

to open surgery, MIS has less operative trauma, faster recovery time, and reduced pain.
Especially patients with a high risk for perioperative complications may benefit from PCI
[4]. During PCI, the catheters access the vasculature through the femoral or radial artery
and are moved up to the coronaries to recanalize the occlusion. The procedure of PCI can be
summarised as follows (Figure 1.2) [5]:

• a catheter is inserted into the blood vessel either at the groin or at the arms;

• using a special type of X-ray called fluoroscopy, the catheter is moved in the blood
vessels surrounding the heart where the coronary artery is narrowed;

• when the tip is in place, a balloon tip covered with a stent is inflated;

• the balloon tip compresses the plaque and expands the stent;

• once the plaque is compressed and the stent is in place, the balloon is deflated and
withdrawn.

• the stent stays in the artery, holding it open (Figure 1.3).

Proximal portion

Distal tip

Figure 1.2: Percutaneous Coronary Intervention (PCI) Procedure and Recanalization of the
occlusion [6]

Due to the tortuosity of the aorta, the fragile and deformable nature of the vessels as well as
heartbeat, good maneuverability and controllability of the catheters are imperative. Robotic
catheters, which can offer improved ergonomics and improved dexterity compared to the
conventional manual catheters have been developed [8]. However, the positioning precision
of the catheter remains an important challenge.

The reason why catheters are hard to control accurately include: external effects, such as
blood flow and unpredictable contacts with the vessel wall. Another aspect is internal namely

2



1 Introduction

Figure 1.3: X-Ray imaging of Recanalization. A. Before the PCI Recanalization. B. After the
PCI Recanalization [7].

the nonlinear behaviour in the drive system which is largely affected by hysteresis. This
thesis mainly focuses on the internal hysteresis of the catheters, which is to be understood
and compensated for. In this thesis, Long Short-Term Memory (LSTM), a deep learning
method is established to model the hysteresis of a Pneumatic Artificial Muscle (PAM) actuated
robotic catheter. In addition, to compare with the proposed LSTM model, another learning-
based Support Vector Regression (SVR) model and an analytical model Deadband Rate-
Dependent Prandtl-Ishlinskii (DRDPI) were also established. After the modeling process, two
models namely Inverse Deadband Rate-Dependent Prandtl-Ishlinskii (IDRDPI) and Control
Long Short-Term Memory (c-LSTM), are also established. The ability of these methods to
compensate the hysteresis and achieve accurate position control of the robotic catheter system
is investigated. The main goal of this thesis is:

• improving the positioning accuracy of robotic catheters;

and sub-goals are:

• collecting bending angle/pressure data form an experimental setup including a catheter
segment;

• modeling the hysteresis in a PAM-driven catheter based on the LSTM model;

• modeling the hysteresis in a PAM-driven catheter based on the SVR model;

• modeling the hysteresis in a PAM-driven catheter based on the DRDPI model;

• comparing the modeling performance between the LSTM, SVR, and DRDPI model;

• validating the position control performance of the IDRDPI and c-LSTM model on the
compensation of the hysteresis of the PAM-driven catheter.

3
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2 The State of the Art

2.1 Literature research method

In recent years, Minimally Invasive Surgery (MIS) has grown rapidly because it offers smaller
scars, faster recovery time, and reduced pain. During MIS procedure, in particular with
treating for Coronary Artery Disease (CAD) through PCI, catheters are very important tools.
Limited positioning accuracy is well-known problem. Before engaging in activities to improve
positioning ability, it is important to get an overview of prior work that addressed this
problem. To obtain such overview a high-level survey of the state-of-the-art was conducted
first.

The search process was programmatically generated by using the Scopusr Application
Programming Interface (API). Before the search, a search matrix was generated, which is
presented in Figure 2.1. The matrix consists of four columns that are combined with special
operators. The first column named object represents the character of the hysteresis. In this
column, four objects are given, namely: hysteresis, which this thesis mainly focused on;
backlash, a very common and simply model for hysteresis modeling; dead-zone, which is
a widely world phenomenon and will be discussed later in this thesis; non-linear, which is
a common denomination capturing all these phenomena. The symbol * means a potential
extension of non-linear, e.g., to non-linearity. This symbol expands the searching process and
will also used in the following columns.

The second ’method’ column, indicates the main purpose of the search. In this column,
four items are listed: model* represents the potential methods to model hysteresis. These
methods could be considered for adoption in the thesis. The second item compensat* collects
words that describe compensate and its potential extensions. The reason why this item is
added here, is because hysteresis should be compensated to reach a precise control. The last
two items, namely identifi* and control*, search for words that describe the identification
process of the modeling and control to compensate hysteresis.

The third column lists relevant intervention type where similar medical devices are used.
Seven intervention types were identified - cardic, endovascular*, endoscop*, urteroscop*,
colonoscop*, percutaneous*, laparoscop*.

The fourth column captures the relevant medical devices where hysteresis can be found.
In this column, three devices are listed - catheter*, *scope, robot*. This thesis focuses on
hysteresis in the catheter, however, solution for closely related systems may also be useful for
this work.

To connect four columns, the logic AND operator is used. Between each element of a
column, a logic OR is adopted. After preparing this search matrix, it is set up with the API
of Scopusr. Search queries are programmatically implemented and the research results are
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2 The State of the Art

retrieved and checked for duplicates via the scopus API. The list of the research results are
saved as a .csv file and manually evaluated by the author.

There are in total 566 results carried out based on the search matrix in Figure 2.1, after
manually evaluated and selected, all relevant literature will be introduced in the following
section.

Figure 2.1: Search matrix of the conducted literature review in this thesis

2.2 Literature review

To effectively treat CAD disease, the PCI procedure is commonly used [1]. There are many
possibilities of flexible tools for this type of treatment, such as steerable needles [9], endoscopes
[10], and catheters [11]. During PCI catheters are steered to recanalize the occlusion. The
coronary arteries supply blood, oxygen, and nutrients to heart muscle, which is very important
for our body [4]. However, because of the tortuosity of the aorta, the deformable fragile
nature of the vessels as well as the heartbeat, good maneuverability, and controllability
of the catheters are imperative [3]. Robotic catheters, which can improve ergonomics and
higher-dexterity compared to conventional manual catheters, are gradually gaining attention
to address these challenges [8].

Robotic catheters can be operated based on various working principles, such as Cable-
Driven (CD) [12], Tendon-Sheath Mechanism (TSM) [13], and McKibben muscles [14]. Cable-
Driven technology is the most popular driving principle for robotic catheters. The cables are
routed through the entire length of the catheters, but experience high levels of friction with
their guiding tubes. Because of this friction, CD robotic catheters face difficulty to reach a large
bandwidth. This hinders the development of CD technology when good responsiveness is
desirable. To solve this problem, from the 1950s, Pneumatic Artificial Muscles (PAMs) became
popular for many application. They have a high operation bandwidth, easy fabrication, and
low-cost [15]. Besides, PAMs show good promise for using in medical applications e.g., used
in interventional instruments, in which high accuracy is required [16].

Besides challenges in the design of catheter robotics [17], precise control is also challenging
regardless whether actuated by CD or PAMs. Hysteresis focus a fusion source of imprecision
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2 The State of the Art

Table 2.1: Methods to minimize hysteresis in flexible surgical robots from previous literature
Authors and

publication year
Device

Actuation/Transmission
Principle

Methods

Bardou et al., 2012 [18] Endoscope Cable-Driven (CD)
Feedback from

Electromagnetic (EM) sensor

Roesthuis et al., 2013 [19]
Flexible Surgical

Instrument
CD Feedback from FBG sensor

Reilink et al., 2013 [20] Endoscope CD
Locating catheter tip

using imaging modalities

Cabras et al., 2017 [21] Endoscope CD
Locating catheter tip

using imaging modalities

Baek et al., 2020 [22]
Multi-arm Flexible

Surgical Robot
Tendon-sheath

mechanism (TSM)
Computer vision +

kinematic model
Do et al., 2014 [23] Endoscope TSM Bouc–Wen model

Wang et al., 2020 [24] Ureteroscopy CD Coleman-Hodgdon model
Sun et al., 2013 [25] Flexible Surgical Robot CD Tendon Elongation model

Omisore et al., 2018 [26] Cardiovascular Catheter CD Adaptive Backlash Model

Legrand et al., 2020 [27] Fetoscope Mckibben muscle
Generalized Prandtl-Ishlinskii

Model
Xu et al., 2017 [28] Serpentine Manipulator TSM Machine learning (regression)

Porto et al., 2019 [29] Endoscope CD
Machine learning +

Inverse kinematic Model

of catheter positioning. Hysteresis establishes a complex non-linear and multi-valued rela-
tionship between the input signals and the response of the catheter distal tip (see Figure 2.2).
This non-linear and multi-valued relationship leads to inaccurate control of catheters when
navigation and positioning the tip of the catheter. Inaccurate positioning of the catheter’s
tip could induce thrombus or damage the vessel wall since the aorta and the vessel wall are
fragile. To address this issue, several methods have been explored in the past (Table. 2.1).

Using the external sensors as feedback to implement a closed-loop control was presented in
[18], [30]. In [18] and [30], Electromagnetic (EM) sensors are used to provide the feedback to a
CD endoscope. However, mounting sensors at the distal tip of the catheters is challenging due
to spatial restrictions and sterilization requirements [29]. Imaging techniques, e.g. ultrasound,
especially A-mode ultrasound imaging [31] have great potential to be used to get real-time
intraoperative data [32] and for control feedback [20], [21] and [33]. Furthermore, these
imaging-based methods are also integrated with kinematic models [22].

Amongst others, analytic models are being explored to model the hysteresis. These models
can be classified into two types: 1) operator-based (the models use operators to characterize
the hysteresis) and 2) differential-based ( the models use differential equations to model the
hysteresis) [34]. Based on the literature review in this thesis, three analytical models are
introduced by describing three commonly used models 1). Preisach, 2). Bouc-Wen and 3)
Prandtl-Ishlinskii model.

1. Preisach model

The Preisach model is one of the most popular models in the hysteresis modeling and
compensation. This model is widely used to model smart materials. The Preisach model
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2 The State of the Art

DeadbandDeadband

Figure 2.2: Hysteresis with deadband

shows good performance at deadband region of the hysteresis. Besides, it also can
give good performance at lower bandwidth. Specially under the no-load condition.
However, the accuracy of this model gradually decreases when pre-loading and the
input frequency are increased [35].

2. Bouc-Wen model

The mainly difference between the Preisach and the Bouc-Wen model is that the Preisach
is an operator-based model but the Bouc-Wen model is a differential-based model
[36]. The Bouc-Wen model is a rate-independent model, however, hysteresis is a rate-
dependent phenomenon [37]. Besides, the Bouc-Wen model is not invertible [34]. To
model the rate-dependent hysteresis, a linear Hammerstein model is combined with
a Bouc-Wen model by Wang et al. [38]. On the other hand, to inverse the Bouc-Wen
model, a Bouc-Wen least square support vector machine (LS-SVM) is adapted to identify
or compensate the hysteresis by Rakotondrabe et al. [39].

3. Prandtl-Ishlinskii (PI) model

Finally, an overview of some Prandtl-Ishlinskii (PI) models is given in Figure 2.3. In
general, PI models can be categorized based on two criteria. Whether the model uses
a generalized play operator with envelop function or deadband operator or not, PI
models can be divided into generalized and non-generalized PI models

• rate-independent PI model

In [41], a rate-independent Prandtl-Ishlinskii (PI) model was used to characterize
the hysteresis of piezoceramic actuators that operate at low frequency.

• generalized rate-independent PI model

8



2 The State of the Art
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Figure 2.3: The different implementations of Prandtl-Ishlinskii models [40]

To model asymmetric rate-independent hysteresis, a generalized play operator
with envelop function was used in [42].

• rate-dependent PI model

To model rate-dependent hysteresis, a play operator with dynamic threshold was
used in [43]. In [44], this model was used to model the hysteresis nonlinearities of
magnetostrictive actuators.

• generalized rate-dependent PI model

To model the asymmetry and deadband hysteresis, a generalized rate-dependent
PI model was used in the [42] with envelop function and deadband operators.

In recent years, deep learning techniques have gained many interests because they can
avoid complicate identificated process by simply training an artificial neural network [45], [46],
[47], and [48]. Up to now, some prior works also works attempted to use machine learning or
deep learning to model and compensate for hysteresis. In [28], a regression method to learn
the inverse kinematics model of a serpentine surgical manipulator was employed. Besides,
[29] used machine learning methods to achieve accurate position control of a flexible surgical
robot. Both above-mentioned works dealt with cable-driven robots, however, they adopted
conventional machine learning methods rather than taking benefit of recent advances in deep
learning. This thesis explores the feasibility value to employ deep learning methods to model
and compensate for hysteresis. Besides, the analytic models and machine learning models

9



2 The State of the Art

will also be established to allow a fair assessment of the value of deep learning methods for
this application.

2.3 Drawbacks of the prior art

In the following some restrictions of current hysteresis modeling and compensation methods
are described. In [18], [30], external sensors such as Electromagnetic (EM) sensors were
implemented to achieve closed-loop control. However, mounting sensors at the tip of the
catheter is challenging due to the size of the sensors and sterilization requirements [29].
Imaging techniques could also help for control feedback [20]. These techniques are used in
[20] and [21]. Cabras et al. used imaging-based methods for modeling and compensation
of the hysteresis and integrated these with kinematic models [22]. Compared to sensors
technique, the imaging technique do not need to mount the sensors on the tip of the catheters.
However, the training process of the imaging technique is complicated because of the huge
computational cost. Besides, the imaging support device is an additional requirement for the
imaging acquisition.

In [35], the Preisach model is demonstrated. This model shows good performance at
deadband region of the hysteresis. Nevertheless, the accuracy of the model decreases when
the pre-loading and the input frequency increases. Another model named Bouc-Wen model,
which also combined with a linear Hammerstein model, is introduced in [36]. However, the
Bouc-Wen model can not be used directly to compensate for the hysteresis unless least square
support vector machine is added to this model, since this model is cannot be inversed.

A rate-independent PI model is introduced to model the hysteresis of piezoceramic [41].
However, this model is limited because the hysteresis is rate dependent. Furthermore, if
the hysteresis pattern is asymmetric, the model will show a bad performance. Despite a
generalized version of rate-independent model that is proposed in [42], the rate-dependent
problem is still not solved. A rate-dependent PI model is described in [43]. This model
can solve the rate dependent hysteresis problem. Furthermore, a generalized version of
rate-dependent PI model is introduced in [42]. The Prandtl-Ishlinskii (PI) model is composed
of a lot of mathematical formulations and need a long training time for the identification
process. Given that it is arguable that the most sophisticated method described in literature,
it will be used as a reference in this work.
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3 Experimental setup

3.1 Description of the PAM actuated catheter

3.1.1 Pneumatic Artificial Muscle

From 1950s, the use of Pneumatic Artificial Muscle (PAMs) became more popular because
of its advantages: high bandwidth, easy fabrication and low cost [15]. During the medical
intervention, a precise control is required, PAMs could show good performance [16]. Due
to the advantages of PAMs, this thesis will focus on catheter with embedded with PAMs.
Such catheters could operate at higher bandwidth, and greater precision provided that its
hysteretic behaviour were compensated adequately. The structure of the PAM can be divided
into five parts (shown in Figure 3.1):

1. non-inflatable tube;

2. ferrule;

3. balloon;

4. braid;

5. steer wire.

Non-

inflatable 

tube

Steerable 

wire

Balloon

Ferrule

Braid

Figure 3.1: Five parts of PAM
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The Non-inflatable tube is a plastic tube, which is used to supply the compressed air to
the artificial muscle. Because this tube is non-inflatable, the air pressure of the compressed
air can be supplied accurately to the muscle. To ensure air leaks is avoided, the ferrule,
placed at the tip of the artificial muscle, closes the tube hermetically. The balloon dilates and
contracts when the air pressure rises. To prevent extreme dilation of the balloon, a braid is
sleeved outside the balloon. The braid provides resistance to protect the balloon against over
this dilation. The length of the artificial muscle shortens when the muscle is dilated. This
generates a pulling force along the muscle axis. To pass this force to the bending segment
of the catheter, a short steering wire is fixed off-center at the tip of the robotic catheters.
The steerable wire is in-extensible and can pass on the force almost lossless to the bending
segment.

3.1.2 Bending segment

The bending segment is a one degree-of-freedom (DOF) unidirectional catheter distal segment
with an embedded PAM. This bending segment is fabricated out of Nitinol using metal laser
cutting technology. In this thesis, a bending section with 4.4 mm diameter is used (shown in
Figure 3.2). The slots lasered in the Nitinol tube increase the compliancy which allows larger
curvatures and bending angles for this robotic catheter.

Figure 3.2: Bending segment

To measure the actual bending angle of the robotic catheter, a laser distance sensor was
positioned next to the tip of the bending segment. A light-weight black plastic piece was
mounted at the tip of the catheter. It can reflect the light from the laser distance sensor. The
structure of this bending angle measurement as shown in Figure 3.3.

In Figure 3.3, a laser photoelectric sensor (OADM 12I6460/S35A, Baumer Group, Switzer-
land) is used to measure the distance s (unit: mm) from the catheter tip to the sensor with
a sampling frequency of 250 Hz. The measured voltage output U (unit: V) from the laser

12



3 Experimental setup

Laser Distance 
Sensor

Straight configuration

Bending configuration

Steer Cable

PAM Actuator

Catheter

Experimental Setup

Figure 3.3: Bending angle measurement

distance sensor can be converted to the catheter tip bending angle based on the following
relation:

si = mUi + n (3.1)

d
′
i = max(s1, s2, · · · , sN)− si (3.2)

θi =
2 · d′i · L
H2 + d′i

2 ·
180
π

(3.3)

In (3.1), subscript i indicates the i-th sample of the group and the N represents the number
of samples in the data group. The measured voltage U from the laser photoelectric sensor
is proportional to the distance s to the catheter tip, also the m = 4.05 (mm/V) and n = 29.36
(mm) in (3.1) was identified from the data collection process, which will be introduced in the
next chapter. As for (3.2), the maximum distance between the sensor and the catheter tip
is reached when the catheter is straight, while the minimum distance is reached when the
maximum pressure is input into the catheter. The straight configuration is referenced to as
zero displacement, then the displacement of catheter tip d

′
can be calculated by subtracting

the measured distance s from the maximum distance max(s1, s2, · · · , sN) between the laser
sensor and the catheter tip as expressed in (3.2).

However, the bending distance is not the parameter that we want to collect from the
laser sensor. The bending angle of the catheter is the final parameter we want to collect in

13



3 Experimental setup

this thesis. Thus, a conversion between the bending distance and bending angle should be
established. To address this problem, a constant curvature model assumption is proposed
in [49]. This assumption is motivated by the fact that the catheter distal tip is lightweight,
furthermore the targeted operation speed and variations thereof are low for safety reasons.
Also at this point no external forces are assumed as the catheter works in free space (shown
in Figure 3.4). Based on the proposed model, a geometrical conversion between the distance
and the bending angle as given in 3.3 can be found. For the distal section used here we have:
L = 77 mm and H = 65 mm.

r

q
q’ 

q’ q

Laser Distance 

Sensor

h

d

d’

r

L

r

q
q’ 

q’ q

Laser Distance 

Sensor

H

d

d’

r

L

Figure 3.4: The catheter tip displacement d
′

captured by the laser distance sensor is converted
to a bending angle θ using (3.1) - (3.3) based on a constant curvature model [49]
assumption.

3.2 Overview on the entire experimental setup

The whole setup can be divided into two main parts, namely the hardware part and the
software part as explained next:

• Hardware

In order to accurately control the input pressure, the pressure is fed by an air supply
through a proportional pressure valve (Festo, Germany) to the artificial muscle in
cascade (shown in Figure 3.5). A proportional valve and a pressure sensor (21Yseries,
Keller, Switzerland) are installed in series with the above-mentioned circuit to measure
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3 Experimental setup

the pressure. The OADM laser distance sensor is used to capture the motion of the
catheter tip. The obtained data will be collected and converted via (3.1) - (3.3).

• Software

To accurately control the input pressure and obtain the output, a software for supporting
the communication between the different modules is adapted. LabVIEW is a powerful
system-design platform and development tool for a visual programming language
from National Instruments (NI®). In this thesis, this software is used to support the
experiment.

The obtained data will be collected and converted by the methods, which has been introduced
in the last section. The characterization of the acquisition data will be introduced in the next
chapter.Experimental Setup

Analog Output 
(AO)

Voltage

Analog Input (AI)

PC with LabVIEW Interface 

Straight configuration

Bending configuration

DAQ Card

Pneumatic Triplet

Proportional 
Pressure Valve

Air Supply

Laser Distance Sensor

Steer Cable

PAM Actuator

Catheter

Figure 3.5: A PAM-driven catheter segment is controlled by a proportional pneumatic valve,
which receives a command signal from a PC through a NI® CompactRIO system.
The resulting catheter tip bending angle is captured by a laser sensor.
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Figure 3.6: PAM-driven setup in the lab
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4 Experimental data acquisition and
characterization

4.1 Experimental data acquisition

4.1.1 Input data type selection

In this experimental setup, the input is the pressure and the output is the bending angle
of the catheter. Based on the practical using situation, the movement of the catheter can be
divided into data with a zero baseline and data with a non-zero baseline. The zero baseline
data means that after an excitation of the catheter, movement will return to the initial position.
The non-zero baseline data means that the catheter is bent to a specific position, but does not
not move back to the initial position. It is essential to characterise these two typical types data
of the catheter, which would be helpful for the modeling and compensation for the hysteresis.

In order to characterise movement of the catheter and provide sufficient training data,
descending sinusoidal pressure commands with zero baseline, described in (4.1), and with
non-zero baseline, described in (4.2), were sent to the setup to generate multi-loop hysteresis.

p1(t) = Ae−τt(sin(2π f t− π

2
) + 1) [bar] (4.1)

p2(t) = Ae−τt(sin(2π f t− π

2
)) + A [bar] (4.2)

The amplitude A of both signals equals 1.5 bar to achieve a maximum amplitude of 3
bars. In (4.1) and (4.2), the variable f is the excitation frequency expected in Hz. Input
frequencies up to 1 Hz are investigated in this experiment, since in many PCI applications 1.2
Hz is already sufficient [50]. The amplitude and the frequency of input data is determined
explicitly for this experiment, because as mentioned before, the hysteresis depends on both
the input frequency and the amplitude of the excitation signal [50]. Thus different excitation
frequencies are included in the training data, namely the frequencies of the excitation signal
are set to 0.2, 0.4, 0.6 and 0.8 Hz in the training data set. For the modeling of hysteresis, only
one value τ = 0.15 for the time constant to generate multi-loop hysteresis is enough [51].

4.1.2 Data acquisition GUI

In order to accurately control the input pressure, LabVIEW® was used in this experiment,
Figure 4.1 shows the front panel of the LabVIEW® setup in this experiment is demonstrated.
On the left hand, four variables are listed in one column. The first item is the running time of
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4 Experimental data acquisition and characterization

the program, which defines the duration of the experiment. The second item determines the
time constant τ, which also shows up in (4.1) and (4.2). In order to provide the possibility
to explore the potential of this setup, the time-constant frequency is added at the third
place. With this variable, a frequency changing signal can be generated. The last item is the
frequency of the input pressure, in this thesis, 0.2 Hz, 0.4 Hz, 0.6 Hz and 0.8 Hz are used to
generate the input pressure series.

Figure 4.1: LabVIEW® Front panel

The three black displays show the duration of the experiment, the input pressure, and the
displacement of the catheter tip, respectively. The transformation between the displacement
and the bending angle in this setup follows (3.3). The data shown in the display can be
exported with csv format.

One of the advantages of LabVIEW® is graphical programming interface. Each front panel
has its block diagram, users can add components in the block diagram, and the corresponding
components are shown on the front panel. Figure 4.2 shows the block diagram of the zero
data generation, which represents the formula in (4.1). By connecting lines with each other
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4 Experimental data acquisition and characterization

Figure 4.2: Block diagram of zero data and non-zero data

and combining different calculation operators a formula can be formed. The same coding
logic of the non-zero baseline data generation is same with zero data baseline generation
(shown in Figure 4.2).

The LabVIEW program provides not only the formulation of the expected formula, but
also is important for the communication between the different modules in the experiment
setup. The AO0 in the program is the interface of the generated input pressure signals. It
sends control signals to the proportional pressure valve, which can accurately control the
input pressure. On the other hand, the laser distance sensor can measure the catheter tip’s
bending distance. The measured data can be sent to the PC and shown in the front panel via
the AI0 in the block diagram.

4.2 Experimental data characterization

The hysteresis pattern can be divided into two main types:

• Symmetric or asymmetric;

• Deadband or Non-deadband.

Based on these two types, four sub-types of hysteresis patterns can be distinguished, namely a
symmetric non-deadband hysteresis pattern, asymmetric deadband, an asymmetric deadband,
and finally the most complicated type: asymmetric non-deadband hysteresis pattern. The
hysteresis types is determined by the physical character of the setup. Thus a characterization
process of the hysteresis type for the experimental data is necessary.
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4 Experimental data acquisition and characterization

As discussed in subsection 4.1.1, zero baseline type and non-zero type of data will be input
into the experimental setup. Based on these two types input data, two types of output data
will be collected. Figure 4.3 demonstrates the hysteresis pattern of the experimental data
when the zero data is used. It is clear that the hysteresis pattern is asymmetric as well as
and exhibits deadband. Because of the deadband part, which marked with red bracket, the
hysteresis pattern is asymmetric. Moreover, the Figure 4.3 also shows the major and minor
loops of the hysteresis type. The major loops under each frequency are drawn with wide
lines and the minor loops are represented with thin lines. In this experiment, four frequencies
as mentioned that 0.2 Hz (black). 0.4 Hz (green), 0.6 Hz (blue) and 0.8 Hz (red) input data
are characterized in Figure 4.3. Also, with the increment of input frequency, the width of the
major loops is also increasing.

Input

Descending sinusoidal 

pressure with zero baseline

DeadbandDeadband

Output 

Figure 4.3: Asymmetric deadband hysteresis pattern (zero data)

Besides the zero baseline data input, non-zero data is also used to characterize the hysteresis
pattern. Figure 4.4 shows the hysteresis pattern for the non-zero data. Also four frequencies,
namely 0.2 Hz (black), 0.4 Hz (green), 0.6 Hz (blue), and 0.8 Hz (red) are shown. Similar to
the zero baseline data hysteresis output, the width of the hysteresis pattern is also increasing
with higher frequency. However, because the input data will not move back to the initial
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4 Experimental data acquisition and characterization

position, the major loops and the minor loops of each frequency also do not move back to
the origin point. Moreover, the minor loops are gradually converged to the center of the
hysteresis pattern. Also, the minor loops show no deadband because the catheter moves from
a non-initial position, where no deadband is apparent.

To sum up, the hysteresis pattern of both zero and non-zero data is asymmetric as well
as deadband-exhibiting. The range of the deadband is approximate from 0 to 1 bar. It is
not affected by the input data frequency. Also, the width of the hysteresis loop depends on
the input frequency. Based on this observed behaviour, further modeling and compensation
methods will be introduced and investigated in the following chapters.

Input 

Descending sinusoidal 

pressure with non-zero baseline

DeadbandDeadband

Output 

Figure 4.4: Asymmetric deadband hysteresis pattern (non-zero data)
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5 Deadband Rate-Dependent
Prandtl-Ishlinskii model

5.1 Overview of the DRDPI model

Throughout the literature review in section 2.2, the analytical model Prandtl-Ishlinskii (PI)
is chosen. However, there are four different sub-types, namely: rate-independent Prandtl-
Ishlinskii, generalized rate-independent Prandtl-Ishlinskii, rate-dependent Prandtl-Ishlinskii,
and a generalized rate-dependent Prandtl-Ishlinskii model. Based on the characterization of
hysteresis pattern in chapter 4, the hysteresis pattern of the steerable catheter was found to
be rate-dependent with deadband.

In order to model this type hysteresis, a state-of-the-art analytic model called a Deadband
Rate-Dependent Prandtl-Ishlinskii (DRDPI) model also used in [50] was established in this
thesis. The DRDPI model is a sophisticated and practical model that takes into account the
impact of input frequency on the pattern of the hysteresis. Moreover, deadband operators in
this model allow it to model asymmetric hysteresis as well as deadband-exhibiting behaviour
that appears at the bottom of the hysteresis loops (see Figure 4.3 and Figure 4.4). Therefore,
the DRDPI model can in principle fully model the hysteresis originating from the entire
PAM-driven catheter system. The output of the DRDPI model is as follows [52]:

y(t) = a0u(t) +
N

∑
i=1

aiΦri(t) (5.1)

where u is the input data and N indicates the number of play operators of the DRDPI
model. a0 and ai are weighting constants of the input and of the play operators, respectively.
These weighting parameters are identified by using optimization algorithms based on the
measured data from the experimental setup. The play operators of the rate-dependent model
are constructed using the input u and the dynamic threshold function ri as follows [53]:

Φri = max
{

u(tj)− ri(u̇(tj)), min
{

u(tj) + ri(u̇(tj)), Φri(tj−1)
}}

(5.2)

The dynamic threshold function ri(u̇(tj)) in (5.2) must be strictly ascending to ensure it has
an inverse model [43]. Therefore, a constraint is imposed on the dynamic threshold functions
which is shown as follows [54]:

0 ≤ r1(u̇(t)) ≤ r2(u̇(t)) ≤ · · · ≤ rn(u̇(t)) (5.3)

Figure 5.1 illustrates the effect of the dynamic threshold function ri on the output. With
this dynamic threshold, a so-called Rate-Dependent Prandtl-Ishlinskii (RDPI) is obtained. The
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5 Deadband Rate-Dependent Prandtl-Ishlinskii model

output of the RDPI model y is computed based on a linear summation of the system input
and the effect of the dynamic threshold function ri on the input. Figure 5.1 also demonstrates
that the output changes when the input rate changes.

Figure 5.1: The effect of dynamic threshold function on the output [55]

Figure 5.2: Threshold of deadband operators [55]

As summarized in chapter 4, the hysteresis pattern has deadband, which leads to this
asymmetric character. The proposed RDPI model is not able to model this hysteresis pattern.
Thus the deadband operator is subsequently introduced in the RDPI model. The deadband
operator Z can be used to characterize asymmetry and deadband in hysteresis loops. The
output of the proposed model is presented as [40]:

E(t) = Z(y(t)) =
k

∑
j=−k

giΛdi(y(t)) (5.4)
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5 Deadband Rate-Dependent Prandtl-Ishlinskii model

Z is a summation of 2k + 1 weighted deadband operators, gi are weighting constants, and
k is a positive integer. With deadband operators added, the RDPI model now becomes a
Deadband Rate-Dependent Prandtl-Ishlinskii (DRDPI). The output of the Λdi operator is
calculated by [56]:

Λdi(y) =


max(y− di, 0) f or di > 0

y f or di = 0
min(y− di, 0) f or di < 0

(5.5)

di are the thresholds of the deadband operators. The deadband operator is illustrated
in Figure 5.2. Deadband operators change the symmetric output of the RDPI model to an
asymmetric, which can phase the correspondence between the output of the DRDPI model
and the measured data from the experimental setup.

5.2 Threshold and deadband functions of the DRDPI model

In section 5.1, important formulations of the DRDPI are introduced. However, some details of
the function are still not clear. Thus in this section, the threshold and deadband functions of
the DRDPI model will be further introduced. Because the hysteresis pattern depends on the
input frequency, the proposed threshold function is formulated as follows [57]:

ri(u̇(t)) = ζi + β
∣∣∣ ˙u(t)

∣∣∣ (5.6)

ζ and β are positive constants. The (5.6) ensures the strictly ascending of the dynamic
threshold [52]. Also, i shows the number of play operators of the DRDPI model (i = 1, ... , N).
In (5.1). ζ describes the rate-independent hysteresis effect and β considers the effect of the
input data [52]. The weighting constants of the RDPI model in (5.1) are formulated as follows:

ai = α0e−β0i, f or i = 1, 2, ...N (5.7)

By using such a relation in (5.7) for describing the weighting constants of the play operators,
the number of parameters which need to be defined can be reduced from N to two. Despite
the number of parameters is reduced remarkably, from the experiment results it shows that
the performance of the model where the function (5.7) is used is not much different with the
model where all parameters are used [50].

Another important element of the DRDPI model - the deadband operator - characterizes
asymmetry and deadband effects in the hysteresis behavior of the PAM - driven actuator. In
order to reduce the number of parameters, parameterized functions that are used to describe
the thresholds and weighting constants of deadband operators also can be introduced. For
the positive indices the following relations are adapted [50]:

di = dpi, f or i = 0, 1, ...k (5.8)
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Table 5.1: Unknown parameters of the proposed model

Model Unknown parameters
Proposed DRDPI α0, α1, α2, β0, β1, β2, dp, dn, ζ, β, a0, g0

and

gi = −α1e−β1i, f or i = 0, 1..., k (5.9)

Besides the positive indices, thresholds and weighting functions for negative indices are
considered as follows:

di = dni, f or i = −k,−k + 1, ...− 1 (5.10)

and

gi = −α2e−β2i, f or i = −k,−k + 1, ...− 1 (5.11)

The positive and negative indices form the output of the deadband relation and also the
threshold relation of the DRDPI (see Figure 5.2). In (5.7), (5.9), and (5.11), all of them use an
exponential function as a distribution function of the weighting constants to provide a good
agreement with the capability of the deadband operators and reduce the number of unknown
parameters [52].

5.3 Hysteresis modeling with the DRDPI model

5.3.1 Unknown parameter identification

In section 5.1 and 5.2, formulations of the proposed DRDPI model are introduced. However,
there are some unknown parameters that can not be defined. To sum up, all unknown
parameters of the proposed DRDPI model are listed in Table. 5.1.

In order to identify the unknown parameters in the proposed model, the objective function
is given as follows:

f (X) =
S

∑
s=1

Ns

∑
i=1

(
ys(i)− ys

exp(i)
Ns

)2

(5.12)

In this function ys is the output of the model and the ys
exp is the measured output. S is the

number of considered excitation frequencies, and Ns is the number of measured data samples
of the sth excitation frequency.

The proposed DRDPI model is trained to model the hysteresis behaviour under different
excitation frequencies. The training process will be introduced in the next section. The
training process is based on (5.12), which represents the Mean Square Error (MSE) between
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the model output and the measured data. In order to minimize he MSE, a Genetic Algorithm
(GA) is used to identify the unknown parameters in Table 5.1.

A Genetic Algorithm is a search heuristic that is inspired by Charles Darwin’s theory of
natural evolution. The GA reflects the process of natural selection where the fittest individuals
are selected for reproduction in order to produce offspring of a next generation. By using this
characterisation of the GA, unknown parameters of the proposed model can be optimized.

Firstly, the process of the natural selection starts with he selection of the fittest individuals
from a population. Secondly, the fittest individuals produce offspring which inherit the
characters of the parents and that will be added to the next generation. Based on the nature
selection principle, if parents have better fitness, their next generation will be better than
parents and have a better chance to survive. This process keeps on iterating, and at the end, a
generation with the fittest individuals will be found.

During the GA process, five phases will be considered as follows:

• Initial population

The GA process begins with a set of individuals which is called the initial population.
In this population, each individual is a solution to the DRDPI model. In this thesis, the
solution is the set of unknown parameters of the proposed DRDPI model. An individual
is characterized by a set of parameters known as genes. Genes are joined into a string
to form a chromosome, or in this situation called a solution.

• Fitness function

The fitness function determines the ability of an individual to fit the environment.
Also, the fitness function determines the ability of an individual to compete with other
individuals. The fitness function of this thesis is given in (5.12). In order to evaluate the
individual, a fitness score is given to each individual. The probability that an individual
will be selected for reproduction is based on its fitness score.

• Selection

After the fitness process, the GA will move to the selection phase. The idea of the
selection phase is to select the fittest individuals and let them pass to the next generation.
During the selection phase, the fitness score is the most important criteria for selecting.
Two pairs of individuals are selected based on their fitness scores. Individuals with
higher fitness scores will have more chance to be selected for reproduction.

• Crossover

Crossover is the most significant phase in a Genetic Algorithm. For each pair of parents
to be mated, the crossover point is different, in other words, the crossover point is
chosen randomly.

• Mutation

In some new formed generations, some of their genes can be subjected to a mutation
with a low random probability. The mutation can lead to flip some genes. The mutation
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is important to the population because it can maintain diversity and prevent premature
convergence.

The GA is implemented by using the Toolbox in MATLAB®. The process of the GA is
illustrated in the Figure 5.3.

5.3.2 Training of the proposed DRDPI model

Hysteresis depends on both the input frequency and the amplitude of the excitation signal
[50], different excitation frequencies are included in the training data. In this experiment,
four frequencies of the excitation signal are set to 0.2 Hz, 0.4 Hz, 0.6 Hz, and 0.8 Hz in the
training data set. The input data is generated based on (4.1) and (4.2). The time constant τ

was chosen as τ = 0.15 to generate multi-loop hysteresis. Two types of training data (bending
angle - input pressure), namely zero and non-zero baseline data, featuring major and minor
loops. The training data is shown in Figure 5.4.

In total 26798 samples were acquired in the training data set. It is noteworthy that the
hysteresis does not only come from the PAM, but also originates from the whole system
e.g., the relative movement between the steer cable and the NiTi tube during bending, the
compliance of the pneumatic tubes, the compressibility of the air, the nonlinear behaviour of
the applied material (Nitinol) and of the valves that were used.

Based on the GA Toolbox in MATLAB®, the identification process was performed on a
CPU (Intel Core i7 CPU @ 2.80GHz with a RAM of 8GB), since there was no wide-spread
library for a GPU-based training GA method in MATLAB®. Because of the large amount of
training data, the whole identification process of the proposed DRDPI model took around
3.5 hours. The termination condition in the Toolbox was set at the instant where the average
relative change in the best fitness function value was less than or equal to 1e− 6, or when the
maximum iteration set by users of the GA was reached. In this thesis’s training process, the
training terminates when the average relative change in the best fitness function value was
less than 1e− 6.

In order to visualize the training process, the evaluation of the training loss is shown in
Figure 5.5. The x-axis represents the number of executed iterations of the training process
and the y-axis represents the training loss. The unit of the training loss is deg2, which is in
line with the fitness function introduced in (5.12) - Mean Square Error. From the x-axis it
can be concluded that more than 1000 iterations are performed during the training process.
Moreover, a plateau can be observed, which means that this training process is sufficient.
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Figure 5.3: Genetic Algorithm process
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Figure 5.4: Training data collection

Figure 5.5: DRDPI training loss
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Table 5.2: Identified parameters of the model
Parameter α0 α1 α2 β0 β1 β2 dp dn ζ β a0 g0

Value 8.449 0.99114 1.3158 2.3639 1.645 1.8206 0.94854 0.24838 0.05143 0.15616 0.79797 5.9868

5.4 Modeling performance of the DRDPI model

5.4.1 Definition of metrics

In this section, the modeling performance of the proposed DRDPI model is identified. The
training process of this DRDPI model with different initial values is performed five times
and the best result is chosen. The unknown parameters are shown in Table. 5.2. After
identification, the model should be tested with other data sets that are different from the
training data sets. The performance of the model will be quantitatively evaluated with
the help of three metrics: the Maximum Absolute Error (MAE), the Root Mean Square
Error (RMSE), and the Normalized Root Mean Square Error (NRMSE). The MAE, computed
following (5.13), measures the maximum absolute error between the output of the model and
the ground truth among all samples:

MAE = max
{∣∣θ̂i − θi

∣∣} , i = 1, 2, ..., N (5.13)

where N is the number of sample points in each group of the test data. The RMSE following
(5.14) calculates the square root of the square error between the output of the model and the
ground truth:

RMSE =

√
∑N

i=1(θ̂i − θi)2

N
, i = 1, 2, ..., N (5.14)

At last, the NRMSE will also be used to evaluate the performance of the model. The
NRMSE relates the RMSE to the observed range of the variables, and it is defined as follows:

NRMSE =
RMSE

θmax − θmin
(5.15)

5.4.2 Performance evaluation of the DRDPI model

The test data should be different from the training data of the DRDPI model for evaluation.
The less the test data resembles the training data, the more the potential of the model is
demonstrated. Thus four different types of test signals are described in detail as follows:

1. A descending sine wave following (4.1) but with different f = 0.7 Hz and τ = 0.12 from
the training data was generated, while the amplitude A = 1.5 remains unchanged.

The DRDPI model shows a good performance at the first four waves peak, however,
since the fifth peak, the DRDPI model shows larger errors (see Figure 5.6). Because each
peak of the model output is leveled off, the real behaviour is not followed very well
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Figure 5.6: 1. Descending sine wave differing from training data (DRDPI)

there. Moreover, at the last wave the model performs the worst since it almost does not
predicts an output while the peak of the ground truth is still around 5 degrees. The last
wave causes a larger MAE equal to 6.2 degree.

2. In the training data sets, data with non-zero baseline was also used. Thus the DRDPI
model could have the ability to test the data with non-zero baseline. To test the
performance of the proposed model, a test signal called attenuated down-chirp sine
wave with time-varying frequency following (5.16) with A = 0.9, B = 1.2, f = 0.7, τ = 0.1,
and c = -0.1 was given by:

p(t) = Ae−τt(sin(2π( f + ct)t− π

2
) + 1) + B [bar] (5.16)

Figure 5.7 shows the prediction made by the DRDPI. At the first two waves, the model
performs relative good. However, with decreasing frequency, the model starts to perform
worse. The peak and the off-peak of the DRDPI’s output can not fit the ground truth.
Moreover, the increasing and the decreasing part of the output has a offset compared
with the ground truth, which leads to a higher RMSE = 1.22 degree and NRMSE =
6.28%.

3. Since the ascending pattern is not considered in the training data, as third test data an
ascending up-chirp sine wave was generated following (5.17) with A = 0.6, f = 0.3, τ =
0.05 and c = 0.15:

p(t) = Ae−τt(sin(2π( f + ct)t− π

2
) + 1) [bar] (5.17)
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Figure 5.7: 2. Attenuated down-chirp sine wave with shifted baseline (DRDPI)
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Figure 5.8: 3. Ascending up-chirp sine wave with zero baseline (DRDPI)
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5 Deadband Rate-Dependent Prandtl-Ishlinskii model

Based on Figure 5.8 it can be concluded that the proposed DRDPI model performs better
at the lower frequencies. However, during the whole process, the output of the proposed
output always has an offset compared to the ground truth. It is also noteworthy that the
peak of the output is always a plateau, which could lead to a larger MAE = 4.3 degree
in this type of the test data.

4. In order to explore the potential of the proposed model, an arbitrarily varying signal
was generated to represent the most general commands that can take place in practice.
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Figure 5.9: 4. Arbitrarily varying signal with plateaus (DRDPI)

Figure 5.9 demonstrates the output of the proposed model compared with the ground
truth. During the increasing and decreasing period, the output fits the ground truth
relative well. However, the peak and the valley of the DRDPI output are still plateau,
thus the MAE = 3.0 degree and the NRMSE = 6.1%.

5.4.3 Discussion of the DRDPI model performance

The training data is based on (4.1) and (4.2), which provides descending sine wave with zero
baseline and descending sine wave with non-zero baseline. The four test data provide insight
in this generalization ability of the proposed DRDPI model. Except for the first test data with
descending zero baseline, the other three test data has different characters from the training
data.

In order to evaluate the modeling performance of the proposed DRDPI model, three metrics
are used and visualized in the following histogram Figure 5.10. Among these four test signals,
the first test signal has the biggest MAE with 6.2 degree. Follow that is the third test signal
with 4.3 degree at MAE, and the last two test signals with almost same MAE. Besides the
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5 Deadband Rate-Dependent Prandtl-Ishlinskii model

third test signal - Ascending up-chirp sine wave with zero baseline has the smallest RMSE
with 1.1 degree, the other three signals have approximate equal sizes. The performance of the
proposed model based on the last metric is relatively good with the highest NRMSE 6.28%
and with the lowest 4.54%.

To sum up, the proposed Deadband Rate-Dependent Prandtl-Ishlinskii shows a good
performance since it can basically follow the test signals. Even if those characters differ from
the training data. This result shows that this model has a great potential for modeling the
hysteresis in the PAM-driven robotic catheter.
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Figure 5.10: Three metrics evaluation of the modeling performance (DRDPI)
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6 Support Vector Regression model

6.1 Overview of the SVR model

Support Vector Regression (SVR) is a model based on the statistical learning theory and a
supervised learning model. SVR is superior in solving the problems of nonlinearity, which
could be used to model the hysteresis [58]. Before moving further step into the Support Vector
Regression (SVR) model, a Support Vector Machine (SVM) is briefly introduced. Generally,
Support Vector Machines are considered to be a classification approach. They can easily
handle multiple continuous and categorical variables. An SVM constructs a hyperplane in
multidimensional space to separate different classes. The core idea of an SVM is to find a
maximum marginal hyperplane that best divides the data set into classes. Normally, SVM
is considered to be best fit for classification problem (classifier). In the following Figure 6.1
three key factors of the SVM are shown:

Figure 6.1: Support Vector Machine in 2D

• Support Vectors

The Support vectors are the data points that are closest to the hyperplane. Figure 6.1
shows the support vectors with red arrow line. These points will define the separat-
ing line better by manually defined margins. These points are more relevant to the
construction of the classifier.

• Hyperplane
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6 Support Vector Regression model

The blue triangle in the figure is the projection of the hyperplane that we want search. A
hyperplane is a decision plane which separates between a set of objects having different
class memberships.

• Margin

The width of the hyperplane is called the margin in the 2D using case. In other words,
a margin is a gap between the two boundaries on the closest class points. This is
calculated as the perpendicular distance from the line to support vectors or closest
points. If the margin is larger in between the classes, then it is considered a good margin,
a smaller margin is a bad margin.

SVM, the Support Vector Regression uses the same principles as the SVM. But it is still a
bit different from SVM. SVR is an regression algorithm , so we can use SVR for working with
time series data instead of the classification tasks of SVM.

Figure 6.2: Support Vector Regression [59]

Figure 6.2 illustrates the working of a SVR. The main advantage of this algorithm is
regression, thus the decision boundary, which is marked with two dash lines, is our margin
of tolerance. We are going to take only those points who are within this boundary. To be
more specific, SVR gives us more flexibility to define how much error is acceptable in the
model and will find an appropriate line or hyperplane in higher dimensions to fit the data.
In order to reach this goal, the hyperparameters of the SVR model are important for the
model performance. The type of hyperparameters and the selection of them are going to be
introduced in the following section.

6.2 Hyperparameters of the SVR model

In order to obtain a better SVR model, the tuning process of the hyperparameters should be
applied. In this project, three hyperparameters of the proposed SVR model will be introduced:
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6 Support Vector Regression model

Table 6.1: Hyperparameters of the SVR model

C Kernel Kernel coefficient Margin of tolerance
10 RBF 0.1 0.1

• Kernel

The main function of the kernel is to transform the given data set input data into the
required form. In the SVR model, there are various types of function that can be chosen
such as a linear, a polynomial, and a Radial Basis Function (RBF).

• Penalty parameter

C is the penalty parameter, which represents misclassification or an error term. The
misclassification or error term tells the SVR optimization how much error is bearable. A
smaller value of C creates a small-margin hyperplane and a larger value of C creates a
larger-margin hyperplane. The MAE generally decreases as C increases.

• γ

A lower value of γ will loosely fit the training data set, whereas a higher value of
gamma will exactly fit the training data set. Too large γ value such as 10 can cause
over-fitting.

Based on the value of the hyperparameters, it is a essential problem that how to choose
them in a scientific way. Thus here in the thesis, the K-Fold cross validation method was
implemented. K-Fold cross validation is where a given data set is split into a K number
of sections/folds where each fold is used as a testing set at some point. To obtain better
hyperparameters, here K = 10 is adopted, which means the data set is split into 10 folds. In the
first iteration, the first fold is used to test the model and the rest are used to train the model. In
the second iteration, second fold is used as the testing set while the rest serve as the training
set. This process is repeated until each fold of the 10 folds have been used as the testing set.
After the cross validation. the hyperparameters of the SVR are chosen as follows: penalty C =
10, kernel = Radial Basis Function (RBF) kernel, kernel coefficient γ = 0.1, margin of tolerance
ε = 0.1. Parameter C and γ were optimized using a grid search (C∈{0.001,0.01,0.1,1,10},
γ∈{0.001,0.01,0.1,1}) and a cross-validation method (k=10) as mentioned before.

6.3 Hysteresis modeling with the SVR model

In the previous section, the hyperparameters of the proposed SVR model are already described.
In order to compare the proposed model with the DRDPI model proposed in the last chapter,
the training data generation of the SVR is also based on the (4.1) and (4.2). The whole training
data of the SVR is same with the DRDPI model (see Figure 5.4).

Similar to the training process of the DRDPI model, the training process of the SVR model
also has a loss function. The unit of the training loss in DRDPI model is deg2, thus the
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loss function of the SVR model is chosen as MSE function. Besides the training loss, in this
machine learning-based model, the over-fitting problem should also be noticed. This problem
is solved by also plotting the validation loss. Figure 6.3 shows the training loss and the
validation loss of the SVR model.

The training loss of the proposed SVR model reaches a plateau only after around 20
iterations. The same holds for the validation loss. Moreover, the validation loss does not go
up, which means no over-fitting problem in this training process. Through the local zoom in
the Figure 6.3, the training loss and validation loss lines are different, but very similar. This
also indicates that the training of the proposed SVR model is more efficient than the proposed
DRDPI model. The training of the SVR model is performed on a CPU (Intel Core i7 CPU @
2.80GHz with a RAM of 8GB). The training time of the SVR model took around 20 minutes.

Figure 6.3: SVR training and validation loss

6.4 Modeling performance of the SVR model

6.4.1 Performance evaluation of the SVR model

In order to explore the performance of the SVR model, besides training data and validation
data, test data is also needed to generate. The SVR model implemented in this thesis was
based on the work of [58]. Since the training data of the SVR model is same as for the DRDPI
model, the same test data is also used to test the SVR model. The four test data and its results
are illustrated as follows:

1. A descending sine wave that is same with the first test data in section 5.4 is adopted.
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Figure 6.4: 1. Descending sine wave differing from training data (SVR)

Table 6.2: Three metrics of the first test data in SVR model

Modeling
Methods

Descending sine wave
differing from training data

RMSE (deg) MAE (deg) NRMSE
SVR 0.758 1.833 2.45%

At each peak of the test data, the proposed SVR model shows a good performance.
It’s output can basically fit the ground truth, which can lead to a relative lower RMSE
= 0.8 degree. However, it is noteworthy that the output of the SVR model shows a
disturbance at the beginning of the test data and the deadband of the ground truth.
At the start, the output can not depart from zero but starts from around 2-3 degrees.
At each deadband, it’s performance shows a disturbance wave with small amplitude
around 2 degree. Thus the MAE is lower than the 2 degree but equals to 1.8 degree.

2. The same Attenuated down-chirp sine wave with shifted baseline is also implemented
here following (5.16) with A = 0.9, B = 1.2, f = 0.7, τ = 0.1, and c = -0.1.

This test data differs at two points from the training data, namely non-zero baseline

Table 6.3: Three metrics of the second test data in SVR model

Modeling
Methods

Attenuated down-chirp
sine wave with shifted baseline

RMSE (deg) MAE (deg) NRMSE
SVR 0.797 3.535 4.10%
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Table 6.4: Three metrics of the third test data in SVR model

Modeling
Methods

Ascending up-chirp sine
wave with zero baseline

RMSE (deg) MAE (deg) NRMSE
SVR 0.760 1.687 3.56%

and changing frequencies. The same problem from the first test data also appears here.
At the beginning, the output is not able to start from zero. This leads to a larger MAE
in this test data with a MAE = 3.5 degree. However, the output of the SVR follows the
ground truth very well for changing frequencies. This leads to a smaller RMSE = 0.8
degrees.

0.0
7.56.5

5.0

Figure 6.5: 2. Attenuated down-chirp sine wave with shifted baseline (SVR)

3. Same with the test data mentioned in the section 5.4, this test data called Ascending
up-chirp sine wave with zero baseline. The generation of this test data following (5.17)
with A = 0.6, f = 0.3, τ = 0.05 and c = 0.15.

Similar with the performance in the first test data, the proposed SVR model is not able
to follow the trajectory of the ground truth at the beginning and the deadband parts.
However, the resulting error stays consistently below 2 degrees. As visble in Figure 6.6.
Thus the MAE equals to 1.7 degrees and the RMSE = 0.8 degrees.

4. In order to explore the potential of the proposed SVR model, an arbitrarily varying
signal same with the last chapter was implemented.

Despite that this type of test data shows plateaus, which is more practicable but
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Figure 6.6: 3. Ascending up-chirp sine wave with zero baseline (SVR)
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Figure 6.7: 4. Arbitrarily varying signal with plateaus (SVR)
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Table 6.5: Three metrics of the fourth test data in SVR model

Modeling
Methods

Arbitrarily varying
signal with plateaus

RMSE (deg) MAE (deg) NRMSE
SVR 0.920 2.010 3.78%

challenging for the proposed model. The output of the model can not only follow the
plateau trajectories well, but also performs well at each peak. This leads to an RMSE =
0.9 degrees and a NRMSE = 3.78%. Not only the SVR model has the worst performance
at the beginning and the deadband, the proposed model but also performs worst at
each wave valley. This leads to the MAE = 2.0 degrees.

6.4.2 Discussion of the SVR model performance

Table 6.2 - 6.5 summarize all three metrics of the four test data. From the Figure 6.4 - Figure
6.7 it can be concluded that the proposed SVR can provide higher accuracy, especially during
the increasing, decreasing, and the plateau periods. To sum up, the proposed SVR model can
model the hysteresis of this robotic PAM-driven catheter with sub-degree accuracy. However,
the SVR model is not able to follow the trajectory at the beginning and the deadband of the
ground truth. This could lead to lager MAE and NRMSE. Even if the SVR model has this
disadvantage, the SVR model still outperforms than the DRDPI model in all three metrics.
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7 Long Short-Term Memory model

7.1 Overview of the LSTM model

A Long Short-Term Memory (LSTM) is a deep learning-based methods, which is explicitly
designed to avoid the long-term dependency problem. It happens that an LSTM was proposed
as a tool to process sequential information and take historical information into account [60].
A system is defined to exhibit hysteresis if it has a sort of memory. This means that the output
at a certain moment is not only determined by the corresponding input but also by the past
inputs [34]. In a sense this can be considered as a long-term memory. Thus it is not illogical
to consider the use of an LSTM to model hysteretic behavior.
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Figure 7.1: Long Short-Term Memory cell

Figure 7.1 shows an LSTM cell. The LSTM can be viewed as a stack of LSTM cells that
contain a number of units in a LSTM cell. Each LSTM cell has an input gate, an output gate,
and a forget gate to control the information flow. The information in a cell is processed as
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follow [60]:

f (t) = σ(W f p(t) + U f h(t−1) + b f ) (7.1)

i(t) = σ(Wi p(t) + Uih(t−1) + bi) (7.2)

c̃(t) = tanh(Wg p(t) + Ugh(t−1) + bg) (7.3)

c(t) = f (t) ∗ c(t−1) + i(t) ∗ c̃(t) (7.4)

o(t) = σ(Wo p(t) + Uoh(t−1) + bo) (7.5)

h(t) = tanh(c(t)) ∗ o(t) (7.6)

In (7.1), p(t) is the input pressure to the PAM-driven robotic catheter experimental setup at
time t. The variable σ is the sigmoid function with an output range of [0,1] (see Figure 7.2)
given by:

S(x) =
1

1 + e−x (7.7)

Figure 7.2: Sigmoid function
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It regulates the percentage of information that flows through each gate. Another activation
function is the tanh (see (7.8)), whose outputs range from [-1,1] (see Figure 7.3):

ex − e−x

ex + e−x (7.8)

Figure 7.3: Tanh function

The forget gate f determines which information from in the previous cell state c(t−1) can be
preserved. The input gate i, which goes through sigmoid function and the input modulation
gate c̃, which goes through tanh function, are combined to update the cell state (see Figure
7.1). A new cell state c(t) is created afterwards. The cell state c stores the selective information,
which is considered as long-term memory in the LSTM, can be established. The output gate
o works as a filter. It will decide which part of information from the new cell state c(t) can
be output and transferred to the hidden state h(t). The matrix, U, W, and b, with different
subscripts, represent the weights and biases in each gate. The dependencies will be tracked
based on the gates between the elements in the input sequence.

7.2 Construction of the LSTM model

7.2.1 Data preprocessing for the LSTM model

As introduced in the last section, the output at a certain moment is not only determined
by the corresponding input but also by the past inputs. Because of the character of the
proposed LSTM model, the input of the LSTM model should not be one dimension but

45



7 Long Short-Term Memory model

multi-dimensional. The historic input should be considered in each input matrix. Figure 7.4
demonstrates the data preprocessing method of the input data.
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Figure 7.4: Input data preprocessing

a) The input data of the LSTM model is the air pressure along with the time. In other words,
the input data is a time series data with many data points. The input data needs to be
processed before it is sent to the LSTM model.

b) The whole input data can be viewed as a matrix with only one column but multi rows. As
shown in the Figure 7.4, the input data is a vector ranged with time.

c) After vectorization of the input data, the input data will be split into several input vectors
based on the size of the time window. The size of the time window determines the
historic input pressure that the LSTM model will consider. However, at the initialization,
there is no historic input data when the amount of the selected time points is smaller
than the size of the time window. Therefore a padding method is proposed to solve this
problem. Zero elements are used to fill in the gap during the initialization. According
to a previous pilot study [61] and [62], a window size equal to 50 was shown to have a
good performance while maintaining a low computational cost. Figure 7.4 (c) shows the
padding and splitting process for a time window of 50 samples.

7.2.2 Hyperparameters of the LSTM model

Similat to the proposed SVR model, the LSTM model is also a learning-based model. Therefore
the hyperparameters of the LSTM are also essential for the performance of the model. The
hyperparameters of the LSTM model are introduced as follows:

• Number of hidden layers

An LSTM can be viewed as a stack of LSTM cells that contain a number of units in an
LSTM cell. Therefore the layers of the LSTM should be defined by the user. In this
thesis, 2 hidden layers are chosen for the proposed LSTM model.
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• The number of neurons per cell

As mentioned before, the LSTM contains a number of units in an LSTM cell. The
number of neurons need also be defined, and the number of neurons is better with the
power of 2. Therefore in this experiment 64 neurons in each LSTM cell are adopted.

• The activation function

As introduced in the last section, the activation functions of the LSTM are a sigmoid
(see Figure 7.2) and a tanh (see Figure 7.3).

• Optimizer

Optimisers play a very crucial role to increase the accuracy of the model. In the LSTM
there are many possibilities for choice of optimizer.

1. SGD: Stochastic Gradient Descent

The SGD optimizer is also known as an incremental gradient descent the tries
to find minimum or maximum error via iteration. However, it is not certain to
converge to a local minimum even if the objective function is not convex or pseudo
convex. This is one of the main issues it faces.

2. Adagrad

The slope could be adapted and thus speed up the SGD. One of the main benefits
of the Adagrad is that it eliminates the need to manually tune the learning rate.
However, one of the major disadvantages is the learning rate decreasing, which
will lead to no further learning / acquisition of new information.

3. Adam

Adam is a tool for calculating the learning rate and the parameter that has been
proven to perform well in practice and to compare favorably against other adaptive
learning algorithms.

To sum up, SGD, adagrad are very similar algorithm and since Adam was found to
slightly outperform both of them, Adam is generally chosen as the best choice.

• Loss function

In order to compare with the other two models, the unit of the loss function should be
better same. Since the other two model’s loss function has a unit of deg2, the same loss
function was chosen here.

• training subset and validation ratio

In order to avoid the over-fitting problem of the training process, the whole training
data should be split into the training subset and validation subset. Normally, the whole
training data is divided into 70% for training and 30% for validation.

• Batch size
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Table 7.1: Hyperparameters for the LSTM network
Number of

hidden layers
Number of neurons

per cell
Activation
functions

Optimizer Loss function
Training-subset

/Validation ratio
Batch size Learning Rate Epoches

LSTM 2 64, 64 Tanh/Sigmoid Adam L2 Loss 70%30% 16 0.001 50

The batch size determines the amount of the input series data. Adjusting the batch size
could increase the efficiency of the training process, however, too large batch size could
add extra computation cost.

• Learning rate

Learning rate determines the learning speed of the training process. If the learning rate
is too large, it will decrease the learning efficiency and decrease the performance of the
model. However, if the learning rate is too small, the learning speed is too slow and
this will lead to more training time.

• Epoches

The number of training iterations is defined by the number of the epoch. The number
of the epoch should be appropriate, if the number is too small, the training process
may not have converged and may not reach the plateau of the training loss. But with
too large epoch number, over-fitting may arise together with an extra waste of the
computation.

Table. 7.1 shows all the hyperparameters of this LSTM model. All hyperparameters are
validated and chosen based on the previous study [61], [62]. The modeling of the hysteresis
by using the proposed LSTM model will be based on these hyperparameters.

7.3 Hysteresis modeling with the LSTM model

After selecting the hyperparameters of the proposed LSTM model, the training process of the
LSTM model will be implemented. In order to guarantee the consistency of the comparison
between these models, the training data generation is also based on (4.1) and (4.2). The whole
training data is the same with the proposed DRDPI and SVR models.

As mentioned before, the loss function of the LSTM model is chosen as the L2 loss. Figure
7.5 demonstrates the training loss of the LSTM model. It is clear that the training loss reaches
a plateau after about 30 iterations. In order to avoid the over-fitting problem, the 30% of the
whole training data is used as validation data. The validation loss can also be seen in Figure
7.5. The validation loss does not increase, which means that no over-fitting problem occurred.

Figure 7.6 illustrates the structure of the proposed LSTM model as well as all the hyperpa-
rameters. At each iteration 50 time steps are input into the LSTM model. First, the input data
will go through the 2 stacked layer. Secondly, the output information will go through a fully
connected layer. Therefore, the sequential pressure data p(t−49),p(t−48),...p(t) were entered
into the LSTM to predict one bending angle θ(t). Zeros were padded on the left side of the
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7 Long Short-Term Memory model

input sequence for predicting the first 49 bending angles. A fully connected layer with input
dimensions = 64 and output dimension = 1 was added after the last LSTM cell.

Figure 7.5: Training loss of the LSTM

To increase the learning efficacy, all the training data were normalized between [-1,1] (7.9)
to match the range of the activation function in (7.1).

ynorm = (b− a)
y− ymin

ymax − ymin
+ a, a = −1, b = 1 (7.9)
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Figure 7.6: LSTM structure

The network was implemented in an open source machine learning framework named
Pytorch. The total number of trainable parameters is 50497. The training was performed on
an 4 GB NVIDIA CUDA-capable GPU. The LSTM was trained for 50 epochs. With 4 GB GPU,
the whole training time was around 10 minutes.
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7 Long Short-Term Memory model

Figure 5.5, Figure 6.3, and 7.5 show the training loss of the proposed DRDPI, SVR, and
LSTM model, respectively. The y-axis of the DRDPI model starts from the 5 deg2 and ends at
about 0.2 deg2 after 1000 iterations. Compare to the SVR model, the training loss starts from
0.5 deg2 and ends at about 0.02 deg2 after 100 iterations. However, the LSTM model shows
more efficient learning, which starts from the 0.012 deg2 and ends at the very low level only
after 50 iterations.

7.4 Modeling performance of the LSTM model

7.4.1 Performance evaluation of the LSTM model

In order to test the performance of the proposed LSTM after training, four groups of test data
are used. Again these data are the same as the test data that was used in the DRDPI and SVR
model. The implemented model in this thesis was based on the previous work [51]. The four
groups of the test data and their results are introduced as follows:

1. Based on the (4.1) with different f = 0.7 Hz and τ = 0.12 from the training data, the
same descending sine wave was generated.
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Figure 7.7: 1. Descending sine wave differing from training data (LSTM)

Except for the performance on the second last and third last wave, which shows a little
disturbance at the peak of the output, the general performance of the proposed LSTM
model is promising. The model output fits the ground truth during the increasing and
decreasing parts well. This explains the relative small RMSE = 0.4 degrees. Because of
the good fitting of the peak and the valley of the wave, the MAE of the output is also
small. The MAE = 1.2 degrees in this type of the test data.
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7 Long Short-Term Memory model

2. Based on (5.16), the same test data with A = 0.9, B = 1.2, f = 0.7, τ = 0.1, and c = -0.1
was generated.
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Figure 7.8: 2. Attenuated down-chirp sine wave with shifted baseline (LSTM)

At the first and second waves of the test data, the output of the LSTM can fit the ground
truth in increasing, decreasing, the peak, and the valley of the wave. However, when the
frequency of the test data is decreasing, the output of the LSTM starts to show worse
performance, especially at the first last and second last waves. Thus the RMSE and
the MAE are higher than the error in the first test data, reaching 0.8 degrees and 2.3
degrees, respectively.

3. Following (5.17), the same test data with A = 0.6, f = 0.3, τ = 0.05 and c = 0.15, an
ascending up-chirp sine wave was generated.

The performance of the LSTM in this type of test data is getting better when the
frequency is increasing. However, at the beginning of the test data, the output of the
LSTM has relative large errors at the peak and the valley of the wave. It is also clear to
observe from the error plotting that the amount of the error is higher than other periods.
Even if the RMSE and the NRMSE are also relative low errors equal to 0.5 degrees and
2.34%, respectively.

4. Similar to the proposed DRDPI and SVR model, an arbitrarily varying signal with
plateaus test data was used to explore the potential of the LSTM model in general
applications.

The LSTM performs good at the plateau period and the most increasing and decreasing
period. At the last valley of the wave, the output of the LSTM shows relative offset with
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Figure 7.9: 3. Ascending up-chirp sine wave with zero baseline (LSTM)
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Figure 7.10: 4. Arbitrarily varying signal with plateaus (LSTM)
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7 Long Short-Term Memory model

the ground truth, which leads to the MAE = 1.9 degrees. Generally the performance of
the LSTM is acceptable with RMSE = 0.6 degrees and NRMSE = 2.42%.

7.4.2 Discussion of the LSTM model performance

Figure 7.11 illustrates the three metrics of the modeling performance in the LSTM model. It is
clearthat the maximum NRMSE appears at the second type of the test data, which equals to
4.2%. Also, the maximum MAE appears at the second type of the test data with 2.3 degrees.
The LSTM performs best at the first test data with minimum RMSE = 0.4 degrees because the
character of this type is same with the training data.

To sum up, the overall performance of the LSTM shows that this model can model the
hysteresis in this PAM-driven robotic catheter system accurately. The LSTM can provide
a sub-degree accuracy. Also, the training time and the computation cost is relative small
and acceptable. With 4 GB NVIDIA CUDA-capable GPU, the LSTM model takes around 10
minutes. The DRDPI model takes 3.5 hours with CPU (Intel Core i7 CPU @ 2.80GHz with a
RAM of 8GB) since there is no widely spread GPU library.
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Figure 7.11: Three metrics evaluation of the modeling performance (LSTM)
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8 Comparison of modeling performance
between proposed models

In this thesis, three models are proposed for hysteresis modeling of a PAM-driven robotic
catheter system, namely Deadband Rate-Dependent Prandtl-Ishlinskii, Support Vector Re-
gression, and Long Short-Term Memory model. The DRDPI model is an analytical model
while the other two models are learning-based model (see Figure 8.1). Since all the unknown
parameters of DRDPI can be listed in Table. 5.1, the training process is relative transparent
and classified as white box. The SVR model is learning-based model, more specifically it is a
machine learning model, considered as a gray box method. The last proposed model-LSTM
model, is a deep-learning method and considered as a black box method, since all the weights
and bias of the LSTM cell are impossible to be interpreted.

Figure 8.1: Classification of proposed models

In order to evaluate the performance of these models, also three metrics are used for the
comparison of these three models, namely Maximum Absolute Error, Root Mean Square
Error, and Normalized Root Mean Square Error. All three proposed models make use of the
same training data and the same test data, it is therefore meaningful to compare these models
with the four types of the test data. The comparison result of each test data is introduced as
follows:

1. Descending sine wave differing from training data

The first test data has the same character with the training data but with different f
and τ. Figure 8.2 shows the performance of all three proposed models and plots the
errors. When looking at the peaks in the signal, one can clearly notice that the DRDPI
model performs the worst. Also during the increasing period of the wave, the DRDPI
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8 Comparison of modeling performance between proposed models

Table 8.1: Quantitative performance of the proposed models in the first test data
Descending sine wave

differing from the training dataModeling
Methods RMSE (deg) MAE (deg) NRMSE
DRDPI 1.404 6.226 4.54%

SVR 0.758 1.833 2.45%
LSTM 0.363 1.227 1.17%

model’s output shows an offset with respect to the ground truth, which leads to a large
error that can be seen clearly in the error plot. Moreover, because of the SVR’s worse
performance at each deadband, the RMSE of the SVR is also higher than that of LSTM.
A local zoom in on the Figure 8.2 also further illustrates the performance of these three
models.

0.0

8.57.5

8.0

0.0

9.57.5

8.0

Figure 8.2: Descending sine wave differing from training data

Table. 8.1 provides the obtained results. The cell with green background highlights
model with best performance for each metric. It can be seen that the LSTM model has
the best performance of all three metrics in this type of the test data. Compared to the
DRDPI and SVR model, the LSTM model performs 74.14% and 52.11% better in the
RMSE, respectively. It is also noteworthy that the MAE of the DRDPI model is much
larger than the SVR and LSTM model, which proves that the learning-based models are
more stable than the analytical model for these experiments.

2. Attenuated down-chirp sine wave with shifted baseline
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8 Comparison of modeling performance between proposed models

Based Figure 8.3, it is hard for the proposed models to model the hysteresis under this
type of the test data when the frequency is decreasing. All three models show worse
performance near the end of the ground truth. This leads to higher RMSE compared to
the first type of the test data. The DRDPI model has difficulty to follow the trajectory,
the other two learning-based models show a better performance. It is therefor that the
DRDPI model has the worst performance in all three metrics, which can be proved in
details in the Table. 8.2.
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0.0
7.56.5
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Figure 8.3: Attenuated down-chirp sine wave with shifted baseline

It is noteworthy that two out of three green cells appear for the SVR model. Compared
to the DRDPI model, the SVR model improves the performance with 34.67% at the
RMSE and 34.71% at NRMSE. However, because the disturbance at the beginning of
the SVR model, the SVR model has the worst performance for MAE with 3.5 degrees.
Although the SVR model has a better performance, the LSTM has a more stable and
accepted performance, with only less 2.32% and 2.38% lower accuracy compared to
SVR.

3. Ascending up-chirp sine wave with zero baseline

The third set of test data has an ascending pattern that is not contained in the training
data. The performance of the SVR and LSTM improve with growing frequency, whereas
the DRDPI model achieves a similar level of performance in the first two loops. However,
the performance of the DRDPI starts to deteriorate until reaching a MAE of 4.3 degrees
in the loading phase at the last loop.

Compared to the performance of the three models at the second test data, the green
cells at the Table. 8.3 are exactly opposite to the Table. 8.2. The LSTM has the best
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8 Comparison of modeling performance between proposed models

Table 8.2: Quantitative performance of the proposed models in the second test data
Attenuated down-chirp

sine wave with shifted baselineModeling
Methods RMSE (deg) MAE (deg) NRMSE
DRDPI 1.220 2.830 6.28%

SVR 0.797 3.535 4.10%
LSTM 0.816 2.271 4.20%
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Figure 8.4: Ascending up-chirp sine wave with zero baseline
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8 Comparison of modeling performance between proposed models

Table 8.3: Quantitative performance of the proposed models in the third test data
Ascending up-chirp sine
wave with zero baselineModeling

Methods RMSE (deg) MAE (deg) NRMSE
DRDPI 1.066 4.284 4.99%

SVR 0.760 1.687 3.56%
LSTM 0.500 1.924 2.34%

performance at the RMSE and the NRMSE with 53.10% and 53.11% improvement
compared to the DRDPI model. Moreover, the MAE of the DRDPI model is much larger
than the SVR model with 60.62%, where the SVR model has the lowest MAE at this
type of the test data. Based on the performance of the DRDPI on the MAE metric, the
DRDPI model shows a unstable character.

4. Arbitrarily varying signal with plateaus

Among of these four types of the test data, the arbitrarily varying signal is the most
practical data compared to the other three types. The two learning based models show
a good performance at the plateaus of the signal, while the DRDPI model creates a lager
MAE with 3.0 degrees here. Moreover, at the rough of the wave the DRDPI model also
shows a worse performance than the other two models.
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Figure 8.5: Arbitrarily varying signal with plateaus

Table. 8.4 demonstrates the concrete number of the three metrics. All three green cells
are shown in the LSTM model, which indicate the advantage of this model. Compared
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8 Comparison of modeling performance between proposed models

Table 8.4: Quantitative performance of the proposed models in the fourth test data
Arbitrarily varying

signal with plateausModeling
Methods RMSE (deg) MAE (deg) NRMSE
DRDPI 1.479 2.979 6.07%

SVR 0.920 2.010 3.78%
LSTM 0.588 1.932 2.42%

Table 8.5: optimization results of three models
Modeling Methods Iterations Training Loss (deg2) Mean of Relative Change

DRDPI 1000 0.344 0.013%
SVR 100 0.002782 0.708%

LSTM 50 0.00056 0.190%

to the analytical modelDRDPI, the LSTM improves the RMSE, MAE, and NRMSE with
60.24%, 35.14%, and 60.13%, respectively. In this practical signal the LSTM performs
the best, and also the SVR model proforms better than the DRDPI model. It proofs
that when the signal is much more complicated, the learning-based models have more
advantage than the analytical model.

In order to compare these three models more efficient, also the training data of all the
models is the same, it is meaningful to list the training process result. Table. 8.5 shows
the parameters of three models training process. The DRDPI goes through 1000 iterations
before it reaches the plateau, while the SVR and the LSTM model only go through 100 and
50 iterations, respectively. Moreover, the last training loss of the DRDPI equals to 0.344 deg2,
but the last training loss of the SVR is only around 0.0028 deg2 and the LSTM is more less
with 0.00056 deg2. The DRDPI model has a larger training loss even if it has gone through 20
times iterations than the LSTM. The learning efficiency and speed of the two learning-based
models are much larger than the analytical model. To sum up, the learning-based, especially
the LSTM model, has less training time and can model the hysteresis more accurate.
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9 Inverse Deadband Rate-Dependent
Prandtl-Ishlinskii model

9.1 Overview of the Inverse DRDPI model

9.1.1 Proposed unknown functions of the IDRDPI model

In the previous chapter 5, the DRDPI model has been introduced and proved to be able to
model the hysteresis in the PAM-driven robotic catheter system. In the modeling procedure
of the DRDPI model, the input of the model is the input pressure of the PAM and the
output is the bending angle. However, the goal of the DRDPI model is to compensate for the
hysteresis of the system and achieves linear relationship between the input and the output.
Thus the Inverse Deadband Rate-Dependent Prandtl-Ishlinskii (IDRDPI) model is proposed
to compensate for the hysteresis.

In the section 5.2 all unknown functions of the DRDPI model are introduced. The inverse
model of the proposed IDRDPI model is derived from the DRDPI model. An identity mapping
between the input bending angle and input pressure is obtained by applying the IDRDPI
model as a feed forward compensator. The mapping relationship is shown as follows:

ur(t) = E(E−1(u(t)))→ ur = u (9.1)

The inverse model of the proposed DRDPI E−1 can be calculated as [55]:

ur(t) = E(E−1(u(t))) = y−1(Z−1(u(t))) (9.2)

The (5.6) introduces the threshold function of the DRDPI model, a threshold function in
the IDRDPI model is also shown as follows [54]:

ρ1(u̇(t)) = a0r1(u̇(t)) (9.3)

ρi+1(u̇(t)) = ρi(u̇(t)) +
i

∑
j=0

aj(ri+1(u̇(t))− ri(u̇(t))) (9.4)

Based on the inverse threshold function and weighting constants ci, the output of the
IDRDPI model is formulated [44]:

y−1(t) = c0u(t) +
N

∑
i=1

ciΦρi(t) (9.5)

60



9 Inverse Deadband Rate-Dependent Prandtl-Ishlinskii model

The weighting constants of the inverse model c0, c0, ..., cn are calculated based on the
weighting constants in the (5.7) of the DRDPI model [63]:

c0 =
1
a0

, ci = −
ai

(a0 + ∑
j
i=1 ai)(a0 + ∑

j−1
i=1 ai)

(9.6)

Besides the inverse of the rate-dependent part of the DRDPI model, the deadband of the
DRDPI model should also be derived. The inverse model of the deadband function Z−1 is
derived from weighted deadband operators Λbi and shown as follows [40]:

Z−1(t) =
k

∑
i=−k

qiΛbi(u(t)) (9.7)

where qi and bi are weighting constants and thresholds of the inverse deadband function Z−1.
The threshold function bi of the inverse deadband function and constants qi are computed
based on the di and gi in the deadband function Z in (5.5). Inverse threshold and constants
corresponding to positive indices are introduced as follows [40]:

bj =
j

∑
i=0

gi(dj − di), f or j = 0, ..., k (9.8)

and

q0 =
1
g0

, qj = −
gi

(g0 + ∑
j
i=1 gi)(g0 + ∑

j−1
i=1 gi)

f or j = 1, ..., k (9.9)

Similarly, constants and thresholds of the inverse model corresponding negative indices are
represented as follows [40]:

bj =
0

∑
i=k

gi(dj − di), f or j = −k, ...,−1 (9.10)

and

q0 =
1
g0

, qj = −
gi

(g0 + ∑−1
i=j gi)(g0 + ∑−1

i=j+1 gi)
f or j = −k, ...,−1 (9.11)

Unlike the modeling process, the unknown parameters of the IDRDPI model can be directly
derived from the modeling parameters based on the formulas (9.1)-(9.11). Normally, the
compensation of the hysteresis based on the IDRDPI model is related to the DRDPI model.
After the training process of the DRDPI, all unknown parameters can be obtained from the
modeling process. In the next subsection, the preliminary test of the direct IDRDPI model
will be validated.
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9 Inverse Deadband Rate-Dependent Prandtl-Ishlinskii model

9.1.2 Preliminary test of the IDRDPI model

In order to validate whether the direct inverse DRDPI model can compensate for the hysteresis
in this PAM-driven robotic catheter system, it is meaningful first to compare the compensated
pressure from the output of the direct IDRDPI and the input pressure. Figure 9.1 illustrates
the comparison between these two pressures.

Figure 9.1: Output of the direct IDRDPI

It is clear to observe that the tendency of the compensated pressure from the IDRDPI model
is same with the uncompensated pressure. Thus if this compensated pressure is input into the
setup, the deadband will not be compensated for and also the hysteresis still exists. Therefore,
an optimization for the IDRDPI model is needed.

9.2 Optimization of the Inverse DRDPI model

Throughout the preliminary test of the direct IDRDPI model, this model cannot exactly
characterize the hysteresis in this experimental setup. In order to compensate for the
hysteresis, a optimization of the IDRDPI model [50] is introduced in this section.

Figure 9.3 illustrates the optimization process of the IDRDPI model. The optimization of
the IDRDPI model can be divided into three steps:

1. Step 1: The Generalized Prandtl-Ishlinskii (GPI) identification and the its inverse.

The GPI proposed in the step 1 is based on the [27] and [64]. The output of the GPI
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9 Inverse Deadband Rate-Dependent Prandtl-Ishlinskii model

model can be formed as follows [65]:

yp(k) = qγ(x(k)) +
n

∑
i=1

p(ri)Fγ
ri [x] (k) (9.12)

with,
Fγ

ri [x] (k) = max(γ(x)− ri, min(γ(x) + ri, Fγ
ri [x] (k− 1))) (9.13)

where n is the number of the operators and k represents the time points. The following
envelope function is used in this GPI model [66]:

γ(x(t)) = c0 tanh [c1x(t) + c2] + c3 (9.14)

where c0 > 0, c1 > 0, c2 and c3 are constants that need to be identified with the same GA
methods as mentioned before. The following equations are used to define the density
function p(ri) and the threshold function ri [66]:

p(ri) = ρe−τri (9.15)

and
ri = βi (9.16)

where ρ, β, and τ are constants that also will be determined by the GA identification
process.

After the modeling process of the GPI model, the inverse model is also proposed for the
hysteresis compensation and the output of the inverse GPI model is shown as follows
[65]:

y′p(k) = γ−1

(
q′yp(k) +

n

∑
i=1

pi
′xi(k)

)
(9.17)

with,
xi(k) = max

{
yp(k)− ri

′, min
{

yp(k) + ri
′, xi(k− 1)

}}
(9.18)

ri
′ = qri +

i−1

∑
j=1

pj(ri − rj) (9.19)

q′ =
1
q

, pi
′ =

−pi

(q + ∑i
j=1 pj)(q + ∑i−1

j=1 pj)
(9.20)

γ′−1(x) =
1

2c1
ln
(

x + c0 − c3

c0 + c3 − x

)
− c2

c1
(9.21)

where γ′−1(x) is the inverse envelop function, pi
′ and ri

′ are the weights and thresholds
of the inverse GPI model.
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9 Inverse Deadband Rate-Dependent Prandtl-Ishlinskii model

Table 9.1: Unknown parameters of the GPI model

Model Unknown parameters
Proposed GPI c0, c1, c2, c3, β, ρ, τ, q

Table 9.2: Identified parameters of the GPI model under 0.2 Hz

Parameter c0 c1 c2 c3 β ρ τ q
Value 10 0.715 -1.134 7.435 1.084 9.875 1.684 0.714

To sum up, there are in total 8 unknown parameters should be identified in the GPI
model, which are shown in the Table. 9.1. All the unknown parameters are identified
by the GA introduced in the previous chapters. Also, because the GPI model is rate-
independent, the GPI model will be identified under each frequency and the parameter
in each frequency is also different.

2. Step 2: Data sets for identification of the unknown parameters of the inverse DRDPI.

As mentioned before, the proposed GPI model is a rate-independent model, which
means the model need to be identified at each different frequency. The training data
is generated following the (4.1) under f = 0.2 Hz, f = 0.4 Hz, f = 0.6 Hz, and f = 0.8
Hz with τ = 0.1. The identification results of the unknown parameters are listed in the
Table. 9.2, Table. 9.3, Table. 9.4, and Table. 9.5 under f = 0.2 Hz, f = 0.4 Hz, f = 0.6 Hz,
and f = 0.8 Hz, respectively.

The inverse model is based on the parameters from the modeling process, all the
parameter will be calculated and applied under each frequency. The trained inverse
GPI model is the training data source of the inverse DRDPI model. Four corresponding
inverse GPI models could be obtained by directly inverting the previously identified
GPI model. The inverse GPI models were able to generate training data for the IDRDPI
model. In this thesis, 150000 virtual training data is generated for the IDRDPI model.

3. Step 3: Identification the unknown parameters of the inverse DRDPI model.

All functions of the IDRDPI model are introduced in subsection 9.1.1, based on the
training data from the inverse GPI model, the identification process using GA Toolboxin
MATLAB®. The identification process was performed on CPU (Intel Corei7-7700 CPU
@ 2.80GHz with a RAM of 8.00GB), since there was no wide-spread library for a GPU-
based GA training. The whole identification procedure of the IDRDPI model took

Table 9.3: Identified parameters of the GPI model under 0.4 Hz

Parameter c0 c1 c2 c3 β ρ τ q
Value 4.798 0.543 -0.966 3.237 0.490 8.945 1.923 1.418
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Table 9.4: Identified parameters of the GPI model under 0.6 Hz

Parameter c0 c1 c2 c3 β ρ τ q
Value 7.751 0.602 -0.971 5.037 1.096 9.919 1.272 0.745

Table 9.5: Identified parameters of the GPI model under 0.8 Hz

Parameter c0 c1 c2 c3 β ρ τ q
Value 6.453 0.556 -0.803 3.418 1.162 9.932 1.023 0.948

around 3.5 hours, which is basically same with the DRDPI identification process. The
identification of the IDRDPI model took 300 iterations. The unknown parameters of
the IDRDPI model is shown in the Table 9.6. The mean of the relative change in the
last 20% of the training data, the iterations comparison loss was just 0.07% when the
stop condition was activated, which proofed that the model was fully converged. The
well-trained IDRDPI model will be applied for further testing in the next section.

9.3 Performance of the Inverse DRDPI model for position control

9.3.1 Performance evaluation of the IDRDPI model

In order to validate the IDRDPI model, same with the logic of the modeling test process, four
different trajectories are also designed for the validation of the performance. The training
data of the IDRDPI model is descending sine wave with zero base line and non-zero base line
in total 150000 data points. The four trajectories and the performance of the IDRDPI model
are introduced as follows:

1. Descending sinusoidal trajectory

A descending sinusoidal trajectory is generated as follows:

θ(t) = Ae−τt(sin(2π( f + ct)t− π

2
) + 1) [deg] (9.22)

In this equation a trajectory is generated with f = 0.3 and τ = 0.05. The generated
trajectory is as input to the IDRDPI model, the output of the IDRDPI model is com-
pensated pressure, which can compensate for the hysteresis of the experimental setup.
The compensated pressure of the trajectory form the (9.22) is shown in the Figure 9.3.

Table 9.6: Identified parameters of the IDRDPI model
Parameter α0 α1 α2 β0 β1 β2 dp dn ζ β a0 g0

Value 7.604 9.964 -1.734 3.710 1.713 1.569 2.964 4.112 5.460 4.428 5.988 0.700
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9 Inverse Deadband Rate-Dependent Prandtl-Ishlinskii model

3

Figure 9.2: Optimization process of the IDRDPI

Because of the deadband of the hysteresis, at each beginning of the trajectory wave, the
slope of the compensated pressure is sharp. The compensated pressure is afterwards
input into the PAM-driven robotic catheter and the trajectory will be measured.

Figure 9.4 shows the ground truth of the generated trajectory based on the (9.22) and
the measured trajectory based on the compensated pressure shown in the Figure 9.3. It
is clear to observe a offset at each increasing and decreasing period of the wave. These
offsets cause a large RMSE equals to 1.7 degrees and also large MAE equals to 4.4
degrees. Also it is noteworthy that the error of this type of test data shows a regularity
increasing at each decreasing period of the wave.

2. Attenuated down-chirp sinusoidal trajectory with shifted baseline

The trajectory with time-varying frequency is worth to investigate the performance of
the IDRDPI. A trajectory with A = 10, B = 8, f = 0.5, and τ = 0.05 was generated based
on the following equation:

θ(t) = Ae−τt(sin(2π( f + ct)t− π

2
) + 1) + B [deg] (9.23)

The generated trajectory is then input into the IDRDPI model, which can generate the
compensated pressure shown in the Figure 9.5. Also at the beginning of each wave, a
remarkable pressure increasing can be observed and the tendency of the compensated
pressure is same with the trajectory.

66



9 Inverse Deadband Rate-Dependent Prandtl-Ishlinskii model

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Co
m

pe
ns

at
ed

 p
re

ss
ur

e 
(b

ar
)

IDRDPI Model

Figure 9.3: Compensated pressure of the descending sinusoidal trajectory (IDRDPI)
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Figure 9.4: 1. Descending sinusoidal trajectory (IDRDPI)
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Figure 9.5: Compensated pressure of the attenuated down-chirp sinusoidal trajectory with
shifted baseline (IDRDPI)
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Figure 9.6: 2. Attenuated down-chirp sinusoidal trajectory with shifted baseline (IDRDPI)
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The compensated pressure shown in the Figure 9.5 is input into the experimental setup.
The resulting measured bending angle compared with the ground truth is shown in the
Figure 9.6. The performance of the IDRDPI model is worst than the first type of the
test data. The IDRDPI model both fails to accurately predict the peak accurately and
under-compensates in the unloading phase, thus causing offsets from the set trajectory,
which leads to a larger RMSE equals to 2.5 degrees. Also a large MAE equals to 4.8
degrees occurs when the frequency of the trajectory is decreasing.

3. Ascending up-chirp sinusoidal trajectory with zero baseline

The third tested trajectory is a frequency-ascending trajectory, and this pattern was
also not included in the training data. An ascending up-chirp sinusoidal trajectory is
generated following (5.17) with A = 6, f = 0.3 , τ = -0.02 and c = 0.005.

θ(t) = Ae−τt(sin(2π( f + ct)t− π

2
) + 1) [deg] (9.24)

The input of the IDRDPI model is chosen as this type of the test data, the resulting
output of the compensated pressure is shown in the Figure 9.7.
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Figure 9.7: Compensated pressure of the ascending up-chirp sinusoidal trajectory with zero
baseline (IDRDPI)

The compensated pressure is input into the experimental setup. The matching result
between the measured bending angle and the generated trajectory is shown in the
Figure 9.8. The error of the IDRDPI model fluctuates periodically, the IDRDPI model
fails to accurately predict the peak accurately and under-compensates in the unloading
phase, thus causing offsets from the set trajectory. The offsets cause a RMSE with 1.8
degrees and NRMSE with 5.295%.
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Figure 9.8: 3. Ascending up-chirp sinusoidal trajectory with zero baseline (IDRDPI)

4. Arbitrarily varying trajectory with small variations

This type of the test data is the most practical trajectory and most challenging test data
for the IDRDPI model. The generated trajectory is input into the IDRDPI model and
the compensated pressure of this type test data is shown in the Figure 9.9.

The performance of the IDRDPI mdoel in this type of the test data is the worst among
the other three types of the test data. The measured bending angle and the ground truth
have a very large offset, which cause very large error in all three metrics with RMSE
= 4.0 degrees, MAE = 8.5 degrees, and NRMSE = 7.37%. Moreover, in the region of
small variations, the IDRDPI model does not respond to small fluctuations, but rather
produces a plateau.

9.3.2 Discussion of the IDRDPI model performance

The histogram in the Figure 9.11 illustrates all three metrics in this position control experiment.
All four test trajectories are measured five times to avoid random error and the standard
deviations are also represented in the histogram. The IDRDPI model has the best performance
in the first type of the test data with the smallest RMSE = 1.7 degrees and standard deviation
0.6 degrees. The worst performance of the IDRDPI model appears at the fourth test data with
the largest MAE = 8.5 degrees and standard deviation 2 degrees. To sum up, the IDRDPI
model is not able to implement an accurate position control when the trajectory is more
arbitrary and more practical.
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Figure 9.9: Compensated pressure of the arbitrarily varying trajectory with small variations
(IDRDPI)
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Figure 9.10: 4. Arbitrarily varying trajectory with small variations (IDRDPI)
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Figure 9.11: Three metrics evaluation of the position control performance (IDRDPI)
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10.1 Structure of the c-LSTM model

Control Long Short-Term Memory (c-LSTM) is the LSTM network for the compensation
and control of the robotic catheter. The LSTM in the c-LSTM model is same with the one
introduced in the Chapter. 7. However, the input and the output of the c-LSTM are inverted
compared to the LSTM model for modeling. In the c-LSTM, the input of the model is the
desired trajectory while the output of the model is compensated pressure.

As introduced before, the output at a certain moment is not only determined by the
corresponding input but also by the past inputs. It is therefore the historic input should be
considered in each input and also a data preprocessing is necessary. Figure 10.1 illustrates the
data preprocessing of the c-LSTM model. Compared to the Figure 7.4, the major difference is
now the a) is the desired trajectory.
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Figure 10.1: c-LSTM input data preprocessing

Similar with the data preprocessing of the modeling process, the data preprocessing is also
divided into three parts:

a) The input of the c-LSTM model is the desired trajectory along with the time. The input
desired trajectory need to be processed before send to the c-LSTM model.

b) The desired trajectory will go through the vectorization process and be viewed as a matrix
with only one column. Each input data is vectored based on the time points.

c) After the b) process, the input desired trajectory will be split into several input vectors
based on the time window size. The padding is also adopted at the initialization process.
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The window size equals to 50 was shown a good performance based on the previous pilot
study [67].
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Figure 10.2: c-LSTM structure

Figure 10.2 illustrates the c-LSTM structure for the hysteresis compensation and position
control. The c-LSTM structure is divided into five parts:

a) The input of the c-LSTM model is the desired trajectory. The output of the c-LSTM is the
compensated pressure.

b) Vectorization of the desired trajectory will be processed in this step. After the vectorization
the input data will be more organized.

c) In this step, the input data will be further processed, including the adding of the window
size and the padding of the input data.

d) This step shows the whole c-LSTM structure cells and also the input data flowing direction.

e) This figure shows the details of the LSTM cell in the c-LSTM model. The introduction of
the LSTM cell has been explained in the section 7.1.

The structure of the c-LSTM is basically same as the LSTM model for the hysteresis model-
ing. However, the input now for the c-LSTM is the desired trajectory and the compensated
pressure as output will be obtained. This compensated pressure can compensate the hysteresis
of the experimental setup and follow the trajectory, which can guarantee an accurate position
control of the catheter.
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10.2 Hyperparameters of the c-LSTM model

Same with other proposed models, the c-LSTM model is also a learning-based model. There-
fore the hyperparameters of the c-LSTM are also essential for the performance of the model.
The type of hyperparameters of the c-LSTM model are same with the LSTM and are intro-
duced as follows:

• Number of hidden layers

c-LSTM can also be viewed as a stack of LSTM cells that contain a number of units in
an LSTM cell. Therefore the layers of the LSTM will be defined. In this thesis, 2 hidden
layers are chosen same as the LSTM for the proposed c-LSTM model.

• Number of neurons per cell

The number of neurons need also be defined, and the number of neurons is better with
the power of 2. However, the training process is complicated than the modeling LSTM.
Therefore in this experiment 128 neurons in each c-LSTM cell are adopted.

• Activation function

As introduced in the modeling LSTM, the activation functions of the LSTM are sigmoid
(see Figure 7.2) and tahn (see Figure 7.3).

• Optimizer

Optimizers play a very crucial role to increasing the accuracy of the model. As discussed
before in the modeling LSTM, the Adam optimizer is chosen.

• Loss function

In order to compare with the IDRDPI model with unit deg2, the same loss function was
chosen here.

• training subset and validation ratio

In order to avoid the over-fitting problem of the training process, same with the modeling
LSTM, the whole training data should be split into the training subset and validation
subset. Normally, the whole training data is divided into 70% for training and 30% for
validation.

• Batch size

The batch size determines the amount of the input series data. Using batch size could
increase the efficient of the training process, however, too large batch size could add
extra computation cost. Based on the good performance of the modeling LSTM, the
batch size is also chosen to 16.

• Learning rate

Learning rate determines the learning speed of the training process. If the learning rate
is too large, it will decrease the learning efficient and decrease the performance of the
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Table 10.1: Hyperparameters for the c-LSTM network
Number of

hidden layers
Number of neurons

per cell
Activation
functions

Optimizer Loss function
Training-subset

/Validation ratio
Batch size Learning Rate Epoches

LSTM 4 128 Tanh/Sigmoid Adam L2 Loss 70% 30% 16 0.001 100

model. However, if the learning rate is too small, the learning speed is too slow and will
lead to more training time. Same with the modeling LSTM, same learning rate 0.001 is
chosen here for c-LSTM.

• Epoches

The number of iterations is defined by the number of the epoch. The training process of
the c-LSTM is more challenging than the modeling LSTM model, it is therefore more
epoches need to be chosen here.

Table. 10.2 shows all the detailed hyperparameters of this c-LSTM model. The com-
pensation of the hysteresis by using the proposed c-LSTM model will be based on these
hyperparameters.

10.3 Position control with the c-LSTM model

10.3.1 Training process of the c-LSTM model

The training data of the c-LSTM is also generated based on the (4.1) and the (4.2), different
frequencies and pressure amplitudes are combined to excited the catheter system. The
frequency f was switched between 0.2, 0.4, 0.6, 0.8, while τ was chosen as 0.02, 0.05, 0.1,
0.15, 0.2. The combination of the different frequencies and τ result in 40 groups of training
data. A total of 260269 samples were in the training data set. This was done with a sampling
frequency setting of 250 Hz.

All the training data is processed through the normalization in (7.9), which can normalize
all data between [-1,1]. The network was implemented in an open source machine learning
library named Pytorch. The training procedure was performed on an 4 GB NVIDIA® CUDA-
capable GPU. The c-LSTM was adequately optimized after 100 iterations. The whole training
duration took around 2.25 hours. The training and validation loss of the c-LSTM model is
shown in the Figure 10.3. After 100 iterations, the training loss as well as the validation loss
are reaching a plateau and do not show a increasing tendency, which means the training
process is thorough and do not occur the over-fitting problem.

10.3.2 Position control performance of the c-LSTM model

In order to test the performance of the c-LSTM model, and check whether an accurate position
control can be achieved by the c-LSTM model, four same desired trajectories, which have
different characters with the training data, are also tested and illustrated as follows:
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Figure 10.3: c-LSTM training and validation loss

1. Descending sinusoidal trajectory

Same with the trajectory in the IDRDPI model, the generation of the desired trajectory
is also follow the (9.22) with f = 0.3 Hz and τ = 0.05. This test trajectory is also input
into the c-LSTM model and the generated compensated pressure is the output, which
shown in the Figure 10.4. A sharp increasing at each beginning of the wave can also
be observed, and this compensated pressure is afterwards input into the experimental
setup.

The c-LSTM model shows a good performance in this type of the test data. During the
ascending and descending period the c-LSTM model can follow the desired trajectory
accurately, which leads to a low RMSE = 0.3 degrees. At the first peak, the last peak,
the model shows a big spike that occurs MAE = 1.5 degrees. The test is performed five
times and the standard deviation is quite small with 0.6 degrees that proofs the stability
of the c-LSTM model.

2. Attenuated down-chirp sinusoidal trajectory with sifted baseline

The performance of the c-LSTM model is further investigated on the trajectory with
time-varying frequency. Based on the (9.23) with A = 10, B = 8, f = 0.5 Hz, and τ = 0.05,
the trajectory was generated. The desired trajectory was input into the c-LSTM model
and the compensated pressure is shown in the Figure 10.6. Since this type of the test
data has shifted baseline, after the first wave, the compensated pressure is no longer
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Figure 10.4: Compensated pressure of descending sinusoidal trajectory (c-LSTM)
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Figure 10.5: 1. Descending sinusoidal trajectory (c-LSTM)
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with the sharp increment.
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Figure 10.6: Compensated pressure of attenuated down-chirp sinusoidal trajectory with sifted
baseline (c-LSTM)

At the first two waves, the c-LSTM model can follow the desired trajectory well. However,
the last three waves lead to a larger RMSE = 0.6 degrees and at the fourth wave, the
MAE = 1.5 degrees is occured. Based on the performance of the model in the Figure 10.7,
it can be concluded that the performance of the c-LSTM decreases when the frequency
is decreases.

3. Ascending up-chirp sinusoidal trajectory with zero baseline

The same trajectory with the IDRDPI model, which is a frequency-ascending trajectory,
was generated following (9.24) with A = 6, f = 0.3Hz, τ = -0.02, and c = 0.005. The
desired trajectory is then input into the c-LSTM model and output the compensated
pressure (see Figure 10.8).

The compensated pressure is input into the experimental setup and the resulting
bending angle is measured. The c-LSTM model successes to accurately predict the peak
and compensates the hysteresis of the catheter. The error of the c-LSTM model still
remains at a very low level with RMSE = 0.3 degrees and NRMSE = 0.82%.

4. Arbitrarily varying trajectory with small variations

The arbitrary data is the most challenging test data type for the c-LSTM model, but
also the most practical data. The generated trajectory is input into the model and the
compensated pressure is shown in the Figure 10.10.
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Figure 10.7: 2. Attenuated down-chirp sinusoidal trajectory with sifted baseline (c-LSTM)
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Figure 10.8: Compensated pressure of ascending up-chirp sinusoidal trajectory with zero
baseline (c-LSTM)
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Figure 10.9: 3. Ascending up-chirp sinusoidal trajectory with zero baseline (c-LSTM)
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Figure 10.10: Compensated pressure of arbitrarily varying trajectory with small variations
(c-LSTM)
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Figure 10.11: 4. Arbitrarily varying trajectory with small variations (c-LSTM)

Although the arbitrary data is challenging for the c-LSTM model, it still shows a
acceptable performance. The model output follows the plateau very well and also in the
small variations period. The good performance in this two challenging periods leads to
a quite lower RMSE = 0.5 degrees. However, at the beginning of this type of the data,
the output of the data shows a little instability that cause MAE = 2.4 degrees. Overall,
the c-LSTM model has a well acceptable performance.

10.3.3 Discussion of the c-LSTM model performance

To sum up, the c-LSTM model shows a well accepted performance and all three metrics in this
position control experiment are shown in the histogram (see Figure 10.12). Each est trajectory
is measured five times to avoid random error, and the results of the standard deviation also
indicates that the performance of the c-LSTM is stable. The smallest RMSE = 0.3 degrees,
MAE = 2.4 degrees, and NRMSE = 1.44% also indicate that the error of the c-LSTM remains
at a quite low level.
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Figure 10.12: Three metrics evaluation of the position control performance (c-LSTM)
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11 Comparison of control performance
between proposed models

The main goal of this thesis is to compensate the hysteresis in this experimental PAM-driven
robotic catheter system and furthermore achieves an accurate position control. Since the
proposed DRDPI is the analytical model, and the SVR, LSTM models are learning-based type,
it is therefore more meaningful and time-saving to compare two different types of the model.
Thus for the control part, only the Inverse Deadband Rate-Dependent Prandtl-Ishlinskii and
the Control Long Short-Term Memory models are investigated for the hysteresis compensation
and the position control.

In the previous two chapters, four different types of the desired trajectories, are used to
evaluate the performance of these two models. The comparison of these two models based
on the four test desired trajectories is illustrated as follows:

1. Descending sinusoidal trajectory

The first type of the test data has the same character with the training data but with
different f and τ. Figure 11.1 illustrates the performance of these two models. It is
noteworthy that the IDRDPI model has a clear offset with the desired trajectory. This
offset could lead to a larger RMSE = 1.7 degrees than the c-LSTM with RMSE = 0.3
degrees. The MAE of c-LSTM (1.5 degrees) happens in the unloading phase immediately
after the peak where there is an over-compensation, which is shown in the local zoom
figure.

Table. 11.1 shows all the detailed metrics of the performance of these two models. The
green cells represent the best result, which all locate in the c-LSTM model. It is shown
that the c-LSTM performs much better than the IDRDPI model at all three metrics.

2. Attenuated down-chirp sinusoidal trajectory with sifted baseline

The performance of the IDRDPI and c-LSTM model on the trajectory with time-varying
frequency is worth to investigate. Figure 11.2 shows both the performance of these two

Table 11.1: Quantitative performance of the position control in the first test data
Descending sinusoidal trajectory

Model
RMSE (deg) MAE (deg) NRMSE

IDRDPI 1.67 ± 0.03 4.37 ± 0.06 9.04% ± 0.28%
c-LSTM 0.32 ± 0.03 1.45 ± 0.08 1.73% ± 0.34%
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Figure 11.1: Descending sinusoidal trajectory

Table 11.2: Quantitative performance of the position control in the second test data
Attenuated down-chirp sinusoidal

trajectory with sifted baseline
Model

RMSE (deg) MAE (deg) NRMSE
IDRDPI 2.46 ± 0.03 4.84 ± 0.04 12.62% ± 0.3%
c-LSTM 0.56 ± 0.01 1.54 ± 0.15 2.87% ± 0.12%

models and also the error plotting. Based on the error plotting, the error of the IDRDPI
model fluctuates periodically. Compared to the c-LSTM, the IDRDPI model fails to
accurately predict the peak accurately and under-compensates in the unloading phase,
thus causing offsets from the set trajectory, which can cause larger RMSE.

Table. 11.2 provides all three metrics of these two models. Also all the three green cells
are located in the c-LSTM model. The c-LSTM improves the performance at the RMSE
by 77.24%, which is very remarkable. Also a 77.26% improvement at the NRMSE and
68.18% at MAE the c-LSTM can achieve.

3. Ascending up-chirp sinusoidal trajectory with zero baseline

The third tested trajectory is a period-ascending trajectory, and this pattern was also not
contained in the training data. The desired trajectory was generated following the (9.24)
with A = 6, f = 0.3 , τ = -0.02 and c = 0.005. As with the previous two tests, the IDRDPI
model performs poorly in the unloading phase (see Figure 11.3). These offsets in the
unloading phase can cause large RMSE, which is shown in the Table .11.3.
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Figure 11.2: Attenuated down-chirp sinusoidal trajectory with sifted baseline

Table 11.3: Quantitative performance of the position control in the third test data
Ascending up-chirp sinusoidal

trajectory with zero baseline
Model

RMSE (deg) MAE (deg) NRMSE
IDRDPI 1.85 ± 0.01 4.41 ± 0.04 10.59% ± 0.12%
c-LSTM 0.29 ± 0.02 1.53 ± 0.18 1.64% ± 0.2%

The amount of the three metrics shown in the table indicate that these two models
perform the best among the four trajectories. The c-LSTM model also shows great
advantage compared to the IDRDPI model with average 78.05%.

4. Arbitrarily varying trajectory with small variations

Arbitrarily varying trajectories are the most practical signals, thus arbitrarily varying
trajectories have been tested to explore the versatility of the IDRDPI and the c-LSTM
model. In addition, some high-frequency small-amplitude variations are added, which
also have a lot of practical research values, for example, in order to compensate for the
heart beat and avoid contacting with vessel walls, the catheter often needs to perform
high-frequency small-amplitude movements.

In general, the error of the c-LSTM is consistently very small, also in regions with small
fluctuations, which is shown in the Figure 11.4. The one can be noticed that the c-LSTM
more better than the IDRDPI model, another one is noteworthy that the c-LSTM model
can follow the small variations while the IDRDPI model is not able to follow.
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Figure 11.3: Ascending up-chirp sinusoidal trajectory with zero baseline

Table 11.4: Quantitative performance of the position control in the fourth test data
Arbitrarily varying trajectory

with small variations
Model

RMSE (deg) MAE (deg) NRMSE
IDRDPI 3.97 ± 0.07 8.52 ± 0.1 14.74% ± 0.6%
c-LSTM 0.47 ± 0.01 2.44 ± 0.07 1.73% ± 0.06%

Table. 11.4 shows that the IDRDPI model performs the worst among all the four test
data. The worst performance at the plateau and the small variations of the IDRDPI
model leads to the MAE = 8.5 degrees, while the MAE of the c-LSTM is only 2.4 degrees.
This type of test data proofs that the IDRDPI model is not able to achieve an accurate
position control under the signal with plateaus and small variations, while the c-LSTM
model can follow the desired trajectory.

The whole position control process of these two models are illustrated in the Figure 11.5.
The desired trajectory is through reshape, padding, and normalization process and input into
the c-LSTM and IDRDPI model. The output of these two models are compensated pressure
and inout into the experimental setup. The bending angle of the catheter can be measured
and compared with the desired trajectories.

Furthermore in order to compare these two models, Figure 11.6 shows the comparison of
the desired trajectory and the measured trajectory. If the hysteresis is compensated well, the
output should be a straight line, otherwise it will still show a hysteresis pattern. Based on the
plotting in the Figure 11.6, the output of the c-LSTM is almost a line, while the output of the
IDRDPI model is showing a hysteresis pattern.
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Figure 11.4: Arbitrarily varying trajectory with small variations

To sum up, among all the four trajectories the c-LSTM performs much better and more
stable than the IDRDPI model. Furthermore, the training data of the c-LSTM is less than the
IDRDPI model, also the training time of the c-LSTM is smaller than the IDRDPI model. In
the future, with the great potential of the c-LSTM model, it could be used for other robotic
catheter system that with hysteresis, which can achieve an accurate position control of the
PAM-driven robotic catheter.
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Figure 11.7: Three metrics evaluation of the position control performance
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12 Discussion and conclusion

12.1 Conclusion

To address the hysteresis problem in this Pneumatic Artificial Muscle-driven robotic catheter
system, an analytical Deadband Rate-Dependent Prandtl-Ishlinskii model, a machine learning
Support Vector Regression model, and a deep learning Long Short-Term Memory model are
first established to model the hysteresis. Descending sinusoidal pressure signals with zero
and non-zero baseline under four different frequencies were used to generate multi-loop
hysteresis. This data was later used as training data for the above-mentioned models. The
training data collected from the setup reveals a complex pattern. The response is found to
behave asymmetric, saturated, and rate-dependent hysteresis. The hysteresis is not only from
the PAM itself, but also form the entire experimental setup. For the modeling process, the
DRDPI and the SVR model were established for comparison to the LSTM model.

The LSTM was validated on four test signals containing diverse patterns The most chal-
lenging signal was an arbitrarily varying signal with plateaus. The RMSE, MAE, and NRMSE
were found to be 0.6 degrees, 1.9 degrees, and 2.42%, respectively. The other learning-based
model SVR performs less 35.87%, 3.98%, and 35.98% than the LSTM model in all three metrics.
The analytical model DRDPI, performs worst with performance drops of 60.14%, 35.23%, and
60.13% compared to the LSTM model. In general, with the LSTM, the bending angle can be
predicted with sub-degree precision only based on the input pressure. The good performance
irrespective to the test signal shows the robustness of the LSTM even for robotic catheters
that exhibit a complicated hysteresis behaviours.

Furthermore, after the modeling process of the hysteresis, the compensation and an
accurate position control of the robotic catheter system is also investigated. In this thesis,
based on the DRDPI and the LSTM model, a data-driven approach IDRDPI and c-LSTM
model are proposed to compensate for the hysteresis. Installing the sensors at the catheter
tip is challenging due to the space and sterilization issues, it is therefore meaningful to find
methods to design adequate open-loop controllers and further achieve accurate control of the
catheter in free space.

The analytical model IDRDPI model requires two steps, namely, first the identification
of the unknown parameters and then an inversion of the forward model. In contrast, the
proposed c-LSTM model can be directly trained as a controller. The tedious process of
inversion can be avoided. Both the IDRDPI and c-LSTM models are tested with four different
trajectories in the PAM-driven robotic catheter system. These trajectories are generated to
simulate some specific clinical scenarios, such as signals with plateaus, with small-amplitude
variations to compensate for the heart beating. The experimental results indicate that the
c-LSTM model could achieve a sub-degree position control precision and outperformed the
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12 Discussion and conclusion

IDRDPI model at least 75% among over all four test trajectories. Based on the results from
the experiments, the precision of the controller also meets the existing clinical requirements,
which ranges from 1-3 mm in the cardiovascular interventions [68].

To sum up, both the IDRDPI model and the c-LSTM model could be used as a controller
for the PAM-driven robotic catheter system. However, the precision of the controller based
on the c-LSTM model is better than from the analytical IDRDPI. Moreover, the training time
of the c-LSTM (2.25 hours) is lower than the IDRDPI (3.5 hours). Considering promising
advancements for efficient deep learning and the GPU development, the training time of the
c-LSTM could be further reduced and can be also foreseen to used as a controller for other
driven robotic catheter systems, which exist complex hysteresis.

12.2 Future work

Due to the time limit many experiments and tasks have been left for future work. In this
work, the position control of the catheter is in the free space. With the IDRDPI model and
the c-LSTM model, the catheter tip can follow the desired trajectory. A next step would
consist of exploring the potential of these two models when the catheter is in contact with the
environment. This investigation will be more practical because during the intervention, the
contact with the blood vessels cannot be fully avoided.

Moreover, the current PAM-driven robotic catheter is a one-DoF system. The bending of
the catheter remains in one plane and also all the test trajectories have been so. Thus in the
future work, a new experimental setup with multi-DoFs is worth to investigate. In this thesis,
the potential of the c-LSTM in one direction has been proved, the combination of multi-DoF
of the c-LSTM model will also be validated in the future work.

92



List of Figures

1.1 Coronary Artery Disease (CAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Percutaneous Coronary Intervention (PCI) Procedure and Recanalization of the

occlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 X-Ray imaging of Recanalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Search matrix of the conducted literature review in this thesis . . . . . . . . . . 6
2.2 Hysteresis with deadband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The different implementations of Prandtl-Ishlinskii models . . . . . . . . . . . 9

3.1 Five parts of PAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Bending segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Bending angle measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Transformation formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 PAM-driven setup in the lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 LabVIEW® Front panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Block diagram of zero data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Asymmetric deadband hysteresis pattern (zero data) . . . . . . . . . . . . . . . 20
4.4 Asymmetric deadband hysteresis pattern (non-zero data) . . . . . . . . . . . . 21

5.1 The effect of dynamic threshold function on the output . . . . . . . . . . . . . . 23
5.2 Threshold of deadband operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Genetic Algorithm process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 Training data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5 DRDPI training loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.6 Descending sine wave differing from training data (DRDPI) . . . . . . . . . . . 31
5.7 Attenuated down-chirp sine wave with shifted baseline (DRDPI) . . . . . . . . 32
5.8 Ascending up-chirp sine wave with zero baseline (DRDPI) . . . . . . . . . . . . 32
5.9 Arbitrarily varying signal with plateaus (DRDPI) . . . . . . . . . . . . . . . . . 33
5.10 Three metrics evaluation of the modeling performance (DRDPI) . . . . . . . . . 34

6.1 Support Vector Machine in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Support Vector Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 SVR training and validation loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4 Descending sine wave differing from training data (SVR) . . . . . . . . . . . . . 39
6.5 Attenuated down-chirp sine wave with shifted baseline (SVR) . . . . . . . . . . 40

93



List of Figures

6.6 Ascending up-chirp sine wave with zero baseline (SVR) . . . . . . . . . . . . . 41
6.7 Arbitrarily varying signal with plateaus (SVR) . . . . . . . . . . . . . . . . . . . 41

7.1 Long Short-Term Memory cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Sigmoid function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.3 Tanh function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4 Input data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5 Training loss of the LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.6 LSTM structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.7 Descending sine wave differing from training data (LSTM) . . . . . . . . . . . . 50
7.8 Attenuated down-chirp sine wave with shifted baseline (LSTM) . . . . . . . . . 51
7.9 Ascending up-chirp sine wave with zero baseline (LSTM) . . . . . . . . . . . . 52
7.10 Arbitrarily varying signal with plateaus (LSTM) . . . . . . . . . . . . . . . . . . 52
7.11 Three metrics evaluation of the modeling performance (LSTM) . . . . . . . . . 53

8.1 Classification of proposed models . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.2 Descending sine wave differing from training data . . . . . . . . . . . . . . . . 55
8.3 Attenuated down-chirp sine wave with shifted baseline . . . . . . . . . . . . . . 56
8.4 Ascending up-chirp sine wave with zero baseline . . . . . . . . . . . . . . . . . 57
8.5 Arbitrarily varying signal with plateaus . . . . . . . . . . . . . . . . . . . . . . . 58

9.1 Output of the direct IDRDPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.2 Optimization process of the IDRDPI . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.3 Compensated pressure of the descending sinusoidal trajectory (IDRDPI) . . . 67
9.4 Descending sinusoidal trajectory (IDRDPI) . . . . . . . . . . . . . . . . . . . . . 67
9.5 Compensated pressure of the attenuated down-chirp sinusoidal trajectory with

shifted baseline (IDRDPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.6 Attenuated down-chirp sinusoidal trajectory with shifted baseline (IDRDPI) . 68
9.7 Compensated pressure of the ascending up-chirp sinusoidal trajectory with

zero baseline (IDRDPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.8 Ascending up-chirp sinusoidal trajectory with zero baseline (IDRDPI) . . . . . 70
9.9 Compensated pressure of the arbitrarily varying trajectory with small variations

(IDRDPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.10 Arbitrarily varying trajectory with small variations (IDRDPI) . . . . . . . . . . 71
9.11 Three metrics evaluation of the position control performance (IDRDPI) . . . . 72

10.1 c-LSTM input data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.2 c-LSTM structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.3 c-LSTM training and validation loss . . . . . . . . . . . . . . . . . . . . . . . . . 77
10.4 Compensated pressure of descending sinusoidal trajectory (c-LSTM) . . . . . . 78
10.5 Descending sinusoidal trajectory (c-LSTM) . . . . . . . . . . . . . . . . . . . . . 78
10.6 Compensated pressure of attenuated down-chirp sinusoidal trajectory with

sifted baseline (c-LSTM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.7 Attenuated down-chirp sinusoidal trajectory with sifted baseline (c-LSTM) . . 80

94



List of Figures

10.8 Compensated pressure of ascending up-chirp sinusoidal trajectory with zero
baseline (c-LSTM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

10.9 Ascending up-chirp sinusoidal trajectory with zero baseline (c-LSTM) . . . . . 81
10.10Compensated pressure of arbitrarily varying trajectory with small variations

(c-LSTM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.11Arbitrarily varying trajectory with small variations (c-LSTM) . . . . . . . . . . 82
10.12Three metrics evaluation of the position control performance (c-LSTM) . . . . 83

11.1 Descending sinusoidal trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
11.2 Attenuated down-chirp sinusoidal trajectory with sifted baseline . . . . . . . . 86
11.3 Ascending up-chirp sinusoidal trajectory with zero baseline . . . . . . . . . . . 87
11.4 Arbitrarily varying trajectory with small variations . . . . . . . . . . . . . . . . 88
11.5 Experimental procedure to verify the performance of c-LSTM and its compara-

tor i.e. the IDRDPI model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
11.6 Relation between the desired trajectory and the measured trajectory . . . . . . 90
11.7 Three metrics evaluation of the position control performance . . . . . . . . . . 90

95



List of Tables

2.1 Methods to minimize hysteresis in flexible surgical robots from previous literature 7

5.1 Unknown parameters of the proposed model . . . . . . . . . . . . . . . . . . . . 25
5.2 Identified parameters of the model . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Hyperparameters of the SVR model . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Three metrics of the first test data in SVR model . . . . . . . . . . . . . . . . . . 39
6.3 Three metrics of the second test data in SVR model . . . . . . . . . . . . . . . . 39
6.4 Three metrics of the third test data in SVR model . . . . . . . . . . . . . . . . . 40
6.5 Three metrics of the fourth test data in SVR model . . . . . . . . . . . . . . . . 42

7.1 Hyperparameters for the LSTM network . . . . . . . . . . . . . . . . . . . . . . 48

8.1 Quantitative performance of the proposed models in the first test data . . . . . 55
8.2 Quantitative performance of the proposed models in the second test data . . . 57
8.3 Quantitative performance of the proposed models in the third test data . . . . 58
8.4 Quantitative performance of the proposed models in the fourth test data . . . 59
8.5 optimization results of three models . . . . . . . . . . . . . . . . . . . . . . . . . 59

9.1 Unknown parameters of the GPI model . . . . . . . . . . . . . . . . . . . . . . . 64
9.2 Identified parameters of the GPI model under 0.2 Hz . . . . . . . . . . . . . . . 64
9.3 Identified parameters of the GPI model under 0.4 Hz . . . . . . . . . . . . . . . 64
9.4 Identified parameters of the GPI model under 0.6 Hz . . . . . . . . . . . . . . . 65
9.5 Identified parameters of the GPI model under 0.8 Hz . . . . . . . . . . . . . . . 65
9.6 Identified parameters of the IDRDPI model . . . . . . . . . . . . . . . . . . . . . 65

10.1 Hyperparameters for the c-LSTM network . . . . . . . . . . . . . . . . . . . . . 76

11.1 Quantitative performance of the position control in the first test data . . . . . . 84
11.2 Quantitative performance of the position control in the second test data . . . . 85
11.3 Quantitative performance of the position control in the third test data . . . . . 86
11.4 Quantitative performance of the position control in the fourth test data . . . . 87

96



Acronyms

API Application Programming Interface. 5, 6

c-LSTM Control Long Short-Term Memory. iv, 3, 73–77, 79, 82, 84–88, 91, 92

CAD Coronary Artery Disease. iv, 1, 5, 93

CD Cable-Driven. 6, 7

DRDPI Deadband Rate-Dependent Prandtl-Ishlinskii. iv, 3, 22, 24–27, 30–34, 37, 38, 42, 48,
50, 51, 53–56, 58–62, 64, 65, 84, 91, 93

EM Electromagnetic. 7, 10

GA Genetic Algorithm. 26–28, 63, 64, 93

GPI Generalized Prandtl-Ishlinskii. 62–64

IDRDPI Inverse Deadband Rate-Dependent Prandtl-Ishlinskii. iv, 3, 60–62, 64–66, 69, 70, 75,
77, 79, 84–88, 91, 92, 94

LS-SVM least square support vector machine. 8, 10

LSTM Long Short-Term Memory. iv, 3, 43, 45–56, 58, 59, 73–76, 84, 91, 94

MAE Maximum Absolute Error. 30, 31, 33, 37, 39, 40, 42, 50, 51, 53–56, 58, 59, 66, 69, 70, 77,
79, 82, 84, 85, 87, 91

MIS Minimally Invasive Surgery. iv, 2, 5

MSE Mean Square Error. 25–27, 38

NRMSE Normalized Root Mean Square Error. 30, 31, 33, 34, 42, 51, 53, 54, 56, 58, 59, 69, 70,
79, 82, 85, 91

PAM Pneumatic Artificial Muscle. iv, 3, 6, 11, 12, 22, 24, 27, 34, 42, 44, 53, 54, 60, 62, 66, 84,
88, 91–93

PCI Percutaneous Coronary Intervention. iv, 1–3, 5, 6, 17, 93

97



Acronyms

PI Prandtl-Ishlinskii. 8–10, 22, 93

RBF Radial Basis Function. 37

RDPI Rate-Dependent Prandtl-Ishlinskii. 22–24

RMSE Root Mean Square Error. 30, 31, 34, 39, 40, 42, 50, 51, 53–56, 58, 59, 66, 69, 70, 77, 79,
82, 84, 85, 91

SGD Stochastic Gradient Descent. 47

SMA Shape Memory Alloy. iv

SVM Support Vector Machine. 35, 36

SVR Support Vector Regression. iv, 3, 35–42, 46, 48, 50, 51, 54–56, 58, 59, 84, 91, 93, 94

TSM Tendon-Sheath Mechanism. 6

98



Bibliography

[1] E. Kandaswamy and L. Zuo. Recent advances in treatment of coronary artery disease: Role of
science and technology. 2018. doi: 10.3390/ijms19020424.

[2] “Silcent Myocardial Ishemia: Diagnosis, Treatment, and Prognosis”. In: (). url: https:
/ / forum . facmedicine . com / threads / silent - myocardial - ischemia - diagnosis -
treatment-and-prognosis.37616/.

[3] S. Mendis, P. Puska, and B. Norrving. “Global atlas on cardiovascular disease prevention
and control”. In: World Health Organization (2011).

[4] A. Shah. Chronic Total Occlusion Coronary Intervention: In Search of a Definitive Benefit.
2018. doi: 10.14797/mdcj-14-1-50.

[5] P. F. Ludman. Percutaneous coronary intervention. 2018. doi: 10.1016/j.mpmed.2018.06.
007.

[6] Global Percutaneous Coronary Intervention Market: Information by Product Type, by End
User and by Region - Forecast till 2023. url: https://www.medgadget.com/2018/08/
advancements-in-percutaneous-coronary-intervention-market-for-prevention-
and- treatment- with- evolving- cagr- of- 10- 8- in- the- healthcare- industry-
through-2017-2023.html.

[7] A. Zaghloul, C. Iorgoveanu, K. Balakumaran, D. V. Balanescu, and T. Donisan. “Limita-
tions of Coronary Computed Tomography Angiography in Predicting Acute Coronary
Syndrome in a Low to Intermediate-risk Patient with Chest Pain”. In: Cureus 10.5 (2018).
issn: 2168-8184. doi: 10.7759/cureus.2649.

[8] K. Yoshimitsu, T. Kato, S. E. Song, and N. Hata. “A novel four-wire-driven robotic
catheter for radio-frequency ablation treatment”. In: International Journal of Computer
Assisted Radiology and Surgery (2014). issn: 18616429. doi: 10.1007/s11548-014-0982-3.

[9] D. Wu, G. Li, N. Patel, J. Yan, R. Monfaredi, K. Cleary, and I. Iordachita. “Remotely
Actuated Needle Driving Device for MRI-Guided Percutaneous Interventions”. In: 2019
International Symposium on Medical Robotics, ISMR 2019. 2019. isbn: 9781538678251. doi:
10.1109/ISMR.2019.8710176.

[10] J. Legrand, K. Niu, Z. Qian, K. Denis, V. Vander Poorten, L. Van Gerven, and E.
Vander Poorten. “A Method Based on 3D Shape Analysis Towards the Design of
Flexible Instruments for Endoscopic Maxillary Sinus Surgery”. In: Annals of Biomedical
Engineering (2021). issn: 15739686. doi: 10.1007/s10439-020-02700-z.

99

https://doi.org/10.3390/ijms19020424
https://forum.facmedicine.com/threads/silent-myocardial-ischemia-diagnosis-treatment-and-prognosis.37616/
https://forum.facmedicine.com/threads/silent-myocardial-ischemia-diagnosis-treatment-and-prognosis.37616/
https://forum.facmedicine.com/threads/silent-myocardial-ischemia-diagnosis-treatment-and-prognosis.37616/
https://doi.org/10.14797/mdcj-14-1-50
https://doi.org/10.1016/j.mpmed.2018.06.007
https://doi.org/10.1016/j.mpmed.2018.06.007
https://www.medgadget.com/2018/08/advancements-in-percutaneous-coronary-intervention-market-for-prevention-and-treatment-with-evolving-cagr-of-10-8-in-the-healthcare-industry-through-2017-2023.html
https://www.medgadget.com/2018/08/advancements-in-percutaneous-coronary-intervention-market-for-prevention-and-treatment-with-evolving-cagr-of-10-8-in-the-healthcare-industry-through-2017-2023.html
https://www.medgadget.com/2018/08/advancements-in-percutaneous-coronary-intervention-market-for-prevention-and-treatment-with-evolving-cagr-of-10-8-in-the-healthcare-industry-through-2017-2023.html
https://www.medgadget.com/2018/08/advancements-in-percutaneous-coronary-intervention-market-for-prevention-and-treatment-with-evolving-cagr-of-10-8-in-the-healthcare-industry-through-2017-2023.html
https://doi.org/10.7759/cureus.2649
https://doi.org/10.1007/s11548-014-0982-3
https://doi.org/10.1109/ISMR.2019.8710176
https://doi.org/10.1007/s10439-020-02700-z


Bibliography

[11] P. Qi, C. Qiu, A. Mehndiratta, I. M. Chen, and H. Yu. “Large-deflection statics analysis
of active cardiac catheters through co-rotational modelling”. In: Proceedings of the Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS.
2016. isbn: 9781457702204. doi: 10.1109/EMBC.2016.7591150.

[12] P. Qi, H. Liu, L. Seneviratne, and K. Althoefer. “Towards kinematic modeling of a multi-
DOF tendon driven robotic catheter”. In: 2014 36th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, EMBC 2014. 2014. isbn: 9781424479290.
doi: 10.1109/EMBC.2014.6944256.

[13] M. Khoshnam and R. V. Patel. “Robotics-assisted control of steerable ablation catheters
based on the analysis of tendon-sheath transmission mechanisms”. In: IEEE/ASME
Transactions on Mechatronics (2017). issn: 10834435. doi: 10.1109/TMECH.2017.2688320.

[14] Y. Chen, L. Wang, K. Galloway, I. Godage, N. Simaan, and E. Barth. Modal-based
kinematics and contact detection of soft robots. 2019. doi: 10.1089/soro.2019.0095.

[15] I. S. Godage, Y. Chen, and I. D. Walker. “Dynamic control of pneumatic muscle actua-
tors”. In: arXiv (2018).

[16] M. De Volder, A. J. Moers, and D. Reynaerts. “Fabrication and control of miniature
McKibben actuators”. In: Sensors and Actuators, A: Physical (2011). issn: 09244247. doi:
10.1016/j.sna.2011.01.002.

[17] K. Niu, J. Legrand, L. V. Gerven, and E. V. Poorten. “Statistical Shape Modelling of the
Human Nasal Cavity and Maxillary Sinus for Minimally Invasive Surgery”. In: 10 th
Conference on New Technologies for Computer and Robot Assisted Surgery (2020), pp. 74–75.

[18] B. Bardou, F. Nageotte, P. Zanne, and M. De Mathelin. “Improvements in the control of a
flexible endoscopic system”. In: Proceedings - IEEE International Conference on Robotics and
Automation (2012), pp. 3725–3732. issn: 10504729. doi: 10.1109/ICRA.2012.6225050.

[19] R. J. Roesthuis, S. Janssen, and S. Misra. “On using an array of fiber Bragg grating
sensors for closed-loop control of flexible minimally invasive surgical instruments”. In:
IEEE International Conference on Intelligent Robots and Systems. 2013. isbn: 9781467363587.
doi: 10.1109/IROS.2013.6696715.

[20] R. Reilink, S. Stramigioli, and S. Misra. “3D position estimation of flexible instruments:
Marker-less and marker-based methods”. In: International Journal of Computer Assisted
Radiology and Surgery (2013). issn: 18616429. doi: 10.1007/s11548-012-0795-1.

[21] P. Cabras, F. Nageotte, P. Zanne, and C. Doignon. “An adaptive and fully automatic
method for estimating the 3D position of bendable instruments using endoscopic
images”. In: International Journal of Medical Robotics and Computer Assisted Surgery (2017).
issn: 1478596X. doi: 10.1002/rcs.1812.

[22] D. Baek, J. H. Seo, J. Kim, and D. S. Kwon. “Hysteresis Compensator with Learning-
Based Hybrid Joint Angle Estimation for Flexible Surgery Robots”. In: IEEE Robotics
and Automation Letters (2020). issn: 23773766. doi: 10.1109/LRA.2020.2972821.

100

https://doi.org/10.1109/EMBC.2016.7591150
https://doi.org/10.1109/EMBC.2014.6944256
https://doi.org/10.1109/TMECH.2017.2688320
https://doi.org/10.1089/soro.2019.0095
https://doi.org/10.1016/j.sna.2011.01.002
https://doi.org/10.1109/ICRA.2012.6225050
https://doi.org/10.1109/IROS.2013.6696715
https://doi.org/10.1007/s11548-012-0795-1
https://doi.org/10.1002/rcs.1812
https://doi.org/10.1109/LRA.2020.2972821


Bibliography

[23] T. N. Do, T. Tjahjowidodo, M. W. Lau, T. Yamamoto, and S. J. Phee. “Hysteresis modeling
and position control of tendon-sheath mechanism in flexible endoscopic systems”. In:
Mechatronics (2014). issn: 09574158. doi: 10.1016/j.mechatronics.2013.11.003.

[24] X. Wang, D. Bie, J. Han, and Y. Fang. “Active Modeling and Compensation for the
Hysteresis of a Robotic Flexible Ureteroscopy”. In: IEEE Access (2020). issn: 21693536.
doi: 10.1109/ACCESS.2020.2984424.

[25] Z. Sun, Z. Wang, and S. J. Phee. “Elongation modeling and compensation for the
flexible tendon - Sheath system”. In: IEEE/ASME Transactions on Mechatronics (2014).
issn: 10834435. doi: 10.1109/TMECH.2013.2278613.

[26] O. M. Omisore, S. P. Han, L. X. Ren, G. S. Wang, F. L. Ou, H. Li, and L. Wang. “Towards
Characterization and Adaptive Compensation of Backlash in a Novel Robotic Catheter
System for Cardiovascular Interventions”. In: IEEE Transactions on Biomedical Circuits and
Systems 12.4 (2018), pp. 824–838. issn: 19324545. doi: 10.1109/TBCAS.2018.2825359.

[27] J. Legrand, D. Dirckx, M. Durt, M. Ourak, J. Deprest, S. Ourselin, J. Qian, T. Vercauteren,
and E. V. Poorten. “Active handheld flexible fetoscope-design and control based on a
modified generalized prandtl-ishlinski model”. In: IEEE/ASME International Conference
on Advanced Intelligent Mechatronics, AIM 2020-July (2020), pp. 367–374. doi: 10.1109/
AIM43001.2020.9158868.

[28] W. Xu, J. Chen, H. Y. Lau, and H. Ren. “Data-driven methods towards learning the highly
nonlinear inverse kinematics of tendon-driven surgical manipulators”. In: International
Journal of Medical Robotics and Computer Assisted Surgery (2017). issn: 1478596X. doi:
10.1002/rcs.1774.

[29] R. A. Porto, F. Nageotte, P. Zanne, and M. De Mathelin. “Position control of medical
cable-driven flexible instruments by combining machine learning and kinematic analy-
sis”. In: Proceedings - IEEE International Conference on Robotics and Automation. 2019. isbn:
9781538660263. doi: 10.1109/ICRA.2019.8793692.

[30] O. M. Omisore, S. Han, T. Zhou, Y. Al-Handarish, W. Du, K. Ivanov, and L. Wang.
“Learning-based Parameter Estimation for Hysteresis Modeling in Robotic Catheteri-
zation”. In: Proceedings of the Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, EMBS (2019), pp. 5399–5402. issn: 1557170X. doi:
10.1109/EMBC.2019.8856718.

[31] Z. Jiang, M. Grimm, M. Zhou, J. Esteban, W. Simson, G. Zahnd, and N. Navab. “Auto-
matic Normal Positioning of Robotic Ultrasound Probe Based only on Confidence Map
Optimization and Force Measurement”. In: IEEE Robotics and Automation Letters (2020).
issn: 23773766. doi: 10.1109/LRA.2020.2967682.

[32] K. Niu, J. Homminga, V. Sluiter, A. Sprengers, and N. Verdonschot. “Measuring relative
positions and orientations of the tibia with respect to the femur using one-channel 3D-
tracked A-mode ultrasound tracking system: A cadaveric study”. In: Medical Engineering
and Physics (2018). issn: 18734030. doi: 10.1016/j.medengphy.2018.04.015.

101

https://doi.org/10.1016/j.mechatronics.2013.11.003
https://doi.org/10.1109/ACCESS.2020.2984424
https://doi.org/10.1109/TMECH.2013.2278613
https://doi.org/10.1109/TBCAS.2018.2825359
https://doi.org/10.1109/AIM43001.2020.9158868
https://doi.org/10.1109/AIM43001.2020.9158868
https://doi.org/10.1002/rcs.1774
https://doi.org/10.1109/ICRA.2019.8793692
https://doi.org/10.1109/EMBC.2019.8856718
https://doi.org/10.1109/LRA.2020.2967682
https://doi.org/10.1016/j.medengphy.2018.04.015


Bibliography

[33] K. Niu, V. Sluiter, A. Sprengers, J. Homminga, and N. Verdonschot. “A Novel Tibi-
afemoral Kinematics Measurement System Based on Multi-Channel A-Mode Ultrasound
System”. In: 2018. doi: 10.29007/p65f.

[34] V. Hassani, T. Tjahjowidodo, and T. N. Do. A survey on hysteresis modeling, identification
and control. 2014. doi: 10.1016/j.ymssp.2014.04.012.

[35] H. Hu and R. Ben Mrad. “On the classical Preisach model for hysteresis in piezoceramic
actuators”. In: Mechatronics 13.2 (2003), pp. 85–94. issn: 09574158. doi: 10.1016/S0957-
4158(01)00043-5.

[36] J. L. Ha, R. F. Fung, and C. S. Yang. “Hysteresis identification and dynamic responses of
the impact drive mechanism”. In: Journal of Sound and Vibration (2005). issn: 0022460X.
doi: 10.1016/j.jsv.2004.05.032.

[37] D. Song and C. J. Li. “Modeling of piezo actuator’s nonlinear and frequency dependent
dynamics”. In: Mechatronics (1999). issn: 09574158. doi: 10.1016/S0957-4158(99)00005-
7.

[38] Z. Wang, Z. Zhang, J. Mao, and K. Zhou. “A Hammerstein-based model for rate-
dependent hysteresis in piezoelectric actuator”. In: Proceedings of the 2012 24th Chinese
Control and Decision Conference, CCDC 2012 (2012), pp. 1391–1396. doi: 10.1109/CCDC.
2012.6244223.

[39] M. Rakotondrabe. “Bouc-Wen modeling and inverse multiplicative structure to compen-
sate hysteresis nonlinearity in piezoelectric actuators”. In: IEEE Transactions on Automa-
tion Science and Engineering (2011). issn: 15455955. doi: 10.1109/TASE.2010.2081979.

[40] M. Al Janaideh and O. Aljanaideh. “Further results on open-loop compensation of rate-
dependent hysteresis in a magnetostrictive actuator with the Prandtl-Ishlinskii model”.
In: Mechanical Systems and Signal Processing 104 (2018), pp. 835–850. issn: 10961216. doi:
10.1016/j.ymssp.2017.09.004.

[41] M. Al Janaideh, M. Rakotondrabe, and O. Aljanaideh. “Further Results on Hysteresis
Compensation of Smart Micropositioning Systems with the Inverse Prandtl-Ishlinskii
Compensator”. In: IEEE Transactions on Control Systems Technology (2016). issn: 10636536.
doi: 10.1109/TCST.2015.2446959.

[42] M. Al Janaideh, S. Rakheja, and C. Y. Su. “An analytical generalized Prandtl-Ishlinskii
model inversion for hysteresis compensation in micropositioning control”. In: IEEE/ASME
Transactions on Mechatronics 16.4 (2011), pp. 734–744. issn: 10834435. doi: 10.1109/TMECH.
2010.2052366.
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