
Hamiltonian Simulation using Quantum

Autoencoders

Burak Mete, Irene Lopez Gutierrez, Christian Mendl

April 16, 2021

1 Introduction

Quantum machine learning is a very broad area that comprises two different
main fields, depending on the algorithm type. First, the use of existing
classical machine learning algorithms that are aiming to explore quantum
systems, and secondly the quantum algorithms, which makes use of quantum
properties like superposition and entanglement to explore either classical or
quantum data. Exploiting the benefits of quantum computing might be
used to perform a routine that solves an existing classical problem, with
the motivation of achieving a considerable speedup, or a better accuracy in
the learning task compared to classical methods. One could also potentially
use the quantum algorithms, to explore quantum systems. Figure 1, also
summarizes those different utilization of QML approaches[1].

Figure 1: Different types of QML [1]

In this project we are interested in the latter, namely quantum circuits
that encode machine learning algorithms for classical data, such as discrim-
inative or generative neural networks. That is, the main goal is to obtain a

1

circuit that can be run on a quantum hardware. Ideally, a speedup would
be provable compared to the classical counterpart (at least for the noiseless
case). Since the hardware is not mature enough yet and for some heuristic
algorithms providing provable theoretic speedups is hard, we will at least
require to have an intuition of why a speedup would be expected.

With this work, we are aiming to generate an efficient solution for a
subset of Hamiltonian Simulation problems, with making use of Quantum
Autoencoders, and the latent space representations of the quantum system.

In the Section 2, we will try to give an overview on the Quantum
Autoencoders, and present you our implementation of Romero, Olson and
Aspuru-Guzik’s paper [2], using the classical MNIST [3] dataset, and we will
share our insights and results. We will continue with giving a background
on the Hamiltonian Simulation problem, and the complexities of the state
of art techniques in solving the problem. In Section 3, we are presenting
the details of our model, which creates a pipeline for simulating the time
evolution of a system with a given Hamiltonian. That will be followed by the
Section 4, where we will give the results of our model and give a benchmark
analysis for the other solutions.

For the implementation, we have used Pennylane [2] as the backend of
the quantum circuit simulator, and PyTorch [4] for the classical optimization
of the parameters of the quantum gates.

Also the code is publicly available at:
https://github.com/Bmete7/QuantumNeuralNet

2 Background

2.1 Quantum Autoencoders

2.1.1 Architecture

In the classical learning setting, autoencoders are a specific type of neural
networks, which have been proven to be useful in various aspects. The
architecture of the model is designed to take an N dimensional input, and
try to reconstruct the same data in the output layer. The significance of
the model is that, while reconstructing the output, it creates a bottleneck
in the middle of the process by mapping the data in a lower dimensional
latent space, which is later on used to reconstruct the input. The latent
representation is learned through a function f(x), which is referred to as
the encoder network. That means the network is able to represent the same
data, only by using a function f ′(x), which is called the decoder network,

2

https://github.com/Bmete7/QuantumNeuralNet

and also the latent space representation of the data. The encoding/decoding
process and the latent state representations can be seen in the Figure 2.

Figure 2: Autoencoder Architecture [5]

First of all, Autoencoders have been widely used for dimensionality re-
duction [6, 7], with the motivation of preserving the latent representation to
reduce space complexity to store the actual data. If the network is trained
well enough, that means the original input can always be reconstructed, us-
ing the decoder network. Secondly, the latent space representation, brings
new ideas for creating a generative model[8], by instead of finding a latent
space from the model, finding a set of distribution parameters, which will
be sampled to generate a novel latent code. Autoencoders can also be used
as a feature extractor, with the motivation of latent space having important
insights about the original data.

Quantum Autoencoders, also emerged with two distinct motivations
[2, 9]. First is to perform the same task that the classical models have
been doing, and trying to reach a speed-up in the learning scheme, and
second is to reach a better accuracy, driven by the idea of exploiting the
quantum properties(i.e entanglement, superposition, fidelity measure), that
might help to learn the patterns in the data in such way that classical al-
gorithms can not capture. Another important aspect worth mentioning is,
while working on a quantum data, a quantum algorithm can have an expo-
nential reduction in the memory space required.

3

2.1.2 Model implementation

The model is implemented with the variational quantum circuit approach.
In this method, there are quantum gates, whose optimal parameters to be
found in the learning process. To be able to create such gates, there has to
be unitaries with 2n x 2n dimensions, that creates an n-qubit unitary gate.
However, this leads to having exponential number of parameters w.r.t num-
ber of qubits, which makes the optimization process intractable. Neverthe-
less, we can use the programmable circuit approach[10], basically decoding
the large unitary into single qubit rotation gates and CNOTs. An exemplary
programmable circuit for 4-qubit quantum system can be seen in the Figure
3.

Figure 3: a Programmable circuit consisted of single qubit rotation gates
and 2-qubit controlled gates [2], red dotted area represents the so called
”unit-cell”, which can be applied to the system several times to increase the
expressiveness of the network.

Once the programmable circuit is selected, the backbone of the archi-
tecture is complete, and the defined model will work as an encoder. On
the contrary to the classical autoencoders, the decoder does not have to be
learned from scratch, since the unitary matrices can be inverted efficiently,
the decoder can be the inverse of the encoder. Therefore, If we define the
encoder network as U

#»p , where #»p refers to the optimal parameters of the net-
work, the decoder network will be equal to (U

#»p)†, since the whole encoder
will generate a unitary.

After applying the encoder to the system, the goal of the method is to
divide the quantum system into two subsystems, namely subsystem A and
subsystem B. In the subsystem A, the encoder generates a ”latent code”
which later on can be used to reconstruct the input itself. Whereas in the

4

subsystem B, the goal is to generate a so-called ”reference state”, which is
ideally the same for each and every possible data instances. If the encoding
is done with a significant accuracy, since the model is be able to create one
subsystem that yields identical results for any data instance, the same refer-
ence qubits can be added to the latent space to reconstruct the output. For
simplicity, in our implementation, the reference state is selected as |00 . . . 0〉,
whose number of qubits may depend on the size of the latent space. There-
fore, after the encoder, desired functionality is that the subsystem A would
be consisted of the latent code, while subsystem B would generate the state
|00 . . . 0〉, for any input values.

One way to realize this effect is, to apply a set of swap gates between
the subsystem B and B′, that consists of the reference state ansatz. This
means, if the network is able to create a latent space, then it also can
generate the input, using the fixed reference state swapped into subsystem
B. The overview of the model can be seen in Figure 4.

Figure 4: The network architecture. The programmable circuit overall de-
fines U

#»p [2],

The final fragment of the model is to come up with a loss function to
train the variational circuit. Influenced by the classical loss function for
autoencoders, which is the L2 Norm of the input and the output, can be
translated into QAE such as:

C1(
#»p) =

∑
i

pi.F (|ψi〉, ρouti, #»p) (1)

F
(
|ψi〉AB ⊗ |a〉B′ , U †ABVBB′UAB |ψi〉AB ⊗ |a〉B′

)
(2)

Here, ρouti, #»p defines the density matrix of output at the subsystems A and
B, given the parameterized unitaries, |a〉 the reference state, and V stands
for the unitary of the SWAP gate.

5

Equation (1) defines the cost function, as the fidelity between the original
input |ψ〉 and the output, which is a reconstruction of the input. At the final
stage, only subsystems A and B have to be measured, while subsystem B′ is
being traced out. Fidelity of quantum systems, is a metric to measure how
similar those states are. If the states are pure, the fidelity can be found by
taking the inner product of them. This can be seen from the Equation (3).

F (ρ, σ) = |〈ψA|ψB〉|2

where

ρ = |ψA〉〈ψA| , σ = |ψB〉〈ψB|
(3)

If we make further simplification to the cost function (1), we get:

C2(
#»p) =

∑
i

pi.F (TrA
[#»

U |ψi〉〈ψi|AB(
#»

U)†
]
, |a〉B) (4)

The simplified cost version yields the same result as the first cost func-
tion, and it suggests that to find the fidelity between the reference state,
and the expected value of the subsystem B after the encoder. Tracing out
the subsystem A can be simply done by not measuring the qubits which are
in the subsystem A. The measured part are also referred to as the ”trash
state” since, it is expected to be as the same as the fixed reference state
for every possible input state. The remaining qubits that are traced out,
yields the ”compressed state” or the ”latent space”, which can be stored or
used for some inference or learning tasks later on. While doing the testing,
instead of measuring the subsystem A, we can measure the subsystem B
and get the latent space state.
Since the compressed state might be entangled, it would be more meaningful
to implement the desired process sequentially after the encoding instead of
measuring the subsystem, in order not to alter the state irreversibly.

2.2 Hamiltonian Simulation

Hamiltonian, is the operator, that gives the total energy of the system, which
is the summation of the potential and the kinetic energy of that system.
Their eigenvalues, specifies the possible outcomes after a measurement. And
the eigenspaces refer to the energy spectrum, or the state that the system
will be in, after measuring its corresponding eigenvalue.

Ĥ|ψ(t)〉 = δ|ψ(t)〉 (5)

6

Hamiltonians also govern the time evolution of quantum systems. The
equation describes the evolution of a quantum system/wave function over
time is called ”the Schrödinger’s Equation”, which can be seen from the
Equation (6)

Ĥ|ψ(t)〉 = i~
d

dt
|ψ(t)〉 (6)

Given the initial state of a quantum system, if the Hamiltonian is in-
dependent of time, the state at any time t can be found by the following
Equation (7).

|ψ(t)〉 = e−iHt/~|ψ(0)〉 = U(t)|ψ(0)〉 (7)

This shows that exponentiation of the Hamiltonian gives a time-dependent
unitary operator, which defines the evolution itself. The problem of simulat-
ing the evolution is that the Hamiltonian grows exponentially w.r.t number
of qubits, therefore making the exponentiation intractable for large number
of qubits [11]. There are couple of ways to solve this issue, by finding an
approximate U ′(t) such that ||U ′(t)− e−iHt|| < ε

The most common techniques to solve the Hamiltonian Simulation prob-
lem are:

• Taylor Series Expansion: e−iHt =
∑∞

n=0
(−iHt)n

n! = I− iHt+ H2t2

2 + . . .

• Trotter-Suzuki: e(A+B)t = limn→∞

(
eiAt/neiBt/n

)
for H =

∑
n anHn

by simulating each local Hamiltonian in small gaps of time periods

• Quantum Walk

Algorithm Gate Complexity Query Complexity

Taylor Series O
(
tlog2(t

ε
)

loglog t
ε

)
O
(
d2||H||maxlog d

2||H||max
ε

loglog
d2||H||max

ε

)
Trotter Suzuki O

(
t2√
ε

)
O
(
d3t
(
dt
ε

) 1
2k
)

Quantum Random Walk O
(

t√
ε

)
O
(
d2||H||max t√

ε

)
Table 1. Gate and Query complexities of different Hamiltonian Simulation
methods

7

3 Implementation of the Hamiltonian Simulator
using QAE

3.1 Problem Definition

The goal of the model is, given an Hamiltonian and its ground state, along
with a time step t, finding the time evolution of the system with the use
of quantum machine learning. The motivation of the method is to find a
quantum mapping in the latent space that corresponds to the time evolution
in the actual quantum system. Therefore, without having to exponentiate
the Hamiltonian, our model proposes creating the approximation of the
actual time evolution, after decoding the results of the time evolution in the
latent space.

First part of the method is to have a trained Quantum Autoencoder,
whose details has been given at the Section 2.1.2. The details on the dataset
which is used, consists of the input and ground truth values, along with the
Hamiltonians that are acting on the input states, has been explained in
detail in Section 3.2.

The model for the Hamiltonian simulator, is a hybrid model, consisted
of classical and a quantum part. First layer of the model is a fully con-
nected(FC) layer, that accepts 2n features and creates 6(n − k) + 3(n −
k)(n− k − 1)/2 features. Here, n− k refers to the number of qubits in the
latent space, and the total number of parameters created in the output of
the FC layer corresponds to all the parameters in the parametrized quan-
tum circuit. Therefore, the parameters of the variational quantum circuit
is scalable and grows linearly to the number of qubits. The second layer
is a parameterized quantum circuit, which has the same architecture as in
the Figure 3. As explained before, the parameters of the programmable
circuit are coming from the output of the previous layer- which is the fully
connected layer.Therefore, the parameters of the quantum circuit is defined
by the classical FC layer, and thus the optimization will be done classically.
As it can also be seen at the model structure in the Figure 3, the rotation
gates and the controlled rotation gates all require 3 real parameters, hence
the model has 6(n−k)+3(n−k)(n−k−1)/2 parameters for an n−k-qubit
system.

Again, the goal of the circuit is to approximate the unitary U(t) = e−iHt.
Repeated iterations of the defined circuit means, applying the approximated
unitary once more, and it will also correspond to the time evolution of the
system with differing time steps.

Hence, after applying the quantum circuit to the latent space of the in-

8

Figure 5: Learning Scheme of the Time Evolution Approximator, the sec-
tion a and b refers to the preparation of the datasets, which are thoroughly
explained at the Section 3.2, before running the actual Hamiltonian Simula-
tion Approximator, there has to be an QAE, which is trained and be able to
encode-decode any general n-qubit quantum state. The green entities refers
to real variables, which are optimized classically, while purple refers to the
parameterized quantum circuits/gates, and the orange refers to quantum
states.

put once, the desired output should be close to the state which corresponds
to the outcome of the time evolution, with the time step t = 1. When the
time step parameter of the evolution is an integer, it can be visualized as ap-
plying the unitary e−iH to the system t times. Therefore, the approximator
should create more than one output, that coincides with the different time
steps of the evolution. This is crucial because the approximated unitary for
only one step in the time evolution, can be completely different than the
exponentiated Hamiltonian, however the network would still find a solution
that will mimic a similar operation. Thus, for this project, 3 time steps are
chosen in the network architecture, also considering the number of qubits
required in the simulator. Since we are still at the latent space, the decoder
can be used to reconstruct the actual data in the original vector space. The
accuracy of the model can be determined by, how close the approximation of
a specific time evolution is, to the actual ground truth data. An exemplary

9

learning scheme of the model can be seen at the Figure 5
An additional aspect of the project is, since the unitaries defining the

time evolution can be approximated in the latent space, a specific Hamil-
tonian that corresponds to that time evolution can also be found, since

Ĥ = i. ln Û
t . The found Hamiltonian, which acts on the latent space, can also

be used to analyze the actual system, or infer knowledge from it.

3.2 Preparing a Dataset

To be able to analyze systems where there is a Hamiltonian governing the
time evolution, we need to have a dataset that comprises the input states,
the Hamiltonian. For the ground truth values, the time evolved quantum
states with different time steps can be used. Since a Hamiltonian is a Her-
mitian matrix, any n-Hermitian matrix can be constructed from the linear
combinations of product states of Pauli matrices and the identity matrix,
with non-negative and real parameters [12]. Therefore as an exemplary 2-
qubit Hamiltonian can be prepared as in the Equation (8), by the randomly
generated real-valued coefficients

H = a11I ⊗ I + a12I ⊗ σx + · · ·+ a44σ
z ⊗ σz (8)

As a reverse operation, the coefficients for the Pauli product states for a
n-Hamiltonian, can also be found as:

aij =
1

2n
tr
(
(σi ⊗ σj)H

)
(9)

Using the methodology at Equation (8), with random non-negative real
coefficients, random Hamiltonians can be prepared. The input states are
chosen to be the ground state for a particular Hamiltonian. In order to
find the ground state, eigenvalue decomposition has to be applied onto the
Hamiltonian, and the eigenvector which corresponds to the lowest eigenvalue
equals to the ground state of that particular Hamiltonian. Even though
finding the ground state for a specific Hamiltonian is a costly operation
which requires exponential time, this is not a huge issue since it is only
done for preparing the dataset, and not the learning scheme itself. For the
labels, there are 3 different time evolved states are taken into consideration,
coincides for the time steps, t = 1, 2, 3. Therefore:

|ψtk〉 = e−iHitk |ψ0〉 (10)

where |ψ0〉 constructs the input and the time-evolved states |ψtk〉 generate
the ground truth values. For the embedding of the randomly generated data
into the quantum circuits, Amplitude Embedding [13] method is used.

10

3.3 Loss Function

Figure 6: Implementation of the SWAP Gate [14]

The cost metric of the model is the fidelity between the trash state
and the reference state. As it was explained in Section 2.1.2 successfully
encoding scheme for a QAE means achieving a fix reference state at one of
the subsystems for each input sample. Hence, the similarity between those
states can be calculated via measuring their Fidelities. Since the reference
state |a〉, and the trash state |ψ′

B〉, are both pure, the fidelity between them
can be defined as:

F (|a〉, |ψ′
B〉) = |〈a|ψ′

B〉|2 (11)

To find the fidelity between two systems, SWAP Test method [14] can be
used. SWAP Test suggests a solution with a fixed quantum circuit, where
there is an ancillary qubit which measures the similarity between the two
qubits. As it can be seen at the Equation (12), measuring the ancillary has
a direct correlation with the fidelity between two states. Therefore the cost
function of the whole circuit will be:

|ψ0〉 = |0, φ, ψ〉

|ψ1〉 =
|0, φ, ψ〉+ |1, φ, ψ〉√

2

|ψ2〉 =
|0, φ, ψ〉+ |1, ψ, φ〉√

2

|ψ3〉 =
|0, φ, ψ〉+ |1, φ, ψ〉+ |0, ψ, φ〉 − |1, ψ, φ〉

2

=
(
|0〉
(
|φ, ψ〉+ |ψ, φ〉

)
+ |1〉

(
|φ, ψ〉 − |ψ, φ〉

))
∴ p(0) =

1

2

(
1 + |〈φ|ψ〉|2

)
∴ |〈φ|ψ〉|2 = 2.〈σZ |φancilla|σZ〉 − 1

(12)

11

3.4 Training Scheme for Hamiltonian Simulator

4 Results

As mentioned before, for the quantum circuits PennyLane [15] and for the
classical optimization [4] is used. The experiments are done on both 2 and 4-
qubits separately. For the optimization of the parameters, Adam optimizer
[16] is being used.

The average fidelities of the quantum autoencoder with different set of
hyperparameters are shown in the Table 4. Also, the average fidelity graph
for the 4-qubit experiment, with 80 different input states, along with their
3 different time evolved states, can be seen in the Figure 7

Figure 7: Average fidelity graph for the 4-qubit experiment, with 80 differ-
ent input states,

Number of Qubits Latent Space Size Average Fidelity

2 1 0.972

4 3 0.991

4 2 0.958

6 5 0.998

6 5 0.990

6 3 0.896

Table 2. Training Accuracies for different set of hyper parameters in the
training, with 250 epochs and the learning rate of 0.03

The next step in the learning pipeline is to use the encoded latent state
representations to learn a time evolution in the lower dimensional space,

12

using the real Pauli product state coefficients which are used to generate
the Hamiltonian of the actual system. Although the encoding/decoding
part is running with a convincing accuracy, the results of the Hamiltonian
simulator are not comparable enough to the current state-of-art methods of
the Hamiltonian Simulation problem. The model seems to be on a ”bar-
ren plateau” and got stuck after several iterations. A potential reason why
the network does not converge well in this model, could be that the coef-
ficients of the Pauli product states does not contain a suitable or enough
information to learn the time evolution in the latent space. The reason why
the Pauli product state coefficients are used instead of learning a Hermitian
matrix to approximate the Hamiltonian acting on the latent space, is that
the automatic differentiation with the linear algebraic operations with com-
plex numbers using state-of-art frameworks do not yield the most optimal
results. However, the concrete next steps would comprise two steps. First,
is to make sure the existing model, that is using Pauli product states coeffi-
cients as input, does not generally solve a viable solution, even by choosing
different set of hyper-parameters (learning rate, optimizer, different param-
eterized circuit architectures, longer epochs). If this is the case, the next
meaningful step would be, to create a module for the automatic differenti-
ation with complex numbers in the quantum circuit approach, and instead
of having the Pauli product states as input, randomly initialized Hermitian
matrices can be used. After exponentiating the Hamiltonian in the latent
space (note that this is computationally tractable, since we are on a much
lower dimensional space) the unitary which approximates the time evolution
in the latent space with a significant accuracy can be found.

Another reason could be that the model runs on a very low number of
qubits, since the simulation of large systems on a classical system can be
quite complex. Although the model is supposed to generate a better time
complexity for the solution to the problem, the intermediate steps, such as
the preparation of the dataset can be computationally quite expensive and
not tractable.

13

References

[1] Esma Aı̈meur, Gilles Brassard, and Sébastien Gambs. Machine learning
in a quantum world. pages 431–442, 2006.

[2] Jonathan Romero, Jonathan P Olson, and Alan Aspuru-Guzik. Quan-
tum autoencoders for efficient compression of quantum data. Quantum
Science and Technology, 2(4):045001, 2017.

[3] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
2010.

[4] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. Automatic differentiation in pytorch. 2017.

[5] Classical Autoencoder Architecture. https://medium.com/@birla.

deepak26/autoencoders-76bb49ae6a8f. Accessed: 2021-03-25.

[6] Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoen-
coders with nonlinear dimensionality reduction. In Proceedings of the
MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data
Analysis, pages 4–11, 2014.

[7] Wei Wang, Yan Huang, Yizhou Wang, and Liang Wang. Generalized
autoencoder: A neural network framework for dimensionality reduction.
In Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, pages 490–497, 2014.

[8] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

[9] Kwok Ho Wan, Oscar Dahlsten, Hlér Kristjánsson, Robert Gardner,
and MS Kim. Quantum generalisation of feedforward neural networks.
npj Quantum information, 3(1):1–8, 2017.

[10] Paulo BM Sousa and Rubens Viana Ramos. Universal quantum cir-
cuit for n-qubit quantum gate: A programmable quantum gate. arXiv
preprint quant-ph/0602174, 2006.

[11] Michael A Nielsen and Isaac Chuang. Quantum computation and quan-
tum information, 2002.

[12] Vladimir Privman, Dima V Mozyrsky, and Steven P Hotaling. Hamil-
tonians for quantum computing. In Photonic Quantum Computing,
volume 3076, pages 84–96. International Society for Optics and Pho-
tonics, 1997.

14

https://medium.com/@birla.deepak26/autoencoders-76bb49ae6a8f
https://medium.com/@birla.deepak26/autoencoders-76bb49ae6a8f

[13] Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Kil-
loran. Quantum embeddings for machine learning. arXiv preprint
arXiv:2001.03622, 2020.

[14] Harry Buhrman, Richard Cleve, John Watrous, and Ronald De Wolf.
Quantum fingerprinting. Physical Review Letters, 87(16):167902, 2001.

[15] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, M So-
haib Alam, Shahnawaz Ahmed, Juan Miguel Arrazola, Carsten Blank,
Alain Delgado, Soran Jahangiri, et al. Pennylane: Automatic differ-
entiation of hybrid quantum-classical computations. arXiv preprint
arXiv:1811.04968, 2018.

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

15

	Introduction
	Background
	Quantum Autoencoders
	Architecture
	Model implementation

	Hamiltonian Simulation

	Implementation of the Hamiltonian Simulator using QAE
	Problem Definition
	Preparing a Dataset
	Loss Function
	Training Scheme for Hamiltonian Simulator

	Results

