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Abstract

Due to a global shift towards renewable and emission-free energy sources, the need for
electrical energy systems is increasing. Fuel cells are important energy systems, as they
can convert chemical energy of hydrogen and oxygen into electrical energy, without ex-
pelling any environmentally harmful emissions. Especially in electric vehicles and electric
aircraft, the combination of a fuel cell system with a hydrogen tank has the potential to
become more relevant than batteries, as battery-systems carry a high gravimetric density
and scale poorly volumetrically. For a specialized desing of a fuel cell system for vehicles
or aircraft, a good understanding of the underlying physics is required. This understand-
ing can be achieved through accurate computational modeling of such systems. The goal
of this thesis is to simulate the free flow and porous flow regions of a Polymer Electrolyte
Membrane Fuel Cell (PEMFC) using a discontinuous Galerkin approach in Julia. Starting
with an already existing implementation of a discontinuous Galerkin simulation of the
Euler equations, the computation of the compressible Navier Stokes equations (NSE) is
included. These equations require an additional numerical treatment to ensure a stable
simulation. Hence, the interior penalty method is implemented for the computation of
elliptic partial differential problems. Afterwards, the compressible NSE are coupled with
the species equation to obtain the distribution of a chemical species in the flow. To obtain
the Darcy-Brinkman-Frorchheimer model for a reactive flow through a porous medium,
the simulation is then extended with source terms. The implementation of the compress-
ible NSE is verified for the Taylor-Green problem and the lid-driven cavity flow problem,
after which the simulation is used for the evaluation of a gas diffusion layer configuration
in a PEMFC.
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Introduction and Background Theory
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1. Introduction

Renewable energy sources, such as solar panels and wind turbines, are a green alterna-
tive to the more conventional energy sources, such as gas and oil, to provide energy to
our homes and offices. Governments and companies worldwide are working towards a
greener energy economy, and even our cars and most of public transportation have shifted
towards greener energy sources, such as batteries [1 ]. Batteries, however, have a limited
range of application, because volumetrically they scale poorly with the amount of energy
that is stored and they are heavy in weight. This can surely be overcome by improved bat-
tery technologies, which could be developed, but the reality is that it is hard to, e.g. store
energy peaks, that are produced by wind farms or solar parks, in batteries. Electric vehi-
cles need a significant amount of time to recharge, before they have a decent range. The
development of fully electrical aircraft is still in the early stages and the use of batteries to
power an aircraft is challenging due to the density of battery-systems [5 ].
The problems that are introduced by batteries are relatively easily solved by using a fuel
cell system that runs on, e.g. hydrogen. Fuel cells are electrochemical cells that work al-
most like batteries, but their volumetric and gravimetric scaling is significantly better [26 ],
not to mention that they consume a fuel which can be replenished quickly. Furthermore,
energy peaks from renewable energy sources can be stored in hydrogen through electrol-
ysis, making fuel cells a relevant alternative to batteries in stationary applications such as
solar farms and wind parks. A fuel cell can be seen as an “electrical energy factory”, just
like a battery, but the energy source is an external fuel, instead of internal chemicals with
electric potential.
In aircraft applications, fuel cells are an especially interesting energy source, because all
harmfull emissions of an aircraft could theoretically be removed. This is because fuel cells
can be designed to only produce water during the conversion of chemical energy into elec-
trical energy, provided that hydrogen is used as a fuel. There is still room for improvement
in fuel cell design, when it comes to specialized applications. In aviation applications, fuel
cells can still be improved considering the operating conditions and material science, such
that they operate in harmony with the rest of the aircraft subsystems. To have a functional
aircraft flying on electricity, a fuel cell’s energy production must be on the same level as
the aircrafts energy consumption. On the other hand, to have a functional fuel cell system,
the operating conditions of the fuel cell (e.g. operating temperature and pressure) and the
supply of hydrogen and air, must be on a level that is required by the fuel cell. Research
must still be done to get a better understanding of this interface of a fuel cell subsystem
and the rest of an aircraft, and to get a better understanding of the potential of fuel cell
systems in aircraft. Research that is not only costly and time-consuming, but often also

3



1. Introduction

very difficult. The inner workings of a fuel cell are complex and not easily predicted. A
computational model could provide us with answers that experimental research often can-
not.
Good simulations of a fuel cell are thus necessary for a properly functional fuel cell system
that provides energy to an aircraft. Recently developed fuel cell models rely on finite ele-
ment or finite volume discretization methods [12 ]. The underlying discontinuous proper-
ties of a fuel cells computational domain make it difficult to get convergent computational
solutions [30 ]. This underlines the importance of the exploration of various computational
methods for the simulation of fuel cells.
In this thesis, the discontinuous Galerkin approach for the modeling of a fuel cell will
be discussed. The discontinuous Galerkin method (DGM) has revived a lot of interest in
many computational scientists, after it was long neglected since its first application in the
70s by Reed & Hill [27 ]. We will make use of the discontinuous basis of the method and
the benefits of high-order basis functions, to construct a fuel cell model. The goal of this
thesis is to provide the reader with the proper numerical means to realise this model. In
chapter 2, the fundamentals of a fuel cell and the mathematical model that is commonly
used will be explained. Chapter 3 will present the mathematical tools that are necessary
for the DGM. Afterwards, the discretization of the compressible Navier-Stokes equations
and fuel cell model using the DGM will be examined in chapters 4 and 5 respectively. The
discretization of the compressible Navier-Stokes equations is treated separately from the
fuel cell model, because our numerical solution of the Navier-Stokes equations will be ver-
ified to a certain extend. The computational model will be programmed in Julia and the
numerical implementation is discussed in chapter 6, after which a verification of the imple-
mentation for the compressible Navier-Stokes equations is given in chapter 7. In chapter
8 we will conclude with results and we will reflect on recommendations that can be made
for any future work done on the model, after which this thesis is concluded in chapter 9.
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2. Fuel Cell Theory

A fuel cell can be described as an electrochemical system that converts chemical energy
into electrical energy, similar to a battery. The difference being that a battery is a closed
system, with internal chemicals, and a fuel cell uses external chemicals, i.e. a fuel, to gener-
ate electricity. This external fuel, is stored in a tank and can be refilled whenever necessary.
The main advantages of chosing fuel cells over conventional combustion engines are that
water is the only by-product of the energy conversion (assuming that hydrogen is used
as a fuel) and that the energy conversion is more efficient. This efficiency is due to the
fact that a combustion engine creates a lot of useless energy in the form of heat when it
converts internal energy of chemicals to useful work (in the thermodynamic sense). Fuel
cells, on the other hand, generate useful work (in the form of electric energy) directly from
the internal energy of chemicals, leading to an energy conversion that can be as efficient as
up to 90%. This is significantly better than the 25-50% for combustion engines [26 ].
More importantly, since fuel cells can convert energy without generating harmful emis-
sions, like carbon-/nitrogen-oxides, they can be a key element of the solution to the climate
change problem.
In this chapter, we will discuss the background knowledge of fuel cells that is required to
understand the principles of the model that was programmed during this thesis. Fuel cells
are complicated systems and there are many variations to them. In section 2.1 we will go
over the different types of fuel cells, explain why the polymer electrolyte membrane fuel
cell (PEMFC) was chosen to be modelled and analyse the internal workings of a PEMFC
in more detail. Afterwards, the commonly used mathematical model of a PEMFC is pre-
sented in section 2.2 . Finally, we will discuss the performance analysis of a PEMFC in
section 2.3 .

2.1. PEMFC

Before we start discussing the possible fuel cell types, we should have a look at the basic
mechanism of a fuel cell. A fuel cell essentially consists of the following four components:
An electrolyte, electrodes, reactants and a wire. In fig. 2.1 a basin is depicted containing an
electrolyte in liquid form. The two red rods are the electrodes. The reactants are hydrogen
(H2) on the left and oxygen (O2) on the right (here represented by gas bubbles attached to
the electrodes), and the wire is the line on top that connects the two electrodes. The com-
plete electrochemical reaction that happens in a simple fuel cell can be divided into two
half-reactions. These two half-reactions are the hydrogen oxidation reaction (HOR), where
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2. Fuel Cell Theory

Figure 2.1.: A simplified schematic representation of a fuel cell inspired by an image by
O’Hayre et al. [26 ]. The liquid in the basin is the electrolyte, and the two rods
are the anode (left) and cathode (right) electrodes. The reactants, hydrogen and
oxygen, are present as gas bubbles near the electrodes. Electrons flow through
the wire connecting the two electrodes on top. The crossed circle represents a
lamp that uses the electrical energy. The protons flow through the electrolyte.

electrons are removed from the reactant, and the oxygen reduction reaction (ORR), where
electrons are added to the reactant. These half-reactions occur at the two electrodes that
are spatially separated by the electrolyte. This spatial separation is necessary to force the
electrons to flow through the connecting wire, such that the energy carried by the electrons
can be harvested by, e.g. a lamp (represented by the crossed circle in fig. 2.1 ). To complete
the full reaction, the transport of protons (or another protonic charge carrier) from one
electrode to the other is also needed. The electrolyte allows a flow of protons from one
electrode to the other, but enforces the electrons to flow through the wire. The electrode
of the oxidation half-reaction, is called the anode, and the electrode of the reduction half-
reaction is called the cathode.
The two half-reactions are in our case a split version of the hydrogen combustion reaction:

Oxidation reaction: H2 
 2H+ + 2e−

Reduction reaction:
1

2
O2 + 2H+ + 2e− 
 H2O

In these reactions the reactants are hydrogen and oxygen, and the product is water. As
long as there are no carbon or nitrogen parts present in the reaction, no carbon- or ni-
trogenoxides (greenhouse gasses) are produced. It must be noted that this not always a
given for the combustion of hydrogen, because the ambient air contains nitrogen and car-
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2.1. PEMFC

Table 2.1.: Operation conditions of major fuel cell types as given by O’Hayre et al. [26 ].

PEMFC PAFC AFC MCFC SOFC

Operating
temperature (°C)

80 200 60-220 650 600-1000

Fuel compatibility H, methanol H H H,CH H, CH, CO

bon. For a set of combustion stoichiometries, hydrogen may not be the only reactant in the
combustion and environmentally harmful gasses can be produced. This is not the case for
fuel cells, although the electrolyte itself might get polluted. This leads to the degradation
of the fuel cell performance [26 ]. Electrolyte pollution can be avoided to a certain extend
by proper fuel cell design.

2.1.1. Fuel Cell Choice

Fuel cells can have different structures and materials, but the main idea is the same. The
choice for the electrodes, electrolyte and reactants has a huge impact on the performance
of a fuel cell and its required operating conditions. This thesis will cover the model of a
polymer electrolyte membrane fuel cell (PEMFC), which uses a polymer membrane as an
electrolyte.
The PEMFC is chosen for this thesis, because it is a prevailing fuel cell type in mobile
applications, such as vehicles and aircraft [9 , 10 ]. This is mainly due to its efficiency and
relatively low operating temperature range of 80-100 °C. For sake of completeness, four
other major fuel cell types given by O’Hayre et al. [26 ] are listed below with the PEMFC:

• Polymer electrolyte membrane fuel cell (PEMFC)

• Phosporic acid fuel cell (PAFC)

• Alkaline fuel cell (AFC)

• Molten carbonate fuel cell (MCFC)

• Solid-oxide fuel cell (SOFC)

From table 2.1 it is clear that the operating temperature of the PEMFC makes it attractive
for mobile applications. Another advantage of PEMFCs is their high power density and
their low weight, making it the most interesting among fuel cells for aircraft application.
Altough methanol can also be used as a fuel in a PEMFC, we will assume hydrogen as a
fuel.
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2. Fuel Cell Theory

2.1.2. Inner Workings of a PEMFC

The schematic inner working of a PEMFC is illustrated in fig. 2.2 . From left to right, the
PEMFC consists of the following seven layers:

• Anode flow channel

• Anode gas diffusion layer (GDL)

• Anode atalyst layer (CL)

• The electrolyte membrane

• Cathode gas diffusion layer (GDL)

• Cathode catalyst layer (CL)

• Cathode flow channel

Together with the CLs on both anode and cathode side, the electrolyte membrane forms
the membrane electrode assembly (MEA). Chemical half-reactions only occur at the triple
points, where the reactant meets the catalysator and electrolyte. The function of each of
these layers will now be examined.

Flow Channels

In fig. 2.1 the reactants are simply illustrated by gas bubbles, collected at the electrodes.
This is not a realistic illustration, because no source for these reactants is illustrated. The
flow channels act as a riverbed for the flow of (mainly gaseous) fluids that contain the
reactants. In fig. 2.2 the flow channels are the two outmost layers that contain reactants
and products, characterized by the illustrated inflows on the bottom and outflows on the
top. The main function of the flow channel is to convect the reactants, with the objective
that the reactants be spread out over the electrolyte sheet as uniformly as possible. During
the electrochemical reaction, reactants are depleted and the reaction product, H2O in our
case, can “choke” the fuel. Both the depletion of reactants and choking of the fuel cell
affect the performance of a fuel cell drastically. This leaves an important job for the flow
channels. Namely, the guiding of the reactants and products such that neither depletion
nor choking happens. Pressure differences at the beginning and ending of the anode and
cathode flow channels, and the choice of the pattern of the flow channels greatly influences
the convection of reactants and products. Examples of flow patterns are given in fig. 2.3 .
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2.1. PEMFC

Figure 2.2.: Schematic 2D representation of a PEMFC. From the sides to the center, this
figure portrays the flow channels, gas diffusion layers (GDL), catalyst layers
(CL) and polymer electrolyte membrane are portrayed. The anode side is on
the left and the cathode side is on the right. The electrodes are connected by a
wire on top.

Gas Diffusion Layers

The GDLs are layers of porous material that transport reactants from the flow channels to
the MEA, and products from the MEA back to the flow channel. This layer is essential,
because in a regular flow channel the velocity profile shows a stagnant flow at the walls
and the highest flow velocities are reached at the biggest distance from the walls. This is
especially true for a laminar flow, which is the dominating flow type inside a fuel cell [26 ].
To prevent the reactants from flowing past the MEA, without any reactions occurring, the
GDL is introduced. In this region, the diffusion of the flow dominates. This means that re-
actants are transported to regions where they are in low concentration near the electrolyte,
where the reactants are depleted in electrochemical reactions and products are transported
from the electrolyte, where it is high in concentration, to the gas channel, where it is low
in concentration.

Catalyst Layers

The CL is a very thin layer of catalyst material applied to the GDL to encourage the elec-
trochemical reaction by lowering the activation potential of the half-reactions. The most
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2. Fuel Cell Theory

common and most effective catalyst for a PEMFC is platinum [26 ]. Its presence lowers the
activation energy for the electrochemical reaction, thus it improves the efficiency of the
fuel cell (see section 2.3 for activation losses).

Figure 2.3.: Common flow pattern examples for PEMFCs are: Serpent, parallel and inter-
digitated flow [26 ]. Fluids flow along the black lines. For the interdigitated
flow, the fluid will “cross” out of plane through the GDL, which can be imag-
ined to be stacked on top of the flow pattern. The fluids flow in at the upper
left corner and out at the bottom right corner.

Polymer Electrolyte Membrane

The polymer electrolyte membrane is the electrolyte for the PEMFC. For the polymer mem-
brane usually Nafion-117 is used. Its function is to transport protons from the anode side
to the cathode side of the fuel cell. The performance of Nafion-117 is greatly affected by
the operating temperature and the water saturation level of the membrane [26 ].

2.2. M2 Model

The physics of a PEMFC involve many complicated phenomena, such as electrochemical
reactions, current distribution, two-phase flow transport and heat transfer. These simul-
taneously occurring processes can be described by a mathematical model. Recently, the
multiphase mixture (M2) model has been widely used for modeling PEMFCs [30 ]. Al-
though we will be using a simplified version of the M2 model, it is best to explain the
complete model such that the simplifications made later will be better understood.
A disadvantage of using the M2 model is that a discontinuous diffusion coefficient is in-
troduced in the water concentration equation due to the existence of two distinct regions
of single-phase and two-phase flow, resulting in a non-convergent, oscillatory, nonlinear
iteration for continuous Galerkin discretizations [30 ]. Just as for the finite volume method,
a motivation for choosing a discontinuous Galerkin approach for the discretization of the
model is that this discontinuity in the diffusion coefficient can be captured and handled
properly due to the discontinuous nature of this method. Additionally, most benefits of
the continuous Galerkin method, such as the use of high-order basis functions are kept.
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2.2. M2 Model

The model presented below is based on the reference paper by Sun [30 ]. This paper con-
siders a steady-state case, where the back-diffusion of water in the membrane is neglected.
We also choose to neglect the back-diffusion of water, but in contrast to Sun [30 ], we will
be considering a time-dependent problem. We do this because the model could then be
developed further for complex situations such as cold-start simulation [24 ].
The M2 model is based on the Navier-Stokes equations for flow, with some modifica-
tions known as the Darcy-Brinkman-Forchheimer model [20 , 30 ]. For a two-phase model,
the physical parameters and coefficients are defined through two-phase mixture relations.
Therefore, properties like Prandtl’s number, the heat capacity ratio and the thermal con-
ductivity coefficient are defined as functions of the fraction of open pore space occupied
by liquid and gas phases. The explicit definitions of the two-phase relations are given by
Sun [30 ]. For us, it is important to realise that these values, which are usually regarded as
constants, are actually variables.
The model will first be presented as it was given by Sun [30 ], without the time derivative.
The time derivative will be added to the model later in this thesis.

Mass Equation

The mass equation is the same as for the standard compressible Navier-Stokes equations
and is given by

∇ · (ρv) = 0. (2.1)

Here, the density is given by ρ and the velocity vector is given by v.

Momentum Equation

The momentum equation is defined as

1

ε2
∇ · (ρvv) = −∇p+∇ · (µ∇v) + Su, (2.2)

where ε is the porosity of the porous media. The porosity of a media is the ratio of open
pore space divided by the total space. In the flow channels, porosity is equal to one. The
pressure and viscosity are denoted by p and µ respectively. The first term on the left-hand
side is the advection term, the first term on the right-hand side is the pressure term and
the second term on the right-hand side is the diffusion term. The source term for the
momentum equation is denoted by Su. It is zero in the flow channels and it is equal to the
Darcy force in the porous regions. The source term functions as a sink to the momentum
of the flow due to the porosity of the medium. Notice that this equation becomes the
compressible Navier-Stokes momentum equation in the flow channels.
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2. Fuel Cell Theory

Species Equation

The general species equation must be solved for each species k ∈ {H2, O2, H2O}, resulting
in three separate equations. The general species transport equation is given by

∇ · (γcvCk) = ∇ · (Dk,eff
g ∇Ckg )−∇ ·

[(
mfkl
Mk

−
Ckg
ρg

)
jl

]
+ Sk. (2.3)

This equation describes the movement of a chemical species (H2, O2 or H2O) in the flow.
The total mixture molar concentration of a species is given by Ck. An advection correction
factor, γc, is necessary to correct the advection for two-phase flow regions. The effective
gas diffusion coefficient is given by Dk,eff

g , Mk is the molar weight and fkl is the liquid
mass fraction. Solving this equation is necessary to obtain the concentration of a species in
the catalyst region where the electrochemical reaction happens. The term on the left-hand
side describes the advection of a species along the flow. The first term on the right-hand
side models the diffusivity of a species in the flow. The diffusivity becomes dominant
in the diffusivity region, so it should not be neglected. The second term on the right-
hand side describes the relative motion of species due to the capillary action in the porous
regions [30 ]. The evaluation of the capillary-diffusional flux of the liquid phase, jl, is
quite complicated, but can be summarized as a function of the capillary pressure of the
porous material, which is in turn evaluated by the Leverett function [32 ]. For a more
explicit definition of jl, the reader is referred to the reference paper by Sun [30 ]. The source
term of the species equation, Sk, describes the creation and depletion of a species due to
electrochemical reactions and for water it additionally models the change of concentration
due to electro-osmotic drag [30 ].

Energy Equation

The energy equation is given by

∇ · (γTρcpvT ) = ∇ · (k∇T ) + ST , (2.4)

where the advection heat-transfer correction is denoted by γT , cp is the heat capacity at
constant pressure, T is the temperature and k is the thermal conductivity. The term on the
left-hand side describes the transfer of energy by convection, the first term on the right-
hand side describes the energy transfer due to heat conduction and the second term on
the right-hand side is the energy source term ST . The energy source term includes a few
components that may affect the energy in the system. These are: Energy change due to
electrochemical reactions, heat change due to water condensation and evaporation, and
heat from electronic or protonic resistances.
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2.3. Current Density Graph

Proton and Electron Transport

With the proton and electron transport equations, the proton potential Φe and electron
potential Φs can be solved, and the model is concluded. These potentials are the last un-
knowns that need to be solved, in order to predict the reaction rates of the electrochemical
reactions in the system. The proton transport equation is given by

∇ · (κ∇Φe) + SΦe = 0 (2.5)

and the electron transport equation is given by

∇ · (σ∇Φs) + SΦs = 0. (2.6)

The proton transport equation exists in the MEA region, where κ is the protonic conduc-
tivity of the material and the source term SΦe is defined by the amount of electrochemical
reactions. The electron transport equation has the same shape and it is present in the cata-
lyst layers and the current collectors (wire and lamp). The conductivity σ is the electronic
conductivity in the material, and the source term SΦs = −SΦe is also regulated by the
electrochemical reactions.

2.3. Current Density Graph

The complexity of a fuel cell follows from the model that was given in section 2.2 . For
engineering applications, it is important that the fuel cell performance can be evaluated
simply. A common way to describe the performance of a fuel cell is through the current-
density. The fuel cell performance scales linearly with the area of the electrolyte, meaning
that a fuel cell with a twice as large area can provide a twice as big current, provided
that there is an adequate supply of reactants. Therefore, to compare various fuel cells, the
performance is usually measured in current-density. The current-density is the generated
current in ampères divided by the electrolyte surface

Current-density =
Generated current (A)

Electrolyte surface (cm2)
. (2.7)

The generated current-density of a fuel cell depends on the voltage at which the fuel cell
operates. This dependency is usually illustrated by a current-density curve and an exam-
ple is given in fig. 2.4 . Multiplying the current with the corresponding voltage results in
the power-density curve (not illustrated), which can be used to determine the required
fuel cell configuration and to obtain the maximum available power, a value that is relevant
for the design of electronic systems. The characteristic shape of the current-density curve
originates from three separate losses that occur during operation. These losses are the ac-
tivation loss, ohmic loss and concentration loss. The height of the current-density curve is
determined by the thermodynamically defined optimal energy conversion (E0 in fig. 2.4 ),

13



2. Fuel Cell Theory

Figure 2.4.: Simplified reference
current-density (i-V) curve
for a PEM fuel cell inspired by an
image by O’Hayre et al. [26 ].

Figure 2.5.: The activation loss of a PEM
fuel cell inspired by an image by
O’Hayre et al. [26 ].

based on the change in internal energy of the reactants due to the electrochemical reaction.
The complete current-density curve is given by

Current-density = E0 − Activation Loss − Ohmic Loss − Concentration Loss.

The thermodynamic optimum and the three losses can be predicted using a fuel cell model.
In this section we will discuss why each of the losses occur and give the equations to
predict the thermodynamic optimal voltage and the three current losses.

2.3.1. Thermodynamic Optimum

With thermodynamics, the maximum amount of energy that can be obtained from an elec-
trochemical reaction can be defined, as it yields the theoretical boundaries of what is pos-
sible with a fuel cell [26 ]. The Gibbs free energy describes the maximum electrical energy
that can be obtained from an electrochemical reaction and it is calculated using the fol-
lowng equation

E0 = −∆g

nF
. (2.8)

Here, ∆g is the difference in Gibbs free energies of the reactants and products of a chemical
reaction, n is the amount of electrons that are transferred in a chemical reaction and F
is Faraday’s constant. The difference in Gibbs free energies is a function of temperature
and pressure, so the available potential energy depends on the operating pressures and
temperature of a fuel cell. A fuel cell operating at room temperature on 3 atm pure H2 and
5 atm air, has a predicted reversible cell voltage of 1.254 V [26 ].

14



2.3. Current Density Graph

Figure 2.6.: The ohmic loss of a PEM
fuel cell inspired by an image by
O’Hayre et al. [26 ].

Figure 2.7.: The concentration loss of a PEM
fuel cell inspired by an image by
O’Hayre et al. [26 ].

2.3.2. Activation Loss

For the electrochemical reaction to happen, a certain amount of activation overpotentail is
needed to “ignite” a reaction. This required overpotential is lowered by the presence of a
catalyst. The activation overpotential is given by the Butler-Volmer equation for the anode
and cathode half-reactions, but it is not given here as the equation is rather lengthy and
complicated (see chapter 3 [26 ]) and the effect of the activation loss is illustrated in fig. 2.5 

instead. The activation loss is the dominant loss in the lower current density regions.

2.3.3. Ohmic Loss

The ohmic loss occurs due to the fact that energy is required to move the protons through
the electrolyte. It depends on the resistance of the material through which the protons
flow. In our case the water saturation profile of Nafion-117 influences the resistance of the
membrane, so the ohmic loss is highly dependable on the water content of the membrane.
There are two physical phenomena that regulate the water saturation along the membrane:
The electro-osmotic drag and the back-diffusion of water [26 ]. The electro-osmotic drag is
the effect of protons dragging water molecules along as they move from the anode to the
cathode side. Back diffusion of water occurs due to a high concentration of water at the
cathode side, which diffuses water back to the anode side. The electron transport is usually
negligible compared to proton transport. The effect of the ohmic loss is illustrated in fig. 2.6 

and it is the dominant loss in the middle regions of the current density.
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2. Fuel Cell Theory

2.3.4. Concentration Loss

The concentration loss is the loss that happens due to the depletion of reactants at both
electrodes and a “choking” effect of water mainly at the cathode. Reactants must at all
times be delivered to the membrane and the surplus of product must be carried away. This
loss is easiest to regulate for a fuel cell through the design choices, such as the flow channel
pattern and GDL configuration and porosity. Computational fluid dynamics (CFD) meth-
ods are used to predict this loss and to optimize the fuel cell for high power output. This
loss is the focus of this thesis, as we will introduce a discontinuous Galerkin discretization
approach for simulating the flow of species through non-porous and porous media.
The effect of the concentration loss on the current-density curve is most dominant in the
higher current-density regions and it is illustrated in fig. 2.7 . For a high power output of a
fuel cell, the objective is to find a point on the current-density graph where both the volt-
age and current are high. This can be done by translating the concentration loss curve to
the right, such that the overall current-density curve can be smeared out to higher current-
density regions than illustrated.
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3. Discontinuous Galerkin Method: Theory

The discontinuous Galerkin method (DGM) was first introduced in the 70s by Reed & Hill
[27 ] to simulate neuron transport and has ever since been used as a method for solving
hyperbolic problems. The local conservation properties make it an interesting method for
shocks and the localized formulation makes it a method that is straightforward to paral-
lelize. The discontinuous Galerkin method emerged from the implementation of weakly
enforced boundary conditions for the continuous Galerkin method [4 ] and it was realised
that the weakly enforcing of boundary conditions could also be used as a flux on a bound-
ary between two gridcells. This allows for the use of discontinuous test function spaces,
which makes it an interesting method for simulating problems where discontinuities may
arise. High-order basis functions can be used to capture physical behaviour that cannot be
captured by a low order interpolant, allowing for an increased understanding of a physical
system.
The use of DG methods for elliptic problems finds its origin in the introduction of the inte-
rior penalty methods [3 , 13 ] and an excellent overview of various discontinuous Galerkin
methods for elliptic problems is provided by D. N. Arnold et al. [4 ]. The given solver can
already solve problems of hyperbolic nature, using a discontinuous Galerkin discretiza-
tion. To be able to solve the flow of a PEMFC, however, the solver must be extended
with additional discretization methods that are used for solving elliptic and parabolic par-
tial differential equations (PDEs) of higher order. High-order (2nd order or higher) spatial
derivatives in a PDE require an additional numerical flux on the boundary between cells
for a stable solution. For the solver we will choose to implement the symmetric interior
penalty discontinuous Galerkin (SIPG) method, a method from the class of interior penalty
methods.
The most important notation with respect to DG methods will be given in section 3.1 . Sec-
ondly, some background information will be given on the functionality of the basis func-
tions in section 3.2 . Thirdly, the internal penalty DG methods will be treated in section 3.3 .
Lastly, the treatment of time-dependent problems is explained in section 3.4 .

3.1. Notation

Before the symmetric interior penalty method for elliptic PDEs can be explained, the no-
tation that will be used for the DG methods will be explained here. This notation will be
supplemented throughout the thesis and a complete list can be found at the end of this
thesis in the list of symbols.
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3. Discontinuous Galerkin Method: Theory

Figure 3.1.: An arbitrarily shaped domain Ω with boundary ∂Ω. The domain is divided
by a regular grid of cells C. The normal of a cell is indicated by the outward
normal n− and the normal of a neighbouring cell is indicated by n+. An edge
e is the interface of the two neighbouring cells.

In fig. 3.1 an arbitrarily shaped domain Ω with boundary ∂Ω is shown. It consists of ele-
ments, which can have any arbitrary shape, but will be assumed to be square in this thesis
for simplicity. It must be noted that in this case Ω and ∂Ω are actually computational
approximations of the physical domain and boundary respectively, meaning that ∂Ω is
a piecewise linear representation and each line borders one cell element. The inner cell is
denoted byC− and a neighbouring cell is denoted byC+. With this nomenclature, the nor-
mal vectors n− and n+, which point outward for cells C− and C+, can be distinguished.
Lastly, the edge e is defined as the interface connecting two neighbouring cells.
The degrees of freedom are denoted by the vector u, which shouldn’t be confused with its
scalar counterpart u, the flow velocity in x-direction, and a flux is be denoted by F .
Additional to the previously defined elements, there are a few sets that need to be defined.
These sets are listed below:

• Set of all cells: Th

• Set of all edges: Eh

• Set of all internal edges: Γ

• Set of all boundary edges: ∂Ω

Operators

The approximation of the degrees of freedom is continuous within each cell, but a discon-
tinuity exists across an edge. This means that on each edge, two values for the degrees of
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3.2. Lagrange Basis

Figure 3.2.: A 2D scalar basis function φx,y
on a cell C
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Figure 3.3.: Second order Lagrange
polynomials

freedom (u− and u+) can be defined. We introduce the following operators to denote th
average and jump across an edge. The operator {{·}} will be used to denote the average,
and J·K will denote the jump of scalars or vectors across an edge e. Apart from that, the
operator J·Ks is used to define a scalar jump of a vector. These scalar and vector operators
are listed below:

Vector:

{{v}} :=
1

2

(
v+ + v−

)
JvK := v+ ⊗ n+ + v− ⊗ n−

JvKs := v+ · n+ + v− · n

Scalar:

{{p}} :=
1

2

(
p+ + p−

)
JpK := p+n+ + p−n−

Basis Functions

To explain the notation for the basis functions, fig. 3.2 is used. This figure shows a sin-
gle cell C with a single two-dimensional basis function φx,y that consists of a combination
of one-dimensional basis functions: ϕx and ϕy. It is worth noting that one- and two-
dimensional basis functions are denoted by different versions of the small Greek letter φ.
From here on, each basis function mentioned in this thesis can be assumed to be two-
dimensional, unless stated otherwise. Furthermore, the Lagrange polynomials will be
used as basis functions in this thesis.

3.2. Lagrange Basis

The basis is used for the approximation of the physical solution and the approximation of
the solution u is denoted by uh. The Lagrange basis function, of polynomial order p leads
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3. Discontinuous Galerkin Method: Theory

to (p+ 1)2 basis functions in 2D and is given by

ϕ̂i(x) =
∏

0≤j≤p
i 6=j

x− x̂j
xi − x̂j

. (3.1)

for the reference cell Ĉ, where the reference cell is defined as Ĉ(x̂, ŷ) with x̂, ŷ ∈ [0, 1]2.
The reference cell is used to simplify the computation by first approximating the solution
on the reference cell and afterwards map this solution to the physical cell. This mapping
procedure is explained in more detail in appendix B . Functions and values with respect to
the reference element are denoted by a hat “ˆ”.
Furthermore, the nodes are chosen such that we have co-located Gaussian quadrature and
the evaluation of integrals will therefore be relatively cheap. Mapped to the interval [0, 1]
the quadrature points, quadrature weights and the corresponding basis functions ϕi and
their derivatives are given below for p = 2:

x̂ ∈

{
0.5−

√
3

20
, 0.5, 0.5 +

√
3

20

}
, w ∈

{
5

18
,

8

18
,

5

18

}

ϕ̂1(x) = 3
1

3
x2 − 4.62433x+ 1.47883

ϕ̂2(x) = −20

3
x2 + 6

2

3
x− 2

3

ϕ̂3(x) = 3
1

3
x2 − 2.04234x+ 0.187836

ϕ̂1(x)′ = 6
2

3
x− 4.62433

ϕ̂2(x)′ = −40

3
x+ 6

2

3

ϕ̂3(x)′ = 6
2

3
x− 2.04234

The basis functions ϕ̂{1,2,3} are plotted in fig. 3.3 as f(x), g(x) and h(x) respectively. Here
it can clearly seen that the other Lagrange functions are equal to zero, where one of them
has its maximum, meaning that the functions are orthogonal with respect to each other.
The sum of the lagrange polynomials is an interpolating function going through the nodes
of the lagrange polynomials. In fig. 3.3 , the result will be the line y = 1.

Lagrange Basis in 2D

The Lagrange basis for a two-dimensional problem is the tensor-product basis given by

φ̂n(x, y) = ϕ̂nx(x) · ϕ̂ny(y), (3.2)

where φ̂n denotes the 2D basis functions and ϕ̂nx and ϕ̂ny are the 1D basis functions. The
partial derivatives in x-direction and in y-direction are given by equations 3.3 and 3.4 ,
respectively
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3.3. Interior Penalty Discontinuous Galerkin Method

∂φ̂n(x, y)

∂x
=
∂ϕ̂nx(x)

∂x
· ϕ̂ny(y), (3.3)

∂φ̂n(x, y)

∂y
= ϕ̂nx(x) ·

∂ϕ̂ny(y)

∂y
. (3.4)

3.3. Interior Penalty Discontinuous Galerkin Method

The problem of a discontinuity in the approximation across an edge is that there is no
uniquely defined approximation on the edge. This can be illustrated by fig. 3.2 , by imagin-
ing two adjacent cells with different approximations for the solution at a shared edge. To
solve this problem, methods have been developed to approximate a numerical flux value
at the edge and common examples for the numerical flux are the central flux, Rusanov flux
or the Lax-Friedrichs flux. The characteristics of a discontinuous Galerkin discretization,
such as consistency and stability, strongly depend on the chosen flux. For a more extensive
explanation, the reader is referred to LeVeque [23 ].
Since the discontinuous Galerkin method was first introduced in the early 1970s, there
have been many approaches to apply this method to PDEs with high-order derivative
terms. A generalized approach to discretizing high-order PDEs using the DGM is pre-
sented by D. N. Arnold et al. [4 ]. In this section we will discuss the general approach of
arriving at the primal formulation of an equation. For this, a few tools will be needed,
which are given in the green formula boxes.

Green’s Theorem∫
C
u∇2v dx = −

∫
C
∇u · ∇v dx+

∫
∂C
u∇v · n ds

The first step is to define the PDE as a system of first-order differential equations. Each
term is then multiplied with a corresponding test function from the test function space
and the result is integrated over the domain, resulting in the weak form of the equation. If
the test function space is equal to the basis function space, the problem is better known as
a Galerkin problem. Since the basis function space is a space of discontinuous piecewise
polynomials, the test space will also be a space of discontinuous piecewise polynomial
functions, resulting in a discontinuous Galerkin problem. The problem is then defined as
a sum of cells with a continuous test function space and then, Green’s theorem is applied
to the system of first-order differential equations, to obtain an integral evaluated over the
cell and an integral defined over the cell boundary ∂C.
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3. Discontinuous Galerkin Method: Theory

The unifying formula

The unifying formula is given as∑
C∈Th

∫
∂C
vτ · n ds =

∑
e∈Eh

∫
e
JvK {{τ}} ds+

∑
e∈Γ

∫
e
{{v}} Jτ Ks ds.

This formula is based on the following identity:

a1b1 − a2b2 =
1

2
(a1 + a2)(b1 − b2) +

1

2
(b1 + b2)(a1 − a2).

So far, the steps taken have been along the lines of those for the continuous Galerkin
method, but now the sum of all cells is taken to form the domain Ω. The unifying formula
is applied to rewrite the integrals defined over the cell boundaries

∑
∂C into an integral

defined over the edges Γ. This essentially means that it is used to eliminate duplicates of
cell-boundary terms and replaces them with a unique edge definition, where the average
({{·}}) and jump (J·K) operators that were introduced in section 3.1 are used. Defining the
problem as an integral over the domain Ω and an integral of edges, gives the flux formula-
tion.
As an example, the flux formulation for the Poisson equation is given by D. N. Arnold et
al. [4 ] as ∫

Ω
∇uh · ∇v dx+

∫
Eh

(Jûh − uhK · {{∇v}} − {{σ̂}} · JvK) ds

+

∫
Γ
({{ûh − uh}}J∇vK− Jσ̂K{{v}}) ds =

∫
Ω
fv dx.

Here, the variables denoted by a hat represent the numerical flux. Various numerical fluxes
are given in table 3.1 , where δr,j denote the penalty coefficients for the respective methods
and β is a vector valued function which is constant on each edge [4 ]. For the solver we
will be implementing the interior penalty fluxes, due to its consistency and stability char-
acteristics [28 ]. Substituting the numerical fluxes in the flux formulation by the definitions
given for the interior penalty method will result in the interior penalty method for the
poisson equation. The following identities are used to simplify the expression

Averages and Jumps identities

{{a+ b}} = {{a}}+ {{b}}
Ja+ bK = JaK + JbK
J{{a}}K = 0

{{JaK}} = JaK
{{{{a}}}} = {{a}}
JJaKK = 0
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3.4. Time-Stepping Methods

Table 3.1.: Some numerical fluxes for the DGM as given by D. N. Arnold et al. [4 ].

Method ûh σ̂h

Bassi & Rebay [6 ] {{uh}} {{σh}}
Brezzi et al. [7 ] {{uh}} {{σh}} − δr(JuhK)
LDG [8 ] {{uh}} − β · JuhK {{σh}}+ βJσhK− δj(JuhK)
IP [13 ] {{uh}} {{∇uh}} − δj(JuhK)

The primal formulation for the interior penalty method is given by D. N. Arnold et al. [4 ]
as ∫

Ω
∇uh · ∇v dx−

∫
Γ
(JuhK · {{∇v}}+ ε{{∇uh}} · JvK) ds

+

∫
Γ
δJuhK · JvK ds.

(3.5)

Here, last term is the stabilization term with the penalty coefficient δ. Its value is mesh
dependent and is given by D. N. Arnold et al. [4 ] as ηe

he
on each edge e with ηe a positive

number. An alternative definition is given by J. Hesthaven & Warburton [18 ], who provide
δ ≥ C p2

h , with C ≥ 1, where the lower bound on C is derived by Shahbazi [29 ].
For edges that coincide with the domain boundary ∂Ω the interior penalty flux is given by

ûh = 0, σ̂ = {{∇uh}} − δJuhK.

The final linear system that is described by equation 3.5 is a symmetric system for ε =
1. This special form of the interior penalty method is the SIPG method. Other common
variations include ε = −1 for the nonsymmetric interior penalty Galerkin (NIPG) method
[28 ], and ε = 0 for the incomplete interior penalty Galerkin (IIPG) method [11 ].

3.4. Time-Stepping Methods

Apart from the spatial accuracy, the order of accuracy of the time dimension also affects
the total order of approximation for time dependent problems.
For simplicity we will be considering one-step methods for solving the ordinary differen-
tial equation (ODE) and the maximum timestep size usually depends on the eigenvalue
characteristics of the flow in computational fluid dynamics. For the SIPG method the
penalty parameter can theoretically be chosen as large as possible, as long as the lower
bound, given by Shahbazi [29 ], is exceeded. A high penalty parameter, however, leads
to an increased condition number of the resulting linear system and, thus, degrades the
convergence for an iterative solving method for steady state problems [18 ]. For time-
dependent problems, a similar performance degradation can be expected on the maxi-
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mum timestep size. A loss of about 50% of the maximum timestep size is observed for an
increase of the penalty parameter from δ = 0.67 to δ = 2 by Alhawwary & Wang [2 ] for
the BR2 scheme with RK3 and RK4 time discretizations. The BR2 scheme is numerically
similar to the SIPG method, so this means that the maximum allowed timestep size for a
time-dependent problem could also depend on the size of the penalty parameter [2 ].
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Part II.

Model Discretization
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4. Compressible Navier-Stokes Equations

There are a few physical phenomena that need to be modeled for an accurate representa-
tion of a PEMFC. Before a number of these phenomena is considered, the most important
question that must be answered is whether the flow is to be seen as compressible or in-
compressible, since both flow representations have a significant effect on the modeling of
the remaining physics. In most fuel cell literature, it is chosen to represent the flow in a
PEMFC as a compressible flow (see [26 ], [30 ]). The reason for this is that the pressure and
density of the fluid play a significant role in the fuel cell performance. The fluid flow speed
is perhaps not very high (definitely below Mach 0.3, the conventional bound for consider-
ing airflow as compressible), but a fuel cell can be designed to operate at pressures higher
than atmospheric pressure. More importantly, the density plays an important role when
we consider a flow that has more than one chemical species. Therefore, the compress-
ible Navier-Stokes equations are an obvious starting point in the process of developing a
PEMFC model.
Apart from its physically more accurate representation, the compressible Navier-Stokes
equations are relatively simple to implement with the discontinuous Galerkin method. The
incompressible Navier-Stokes equations require a projection of the velocity to a divergence-
free subspace and usually also a time-splitting scheme. Neither are necessary for the com-
pressible Navier-Stokes equations [18 ]. On the other hand, compressible Navier-Stokes
equations can pose some computing difficulties, since very small time steps in explicit
time-stepping methods are required for computational stability. This is due to the dif-
fusion, and the dependence of the eigenvalues on the speed of sound [18 ]. An implicit
time-stepping method can be chosen, which would be necessary to accurately solve a non-
linear PDE (diffusion), but it requires a big non-linear system of equations to be solved. A
good compromise could be a combination of the two.
In this chapter the derivation of the compressible Navier-Stokes equations in SIPG form
will be explained. The compressible Navier-Stokes equations will be given together with
the equations of state in section 4.1 . The discretization with the interior penalty DG method
is explained in section 4.2 and section 4.3 will explain how to obtain the linear system from
the discretization and their implementation. Afterwards, the boundary conditions will be
discussed in section 4.4 and, finally, this chapter will end with a description of the time-
stepping method in section 4.5 .
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4. Compressible Navier-Stokes Equations

4.1. The Compressible Navier-Stokes Equations

For the discretization of the Navier-Stokes equations we consider a two-dimensional time-
dependent problem. The conservative system is given by

∂

∂t
u+∇ · F h(u)−∇ · F v(u,∇u) = S, (4.1)

where u ∈ R4 are the conservative variables, referred to as the degrees of freedom, and
F h,F v ∈ R4×2 are respectively the hyperbolic and viscous fluxes of the Navier-Stokes
equations, and S is the source term vector of the Navier-Stokes equations. The numerical
treatment of the source terms is explained in chapter 5 , so for now a homogeneous problem
will be assumed.
The explicit definitions of the degrees of freedom u, hyperbolic flux F h and viscous flux
F v are

u =


ρ
ρu
ρv
ρE

 , F h(u) =


ρu ρv

ρu2 + p ρuv
ρuv ρv2 + p

u(ρE + p) v(ρE + p)

 ,

F v(u,∇u) =


0 0
σ11 σ12

σ21 σ22

σ11u+ σ12v + keffTx σ21u+ σ22v + keffTy

 .

(4.2)

Here ρ, v = (u, v)T , p, E and T are the density, velocity vector, pressure, specific total
energy and temperature respectively. The thermal conductivity is given by k. The viscous
stress tensor σ is defined as

σ(v,∇v) = µ

(
∇v + (∇v)T − 2

3
I (∇ · v)

)
= µ

(
4
3ux −

2
3vy vx + uy

uy + vx
4
3vy −

2
3ux

)
.

(4.3)

To close the system, we still need an equation for pressure and temperature. For this we
use the definition of total enthalpy H , which is given by

H = E +
p

ρ
= e+

1

2
v2 +

p

ρ
,

where e is the specific internal energy. This definition of the total enthalpy is used to find
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the definition of pressure, which is given by the equation of state of an ideal gas

p = (γ − 1)ρe

= (γ − 1)(ρE − 1

2
ρu2 − 1

2
ρv2).

(4.4)

where γ is the heat capacity ratio cp/cv, which has the value γ = 1.4 for air. The tempera-
ture can be found using the relation

T =
e

cv
=
γe

cp
=

µγ

Prk
e,

meaning that

kT =
µγ

Pr
(E − 1

2
u2 − 1

2
v2), (4.5)

where we take the Prandtl number Pr = 0.72 for air. Let it be clear that values such as Pr,
γ and k, which can generally be treated as constants, will be variable in the context of a
fuel cell simulation since the flow will be a mixture of chemical species.

4.2. Discontinuous Galerkin Discretization with Interior Penalty

The derivation of the discontinuous Galerkin discretization with interior penalty for the
compressible NSE is based on the paper by Hartmann and Houston [16 ] and on the lecture
notes of Hartmann and Leicht [17 ]. The compressible NSE in equation 4.1 can, for the
purpose of discretization, be rewritten in the following equivalent form

∂

∂t
u+

∂

∂xn

F h
xn(u)−Gnm(u)

∂u

∂xm︸ ︷︷ ︸
σ

 = 0. (4.6)

Here the matrix G is the homogeneity tensor of the viscous Flux and its explicit definition
is given in appendix A . The einstein notation is used to denote the summation over sub-
scripts. In this 2D example, the subscripts have the following values: n,m ∈ {1, 2}. We
will be using σ as a auxiliary variable in the ensuing derivation and it is not to be confused
with the viscous stress tensor from equation 4.3 .
The discretization of the compressible NSE will be done according to the steps explained
in section 3.3 . The equations are split into a system of first-order equations, the weak form
is formulated and afterwards integration by parts is applied, giving us the flux formulation
of the compressible NSE. The goal of this section will be to arrive at the primal formulation
of the compressible NSE, to eliminate the need for the auxiliary variable σ.
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4. Compressible Navier-Stokes Equations

Weak Form

Equation 4.6 is re-written as a semidiscrete system of first-order partial differential equa-
tions in equations 4.7a and 4.7b . For the hyperbolic flux, the Rusanov flux is used (see
J. S. Hesthaven [19 ] for the discontinuous Galerkin discretization for hyperbolic problems).
The viscous flux is considered, as

σ =
(
G1m(u) ∂u

∂xm
G2m(u) ∂u

∂xm

)
, (4.7a)

−∇ · σ = 0. (4.7b)

Here σ ∈ R4×2 functions as the auxiliary variable for splitting 4.6 to a system of first-order
PDEs. The next step will be to take the weak form of the system. For that, the test function
spaces need to be defined,

Σh = {σh ∈ [L2(Ω)]4×2 : σh|C ∈ [Qp(C)]4×2, C ∈ T},
Vh = {vh ∈ [L2(Ω)]4 : vh|C ∈ [Qp(C)]4, C ∈ T}.

Here, Qp(C) denotes the space of tensor product polynomials on C of degree p in each co-
ordinate direction. Multiplying 4.7a and 4.7b by the corresponding test functions, respec-
tively τ ∈ Σh and v ∈ Vh, and applying integrating by parts, we arrive at the following
system:

∫
C
σ · τ dx =

∫
∂C
uj [((G(u)nm):j τ:n)nm] ds−

∫
C
uj

∂

∂xm
((G(u)nm):j τ:n) dx,

(4.8a)

−
∫
C

(∇ · σ)v dx = −
∫
∂C

(σ · n)v ds+

∫
C
σ · (∇v) dx = 0. (4.8b)

Where n is the normal unit vector of a face, facing outward of the cell and nm are the com-
ponents of the normal unit vector. Here we used the following relation:

∫
C
σ · τ dx =

∫
C
σ:nτ:n dx =

∫
C

(G(u)nm):j
∂uj
∂xm

τ:n dx

=

∫
C

∂uj
∂xm

(G(u)nm):j τ:n dx

Here, the weak form of the system of PDEs is shown and the colon-notation is used (anal-
ogous to the use of the colon syntax in julia) to denote that there is no summation implied
for the respective index. Instead, the operation is applied uniquely for each element of the
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4.2. Discontinuous Galerkin Discretization with Interior Penalty

set that is described by the colon-notation. We deviate here from the derivation by Hart-
mann & Houston [16 ], since we are not considering a bilinear approach. In this example,
the result will be a vector of length four, since τ ∈ R4×2 and Gnm ∈ R4×4.

Flux Formulation

Our task is to find approximations of the solution, given by uh ∈ Vh and σh ∈ Σh, such
that for all C ∈ Th we have

∫
C
σh · τ dx =

∫
∂C

(ûh)j [((G(uh)nm):jτ:n)nm] ds−
∫
C

(uh)j
∂

∂xm
[(G(uh)nm):jτ:n] dx,

(4.9a)

−
∫
∂C

(σ̂h · n)v ds+

∫
C
σh · (∇v) dx = 0. (4.9b)

This is called the flux formulation of the method. The fluxes ûh and σ̂h represent the numer-
ical fluxes for the viscous flux along the face ∂C. In the following derivation, the explicit
notation of the dependence of Gnm on uh will be omitted.

Primal Formulation

To get the primal formulation, the auxiliary variable in equations 4.9a and 4.9b is elimi-
nated. We do this by performing a second integration by parts on equations 4.9a and we
set τ = ∇v, which gives∫

C
σh · ∇v dx =

∫
C

(
Gnm

∂uh
∂xm

)
∂v

∂xn
dx

+

∫
∂C

(ûh − uh)j

[(
(Gnm):j

∂v

∂xn

)
nm

]
ds.

(4.10)

Substituting equation 4.10 into 4.9b , and summing over all elements, yields the following
primal formulation∫

Ω

(
Gnm

∂uh
∂xm

)
∂v

∂xn
dx−

∑
C∈Th

∫
∂C

(σ̂h · n)v ds

+
∑
C∈Th

∫
∂C

(ûh − uh)

((
(Gnm):,j

∂v

∂xn

)
nm

)
ds = 0.

(4.11)

Using the definitions from section 3.1 , we define the primal formulation in a face-based
manner. For this, we make use of the generalised form of the unifying formula given in
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4. Compressible Navier-Stokes Equations

section 3.3 . This results in the following primal formulation

∫
Ω

(
Gnm

∂uh
∂xm

)
∂v

∂xn
dx+

∫
Γ
Jûh − uhKj · {{(Gnm):j

∂v

∂xn
}} − JvK · {{σ̂h}} ds∫

ΓI

{{ûh − uh}}jJ(Gnm):j
∂v

∂xn
Ks − {{v}}Jσ̂hKs ds = 0.

(4.12)

Numerical Flux

For the symmetric interior penalty for the compressible NSE, the numerical flux is given
as follows

Numerical Flux

ûh = {{uh}} σ̂h = {{G(uh) · ∇uh}} − δJuhK

We use the identities for jumps and averages presented in section 3.3 and arrive at the final
primal formulation for the symmetric interior penalty DGM, given by∫

Ω

(
Gnm

∂uh
∂xm

)
︸ ︷︷ ︸
F v(uh,∇uh)

∂v

∂xn
dx−

∫
Γ
JuhKj · {{(Gnm):,j

∂v

∂xn
}} ds

−
∫

Γ
JvK · {{Gnm

∂uh
∂xm︸ ︷︷ ︸

F v(uh,∇uh)

}} ds+ δ

∫
Γ
JuhK · JvK ds = 0.

(4.13)

In a more compact notation this becomes

∫
Ω
∇v · (F v(uh,∇uh)) dx−

∫
Γ
JuhKj · {{G:j · ∇v}} ds︸ ︷︷ ︸

symmetry term

−
∫

Γ
JvK · {{F v(uh,∇uh)}} ds︸ ︷︷ ︸

flux term

+ δ

∫
Γ
JuhK · JvK ds︸ ︷︷ ︸

penalty term

= 0.

(4.14)

Here we have denoted the three parts of the numerical flux as symmetry term, flux term and
penalty term. Setting this terminology will be useful to understand the explanation of the
discretization and implementation.
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4.3. Linear System

4.3. Linear System

In this section we show the discretization of the primal formulation of the Navier-Stokes
equations, using the discontinuous Galerkin method. For that, we take the primal formu-
lation of equation 4.14 and add the discontinuous Galerkin discretization of the hyperbolic
flux as given by Krenz & Reinarz [22 ] for a cell C:∫

C
φiφj dx︸ ︷︷ ︸
M

∂ui
∂t
−
∫
C
F h(u) · ∇vj dx︸ ︷︷ ︸

vh

+

∫
∂C

(F h(u) · n) · vj ds︸ ︷︷ ︸
r

+

∫
C
∇vj · (G(u) · ∇uh) dx︸ ︷︷ ︸

vv

−
∫
e
{{G(u) · ∇uh}} · JvjK ds︸ ︷︷ ︸

ef

−
∫
e
{{G:,l · ∇vj}} · JuhKl ds︸ ︷︷ ︸

es

+δ

∫
e
JuhK · JvjK ds︸ ︷︷ ︸

ep

= 0.

(4.15)

Here e indicates the integral over the edges of a cell C. The subscripts i, j here are used
to indicate the index of the basis and test functions respectively. The subscript l is used
to indicate the summation over the multiplication of matrix G and uh, resulting from the
matrix-vector multiplication from equation 4.6 . The dot products with the G matrices are
done such that for a dot product with a test function we sum over the first index n and for
a dot product with the approximation uwe sum over the second index m of the G matrix.
Matrix-vector multiplications with matrix G are always with the vector u. Equation 4.15 

can be written in the following more compact form

M
∂u

∂t
= vh − r − vv + ef + es − δep. (4.16)

Here the edge terms ef , es and ep indicate the flux term, symmetry term and penalty term
respectively. The volume terms for the hyperbolic and viscous flux are indicated by vh and
vv. The Rusanov flux term, solving the numerical flux for the hyperbolic flux, is denoted
by r. The mass-matrix is indicated by M . The mass-matrix M , hyperbolic volume term vh

and the hyperbolic numerical flux term r were already implemented in the solver. In this
section we will focus on the numerical treatment of the viscous volume term vv and the
three edge terms ef , es and ep.
Before we start with the numerical treatment, we must define the problem on the reference
cell Ĉ. The problem is solved for the reference cell and the solution is then mapped to the
physical cell C. This means that scaling coefficients will appear during the transformation
from the physical cell to the reference cell. For a more detailed explanation of the mapping
procedure, please see appendix B .
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4. Compressible Navier-Stokes Equations

To get the linear system representation of equation 4.15 , the unknownu and its fluxes must
be represented by their approximation in the Lagrange basis, denoted by uh. The integrals
are then calculated by using Gaussian quadratures and a global linear system can be built,
which will be solved for uh, giving a discrete approximation for the density, velocity and
temperature fields. In the following subsections we will explicitly define the terms vv, ef ,
es and ep, such that they are ready to be implemented in the code.

4.3.1. Viscous Volume Term

Terms that are integrated over the entire cell (the volume of the cell) are called volume
terms. In the compressible NSE scheme there are two volume terms. Namely, one for the
hyperbolic flux, and one for the viscous flux. These terms are essentially derived by firstly
expanding the expression in the Lagrange basis and then computing the integral using
Gaussian quadrature. The result will be of a form that is ready to be implemented in the
code.
For the viscous volume term, the same strategy is followed as for the hyperbolic volume
term discretization, which is given by Krenz and Reinarz. [22 ] The viscous volume term is
discretized as

vvj =

∫
C
F v(u,∇u) · ∇vj dx

= det(J)

∫
Ĉ
F v(u(M(x̂)), J−1∇̂u) · J−1∇̂φ̂j dx̂

= A

∫
Ĉ

∑
i

F v
i φ̂i(x̂) · ∇̂φ̂j(x̂) dx̂

= A
∑
k

∑
i

F v
i φ̂i(x̂k)︸ ︷︷ ︸

δik

·∇̂φ̂j(x̂k) ωk

= A
∑
k

F v
k · ∇̂φ̂j(x̂k) ωk.

(4.17)

Here, J denotes the jacobian matrix of the mapping operatorM from the reference cell to
the physical cell. The determinant of the Jacobian of the transformation and the inverse
Jacobian appear after the mapping procedure. Because the physical cells are squares, the
inverse Jacobian can be taken out of the integral. The value of A is then ∆x (= ∆y). The
viscous flux coefficients, F v, are the evaluations of the viscous flux on the quadpoints in
the physical cell. Since the quadpoints are defined on the reference cell, the arguments for
the viscous flux must be transformed before they can be used.
The steps that are taken to discretize this volume term can be summarized in the following
way:

• First the integral is transformed to the reference cell.
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4.3. Linear System

Figure 4.1.: Left: Cell nomenclature relative to neighbour cells. Right: Convention for
nomenclature in the context of a single edge. The normal directions for an
edge is indicated. The left and bottom sides are indicated by 1 and the right
and top side by 2.

• The viscous flux is expanded by the basis functions φ̂i.

• The integral is approximated using the Gaussian quadrature rule. The integrand is
evaluated at the quadpoints x̂k and weighted by the quadweights ωk. The evalua-
tions for distinct quadpoints are then summed up.

• The last step is to simplify the expression if possible. In this case, it is possible to
eliminate a summation, because we use co-located quadrature.

This summarized discretization procedure will also be leading for our discretization of the
edge terms. Although the edge terms are based on one-dimensional integrals, much of the
concepts used for the volume terms are still applicable.

4.3.2. Flux Edge Term

The discretization of the edge terms mainly follows the discretization procedure that was
given for the volume term. In our approach we select an edge e ∈ Γ, which is always an
inner edge because we assume a case with periodic boundary conditions. The definitions
of the average {{·}} and jump J·K operators are expanded. Here the - and + superscripts
denote the inner cell, and the neighbouring cell respectively. In the context of an edge,
it is simpler to define the two neighbouring cells relative to an edge. For this we set the
following convention: For vertical edges, the left side is denoted by 1 and the right side is
denoted by 2, and for horizontal edges the top cell is denoted by 1 and the bottom cell is
denoted by 2. This concept is visualised in fig. 4.1 .
The definition of ef will first be derived for the reference edge ê, which is simply the edge
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4. Compressible Navier-Stokes Equations

of a reference cell and has a length of one,

ef =

∫
e
{{F v(u,∇u)}} · JvK ds

=

∫
e

1

2

(
F v(u,∇u)− + F v(u,∇u)+

)
·
(
v− − v+

)
⊗ n ds

=

∫
ê

1

2

(
F v
(
u(M)(x̂), J−1∇̂u

)−
+ F v

(
M(x̂), J−1∇̂x̂

)+
)

·
(
φ̂−j − φ̂

+
j

)
⊗ n∆e dŝ

=

∫
ê

1

2

(∑
i

F v−i φ̂−i +
∑
i

F v+
i φ̂+

i

)
·
(
φ̂−j − φ̂

+
j

)
⊗ n∆e dŝ.

(4.18)

Here, ∇̂ is the gradient defined on the coordinates of the reference cell. It is multiplied by
the inverse Jacobian, J−1, to get the derivatives on the physical edge. Because we consider
a reference cell, the integral is multiplied by the edge length ∆e to get the integral over the
physical edge and we can simplify certain terms in equation 4.18 .
We will continue our derivation for the edge γ (the right edge of a cell), to demonstrate the
simplifications:

γf =

∫
γ

1

2

(∑
i

F v−i φ̂i(1, y) +
∑
i

F v+
i φ̂i(0, y)

)
·
(
φ̂j(1, y)

)
∆y dŝ

= ∆y
∑
k

1

2

(∑
i

F v−i φ̂i(1, yk) +
∑
i

F v+
i φ̂i(0, yk)

)
·
(
φ̂j(1, yk)

)
ωk

= ∆yΛγ
(

1

2
P rightF v− +

1

2
P leftF v+

)
.

(4.19)

Here, the test function of the outer edge is eliminated because it does not project onto the
cell C−. Instead, it projects to the cell C+ and will be considered as the projection from the
left edge in the next cell to the right. For the other edges we get the following definitions:

δf = ∆xΛδ
(

1

2
P BottomF v− +

1

2
P TopF v+

)
(4.20)

αf = ∆yΛα
(

1

2
P LeftF v− +

1

2
PRightF v+

)
(4.21)

βf = ∆xΛβ
(

1

2
P TopF v− +

1

2
P BottomF v+

)
. (4.22)

Here the P -matrices are the projection matrices for the cell-data to the corresponding edge.
F v are the coefficients of the viscous flux on the 2D quadpoints. The edges are here named
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Figure 4.2.: The edge nomenclature with respect to the inner cell.

according to fig. 4.2 . For the evaluation of F v we have to make sure to use the transformed
argumentsM(x̂) and J−1∇̂x̂.

The Λ matrices are defined based on the test functions for each edge as

Λαjk = −
(
φ̂j(0, yk)

)
ωk

Λβjk =
(
φ̂j(1, xk)

)
ωk

Λγjk =
(
φ̂j(1, yk)

)
ωk

Λδjk = −
(
φ̂j(0, xk)

)
ωk.

These matrices will have the shape orderd × order and have the function of mapping the
results, projected on the edge, back to the cell.

4.3.3. Symmetry Term

For the symmetry term we can follow the same logic as for the flux term. The G-matrices
are a function of u and can therefore not be treated as a constant and taken out of the
average operator. The explicit notation of the dependency on u is omitted in the following
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4. Compressible Navier-Stokes Equations

derivation:

es =

∫
e
{{G(uh) · ∇v}} · JuhK ds

=

∫
e

1

2

(
G− · ∇v− +G+ · ∇v+

)
· (u−h − u

+
h )⊗ n ds

=

∫
ê

1

2

(
G− · J−1(∇̂φ̂−j ) +G+ · J−1(∇̂φ̂+

j )
)
·
(
u−h − u

+
h

)
⊗ n ∆e dŝ

=

∫
ê

1

2

(
G− · J−1(∇̂φ̂−j ) +G+ · J−1(∇̂φ̂+

j )
)

·

(∑
i

φ̂−i u
−
i −

∑
i

φ̂+
i u

+
i

)
⊗ n ∆e dŝ

(4.23)

As for the flux term, the derivation is continued for the edge γ, given by

γs =

∫
γ

1

2

(
G− · J−1∇̂φ̂j(1, y)

)(∑
i

u−i φ̂(1, y)−
∑
i

u+
i φ̂(0, y)∆y dŝ

)

= ∆y
∑
k

1

2

(
G− · J−1∇̂φ̂j(1, yk)

)
∑

i

u−i φ̂(1, yk)︸ ︷︷ ︸
δik

−
∑
i

u+
i φ̂(0, yk)︸ ︷︷ ︸

δik

 ωk

= ∆y
∑
k

1

2

(
G− · J−1∇̂φ̂j(1, yk)

)(
P rightu− − P leftu+

)
ωk

= ∆y
∑
k

1

2

(
G− ·∆γ

j,k

)(
P rightu− − P leftu+

)

(4.24)

For the other three edges we get the following similar results

αs = ∆y
∑
k

1

2

(
G− ·∆α

j,k

) (
P Leftu− − PRightu+

)
(4.25)

βs = ∆x
∑
k

1

2

(
G− ·∆β

j,k

)(
P Topu− − P Bottomu+

)
(4.26)

δs = ∆x
∑
k

1

2

(
G− ·∆δ

j,k

)(
P Bottomu− − P Topu+

)
. (4.27)

Here we have defined the new ∆-matrices. The have a similar shape to the Λ matrices and
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they also carry the function of projecting the results defined on an edge back to the cell.

∆α
j,k = J−1∇̂φ̂j(0, yk) ωk

∆β
j,k = J−1∇̂φ̂j(xk, 1) ωk

∆γ
j,k = J−1∇̂φ̂j(1, yk) ωk

∆δ
j,k = J−1∇̂φ̂j(xk, 0) ωk

(4.28)

The transpose of these matrices can be used to project the gradients of the degrees of free-
dom onto the edge.

4.3.4. Penalty Term

Now for the last edge term, the penalty term, we apply the same procedure

ep =

∫
e
JuhK · JvK ds

=

∫
e
(u−h − u

+
h )⊗ n · (v− − v+)⊗ n ds

=

∫
ê

(∑
i

φ̂−i u
−
i −

∑
i

φ̂+
i u

+
i

)
⊗ n ·

(
φ̂−j − φ̂

+
j

)
⊗ n ∆e dŝ

(4.29)

Evaluated for the edge γ

γp =

∫
γ̂

(∑
i

φ̂i(1, y)u−i −
∑
i

φ̂i(0, y)u+
i

)(
φ̂j(1, y)

)
∆y dŝ

= ∆y
∑
k

(∑
i

φ̂i(1, yk)︸ ︷︷ ︸
P

right
k,i

u−i −
∑
i

φ̂i(0, yk)︸ ︷︷ ︸
P left
k,i

u+
i

)(
φ̂j(1, yk)

)
ωk︸ ︷︷ ︸

Λγj,k

= ∆yΛγ
(
P rightu− − P leftu+

)
(4.30)

For the other edges likewise

δp = ∆xΛδ
(
P bottomu− − P topu+

)
(4.31)

αp = ∆yΛα
(
P leftu− − P rightu+

)
(4.32)

βp = ∆xΛβ
(
P topu− − P bottomu+

)
(4.33)

The penalty parameter δ depends on the mesh and is given by Hartmann & Houston [16 ]
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4. Compressible Navier-Stokes Equations

as the following equation

δ = C
µp2

h̃
. (4.34)

where µ is the fluid viscosity, p is the polynomial order of the Lagrange polynomials, and
h̃ is given as the smallest size of an adjacent cell to an edge, divided by the size of the edge.
As we have square cells, h̃ will simple have the value of the edge length. The penalty coef-
ficient C is a numerical value that depends on the mesh and it regulates the severity of the
penalty. It must be above a treshold value to guarantuee stability. Hartmann & Houston
[16 ] have empirically chosen C = 10 for the compressible Navier-Stokes discretization.

δe = max(Ck+ , Ck−)

Ck =
(p+ 1)(p+ d)

d

A(∂C/ ∂Ω)/2 +A(∂C ∩ ∂Ω)

V(C)
, C ∈ Th

(4.35)

Here d is the dimensionality of the simulation, in our case d = 2. The area and volume
of a cell are given here by A(C) and V(C) respectively. Since we work in 2D, these are
respectively given by the total length of all edges of the cell, and the area of the cell. The
penalty parameter is here locally defined for an edge e, to get the global penalty parameter,
we simply take the maximum values over all edges. The more attentive eye will notice that
the viscosity is missing in the latter definition. This would be because the latter definition
is a general expression for the penalty parameter.

4.4. Boundary Conditions

For the approach discussed until no, we assumed periodic boundary conditions, where
the domain theoretically stretches into infinity and all edges could be considered to be in-
ternal edges. To obtain a model that approximates a fuel cell more realistically, we have to
define a finite domain, surround the domain with a boundary and set bondary conditions.
This section introduces the boundary conditions and the discretization thereof, following
Hartmann & Leicht [17 ].
We define the following four types of boundary types:

Periodic - This is the boundary condition that was assumed so far. No explicit boundary
state is defined and the state of the ghost layers of the simulation is equal to the corre-
sponding inner cell at the opposite side of the domain.

Adiabatic, no-slip wall - An adiabatic, no-slip wall is chosen for the walls in the fuel cell
solver. For an adiabatic wall, no heat transfer across the wall occurs, whereas in reality,
heat transfer will occur between the channel wall and the flow, where there is a difference
in temperature. This would call for a solver that approximates the wall temperature dis-
tribution based on the heat generated during the electrochemical process and is coupled
to ours. Since this extension is out of the scope of this thesis, we will assume the walls to
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4.4. Boundary Conditions

have the same temperature as the flow and are, therefore, assumed to be adiabatic.
The no-slip condition is in this situation justified for the walls, as there is generally a stag-
nant flow directly at surfaces. The boundary conditions given below, are given for sub-
sonic flow.

Inflow - In order to specify the velocity, density and pressure of the flow entering the
computational domain, inflow boundary conditions must be set. The inflow conditions
can be set by freestream flow profiles, but we will assume a uniform distribution along the
inflow boundary, so a single Dirichlet boundary value for the inflow suffices.

Outflow - The state of the outflow of a flow channel cannot be predicted and if a Dirichlet
boundary condition were to be set on the outflow, it would result in either an ever increas-
ing or decreasing density, because mass must be conserved. However, in the subsonic flow
velocity regions, we want to prevent any discontinuities, such as shocks, within the com-
puational domain or near the outlet outside the computational domain. Therefore, we set
Neumann boundary conditions at the outflow to enforce no change in density, velocity or
pressure after the flow leaves the computational domain.
The boundary conditions are given as a function of degrees of freedom in the neighbouring
inner cell and are given by

uΓ,adia(u) =


ρ
0
0
ρE

 , uΓ,in(u) =


ρin
ρuin
ρvin

pin
γ−1 +

u2in+v2in
2ρin

 , uΓ,out(u) =


ρ
u
v
ρE



4.4.1. Discretization at the Wall

The wall boundary can be discretized, based on the interior numerical fluxes or on normal
boundary fluxes. The former being the more stable, and the latter being the more accurate
option [17 ]. We will choose the latter boundary fluxes, which are given as

ûh = uΓ(u−h ),

σ̂Γ,h = F v
adia(uΓ(u−h ),∇u−h )− δΓ(u−h ).

(4.36)

In the viscous flux and the corresponding homogeneity tensor G Γadia, the temperature
derivatives are set to zero. The wall edge terms are given by∫

ΓW

n · (F c(uΓ)−F v
adia(uΓ,∇u−h ) + δΓ(u−h ) · v− ds

−
∫

ΓW

(u−h − uΓ)⊗ n · (GT (u−h )∇v−h ) ds.

(4.37)
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4.4.2. Discretization at the Farfield Boundary

The numerical fluxes for the inflow or outflow boundaries are given as

ûh = uΓ(u−h ),

σ̂Γ,h = F v(uΓ(u−h ),∇u−h )− δΓ(u−h ).
(4.38)

The corresponding boundary edge terms are then defined as∫
ΓI,O

n · (F c(uΓ)−F v(uΓ,∇u−h ) + δΓ(u−h ) · v− ds

−
∫

ΓI,O

(u−h − uΓ)⊗ n · (GT (u−h )∇v−h ) ds.

(4.39)

4.5. Time-Stepping Method

We are mainly using the explicit euler method for timestepping. The explicit Euler scheme
is given by

un+1 = un + ∆t
∂u

∂t
(4.40)

For the explicit Euler, the timestepsize is defined by the following formula

∆t ≤ CFLα(p)h
d∑
i=1

1

|λmaxc |i + |λmaxv |i
1

α(p)h

, (4.41)

where α(p) ≤ (2p + 1)−1 [18 , 14 ]. Here, p denotes the polynomial order of the basis func-
tions. The maximum eigenvalues of the Jacobian of the hyperbolic and viscous flux are
denoted by c and λv. The maximum eigenvalues are defined for the compressible NSE as

|λmaxc | = |vn|+ c,

|λmaxv | = max
(

4µ

3ρ
,
γµ

Prρ

)
.

(4.42)

Here, c is the speed of sound given by

c =
√

(γRT ), (4.43)

where R = 8.314 is the universal gas constant and γ and T are the heat capacity ratio
and temperature respectively. There are two maximum eigenvalues because there are two
different fluxes. For the implementation of the penalty term, the maximum timestepsize
must be adapted as is described in section 3.4 . As there is no sharply defined boundary on
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the maximum timestep due to the penalty coefficient, it will be set empirically through the
CFL condition.
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5. Extension to System of Equations

In the previous chapter we discussed the compressible Navier-Stokes equations and we
went over the numerical treatment of the viscous flux. Now it is time to extend the system
to describe the behaviour of species in the flow and to include porosity effects based on
Sun [30 ]. The M2 model, which was explained in section 2.2 , is a rather complicated model,
which means that it leaves room for a lot of mistakes in the implementation thereof. The
goal of this chapter is to present an extension to the compressible NSE that functions as a
simplified model of the flow regions in a PEMFC, while still capturing the most relevant
phenomena.
A few simplifying assumptions will be introduced in section 5.1 and the numerical treat-
ment of source-terms in a discontinuous Galerkin model is discussed in section 5.2 . The
extensions of the NSE will be given in section 5.3 . This section will be concluded with a
complete system for a compressible reactive flow in porous regions.

5.1. Simplifying Assumptions

The M2 model presented in 2.2 is an extensive model, that captures most of the physicsal
phenomena that occur in a PEMFC during operation. For the initial approach towards a
discontinuous Galerkin discretization of this model, it is deemed too complex to include all
physical activities that are described by the M2 model. Including all the physical phenom-
ena would introduce too much room for mistakes in the code for this thesis, and including
everything would divert us from the initial intend of this thesis to suggest an approach for
the use of the discontinuous Galerkin discretization for a PEMFC model. For future work,
it is recommended that the simplifications mentioned in this section, be replaced by their
physically correct counterparts.
Each assumption made will be clarified and validated below. The assumptions made are
shortly summarized as:

• In the Species Equation, the relative motion due to condensation or evaporation is
neglected.

• The effective diffusivity Dk,eff
g is assumed to be a function of the diffusivity Dk

g and
porosity ε only.

• The source term Sk only depends on the presence of electrochemical reactions.

• A uniformly distributed overpotential η is assumed for electrochemical reactions.
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5. Extension to System of Equations

• The advection correction factor γc is equal to unity.

Neglected Relative Motion

The Species Equation was given in section 2.2 as

∇ · (γcvCk) = ∇ · (Dk,eff
g ∇Ckg )−∇ ·

[(
mfkl
Mk

−
Ckg
ρg

)
jl

]
+ Sk.

The term on the left-hand side describes the advection of a species within the flow. The
first term on the right-hand side is a diffusion term describing the diffusion of gases in the
flow. This term is regarded highly relevant, as it may demonstrate a significant difference
between the flow behaviour in the gas channel and in the porous region. The second term
on the right-hand side describes the flow of a species due to the relative motion of liquid to
gas phase under capillary action in the porous regions [30 ]. Although it is a term that will
also illustrate a difference in flow behaviour between the porous and non-porous regions,
it is driven by the transformation of water from a liquid into a vapor and vice-versa.
Firstly, on the anode side, only the presence of hydrogen and nitrogen are assumed. In
reality there is also water present in both liquid and vapor form, due to the wetting of
the membrane, but the capturing of this phenomenon is not the intend of this thesis. This
term will be neglected on the anode side. Secondly, the complexity of this term, which
lies mainly in its nonlinearity and dependence on many variables, makes it preferable to
ignore this term for the time being.

Effective Diffusivity

The effective gas diffusivity coefficient Dk,eff
g is described by Sun [30 ] as a function of the

gas diffusivity coefficient, the porosity of the medium and the volumetric fraction occupied
by water in either the liquid or the gas phase. For simplicity, the effective gas diffusivity
coefficient is chosen to depend only on the gas diffusivity coefficient of a species, and the
porosity of a medium, because these are quantities that can be predefined. The volumetric
fraction of water in liquid or vapor form requires an extra calculation step, so the volumet-
ric fraction is simply assumed to be one (s = 1). This means that we assume that water, if
present at all, is only present in vapor form in this step.

The Source Term Sk

The source term Sk is assumed to only be a function of electrochemical reactions. This
means that the electro-osmotic drag, which is the second source term that is used in the
species equation, is neglected. The electro-osmotic drag describes the movement of water
through a polymer elektrolyte due to the protonic current. Essentially, the transfer of hy-
drogen and oxygen are not directly affected by this term, but they are indirectly affected
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by this term because the movement of water also excites the movement of hydrogen and
oxygen. This term depends on the derivative of the proton flux through the polymer mem-
brane, and would excessively complicate the system. The intend of this thesis is to capture
the movement of species due to advection and diffusion, and the effect of electro-osmotic
drag will therefore be neglected.

The Overpotential

The model of a PEMFC is multiphysical, and as we focus on the flow regions of the fuel
cell, we do not model the electrochemical reactions themselves, nor do we model the elec-
tronic potentials of the electronic or protonic phases. The reaction rate of electrochemical
reactions does, however, depend on the overpotential between regions. For now, a uni-
formly distributed overpotential η will be introduced, to investigate the depletion rate of
reactants for different overpotentials.

The Advection Correction Factor

The advection correction factor γc is introduced to take the difference of flow-fields of the
liquid and gas phases into account. This variable is equal to one in the gas channels, and
in our case it will also be assumed to be one in the porous regions. It should model the
effect of liquid water filling the pores and thereby blocking multiple pathways for the gas
to flow through the medium, but as was already mention in the assumption for Effective
Diffusivity, water is assumed to be present purely in vapor form to simplify the model.
This means that the advection correction factor is equal to one, also in the porous regions.

Justification of the Simplifications

The simplifications mentioned will make the model less accurate, or at least less accurate
than currently existing models of a PEMFC. However, the intend of the solver is to present
a discontinuous Galerkin approach for a PEMFC model. The terms or effects that have
been neglected can of course be implemented in any later work done on the solver, but
they are momentarily not necessary for the illustration of the approach.

5.2. Godunov Splitting Method

Before we start discussing the extensions that are made to the Navier-Stokes system, the
methods for implementing source terms should be considered. In our consideration we
will mainly focus on the splitting methods. The main idea for splitting methods is that
the equations are first solved homogeneously and then the heterogenous part is solved as
an ODE. For the analysis of splitting methods, we mainly focus on the examples given by
LeVeque [23 ].
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Godunov Splitting

A standard approach for solving source terms, is to use the fractional-step or operator-
splitting method, where we alternate between solving the homogeneous problem
u∗t + F (u)x = 0 and the ODE ut = ψ(u∗) to solve the full problem

ut + F (u)x = ψ(u), (5.1)

where ψ is used to denote the heterogenous part of the equation. Note that ψ does not
necessarily have to depend on u only, but it can also depend on its derivatives or other
variables. To solve the ODE, we can use standard one-step methods such as the Explicit
Euler method.
For a problem with the two operators A and B, the commutator is defined as AB − BA.
In a situation where the two operators commute, the commutator is equal to zero. This
means that it does not matter in which order the operators are applied to the variables, and
that there is no splitting error. If the two operators do not commute, there is a difference
in the result when we use the splitting method, compared to when we do not use the
splitting method (the unsplit method here being the original heterogenous equation). This
difference in result is called the splitting error. The splitting error can be analysed by using
the Taylor series expansions. This error is first order accurate in time for the Godunov
splitting, but it is often smaller than the discretization error [23 ].

Strang Splitting

The Strang splitting method is an alternative to the Godunov splitting method and it is
second order accurate in time. The idea is to first solve the first subproblem over only half
a timestep. Then we use that result as data for a full time step on the second subproblem.
Then the entire sequence is repeated. This would formally result in a splitting scheme with
a second order accuracy in the splitting error, in case the two operators do not commute.
The Godunov scheme is formally only first-order accurate, but the accuracy between the
Godunov and Strang splitting is in practice often indistinguishable [23 ].

Pittfalls

There are a few pittfalls that we should be aware off before continuing. Firstly, in the
case that two operators do not commute, a splitting error arises. This in itself is not a
problem at the moment, when one is satisfied with an accuracy of first order. Secondly, in
problems with stiff source terms, it might be necessary to use an implicit method for the
ODE problem. The necessity for an implicit method can arise in the case of a reactive flow,
when the reaction happens on a much smaller timescale than the time scale of the fluis
dynamics [23 ]. Since we are considering a reactive flow in our case, it is important to keep
this possibility in mind.
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5.3. Extended System of Equations

Now that we have examined all the necessary tools for the discontinuous Galerkin method,
the extensions to the Navier-Stokes system can be discussed. Some modifications to the
current homogeneous compressible NSE system will need to be made to simulate flow
through porous regions and to compute the concentration of species in the flow. In short,
the extensions that are made are summarised as:

• Adding the possibility for porous flow by adding the source term Su to the momen-
tum equations.

• Adding a species equation for each species that is relevant in the flow region and
simulate electrochemical reactions by adding source/sink terms to the species equa-
tions.

• Adding a source term to the energy equation to account for the change in energy
following from reactions.

The Momentum Equation

For the addition of porous regions the momentum equations have been adapted, following
the example set by following the example set by Sun [30 ], by adding a porosity fraction ε
in front of the first term on the right-hand side and by adding the source term Su, which
describes the Darcy force, giving

∂

∂t

(
ρu
ρv

)
+∇ ·

(
1
ε2
ρu2 1

ε2
ρuv

1
ε2
ρuv 1

ε2
ρv2

)
−∇ ·

(
σ11 σ12

σ21 σ22

)
= Su, (5.2)

where ε is equal to 1 for the gas channels, and ranges between 0.4 and 0.6 for the gas
diffusion layers and catalyst layers. The source term is defined as

Su = −µK−1v = −µ

(
1

Kxx
u

1
Kyy

v

)
. (5.3)

Here the through-plane and in-plane permeability functions are given as 8.69 · 10−12 m2 and
1.9 · 10−12 m2 respectively in the porous regions [30 ]. Depending on the orientation of
the porous region in the simulation, Kxx and Kyy receive their value accordingly. The
through-plane and in-plane flow directions are in our case given by the flow in x-direction
and the y-direction respectively. Since the permeability tensorK has such small values, the
source terms will lead to a rather stiff ODE in the splitting method. Therefore, an implicit
timestepping method will need to be used to solve the hetrogeneous part of the equation.
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The Species Equations

To be able to capture the behaviour of the different species (H2, O2 and H2O), a species
function is added to the system for each species that is present in a region. This means
that there is a hydrogen function added on the anode side, and on the cathode side the
oxygen and water functions are added. The depletion and creation of species is captured
in the corresponding source term Sk, which only describes the depletion and creation due
to electrochemical reactions. The species equation for hydrogen is

∂

∂t
ρCH2 +∇ · (ρvCH2) = ∇ ·

(
DH2,eff
g ∇CH2

g

)
+ SH2 . (5.4)

The effective gas diffusivity coefficient is given according to Sun [30 ] as

DH2,eff
g = DH2

g f(ε), (5.5)

f(ε) =

{
ε
(
ε−εp
1−εp

)α
in GDLs

ε1.5 in CLs
, α =


0.521 in-plane
0.785 through-plane
0 in gas-channel

.

Here, DH2
g = 1.1028 · 10−4 m2/s is the gas diffusivity for hydrogen and εp = 0.11 is the

percolation threshold. The source term for the hydrogen equation is

SH2 =

{
− ja

2F in CLs
0 otherwise

, ja = a i0,a

√
CH2

Cref
H2

(
αa + αc
RT

Fη

)
. (5.6)

Here the volumetric transfer current density of hydrogen on the anode side ja is derived
from the Butler-Volmer equations, F is the Faraday constant and η describes the overpo-
tential and is to be set explicitly at a constant value, before running the solver. Further-
more, a i0,a = 109, Cref

H2
= 44.58 mol/m3 and aα + ac = 2 [30 ]. These constants are given

for each species for the cathode or anode side. The explicit definitions of the oxygen and
water equations, including their source terms, can be found in Sun [30 ].

The Energy Equation

Apart from influencing the composition of reactants in the flow, electrochemical reactions
generally also have an effect on the total energy of a system. To account for this, we have to
add a source term to the energy equation that describes the change in energy in the system
due to electrochemical reactions

d

dt
ρE +∇ ·

(
ρuE ρvE

)
−∇ ·

(
σ11u+ σ12v + kTx σ11u+ σ12v + kTx

)
= ST . (5.7)
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The change in energy due to evaporation and condensation of water has been neglected in
our solver and the ohmic effects (energy increase due to electricity resistance) have been
omitted, since the solver does not solve for the potential distribution. The source term is

ST =


ja(η) in the anode CL
jc(η + T dU0

dT ) in the cathode CL
0 otherwise

. (5.8)

Here, U0 is the thermodynamic equilibrium potential of the reaction and dU0
dT = −0.9 · 10−3

in the cathode, and zero in the anode [26 ]. The volumetric transfer current density the
cathode side jc is given by

jc = −a i0,c e−16456( 1
T
− 1

353.15)CO2

Cref
O2

e−
αcF
RT

η. (5.9)

This equation is also derived from the Butler-Volmer equation, and ai0,c = 3.5 · 104 in the
cathode CL, αc = 1 and Cref

O2
= 40.88 mol/m3 [30 ]

The Extended System

Starting from the Navier-Stokes system in equation 4.1 , and including the above defini-
tions to the system, we get the following result for the extended system on the anode side

∂

∂t
u+∇ · F̃ h(u)−∇ · F̃ v(u,∇u) = S, (5.10)

where the degrees of freedom, hyperbolic and viscous fluxes have the following defini-
tions:

u =


ρ
ρu
ρv
ρE
ρCH2

 , F̃ h(u) =


ρu ρv

1
ε2
ρu2 + p 1

ε2
ρuv

1
ε2
ρuv 1

ε2
ρv2 + p

u(ρE + p) v(ρE + p)
ρuCH2 ρvCH2

 ,

F̃ v(u,∇u) =


0 0
σ11 σ12

σ21 σ22

σ11u+ σ12v + kTx σ21u+ σ22v + kTy
DH2,eff
g CH2

x DH2,eff
g CH2

y

 .

(5.11)

The pressure still follows from the ideal gas law in equation 4.4 .
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Discretization of the Source Terms

The source term is defined as

S =


0
Sxu
Syu
ST
SH2

 =


0

−µKxxu
−µKyyv

ja(ηa + T dU0
dT )

− ja
2F

 . (5.12)

For the evaluation of the source terms, the Godunov splitting method is applied. The
values forKxx and Kyy are in the order of magnitude of 10−12 and very small compared to
the degrees of freedom. This means that the source term might be stiff and, therefore, lead
to very small maximum timestep sizes for the explicit Euler scheme for the heterogenous
part of the extended system. To circumvent this issue, we choose the implicit Euler method
for the source term of the momentum equation Su

un+1 = un + ∆tψ(u)n+1, (5.13)

where n indicates the current timestep and ∆t is the same stepsize as for the full step. The
momentum source term does not depend on the temperature or species concentration, so
it can be considered separately. The step for the momentum source term can be written as

∂

∂t

(
ρu
ρv

)
= − µ

ρn

(
Kxx 0

0 Kyy

)(
ρu
ρv

)n+1

= A(un)un+1. (5.14)

The system to be solved for the implicit Euler scheme is

(I −∆tA(un))un+1 = un. (5.15)

The matrix A(u) is a diagonal matrix, hence the inverse of the system is trivial

(
ρu
ρv

)n+1

=

( 1
1+∆t µ

ρn
Kxx

0

0 1
1+∆t µ

ρn
Kyy

)(
ρu
ρv

)n
(5.16)

The source terms for the energy and species equations do not have a significantly higher
or lower order of magnitude with respect to the degrees of freedom. These terms will
therefore be evaluated explicitly. For the evaluation of the energy and species source terms,
the newly updated values for ρu and ρv will be used.

Discontinuous Galerkin Discretization of the Extended System

The extension of the compressible NSE will call for some adjustments to the discretiza-
tion process presented in section 4.2 and section 4.3 . The fluxes F (u) and F (u,∇u) are
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replaced by their extended counterparts F̃ (u) and F̃ (u,∇u). The same goes for the ho-
mogeneity tensor G, which is replaced by its extended counterpart G̃ and given in ap-
pendix A . The numerical flux for the SIPG method is adjusted to

ûh = {{uh}}, σ̂h = {{G̃(uh)}} − δJuhK. (5.17)

Time-Stepping

From the Jacobian matrix of the extended system it follows that the maximum eigenvalue
for the viscous flux has to be chosen according to the following definition

|λmax
v | = max

(
4µ

3ρ
,
γµ

Prρ
,
Dk

µ

)
. (5.18)
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Implementation and Verification
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6. Code Implementation

The solver was originally used in the course “M.Sc. Praktikum: Modern Wave Propaga-
tion - Discontinuous Galerkin Julia” by Krenz & Reinarz [22 ] at the Chair of Scientific
Computing of the Technische Universität München. The solver is implemented in the pro-
gramming language Julia (v1.6). Julia is programming language with properties that make
it easy to use for experimental numerical implementations. There is a significant commu-
nity working with Julia in academia and Julia packages are usually distributed with an
open source license.
The already existing version of the solver could be used to solve hyperbolic conservation
equations using the discontinuous Galerkin method with solvers for the hyperbolic nu-
merical flux. This means that, for example, the Euler equations could already be solved.
In this chapters we will go over the implementation steps that were done to arrive at a
PEMFC solver. We will start with an introduction to the construction of the solver in sec-
tion 6.1 , where we include some code listings to illustrate the structure. With this knowl-
edge we will go into the adjustments that were made during this thesis, starting with the
grid in section 6.2 . Then the addition of the viscous volume term is explained in sec-
tion 6.3 , after which the implementation of the edge terms will be discussd in section 6.4 .
This chapter ends with an explanation of the source term implementation in section 6.5 .

6.1. Structure of the Solver

The basic working of the solver can be understood from the pseudocode given in list-
ing 6.1 . The main function needs a configuration file as an argument. This configuration
file contains information on the settings for the simulation, such as the grid size, end time,
timestepping scheme, output frequency, etc. Based on these settings, we can build a grid,
initialize a time integrator for the timestepping scheme and define global matrices. This is
all done at the very beginning of the code.
Then the initial condition is set for all cells in the domain. The initial conditions are defined
in a function that is unique for each combination of system of equations and scenario that
the solver can solve.
A vtk plotter is initiated to regulate the output of the solver. The output is saved in vtk
files, that can be opened with a post-processing tool.
The main part of the runtime will be spent inside the while loop in lines 11-22 in listing 6.1 .
One iteration of this time loop is a complete timestep evaluation. The maximum timestep
size is evaluated during every iteration and for the initial timestep the eigenvalues of the
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initial conditions are used to set the maximum timestepsize. In line 16, the right-hand side
of equation 4.16 is evaluated. The degrees of freedom are updated afterwards by multi-
plying the solution of the right-hand side evaluation with the inverse of the mass-matrix
of the system, giving the solution of the homogeneous problem for a timestep. Finally, the
degrees of freedom are updated to the solution of the heterogeneous problem in line 17,
where the source terms are evaluated according to the splitting scheme.

Listing 6.1: Pseudocode of the main structure of the solver.

1 funct ion main ( c o n f i g f i l e )
2 l o a d c o n f i g u r a t i o n ;
3 b u i l d g r i d ;
4 make t ime integrator ;
5 d e f i n e g l o b a l m a t r i c e s ;
6 f o r a l l C ∈ Th
7 s e t i n i t i a l v a l u e s ;
8 end
9 i n i t i a t e v t k p l o t t e r ;

10 t = 0 , dt = 0 ;
11 while t < t end
12 i f t = 0
13 c o m p u t e i n i t i a l e i g e n v a l u e s ;
14 e l s e
15 e v a l u a t e d t ;
16 evaluate RHS ;
17 evaluate Source ;
18 end
19 i f ( t ≈ t p l o t )
20 p l o t ;
21 end
22 end
23 end

6.1.1. Timestepping

The iteration that is listed in lines 11-22 in listing 6.1 shows the steps that are taken for a
single timestep. However, for a higher-order timestepping scheme, such as Runge-Kutta
methods, intermediate steps are computed before a complete step is taken. Therefore, we
use a timestep integrator function, which is listed for the explicit Euler scheme in list-
ing 6.2 . This integrator is “wrapped” around the evaluations of the right-hand side and
the source term. If a higher-order time stepping scheme is chosen, the time integrator will
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control the intermediate evaluations of the right-hand side and the source terms, to get
a more accurate approximation of the solution in time, after a single timestep. Here the
function f(...) is the closure that evaluates the right-hand side or the source terms. The
function step takes here another (higher-order) function as an argument.

Listing 6.2: Function for explicit Euler update

1 funct ion step ( f , i n t e g r a t o r : : E x p l i c i t E u l e r , grid , dt )
2 i n t e g r a t o r . dofsupdate .= 0 . 0
3 f ( i n t e g r a t o r . dofsupdate , gr id . dofs , gr id . time )
4 grid . dofs .+= dt . * i n t e g r a t o r . dofsupdate
5 end

6.1.2. Global Matrices

The advantage of defining the discontinuous Galerkin approach on a reference cell is that
many matrices and functions can be precomputed on the reference cell and then mapped
to the physical cell. This mapping is rather cheap for affine transformations, thus it saves
runtime and memory space. In the solver we use the struct global matrices to hold all
these precomputed matrices and the struct is initiated and defined in line 5 of listing 6.1 .
The construction of the global matrices depends on the shape and size of the reference cell
and on the basis that is used for the approximation of the solution.

Listing 6.3: Basis struct

1 s t r u c t Bas i s
2 quadpoints : : Array{Float64 , 1}
3 quadweights : : Array{Float64 , 1}
4 order : : I n t 6 4
5 dimensions : : I n t 6 4
6 end

In the solver, the Lagrange basis is implemented with a basis object, defined with the
basis struct given in listing 6.3 . This object stores the nodal points and quadrature weights
of the Gaussian quadrature for a specified dimensionality (we generally work with 2D
problems) and polynomial order. These points are used to define a set of Lagrange poly-
nomials and their corresponding derivatives. With the basis set, we can calculate global
matrices such as the mass-matrix, derivative matrices and face projection matrices which
are subsequently stored in a global matrices object.
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Figure 6.1.: The numbering of cells and edges in a cartesian grid. The red numbers indicate
the IDs of the cells, the blue numbers the IDs of the edges.

6.2. Grid

In numerical simulations, the grid describes the computational domain that is used to
solve the problem. During a simulation run, the grid object holds much of the general in-
formation about the simulation itself, such as the current time, the global max eigenvalues
and a set of arrays of cells and edges. Apart form that, the grid object also holds all the
data of the degrees of freedom (dofs) and fluxes, using the Structure of Arrays approach.
This means that the simulation data is not saved in a cell object, as one might expect, but
all the simulation data is actually held by the grid object. The shape of dofs and flux
arrays is given by

dofs = [order2,ndofs,gridsize]

flux = [2 ∗ order2,ndofs,gridsize].

Here order is the polynomial order of the basis function, ndofs is the number of degrees
of freedom, and gridsize is total amount of cells in the grid. The flux array takes twice the
amount of space as dofs, as it needs to store information at each point for two directions
- Fx and Fy in a 2D cartesian grid. The grid struct is given in listing 6.4 

In our case we take a regular grid, so the grid-cells are rectangular. The cells and edges are
stored in a row-wise fashion, from top to bottom, as shown for a 5 by 5 uniform grid in
fig. 6.1 . A cell object stores general information such as its global position, size and cell
ID. Additionally, a cell stores the IDs of the enclosing edges and the IDs of the neighbour-
ing cells. Its struct is given in listing 6.5 .
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Listing 6.4: Grid struct

1 mutable s t r u c t Grid
2 b a s i s : : Bas i s
3 c e l l s : : Array{Cell , 1}
4 edges : : Array{Edge , 1}
5 s i z e : : Array{Float64 , 1}
6 dofs : : Array{Float64 , 3}
7 f l u x : : Array{Float64 , 3}
8 f l u x v i s c : : Array{Float64 , 3}
9 maxeigenval : : F loa t64

10 time : : F loa t64
11 end

The edges are stored such that the horizontal edges are stored before the vertical edges (see
the ordering given in fig. 6.1 ). An Edge object stores information on the orientation of an
edge, its length, its ID, and the IDs of the neighbouring two cells. In listing 6.6 the normal
is set to (1,0) and (0,1) for vertical and horizontal edges respectively. This corresponds to
the orientation of the edge that is defined in fig. 4.1 . The neighborsidx array also stores
the IDs of the neighbouring cells according to fig. 4.1 . The left or top cell is stored first
and the right or bottom cell is stored next. Apart from that, the edge object also contains a
buffer, the content of which may be changed during runtime, making it a mutable object.
The function of this buffer is to hold edge term values for a timestep, meaning that for the
edges, we are using the Array of Struct approach. The Edge struct is given in listing 6.6 .

Listing 6.5: Cell struct

1 s t r u c t C e l l
2 c e n t e r : : Array{Float64 , 1}
3 s i z e : : Array{Float64 , 1}
4 edges : : Array{ Int64 , 1}
5 neighbors : : Array{Cell , 1}
6 f a ce t y p es : : Array{FaceType , 1}
7 dataidx : : I n t 64
8 end

Listing 6.6: Edge struct

1 mutable s t r u c t Edge
2 normal : : Tuple{ Int64 , I n t 64 }
3 FluxBuffer : : Array{Float64 , 3}
4 GBuffer : : Array{Float64 , 4}
5 dofsBuf fer : : Array{Float64 , 3}
6 neighborsidx : : Array{ Int64 , 1}
7 dataidx : : I n t 6 4
8 Inner : : Boolean
9 Outer : : Boolean

10 boundary : : Array{ Int64 , 1}
11 length : : F loa t64
12 end

The boundary array stores information on the boundary type of an edge on either of its
two sides. Internal edges hold [0,0] for the boundary array and the Inner is set to one
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to identify the edge as an inner edge quicker. If an edge is part of the domain boundary,
then the corresponding value of boundary is set to 1, 2 or 3 for inflow boundary, out-
flow boundary or a boundary condition respectively. The value for Outer is set to one to
identify an edge as an outer edge quickly.

6.3. Viscous Flux Volume Term

The evaluations of the numerical hyperbolic flux and the corresponding volume term in
the right-hand side (vh and r in equation 4.16 ) were already implemented. The solver
needs to be extended, such that the viscous flux from equation 4.2 is implemented. To
achieve this, we need to implement the remaining four terms in the right-hand side of
equation 4.16 . In this section we will discuss the implementation of the volume term of the
viscous flux (vv in equation 4.16 ). Since the viscous flux F v(u,∇u) is also a function of the
derivatives of the degrees of freedom, the numerical treatment for vv is slightly different
from vh.
The viscous flux F v(u,∇u) depends on the derivatives of velocity and temperature. These
values can be obtained from u by using the chain rule for derivatives. This can be a
time consuming operation and it would be more efficient to compute the viscous flux as
F v(u,∇u) = G(u) · ∇u. This means that for each cell we must evaluate the derivatives of
the degrees of freedom and the matrix G at each node. This is done by having a “volume
kernel” iterate over all cells. This kernel is an object that holds memory for buffers that can
be used to store intermediate data. The buffer for the volume kernel is given in listing 6.7 

Listing 6.7: Struct for the volume kernel: BuffersVolume

1 s t r u c t BuffersVolume
2 d e r i v a t i v e B u f f e r : : Array{Float64 , 3}
3 GBuffer : : Array{Float64 , 3}
4 s c a l e d f l u x c o e f f : : Array{Float64 , 2}
5 X : : Diagonal{Float64 , Array{Float64 , 1}}
6 end

To obtain the derivatives of the degrees of freedom ∇u, we multiply the degrees of free-
dom u with the derivative matrices that are predefined on the reference cell. The result
of this matrix-vector multiplication is multiplied with the inverse jacobian matrix of the
mapping operatorM to get the derivatives on the nodes of the physical cell. This result
is then stored in derivativeBuffer of the volume kernel. The matrix G is evaluated
with the function evaluate G(G, dofs) and as arguments to the function, a pointer to
GBuffer of the volume kernel and the degrees of freedom of the respective cell are given.
The function then computes the entries of the G matrix and stores it in GBuffer.
Finally, the kernel evaluates the viscous flux by applying a dot product to the matrix G
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and the derivatives of the degrees of freedom. This operation can be seen as a generalized
matrix vector multiplication gemv. Important to point out is that the iteration of the kernel
over all cells can be done in parallel, since there are no couplings between the cells here.

6.4. Edge Terms

The edge terms have been discretized in section 4.3 and are defined by equations 4.19 , 4.24 

and 4.30 for the γ-edge. As the edge terms are defined for one of the four edges of a cell, it
is clear that the value of the edge term depends on the orientation and position of the edge
with respect to its neighbouring cells. So, for each cell, the edge terms of four edges need
to be computed. If we iterate over all cells, however, this will lead to a set of duplicate
calculations for a single edge.
We implement, therefore, an edge kernel that iterates over all edges. This kernel is listed
in listing 6.8 . It evaluates the degrees of freedom u1 and u2 projected onto the edge and
stores the result in dofsBuffer. The superscripts 1 and 2 indicate here the side of an
edge according to fig. 4.1 . In a similar fashion the gradients of the degrees of freedom
are projected on both sides of an edge by multiplying the degrees of freedom on both
sides with the corresponding ∆ matrix (see section 4.3 ) and inverse Jacobian, and stored
in dofsGradBuffer. With the projections in textBuffer the G matrix can be evaluated
for the nodes on the edge. The result is stored in GBuffer.

Listing 6.8: Struct for the edge kernel: BuffersEdge

1 s t r u c t BuffersEdge
2 dofsBuf fer : : Array{Float64 , 3}
3 dofsGradBuffer : : Array{Float64 , 4}
4 GBuffer : : Array{Float64 , 4}
5 end

Afterwards, the kernel uses all the stored data to compute the viscous flux on both sides
of the edge, and stores the result in the FluxBuffer of the corresponding edge object
(see listing 6.6 ). The projected degrees of freedom are also stored inside the edge object in
dofsBuffer. Additionally, the dot-product of the G matrix with the unit normal vectore
of the edge is stored in GBuffer of the edge object. Storing all this data in buffers that are
uniquely allocated for each edge costs a lot of memory, but it is necessary in this approach,
because in the next step we will iterate over the cells again to compute all edge terms on
each cell. This iteration over all edges could be done in parallel.
In the subsequent iteration over all cells the edge terms are evaluated by multiplying the
projected viscous flux, projected G matrix and projected degrees of freedom with the right
Λ matrix for the flux and penalty edge term. For the symmetry edge term, a multiplication
with a ∆ matrix is necessary. After a multiplication with the edge length, due to the map-
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ping to the physical cell, the result can be added to the update value du, which is used to
update the degrees of freedom for the homogeneous problem.

6.5. Source Terms

The implementation of the source terms is given in listing 6.9 . During a step, the degrees
of freedom are updates according to the gomogeneous part of 5.10 for timestep dt. This
evaluation is then used for the update of the degrees of freedom according to the heteroge-
nous part of equation 5.10 for a timestep dt. The function evaluate source computes
du for the heterogenous part, following the narative in section 5.3 .

Listing 6.9: Source term evaluation

1 funct ion e v a l u a t e s o u r c e s ( eq , scenar io , du , dofs , gr id )
2 f o r i in eachindex ( grid . c e l l s )
3 @views c e l l = grid . c e l l s [ i ]
4 @views eva lu a te so urc e ( eq , scenar io , dofs , du , c e l l )
5 elem massmatrix = volume ( c e l l ) * re ference massmatr ix
6 inv massmatrix = inv ( elem massmatrix )
7 @views du = inv massmatrix * @views du
8 end
9 end
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7. Model Verification

To understand and prove the accuracy of a computational model, there are some proce-
dures that must be taken. Two of these procedures are: Verification and validation. The
verification of a computational model is usually done by comparing the computational
results to previous, possibly more accurate, computational results. In case an analytical
solution exists, one can verify a model by comparing it to the analytical solution. This can
be useful to prove that parts of the code, that solve standardized problems, are correct.
Validating a computational model means that one compares the computational solution
to real solutions that are obtained experimentally. Taking into account any measurement
inaccuracies, this procedure can be used to prove that code is not only properly imple-
mented, but also the underlying mathematical model is physically correct. During the
validation procedure, it may turn out that certain physical phenomena in the flow were
misunderstood or even neglected.
During this thesis, the verification step was conducted for the discontinuous Galerkin im-
plementation of the Navier-Stokes equations by solving the Taylor-Green case and a lid-
driven cavity problem. The Taylor-Green case verification is described in section 7.1 , and
is meant to demonstrate that the basic Navier-Stokes system is implemented correctly. In
section 7.2 , the cavity case will be discussed. The cavity case will give some insight into
the correctness of implementation of the boundary conditions.

7.1. Taylor-Green Vortex

The Taylor-Green vortex is usually used for the verification of time dependent incom-
pressible Navier-Stokes simulations, to demonstrate that the time-stepping scheme and
the spatial discretization are correct. Since we are implementing the time-dependent com-
pressible Navier-Stokes equations, there will be some discrepancies between the model
and the analytical solution, because our model has a variable density. Nonetheless, the
Taylor-Green case is a good verification example for a compressible flow with negligible
density gradients. As long as the flow stays in the incompressibe flow regions, so with
Mach numbers below 0.3 for air, the compressible Navier-Stokes equations give nearly the
same solutions as the incompressible Navier-Stokes equations.
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Table 7.1.: Maximum L2-error of the velocities u and v compared to the analytical solution
at time t = 1 for viscosity µ = 0.1. The explicit Euler scheme with CFL = 0.5 was
used for timestepping. The errors are given for a domain containingK×K cells
with polynomial basis order p. The penalty coefficient δ is set to zero because
no instabilities were observed.

p
K

5 10 20

3 0.2377916 0.1766741 0.1518713
4 0.2140415 0.1672278 0.1479784
5 0.1875251 0.1599287 0.1454245

The Taylor-Green case is, following Taylor & Green [31 ], given by

ρ(x, y, t) = 1,

u(x, y, t) = cos(x) sin(y) e−2νt,

v(x, y, t) = −sin(x) cos(y) e−2νt,

p(x, y, t) =
1

4
(cos(2x) + cos(2y)) e−4νt + C.

(7.1)

Here we consider periodic boundary conditions and the initial condition of the Taylor-
Green case is given for t = 0. Equation 7.1 gives the analytic solution of the Taylor-Green
case at time t. The kinematic viscosity ν is given by ν = µ/ρ. The constant C governs the
speed of sound and is in our case C = 100/γ, giving a Mach numer of 0.1. The problem is
solved on the domain [0, 2π]2.

Computational Approximation

The verification of the Taylor-Green problem is given in fig. 7.1 for a fifth order approxi-
mation for a domain of 10 × 10 elements. The size of the domain is 2π × 2π and fig. 7.1 

describes the approximation of the solution of u along the line (0.5, y) and the approxima-
tion of the solution of v along the line (x, 0.5) at time t = 1. The penalty coefficient was
set to zero, as there were no instabilities observed for high-order spatial approximations
of the Taylor-Green flow. An introduction of a penalty parameter of 0.1, 1.0 or 5.0 did not
have a noticable impact on the computational results.
In table 7.1 theL2-error of the numerical approximation of the velocity vectors is shown for
a set of mesh refinements and polynomial orders for the basis functions. The Taylor-Green
case was run with the explicit-Euler timestepping scheme, which means that the results
are first order accurate in time. Nonetheless, a convergence for the approximation of the
solution can be observed for finer meshes and high-order basis functions.
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Figure 7.1.: A section plot of the velocity profile of v at the line x = 0.5 and of u at the line
y = 0.5 at time t = 1. The analytical solution is given by the continuous lines.
The computed solution is for 5th order, K = 10 with µ = 0.1. The penalty
coefficient was set to zero.

7.2. Cavity Flow

The lid-driven cavity case is used as a verification method for the implementation of the
boundary conditions. The lid-driven cavity is a flow problem on the domain [0, 1]2, where
the left, right and bottom boundaries of the domain are adiabatic walls and the top bound-
ary has a flow boundary condition of flow moving to the right with a speed of 1. This
problem simulates a case of a 2D cavity with a lid on top that moves to the right with a
speed of 1, hence the name “lid-driven cavity”. A depiction of the case is given in fig. 7.2 .
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Table 7.2.: Reference data for the cavity flow problem as given by Ghia et al. [15 ] along the
line x = 0.5 for u (left two columns) and y = 0.5 for v (right two columns).

y u x v

1.0 1.0 1.0 0.0
0.9766 0.84123 0.9688 -0.05906
0.9688 0.78871 0.9609 -0.07391
0.9609 0.73722 0.9531 -0.08864
0.9531 0.68717 0.9453 -0.10313
0.8516 0.23151 0.9063 -0.16914
0.7344 0.00332 0.8594 -0.22445
0.6172 -0.13641 0.8047 -0.24533
0.5000 -0.20581 0.5000 0.05454
0.4531 -0.21090 0.2344 0.17527
0.2813 -0.15662 0.2266 0.17507
0.1719 -0.10150 0.1563 0.16077
0.1016 -0.06434 0.0938 0.12317
0.0703 -0.04775 0.0781 0.10890
0.0625 -0.04192 0.0703 0.10091
0.0547 -0.03717 0.0625 0.09233

0.0 0.0 0.0 0.0

Computational Approximation

No analytical solution exists for the problem, but it is a well-known case for testing com-
putational fluid models. Verification was done by using data from Ghia et al. [15 ] along the
lines x = 0.5 and y = 0.5 at t = 1 with µ = 0.1. The verification data is given in table 7.2 ,
where the left two columns give the data for u along the line x = 0.5 and the two columns
on the right give the data for v along the line y = 0.5. The computational approximation
and the reference data are given in fig. 7.3 , where the red line represents the approximation
of u and the blue line the approximation of v. The basis functions are of 4th order at time
t = 1 and the domain is divided into 16 × 16 elements. As for the Taylor-Green case, the
timestepping scheme is the explicit Euler scheme and the viscosity was set to µ = 0.1.
The penalty coefficient was set to zero for the approximation given in fig. 7.3 because
there was no need to increase the stability of the solver. As for the Taylor-Green case,
the introduction of a non-zero penalty parameter did not have a noticable effect on the
computational approximation for the lid-driven cavity flow.
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Figure 7.2.: The lid-driven cavity flow problem. The domain Ω with size [0, 1]2 is illustrated
by the gray field, with black edges on the bottom,left and right side as the
adiabatic walls. On top, there is a flow v = (1, 0)T , which simulates the moving
lid.
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Figure 7.3.: A section plot of the velocity profile at the lines x = 0.5 and y = 0.5. The com-
puted velocity in x-direction is indicated by u and the velocity in y-direction is
indicated by v. The black lines denote the reference data from table 7.2 as given
by Ghia et al. [15 ]. The computed solution is for 4th order basis functions, K =
16 and viscosity µ = 0.1. The penalty coefficient was set to zero.
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8. Results

The verification procedure in chapter 7 demonstrates that the compressible NSE are imple-
mented such that the solver produces acceptable results for the Taylor-Green flow and a
lid-driven cavity flow. The verification of the implementation of the extended system with
porosity and source terms was not carried out. Nonetheless, it is interesting to have a look
at the result for a PEMFC flow with a free flow domain and a porosity domain.
In section 8.1 , a PEMFC flow case is described and the results produced by the solver are
presented. For a PEMFC solver that is high-order accurate in time, work is still needed to
be done and some recommendations for future work are given in section 8.2 

8.1. PEMFC Flow

For the PEMFC simulation that is described below, the extended system of equations as de-
scribed in chapter 5 is used. The overpotential that regulates the simulation of the electro-
chemical reactions is set to zero, as a nonzero overpotential would lead to instabilities. This
effectively means that the energy equation and the species equation are homogeneous. The
PEMFC simulation is carried out for the anode flow channel and GDL.

Anode Flow Case

The case that is simulated for the anode flow channel and GDL of a PEMFC is illustrated in
fig. 8.1 . The problem is solved on a domain of shape [0, 4]× [0, 1], where light gray domain
in fig. 8.1 indicates the free flow region of the domain and the dark gray region represents
the porous region of the domain. The height of the GDL is set to 0.4 and the porosity
to ε = 0.4. The penalty coefficient was set according to equation 4.34 with the constant
C = 10, which is the value that was empirically found to be stable for the compressible
NSE by Hartmann & Houston [16 ].
The initial condition for the flow velocity is v = (0, 0)T and we determine a pressure of
10/γ, which would set the Mach number in the computational domain to 0.01. Addi-
tionally, the concentration of H2 is set to 0.9. For the walls, adiabatic, no-slip boundary
conditions are set and for the inflow at the left boundary, a flow velocity of v = (1, 0)T is
set.
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Results

The solver is unstable for the problem described above. In fig. 8.2 and fig. 8.3 , the results
for the anode flow case are illustrated at time t = 0.3 and t = 0.4 respectively. The white
lines are the streamlines of the flow and they can be seen to interact with the porous re-
gion, indicated by a dotted box. The density is illustrated by the colour scheme and it is
visible that as the front of the flow reaches the outflow boundary, the density increases
drastically. This is not the expected behaviour and the density keeps increasing until the
flow becomes unstable. This increase of density at the outflow boundary suggests that
the outflow boundary conditions might not be implemented correctly and this cause for
instability is not solved for a higher penalty coefficient. This problem did not arise for the
lid-driven cavity case, because no outflow boundaries were set.

Figure 8.1.: The flow case for the anode flow channel and GDL of a PEMFC. The domain
Ω with size [0, 4] × [0, 1] is illustrated by the light gray field, with black edges
at the bottom and top sides to indicate the adiabatic walls. On the left, there is
an inflow v = (1, 0)T . On the right side we have outflow boundary conditions.
The dark gray area represents the porous region of the domain. For this area a
porosity ε = 0.4 is set and the flow viscosity is set to µ = 0.000181.
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Figure 8.2.: The result of the anode flow case at time t = 0.3. The density of the domain is
illustrated by the colour scheme and the white lines represent the streamlines
of the flow. An interaction between the flow and the porous domain, indicated
by the dottet box, can be observed.

Figure 8.3.: The result of the anode flow case at time t = 0.4. The density of the domain is
illustrated by the colour scheme and can be observed to increase as the flow has
reached the outflow boundary. This increase in density will eventually lead to
instabilities.

8.2. Recommendations for Future Work

The intention of this thesis was to present a discontinuous Galerkin approach for the sim-
ulation of the flow channel and porous layer in a PEMFC. In the process of getting a sim-
ulation, certain assumptions were made (see section 5.1 ) to simplify the simulation. For a
more accurate representation of a PEMFC, a recommendation for future work would be to
include the mathematical terms that were left out in this simplified model.

The following physical effects will need to be added:

• The relative motion of species due to the condensation or evaporation is to be added
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to the species equation.

• The effective diffusivity is to be considered as a function of the volumetric fraction
of water in liquid or vapor form.

• The effect of electro-osmotic drag should be included.

• The advection correction factor must be implemented.

The effects listed above are necessary for a more physically accurate representation of the
flow in a PEMFC, following the description by Sun [30 ]. A good future project to extend
this code, would be to introduce a coupling between this solver and a solver for the elec-
tronic potentials to get a more accurate simulation, using an external coupling library, such
as preCICE. Alternatively, these phenomena could be directly implemented in this solver.

The verification procedure that is given in chapter 7 may suffice for the verification of the
compressible NSE, but not for the implementation of the species equation, source terms
and the porosity in the domain. The complexity of the problem calls for a verification
method other than using analytical solutions to verify approximations of PDEs. The method
of manufactured solutions can be used to create exact solutions for complex problems, to
verify the implementation of the solver thereof. The method of manufactured solutions is
explained in depth by Oberkampf & Roy [25 ]. The main concept of this idea is that one
creates a solution for a “slightly modified equation”. By applying the governing equations
to the chosen solution, an additional analytic source term is generated. An approximation
of the solution can then be computed for a problem with this additional source term. If
the code is implemented correctly, the approximation will be close to the initially chosen
solution.
For a high-order simulation of a PEMFC, high-order basis functions and timestepping
methods need to be chosen. The polynomial order of the Lagrange basis functions can,
theoretically, be chosen arbitrarily high and the timestepping method can be chosen to be
any method with a high-order accuracy in time. The splitting method, however, limits the
order of accuracy of the simulation. For a high-order method, the given Godunov splitting
method must be replaced by a high-order splitting method. Possible alternative methods
for higher-order splitting are given by Koch et al. [21 ].
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9. Conclusion

The results that have been presented indicate that a discontinuous Galerkin approach can
be used for the simulation of the flow channels and gas diffusion layers of PEMFCs. The
advantages of the discontinuous Galerking approach are that it is a proper model for ap-
proximations for discontinuous problems, while maintaining the ability to scale to high-
order simulations by implementing basis functions of high-order. The presented methods
can be used for any high-order partial differential equation, provided a stable and consis-
tent numerical flux is chosen for the fluxes with high-order derivative terms.
More work on the solver is necessary to guarantee reliable computational approximations,
as the solver still shows some unwanted behaviour, such as instabilities, for certain con-
figurations. Apart from that, for a high-order PEMFC solver, high-order approximation
methods need to be implemented for the splitting method.
A reliable high-order discontinuous Galerkin solver for fuel cells in general is desirable for
a better understanding of the inner workings of fuel cells, such that they can be designed
for specialized applications, such as in vehicles or aircraft. The fuel cell system is not
a modular system and must be specially designed for its application to ensure a higher
efficiency of the entire system. A harmonious interaction between the fuel cell system
and a complete vehicle or aircraft system is desired and can be attained through proper
computational modeling. Investigation into reliable high-order simulations of fuel cells
are therefore desired.
Throughout history, mankind has evolved the energy generation by burning various fuels,
from wood, to coal, to gas. With each step, less carbon is present in the fuel and the
logical next step would be to use a fuel that does not contain any carbon molecules at all:
Hydrogen. The beauty of fuel cell systems lies in the fact that they can efficiently generate
electrical energy from hydrogen and the only product of this process is water. It could be
a solution to stop the emission of harmful greenhouse gases and, therefore, slow global
warming.
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A. Matrix Definitions

Below the matrices Gij(u) are defined, as used in the compressible Navier Stokes Equa-
tions as given by

G11 =
µ

ρ


0 0 0 0

4
3u −4

3 0 0
v 0 −1 0

(4
3u

2 + v2 + γ
Pr (E − v2)) −(4

3 −
γ
Pr )u −(1− γ

Pr )v − γ
Pr

 (A.1)

G12 =
µ

ρ


0 0 0 0
−2

3v 0 2
3 0

u −1 0 0
1
3uv −v 2

3u 0

 (A.2) G21 =
µ

ρ


0 0 0 0
v 0 −1 0
−2

3u
2
3 0 0

1
3uv

2
3v −u 0

 (A.3)

G22 =
µ

ρ


0 0 0 0
u −1 0 0
4
3v 0 −4

3 0
(u2 + 4

3v
2 + γ

Pr (E − v2)) −(1− γ
Pr )v −(4

3 −
γ
Pr )v − γ

Pr

 (A.4)
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The homogeneity matrices for the extended system G̃ij(u) are defined as

G̃11 =
µ

ρ


0 0 0 0 0

4
3u −4

3 0 0 0
v 0 −1 0 0

(4
3u

2 + v2 + γ
Pr (E − v2)) −(4

3 −
γ
Pr )u −(1− γ

Pr )v − γ
Pr 0

CkDk
µ 0 0 0 Dk

µ

 (A.5)

G̃12 =
µ

ρ


0 0 0 0 0
−2

3v 0 2
3 0 0

u −1 0 0 0
1
3uv −v 2

3u 0 0
0 0 0 0 0

 (A.6) G̃21 =
µ

ρ


0 0 0 0 0
v 0 −1 0 0
−2

3u
2
3 0 0 0

1
3uv

2
3v −u 0 0

0 0 0 0 0

 (A.7)

G̃22 =
µ

ρ


0 0 0 0 0
u −1 0 0 0
4
3v 0 −4

3 0 0
(u2 + 4

3v
2 + γ

Pr (E − v2)) −(1− γ
Pr )v −(4

3 −
γ
Pr )v − γ

Pr 0
CkDk
µ 0 0 0 Dk

µ

 (A.8)
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B. Cell Transformation Mapping

Mapping from the Reference Cell

The referece cell is in described as a unit cell Ĉ = [0×1]2 in 2D. We use the coordinates (x, y)
for the physical domain, and (x̂, ŷ) for the coordinates in the reference cell, also called the
Computational Domain. The mapping functionMmaps the coordinates from the reference
cell to the physical cell(

x
y

)
=M(ξ, η) = cell-center(C) +

(
∆x 0
0 ∆y

)(
x̂− 0.5
ŷ − 0.5

)
. (B.1)

The problems will be derived in terms of the reference cell, which allows us to pre-calculate
many values, making the computation faster. It must, however, be noted that this means
that the problem equations will also need to be transformed to the reference cell case.

Transforming Derivatives and Integrals

Under mappings, the equations themselves are als transformed. Essentially, we follow the
chain rule for this procedure. Formally, we find the effect of a mapping with the following
definitions

∂u

∂x
=
∂u

∂x̂

∂x̂

∂x
+
∂u

∂ŷ

∂ŷ

∂x

∂u

∂y
=
∂u

∂x̂

∂x̂

∂y
+
∂u

∂ŷ

∂ŷ

∂y

(B.2)

We will also need to define the transformation of derivatives. Given in matrix-vector form
it is

(∂u
∂x
∂u
∂y

)
=

(
∂x̂
∂x

∂ŷ
∂x

∂x̂
∂y

∂ŷ
∂y

)(∂u
∂x̂
∂u
∂ŷ

)
=

(
∂x
∂x̂

∂y
∂x̂

∂x
∂ŷ

∂y
∂ŷ

)
︸ ︷︷ ︸

J

−1(∂u
∂x̂
∂u
∂ŷ

)
(B.3)

The matrix that gives the transformation of the derivatives, is obtained indirectly from the
inverse Jacobian of the transformation operatorM.
Finally, for the transformation of integrals, the transformation of differentials must also be
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B. Cell Transformation Mapping

specified.

dx =
∂x

∂x̂
dx̂, dy =

∂y

∂ŷ
dŷ (B.4)

The transformation of an integral over a reference cell then becomes:∫
C
f(x, y) dxdy =

∫
Ĉ
f(M(ξ, η))

∂x

∂ξ

∂y

∂η︸ ︷︷ ︸
det(J)

dξdη (B.5)

If the computation includes derivatives, the Jacobian must be taken into account as well in
the computation of the derivatives, giving∫

C
∇f(x, y) dxdy =

∫
C

(
∂f

∂x

∂f

∂y

)
dxdy

=

∫
Ĉ

(
J−1

(
∂f(M(ξ,η))

∂ξ
∂f(M(ξ,η))

∂η

))T
det(J) dξdη

(B.6)
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List of Abbreviations

AFC Alkaline fuel cell
BR2 Second approach of Bassi and Rebay
CFD Computational fluid dynamics
CL Catalyst layer
DG Discontinuous Galerkin
DGM Discontinuous Galerkin method
GDL Gas diffusion layer
HOR Hydrogen oxidation reaction
ID Identity
MCFC Molten carbonate fuel cell
MEA Membrane electrode assembly
ODE Ordinary differential equation
ORR Oxygen reduction reaction
PAFC Phosphoric acid fuel cell
PDE Partial differential equation
PEMFC Proton exchange membrane fuel cell
RK3, RK4 3rd / 4th order Runge-Kutta scheme
SIPG Symmetric interior penalty discontinuous galerkin (method)
SOFC Solid-oxide fuel cell
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List of Symbols

Latin Symbols

C A cell element
Ck Molar concentration
c Speed of sound
Dk Diffusion coefficient
d Dimensionality of the domain
E Specific total energy
E0 Reversible cell voltage
Eh Set of all edge elements
e An edge element
e Edge flux term
e Specific internal energy
F Faraday’s constant
F A flux
fkl Liquid mass fraction
G Homogeneity tensor
g Gibbs energy
H Total enthalpy
h Element size
J Jacobian matrix
ja Volumetric transfer current density
jl Capillary-diffusional flux
K Permeability tensor

k Thermal conductivity coefficient
M Mass matrix
Mk Molar weight
M Mapping operator
n Amount of transferred electrons
n Normal vector
P Projection matrix
Pr Prandtl’s number
p Polynomial order
p Pressure
R Universal gas constant
S Source term vector
T Temperature
Th Set of all cell elements
t Time
U0 Thermodynamic equilibrium potential
u Velocity in x-direction
u Degrees of freedom
v Velocity in y-direction
v Volume flux term
v Test function from Vh
v Velocity vector
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List of Symbols

Greek Symbols

α Left edge of a cell
β Top edge of a cell
Γ The set of all internal edges
γ Heat capacity ratio
γ Right edge of a cell
γc Advection correction factor
γT Advection heat-transfer correction factor
δ Bottom edge of a cell
δ Penalty coefficient
ε Porosity of media
η Overpotential
κ Protonic conductivity
Λ Jump matrix
λ Eigenvalue
µ Viscosity
ν Kinematic viscosity
ρ Density
σ Auxiliary variable
σ Electronic conductivity
σ Viscous stress tensor
τ Test function from Σh

φ 1D basis function
ϕ 2D basis function
ψ Heterogenous part of equation
Ω The domain
ω Quadrature weight
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