
Technische Universität München
Fakultät für Informatik

Doctoral Thesis

Autonomous Learning for Machine Perception

Ioannis Nektarios Chiotellis

Supervised by

Prof. Dr. Daniel Cremers

April 2021

TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik

Autonomous Learning for Machine Perception

Ioannis Nektarios Chiotellis

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Nassir Navab
Prüfer der Dissertation: 1. Prof. Dr. Daniel Cremers

2. Prof. Emanuele Rodolà
3. Priv.-Doz. Dr. Rudolph Triebel

Die Dissertation wurde am 12.05.2021 bei der Technischen Universität München eingereicht

und durch die Fakultät für Informatik am 03.12.2021 angenommen.

To my family

Love responsibility. Say: It is my

duty, and mine alone, to save the

earth. If it is not saved, then I alone

am to blame.

– Nikos Kazantzakis

Abstract

In the last decade, major advancements in machine learning have had a major
impact in various fields of science and engineering. Two of the most notable
cases are the fields of computer vision and robotics. Due to the abundance
of their applications in day to day tasks, these improvements have drastically
changed the human experience and will likely have even more important
consequences in the future.

Among machine learning approaches, deep learning has emerged as the
most notable one, achieving impressive results in computer vision tasks such as
image classification, segmentation, tracking, etc., thereby surpassing previous
state-of-the-art approaches such as kernel methods. However, the success of
deep learning models came along with a requirement for large amounts of
labeled data. In fact, the success of deep neural networks has been attributed
to their ability to scale better than previous methods with larger data sets.

However, autonomous systems are more likely to succeed if they are able
to operate in a small data regime, where only a small subset of the data is
labeled by humans. The underlying, possibly intricate relationships within the
data as well as the major proportion of labels should be automatically inferred
by the learning system.

In this thesis, we develop machine learning algorithms that aim to minimize
the need for human supervision, utilizing techniques from Metric Learning,
Semi-Supervised Learning, Active Learning and Reinforcement Learning. We
explore problems from a diverse set of research areas including non-rigid
shape analysis, autonomous driving, deep active learning and combinatorial
optimization.

i

Zusammenfassung

In den letzten zehn Jahren hatten große Fortschritte beim maschinellen Lernen
große Auswirkungen auf verschiedene Bereiche der Wissenschaft und Technik.
Zwei der bemerkenswertesten Fälle sind die Bereiche Computer Vision und
Robotik. Aufgrund der Fülle ihrer Anwendungen bei alltäglichen Aufgaben
haben diese Verbesserungen die menschliche Erfahrung drastisch verändert
und werden wahrscheinlich in Zukunft noch wichtigere Konsequenzen haben.

Unter den Ansätzen des maschinellen Lernens hat sich das deep learning als
das bemerkenswerteste herausgestellt. Es erzielt beeindruckende Ergebnisse bei
Computer-Vision-Aufgaben wie Bildklassifizierung, Segmentierung, Verfolgung
usw. und übertrifft damit frühere Ansätze des Standes der Technik wie Kernel-
Methoden. Der Erfolg von Deep Learning Modellen ging jedoch mit der
Anforderung großer Mengen gekennzeichneter Daten einher. Tatsächlich wurde
der Erfolg tiefer neuronaler Netze auf ihre Fähigkeit zurückgeführt, besser als
frühere Methoden mit größeren Datenmengen zu betonen.

Autonome Systeme sind jedoch eher erfolgreich, wenn sie in einem small
data-Regime arbeiten können, in dem nur eine kleine Teilmenge der Daten
von Menschen gekennzeichnet wird. Die zugrunde liegenden, möglicherweise
komplizierten Beziehungen innerhalb der Daten sowie der Hauptanteil der
Etiketten sollten vom Lernsystem automatisch abgeleitet werden.

In dieser Arbeit entwickeln wir Algorithmen für maschinelles Lernen,, die da-
rauf abzielen, den Bedarf an menschlicher Überwachung zu minimieren. Dabei
werden Techniken aus den Bereichen metrisches Lernen, halbüberwachtes
Lernen, aktives Lernen und verstärkendes Lernen verwendet. Wir unter-
suchen Probleme aus einer Vielzahl von Forschungsbereichen, einschließlich
nicht starrer Formanalyse, autonomem Fahren, tiefem aktivem Lernen und
kombinatorischer Optimierung.

iii

Acknowledgments

This dissertation would not have been possible without the support and
encouragement of multiple people. Firstly, I would like to thank my doctoral
advisor Prof. Daniel Cremers for giving me complete freedom to pursue the
research topics I was interested in and being available for a discussion whenever
I asked for guidance. Further, for creating a friendly and diverse environment
in the lab, filled with great, competent people. I feel lucky for becoming part
of such an outstanding research group.

Secondly, I want to thank Dr. habil. Rudolph Triebel for his guidance and
supervision, especially during the early stages of my PhD, his support during
difficult periods and his valuable contributions in our collaborations.

I would like to express my gratitude to Sabine Wagner for taking care of
any administrative issue that arised and to Quirin Lohr for his continuous
technical support. Their work allowed me to focus exclusively on research and
the group could not be as successful without them.

The papers published throughout this degree would not have been possible
without the contributions of all my excellent collaborators: Daniel Cremers,
Jiayu Liu, Sahand Sharifzadeh, Rudolph Triebel, Thomas Windheuser and
Franziska Zimmermann. I am truly grateful for their hard work and all the
fruitful discussions.

I want to thank my former office mates Zorah Lähner and Marvin Eisen-
berger for being great colleagues and excellent researchers. Our discussions
are already missed. Further, I want to thank Thomas Möllenhoff, Tao Wu
and Björn Häfner for their friendship, our diverging discussions and after-work
dinners. I want to thank my colleagues from our newly created Deep Learning
Focus Group: Christian Tomani, Qadeer Khan, Patrick Wenzel, Vladimir
Golkov and Yueshong Shen. Our informal discussions about research and
everything else have been a great addition to my experience in the group. I
would also like to thank many colleagues met over the years at the Computer
Vision Group at TUM for the amazing time, all the memorable moments and
the nice discussions about research and completely unrelated topics: Florian
Bernard, Niko Demmel, Csaba Domokos, Marvin Eisenberger, Thomas Frerix,
Vladimir Golkov, Björn Häfner, Philip Häusser, Caner Hazirbas, Mariano
Jaimez Tarifa, Qadeer Khan, Lukas Köstler, Zorah Lähner, Emanuel Laude,
Benedikt Löwenhauser, Lingni Ma, Robert Maier, Thomas Möllenhoff, Michael

v

Möller, Yvain Queau, Emanuele Rodola, David Schubert, Christiane Sommer,
Mohamed Souiai, Jan Stühmer, Christian Tomani, Rudolph Triebel, Vladyslav
Usenko, Matthias Vestner, Rui Wang, Patrick Wenzel, Thomas Windheuser,
Tao Wu, Nan Yang and Zhenzhang Ye. I will surely never forget the great mo-
ments we had; may it be conference trips, group retreats, Weißwurst breakfasts,
coffee breaks, afternoon walks, table soccer.

I am very thankful to all my friends for always being by my side and
enriching my life with joy and fun: Vyron, Anna H., Tasos, Vangelis, Nikos,
Konstantina, Spyros, Fei, Alexandros T., Stellina, Anna M., Giorgos, Giota,
Alfonso, Oriana, Marvin, Marlene, Barbara and Lars. And of course my
friends who live far away but are always close: Alexandros A., Vasilis, Virginia,
Giorgos M., Alex N., Corinna, Frank and Matthias. I dearly appreciate having
all of you in my life.

Lastly, and most importantly, I want to especially thank my family for all
their love, patience and unconditional support. My mother and my brothers
have always had my back, believed in me and strongly supported me in
whichever goal I pursued. My nephews always brighten up my day whenever I
have the chance to visit. The journey of this PhD has been both challenging
and exciting, paved with invaluable experiences and many lessons learned. I
am equally excited about a promising future.

vi

Contents

Contents vii

List of Figures x

List of Tables xii

1 Introduction 1
1.1 Supervised Learning . 3

1.1.1 Regression and Classification 4
1.1.2 Metric Learning . 5

1.2 Semi-Supervised Learning . 6
1.3 Active Learning . 6
1.4 Reinforcement Learning . 7

1.4.1 Inverse Reinforcement Learning 8
1.5 Deep Learning . 8

1.5.1 Neural Networks . 8
1.5.2 Back-Propagation . 10
1.5.3 Stochastic Gradient Descent 10
1.5.4 Architectures . 10

2 Non-Rigid 3D Shape Retrieval 15
2.1 Introduction . 16

2.1.1 Related work . 17
2.1.2 Contribution . 17

2.2 Approach . 18
2.2.1 Overview . 18
2.2.2 The Laplace-Beltrami operator 20
2.2.3 Point descriptors . 21
2.2.4 Weighted average . 23
2.2.5 Large Margin Nearest Neighbor 24

2.3 Experiments . 27
2.3.1 Datasets . 27
2.3.2 Evaluation setting . 27

2.4 Conclusion . 29

vii

Contents

3 Learning to Drive from Demonstrations 31

3.1 Introduction . 32

3.2 Problem Formulation . 33

3.3 Evaluation . 35

3.4 Conclusion . 39

4 Incremental Semi-Supervised Learning from Streams 41

4.1 Introduction . 42

4.2 Related Work . 43

4.3 Incremental Label Propagation 44

4.3.1 Reviewing Offline Label Propagation 44

4.3.2 Convergence on Partially Connected Graphs 46

4.3.3 Incremental Label Propagation 47

4.4 Runtime Analysis . 49

4.5 Experiments . 50

4.5.1 Evaluation and Setup 50

4.5.2 Influence of ϑ . 51

4.5.3 Influence of number of observed labels 52

4.5.4 Confusion Analysis . 52

4.5.5 KITTI Benchmark . 53

4.6 Conclusion . 55

5 Effective Version Space Reduction for ConvNets 57

5.1 Introduction . 58

5.2 Related Work . 60

5.3 Preliminaries . 60

5.4 Prior Mass Reduction . 61

5.4.1 Gibbs Error . 61

5.4.2 Variation Ratio . 62

5.5 Diameter Reduction . 62

5.5.1 Worst-Case Pairwise Disagreement 62

5.5.2 Worst-Case Gibbs-Vote Disagreement 63

5.5.3 Diameter Reduction as Reducibility Reduction 64

5.5.4 Weighted Diameter Reduction 64

5.6 Realizability Assumption . 65

5.7 Evaluation . 66

5.7.1 Diameter Reduction is More Effective Than Prior Mass
Reduction . 67

5.7.2 Comparison to Other Baselines 69

5.7.3 Evolution of Samplable Version Space and its Implications 70

5.7.4 Gibbs-Vote Disagreement 70

5.8 Conclusion . 71

6 Learning to Explore 73

viii

Contents

6.1 Introduction . 74
6.2 Related Work . 75
6.3 Formulation . 77

6.3.1 Graph Exploration Overview 77
6.3.2 Markov Decision Process 78

6.4 Methodology . 80
6.4.1 Predicting the Future Path Lengths 80
6.4.2 Network Architecture 81
6.4.3 Input Features . 82
6.4.4 Training . 82

6.5 Experiments . 83
6.5.1 Evaluation Protocol . 83
6.5.2 Procedurally Generated Graphs 84
6.5.3 City Road Networks . 86

6.6 Conclusion . 87

7 Conclusion 89

A Appendix for Chapter 4 91
A.1 Details for proof of Theorem 1 91

B Appendix for Chapter 6 93
B.1 Implementation Details . 93

B.1.1 Hyperparameters . 93
B.1.2 Network Architecture 94
B.1.3 Replay Buffer for Graphs 95

B.2 Comparison to DQN . 95

Own Publications 97

Bibliography 99

ix

List of Figures

1.1 The active learning loop. 6

1.2 The agent-environment interaction loop. 7

1.3 Illustration of a single artificial neuron. 9

1.4 A 3-layer feed-forward neural network with layer sizes 3-4-2. 11

1.5 Illustration of 2D convolution . 11

1.6 Feature update in a graph neural network 13

2.1 Shape retrieval example from SHREC’14 scanned dataset 16

2.2 The CSD+LMNN pipeline . 19

2.3 Stiffness matrix and mass Matrix 21

2.4 Large Margin Nearest Neighbor metric transformation 25

2.5 CSD shape descriptors before and after LMNN embedding 29

2.6 SHREC’14 real (scanned) dataset 30

2.7 SHREC’14 synthetic dataset . 30

3.1 Proposed DQN Architecture . 35

3.2 Extracted feature weights using IRL 36

3.3 Policy improvement over IRL iterations 38

4.1 Bounding Box Object Detection in KITTI 45

4.2 Influence of hyperparameter ϑ . 51

4.3 Accuracy vs number of observed labels on MNIST 52

4.4 Improved label prediction with ILP 53

4.5 Test error of ILP over time for different ratios of labeled data . . . 54

4.6 Results on KITTI stream given 10% of the labels 55

5.1 Approaches to version space reduction 59

5.2 “Samplable” version space and wrong agreement 65

5.3 Version space embedding over training iterations 66

5.4 Accuracy over number of queried labels 68

5.5 Distance between Gibbs vote classifier and projection of h∗ 71

5.6 Diameter and wrong agreement over number of queried labels . . . 72

6.1 Online graph exploration of a maze 76

6.2 The graph exploration agent-environment interaction loop 77

x

List of Figures

6.3 Proposed neural network architecture for online graph exploration 81
6.4 Samples from procedurally generated data sets 84
6.5 Exploration rate over gradient steps for six procedurally generated

data sets . 85
6.6 City road networks . 86
6.7 Exploration rate over gradient steps for city data sets 87

B.1 Exploration rate over gradient steps for the six procedurally gener-
ated data sets. 95

xi

List of Tables

2.1 CSD and CSD+LMNN evaluation on SHREC’14 real 28
2.2 CSD and CSD+LMNN evaluation on SHREC’14 synthetic 28
2.3 Comparison of retrieval methods on SHREC’14 30

3.1 L1 difference between trained and expert feature expectations . . . 37

4.1 Methods comparison on MNIST test set 52
4.2 Test error comparison of online learning methods on KITTI 54

5.1 Hyperparameters used in active learning experiments 67
5.2 Accuracy on the test set in percentage. 68
5.3 Diameter (pairwise disagreement) on the test set in percentage. . . 69

6.1 Basic statistics of procedurally generated data sets 84
6.2 Methods exploration rate comparison on generated networks . . . 85
6.3 Basic statistics of procedurally generated data sets 86
6.4 Methods exploration rate comparison on city road networks 87

B.1 Hyperparameters used in experiments evaluating NOGE. 93
B.2 Network architecture. 94

xii

Chapter 1

Introduction

We may hope that machines will
eventually compete with men in
all purely intellectual fields. But
which are the best ones to start
with? Many people think that a
very abstract activity, like the
playing of chess, would be best. It
can also be maintained that it is
best to provide the machine with
the best sense organs that money
can buy, and then teach it to
understand and speak English.

– Alan Turing

Chapter 1. Introduction

Machine learning is a very wide area of research. A long standing dream
of science has been to build machines that could one day take on tasks that
are tedious or dangerous for humans. In the 20th century, after the industrial
revolution and as soon as automation became a reality, scientists envisioned
that machines with computing abilities could also tackle more high-level tasks,
such as playing games like chess or being able to describe what is depicted
in an image. Thus, machine learning and computer vision have been coupled
since the early days of computing.

As the interests of the author lie in the intersection of machine learning,
computer vision and robotics, this thesis focuses on problems related to these
topics. Problems in robotics are typically non-stationary and require online
optimization techniques. Autonomous systems need to learn how to perform
tasks with minimal human supervision and have to be able to operate while
having incomplete information. Therefore, this thesis is mainly focused on two
directions:

a) develop learning algorithms that can utilize small amounts of labels
provided by humans, and

b) develop efficient algorithms that can operate in the online setting, aiming
to close their performance gap with offline learning systems.

This thesis is based on the following publications:

� I. Chiotellis, R. Triebel, T. Windheuser, and D. Cremers (2016). “Non-
Rigid 3D Shape Retrieval via Large Margin Nearest Neighbor Embed-
ding”. In: European conference on computer vision (ECCV).

� S. Sharifzadeh, I. Chiotellis, R. Triebel, and D. Cremers (2016). “Learning
to Drive using Inverse Reinforcement Learning and Deep Q-Networks”.
In: Workshop on “Deep Learning for Action and Interaction”, Conference
on Neural Information Processing Systems (NIPS).

� I. Chiotellis∗, F. Zimmermann∗1, D. Cremers, and R. Triebel (2018).
“Incremental semi-supervised learning from streams for object classifica-
tion”. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS).

� J. Liu, I. Chiotellis, R. Triebel, and D. Cremers (2020). “Effective Version
Space Reduction for Convolutional Neural Networks”. In: Machine
Learning and Knowledge Discovery in Databases - European Conference,
(ECML-PKDD)

and the preprint:

� I. Chiotellis, and D. Cremers (2020). “Neural Online Graph Exploration”.
(arXiv preprint arXiv:2012.03345).

1The symbol * denotes equal contribution.

2

1.1. Supervised Learning

These papers use techniques from Metric Learning, Semi-Supervised Learn-
ing, Active Learning and Reinforcement Learning. Thus, in this first chapter
we briefly introduce the main ideas behind these categories of machine learning.

In the rest of Chapter 1, we introduce a few fundamental concepts of
machine learning that are relevant and necessary to understand the works
described in the following chapters. In Chapter 2, we describe an application
of metric learning to non-rigid shape retrieval. In Chapter 3, we show a system
that can learn to drive given a few demonstrations by a human using inverse
reinforcement learning. In Chapter 4, we present an algorithm that can learn
to classify objects in a stream of sparsely labeled data using a semi-supervised
learning technique on a growing graph. In Chapter 5, we investigate active
learning with convolutional neural networks through a principled theoretical
framework and propose a novel query criterion. Finally, in Chapter 6, we
study an important combinatorial optimization problem, called online graph
exploration, by casting it as a reinforcement learning problem.

1.1 Supervised Learning

The most common regime in machine learning, that has also seen the most
success, is the regime of supervised learning. Suppose that we observe a
real-valued vector input variable x ∈ X ⊆ Rd and we want to use it to predict
the value of a real-valued target variable y ∈ Y ⊆ R. We assume that we have
a training set of N observations of the input variable (x1,x2, . . . ,xN) together
with N corresponding observations of the target variable (y1, y2, . . . , yN).

The goal is to learn a mapping f : X 7→ Y from the given training data,
such that given some unseen observation x∗i ∈ X , we are able to predict their
associated target or label y∗i ∈ Y. To do this, we represent the mapping f as
a differentiable function parameterized by a set of parameters θ. Often this
function is called the model :

y = f(x; θ). (1.1)

The model parameters θ are to be optimized or in other words trainable.
To train the parameters θ, we first need to define a real-valued loss function
`(yi, f(xi; θ)) ∈ R that measures the discrepancy between a target label yi
and the model prediction f(xi; θ). Thus, our aim is to find parameters θ that
minimize the loss function over all training examples:

min
θ
L(θ) = min

θ

N∑
i=1

`(yi; f(xi; θ)) (1.2)

Loss functions are often chosen to be smooth convex functions, such that
the gradient of the loss function is zero when the loss is minimal. Thus, an

3

Chapter 1. Introduction

important ingredient to finding optimal parameters is to be able to compute
the gradient of the loss function with respect to θ:

∇θL(θ) =

N∑
i=1

∇θ`(yi; f(xi; θ)) (1.3)

When the prediction variable is a linear combination of the inputs (e.g.
linear regression models), we can set the gradient to zero and find a closed-form
solution for θ. However, most interesting problems involve more complicated
input-output relationships and we need to learn non-linear mappings f . This
brings the necessity for iterative optimization algorithms. A common algorithm
to optimize for θ in this case is gradient descent. The idea is to make small steps
in parameter space, each time taking the direction opposite to the gradient.
In each iteration, we update the parameters as:

θ ← θ − η∇θL(θ), (1.4)

where η > 0 is the step size or the learning rate. When the loss function is
minimized, we say that the model fits the training data well.

1.1.1 Regression and Classification

The two most well known and studied supervised learning problems are regres-
sion and classification. Their main difference lies in the space Y of the target
labels. In regression, the labels are continuous: Y ⊆ R. In classification the
labels are categorical, e.g. Y = {1, 2, . . . ,K} for a problem with K classes.

A typical loss function for regression is the mean squared error (MSE):

LMSE(θ) =
1

N

N∑
i=1

||yi − f(xi; θ)||2. (1.5)

A typical loss function for classification is the cross-entropy loss (CE):

LCE(θ) =
1

N

N∑
i=1

− log p(yi|xi; θ), (1.6)

where p(yi|xi; θ) is the conditional probability of class yi given sample xi,
estimated by the model. A common way to infer probabilities from a model’s
predictions is to let the model output a K-dimensional vector and use the
softmax function:

p(j|xi; θ) =
exp(fj(xi; θ))∑K
k=1 exp(fk(xi; θ))

∀j ∈ {1, 2, . . .K} (1.7)

where by fj(xi; θ) we denote the model’s prediction associated with class
j, given that the model outputs K predictions, one for each class.

4

1.1. Supervised Learning

1.1.2 Metric Learning

Metric learning is a beautiful idea complementary to many well known machine
learning algorithms that has pushed the state of the art in problems ranging
from classification and clustering to self-supervised representation learning and
reinforcement learning.

The idea is that instead of directly learning a mapping f : X 7→ Y, we
can learn a metric d : X × X 7→ R+ that reflects the desired distance or
(dis-)similarity between training examples. This notion of similarity is given
by the labels for classification and regression problems, but it can also be
based on any other source of information, making metric learning applicable in
many domains. This makes metric learning a particularly attractive learning
paradigm since we are interested in reducing human supervision.

Formally, the idea in metric learning is to to learn a mapping h : X 7→ Z,
such that the metric d : Z × Z 7→ R+ reflects the desired dissimilarities.
Usually Z ⊆ RM is called the embedding space. For classification problems,
we can then use a simple k-nearest neighbor classifier acting on the embedding
space Z. If the target output space is explicitly needed for inference, we can
additionally learn a simple mapping f : Z 7→ Y, either separately or jointly
with h. Imposing a loss on the embedding space Z rather than the output space
Y regularizes and smooths the learning process. Moreover, metric learning
allows for some interpretability of the model.

Let us assume we are given binary labels yij ∈ {0, 1} indicating whether
training samples xi and xj are similar or not. A common measure of similarity
between vectors is the cosine similarity:

cos(xi,xj) =
xi
||xi||

· xj
||xj ||

, (1.8)

which lies in [−1,+1] and intuitively measures the angle between the vectors.
One loss often used in metric learning is a pairwise loss based on the cosine
similarity:

`cos(zi, zj , yij) =

{
1− cos(zi, zj), if yij = 1

max(0, cos(zi, zj)), if yij = 0,
(1.9)

where we have used zi = h(xi; θ) to simplify notation. The training loss is
computed with respect to all pairs of training inputs:

Lcos(θ) =
N∑
i=1

N∑
j>i

`cos(zi, zj , yij). (1.10)

5

Chapter 1. Introduction

1.2 Semi-Supervised Learning

A well studied scenario in machine learning is that of semi-supervised learning
(SSL). In this case, we are only given labels for a small subset of the training
samples.

In particular we are given a training set X = XL ∪ XU that consists of
labeled samples XL and unlabeled samples XU . We are only given labels
YL that correspond to the samples in XL. A naive approach would be to
completely ignore the unlabeled samples XU and train a model with supervised
learning on the labeled training set (XL, YL). However, SSL algorithms aim to
utilize the unlabeled data as much as possible.

There are two general approaches to this problem, the transductive and
the inductive approach. In the transductive setting (V. Vapnik, 1998), we are
only interested in specifically estimating the labels YU of the unlabeled set XU

and we do not care about any other potentially unseen data.

The second approach is the inductive setting, where as usual we learn a
general model f : X 7→ Y. We can then apply f to infer the labels YU but we
can use f to predict the labels of unseen data as well.

1.3 Active Learning

Data

Learner

Oracle

query

annotate

train

Figure 1.1: The active learning loop.

Another area of research that is particularly relevant to industrial appli-
cations is the field of Active Learning (AL). As in semi-supervised learning,
the learning algorithm is initially given access to the labels of a small subset
of training samples. However, in between learning rounds the algorithm can
query an oracle (e.g. a human annotator) for a small number of labels that are
then added to the training set. In the next training round, the model can be
trained with the extended training set. The aim of an active learning system is
to learn a good mapping f while making as few queries as possible. Therefore,

6

1.4. Reinforcement Learning

it is important that the learning system has a good way of estimating its own
uncertainty about a sample’s label and use this as a criterion to query the
oracle only for the most informative labels. Thus, the main focus of research
in AL lies in finding good measures of uncertainty and deriving query criteria.

1.4 Reinforcement Learning

𝑎𝑡

,𝑠𝑡+1 𝑟𝑡+1

EnvironmentAgent

Figure 1.2: The agent-environment interaction loop.

Autonomous systems must be able to operate online, namely to quickly
adapt to new situations and react appropriately. Further, truly autonomous
systems must be able to influence their environment, namely to be able to act.
Reinforcement learning (RL) is a very general framework that captures this
setting and can be applied to a vast number of problems (e.g. board games,
navigation, recommendation systems etc.). As such it also carries many hopes
for the realization of truly intelligent systems.

In the RL framework, there is a continual interaction between an agent
and their environment (Figure 1.2). The agent follows a policy π : S 7→ A,
that maps states st ∈ S to actions at ∈ A. From a given state st, the agent
performs an action at and the environment “responds” with a new state st+1

and a reward signal rt+1. The goal of the agent is to choose actions such that
the cumulative reward is maximized. Thus the notion of a value function of a
state s, given a policy π is introduced:

V π(s) = Eπ[
∞∑
k=0

γkrt+1+k|st = s], (1.11)

where γ ∈ [0, 1] is a discount factor that weighs distant future rewards
less than imminent rewards. The discount factor is especially important in
continual (infinite horizon) problems to avoid infinite sums. Further to describe
the influence of a particular action, the notion of an action-value function is
used, assuming that action a is performed and policy pi is followed thereafter:

Qπ(s, a) = Eπ[
∞∑
k=0

γkrt+1+k|st = s, at = a]. (1.12)

RL problems are formally described as Markov Decision Processes (MDPs).
An MDP is defined as a 5-tuple (S,A, p, r, γ), namely a state space S, an

7

Chapter 1. Introduction

action space A, a state transition probability function p : S ×A× S 7→ [0, 1],
a reward function r : S ×A 7→ R and a discount factor γ ∈ [0, 1].

RL algorithms either directly parameterize and learn a policy π : S 7→ A or
learn the action value function Q : S ×A 7→ R and obtain a policy by taking
the action with the maximal value:

at = arg max
a

Q(st, a). (1.13)

1.4.1 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) is the process of learning a policy by
observing the behavior of another agent - that is an expert. In imitation
learning, the algorithm simply learns to copy the expert’s behavior. A more
subtle approach is to estimate the reward or the value function that the expert
is trying to maximize. This way, a policy different than the one of the expert
may be learned, and thus the expert’s performance may be even surpassed.

1.5 Deep Learning

The term “deep learning” describes a wide range of machine learning systems
which primarily use deep neural networks as models. In the last decade, deep
learning systems have improved the state-of-the-art in all previously described
categories of learning. Moreover, recently self-supervised deep learning systems
have reached results that are competitive even to supervised models.

1.5.1 Neural Networks

Artificial neural networks are machine learning models that originally aimed to
resemble biological systems in the way they process information. Research in
such models began already in the 1940s (McCulloch and Pitts, 1943). However,
interest in neural networks was abandoned at least three times until today, each
time because a different seemingly unsolvable challenge was encountered. And
yet, every time, a breakthrough idea would bring them back to the forefront of
research. The latest instance of this was in 2012, when a team of researchers
won a popular image recognition competition (ILSVRC-2012) by a large margin,
using a deep convolutional neural network (Krizhevsky et al., 2012).

Neural networks consist of layers of neurons. A neuron is the smallest
building block of a neural network. Given a set of inputs, it is meant to perform
a fast, simple computation and output a scalar response, imitating a biological
neuron that responds to a set of incoming electrical signals. First, each neuron
j computes a linear combination of their inputs xi:

aj =
D∑
i=1

wjixi + bj , (1.14)

8

1.5. Deep Learning

1

Figure 1.3: Illustration of a single artificial neuron.

where wji are called the weights and bj the bias of neuron j. To achieve a
nonlinear mapping, each neuron implements a differentiable, nonlinear activa-
tion function h such that its output is:

yj = h(aj). (1.15)

A layer consists of a stack of neurons implementing the same activation
function h, while each neuron has their own weights and biases. Therefore,
each neuron in a layer can have a different response to the same set of input
signals. Thus, we can compactly write the computation of a layer of M neurons
in matrix-vector notation:

y = h(Wx + b), (1.16)

where x ∈ RD is the layer’s input, y ∈ RM is the layer’s output and h(·)
is applied elementwise. The weight matrix W ∈ RM×D and the bias vector
b ∈ RM are the parameters of this layer that are to be learned.

Originally, typical activation functions for neural networks were the logistic
sigmoid function and the tanh(·) function. This way, the output of a neuron
could be interpreted as a binary response, namely the neuron was “firing”
or “not firing”, and the model parameters were tuning the sensitivity of each
neuron. Modern neural networks use asymmetric, semibounded activation
functions such as rectified linear units (ReLUs), namely the max(·, 0) function.

We mentioned that a neural network consists of layers of neurons. Each
layer takes as input the output of the previous layer, transforms it in a
nonlinear fashion and passes it forward to another layer that can have a different
dimensionality. This structure allows neural networks to represent highly
nonlinear input-output mappings. Notice that we can compactly represent a
neural network’s computation with a simple recursive formula:

x(l) = hl(W
(l)x(l−1) + b(l)), (1.17)

9

Chapter 1. Introduction

where hl(·) denotes the activation function implemented in the l-th layer,
x(0) = x is an input vector, coming from the raw data samples and x(L) =
f(x; θ) is the network’s output vector for a network with L layers. The term
deep learning describes networks with multiple layers (large L). Intuitively, the
more layers a network consists of (the deeper the network), the more complex
functions of the inputs it can represent. Each layer of the network gives us
a different representation of the input, that can be seen as a more high-level
description.

1.5.2 Back-Propagation

A convenient property of deep neural networks is that, since we can decompose
the network to a sequence of differentiable functions (the layers), we can easily
compute the gradient of the loss function with respect to all parameters by
simply applying the chain rule of differentiation (Rumelhart et al., 1986).

1.5.3 Stochastic Gradient Descent

In Section 1.1 we mentioned that gradient descent is an optimization algorithm
that we can use when there is no closed-form solution for the model parameters.
Nevertheless, “standard” gradient descent needs the full training set to compute
the gradient before doing a single optimization step. This is both expensive
and can cause overfitting.

Instead, we can compute the gradient online using a single training sample
each time to update the model parameters. Namely, we can perform N
parameter updates by iterating through the (randomly shuffled) training set
of size N and doing a gradient descent step for each sample. The gradient
is not precise, but it can be shown that it is a stochastic approximation to
the full gradient, thus also the name of the algorithm “stochastic gradient
descent” or SGD. This version of the algorithm is faster and consumes only
O(1) instead of O(N) memory. Further, it can be shown that the stochasticity
of the algorithm (the order of the updates) achieves a sort of regularization of
the model.

In practice, deep learning systems are trained using minibatches, namely
each gradient descent step is computed using a small set of B samples (B << N)
that is randomly sampled from the training set without replacement.

1.5.4 Architectures

Feed-Forward Networks

The network described in Section 1.5.1 is one of the first and more straight-
forward neural network architectures conceived (Rosenblatt, 1961). It is fully
connected, namely each neuron in layer l is connected to all inputs from layer
l − 1. This architecture is also known as a feed-forward network.

10

1.5. Deep Learning

Figure 1.4: A 3-layer feed-forward neural network with layer sizes 3-4-2.

Convolutional Networks

As we mentioned in Section 1.5.1, the latest breakthrough that revamped
neural networks as a state-of-the-art machine learning approach was through
winning an image recognition challenge. Images are very high-dimensional
inputs. Typically an image is represented as a 3-dimensional tensor of size
H×W ×C, where H and W are the height and width of the image respectively
and C is the number of channels, which is usually 3 for RGB images or 1 for
gray-scale images.

Using feed-forward networks for image-type inputs has two major drawbacks.
First, the number of trainable parameters in the first layer would explode as
we would need H ·W · C + 1 parameters for each neuron. Second, stacking
the image pixels as a vector would completely ignore the structure of images,
namely that nearby pixels are more likely to be related than pixels that are far

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0

I

∗
1 0 1

0 1 0

1 0 1

K

=

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

I ∗K

1 0 1

0 1 0

1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 1.5: Illustration of 2D convolution: A single-channel input image I
of dimensions 7× 7 is convolved with a 3× 3 convolutional filter K, thereby
producing an output image of dimensions 5× 5.

11

Chapter 1. Introduction

apart from each other. This means, we assume that there exist local properties
in pixel neighborhoods that are useful to describe the image content and these
can be learned in a more efficient way.

This is where convolutional neural networks shine (Fukushima, 1980; LeCun
et al., 1989). Instead of fully connecting each neuron to all input pixels, we
learn small filters or kernels (e.g. of size 3 × 3) which we convolve with the
image. Namely, we perform element-wise multiplication of the kernel with a
small image region and sum the products. Then, we slide the kernel to the
next pixel and convolve with the same kernel. We repeat this process until we
cover the whole image. We can apply several different filters to the same image.
The output will be another image or feature map of dimensions H ′ ×W ′ × C ′,
where the new height H ′ and the new width W ′ will depend on the size of the
kernel, and C ′ will be the number of different kernels we apply.

As with feed-forward networks, convolution operations are succeeded by
nonlinear activation functions. What we have described until now constitutes
a single convolutional layer. As with feed-forward networks, we can use
the output of a layer as the input of another layer, thereby building deep
convolutional networks.

Graph Neural Networks

Over the years, neural networks have been used in many machine learning
problems, such as image processing, natural language processing and robotics
tasks. The data generated and learned from in these tasks are mostly regular,
namely the data can be represented as 1D vectors - which can be processed with
feed-forward networks - or 2D (or 3D) grids that can be fed to convolutional
networks.

Yet, in many applications, the data are generated from non-Euclidean do-
mains that represent data as graphs, with relationships and mutual dependency
between objects. This has led to a growing interest in deep learning research
that focuses on the structure of graph data. Typical tasks include graph
classification (e.g. to classify molecules as harmful or not), node classification
(e.g. to detect malicious users in a social network) and link prediction (e.g. to
recommend new connections to users of a social network).

Assume we are given a graph G = (V,E) with nodes V = {1, 2, . . . , N} and
edges E ⊂ V × V , where an edge (i, j) ∈ E represents a connection between
two nodes i and j. Additionally, we assume that each node i is associated
with an feature vector xi ∈ RD, and each edge with a feature vector eij ∈ RF .
There are many frameworks one can use to describe the computation within
a graph neural network (Battaglia et al., 2018). Here, we present a simple
instantiation. One layer of a graph neural network will update the node and
edge features, resulting in an updated graph with the same structure. First,
each edge will get a new feature vector:

12

1.5. Deep Learning

xb

xa

xc

xd xe

x′
b

Figure 1.6: Computing a new node feature in a graph neural network: A new
feature vector x′b (green) is computed for node b. Information is aggregated
from b’s neighbors (purple) along the edges (red) connecting them.

e′ij = φe(eij ,xi,xj), (1.18)

where φe is a differentiable parameterized function, such as a feed-forward
neural network. Second, each node will compute an incoming message by
aggregating information from all edges incident to them:

mi = ρ({e′ij : j ∈ N(i)}), (1.19)

where ρ(·) is a permutation invariant function, such as elementwise sum or
max(·), and N(i) denotes the neighbors of node i in G. Finally, each node will
get an updated feature vector:

x′i = φv(mi,xi), (1.20)

where φv is another differentiable parameterized function, such as another
feed-forward neural network.

13

Chapter 2

Non-Rigid 3D Shape
Retrieval

The greatest thing by far is to be a
master of metaphor; it is the one
thing that cannot be learnt from
others; and it is also a sign of
genius, since a good metaphor
implies an intuitive perception of
the similarity in the dissimilar.

– Aristotle

Chapter 2. Non-Rigid 3D Shape Retrieval

Query

Class: 16

Supervised Dictionary Learning

16

Proposed Method:

16

16 16 16 16 16

4 17 17

Combined Spectral Descriptors + LMNN

Figure 2.1: Example of shape retrieval from SHREC’14 Humans - real (scanned)
dataset. The query model (top left) belongs to class 16. The top row shows
the best five matches retrieved by the Supervised Dictionary Learning method
(Litman et al., 2014). The best five matches retrieved by the proposed method
(CSD+LMNN) are shown in the bottom row. The blue color indicates that
the retrieved model corresponds to the correct class (i.e. 16) and the red
color indicates an incorrect class. The quantitative experiments in Section
2.3 show that the proposed method outperforms the state of the art methods
significantly on the SHREC’14 Humans dataset.

2.1 Introduction

This chapter is based on the paper by Chiotellis et al., 2016. The analysis of
3D shapes is becoming more and more important, with increasing amounts
of data becoming available through novel 3D scanning technology and 3D
modeling software. Among the numerous challenges in 3D shape analysis, in
this work we focus on the problems of non-rigid shape similarity and non-rigid
3D shape retrieval: Given a set of 3D shapes and a previously unobserved query
shape, we would like to efficiently determine the similarity of the query to all
shapes in the database and identify the most similar ones – see Figure 2.1. The
computation of shape similarity is a difficult problem, in particular if we wish
to allow for non-rigid deformations of the shapes. Under such deformations
the appearance of the object may change significantly. For many real-world
retrieval applications on large 3D shape databases, it is important that the
retrieval of similar shapes can be computed efficiently.

16

2.1. Introduction

2.1.1 Related work

Much like in image analysis, the analysis of 3D shapes often starts with the
extraction of local feature descriptors which are invariant to rigid and robust
to non-rigid transformations of the shape. Popular descriptors include the
Heat Kernel Signature (Sun et al., 2009), the Wave Kernel Signature (Aubry
et al., 2011) and the scale-invariant Heat Kernel Signature (M. M. Bronstein
and Kokkinos, 2010). In order to get a correspondence between 3D shapes, the
shape analysis community has devised a variety of machine learning approaches
to learn optimal point descriptors (A. M. Bronstein, 2011; Masci et al., 2015;
Rodolà et al., 2014; Windheuser et al., 2014).

Learning approaches have also been used for shape retrieval. Litman
et al., 2014 define a dictionary of point descriptors and use it to compute
sparse representations of the point descriptors of each shape. Then they
obtain global shape descriptors by sum pooling. The distances between them
are considered to be the dis-similarity between the shapes. The authors go
on to use unsupervised and supervised learning methods to optimize the
classification results. In the supervised case, the authors try to minimize a
triplet loss (Weinberger et al., 2005a) using a subset of the pooled descriptors
as a training set. Using stochastic gradient descent (SGD) they propagate the
error back to the dictionary of point descriptors. This means their objective
is to learn an optimal dictionary of point descriptors for the specific task of
shape retrieval and similarity ranking. Although this approach yielded state
of the art results (Pickup et al., 2014), the computation time needed to learn
the optimal dictionary (3-4 hours) makes it prohibitively expensive to use
with larger datasets. In the work of Gasparetto and Torsello, 2015 the main
purpose is to learn the invariant representation of each shape of a given dataset.
The authors use a statistical framework to address classification tasks. While
achieving state of the art performance, a major drawback of this method, from
a learning point of view, is that it uses a large subset of the shapes (even 90%)
for training.

2.1.2 Contribution

In this work, we propose a 3D shape retrieval method which provides state of
the art performance while being substantially faster than previous techniques.
We achieve this using a novel combination of stacked shape descriptors and a
linear embedding of their distribution by means of a metric learning approach.
In contrast to the approach by Litman et al., 2014, we do not employ dictionary
learning to obtain shape descriptors from sparse point descriptors, but instead
use weighted averaging directly on the point descriptors of a shape. We then
learn a metric for the resulting shape descriptors so that samples from the same
class are closer to each other than samples from different classes. Letting the
learning process operate only on shape descriptors reduces our overall runtime

17

Chapter 2. Non-Rigid 3D Shape Retrieval

tremendously. One of the main insights of our work is that the stacked shape
descriptor alone does not lead to better performance, but in combination with
the Large Margin Nearest Neighbor (LMNN) approach for metric learning,
classification performance is significantly higher, reaching almost 98% mean
average precision on the challenging “SHREC’ 14 Humans - scanned” data
set. Furthermore, our method is much faster than previous methods, as the
individual steps require comparably only a few computations: Rather than
several hours, our approach only needs approximately 4 minutes to learn the
optimal embedding of shapes using only 40% of the shapes.

2.2 Approach

Our problem dictates to compare non-rigid shapes therefore we aim to obtain
representations that capture their intrinsic properties. Our goal is to find
representations such that similar shapes have proportionally similar descriptors.
This becomes a particularly challenging problem when considering all possible
deformations a single shape can have. In the next paragraphs we explain in
detail every tool that we use. First we present an overview of our pipeline as
illustrated in Figure 2.2.

2.2.1 Overview

A commonly used scheme in shape analysis is to model a shape S as a two-
dimensional manifold M and representing it as a triangular mesh with a set
of n vertices V = {v1, v2, . . . , vn}, a set of triangular faces F ⊂ V3 and a set of
edges E ⊂ V2 between adjacent vertices.

At first, we compute the Laplace-Beltrami operator (LBO) for each mesh
in our dataset. We then compute a point descriptor d(x) - based on the LBO
- for each vertex of our mesh. There are different descriptors that can be
utilized. We use the Wave Kernel Signature (Aubry et al., 2011) and the
scale-invariant Heat Kernel Signature (M. M. Bronstein and Kokkinos, 2010).
The reason to choose LBO-based descriptors is their inherent invariance to
isometric deformations.

As a mesh can have several thousands vertices and datasets contain a large
number of meshes, it becomes intractable to compare all point descriptors.
Therefore we compute a weighted average of the point descriptors of each mesh
and obtain a q-dimensional descriptor yf for each shape. The shape descriptors
yf can either be the averaged siHKS, the averaged WKS or a combination
of them. Our rational for the particular choice of descriptors is that siHKS
captures global, while WKS focuses on local shape features. We argue that a
stacked combination of them contains diverse information that can be fully
exploited by a metric learning algorithm.

In the end we feed a subset of our shape descriptors yf along with their
labels to a supervised metric learning algorithm (LMNN). The algorithm learns

18

2.2. Approach

Combined Spectral Point Descriptors
x 7→ d(x)

∀S ∈ D : ∀x ∈ S :

S 7→ yf (S)
∀S ∈ D :

yf (S) 7→ L · yf (S)
∀S ∈ D :

Averaged Spectral Point Descriptors

Large Margin Nearest Neighbor

Query via k-nearest Neighbors

Query Shape

Collection of Labeled Shapes

Figure 2.2: Overview: Schematic illustration of the proposed method.

19

Chapter 2. Non-Rigid 3D Shape Retrieval

a linear mapping L of the shape descriptors such that shapes with different
labels are easier to distinguish from one another in the new space.

Now when we want to classify a new shape, all we need to do is to compute
the same type of shape descriptor yf as the one we trained our classifier with
and transform it into the new space by applying the learned mapping L. The
labels of the k closest shapes in the transformed space determine the predicted
label for our query shape.

2.2.2 The Laplace-Beltrami operator

The Laplace-Beltrami operator (LBO) is a natural generalization of the Laplace
operator for Riemannian manifolds. Like the Laplacian, it is defined as the
(negative) divergence of the gradient, and it is a linear operator mapping
functions to functions. Therefore the LBO is often also simply referred to
as the Laplacian. Formally, given a smooth scalar field f : M → R on the
manifoldM associated to shape S, the Laplace-Beltrami operator ∆ is defined
as

∆f := −div(∇f). (2.1)

One of the most important properties of the Laplacian is that it is invariant
under isometric deformations. Particularly useful are the eigenvalues λi ∈ R
and the eigenfunctions φi :M→ R of the Laplacian, i.e.

∆φi := λiφi. (2.2)

The eigenvalues λi of Equation (2.2) – known as the Helmholtz equation – are
non-negative and represent a discrete set (0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . ≤ +∞) .
The corresponding eigenfunctions can be chosen to form an orthonormal basis:

〈φi, φj〉 =

∫
M
φi(x)φj(x)dx =

{
0, if i 6= j

1, if i = j.
(2.3)

Discretization

A popular discretization of the LBO is the cotangent scheme (Pinkall and
Polthier, 1993; Reuter et al., 2009). It allows to compute the eigenvalues λi
and eigenvectors φi as the solutions to the generalized eigenvalue problem

Aφi = λiBφi, (2.4)

where A ∈ Rn×n is the stiffness matrix and B ∈ Rn×n is the mass matrix.
Concretely, A is defined as

Aij =

{
cotαij+cotαji

2 , if (vi, vj) ∈ E
−∑k∈N(i)Aik, if i = j,

(2.5)

20

2.2. Approach

where αij and αji are the two angles opposite of the edge (vi, vj) and N(i) is
the one-ring neighborhood of vertex vi. The mass matrix B is defined as

Bij =

{
a(T1)+a(T2)

12 , if (vi, vj) ∈ E∑
k∈N(i) a(Tk)

6 , if i = j,
(2.6)

where T1, T2 are the triangles that share the edge (vi, vj), and a(T) is the area
of triangle T . Often a simplified “lumped” diagonal version of the mass matrix
is used:

Bii =

∑
k∈N(i) a(Tk)

3
, (2.7)

i.e. Bii is considered as the corresponding area element of vertex vi. The
geometric concepts of these formulas are depicted in Figure 2.3.

vi vi

vj

αji

αij

Bii

Figure 2.3: Stiffness Matrix (left): The entries Aij of the stiffness matrix
A contain the average of the cotangents of the angles αij , αji opposite to the
edge (vi, vj). Thus the name cotangent scheme. Mass Matrix (right): The
diagonal entries Bii of the mass matrix B correspond to the Voronoi area
around vertex vi.

2.2.3 Point descriptors

Local feature descriptors have been proven particularly useful in shape analysis
tasks such as shape matching (point-to-point correspondence) and shape
retrieval. In the following we describe three of the most used ones.

Heat Kernel Signature

The HKS (Sun et al., 2009) is - as the name indicates - based on the heat
diffusion process on a surface S which is governed by the Heat equation:

∆u(x, t) = − ∂

∂t
u(x, t). (2.8)

The solution kt(x, x) can be interpreted as the amount of heat that remains
at point x of surface S after time t when starting with a unit heat source u0

21

Chapter 2. Non-Rigid 3D Shape Retrieval

concentrated at x at t0 = 0. The eigen-decomposition of the Heat Kernel is

kt(x, y) =

∞∑
k=0

e−λktφk(x)φk(y), (2.9)

so the HKS is just

kt(x, x) =

K−1∑
k=0

e−λktφk(x)2, (2.10)

as we truncate the basis to the first K eigenfunctions of the LBO. Concatenating
the solutions for different times {t1, t2, . . . , tT } we obtain a descriptor of the
form

HKS(x) = (kt1(x, x), kt2(x, x), . . . , ktT (x, x)). (2.11)

Scale Invariant Heat Kernel Signature

M. M. Bronstein and Kokkinos, 2010 developed a scale-invariant version of the
Heat Kernel Signature (siHKS) using the logarithm, the derivative and the
Fourier transform moving from the time domain to the frequencies domain.
Assuming a shape is scaled by a factor β, and rewriting time t as ατ , the heat
kernel of the scaled shape would only be shifted in τ by 2 logα β. The authors
first constructed a scale-covariant heat kernel :

scHKS(x, x) = −

K∑
k=1

λkα
τ logαe−λkα

τ
φk(x)2

K∑
k=1

e−λkατφk(x)2

. (2.12)

In the Fourier domain this shift results in a complex phase H(ω)e−iω2 logα β

where H(ω) denotes the Fourier transform of scHKS w.r.t. τ . Finally the
scale-invariant HKS is constructed by taking the absolute value of H(ω) (thus
undoing the phase) and then sampling |H(ω)| at q frequencies {ω1, . . . , ωq}
Litman et al., 2014 :

siHKS(x) = (|H(ω1)|, . . . , |H(ωq)|)T . (2.13)

Wave Kernel Signature

The Wave Kernel Signature (WKS) (Aubry et al., 2011) - inspired by quantum
mechanics - describes the average probability over time to locate a particle
with a certain energy distribution fE at point x. The movement of a quantum
particle on a surface is governed by the wave function ψ(x, t) which is a solution
of the Schrödinger equation

∂ψ(x, t)

∂t
= i∆ψ(x, t). (2.14)

22

2.2. Approach

The energy distribution of a quantum particle depends on the LBO eigenvalues.
Therefore the wave equation for a particle can be written as

ψE(x, t) =
∞∑
k=0

eiλktφk(x)fE(λk). (2.15)

The probability to locate the particle at point x is then |ψE(x, t)|2. Therefore
the average probability over time is

p(x) = lim
T→∞

1

T

∫ T

0
|ψE(x, t)|2 =

∞∑
k=1

φk(x)2fE(λk)
2. (2.16)

As we described, the LBO and its spectrum capture intrinsic properties of a
shape. Therefore different choices of fE give us shape properties at different
scales. Evaluating with energy distributions {e1, . . . , eq} we get the vector for
the Wave Kernel Signature:

WKS(E, x) = (pe1(x), . . . , peq(x))T . (2.17)

Note that as with the HKS we must truncate the sum at the first K eigenvalues.
Typical values for K are 50 or 100.

2.2.4 Weighted average

Our aim is to use the shape descriptors mentioned above and the learned
distance metric to classify shapes. However, for a given shape so far we only
have a number of point descriptors, but for classification we would prefer
to have one descriptor for the whole shape. To achieve this, we compute a
weighted average over all point descriptors d(x) computed from the points x
of a given shape S. Thus, our shape descriptor is defined as

yf (S) =
∑
x∈S

wxd(x) with wx =
ax∑
y∈S ay

, (2.18)

where ax is the area element associated with vertex x ∈ S. This weighted
averaging is inspired by the pooling step proposed by Litman et al., 2014,
however with the difference that we do not use sparse coding.

In the case of WKS we normalize the point descriptors by the L2-norm.
Both averaged shape descriptors are also normalized by the L2-norm. We
compared 3 different shape descriptors, the averaged WKS, the averaged siHKS
and a combination of them we refer to as Combined Spectral Descriptor (CSD):

yCSD(S) =

(
yWKS(S)
ysiHKS(S)

)
. (2.19)

23

Chapter 2. Non-Rigid 3D Shape Retrieval

Algorithm 1 Shape descriptors

procedure Get–Averaged –Descriptors
for each shape S ∈ D do

for each point x ∈ S do
d̃(x)← siHKS(x) |WKS(x)
if WKS then

d(x)← d̃(x)

||d̃(x)||2
else

d(x)← d̃(x)
end for
ỹf (S)←∑

x∈S wxd(x) (see Equation (2.18))

yf (S)← ỹf (S)
||ỹf (S)||2

end for

2.2.5 Large Margin Nearest Neighbor

Large Margin Nearest Neighbor (LMNN) is a machine learning algorithm that
was first introduced in 2005 (Weinberger et al., 2005b). The authors keep
updating the algorithm and their implementation1 is very efficient even for
applications with very large datasets. As of the latest version that we used,
the L-BFGS algorithm is used for optimization by default.

LMNN utilizes both the concept of SVMs of margin maximization and the
well known k-NN algorithm. It is specifically conceived to learn a Mahalanobis
(semi-)metric DM that improves the accuracy of k-NN classification. This
metric is represented by the positive semi-definite matrix M ∈ Rn×n, such that

DM (~x, ~y) = 〈M(~x− ~y), (~x− ~y)〉 12 . (2.20)

Equivalently DM (~x, ~y) can be seen as the Euclidean distance between the
points ~x, ~y transformed by the linear transformation L ∈ Rm×n, i.e.

DL(~x, ~y) = ‖L~x− L~y‖, (2.21)

as the positive semi-definiteness of M allows a decomposition M = L>L.
The main idea of the algorithm is to find a mapping L so that for each input

~xi there are at least k neighbors that share its label yi (see Figure 2.4). This
is facilitated by choosing target neighbors of ~xi, i.e. samples that are desired
to be closest to ~xi. The target neighbors for every input are fixed during the
whole learning process. Note that target neighbors are not symmetric. For
instance if ~xj is a target neighbor of ~xi it is not necessary that ~xi is also a
target neighbor of ~xj .

Furthermore, LMNN tries to ensure that differently labeled inputs are
farther away from the target neighbors so that they do not get selected by

1http://www.cs.cornell.edu/~kilian/code/code.html.

24

http://www.cs.cornell.edu/~kilian/code/code.html

2.2. Approach

margin

local neighborhood

Euclidean Metric Mahalanobis Metric

~xi
~xi

~xj
~xj

Figure 2.4: Large Margin Nearest Neighbor (LMNN) finds the best
positive semi-definite matrix M , such that the induced Mahalanobis (semi-

)norm DM (~xi, ~xj) = 〈M~xi − ~xj , ~xi − ~xj〉
1
2 separates the different classes as

good as possible.

k-NN. Samples that violate this rule are called impostors. Ideally we would
like to create a large margin between the perimeter around each input and its
target neighbors, and all differently labeled inputs as illustrated in Figure 2.4
on the right. This goal also explains the name of the algorithm.

Loss Function

The loss function consists of two competing terms. The first one pulls target
neighbors together:

εpull(L) =
∑
i,j i

||L(~xi − ~xj)||2. (2.22)

The notation in Equation (2.22) implies that ~xj are target neighbors of ~xi. The
pull loss penalizes large distances between inputs and their target neighbors.
This is an important difference of LMNN compared to other algorithms where
large distances to all other similarly labeled samples are penalized. The second
term pushes impostors away:

εpush(L) =
∑
i,j i

∑
l

(1− yil)[1 + ||L(~xi − ~xj)||2 − ||L(~xi − ~xl)||2]+, (2.23)

where [x]+ = max(x, 0) denotes the standard hinge loss and yil is 1 only when
yi = yl and 0 otherwise. Note that the choice of the unit margin is an arbitrary
convention that sets the scale for the linear transformation L. If a different
margin c > 0 was enforced, the loss function would be minimized by the same

25

Chapter 2. Non-Rigid 3D Shape Retrieval

linear transformation up to an overall scale factor
√
c. Combining both terms

we get the LMNN loss function:

ε(L) = µεpull(L) + (1− µ)εpush(L), (2.24)

where µ ∈ [0, 1] is a trade-off parameter between small intra-class and large
inter-class distances. Although µ can be estimated with cross validation, in
practice setting µ = 0.5 works well. There are several similarities with the
SVM’s loss function:

� One term penalizes the norm of the parameter vector (i.e., w in SVMs,
L in LMNN)

� The hinge loss is only triggered by samples near the decision boundary

� Both loss functions can be rewritten to utilize the kernel trick

� Both problems can be reformulated as convex optimization problems

Convex Optimization

While ε(L) is quadratic in L, Equations (2.20) and (2.21) allow us to restate
the loss of ε of Equation (2.24) in terms of M . Minimizing this loss becomes a
semi-definite program (SDP) which is a convex problem that can be solved
globally in polynomial time. For the SDP formulation, Weinberger et al.,
2005a introduced slack variables {ξijl} for all triplets of target neighbors ~xi, ~xj
and impostors ~xl. The slack variables measure the level of margin violation.
Therefore the SDP can be defined as:

min. µ
∑

i,j i(~xi − ~xj)TM(~xi − ~xj) + (1− µ)
∑

i,j i,l(1− yil)ξijl

s.t. (~xi − ~xl)TM(~xi − ~xl)− (~xi − ~xj)TM(~xi − ~xj) ≥ 1− ξijl
ξijl ≥ 0 ∀i, j, l
M � 0 .

where the last constraint implies that the matrix M must be positive semi-
definite. The authors created their own solver for the SDP in order to take
advantage of the sparsity of the slack variables. This leads to much faster
solutions.

Optimal training parameters

The LMNN optimization process requires three parameters to be specified
beforehand: the dimension m of the lower-dimensional space into which the
samples are mapped by L, the number of neighbors k to consider, and the
number of iterations r of the L-BFGS optimizer. To find good values for these

26

2.3. Experiments

parameters, a validation set is used, which is a part of the original training data.
Then, the LMNN optimization is run on the remaining data with different
parameter settings, that are chosen using Bayesian optimization, and evaluated
on the validation set. After a given number of iterations, the parameter set
that achieved the highest performance on the validation set is used to run
LMNN training on the entire training set.

Classification

For classification, we use the k nearest-neighbor classifier in the m-dimensional
target space. Thus, for a given test shape we compute its descriptor, map
it into Rm using the mapping L found in the training step, and assign to it
the most frequent label of the k closest, by the Euclidean distance, mapped
training samples.

2.3 Experiments

2.3.1 Datasets

We evaluated our approaches on 2 datasets from SHREC’14 - Shape Retrieval of
Non-Rigid 3D Human Models (Pickup et al., 2014). Of the two main datasets,
one consists of synthetic and one of real (scanned) 3D human models. Each
class represents a human model and each instance of a class is a different pose
of that model. This is a different setting than most classification problems
where distinct classes correspond to naturally separate categories (like humans,
dogs, cats, etc.). This property along with the fact that some models contain
self-intersections makes these datasets particularly challenging.

We used the provided evaluation code from Pickup et al., 2014 that com-
putes several accuracy metrics: nearest neighbor, first tier, second tier, dis-
counted cumulative gain, e-measure, f-measure, precision and recall.

All meshes were down-sampled to 20.000 faces with Meshlab (Cignoni et al.,
2008).

2.3.2 Evaluation setting

We scaled the shapes as indicated in the available code that accompanies the
work by Litman et al., 2014. We truncated the bases of the LBO to the first 100
eigenfunctions. Based on them we computed 50-dimensional siHKS descriptors
with the same settings used by Litman et al., 2014 and 100-dimensional WKS
descriptors, setting the variance to 6. We used 40% of the shape descriptors to
train the LMNN classifier and tested on the rest. We used 25% of the training
set as a validation set to find the optimal parameters for LMNN2.

2Our code is available at https://github.com/tum-vision/csd_lmnn.

27

https://github.com/tum-vision/csd_lmnn

Chapter 2. Non-Rigid 3D Shape Retrieval

Metric CSD CSD+LMNN

nn 0.5075 0.9792
ft/fm 0.3692 0.9278

st 0.5669 0.9868
em 0.3135 0.2703
dcg 0.6407 0.9760

Table 2.1: Evaluation on the SHREC’14 real dataset.

Metric CSD CSD+LMNN

nn 0.8267 0.9967
ft/fm 0.6789 0.9802

st 0.9147 0.9986
em 0.6358 0.5114
dcg 0.9066 0.9963

Table 2.2: Evaluation on the SHREC’14 synthetic dataset.

Our CSD approach gives remarkable results, when combined with LMNN.
Even though the SHREC’14 datasets are considered extremely challenging,
our algorithm performed better than the methods that participated in the
SHREC’14 contest (see Table 2.3) and the most recent learning approach
proposed by Gasparetto and Torsello, 2015. This is a significant result since
our approach is comparatively simpler and the computation time very low.

Figure 2.5 shows the result of the LMNN learning step. As one can see,
LMNN is able to capture the discriminative features of the classes despite the
information loss from the projection onto three dimensions, which is done to
facilitate the visualization.

We noticed that using both the siHKS and the WKS performed worse than
using each descriptor separately. Nevertheless, when used as input to a metric
learning algorithm, the performance of the combined descriptor improved
considerably. The CSD with LMNN performs better than either individual
descriptor with LMNN (see Table 2.3). In particular, we observe that even if
we add a seemingly harmful descriptor, as in the case of the WKS for the real
dataset, LMNN is able to select the most useful - in terms of k -NN classification
- dimensions of both descriptors, thereby achieving a better accuracy than the
siHKS+LMNN approach. This confirms our hypothesis that metric learning
can utilize the additional information contained in the combined descriptor.
Adding other descriptors to the CSD such as the GPS (Rustamov, 2007) led
to no improvement.

Note that in our CSD+LMNN-approach the most time-consuming part is
finding the optimal parameters for LMNN. Still the total time needed for the
algorithm - excluding the computation of point descriptors - is approximately
2 minutes. In the worst case it never exceeded 4 minutes on a machine with

28

2.4. Conclusion

SHREC 2014, Human/Real SHREC 2014, Human/Real

0.088
0.086

0.084
0.084

0.086
0.088

0.088
0.087
0.086
0.085
0.084
0.083

130 135 140 145 150
-175

-170

-165

-160

-155

-150

dimensions 1, 2, 3 of the shape dimensions 1, 2 of the transformed

descriptors yf (S) before learning shape descriptors L · yf (S)

SHREC 2014, Human/Synthetic SHREC 2014, Human/Synthetic

0.090.0880.086
0.085

0.09

0.089

0.088

0.087

0.086

0.085

0.084

-1060-1055-1050-1045

68

70

72

74

76

78

dimensions 1, 2, 3 of the shape dimensions 1, 2 of the transformed

descriptors yf (S) before learning shape descriptors L · yf (S)

Figure 2.5: Visualization of the shape descriptors before and after
learning: Each circle corresponds to the descriptor of one shape. The colors
correspond to the 40 classes of the SHREC’14 Real dataset (top row) or the
15 classes of the SHREC’14 Synthetic dataset (bottom row). It can be seen by
even visualizing only two dimensions that the transformation L, learned by
LMNN, results in a much better clustering of the shapes. This is in line with
the quantitative evaluation on the datasets.

a 2.0GHz CPU. This is an extremely small amount of time compared to the
supervised dictionary learning approach proposed by Litman et al., 2014 which
needs nearly 4 hours to converge on a machine with a 3.2GHz CPU.

2.4 Conclusion

In this paper we showed that metric learning can significantly improve the
classification accuracy of well known descriptors. Given a large number of
features, a learning algorithm such as LMNN can select the most informative
ones and weight them appropriately for the problem that we aim to solve, in
this case shape retrieval. Our approach is both considerably faster and more

29

Chapter 2. Non-Rigid 3D Shape Retrieval

Recall

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SHREC'14 HUMAN/REAL

CSD

CSD+LMNN

SIHKS

SIHKS+LMNN

VQ

WKS

WKS+LMNN

supDL

unsupDL

Figure 2.6: Precision-Recall compari-
son on the SHREC’14 real dataset.

Recall

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SHREC'14 HUMAN/SYNTHETIC

CSD

CSD+LMNN

SIHKS

SIHKS+LMNN

VQ

WKS

WKS+LMNN

supDL

unsupDL

Figure 2.7: Precision-Recall compari-
son on SHREC’14 synthetic dataset.

Method Synthetic Real (Scanned)

ISPM 90.2 25.8
DBN 84.2 30.4
R-BiHDM 64.2 64.0
HAPT 81.7 63.7
ShapeGoogle(VQ) (A. M. Bronstein et al., 2011) 81.3 51.4
Unsupervised DL (Litman et al., 2014) 84.2 52.3
Supervised DL (Litman et al., 2014) 95.4 79.1
RMVM (Gasparetto and Torsello, 2015) 96.3 79.5
siHKS 84.33 62.00
siHKS+LMNN 97.11 92.58
WKS 91.33 33.75
WKS+LMNN 98.11 76.92
CSD 82.67 50.75
CSD+LMNN 99.67 97.92

Table 2.3: Comparison of retrieval methods in terms of mean average precision
(mAP, in %) on the SHREC’14 3D Human Models datasets. In the upper part
of the table, results of methods that participated in the SHREC’14 contest are
documented as in (Pickup et al., 2014) and the most recent learning approach
proposed by Gasparetto and Torsello, 2015. In the lower part, we report the
results of our approaches, averaged over 5 runs (different training/testing sets
splits).

accurate than the state of the art. The comparison in Figure 2.1 demonstrates
that our approach is more robust, as it is able to find the true inherent
similarities between objects and does not get confused by different classes, even
if they are very similar by human standards.

30

Chapter 3

Learning to Drive from
Demonstrations

Setting an example is not the
main means of influencing others,
it is the only means.

– Albert Einstein

Chapter 3. Learning to Drive from Demonstrations

This chapter is based on the paper by Sharifzadeh et al., 2016. In this
work we propose an inverse reinforcement learning (IRL) approach using Deep
Q-Networks to extract the rewards in problems with large state spaces. We
evaluate the performance of this approach in a simulation-based autonomous
driving scenario. Our results reflect the intuitive relation between the reward
function and readings of distance sensors mounted at different poses on the car.
We also show that, after a few learning rounds, our simulated agent generates
collision-free motions and performs human-like lane change behavior.

3.1 Introduction

Robots and autonomous systems are becoming more and more a part of
everyday life by assisting us in various tasks. An important requirement for
these systems is that they behave in a human-acceptable, socially normative
way, e.g. by respecting personal spaces or by treating groups of people based on
the social relations of the individuals (Kruse et al., 2013; Triebel et al., 2015).
This means that humans should not just be regarded as obstacles and that an
optimal robot motion should also consider human comfort metrics (Okal and
Arras, 2016).

One of the most popular instances of autonomous systems in the current
decade are self-driving cars. The ultimate goal of autonomous cars is to drive
the passengers from one point to another without any human input, while
assuring the comfort of human passengers. Defining “comfort” is not straight
forward and this makes it hard to define a suitable objective function for
motion planning. One widely used method aiming to fulfill this objective is
introduced by Werling et al., 2010. They propose to provide “ease and comfort”
by producing jerk-optimal trajectories. Later, lane change experiments con-
ducted by Tehrani et al., 2014 in Japanese highways showed that the human
lane change behavior cannot be modeled by a single stage of jerk-optimal
trajectories (Tehrani et al., 2015). Instead a two-stage model was proposed.
Many other models exist similar to these, however they mostly fail to generate
human-like behaviors. Modeling human driving behavior becomes even more
complicated when considering scenarios such as driving in large cities with
many intersections, traffic lights, pedestrians, etc.. Therefore, applying ma-
chine learning methods to extract a model directly from expert demonstrations
appears more promising.

In a recent work, Bojarski et al., 2016 proposed an end-to-end supervised
learning approach that maps the front facing camera images of a car to
steering angles, given expert data. However, this approach requires a large
amount of data from different possible driving scenarios in order to get a
good approximation of the policy. Still, it might fail when facing scenarios
that are very different from the ones in the training data. A more promising
formulation for this problem is based on Markov Decision Processes (MDPs).

32

3.2. Problem Formulation

In this framework, one can apply Inverse Reinforcement Learning (IRL) to
extract the unknown reward function of the driving behavior (Ng and Russell,
2000). The hope is that by approximating the reward function rather than
directly learning the state-action pairs in a supervised fashion, one can learn
policies that generalize better to new scenarios. Finding the reward function
of an MDP using IRL was proposed by Ng and Russell, 2000 and further
improved by Abbeel and Ng, 2004. Since then, several variations of IRL
have been proposed such as Bayesian IRL (Ramachandran and Amir, 2007),
maximum entropy based methods (Ziebart et al., 2008) and max margin
prediction (Ratliff et al., 2006). Most of the recent methods have been inspired
by these works. For example, Wulfmeier et al., 2015 proposed a maximum
entropy based approach that handles nonlinear reward functions using deep
neural networks. However, most of these approaches are limited to small state
spaces that cannot fully describe real-world driving scenarios. One of the main
reasons is the difficulty of applying the Reinforcement Learning (RL) step in
large state spaces. While RL algorithms using Deep Q-Networks (DQN) (Mnih
et al., 2015) have achieved state-of-the-art performance, to the best of our
knowledge, DQNs have not been used in IRL methods before.

In this paper, we address the exploding state space problem and build upon
the projection-based IRL method by Abbeel and Ng, 2004, using a DQN. We
implemented a highway driving simulator and evaluated the performance of
our approach by analyzing the extracted rewards. The evaluation is presented
in Section 3.3.

3.2 Problem Formulation

A Markov Decision Process (MDP) is defined as a tuple (S,A, T, γ,R), where
S and A are the state and action spaces, T is the transition matrix, γ ∈ [0, 1]
is the discount factor and R : S × A → R is the reward function. A policy
π : S → A maps states to actions. It can also be seen as a probability
distribution over actions at each state. A value or state-value function V π(s0)
is defined as the expected discounted future reward if we start from state s0

and act according to policy π:

V π(s0) = E[

∞∑
t=0

γtR(st)|π] (3.1)

The discount factor applies the amount of uncertainty that we have about the
future rewards. The action-value function Q represents the value that we can
gain if we start from state s0 and take action a and follow policy π after that:

Q(s0, a) = E[

∞∑
t=0

γtR(st)|π, a] (3.2)

33

Chapter 3. Learning to Drive from Demonstrations

The motion planning problem can be formulated as a Markov Decision Process,
in which finding the optimal action-value function is the goal. However,
similar to many other real-world applications, the transition probabilities
and the reward function are unknown. Given expert demonstrations, IRL
methods have been shown to effectively find the underlying reward function
and consequently, the action-value function. In order to apply such approaches
to large state spaces, we propose using DQNs (Mnih et al., 2015) for the
Reinforcement Learning step in the inner loop. Previously, using neural
networks to approximate the Q-function has been shown to cause instabilities
or divergence (Tsitsiklis and Van Roy, 1997). In order to address these
problems, Mnih et al., 2015 proposed two key ideas. First, to randomly sample
training data from the sequence of past experiences (“experience replay”).
Second, to use a second neural network to estimate the target Q-values. The
weights of this target network are only periodically replaced with the weights
of the original network. Here, we apply this approach to the projection-based
IRL method (Abbeel and Ng, 2004) but other IRL techniques can also benefit
from it.

Given expert demonstrations, we want to generate policies π whose values
are close to the value of the expert policy πE :

‖V π(s0)− V πE (s0)‖ ≤ ε (3.3)

Every state si is spanned by d-dimensional feature vectors φ(si), with features
such as speed, acceleration, sensor readings, etc.. The reward function is
defined as a linear combination of these features:

R(si) = w · φ(si) , (3.4)

where w ∈ Rd is the weight vector and ‖w‖2 ≤ 1. Plugging (3.4) into (3.1),
we get

V π(s0) = w · E[
∞∑
t=0

γtφ(st)|π] (3.5)

Furthermore, feature expectations are defined as:

µ(π) = E[
∞∑
t=0

γtφ(st)|π] . (3.6)

Thus, the problem is reduced to generating trajectories whose feature expec-
tations are similar to those of the expert. Abbeel and Ng, 2004 proposed an
iterative projection-based method to solve it. In this paper, we propose to use
DQN in the RL step of their algorithm. The details of our method are given
in Algorithm 2.

34

3.3. Evaluation

Algorithm 2 Projection-based IRL using DQN

1: Randomly initialize the parameters of the DQN and some policy π(0).
2: Compute or approximate feature expectations µ(0).
3: Initialize w(1) = µE − µ(0), µ̄(0) = µ(0) and i = 2.
4: while ‖w‖2 > ε do
5: Let ∆µ := µ(i−1) − µ̄(i−2)

6: Set µ̄(i−1) = ∆µT (µE−µ̄(i−2))
∆µT∆µ

∆µ . Projection

7: Set w(i) = µE − µ̄(i−1)

8: Train the DQN using R = w(i) · φ and obtain policy π(i) . RL step
9: Compute or estimate features expectations µ(i) for π(i)

10: Set i← i+ 1

3.3 Evaluation

In this section, we present the evaluation results of the proposed approach.
We considered the driving scenario in a highway and implemented a simulator
for collecting expert trajectories and testing. The simulating environment was
programmed in Python. The user interface is shown in Figure 3.2 on the right
side. The red car is the agent being trained to drive. The dynamics of this car
are implemented based on the single track model (LaValle, 2006) with three
degrees of freedom. The Deep Q-network architecture used in our approach is
shown in Figure 3.1. It consists of an input layer of features, 2 fully connected
hidden layers with 160 units each and rectified linear units (ReLUs), followed
by a fully connected output layer to the action values.

Figure 3.1: The architecture of the proposed Deep Q-Network. The input is
the set of features and the output layer consists of three possible actions to
steer left, steer right or not steer.

35

Chapter 3. Learning to Drive from Demonstrations

In these experiments we used 13 sensors. The sensors had a maximum
sensing radius equal to 64% of the environment length, discretized to 16 bins
of equal size. Each feature φk, indicated whether or not there was an obstacle
in the interval of each bin. If the sensor was not sensing any obstacles, the
maximum possible reading distance was assigned to it. Therefore, we had a
total of 208 binary features which gave rise to 2208 possible states.

In the driving experiments by Abbeel and Ng, 2004, the car could only have
discrete transitions to the lane on its left or right. However, in our experiments,
we allowed steering with three different angles (0, π12 ,− π

12) giving rise to more
realistic, continuous transitions. For simplification in our experiments we set
the acceleration to zero. The highway in our experiments had 3 lanes and
at most two other cars could appear in front of the agent. For training, we
collected 90 expert demonstrations from this setup.

The algorithm achieved satisfactory results after only 6 IRL iterations with
3000 inner loop iterations each. Since we did not have access to the true reward
function of driving, we evaluated our proposed algorithm in the following ways:

a. Analyzing the extracted weights: The extracted weights for features
from 7 sensors are plotted in Figure 3.2. The color-code guide of each sensor is
shown in the upper right corner. As shown in this figure, there is a nonlinear
relationship between readings of the same sensor and their extracted weights.
This means that if the sensor readings had not been discretized into binary
features, the algorithm would not have been able to capture the weights
correctly. We have represented the maximum weight of features for each sensor

Figure 3.2: Weights extracted using the IRL algorithm plotted for features of
7 sensors. Each sensor has been assigned a color which is shown in the upper
right corner.

36

3.3. Evaluation

Sensor
0 1 2 3 4 5 6

|µ̂
E
−
µ̂
A
|

1 0.000 0.000 0.000 0.004 0.158 0.005 0.011
2 0.000 0.001 0.005 0.136 0.209 0.110 0.167
3 0.001 0.004 0.006 0.173 0.079 0.126 0.085
4 0.003 0.004 0.016 0.116 0.121 0.158 0.026
5 0.002 0.016 0.094 0.096 0.004 0.039 0.030
6 0.001 0.041 0.095 0.000 0.176 0.045 0.038
7 0.001 0.039 0.057 0.046 0.017 0.000 0.000
8 0.006 0.075 0.002 0.156 0.016 0.000 0.000

Table 3.1: The absolute differences between the trained and expert mean
feature expectations. Each column refers to one of the first 7 sensors and each
row refers to one of the first 8 distance bins.

with blue dots. As one can see, for sensor 0 (blue) that is pointing straight in
front of the car, the higher the reading is, the larger the weight is. This means,
the agent learns to keep maximum distance from obstacles (cars) in front of
them. In the optimal state, where the car stays as far away from all obstacles
and walls, the sensor readings form an ellipse. Therefore, as the angle of the
sensor from the vertical axis increases, the reward weights peak at a smaller
distance.

Another notable observation is that sensor 6 (side sensor), gets the highest
weight when reading the smallest distance from the obstacles. The explanation
is that at this distance, the car is placed next to a highway wall. This has been
the expert’s preference in the demonstrations. This reward weight immediately
drops when the reading is increased, which perfectly explains that staying in
the lanes is preferable to driving between the lanes. The same can be observed
for most of the other sensors. Note that some of the distances were never read
by the sensors during the experiments and the extracted weights for these
cases is 0. For example, sensors 5 and 6 never sense obstacles in distances
larger than the width of the highway.

b. Comparing feature expectation values of the expert to the trained
agent: We trained the DQN using the rewards computed by the final weights.
Then, we let the agent drive for several scenarios, acting according to the
policy of the trained network. The mean difference over feature expectations
in these scenarios was computed. Part of these values are presented in Table
3.1.

c. Evaluating using classical motion planning objectives: Classical
motion planning methods are evaluated based on their performance in obstacle
avoidance, jerk optimality, driving in the lanes, etc.. In our experiments,

37

Chapter 3. Learning to Drive from Demonstrations

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.3: The agent’s motion when facing four particular scenarios during
training. The top row depicts the planned motion after the first IRL iteration
(with 3000 DQN inner iterations), the middle row after four and the bottom
row after six IRL iterations.

38

3.4. Conclusion

similar to the expert, the agent avoided the walls and obstacles in 100% of the
scenarios, while maintaining their position in the lane except during obstacle
avoidance. Jerk values were also found to be close to the ones of the expert.
Figure 3.3 demonstrates the agent’s planned motion based on the rewards
extracted at different stages of the training phase.

3.4 Conclusion

In this paper we proposed using Deep Q-Networks as the refinement step
in Inverse Reinforcement Learning approaches. This enabled us to extract
the rewards in scenarios with large state spaces such as driving, given expert
demonstrations. The aim of this work was to extend the general approach to
IRL. Exploring more advanced methods like Maximum Entropy IRL and the
support for nonlinear reward functions is an interesting future direction.

39

Chapter 4

Incremental Semi-Supervised
Learning from Streams

Anybody can become angry — that
is easy, but to be angry with the
right person and to the right
degree and at the right time and
for the right purpose, and in the
right way — that is not within
everybody’s power and is not easy.

– Aristotle

Chapter 4. Incremental Semi-Supervised Learning from Streams

This chapter is based on the paper by Chiotellis* et al., 2018. The Label
Propagation (LP) algorithm, first introduced by Zhu and Ghahramani, 2002
is a semi-supervised method used in transductive learning scenarios, where
all data are available already in the beginning. In this work, we present a
novel extension of the LP algorithm for applications where data samples are
observed sequentially – as is the case in autonomous driving. Specifically,
our “Incremental Label Propagation” algorithm efficiently approximates the
so called harmonic solution on a nearest-neighbor graph that is regularly
updated by new labeled and unlabeled nodes. We achieve this by reformulating
the original algorithm based on an active set of nodes and by introducing a
threshold to decide whether the label of a given node should be updated or
not. Our method can also deal with graphs that are not fully connected, and
we give a formal convergence proof for this general case. In experiments on the
challenging KITTI benchmark data stream, we show superior performance in
terms of both test accuracy and number of required training labels compared
to state-of-the-art online learning methods.

4.1 Introduction

Most standard learning approaches used for classification tasks in robotics
have the drawback that they either require a large amount of hand-labeled
training data, or they are hardly adaptive to newly observed data samples.
In particular, when considering an object classification problem from a given
stream of training data, there is often just not enough ground truth information
available to train a complex model such as a deep neural network. And even if
there were sufficient training data, it is very difficult to efficiently update the
classifier on newly arriving data from the stream, be it labeled or unlabeled.

Therefore, in this paper, we propose a learning algorithm for classification
that is both semi-supervised and incremental, i.e. it can perform very fast
model updates for new data samples. Furthermore, and in contrast to other
semi-supervised approaches like transductive SVMs (V. N. Vapnik, 1995) or
more recent deep learning approaches (Häusser et al., 2017; Kingma et al.,
2014; Sajjadi et al., 2016), we can more flexibly and more directly trigger the
learning process from a single sample instead of using batches of data with
a fixed size. Our approach is based on the idea that newly observed data
samples – both labeled and unlabeled ones – only have a local influence on the
class predictions of the given unlabeled graph nodes. Thus, it is actually not
necessary to recompute LP from scratch every time a sample arrives. In our
formulation, this notion of locality is guided by a threshold ϑ, by which the
trade-off between efficiency and accuracy is managed. In practice, however, it
turns out that a relatively small area of influence (i.e. a large value of ϑ) already
results in a very good performance while reducing the number of propagation
iterations significantly.

42

4.2. Related Work

To summarize, our key contributions are:

� A novel incremental semi-supervised learning method, we call “Incremen-
tal Label Propagation”, where the area of influence of the algorithm can
be easily tuned with the one hyper-parameter ϑ.

� A proof of convergence of the Label Propagation algorithm for partially
connected graphs.

� An empirical evaluation of our algorithm on a challenging benchmark data
stream (See Fig. 4.1), showing the effectiveness of exploiting unlabeled
data for stream-based classification.

4.2 Related Work

The Label Propagation (LP) algorithm (Zhu and Ghahramani, 2002) has been
used in several works for semi-supervised learning tasks. Chapelle et al., 2006
show that the LP algorithm is equivalent to the well known Jacobi algorithm
for solving sparse linear systems. In fact, LP solves the problem of inverting
the matrix ∆UU , i.e. the submatrix of the graph Laplacian corresponding to
the unlabeled nodes. As introduced by Zhu et al., 2003, the resulting solution
is the so called harmonic solution on the graph. Zhu and Ghahramani, 2002
prove convergence of their algorithm for fully connected graphs, but we also
give a convergence proof on partially connected graphs, where each connected
component contains at least one labeled node.

In the literature, one can find several ideas for efficiently approximating the
harmonic solution for a large non-growing graph. The algorithm of Ganu and
Kveton, 2013 computes the harmonic solution on a subgraph of nodes for which
the label can be predicted with high certainty. However, for the algorithm
to be fast, the subgraph must be small, which means that only the labels of
a small subset of nodes will be predicted. Delalleau et al., 2005 suggest to
compute the harmonic solution on a subset of unlabeled nodes S, where the
label vectors of the nodes outside of S are set equal to the weighted average of
their labeled neighbors and the neighbors in S. While this is more efficient, no
theoretical analysis is given on how much the solution differs from the exact
harmonic solution on the full graph. Moreover, it is not clear how to get from
the harmonic function approximation on a fixed graph to the approximation
on an enlarged graph without computing everything from scratch.

Delalleau et al., 2005 derive an inductive formula to assign an optimal
label to a new point given the harmonic solution on the old points. However,
optimality only holds under the assumption that the label vectors of old points
cannot change. If many unlabeled or a few labeled points arrive, the new
information is not utilized to update the labels of previously classified points.
In the algorithm of Valko et al., 2010, new incoming points are first assigned

43

Chapter 4. Incremental Semi-Supervised Learning from Streams

to one of k clusters using the doubling algorithm for incremental k-center
clustering (Charikar et al., 2004). Then, each new point is replaced by its
cluster center and the harmonic solution is computed on the cluster centers.
Therefore, only a k × k instead of a n× n matrix has to be inverted to get the
exact harmonic solution. Moreover, only the cluster centers and the cluster
sizes have to be stored instead of all the data. However, the number of clusters
k, that shall represent the data points, must be fixed beforehand. Also, once
a point is assigned to a cluster, its original feature vector is discarded, so its
position inside the cluster is not taken into account any more.

Zhu, 2005 also uses the idea of clustering to approximate the harmonic
solution on large graphs. He computes the harmonic solution on a backbone
graph consisting of mixture components, the so called harmonic mixture
solution. An advantage of this approach is that a generative mixture model
can naturally handle unseen points. Although a prediction for the label of a
new point is easy to obtain, new points do not influence the model, except if
the whole model is retrained. This is problematic if there are only a few points
available in the beginning. Moreover, the problem of determining the number
of clusters remains. The authors show that for a good approximation of the
harmonic solution, the number of mixture components must be above a certain
threshold that is data-dependent. Thus, the determination of a good number
of clusters that keeps the effort of finding the harmonic mixture solution low,
but still yields an acceptable approximation of the harmonic solution remains
an open question.

Therefore, in this work, we do not reduce the data to a backbone graph
but present the “Incremental Label Propagation” algorithm that allows us to
approximate the harmonic solution on the full graph consisting of all nodes
efficiently, in the context of a permanently growing graph.

4.3 Incremental Label Propagation

4.3.1 Reviewing Offline Label Propagation

We denote a partially labeled data set D of size n as the union of two subsets:
the set L with l labeled data points (x1, y1), . . . , (xl, yl) where xi ∈ Rd are
feature vectors and yi ∈ {1, . . . , C} are class labels, and the set U with u
unlabeled points xl+1, . . . ,xl+u, i.e. n = l + u. Our aim is to infer class labels
for unlabeled data points from the labeled ones. To do this, we compute edge
weights wi,j based on a given Mahalanobis matrix M and build a k-nn graph
G with edge weights

wi,j =

{
exp(−(xi − xj)

TM(xi − xj)) if j ∈ N (i)

0 otherwise,
(4.1)

where by j ∈ N (i) we denote that j is a neighbor of i. In particular, we find
the kl labeled and ku unlabeled nearest neighbors of i. We define the weight

44

4.3. Incremental Label Propagation

Figure 4.1: An example image (top) and the corresponding reconstructed 3D
environment (bottom) with found objects from the KITTI Vision Benchmark
Suite (Geiger et al., 2012).

matrix of all wi,j with W ∈ Rn×n, the diagonal matrix D = diag(d1, . . . , dn)
where di =

∑n
j=1wi,j , and the transition matrix P = D−1W . Labels are

represented in a label matrix F ∈ Rn×C , where ideally entry fk,c = 1 if xk
has label yk = c and fk,c = 0 otherwise. From the convention that all labeled
points appear first and all unlabeled ones afterwards, it follows that P consists
of four blocks:

P =

(
PLL PLU
PUL PUU

)
, (4.2)

where the subscripts of the blocks indicate transitions between labeled, unla-
beled and mixed point pairs. Similarly, F consists of a labeled block FL - the
one-hot encoding of the true labels - and an unlabeled block FU which initially
contains zero vectors:

F =

(
FL
FU

)
. (4.3)

With this notation, the LP algorithm, introduced by Zhu and Ghahramani,
2002, can be formalized in two steps that are repeated until convergence. In the
first step, a new label matrix Fnew is computed by propagating the given labels
according to the transitions, i.e. Fnew ← PF old. In the second step, the labels
of the labeled samples are reset to those from the ground truth, i.e. FnewL ← FL.
A possible convergence criterion is whether the norm ||FnewU − F oldU ||∞ drops
under a given threshold.

45

Chapter 4. Incremental Semi-Supervised Learning from Streams

4.3.2 Convergence on Partially Connected Graphs

Zhu and Ghahramani, 2002 prove the convergence of the LP algorithm but
their proof (and the equivalent proof of Zhu, 2005) only applies if there is
a γ < 1 s.th. ∀i ∈ {1, ..., u} :

∑u
j=1 (PUU)i,j ≤ γ, which means that each

unlabeled node has to be connected to a labeled node by an edge of weight
greater than 0. This assumption is of course true for fully connected graphs
with positive weights. We will show here convergence on not fully connected
graphs. First we assume that each connected component of nodes contains at
least one labeled node. The LP algorithm can be written as

F t+1
U = PUUF

t
U + PULF

t
L ,

F t+1
L = F 0

L ∀t .
(4.4)

Obviously FL stays constant. To show the convergence of FU , we show
the convergence of the columns of FU . Let fU be the j-th column of FU
and fL the j-th column of FL, j ∈ {1, . . . , C}. We use the Banach fixed-
point theorem to show that the sequence defined by f t+1

U = PUUf
t
U + PULfL

converges independently of the starting point f0
U to a fixed point. Let us

define T : [0, 1]u → Ru as T (x) = PUUx + PULfL. It is easy to show that
T ([0, 1]u) ⊆ [0, 1]u since P and F are both row stochastic. Thus, we need to
prove the following

Theorem 1. The mapping T : x 7→ PUUx+ PULfL is a contraction.

Proof. As a first step, we show that ρ (PUU) = maxi |λi| < 1 where λi are the
eigenvalues of PUU . Let λ be an eigenvalue of PUU and v ∈ Ru a corresponding
eigenvector. W.l.o.g. we can assume that

‖v‖∞ = 1 ⇒ |vj | ≤ 1 ∀j. (4.5)

Using the definition of P , one can show that ‖PUUv‖∞ ≤ 1 and therefore
it must hold that |λ| ≤ 1 because for |λ| > 1 we would get the contradiction
‖PUUv‖∞ = |λ|‖v‖∞ > ‖v‖∞ = 1. It remains to show that |λ| 6= 1: Assume
that |λ| = 1. We define the set K = {k ∈ {1, ..., u} : |vk| = 1} that is not empty
since ‖v‖∞ = 1. With a short proof one can show that

∀ i ∈ K, j ∈ {1, ..., u} \ K : wi+l,j+l = 0. (4.6)

Let us define the set K̃ = {j ∈ {l + 1, . . . , l + u} | j − l ∈ K}. K̃ and
U \ K̃ are separate connected components of unlabeled nodes and each of them
contains at least one labeled node by assumption. It follows that

∃r ∈ K̃, s ∈ L, s.th. wr,s > 0⇒
∑u

j=1 (WUU)r−l,j∑n
k=1wr,k

< 1 (4.7)

46

4.3. Incremental Label Propagation

With that we get

1 =|vr−l| = |λ||vr−l| = |(λv)r−l| = | (PUUv)r−l | = |
((
D−1W

)
UU

v
)
r−l |

=|
u∑
j=1

wr,j+l∑n
k=1wr,k

vj | ≤
1∑n

k=1wr,k

u∑
j=1

wr,j+l|vj | ≤
∑u

j=1wr,j+l∑n
k=1wr,k

< 1 .
(4.8)

Because of this contradiction, the assumption |λ| = 1 must have been
wrong and therefore we get ρ (PUU) < 1. It immediately follows that there is
an ε > 0 s.th. ρ (PUU) + ε < 1. Now, we define a special vector norm ||.||ω
and induced matrix norm |||.|||ω s.th. |||PUU |||ω ≤ ρ (PUU) + ε. With that it
follows that T is a contraction (with Lipschitz constant ρ (PUU) + ε) in the
normed space (Ru, ‖.‖ω). For details, see A.

So far we assumed that each connected component contains at least one
labeled node. We can extend the proof also for graphs that do not satisfy
this assumption. The nodes in connected components that do not contain a
labeled node (isolated nodes) keep their label vector equal to the zero vector
throughout the algorithm. The steps performed then are equivalent to removing
the isolated nodes from the graph, performing LP on the remaining nodes
and assigning all isolated nodes a zero label vector. And for graphs without
isolated nodes, we have proven convergence already.

4.3.3 Incremental Label Propagation

Our main idea is that when a new sample arrives, many computation steps
can be saved by propagating labels only locally and stopping the propagation
process if no significant change of labels is achieved, similar to a diffusion
process. The latter is formulated by introducing a threshold ϑ and a decision
function that returns only indices of data samples, for which the label change
is larger than ϑ according to some norm (we use the `1-norm). Another
difference to standard LP is that we formulate the algorithm based on a set Q
of candidate nodes to propagate labels to and a set A of nodes which actually
get updated. This leads to a simple formulation of the stopping criterion, since
label propagation is stopped when Q becomes empty1.

The pseudocode for Incremental Label Propagation is given in Alg. 3. We
denote by FU (i) the i-th row of matrix FU , namely the estimated label for
point i. Here, we give details for the individual steps. First, we compute the
edge weights wn+1 = (wn+1,1, . . . , wn+1,n) between the new data sample xn+1

1Note that the use of the sets Q and A alone does not turn LP into an incremental
algorithm. In fact, for ϑ = 0, ILP with sets is equivalent to offline LP for the observed samples
at the time. The insight is, that for any point, only its reverse neighbors can change their
label in every LP iteration, i.e. the graph can be equally processed using a region-growing
strategy.

47

Chapter 4. Incremental Semi-Supervised Learning from Streams

Algorithm 3 Incremental Label Propagation (ILP)

Require:
data set D of size n; new data sample xn+1;
Mahalanobis matrix M ; graph G; labels F ; transitions P ;
number of neighbors kl, ku
thresholds ϑ, Tmax

Ensure: updated label matrix FU ;

1: wn+1 ← ComputeWeights(D,xn+1,M , kl, ku) . Eq. (4.1)
2: P ← UpdateTransition(W,wn+1)
3: fn+1 ← Pn+1,1:nF . Estimation
4: Q ← {k | k ∈ N T (n+ 1) ∩ U} . Initialize candidates
5: F̃U ← FU
6: for k ∈ Q do
7: F̃U (k) ← PUL(k)FL + PUU (k)FU

8: ti ← 0
9: while Q 6= ∅ and ti < Tmax do

10: A, FU ← FilterAndUpdate(Q, F̃U , FU , ϑ)
11: Q, F̃U ← GetNextCandidates(A, F̃U , PUU)
12: ti ← ti + 1

1: function FilterAndUpdate(Q, F̃U , FU , ϑ)
2: A ← ∅
3: for i ∈ Q do
4: ∆fi ← F̃U (i) − FU (i)

5: if |∆fi| > ϑ then . Filter
6: FU (i) ← F̃U (i) . Update
7: A ← A∪ (i, ∆fi)

8: return A, FU
1: function GetNextCandidates(A, F̃U , PUU)
2: Q ← ∅
3: for (j,∆fj) ∈ A do
4: for k ∈ {i | i ∈ N T (j) ∩ U} do
5: F̃U (k) ← F̃U (k) + PUU (k,j)∆fj
6: Q ← Q∪ k
7: return Q, F̃U

and the observed samples x1, . . . ,xn according to (4.1). This we use to update
the matrices W , D, and P , which then have n+ 1 rows and columns. With
P , we estimate a label vector fn+1 for the new node as a weighted average
of the labels of its labeled and unlabeled neighbors (line 3). After that, we
initialize the candidates set Q, which at first contains only the nodes from the

48

4.4. Runtime Analysis

unlabeled set U , that have the new node as a nearest neighbor. We denote
these reverse nearest neighbors of sample xn+1 as N T (n+1). We also initialize
the tentative label updates matrix F̃U (line 5). In practice we only need to
store the rows of F̃U that get updated during the algorithm. In lines 6 to 7,
the label propagation starts by computing the tentative labels of the reverse
nearest neighbors of the new node. This is the only step where information
from the transition submatrix PUL is used.

In lines 9 to 12, the main idea of the ILP algorithm is presented. From
the set Q of candidates that received a tentative label update, we identify
the ones whose update is considered significant. In particular, the `1-distance
between their previous and tentative label has to be larger than ϑ. Note that
ϑ implicitly defines the area of influence of the algorithm: for ϑ = 0 all changes
are considered significant and we have offline LP with sets starting from the
new node. Any other value for ϑ constrains the range of the region growing
process, leading to a more local effect. We apply the significant tentative
updates by storing the new labels in the original matrix FU (line 6 of function
FilterAndUpdate). In set A we store the indices of the updated nodes along
with their label difference ∆f , so we can continue the propagation with their
reverse neighbors in the next iteration.
The ILP algorithm presented in Alg. 3 for new unlabeled points is almost
identical for new labeled points with the only difference that fn+1 does not
need to be estimated.

4.4 Runtime Analysis

We consider the insertion of a single node. We denote by kl and ku the number
of labeled and unlabeled neighbors of each node in the graph respectively.
The main burden of the computation of the node’s edge weights lies in the
distance computation between the new node and the existing nodes in the
graph which in turn depends on the choice of nearest neighbor algorithm.
The trivial computation takes O(ntd) where d is the data dimensionality and
nt = lt + ut is the number of nodes at iteration t. This can be reduced to
logarithmic time using an efficient data structure for online node insertion and
nearest neighbor search, such as Ball Trees as described in the online insertion
algorithm of Omohundro, 1989. We denote this runtime as Oknn.

A major advantage of using a k-nn graph as opposed to an ε-nn graph in an
incremental setting is that updating the old entries of W and P is independent
of the number of nodes nt. Using a fixed capacity heap for storing the nearest
neighbors of each node, a node’s labeled neighbors can be updated in log(kl)
and equivalently unlabeled neighbors in log(ku) time, as only one neighbor
might get pushed out of the heap to be replaced by the new node. Therefore
the weight matrix can be updated in O((kl+ku) log(max(kl, ku))). The update
of P is done in O((kl + ku)2) since only the rows of nodes connected to the

49

Chapter 4. Incremental Semi-Supervised Learning from Streams

new point must be updated.
The estimation of the new label takes O((kl + ku)C) time. Accessing the

neighbors and reverse neighbors of points can be done in constant time using
a hash map at the cost of O(n) auxiliary space. Each inner iteration in the
functions GetNextCandidates and FilterAndUpdate takes O(C) time, therefore
the runtime depends mainly on how the sizes of Q and A evolve. The size of A
is always bounded by the size of Q but the size of Q depends on the number of
reverse neighbors, which is not deterministic. In practice though this is close
to ku

2. With this assumption and with ϑ = 0, Q and A grow as ku, k
2
u, k

3
u, . . .,

etc., as we consider all label updates significant. Therefore, the number of
iterations until all unlabeled points have been reached by label propagation is
bounded by logku(ut). The total number of operations in the main loop then is

C(ku + k2
u + . . .+ k

logku ut
u) = C

ut − 1

ku − 1
= O(utC

1

ku − 1
). (4.9)

And thus the total runtime of incremental label propagation for a node
arriving at time t is

Oknn +O((kl + ku)2 + (kl + ku)C + utC
1

ku − 1
). (4.10)

4.5 Experiments

Our implementation and code for all experiments is publicly available3.

4.5.1 Evaluation and Setup

In this work, we use the standard Euclidean metric (M = I) to compute the
edge weights (see Equation (4.1)). For evaluation we use several metrics: the
`1 error, the 0-1 classification error and the cross-entropy between ground
truth labels and the predictions FU . We also compute the entropy of our
predictions FU , the number of label propagation iterations per new point and
the wall-clock computation time per new point. We set Tmax = logku ut if
ku > 1 and Tmax = 30 if ku = 1.

We first examine the influence of different hyperparameters and the perfor-
mance of ILP against its fully supervised counterpart, using the MNIST dataset
of handwritten digits (LeCun et al., 1998) that consists of 60000 training and
10000 test images of dimensions 28 by 28. We do not compute any features
but use the raw pixel values normalized to lie in [0, 1].

Due to lack of space, we present results with ku = kl = 3. However, we
found the algorithm to be very robust with respect to values of ku and kl up
to 19, except for the case of kl = 1, where the final accuracy dropped by 5%.

2One can enforce the number of reverse neighbors to be equal to ku by using a mutual
instead of a regular k-nn graph.

3Code available at https://github.com/johny-c/incremental-label-propagation.

50

https://github.com/johny-c/incremental-label-propagation

4.5. Experiments

Figure 4.2: Illustration of how ϑ influences different metrics. Top row: `1
error, cross entropy and classification error (based on arg max) w.r.t. the
predictions FU . Bottom row: Entropy of the predictions, number of label
propagation iterations and actual computation time after each new node.

4.5.2 Influence of ϑ

The ratio of observed labels is fixed to 5% and we set kl = 3 and ku = 3. In
Fig. 4.2 we show how different metrics are affected by ϑ. As expected, the
`1-error decreases as we decrease ϑ, namely as we move closer to offline LP.
On the other hand, the number of iterations per observation and therefore the
runtime decreases when we increase ϑ, as the algorithm is constrained to act
more locally. For reference, with ϑ = 0, the total runtime was 4162.40s, while
with ϑ = 1.0 only 3143.46s. We observe several interesting facts:

� The estimation error is robust to changes in ϑ, as the maximum likelihood
of the correct predictions is mostly preserved.

� The entropy of the predicted label distributions behaves very similar
to the `1-error making it a good candidate metric for self-evaluation or
introspection during learning.

� From the cross-entropy evaluation, it seems that choosing a large enough
ϑ has a regularizing effect: When ϑ is small, the cross-entropy is strongly
oscillating, as every label update is trusted equally. When ϑ is larger,
the “propagation region” is narrower and therefore cross-entropy is
smoother. In fact for ϑ = 2, where we only have label estimation and
no propagation, the cross-entropy and often also the estimation error
is minimized. However, when testing on a holdout set, we find that
intermediate values of ϑ achieve the best accuracy. This suggests that a
too small ϑ causes overfitting, and a ϑ that is too large causes underfitting.

51

Chapter 4. Incremental Semi-Supervised Learning from Streams

4.5.3 Influence of number of observed labels

In this experiment we evaluate how the accuracy of the algorithm is affected
by the number of observed labels (Fig. 4.3). We compare the test error when
using just the labeled samples against the test error when also using the labels
estimated by ILP for the unlabeled training samples. We use kl = 3, ku = 3
and ϑ = 0.3. Predicting the labels of the test set amounts to computing
FT = PTLFL + PTUFU . Taking into account only the first summand PTLFL is
weighted k-nn querying with respect to the given labeled samples. In Table 4.1
we show that ILP is consistently better than weighted k-nn, demonstrating
the utilization of the unlabeled samples.

Figure 4.3: Estimation error on the observed unlabeled samples of MNIST for
different number of observed labels in total.

#Labels Est. error (%) knn error (%) ILP error (%)

20 42.35 41.17 40.11
100 35.17 27.01 26.61
500 23.54 14.54 14.09

1000 18.73 11.27 10.68
2000 14.17 8.56 8.2

Table 4.1: Final estimation error on the unlabeled training set, knn error and
ILP error on the test set of MNIST.

4.5.4 Confusion Analysis

In continuation of the previous experiment, we trained incrementally on MNIST
observing only 5% of the labels. In Fig. 4.4 we show the final confusion matrices
of k-nn, where only labeled neighbors vote for the label of test nodes, and
ILP, where the estimated labels of the unlabeled training nodes are also

52

4.5. Experiments

0 1 2 3 4 5 6 7 8 9

Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
u
e
 l
a
b

e
l

966 1 2 0 0 5 3 3 0 0

0 1131 1 0 2 0 1 0 0 0

18 21 918 21 4 2 8 31 7 2

3 4 6 926 1 32 3 10 13 12

0 11 1 0 885 1 11 6 1 66

6 7 0 48 3 792 16 2 12 6

13 5 0 0 4 4 932 0 0 0

0 32 6 1 6 0 0 948 0 35

8 7 17 36 11 30 10 8 830 17

8 7 1 9 35 7 1 31 5 905

knn

0 1 2 3 4 5 6 7 8 9

Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
u
e
 l
a
b

e
l

966 1 2 0 0 5 3 3 0 0

0 1130 1 0 2 0 2 0 0 0

16 23 928 18 5 2 8 25 6 1

2 4 6 933 1 29 2 10 11 12

0 12 1 0 885 2 11 6 0 65

5 8 0 46 3 800 15 2 10 3

13 4 0 0 4 4 933 0 0 0

0 32 6 0 6 0 0 955 0 29

9 7 17 34 12 29 8 8 836 14

7 8 1 9 31 8 1 27 5 912

ILP

Confusion (MNIST)

8→5 1→8 9→4 7→2 9→7 9→7 9→4 3→5 2→8 7→2

6→3 9→7 3→7 1→6 8→3 8→4 3→2 4→9 4→9 0→6

9→7 4→9 5→3 5→3 6→8 6→4 4→7 9→5 0→5 1→7

0→2 7→9 7→9 9→7 5→3 3→2 7→2 3→5 4→9 7→9

Corrected samples

Figure 4.4: Confusion matrices for the test set of MNIST. Left: Predicting
only with 3 labeled neighbors (test error=7.67%), Middle: Predicting with
ILP, taking into account also the estimated labels of 3 unlabeled neighbors
(test error=7.22%). Right: Some samples for which the label predictions were
corrected by ILP.

considered. We present examples of images misclassified by k-nn that were
correctly classified by ILP.

4.5.5 KITTI Benchmark

We further evaluate Incremental Label Propagation on the more challenging
setting of a stream of data. For this experiment we use data from the KITTI
benchmark4. We conduct the same experiment as Narr et al., 20165. We
concatenate 18 streams of segmented 3D point clouds from urban traffic
environments (Geiger et al., 2012) to form one long stream. Each of the 25090
segments corresponds to a 3D bounding box containing points that represent
a given object candidate. For each such candidate, a 60-dimensional feature
vector was computed as proposed by Himmelsbach et al., 2009. These features
consist of global characteristics such as box volume and mean intensity, as
well as of distributions of local features such as scatterness or flatness. These
features can be computed in real time. For the test data, each of the 18 subsets
was split at a 2:1 ratio to obtain a stream of 16000 training samples and a
set of 9,090 test samples. We used the 100 first training samples (50 labeled
and 50 unlabeled) as a “burn-in” set to initialize the algorithm. In Fig. 4.6,
we show the order of appearance of labeled and unlabeled samples from each
class in the described training stream, as well as the behavior of ILP when
only 10% of the labels are observed.

4http://www.cvlibs.net/datasets/kitti.
5Data were provided by the authors upon our request.

53

http://www.cvlibs.net/datasets/kitti

Chapter 4. Incremental Semi-Supervised Learning from Streams

The methods mentioned by Narr et al., 2016 were evaluated on the test set
after every 1000 observations and their final test error is presented in Table 4.2.

Method Final Test error(%)

OMCGB (Saffari et al., 2010 13.00
ORF (Saffari et al., 2009) 13.70
MF (Lakshminarayanan et al., 2014) 10.00

ILP (5% labels) 10.75
ILP (10% labels) 10.18
ILP (20% labels) 9.53

Table 4.2: Final test error of different online learning methods for the described
experiment on the KITTI benchmark.

We note that we do not compare against offline methods, as they are not
relevant in a stream-based learning scenario. We fixed ϑ to 1.0 and ran the
experiment for different ratios of given labels (see Figure 4.5). With only 5%
of the labels, ILP already outperforms Online Random Forests (Saffari et al.,
2009) and online multi-class Gradient Boost (Saffari et al., 2010) and achieves
comparable accuracy to Mondrian Forests (Lakshminarayanan et al., 2014).
Note that all other methods use all training labels. With 20% of the labels, we
achieved a test error of 9.53%, which outperforms even the Mondrian Forest
method.

2000 4000 6000 8000 10000 12000 14000 16000

#observed samples

0.0

0.1

0.2

0.3

0.4

0.5

IL
P

 t
e
s
t
 e

r
r
o
r

labeled=5%

labeled=10%

labeled=20%

KITTI

Figure 4.5: Test error of ILP over time for different ratios of labeled data in
the stream.

54

4.6. Conclusion

Figure 4.6: Results on the constructed stream from the KITTI dataset given
10% of labels (see text). Left: The order of appearance of labels in the stream,
Middle: ILP error on the unlabeled training set, Right: Computation time
for different values of ϑ.

4.6 Conclusion

In this paper we presented “Incremental Label Propagation”, an efficient
incremental variant of the Label Propagation algorithm introduced by Zhu
and Ghahramani, 2002 that is useful for object classification from sparsely
labeled streams of data. We provided a proof of convergence of the original
algorithm for partially connected graphs and gave an analysis for the runtime
of our algorithm. With various experiments we investigated the influence
of hyperparameters on the behavior of ILP, showed the utilization of the
unlabeled samples over its purely supervised counterpart and demonstrated the
performance improvement, even over fully supervised online learning methods
on a challenging benchmark dataset.

55

Chapter 5

Effective Version Space
Reduction for ConvNets

He who is different from me does
not impoverish me - he enriches
me. Our unity is constituted in
something higher than ourselves -
in Man... For no man seeks to
hear his own echo, or to find his
reflection in the glass.

– Antoine de Saint-Exupéry

Chapter 5. Effective Version Space Reduction for ConvNets

This chapter is based on the paper by Liu et al., 2020. In active learning,
sampling bias could pose a serious inconsistency problem and hinder the
algorithm from finding the optimal hypothesis. However, many methods for
neural networks are hypothesis space agnostic and do not address this problem.
We examine active learning with convolutional neural networks through the
principled lens of version space reduction. We identify the connection between
two approaches – prior mass reduction and diameter reduction – and propose a
new diameter-based querying method – the minimum Gibbs-vote disagreement.
By estimating version space diameter and bias, we illustrate how the version
space of neural networks evolves and examine the realizability assumption.
With experiments on MNIST, Fashion-MNIST, SVHN and STL-10 datasets, we
demonstrate that diameter reduction methods reduce the version space more
effectively and perform better than prior mass reduction and other baselines,
and that the Gibbs vote disagreement is on par with the best query method.

5.1 Introduction

Active learning is a supervised learning framework in which the learner is given
access to a pool or stream of unlabeled samples and is allowed to selectively
query labels from an oracle (e.g. , a human annotator). In each query round,
the learner queries the labels of some unlabeled samples and trains on the
augmented labeled set to obtain new classifiers. The goal is to learn a good
classifier or hypothesis using as few labels as possible. This setting is relevant
in many real-world problems, where labeled data are scarce or expensive to
obtain, but unlabeled data are cheap and abundant.

Many active learning methods for neural networks rely on measures of
the “informativeness” of a query, in the form of classifier uncertainty, margin
(Ducoffe and Precioso, 2018; Joshi et al., 2009) or information gain (Gal et al.,
2017; Houlsby et al., 2011; Kirsch et al., 2019). Other methods capture the
informativeness by representativeness of the query set using geometry-based
(Sener and Savarese, 2018) or discriminative methods (Gissin and Shalev-
Shwartz, 2019). However, most of these methods ignore the notion of the
hypothesis space and do not address the problem of sampling bias (Dasgupta,
2009), which plague many active learning methods. Without carefully handling
this problem, an active learning algorithm is not guaranteed to be consistent,
i.e. capable of finding the optimal classifier in the hypothesis space.

We consider the hypothesis space of convolutional neural networks (Con-
vNets) and study version space reduction methods. Version space reduction
works by removing hypotheses that are inconsistent with the observed labels
from a predefined hypothesis space and maintaining the consistent sub-space,
the version space. A key condition called the realizability assumption is that
the hypothesis space contains the classifier that provides the ground truth –
if not, there are no guarantees that the best hypothesis will not be removed,

58

5.1. Introduction

(xi, yi = 1)

V 0
xi

V 1
xi

(xj , yj = 0)

V 0
xj

V 1
xj

(xk, yk = 0)

V 0
xk

V 1
xk

Figure 5.1: Version space reduction for binary classification. Upon observing
the label of x, the current version space V is split into subspaces V 0

x and V 1
x , one

of which will be removed and the other remains. Left: Prior mass reduction
methods remove approximately half of the mass. Middle: Diameter reduction
methods, like pairwise disagreement, query a sample that lead to sub-spaces
of small diameter. Right: Proposed method, the Gibbs-vote disagreement,
measures diameter by the expected distance between random hypotheses and
their majority vote.

because a hypothesis might make mistakes on the queried samples but perform
well on the data distribution.

For neural networks, the realizability assumption may not hold for all cases.
For instance, no neural networks can achieve arbitrarily small test error on
some classification datasets. A workaround is to consider the effective labelings
on a set of i.i.d. pool samples. To avoid the problem of an unreasonably large
effective hypothesis space, as implied by the result of C. Zhang et al., 2017,
we only consider the labelings achievable by training on unaltered samples
and correct labels. We examine experimentally whether the realizability holds
with this restriction and analyze its implications on version space reduction
methods.

Prior mass reduction (Dasgupta, 2004; Golovin and Krause, 2010; Nguyen
et al., 2013) and diameter reduction (Dasgupta, 2005; Tosh and Dasgupta,
2017) are two widely used version space reduction approaches. See Fig. 5.1 for
illustration. However, prior mass reduction is not an appropriate objective
for active learning (Tosh and Dasgupta, 2017) since any intermediate version
spaces containing more than one hypothesis may still have a large diameter, i.e.
large error rate in the worst-case scenario, despite having substantially reduced
mass. We derive connections between prior mass and diameter reduction and
introduce a new interpretation of diameter reduction as prior mass “reducibility
reduction”.

We propose a new diameter measure called the Gibbs-vote disagreement,
which equals the expected distance between the random hypotheses and their
majority vote classifier. We show its relation to a common diameter measure,

59

Chapter 5. Effective Version Space Reduction for ConvNets

the pairwise disagreement, and discuss under which situations the former may
be advantageous. We show experimentally on four image classification datasets
that diameter reduction methods perform better than all baselines and that
prior mass reduction (Dasgupta, 2004; Golovin and Krause, 2010; Nguyen
et al., 2013) and other baselines (Ducoffe and Precioso, 2018; Gal et al., 2017;
Houlsby et al., 2011; Sener and Savarese, 2018) do not perform consistently
better than random query and sometimes fail completely.

5.2 Related Work

A lot of research has been conducted to study the label complexity for active
learning and optimality guarantees for greedy version space reduction. Hanneke,
2007 and Balcan et al., 2006 prove upper-bounds on the label complexity in the
realizable and non-realizable cases, using a parameter called the disagreement
coefficient. Tosh and Dasgupta, 2017 propose a diameter-based active learning
algorithm and characterize its sample complexity using a parameter called
the splitting index. Dasgupta, 2004 shows that a greedy strategy maximizing
the worst-case prior mass reduction is approximately as good as the optimal
strategy. Golovin and Krause, 2010 show that the prior mass reduction utility
function is adaptive submodular and a greedy algorithm is guaranteed to
obtain near-optimal solutions in the average-case scenario. Cuong et al., 2014
prove a worst-case optimality guarantee for pointwise submodular functions.

A variety of methods relying on the informativeness of a query have been
proposed for neural networks. Gal et al., 2017 use the Monte Carlo dropout to
approximate the mutual information between predictions and model posterior
(Houlsby et al., 2011) in a Bayesian setting. Kirsch et al., 2019 extend the
work of Gal et al., 2017 and Houlsby et al., 2011 to a batch query method.
Ducoffe and Precioso, 2018 use adversarial attacks to generate samples close to
the decision boundaries. Sener and Savarese, 2018 adopt a core-set approach
to select representative samples for query. Gissin and Shalev-Shwartz, 2019
use a discriminative method to select samples such that the labeled and the
unlabeled set are indistinguishable. Pinsler et al., 2019 formulate batch query
as a sparse approximation to the expected complete data posterior of model
parameters in a Bayesian setting. Beluch et al., 2018 show that ensemble
methods consistently outperform the geometry-based method of Sener and
Savarese, 2018 and the Monte Carlo dropout method of Gal and Ghahramani,
2016 and Gal et al., 2017.

5.3 Preliminaries

Let X be the input feature space and Y the label space. Let H be a hypothesis
space of functions h : X → Y and assume a prior π over H. A hypothesis
randomly drawn from the prior is called a Gibbs classifier. Denote S =

60

5.4. Prior Mass Reduction

{(xi, yi)}ni=1 a pool of i.i.d. samples from the data distribution PXY and Q ⊆ S
the set of queried labeled samples. Define the version space V corresponding
to Q as

V := {h ∈ H : h(x) = y, ∀(x, y) ∈ Q} . (5.1)

Denote the subset of V that is consistent with x being labeled as y as

V y
x := {h ∈ H : h(x) = y, h ∈ V } , (5.2)

and the pseudo-metric induced by the marginal distribution PX as

d(h, h′) := Prx
(
h(x) 6= h′(x)

)
. (5.3)

The disagreement and agreement region are defined as

DIS(V) :=
{
x ∈ X : ∃h, h′ ∈ V, h(x) 6= h′(x)

}
, (5.4)

AGR(V) := X \DIS(V). (5.5)

5.4 Prior Mass Reduction

5.4.1 Gibbs Error

The Gibbs error (Nguyen et al., 2013) of an unlabeled sample x is the average-
case relative prior mass reduction:

GE(x|V) := Ey
[
1− Prh∼π|V (h(x) = y)

]
= Ey[1− π|V (V y

x)] , (5.6)

where π|V (h) = π(h)/π(V) is the conditional distribution of H restricted to
V . Gibbs error measures the proportion of inconsistent hypotheses taking
expectation over all possible labelings of x, achievable by hypotheses in the
version space. A greedy strategy that considers maximizing the average-
case absolute prior mass reduction in each query can equivalently select the
unlabeled sample that maximizes the Gibbs error

arg max
x

GE(x|V). (5.7)

Define the prior mass reduction utility function as

f(Q) := 1− Pr ({h ∈ H : h(x) = y, ∀(x, y) ∈ Q}) = 1− π(V). (5.8)

The optimization problem in (5.7) can be written, up to a scaling factor, as

arg max
x

π(V)GE(x|V) = arg max
x

Ey[f(Q ∪ {(x, y)})− f(Q)] (5.9)

= arg max
x

∆avg(x|Q), (5.10)

61

Chapter 5. Effective Version Space Reduction for ConvNets

where the notation ∆avg(x|Q) denotes the expected marginal gain of x in terms
of prior mass reduction given the labeled samples in Q.

A closely related objective for active learning is the label entropy given x. It
can be shown that the Gibbs error lower bounds the entropy. However, a greedy
strategy that maximizes the entropy is not guaranteed to be near-optimal in
the adaptive case (Cuong et al., 2014). Furthermore, empirically this criterion
performs similarly or worse than the maximum Gibbs error. For the sake of
simplicity, we do not consider this method in this paper.

5.4.2 Variation Ratio

The variation ratio of an unlabeled sample x is the worst-case relative prior
mass reduction upon the reveal of its label:

VR(x|V) := min
y

[
1− Prh∼π|V(h(x) = y)

]
= min

y
[1− π|V (V y

x)] . (5.11)

It measures the proportion of inconsistent hypotheses considering the worst-
case labeling of x and is a lower bound on the Gibbs error. A greedy strategy
that considers maximizing the worst-case absolute prior mass reduction in each
query selects the unlabeled sample that maximizes the variation ratio

arg max
x

VR(x|V), (5.12)

which can be expressed in terms of the prior mass reduction utility function,
up to a scaling factor, as

arg max
x

π(V)VR(x|V) = arg max
x

min
y

[f(Q ∪ {(x, y)})− f(Q)] (5.13)

= arg max
x

∆wc (x|Q) , (5.14)

where the notation ∆wc (x|Q) denotes the worst-case marginal gain of x in
terms of prior mass reduction given the labeled samples in Q.

5.5 Diameter Reduction

5.5.1 Worst-Case Pairwise Disagreement

The size of the version space can be measured by the expected pairwise
disagreement between hypotheses drawn from the conditional distribution:

PWD(V) := Eh,h′∼π|V
[
d(h, h′)

]
. (5.15)

It is the average diameter of the version space. A greedy strategy selects the
unlabeled sample that minimizes the worst-case pairwise disagreement

arg min
x

max
y

PWD(V y
x) = arg min

x
max
y

Eh,h′∼π|
V
y
x

[
d(h, h′)

]
. (5.16)

62

5.5. Diameter Reduction

Other measures of diameter based on the supremum distance (Dasgupta, 2005;
Kääriäinen, 2005) are not amenable to implementation because evaluation
of such diameters involves optimization. The pairwise disagreement can be
estimated from a finite set of sample hypotheses from the version space.

5.5.2 Worst-Case Gibbs-Vote Disagreement

We propose a new diameter measure called the Gibbs-vote disagreement. It
is the expected disagreement between random hypotheses and their majority
vote:

GVD(V) := Eh∼π|V [d(h, hvote|V)] , (5.17)

where hvote|V is the majority vote classifier of hypotheses from V . For each x,
it induces a prediction

hvote|V (x) = arg max
y

Eh∼π|V [p(y|x;h)] , (5.18)

where p(y|x;h) is the predicted probability of x belonging to class y given by
a hypothesis h. The majority vote classifier is the deterministic classifier that
has the smallest expected distance to the Gibbs classifier (Devroye et al., 2013;
Kääriäinen, 2005):

Eh′
[
d(h′, hvote)

]
= min

h
Eh′
[
d(h′, h)

]
. (5.19)

Hence the Gibbs-vote disagreement measures the size of the version space by
the expected distance of the random hypotheses to their “center”. Further,
the following relation holds

1

2
PWD(V) ≤ GVD(V) ≤ PWD(V) (5.20)

We defer the proof to the appendix1. Essentially, Equation (5.20) reveals that
the Gibbs-vote disagreement is sandwiched between the average radius and
diameter.

A greedy strategy selects the unlabeled sample that minimizes the worst-
case Gibbs-vote disagreement

arg min
x

max
y

GVD(V y
x) = arg min

x
max
y

Eh∼π|
V
y
x

[
d(h, hvote|V yx)

]
, (5.21)

where hvote|V yx is the majority vote of hypotheses from the subspace V y
x .

1The paper with appendix is available at https://arxiv.org/abs/2006.12456.

63

https://arxiv.org/abs/2006.12456

Chapter 5. Effective Version Space Reduction for ConvNets

5.5.3 Diameter Reduction as Reducibility Reduction

Pairwise disagreement shares a simple relation with Gibbs error – it is the
expected Gibbs error:

PWD(V) = Eh,h′∼π|V
[
Ex
[
1(h(x) 6= h′(x))

]]
(5.22)

= Ex
[
Eh∼π|V

[
Prh′∼π|V (h(x) 6= h′(x))

]]
(5.23)

= Ex[GE(x|V)] . (5.24)

A similar relation holds between Gibbs-vote disagreement and the variation
ratio:

GVD(V) = Eh∼π|V [Ex[1(h(x) 6= hvote|V(x))]] (5.25)

= Ex
[
Eh∼π|V [1(h(x) 6= hvote|V(x))]

]
(5.26)

= Ex[VR(x|V)] , (5.27)

where the last equality holds because the predictions of the majority vote
classifier are always the worst-case labels for prior mass reduction. Diameter
reduction selects samples such that, upon revealing their labels, the induced
subspaces have minimum possibility to be further reduced by a potential
random query. Thus, it can be thought of as reducing the expected prior mass
“reducibility”.

Prior mass reduction finds splits in directions that evenly partition the
version space, but could result in version spaces that have irregular shapes,
in the sense that the space can be whittled down finely in some directions
while being under-split in others. The worst-case error rate of the resulted
version space could still be large. Diameter reduction correctly resolve this
issue. Fig. 5.1 illustrates the differences between prior mass and diameter
reduction.

5.5.4 Weighted Diameter Reduction

Tosh and Dasgupta, 2017 show that in general average diameter cannot be
decreased at steady rate and propose to query the unlabeled samples that
minimize the diameter weighted by the squared prior mass in the worst-case
scenario

arg min
x

max
y

Eh,h′∼π
[
1(h, h′ ∈ V y

x) d(h, h′)
]

(5.28)

= arg min
x

max
y
π(V y

x)2 Eh,h′∼π|
V
y
x

[
d(h, h′)

]
. (5.29)

The potential to be minimized is a surrogate for the “amount” of edges
between hypotheses and is closely related to the splittablity of the version
space (Dasgupta, 2005; Tosh and Dasgupta, 2017).

64

5.6. Realizability Assumption

h∗

h∗
⊥

h

V

Ṽ

d(h, h∗; AGR(V))

d(h, h∗; DIS(V))

Figure 5.2: Left: Projection of h∗ to the samplable version space. Right:
Wrong agreement of version spaces trained on random samples. Total numbers
of samples are 400, 1000, 3000 and 2580 for MNIST, Fashion-MNIST, SVHN
and STL-10 respectively.

5.6 Realizability Assumption

Even though neural networks are capable of fitting an arbitrary pool set, we
show experimentally that the version space obtained by training on a subset
of the pool set with stochastic gradient descent – the “samplable” version
space – is biased and not likely to contain the correct labeling of the pool set.
Indeed, the distance from the Bayes classifier, which provides the ground truth
labeling, to the “boundary” of the version space is non-negligible.

Let h∗⊥ be the projection of the Bayes classifier h∗ to the set of hypotheses
Ṽ that agree with V on AGR(V) (see the left plot of Fig. 5.2), i.e. ,

h∗⊥ := arg min
h∈Ṽ

d(h, h∗), (5.30)

Ṽ :=
{
h : h(AGR(V)) = h′(AGR(V)), h′ ∈ V

}
. (5.31)

It is easy to see that h∗⊥ provides the ground truth on DIS(V) and predicts
the same labels on AGR(V) as hypotheses in V do, hence

d(h∗⊥, h
∗) = d(h, h∗; AGR(V)) = Ex[1(x ∈ AGV(V))1(h(x) 6= h∗(x))] , ∀h ∈ V.

(5.32)

where d(h, h∗; AGR(V)) is the disagreement probability restricted to AGR(V),
or equivalently the wrong agreement of hypotheses in V .

We show the evolution of wrong agreement in the right plot of Fig. 5.2.
As more random samples are queried, the wrong agreement decreases for
all datasets, but for some much slower than the others. In Fig. 5.3, we
show for MNIST a 2-D embedding of version spaces using Multi-Dimensional
Scaling (MDS) (Kruskal, 1978), which finds a low-dimensional representation

65

Chapter 5. Effective Version Space Reduction for ConvNets

Figure 5.3: Embedding of version spaces on MNIST using MDS. As more
random samples are used for training, the samplable version spaces move closer
to the Bayes classifier but hardly cover it.

of potentially high-dimensional data by preserving pairwise distances between
the data points. The Bayes classifier is not contained in any of the samplable
version spaces although the distances between them decrease steadily.

In general neural networks trained with a random subset do not auto-
matically predict all labels in the pool set correctly, unless a relatively large
proportion of samples are used for training. However, this fact does not render
version space reduction inconsistent, because the samplable version space is
not fixed, but it shifts towards the correct labeling and finally covers it when
the whole pool set has been used.

We conjecture that the dynamics of active learning with neural networks
have two major components: (1) shrinkage of the samplable version space,
which is explicitly optimized by the learning algorithm and (2) reduction of
bias, which is not directly controllable. Empirical evidence is provided in the
next section.

5.7 Evaluation

Datasets and Architectures We conduct active learning experiments2 on
four image classification datasets: MNIST, Fashion-MNIST, SVHN and STL-
10. Neural network architectures are chosen to be competent for each dataset
but as simple as possible in the hope of controlling the model complexity and

2Source code is available at https://github.com/jiayu-liu/effective-version-

space-reduction-for-convnets.

66

https://github.com/jiayu-liu/effective-version-space-reduction-for-convnets
https://github.com/jiayu-liu/effective-version-space-reduction-for-convnets

5.7. Evaluation

mitigating the effect of overfitting. See Table 5.1 for the complete experiment
settings.

Active Learning Methods We compare nine querying methods: Random,
variation ratio (VR), Gibbs error (GE), Bayesian Active Learning by Disagree-
ment with Monte Carlo dropout (BALD-MCD) (Gal et al., 2017; Houlsby et al.,
2011), Core-Set (Sener and Savarese, 2018), Deep-Fool Active Learning (DFAL)
(Ducoffe and Precioso, 2018), pairwise disagreement (PWD), Gibbs-vote dis-
agreement (GVD), and double-weighted pairwise disagreement (M2-PWD)
(Tosh and Dasgupta, 2017). For each method on each dataset, at least three
runs of active learning with different random balanced initial training set are
performed.

Ensemble Size We train networks multiple times from scratch to obtain
sample hypotheses and use them for prior mass and diameter estimation. Since
diameters are estimated by considering partitioned version spaces, the ensemble
size should be at least in the order of number of classes. We set the size to 20.
Larger ensemble improves estimation but at the cost of longer training time.
In preliminary experiments, we tried larger ensembles (40) and did not observe
significant differences. Hence we do not include experiments on changing this
hyper-parameter in the paper.

Query Size We set a small query budget for each round to reduce the
correlation between queries. Larger budget may alleviate the pressure of
frequent retraining, but the effect of each query can not be estimated and
examined reliably. We observed in preliminary experiments that using larger
budget (one or two orders larger) hides the differences between methods.

5.7.1 Diameter Reduction is More Effective Than Prior
Mass Reduction

Fig. 5.4 and Table 5.2 show that direct diameter reduction methods PWD and
GVD are consistently better than Random and achieve higher accuracy than
other baselines while weighted diameter reduction M2-PWD is on par with
Random. Diameter reduction methods usually exhibit less variances because
training on samples queried by PWD, GVD and M2-PWD yields version

Dataset Pool/Val/Test Model Ensemble Size Init/Query/Total Runs

MNIST 45000/5000/10000 2-conv-layer ConvNet 20 10/5/400 4
Fashion-MNIST 55000/5000/10000 3-conv-layer ConvNet 20 10/10/1000 4

SVHN 40000/5000/15000 6-conv-layer ConvNet 20 100/20/3000 4
STL-10 4000/1000/8000 ResNet18 20 100/40/2580 3

Table 5.1: Settings for each dataset used in the active learning experiments.

67

Chapter 5. Effective Version Space Reduction for ConvNets

Figure 5.4: Accuracy over number of queried labels on the test set. Direct
diameter reduction methods PWD and GVD are consistently better than
Random and are among the best methods. Weighted diameter reduction M2-
PWD is on par with Random. Other baselines are effective on some datasets
but inferior to Random on the others. Note that PWD, GVD and M2-PWD
exhibit smaller variances than the others.

MNIST Fashion-MNIST SVHN STL-10
#labels 400 1000 3000 2580

Random 93.47 ± 0.38 83.90 ± 0.38 85.60 ± 0.23 58.15 ± 0.54

VR 96.74 ± 0.15 83.05 ± 1.09 63.23 ± 1.99 59.13 ± 0.21
GE 96.79 ± 0.10 80.01 ± 0.94 64.08 ± 3.77 58.84 ± 0.34

BALD-MCD 96.51 ± 0.22 84.67 ± 0.41 85.26 ± 0.34 57.35 ± 0.64
Core-Set 95.38 ± 0.28 79.08 ± 0.82 84.91 ± 0.20 58.93 ± 0.33
DFAL 92.88 ± 1.19 85.38 ± 0.60 86.34 ± 0.33 58.81 ± 0.37

PWD 96.92 ± 0.12 85.92 ± 0.10 86.41 ± 0.12 59.45 ± 0.11
GVD 97.02 ± 0.06 86.01 ± 0.15 86.44 ± 0.20 59.33 ± 0.37
M2-PWD 93.24 ± 0.09 84.33 ± 0.03 85.42 ± 0.16 57.81 ± 0.20

Table 5.2: Accuracy on the test set in percentage.

68

5.7. Evaluation

spaces with smaller diameters and less diverse sample hypotheses. Prior mass
reduction is not always effective and even fails on SVHN. This failure is an
example of prior mass reduction being incapable of reducing the diameter, and
provides empirical evidence that it may not be an appropriate objective for
active learning.

5.7.2 Comparison to Other Baselines

BALD-MCD, Core-Set and DFAL are not consistently better than Random
although each of them achieves comparative test accuracy on certain dataset.
Their inferiority to Random in terms of test accuracy usually correlates with
higher diameter (See description in Fig. 5.6 and Table 5.3). BALD-MCD
and DFAL are highly related to prior mass reduction methods in that BALD
(Houlsby et al., 2011) seeks samples for which the model parameters under
the posterior disagree the most about the prediction (Houlsby et al., 2011),
and that DFAL, inspired by margin-based active learning (Balcan et al., 2007),
tries to locate the decision boundary with fewer labels which is essentially
removing inconsistent hypotheses in the realizable case. However, none of
them explicitly minimize the diameter, neither does Core-Set.

Note that for a fair comparison, we do not augment the training set by also
adding the adversarial samples as the original DFAL paper by Ducoffe and
Precioso, 2018 does. Samples with minimum adversarial perturbation are then
verified reliably to be less effective than those lead to minimum diameter. The
original Core-Set paper (Sener and Savarese, 2018) uses a large query batch
size (in the order of 1000). However, many baselines rely on greedy selection
and do not perform any batch optimization. To reduce query correlation, we
adopt as small batch size as possible. This allows reliable evaluation of the
effectiveness of queried samples as in the online setting. We are therefore able
to identify one major cause of inferiority to Random as failing to effectively
reduce the version space diameter.

MNIST Fashion-MNIST SVHN STL-10
#labels 400 1000 3000 2580

Random 2.86 ± 0.18 7.55 ± 0.26 13.13 ± 0.29 32.88 ± 0.43

VR 2.27 ± 0.18 10.64 ± 0.72 46.88 ± 2.76 34.21 ± 0.08
GE 2.30 ± 0.04 11.38 ± 1.52 44.87 ± 4.25 34.25 ± 0.09

BALD-MCD 2.39 ± 0.15 8.11 ± 0.51 16.58 ± 0.42 33.55 ± 0.44
Core-Set 2.91 ± 0.18 10.79 ± 1.34 14.66 ± 0.47 33.13 ± 0.64
DFAL 3.79 ± 0.60 7.06 ± 0.60 13.98 ± 0.31 32.41 ± 0.27

PWD 1.93 ± 0.04 6.91 ± 0.16 12.80 ± 0.08 32.25 ± 0.26
GVD 1.98 ± 0.05 6.98 ± 0.26 12.88 ± 0.25 32.96 ± 0.48
M2-PWD 3.37 ± 0.13 7.22 ± 0.08 13.31 ± 0.13 33.23 ± 0.18

Table 5.3: Diameter (pairwise disagreement) on the test set in percentage.

69

Chapter 5. Effective Version Space Reduction for ConvNets

5.7.3 Evolution of Samplable Version Space and its
Implications

As shown in Fig. 5.6 and 5.3, the samplable version space shifts closer to the
correct labeling while reducing its diameter as more labels are queried. These
two processes together result in smaller test error.

No Direct Control Over Reduction of Version Space Bias Interest-
ingly, the Core-Set method, which queries representative samples from the
pool set by solving a k-center problem in the feature space learned by neural
networks, is incapable of achieving negligible wrong agreement on the learned
version spaces. Indeed, it suffers larger version space bias than the direct
diameter reduction methods. After all, random queries which are i.i.d. by
assumption fail to achieve this goal as concluded in Section 5.6 and other
attempts without augmenting the training data seem doomed.

Prior Mass Induced by Stochastic Gradient Descent May Not Be a
Reliable Surrogate Measure The continued decline in wrong agreement
indicates that the distribution over labelings changes over time. This fact
of shifting density over samplable labelings renders the notion of prior mass
problematic, hence all notions relying on prior mass may not be well-defined. A
direct consequence is that an estimate of the worst-case version space reduction
would be more reliable than the average-case one. For example, VR provides a
more reliable estimate of version space reduction than GE does.

Inferiority of Weighted Diameter Reduction Method The estimation
of weighted diameter involves estimating the prior mass. Hence, the inferiority
of M2-PWD to PWD and GVD can be attributed to the intrinsic difficulty
of obtaining unbiased samplable version spaces and the resulted density shift.
A supportive evidence can be seen by noting that on MNIST and Fashion-
MNIST, where the wrong agreement is large (hence large density shift), the
weighted variant performs worse, while on SVHN and STL-10, where the wrong
agreement is small (hence small shift), the gap is less significant.

5.7.4 Gibbs-Vote Disagreement

The Gibbs-vote disagreement is among the best methods on all datasets, except
for the early learning stage on SVHN. Its effectiveness can be ascribed to an
interesting phenomenon – majority voting reduces mistakes. Although it need
not necessarily be the case, this phenomenon occurs in many situations and
the boost to accuracy depends on the variance of errors of Gibbs classifiers
(Lacasse et al., 2006). We show empirically that the majority vote classifier
indeed has smaller error rate than random hypotheses in the version space
in Fig. 5.5. Hence, optimizing the Gibbs-vote disagreement not only reduces

70

5.8. Conclusion

Figure 5.5: Distance from the Gibbs and the majority vote classifier to the
projection of h∗. On four datasets, the majority vote classifier has a smaller
distance, hence smaller error rate. See description of Fig. 5.2 for total numbers
of random samples.

the diameter but also implicitly moves the consistent hypotheses closer to the
correct labeling, which is useful when the samplable version spaces are biased
and do not contain the Bayes classifier.

5.8 Conclusion

In this work, we studied version space reduction for convolutional neural
networks. We revealed the differences and connections between prior mass and
diameter reduction methods and proposed the Gibbs-vote disagreement as a
new effective diameter-reduction method. With experiments on four datasets,
we shed light into how version space reduction works in the deep active learning
setting and demonstrated the superiority of diameter reduction over prior mass
reduction methods and other baselines.

71

Chapter 5. Effective Version Space Reduction for ConvNets

Figure 5.6: Pairwise disagreement and wrong agreement over number of queried
labels on the test set. Except direct diameter reduction methods PWD and
GVD, other baselines are not consistently better than or on par with Random
at reducing version space diameter. Performing worse than Random: GE, VR
and BALD-MCD on datasets except MNIST, Core-Set on Fashion-MNIST and
SVHN, and DFAL on MNIST and SVHN, and M2-PWD on MNIST.

72

Chapter 6

Learning to Explore

The journey, not the arrival matters.

– T.S. Eliot

Chapter 6. Learning to Explore

This chapter is based on the preprint by Chiotellis and Cremers, 2020. Can
we learn how to explore unknown spaces efficiently? To answer this question,
we study the problem of Online Graph Exploration, the online version of
the Traveling Salesperson Problem. We reformulate graph exploration as a
reinforcement learning problem and apply Direct Future Prediction (Doso-
vitskiy and Koltun, 2017) to solve it. As the graph is discovered online, the
corresponding Markov Decision Process entails a dynamic state space, namely
the observable graph and a dynamic action space, namely the nodes forming
the graph’s frontier. To the best of our knowledge, this is the first attempt to
solve online graph exploration in a data-driven way. We conduct experiments
on six data sets of procedurally generated graphs and three real city road
networks. We demonstrate that our agent can learn strategies superior to
many well known graph traversal algorithms, confirming that exploration can
be learned.

6.1 Introduction

In online graph exploration, an agent is immersed in a completely unknown
environment. Located at a node of an unknown graph, they can only see the
node’s immediate neighbors. The agent moves and discovers the graph as they
go. Whenever they visit a new node, all incident edges are revealed, along
with their weights and their end nodes. To visit a new node, the agent has
to traverse a path of known edges in the discovered graph. For each of these
edges, the agent pays their weight as a cost. The goal of the agent is to visit
all nodes in the graph, while paying the minimum cost.

By removing any particular geometric constraints, a large number of prob-
lems can be reduced to online graph exploration, as it basically is search with
partial information in a discrete space. We revisit online graph exploration for
undirected unweighted connected graphs. This task can be directly associated
with many major problems in robotics such as planning, navigation, tracking
and mapping (Yamauchi, 1997). All these subfields have been thoroughly
investigated and a large number of algorithms have been devised, both clas-
sical and recently also learning-based. While path planning and navigation
algorithms consider the question “How can I get from A to B the fastest?”,
exploration algorithms consider a more abstract question: “Where should I go
beginning from A in order to discover the world the fastest?”. In other words,
while path planning studies how to reach a given destination, exploration is
concerned with which destination should be reached next, a problem more akin
to dynamic planning. We argue that exploration is a fundamental sequential
decision making problem and it is therefore worth investigating if algorithms
can learn which destinations are worth reaching and when.

The best known exploration strategy remains a simple greedy method -
the nearest neighbor algorithm (NN). However, as NN selects the nearest (in

74

6.2. Related Work

terms of shortest path distance) unexplored node, its decisions are optimal only
when considering a horizon of a single decision step. Therefore, a reasonable
question is whether there are algorithms that can consider a longer horizon
and thus minimize the cumulative path length, which is the true objective of
exploration.

We present a learning algorithm that does exactly this. Our contributions
can be summarized as follows:

� reformulate online graph exploration as a reinforcement learning problem,

� propose a neural network that can handle the associated dynamic state
and action space,

� show experimentally that the proposed approach solves graph exploration
as fast or faster than many classical graph exploration algorithms.

6.2 Related Work

The problem of graph exploration has been studied by the graph theory
community for decades. A large number of works has been conducted, studying
the problem for specific classes of graphs (Higashikawa et al., 2014; Miyazaki
et al., 2009), with multiple collaborative agents (Dereniowski et al., 2013) or for
variations of the problem with additional information (Dobrev et al., 2012) or
energy constraints (Das et al., 2015; Duncan et al., 2006). Successful exploration
algorithms are often sophisticated variations of depth first search (DFS), where
the algorithm has to decide when to diverge from DFS (Kalyanasundaram
and Pruhs, 1994; Megow et al., 2012). A similar problem has been studied by
(Deng and Papadimitriou, 1999) for unweighted directed graphs, where the
agent has to traverse all edges instead of visiting all nodes. In this setting, the
offline equivalent problem is known as the Chinese Postman Problem (CPP)
(Guan, 1962) which is solvable in polynomial time. In contrast, the offline
equivalent of Online Graph Exploration is the Traveling Salesperson Problem,
an NP-hard problem.

Besides the large volume of research, for general graphs, the best known
exploration algorithm remains a simple greedy method - the nearest neighbor
algorithm (NN). The trajectories followed by NN are provably at most O(log n)1

longer than the optimal ones (Rosenkrantz et al., 1977).

However, to the best of our knowledge, it has not been attempted to
solve graph exploration in a data-driven way. In this work, we investigate
whether, given a training set of graphs, a learning algorithm is able to find
good exploration strategies that are competitive or even superior to traditional
methods. Recently, there has been growing interest in applying learning to
combinatorial optimization problems. In the work of Vinyals et al., 2015,

1where n is the number of nodes

75

Chapter 6. Learning to Explore

Figure 6.1: A graph exploration agent (red) keeps track of the nodes already
visited (blue) and the frontier nodes that could be visited next (green). The
frontier nodes form the boundary between known and unknown (white) space.
The goal is to discover and visit all nodes as fast as possible.

three problems were studied and solved by learning to “point” to elements
of a set with a neural network. Among these problems was the Traveling
Salesperson Problem, which can be thought of as the offline equivalent to
graph exploration. Vinyals et al., 2015 proposed a recurrent neural network
(RNN) architecture, called Pointer Network, based on the attention mechanism
introduced by Bahdanau et al., 2015. However, using an RNN might introduce
a bias due to the ordering of the elements in the input sequence. To alleviate
this bias, several works have studied neural architectures that can preserve the
permutation-invariance property of sets (Edwards and Storkey, 2017; Lee et al.,
2019; Zaheer et al., 2017). Moreover, in recent years, Graph Neural Networks
(GNNs) (Battaglia et al., 2018) have emerged. These neural networks consider
not just sets of nodes but also their pairwise connections or relationships as
inputs and can learn how to solve problems such as node classification (Kipf
and Welling, 2017) and link prediction (M. Zhang and Chen, 2018). Further,
methods such as DeepWalk (Perozzi et al., 2014) and node2vec (Grover and
Leskovec, 2016) have been used to learn node embeddings in an unsupervised
way, borrowing ideas from natural language processing (Mikolov et al., 2013).
These methods make an implicit assumption that nodes that co-appear in a
random walk on the graph are more similar than nodes that don’t. Nevertheless,
it remains a challenge to learn node embeddings for dynamic graphs that are
changing while an algorithm makes decisions about the graph’s structure.

Close to our work is the work of Dai et al., 2019 which studies exploration
on environments with graph-structured state-spaces, such as software testing.
In contrast to Dai et al., 2019, we study the original problem as defined by the

76

6.3. Formulation

Agent

= arg (, 𝑣)𝑣𝑡+1 max
𝑣∈𝐹𝑡

𝑄𝜃 𝐱𝑡

= −𝑑(,)𝑟𝑡+1 𝑣𝑡 𝑣𝑡+1

=𝑎𝑡 𝑣𝑡+1

Environment

𝐺 = (𝑉 , 𝐸)

= (Δ , Δ)𝑜𝑡+1 𝑉𝑡+1 𝐸𝑡+1

Memory

= (,)𝐺𝑡 𝑉𝑡 𝐸𝑡

𝑜𝑡

𝐱𝑡

Figure 6.2: The task of a graph exploring agent is to select the frontier node
vt+1 ∈ Ft to visit next. Once the node is visited, the environment reveals a
new set of nodes ∆Vt+1 and edges ∆Et+1, expanding the agent’s knowledge
to the graph Gt+1 = (Vt+1, Et+1). The distance traveled by the agent from vt
to vt+1 is paid as a negative reward rt+1. The agent acts upon an integrated
observation xt+1 retrieved from its memory. The subset of nodes that have
been discovered but are not yet visited are labeled as the frontier Ft+1.

graph theory community which prohibits the revisiting of past nodes. This
allows us to study the problem in isolation, without the interference of other
tasks such as visual feature learning and the perceptual aliasing problem.

In Section 6.3 we formally describe the problem of online graph exploration
and the corresponding Markov Decision Process (MDP). In Section 6.4 we
describe our method, the proposed network architecture, the used input features
and the training algorithm. Lastly, in Section 6.5 we report experimental results
on procedurally generated graphs and real road networks.

6.3 Formulation

6.3.1 Graph Exploration Overview

An agent explores a connected unweighted graph G = (V,E). At time step
t = 0, they start at an arbitrary node v0 ∈ V and they can only observe
an initial map G0 = (V0, E0) comprised of the neighbors and incident edges
of v0. We assume the agent has a memory where it can store and integrate
observations. Therefore, at any time step t, the agent observes a subgraph
Gt = (Vt, Et) with a subset of visited nodes Ct and a subset of frontier nodes
Ft to be explored. Being at node vt ∈ Ct, the agent has to choose a node
vt+1 ∈ Ft to visit next. Once a decision is made, the agent follows a path from
vt to vt+1 of length lt+1 = dGt(vt, vt+1). Note that this is a shortest path in Gt
but not necessarily in G2. The new node vt+1 gets removed from the frontier
and becomes part of the set of visited nodes: Ct+1 ← Ct ∪ {vt+1}. Finally, the
agent observes the neighbors N(vt+1) of vt+1 and the frontier gets expanded

2In the rest of the paper, we omit Gt and use the shorter notation d(vt, vt+1) wherever
possible.

77

Chapter 6. Learning to Explore

by the subset of neighbors that have not been observed in the past:

Ft+1 ← Ft ∪N(vt+1) \ Ct+1. (6.1)

The goal is to visit the nodes in such an order that the total path length
is minimized. Notice that we use a different timescale than commonly used
e.g. in navigation problems. In a single time step, the exploration agent can
traverse a path of arbitrary length in the known graph Gt. The differences
between exploration algorithms lie in the way they choose the node v ∈ Ft to
visit next. For instance, DFS considers the order of entry in the frontier and
chooses the most recently entered node. The nearest neighbor algorithm (NN)
chooses the node closest to the current node vt ∈ Ct:

vNNt+1 = arg min
v∈Ft

d(vt, v) (6.2)

However, since the NN selection rule is greedy, it might be suboptimal.
Namely, an algorithm A could exist that takes into account the expected future
path lengths and could therefore make better decisions:

vAt+1 = arg min
v∈Ft

E[d(vt, v) +
∞∑

i=t+1

d(vi, vi+1)]. (6.3)

This formulation is reminiscent of reinforcement learning (RL). In RL an
agent in a state st and following a policy π, chooses action at = π(st) and
receives an immediate reward rt+1. The true objective of the agent is to
maximize the cumulative reward:

at = arg max
a∈A

E[rt+1 +
∞∑

i=t+1

γi−tri+1|π, a], (6.4)

where γ ∈ [0, 1] is a discount factor that weighs distant future rewards less
than imminent rewards. The expectation of cumulative rewards is also known
as the action value Qπ(st, at). Notice that the NN algorithm can be exactly
recovered for γ = 0.

6.3.2 Markov Decision Process

RL problems are formally described as Markov Decision Processes (MDPs).
An MDP is defined as a 5-tuple (S,A, p, r, γ), namely a state space S, an
action space A, a state transition probability function p : S ×A× S 7→ [0, 1],
a reward function r : S ×A 7→ R and a discount factor γ ∈ [0, 1]. A partially
observable Markov decision process (POMDP) is a generalization of a MDP,
where the agent cannot directly observe the state st ∈ S but has partial
information through observations ot ∈ O. An agent with a memory component
can integrate partial observations to cumulative observations xt ∈ X . Notice

78

6.3. Formulation

that the observation space X is a subset of the state space S. Thus, we refer
to the setting of Online Graph Exploration as a memory-augmented POMDP.
In Figure 6.2, we illustrate this setting. In the following, we describe the
components of this MDP.

State Space Let G be the set of all conceivable graphs, and let PG denote
the set of all conceivable visit orderings PG for a graph G ∈ G. Then the
state space S is defined as the set of all pairs (G,PG) of graphs G ∈ G and
associated visit orderings PG ∈ PG:

Observation Space At each time step, the environment reveals the neigh-
borhood of the visited node. Therefore, the observation space is exactly the
subset of graphs that are star graphs.

Action Space It is common in RL problems with discrete action spaces, for
the agent to have access to a fixed set of actions A as in Eq. (6.4). Instead,
in graph exploration, a new unique action set At is induced from the state
at each time step. This action set corresponds to the nodes that have been
observed but not visited yet, namely the nodes in the frontier:

At = Ft. (6.5)

The general action space can be described by the power set of all nodes: A = 2V .
Note that the frontier can be derived from the known graph Gt = (Vt, Et) and
the path Pt as Ft = Vt \Ct, where Ct denotes the set of visited nodes found in
the sequence Pt.

Reward Function As defined in section 6.3.1, the rewards correspond
to negative geodesic distances. Therefore, assuming unweighted graphs, all
rewards are strictly negative:

r(st, at) = −d(vt, vt+1) < 0. (6.6)

State Transition Function Let vt+1 be the node to visit next. Then, if
st = (G,Pt) is the state described by the graph G and the path Pt, the new state
is described by the same graph G and the extended path Pt+1 ← Pt || vt+1

3.

Memory Update Upon observing ∆Vt+1 = N(vt+1), namely the neighbors
of vt+1, and ∆Et+1 = E(vt+1), the edges from vt+1 to N(vt+1), the agent’s

3By || we denote concatenation of a sequence with a new element.

79

Chapter 6. Learning to Explore

memory is updated as:

Vt+1 ← Vt ∪∆Vt+1 (6.7)

Et+1 ← Et ∪∆Et+1 (6.8)

Pt+1 ← Pt || vt+1 (6.9)

Ct+1 ← Ct ∪ {vt+1} (6.10)

Ft+1 ← Ft ∪∆Vt+1 \ Ct+1. (6.11)

6.4 Methodology

6.4.1 Predicting the Future Path Lengths

Our premise is that a learning agent can perform better than traditional
exploration algorithms, as long as they can predict the future distances to be
traveled. Inspired by the framework introduced by Dosovitskiy and Koltun,
2017, we use Direct Future Prediction (DFP) to learn a predictor of future
path lengths. Confirming the authors’ observations, we found that reducing
policy learning to a supervised regression problem makes training faster and
more stable4. In particular, at time t, we aim to predict the vector

yt = (mt+τ1 −mt,mt+τ2 −mt, . . . ,mt+τM −mt), (6.12)

where mt is a low-dimensional measurement vector augmenting the agent’s
high-dimensional observation xt, and {τj}Mj=1 are temporal offsets. Following

Dosovitskiy and Koltun, 2017, we choose exponential offsets τj = 2j−1. We
could directly use a scalar measurement Lt =

∑t
i=0 li, namely the cumulative

path length up to time t. However, there are several disadvantages with this
choice. For unweighted graphs, we know that any one-step path length lt lies in
the range [1, Nmax − 1], where Nmax is the maximum number of nodes we are
considering. Thus, directly predicting path lengths would limit our ability to
generalize to graphs larger than our training graphs. Second, the distribution
of path lengths naturally grows over time together with the observable graph’s
diameter. To avoid these problems, instead of minimizing path lengths, we
maximize the agent’s exploration rate ut = |Ct|

Lt
= t

Lt
which always lies in the

[0, 1] interval and thus the entries of y always lie in [−1, 1]. At test time, we
choose the node to visit next by simply taking the arg max:

vt+1 = arg max
v∈Ft

g>fθ(xt,mt, v), (6.13)

where fθ is our parameterized predictor network, xt = (Vt, Et, Xt) is the
observable graph with node features Xt and g is a goal vector expressing how
much we care about different future horizons. Another advantage of using DFP

4See also supplementary material for a related experiment.

80

6.4. Methodology

𝐱𝑡 GNN

𝐦𝑡

rFF

MLP

𝑍𝐶

𝑍𝐹

𝑧𝑚

𝑎𝑔𝑔𝑟
�̄�𝐶

concat

row-
concat

𝐟

𝐲𝑡𝑣𝑡+1

prediction

target

{𝜙(, , 𝑣)}𝐱𝑡 𝐦𝑡

Node ValuesInput Graph

𝑧𝑐𝑡𝑥

𝑧𝑣𝑡

{ (𝑣)}𝑧𝐹

𝐟𝐠⊤

Figure 6.3: The proposed neural network architecture for online graph explo-
ration.

instead of RL is that, given information about the remaining time available,
we can directly incorporate it in the goal vector, both at training and at test
time without the need of retraining the network. In contrast to Dosovitskiy
and Koltun, 2017, we don’t use g as an input to the network5, but only as a
weighting of the predictions to obtain a policy.

6.4.2 Network Architecture

In Figure 6.3 we show our network architecture. We first obtain node em-
beddings ZF , ZC and zvt by passing the observable graph xt = (Vt, Et, Xt)
through a graph neural network (GNN). The embeddings correspond to the
node subsets Ft, Ct and the current node vt. We use a standard graph convo-
lutional network (GCN) (Kipf and Welling, 2017). The node embeddings ZC
of the visited set are aggregated to obtain a subgraph embedding z̄C . Even
though more sophisticated pooling methods (e.g. attention (Velickovic et al.,
2018)) may be used, we use simple mean pooling.

We pass mt through a multi-layer Perceptron (MLP) to obtain a measure-
ment embedding zm. The vectors z̄C , zvt and zm are concatenated to form a
context vector zctx. Each frontier node embedding zF (v) ∈ ZF is concatenated
with zctx, resulting in a set of state-action encodings φ(xt,mt, v), one for each
node v ∈ Ft. Finally we pass these encodings through a row-wise feed-forward
network (another MLP) to obtain a prediction vector f(xt,mt, v) for each node

5We found that adding a goal module does not improve and some times even hurts
performance.

81

Chapter 6. Learning to Explore

v ∈ Ft. The state-action value Q(xt,mt, v,g) of each node in the frontier can
be obtained by multiplying their prediction vector f(xt,mt, v) with the goal
vector g.

6.4.3 Input Features

Solving online graph exploration as a learning problem depends critically on
what the learning algorithm “sees” as input. The state st consists of the known
graph Gt and the path Pt. Therefore, we have to decide on the nodes and
perhaps also edge input features of the graph Gt. Second, we have to consider
a representation of the path Pt.

We used categorical node features indicating if a node belongs to the visited
set Ct, the frontier set Ft or if it is the current node vt:

x(vi) = [1(vi ∈ Ct),1(vi ∈ Ft),1(vi = vt)]. (6.14)

Note that a categorical node feature space can incorporate many classical
graph traversal algorithms (e.g. DFS and NN) as special cases by simply
adding a binary channel that indicates the node that would be selected by
the respective algorithm. Furthermore, this representation allows the learning
algorithm to potentially learn a hyper-policy (Precup et al., 1998) by combining
greedy algorithms in novel ways.

In preliminary experiments, we investigated ways to utilize the order of
visit of the nodes, Pt, by using positional encodings (Vaswani et al., 2017) as
continuous node features. We found that these features degraded the agent’s
performance both when used on their own and also when combined with the
categorical features.

6.4.4 Training

In Algorithm 4 we describe our training procedure. In each episode, we
randomly sample a graph from the training set and then randomly set one
of its nodes as source. This virtually increases the training set size from the
number of training graphs |Gtrain| to the total number of nodes in all training
graphs

∑
G∈Gtrain |V (G)|.

Every few exploration steps, a minibatch of graphs {Gt} and associated
exploration sequences {Pt} are sampled from a replay buffer, along with the
respective future measurement vectors {yt}. The network is trained to regress
the future measurements by minimizing the mean squared error using the
Adam optimizer (Kingma and Ba, 2015).

82

6.5. Experiments

Algorithm 4 Training NOGE

1: Input: network fθ, training set of graphs Gtrain, time limit Tmax, goal
vector g, minibatch size B.

2: Output: trained network fθ.
3: Initialize θ randomly.
4: Initialize an experience replay buffer R.
5: while training do
6: Sample a graph G = (V,E) ∼ Gtrain.
7: Sample a source node v0 ∼ V .
8: Explore G using fθ, g and ε-greedy policy for up to Tmax episode steps.
9: Store GT and the followed path PT in R.

10: Sample a minibatch {Gt, Pt,yt} from R.
11: Reconstruct tuples {xt,mt, vt+1,yt}.
12: Train fθ using the minibatch loss:

13: L(θ) = 1
B

∑B
i=1 ||y

(i)
t − fθ(x

(i)
t ,m

(i)
t , v

(i)
t+1)||2.

6.5 Experiments

The hyperparameters used are reported in the Appendix B. Our source code
to generate the data sets and reproduce the experiments is publicly available6.

6.5.1 Evaluation Protocol

We evaluate our algorithm - NOGE (Neural Online Graph Exploration) on
data sets of generated and real networks. In addition to the basic version of
our algorithm, we evaluate NOGE with an extra node feature, indicating the
nearest neighbor, as described in section 6.4.3. We call this variant NOGE-NN.
We use three well known graph exploration algorithms as baselines: Breadth
First Search (BFS), Depth First Search (DFS) and Nearest Neighbor (NN).
We note that these heuristics do not need any training. For completeness,
we also report a random exploration baseline (RANDOM). We compare the
algorithms in terms of the exploration rate uT , namely the number of visited
nodes over the total path length at the end of episodes:

uT =
|CT |
|PT |

=
T∑T
i=0 li

. (6.15)

For the test sets we fix a set of source nodes per graph, to compare all
methods given the same initial conditions. The metrics reported are computed
on the test sets after either all nodes have been explored or a fixed number of
Tmax = 500 exploration steps has been reached. For all experiments we report
mean and standard deviation over 5 random seeds.

6https://github.com/johny-c/noge

83

https://github.com/johny-c/noge

Chapter 6. Learning to Explore

6.5.2 Procedurally Generated Graphs

We first examine six classes of procedurally generated graphs (Figure 6.4).
We used the networkx library7 to generate a diverse (in terms of size and
connectivity) set of graphs for each class. In Table 6.1 we report basic statistics
of the data sets, namely the number of graphs, the minimum and maximum
number of nodes and the minimum and maximum number of edges.

Figure 6.4: Samples from the procedurally generated data sets.

Dataset Size |V |min,max |E|min,max
barabasi(tr) 400 (100, 199) (384, 780)
barabasi(te) 100 (100, 199) (384, 780)
ladder(tr) 80 (200, 398) (298, 595)
ladder(te) 20 (220, 386) (328, 577)
tree(tr) 4 (121, 1365) (120, 1364)
tree(te) 2 (364, 1093) (363, 1092)
grid(tr) 80 (64, 289) (112, 544)
grid(te) 20 (72, 240) (127, 449)
caveman(tr) 120 (60, 316) (870, 12324)
caveman(te) 30 (70, 304) (1190, 11400)
maze(tr) 400 (97, 251) (96, 262)
maze(te) 100 (97, 255) (96, 276)

Table 6.1: Basic statistics of the procedurally generated data sets. In the
parentheses, “tr” signifies training set and “te” signifies test set.

7https://github.com/networkx/networkx

84

https://github.com/networkx/networkx

6.5. Experiments

We split each data set in a training (80%) and test set (20%) of graphs.
For some of these data sets, an optimal strategy is known. For instance, DFS
explores trees optimally by traversing each edge two times - once to explore
and once to backtrack. Thus its exploration rate is approximately 0.5. It is
worthwhile examining if NOGE can find this optimal strategy.

Figure 6.5: Exploration rate over gradient steps for the six procedurally
generated data sets.

Algorithm barabasi caveman grid

RANDOM 0.3695 (0.0006) 0.5664 (0.0050) 0.1461 (0.0037)
BFS 0.4695 (0.0013) 0.9526 (0.0025) 0.2264 (0.0039)
DFS 0.5494 (0.0009) 0.9778 (0.0006) 0.6272 (0.0041)
NN 0.8179(0.0014) 0.9827 (0.0015) 0.7670 (0.0028)
NOGE 0.7214 (0.0663) 0.9817 (0.0029) 0.8861(0.0162)
NOGE-NN 0.6970 (0.0497) 0.9907(0.0031) 0.8373(0.0536)

Algorithm ladder maze tree

RANDOM 0.1531 (0.0226) 0.0688 (0.0027) 0.1242 (0.0011)
BFS 0.1691 (0.0341) 0.0626 (0.0025) 0.3397 (0.0002)
DFS 0.7519(0.0010) 0.5266 (0.0050) 0.5044(0.0002)
NN 0.7530(0.0009) 0.5723(0.0033) 0.5044(0.0003)
NOGE 0.6046 (0.1208) 0.4921 (0.0140) 0.4403 (0.0272)
NOGE-NN 0.6729(0.1114) 0.5601 (0.0106) 0.5043(0.0004)

Table 6.2: Final exploration rate: Mean and standard deviation on the gener-
ated data sets.

85

Chapter 6. Learning to Explore

In Figure 6.5 we show the test performance of NOGE over 25600 training
steps. In Table 6.2 we report the final performance of the algorithms compared
to the baselines. NOGE is able to outperform other methods on the “grid” and
the “caveman” data set and finds the optimal strategy on trees. Somewhat
surprisingly the NN feature seems to only help on the “maze” and “tree” data
sets. Note that in “ladder” and “tree”, the exploration rate line of DFS is
hidden as its performance matches that of NN.

6.5.3 City Road Networks

To examine its capabilities, we also evaluate NOGE, on three real road networks.
We use openly available drivable road networks from OpenStreetMap (Haklay
and Weber, 2008). We explore three cities with diverse networks: Munich
(MUC), Oxford (OXF) and San Francisco (SFO), shown in Figure 6.6.

(a) Munich (b) Oxford (c) San Francisco

Figure 6.6: The road city networks used for evaluating NOGE.

In Table 6.3, we show basic statistics for these data sets. We constructed a
training set and test set for each city by cutting each graph in two components
and removing any edges connecting them. The cut was defined by the diagonal
line over each city’s 2D bounding box. The larger component - consisting of
approximately 60% of the nodes - was used for training and the smaller one
for testing.

Dataset Size |V |min,max |E|min,max
MUC(tr) 1 (8559, 8559) (12821, 12821)
MUC(te) 1 (5441, 5441) (7772, 7772)
OXF(tr) 1 (2197, 2197) (2561, 2561)
OXF(te) 1 (1185, 1185) (1430, 1430)
SFO(tr) 1 (5691, 5691) (9002, 9002)
SFO(te) 1 (3885, 3885) (6579, 6579)

Table 6.3: Basic statistics of the city road network data sets. In the parentheses,
“tr” signifies training set and “te” signifies test set.

86

6.6. Conclusion

Figure 6.7: Exploration rate over gradient steps for the city road networks
data sets.

Algorithm MUC OXF SFO

RANDOM 0.0674 (0.0003) 0.0624 (0.0009) 0.0726 (0.0015)
BFS 0.1961 (0.0007) 0.1608 (0.0019) 0.2007 (0.0033)
DFS 0.7644 (0.0053) 0.6012 (0.0048) 0.8252 (0.0073)
NN 0.8314(0.0091) 0.6422(0.0037) 0.9017(0.0064)
NOGE 0.6458 (0.0441) 0.4695 (0.0136) 0.7541 (0.0679)
NOGE-NN 0.7814 (0.0386) 0.6328(0.0141) 0.8289 (0.0456)

Table 6.4: Final exploration rate: Mean and standard deviation on the city
road networks data sets.

In Figure 6.7 we show the test performance of NOGE over 40000 training
steps and in Table 6.4 we report the final performance. Nearest Neighbor
performs clearly better in San Francisco and Munich. NOGE-NN is able to
match and surpass DFS, as the second best method. In Oxford, NOGE-NN is
within a standard deviation from the best performance. In these graphs the
NN feature clearly improves performance.

6.6 Conclusion

In this work, we presented NOGE, a learning-based algorithm for exploring
graphs online. First, we formulated an appropriate memory-augmented Markov
Decision Process. Second, we proposed a neural architecture that can handle the
growing graph as input and the dynamic frontier as output. Third, we devised
a node feature space that can represent greedy methods as options (Precup
et al., 1998). Finally, we showed experimentally that NOGE is competitive to
well known classical graph exploration algorithms in terms of the exploration
rate of unseen graphs.

87

Chapter 7

Conclusion

In this thesis, we described machine learning algorithms that reduce the need
for human supervision in problems from a variety of domains. To achieve that
we extended and applied techniques from Metric Learning, Semi-Supervised
Learning, Active Learning and Reinforcement Learning.

In Chapter 2, we showed how a metric learning algorithm, applied on top
of standard spectral-based point descriptors, improved the state of the art in
non-rigid shape retrieval by a large margin.

In Chapter 3, we described an inverse reinforcement learning system that
learned how to avoid collisions and how to maximize human comfort in a sim-
ulated driving environment. We showed that, given only a few demonstrations
from a human driver, the agent can learn how the human approaches the task
and can optimize their driving behavior with respect to human criteria that
are hard to formulate explicitly.

In Chapter 4, we presented a semi-supervised algorithm that can learn to
classify objects in an incoming stream of data. By combining an incremental
graph update mechanism and a novel stopping criterion for the label propaga-
tion process (Zhu and Ghahramani, 2002), we showed that our algorithm can
surpass fully supervised online algorithms in terms of classification accuracy,
while using only a small fraction of the labels.

In Chapter 5, we investigated active learning with convolutional neural net-
works through the lens of version space reduction. We showed why prior mass
reduction are not principled and proposed a novel and efficient query strategy
based on diameter reduction and model disagreement. We demonstrated that
the proposed criterion in many cases improves the state-of-the-art in image
classification.

Finally, in Chapter 6, we studied Online Graph Exploration, an important
combinatorial optimization problem that we viewed as a reinforcement learning
problem. We found that a learning agent can find exploration strategies
competitive to and in some cases faster than classical graph traversal algorithms.

While deep learning has “unlocked” new possibilities in machine learning

89

Chapter 7. Conclusion

and artificial intelligence, it is important that the autonomous systems of this
new era can work without requiring enormous amounts of labeled data. We
believe, in this thesis, we have demonstrated that this can be achieved. We
are excited to see where the new challenges in computer vision and robotics
will lie.

90

Appendix A

Appendix for Chapter 4

A.1 Details for proof of Theorem 1

To get a suitable norm on Ru to show that T is a contraction we use lemma
5.6.10 of Roger A. Horn, 2013. It states that for any matrix A ∈ Rn×n and
ε > 0 there is a matrix norm |||.|||ω, s.th. |||A|||ω ≤ ρ(A) + ε. This matrix
norm is constructed as follows: Because of theorem 2.3.1 in Roger A. Horn,
2013 there is an unitary matrix U ∈ Rn×n and an upper triangular matrix
∆ ∈ Rn×n s.th. A = U∆U∗. Let Dt := diag(t, t2, t3, ..., tn) and Q := DtU

∗.
Then the matrix norm we are interested in is defined by

|||A|||ω := |||DtU
∗AUD−1

t |||1 = ||| (DtU
∗)A (DtU

∗)−1 |||1

where |||A|||1 := max
1≤j≤n

n∑
i=1

|ai,j | .
(A.1)

Example 5.6.4 in Roger A. Horn, 2013 shows that the norm |||.|||1 is
induced by the `1-vector-norm ||x||1 =

∑n
i=1 |xi| on Rn. Following theorem

5.6.7 in Roger A. Horn, 2013 the matrix norm |||.|||ω is then induced by
the vector-norm ||x||ω = ||DtU

∗x||1. As shown in the proof of lemma 5.6.10
in Roger A. Horn, 2013, for t large enough the matrix norm |||.|||ω fulfills
|||A|||ω ≤ ρ(A) + ε .

91

Appendix B

Appendix for Chapter 6

B.1 Implementation Details

B.1.1 Hyperparameters

In Table B.1 we show the hyperparameters used for the experiments on the
procedurally generated data sets. The only differences in the experiments for
the city road networks are the number of training steps which was set to 40000
and the hidden layer width of the neural network (see next subsection).

Parameter Value

test set ratio 0.2
max. episode steps (Tmax) 500
node history 2
feature range [-0.5, 0.5]
target normalization True
training steps 25600
evaluation episodes 50
env. steps per tr. step 32
tr. steps per evaluation 512
replay buffer size (|R|) 20000
εmax 1
εmin 0.15
temporal coefficients (g) [0, 0, 0, 1

4 , 1
4 , 1

2 ,1
2 , 1]

minibatch size (B) 32
learning rate 0.0001

Table B.1: Hyperparameters used in experiments evaluating NOGE.

We elaborate on hyperparameters, the usage of which may not be clear:

93

Appendix B. Appendix for Chapter 6

Node History It is common in deep reinforcement learning to replace the in-
put observation xt with a stack of the last k observations [xt−k+1,xt−k+2, . . . ,xt],
particularly when the observations are images. This gives the agent a sense of
the environment dynamics. We found that using a stack of the last 2 feature
vectors for each node also improves performance in graph exploration, as it
gives a sense of direction.

Feature Range As a preprocessing step, shifting input features to the
[−0.5, 0.5] range speeds up learning.

Target Normalization As a postprocessing step, we used target normaliza-
tion. We scaled targets y by the standard deviation of measurements collected
during random exploration, as described by Dosovitskiy and Koltun, 2017.

Evaluation Episodes For evaluation, we sampled 50 graphs from the test
set and fixed one source node per graph. If the test set contained less than 50
graphs, we sampled 50 source nodes uniformly from all test graphs.

ε-greedy Policy As described in our training algorithm, we used an ε-greedy
policy to collect experiences, namely a random frontier node was selected to be
visited with probability ε and a node was selected by the network’s policy with
probability 1 - ε. We linearly interpolated ε from 1 to 0.15 over the course of
training. During testing, the greedy policy (ε = 0) was used.

B.1.2 Network Architecture

The architecture of our network, used for the procedurally generated graphs, is
shown in Table B.2. The same architecture was used for the city road networks,
except that all hidden layers are wider by a factor of two. The input dimension
for the graph neural network (GNN) was 3 for NOGE and 4 for NOGE-NN.
In all networks we use the ReLU nonlinearity after all layers except for the
output layer of the row-wise feed-forward (rFF) network.

module input dimension output dimension

GNN 3 or 4 32
32 64

MLP 1 64
64 64

rFF 256 128
128 8

Table B.2: Network architecture.

94

B.2. Comparison to DQN

B.1.3 Replay Buffer for Graphs

To use the replay buffer for training, we need to be able to sample graph
observations Gt from any time step in an episode. To do that, for each episode
we store the discovered graph GT = (VT , ET) at the end of the episode and
two arrays: an array of node counts and an array of edge counts, indicating
the size of the graph at each time step. To be able to reconstruct the frontier
at an arbitrary time step t, we need to store two integers per node v: the time
of discovery tdis(v) and the time of visit tdis(v). Then the frontier Ft at any
time step t is:

Ft = {v ∈ Vt : t ≥ tdis(v) ∧ t < tvis(v)} (B.1)

B.2 Comparison to DQN

We originally tried using standard RL algorithms but found them to be unstable
compared to DFP. In Figure B.1, we additionally show the test exploration rate
of a DQN (Mnih et al., 2015) during training on the procedurally generated
data sets. The curves show mean and standard deviation over 5 random seeds.
Except for the original path length reward function (PL), described in the
paper, we also tried using the exploration rate difference between two time
steps (ER). In both cases the DQN had access to the NN feature. We can see
that in 3 out of 6 data sets, the DQN struggles and degrades to solutions much
worse than those found by NOGE.

Figure B.1: Exploration rate over gradient steps for the six procedurally
generated data sets.

95

Own Publications

Chiotellis, I. and D. Cremers (2020). “Neural Online Graph Exploration”. In:

arXiv: 2012.03345 [cs.LG] (cit. on p. 74).

Chiotellis, I., R. Triebel, T. Windheuser, and D. Cremers (2016). “Non-Rigid

3D Shape Retrieval via Large Margin Nearest Neighbor Embedding”. In:

European Conference on Computer Vision (ECCV). Springer, pp. 327–342

(cit. on p. 16).

Chiotellis*, I., F. Zimmermann*, D. Cremers, and R. Triebel (2018). “Incre-

mental Semi-Supervised Learning from Streams for Object Classification”.

In: 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, pp. 5743–5749 (cit. on p. 42).

Liu, J., I. Chiotellis, R. Triebel, and D. Cremers (2020). “Effective Version Space

Reduction for Convolutional Neural Networks”. In: Machine Learning and

Knowledge Discovery in Databases - European Conference, ECML PKDD

2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part II. Ed. by

F. Hutter, K. Kersting, J. Lijffijt, and I. Valera. Vol. 12458. Lecture Notes in

Computer Science. Springer, pp. 85–100. doi: 10.1007/978-3-030-67661-

2_6. url: https://doi.org/10.1007/978-3-030-67661-2%5C_6

(cit. on p. 58).

Sharifzadeh, S., I. Chiotellis, R. Triebel, and D. Cremers (2016). “Learning to

Drive Using Inverse Reinforcement Learning and Deep Q-Networks”. In:

Workshop on “Deep Learning for Action and Interaction”, Conference on

Neural Information Processing Systems (NIPS). (Cit. on p. 32).

97

https://arxiv.org/abs/2012.03345
https://doi.org/10.1007/978-3-030-67661-2_6
https://doi.org/10.1007/978-3-030-67661-2_6
https://doi.org/10.1007/978-3-030-67661-2%5C_6

Bibliography

Abbeel, P. and A. Y. Ng (2004). “Apprenticeship learning via inverse rein-

forcement learning”. In: Machine Learning, Proceedings of the Twenty-first

International Conference (ICML 2004), Banff, Alberta, Canada, July 4-

8, 2004. Ed. by C. E. Brodley. Vol. 69. ACM International Conference

Proceeding Series. ACM. doi: 10.1145/1015330.1015430. url: https:

//doi.org/10.1145/1015330.1015430 (cit. on pp. 33, 34, 36).

Aubry, M., U. Schlickewei, and D. Cremers (2011). “The wave kernel signature:

A quantum mechanical approach to shape analysis”. In: Computer Vision

Workshops (ICCV Workshops), 2011 IEEE International Conference on.

IEEE, pp. 1626–1633 (cit. on pp. 17, 18, 22).

Bahdanau, D., K. Cho, and Y. Bengio (2015). “Neural Machine Translation by

Jointly Learning to Align and Translate”. In: 3rd International Conference

on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,

2015, Conference Track Proceedings. Ed. by Y. Bengio and Y. LeCun. url:

http://arxiv.org/abs/1409.0473 (cit. on p. 76).

Balcan, M.-F., A. Beygelzimer, and J. Langford (2006). “Agnostic active learn-

ing”. In: Machine Learning, Proceedings of the Twenty-Third International

Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006.

Ed. by W. W. Cohen and A. W. Moore. Vol. 148. ACM International Confer-

ence Proceeding Series. ACM, pp. 65–72. doi: 10.1145/1143844.1143853.

url: https://doi.org/10.1145/1143844.1143853 (cit. on p. 60).

Balcan, M.-F., A. Z. Broder, and T. Zhang (2007). “Margin Based Active

Learning”. In: Learning Theory, 20th Annual Conference on Learning

Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007, Proceedings.

Ed. by N. H. Bshouty and C. Gentile. Vol. 4539. Lecture Notes in Computer

Science. Springer, pp. 35–50. doi: 10.1007/978-3-540-72927-3_5. url:

https://doi.org/10.1007/978-3-540-72927-3%5C_5 (cit. on p. 69).

Battaglia, P. W., J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi,

M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al.

(2018). “Relational inductive biases, deep learning, and graph networks”.

In: arXiv preprint arXiv:1806.01261 (cit. on pp. 12, 76).

99

https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1145/1015330.1015430
http://arxiv.org/abs/1409.0473
https://doi.org/10.1145/1143844.1143853
https://doi.org/10.1145/1143844.1143853
https://doi.org/10.1007/978-3-540-72927-3_5
https://doi.org/10.1007/978-3-540-72927-3%5C_5

Bibliography

Beluch, W. H., T. Genewein, A. Nürnberger, and J. M. Köhler (2018). “The

Power of Ensembles for Active Learning in Image Classification”. In: 2018

IEEE Conference on Computer Vision and Pattern Recognition, CVPR

2018, Salt Lake City, UT, USA, June 18-22, 2018. IEEE Computer So-

ciety, pp. 9368–9377. doi: 10.1109/CVPR.2018.00976. url: http://

openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Beluch%5C_

The%5C_Power%5C_of%5C_CVPR%5C_2018%5C_paper.html (cit. on p. 60).

Bojarski, M., D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,

L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al. (2016). “End to

End Learning for Self-Driving Cars”. In: arXiv preprint arXiv:1604.07316

(cit. on p. 32).

Bronstein, A. M. (2011). “Spectral descriptors for deformable shapes”. In:

arXiv preprint arXiv:1110.5015 (cit. on p. 17).

Bronstein, A. M., M. M. Bronstein, L. J. Guibas, and M. Ovsjanikov (2011).

“Shape google: Geometric words and expressions for invariant shape re-

trieval”. In: ACM Transactions on Graphics (TOG) 30.1, p. 1 (cit. on

p. 30).

Bronstein, M. M. and I. Kokkinos (2010). “Scale-invariant heat kernel signatures

for non-rigid shape recognition”. In: The Twenty-Third IEEE Conference

on Computer Vision and Pattern Recognition, CVPR 2010, San Francisco,

CA, USA, 13-18 June 2010. IEEE Computer Society, pp. 1704–1711. doi:

10.1109/CVPR.2010.5539838. url: https://doi.org/10.1109/CVPR.

2010.5539838 (cit. on pp. 17, 18, 22).

Chapelle, O., B. Schölkopf, and A. Zien (2006). Semi-Supervised Learning. The

MIT Press (cit. on p. 43).

Charikar, M., C. Chekuri, T. Feder, and R. Motwani (2004). “Incremental clus-

tering and dynamic information retrieval”. In: SIAM Journal on Computing

33.6, pp. 1417–1440 (cit. on p. 44).

Cignoni, P., M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G.

Ranzuglia (2008). “MeshLab: an Open-Source Mesh Processing Tool”. In:

Eurographics Italian Chapter Conference. Ed. by V. Scarano, R. D. Chiara,

and U. Erra. The Eurographics Association. isbn: 978-3-905673-68-5. doi:

10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-

136 (cit. on p. 27).

Cuong, N. V., W. S. Lee, and N. Ye (2014). “Near-optimal Adaptive Pool-based

Active Learning with General Loss”. In: Proceedings of the Thirtieth Confer-

ence on Uncertainty in Artificial Intelligence, UAI 2014, Quebec City, Que-

bec, Canada, July 23-27, 2014. Ed. by N. L. Zhang and J. Tian. AUAI Press,

pp. 122–131. url: https://dslpitt.org/uai/displayArticleDetails.

jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=2447%5C&proceeding%5C_

id=30 (cit. on pp. 60, 62).

100

https://doi.org/10.1109/CVPR.2018.00976
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Beluch%5C_The%5C_Power%5C_of%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Beluch%5C_The%5C_Power%5C_of%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Beluch%5C_The%5C_Power%5C_of%5C_CVPR%5C_2018%5C_paper.html
https://doi.org/10.1109/CVPR.2010.5539838
https://doi.org/10.1109/CVPR.2010.5539838
https://doi.org/10.1109/CVPR.2010.5539838
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=2447%5C&proceeding%5C_id=30
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=2447%5C&proceeding%5C_id=30
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=2447%5C&proceeding%5C_id=30

Bibliography

Dai, H., Y. Li, C. Wang, R. Singh, P.-S. Huang, and P. Kohli (2019). “Learn-

ing Transferable Graph Exploration”. In: Advances in Neural Information

Processing Systems 32: Annual Conference on Neural Information Pro-

cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,

BC, Canada. Ed. by H. M. Wallach, H. Larochelle, A. Beygelzimer, F.

d’Alché-Buc, E. B. Fox, and R. Garnett, pp. 2514–2525. url: https://

proceedings.neurips.cc/paper/2019/hash/afe434653a898da20044041262b3ac74-

Abstract.html (cit. on p. 76).

Das, S., D. Dereniowski, and C. Karousatou (2015). “Collaborative exploration

by energy-constrained mobile robots”. In: International Colloquium on

Structural Information and Communication Complexity. Springer, pp. 357–

369 (cit. on p. 75).

Dasgupta, S. (2004). “Analysis of a greedy active learning strategy”. In: Ad-

vances in Neural Information Processing Systems 17 [Neural Informa-

tion Processing Systems, NIPS 2004, December 13-18, 2004, Vancouver,

British Columbia, Canada], pp. 337–344. url: https://proceedings.

neurips.cc/paper/2004/hash/c61fbef63df5ff317aecdc3670094472-

Abstract.html (cit. on pp. 59, 60).

— (2005). “Coarse sample complexity bounds for active learning”. In: Advances

in Neural Information Processing Systems 18 [Neural Information Process-

ing Systems, NIPS 2005, December 5-8, 2005, Vancouver, British Columbia,

Canada], pp. 235–242. url: https://proceedings.neurips.cc/paper/

2005/hash/6e82873a32b95af115de1c414a1849cb-Abstract.html (cit.

on pp. 59, 63, 64).

— (2009). “The Two Faces of Active Learning”. In: Proceedings of the 12th

International Conference on Discovery Science, pp. 35–35 (cit. on p. 58).

Delalleau, O., Y. Bengio, and N. Le Roux (2005). “Efficient Non-Parametric

Function Induction in Semi-Supervised Learning.” In: AISTATS. Vol. 27,

p. 100 (cit. on p. 43).

Deng, X. and C. H. Papadimitriou (1999). “Exploring an unknown graph”. In:

Journal of Graph Theory 32.3, pp. 265–297 (cit. on p. 75).

Dereniowski, D., Y. Disser, A. Kosowski, D. Pajkak, and P. Uznański (2013).

“Fast collaborative graph exploration”. In: International Colloquium on

Automata, Languages, and Programming. Springer, pp. 520–532 (cit. on

p. 75).

Devroye, L., L. Györfi, and G. Lugosi (2013). A probabilistic theory of pattern

recognition. Vol. 31. Springer Science & Business Media (cit. on p. 63).

Dobrev, S., R. Královič, and E. Markou (2012). “Online graph exploration

with advice”. In: International Colloquium on Structural Information and

Communication Complexity. Springer, pp. 267–278 (cit. on p. 75).

101

https://proceedings.neurips.cc/paper/2019/hash/afe434653a898da20044041262b3ac74-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/afe434653a898da20044041262b3ac74-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/afe434653a898da20044041262b3ac74-Abstract.html
https://proceedings.neurips.cc/paper/2004/hash/c61fbef63df5ff317aecdc3670094472-Abstract.html
https://proceedings.neurips.cc/paper/2004/hash/c61fbef63df5ff317aecdc3670094472-Abstract.html
https://proceedings.neurips.cc/paper/2004/hash/c61fbef63df5ff317aecdc3670094472-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/6e82873a32b95af115de1c414a1849cb-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/6e82873a32b95af115de1c414a1849cb-Abstract.html

Bibliography

Dosovitskiy, A. and V. Koltun (2017). “Learning to Act by Predicting the Fu-

ture”. In: 5th International Conference on Learning Representations, ICLR

2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.

OpenReview.net. url: https://openreview.net/forum?id=rJLS7qKel

(cit. on pp. 74, 80, 81, 94).

Ducoffe, M. and F. Precioso (2018). “Adversarial active learning for deep

networks: a margin based approach”. In: arXiv preprint arXiv:1802.09841

(cit. on pp. 58, 60, 67, 69).

Duncan, C. A., S. G. Kobourov, and V. A. Kumar (2006). “Optimal constrained

graph exploration”. In: ACM Transactions on Algorithms (TALG) 2.3,

pp. 380–402 (cit. on p. 75).

Edwards, H. and A. J. Storkey (2017). “Towards a Neural Statistician”. In: 5th

International Conference on Learning Representations, ICLR 2017, Toulon,

France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.

url: https://openreview.net/forum?id=HJDBUF5le (cit. on p. 76).

Fukushima, K. (1980). “A self-organizing neural network model for a mechanism

of pattern recognition unaffected by shift in position”. In: Biol. Cybern. 36,

pp. 193–202 (cit. on p. 12).

Gal, Y. and Z. Ghahramani (2016). “Dropout as a Bayesian Approximation:

Representing Model Uncertainty in Deep Learning”. In: Proceedings of

the 33nd International Conference on Machine Learning, ICML 2016,

New York City, NY, USA, June 19-24, 2016. Ed. by M.-F. Balcan and

K. Q. Weinberger. Vol. 48. JMLR Workshop and Conference Proceedings.

JMLR.org, pp. 1050–1059. url: http://proceedings.mlr.press/v48/

gal16.html (cit. on p. 60).

Gal, Y., R. Islam, and Z. Ghahramani (2017). “Deep Bayesian Active Learning

with Image Data”. In: Proceedings of the 34th International Conference

on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August

2017. Ed. by D. Precup and Y. W. Teh. Vol. 70. Proceedings of Machine

Learning Research. PMLR, pp. 1183–1192. url: http://proceedings.

mlr.press/v70/gal17a.html (cit. on pp. 58, 60, 67).

Ganu, G. and B. Kveton (2013). Nearly Optimal Semi-Supervised Learning on

Subgraphs (cit. on p. 43).

Gasparetto, A. and A. Torsello (2015). “A statistical model of Riemannian

metric variation for deformable shape analysis”. In: IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA,

June 7-12, 2015. IEEE Computer Society, pp. 1219–1228. doi: 10.1109/

CVPR.2015.7298726. url: https://doi.org/10.1109/CVPR.2015.

7298726 (cit. on pp. 17, 28, 30).

Geiger, A., P. Lenz, and R. Urtasun (2012). “Are we ready for autonomous

driving? The KITTI vision benchmark suite”. In: 2012 IEEE Conference

102

https://openreview.net/forum?id=rJLS7qKel
https://openreview.net/forum?id=HJDBUF5le
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v70/gal17a.html
http://proceedings.mlr.press/v70/gal17a.html
https://doi.org/10.1109/CVPR.2015.7298726
https://doi.org/10.1109/CVPR.2015.7298726
https://doi.org/10.1109/CVPR.2015.7298726
https://doi.org/10.1109/CVPR.2015.7298726

Bibliography

on Computer Vision and Pattern Recognition, Providence, RI, USA, June

16-21, 2012. IEEE Computer Society, pp. 3354–3361. doi: 10.1109/CVPR.

2012.6248074. url: https://doi.org/10.1109/CVPR.2012.6248074

(cit. on pp. 45, 53).

Gissin, D. and S. Shalev-Shwartz (2019). “Discriminative active learning”. In:

arXiv preprint arXiv:1907.06347 (cit. on pp. 58, 60).

Golovin, D. and A. Krause (2010). “Adaptive Submodularity: A New Approach

to Active Learning and Stochastic Optimization”. In: COLT 2010 - The

23rd Conference on Learning Theory, Haifa, Israel, June 27-29, 2010. Ed. by

A. T. Kalai and M. Mohri. Omnipress, pp. 333–345. url: http://colt2010.

haifa.il.ibm.com/papers/COLT2010proceedings.pdf%5C#page=341

(cit. on pp. 59, 60).

Grover, A. and J. Leskovec (2016). “node2vec: Scalable Feature Learning

for Networks”. In: Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA,

USA, August 13-17, 2016. Ed. by B. Krishnapuram, M. Shah, A. J. Smola,

C. C. Aggarwal, D. Shen, and R. Rastogi. ACM, pp. 855–864. doi: 10.1145/

2939672.2939754. url: https://doi.org/10.1145/2939672.2939754

(cit. on p. 76).

Guan, M. G. (1962). “Graphic programming using odd or even points Chinese

Mathematics”. In: V ol 1.2, pp. 73–2 (cit. on p. 75).

Haklay, M. and P. Weber (2008). “Openstreetmap: User-generated street maps”.

In: IEEE Pervasive Computing 7.4, pp. 12–18 (cit. on p. 86).

Hanneke, S. (2007). “A bound on the label complexity of agnostic active

learning”. In: Machine Learning, Proceedings of the Twenty-Fourth Inter-

national Conference (ICML 2007), Corvallis, Oregon, USA, June 20-24,

2007. Ed. by Z. Ghahramani. Vol. 227. ACM International Conference

Proceeding Series. ACM, pp. 353–360. doi: 10.1145/1273496.1273541.

url: https://doi.org/10.1145/1273496.1273541 (cit. on p. 60).

Häusser, P., A. Mordvintsev, and D. Cremers (2017). “Learning by Association

- A Versatile Semi-Supervised Training Method for Neural Networks”.

In: 2017 IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer Society,

pp. 626–635. doi: 10.1109/CVPR.2017.74. url: https://doi.org/10.

1109/CVPR.2017.74 (cit. on p. 42).

Higashikawa, Y., N. Katoh, S. Langerman, and S.-i. Tanigawa (2014). “Online

graph exploration algorithms for cycles and trees by multiple searchers”. In:

Journal of Combinatorial Optimization 28.2, pp. 480–495 (cit. on p. 75).

Himmelsbach, M., T. Luettel, and H.-J. Wuensche (2009). “Real-time ob-

ject classification in 3D point clouds using point feature histograms”. In:

IEEE/RSJ IROS, pp. 994–1000 (cit. on p. 53).

103

https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074
http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf%5C#page=341
http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf%5C#page=341
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/1273496.1273541
https://doi.org/10.1145/1273496.1273541
https://doi.org/10.1109/CVPR.2017.74
https://doi.org/10.1109/CVPR.2017.74
https://doi.org/10.1109/CVPR.2017.74

Bibliography

Houlsby, N., F. Huszár, Z. Ghahramani, and M. Lengyel (2011). “Bayesian

active learning for classification and preference learning”. In: arXiv preprint

arXiv:1112.5745 (cit. on pp. 58, 60, 67, 69).

Joshi, A. J., F. Porikli, and N. Papanikolopoulos (2009). “Multi-class active

learning for image classification”. In: 2009 IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition (CVPR 2009), 20-25

June 2009, Miami, Florida, USA. IEEE Computer Society, pp. 2372–2379.

doi: 10.1109/CVPR.2009.5206627. url: https://doi.org/10.1109/

CVPR.2009.5206627 (cit. on p. 58).

Kääriäinen, M. (2005). “Generalization Error Bounds Using Unlabeled Data”.

In: Learning Theory, 18th Annual Conference on Learning Theory, COLT

2005, Bertinoro, Italy, June 27-30, 2005, Proceedings. Ed. by P. Auer and R.

Meir. Vol. 3559. Lecture Notes in Computer Science. Springer, pp. 127–142.

doi: 10.1007/11503415_9. url: https://doi.org/10.1007/11503415%

5C_9 (cit. on p. 63).

Kalyanasundaram, B. and K. R. Pruhs (1994). “Constructing competitive

tours from local information”. In: Theoretical Computer Science 130.1,

pp. 125–138 (cit. on p. 75).

Kingma, D. P. and J. Ba (2015). “Adam: A Method for Stochastic Optimiza-

tion”. In: 3rd International Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Ed. by Y. Bengio and Y. LeCun. url: http://arxiv.org/abs/1412.6980

(cit. on p. 82).

Kingma, D. P., S. Mohamed, D. J. Rezende, and M. Welling (2014). “Semi-

supervised Learning with Deep Generative Models”. In: Advances in Neural

Information Processing Systems 27: Annual Conference on Neural Infor-

mation Processing Systems 2014, December 8-13 2014, Montreal, Quebec,

Canada. Ed. by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and

K. Q. Weinberger, pp. 3581–3589. url: https://proceedings.neurips.

cc/paper/2014/hash/d523773c6b194f37b938d340d5d02232-Abstract.

html (cit. on p. 42).

Kipf, T. N. and M. Welling (2017). “Semi-Supervised Classification with Graph

Convolutional Networks”. In: 5th International Conference on Learning

Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference

Track Proceedings. OpenReview.net. url: https://openreview.net/

forum?id=SJU4ayYgl (cit. on pp. 76, 81).

Kirsch, A., J. van Amersfoort, and Y. Gal (2019). “BatchBALD: Efficient

and Diverse Batch Acquisition for Deep Bayesian Active Learning”. In:

Advances in Neural Information Processing Systems 32: Annual Conference

on Neural Information Processing Systems 2019, NeurIPS 2019, December

8-14, 2019, Vancouver, BC, Canada. Ed. by H. M. Wallach, H. Larochelle,

104

https://doi.org/10.1109/CVPR.2009.5206627
https://doi.org/10.1109/CVPR.2009.5206627
https://doi.org/10.1109/CVPR.2009.5206627
https://doi.org/10.1007/11503415_9
https://doi.org/10.1007/11503415%5C_9
https://doi.org/10.1007/11503415%5C_9
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2014/hash/d523773c6b194f37b938d340d5d02232-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/d523773c6b194f37b938d340d5d02232-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/d523773c6b194f37b938d340d5d02232-Abstract.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

Bibliography

A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, pp. 7024–

7035. url: https://proceedings.neurips.cc/paper/2019/hash/

95323660ed2124450caaac2c46b5ed90- Abstract.html (cit. on pp. 58,

60).

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). “ImageNet Classification

with Deep Convolutional Neural Networks”. In: Advances in Neural Infor-

mation Processing Systems 25: 26th Annual Conference on Neural Informa-

tion Processing Systems 2012. Proceedings of a meeting held December 3-6,

2012, Lake Tahoe, Nevada, United States. Ed. by P. L. Bartlett, F. C. N.

Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, pp. 1106–

1114. url: https://proceedings.neurips.cc/paper/2012/hash/

c399862d3b9d6b76c8436e924a68c45b-Abstract.html (cit. on p. 8).

Kruse, T., A. K. Pandey, R. Alami, and A. Kirsch (2013). “Human-aware

robot navigation: A survey”. In: Robotics and Autonomous Systems 61.12,

pp. 1726–1743 (cit. on p. 32).

Kruskal, J. B. (1978). Multidimensional scaling. 11. Sage (cit. on p. 65).

Lacasse, A., F. Laviolette, M. Marchand, P. Germain, and N. Usunier (2006).

“PAC-Bayes Bounds for the Risk of the Majority Vote and the Variance

of the Gibbs Classifier”. In: Advances in Neural Information Processing

Systems 19, Proceedings of the Twentieth Annual Conference on Neural

Information Processing Systems, Vancouver, British Columbia, Canada,

December 4-7, 2006. Ed. by B. Schölkopf, J. C. Platt, and T. Hofmann.

MIT Press, pp. 769–776. url: https://proceedings.neurips.cc/paper/

2006/hash/779efbd24d5a7e37ce8dc93e7c04d572-Abstract.html (cit.

on p. 70).

Lakshminarayanan, B., D. M. Roy, and Y. W. Teh (2014). “Mondrian Forests:

Efficient Online Random Forests”. In: Advances in Neural Information

Processing Systems 27: Annual Conference on Neural Information Process-

ing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada. Ed. by

Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-

berger, pp. 3140–3148. url: https://proceedings.neurips.cc/paper/

2014/hash/d1dc3a8270a6f9394f88847d7f0050cf-Abstract.html (cit.

on p. 54).

LaValle, S. M. (2006). Planning algorithms. Cambridge university press (cit. on

p. 35).

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

and L. D. Jackel (1989). “Backpropagation applied to handwritten zip code

recognition”. In: Neural computation 1.4, pp. 541–551 (cit. on p. 12).

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). “Gradient-based

learning applied to document recognition”. In: Proceedings of the IEEE

86.11, pp. 2278–2324 (cit. on p. 50).

105

https://proceedings.neurips.cc/paper/2019/hash/95323660ed2124450caaac2c46b5ed90-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/95323660ed2124450caaac2c46b5ed90-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2006/hash/779efbd24d5a7e37ce8dc93e7c04d572-Abstract.html
https://proceedings.neurips.cc/paper/2006/hash/779efbd24d5a7e37ce8dc93e7c04d572-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/d1dc3a8270a6f9394f88847d7f0050cf-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/d1dc3a8270a6f9394f88847d7f0050cf-Abstract.html

Bibliography

Lee, J., Y. Lee, J. Kim, A. R. Kosiorek, S. Choi, and Y. W. Teh (2019).

“Set Transformer: A Framework for Attention-based Permutation-Invariant

Neural Networks”. In: Proceedings of the 36th International Conference on

Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,

USA. Ed. by K. Chaudhuri and R. Salakhutdinov. Vol. 97. Proceedings

of Machine Learning Research. PMLR, pp. 3744–3753. url: http://

proceedings.mlr.press/v97/lee19d.html (cit. on p. 76).

Litman, R., A. Bronstein, M. Bronstein, and U. Castellani (2014). “Supervised

learning of bag-of-features shape descriptors using sparse coding”. In:

Computer Graphics Forum. Vol. 33. Wiley Online Library, pp. 127–136

(cit. on pp. 16, 17, 22, 23, 27, 29, 30).

Masci, J., D. Boscaini, M. Bronstein, and P. Vandergheynst (2015). “Geodesic

Convolutional Neural Networks on Riemannian Manifolds”. In: ICCV

Workshops (cit. on p. 17).

McCulloch, W. S. and W. Pitts (1943). “A logical calculus of the ideas imma-

nent in nervous activity”. In: The bulletin of mathematical biophysics 5.4,

pp. 115–133 (cit. on p. 8).

Megow, N., K. Mehlhorn, and P. Schweitzer (2012). “Online graph exploration:

New results on old and new algorithms”. In: Theoretical Computer Science

463, pp. 62–72 (cit. on p. 75).

Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado, and J. Dean (2013). “Dis-

tributed Representations of Words and Phrases and their Compositionality”.

In: Advances in Neural Information Processing Systems 26: 27th Annual

Conference on Neural Information Processing Systems 2013. Proceedings

of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States.

Ed. by C. J. C. Burges, L. Bottou, Z. Ghahramani, and K. Q. Wein-

berger, pp. 3111–3119. url: https://proceedings.neurips.cc/paper/

2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html (cit.

on p. 76).

Miyazaki, S., N. Morimoto, and Y. Okabe (2009). “The online graph exploration

problem on restricted graphs”. In: IEICE transactions on information and

systems 92.9, pp. 1620–1627 (cit. on p. 75).

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. (2015).

“Human-level control through deep reinforcement learning”. In: Nature

518.7540, pp. 529–533 (cit. on pp. 33, 34, 95).

Narr, A., R. Triebel, and D. Cremers (2016). “Stream-based active learning for

efficient and adaptive classification of 3d objects”. In: IEEE International

Conference on Robotics and Automation (ICRA), pp. 227–233 (cit. on

pp. 53, 54).

106

http://proceedings.mlr.press/v97/lee19d.html
http://proceedings.mlr.press/v97/lee19d.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html

Bibliography

Ng, A. Y. and S. J. Russell (2000). “Algorithms for Inverse Reinforcement

Learning”. In: Proceedings of the Seventeenth International Conference on

Machine Learning (ICML 2000), Stanford University, Stanford, CA, USA,

June 29 - July 2, 2000. Ed. by P. Langley. Morgan Kaufmann, pp. 663–670

(cit. on p. 33).

Nguyen, V. C., W. S. Lee, N. Ye, K. M. A. Chai, and H. L. Chieu (2013). “Active

Learning for Probabilistic Hypotheses Using the Maximum Gibbs Error

Criterion”. In: Advances in Neural Information Processing Systems 26:

27th Annual Conference on Neural Information Processing Systems 2013.

Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada,

United States. Ed. by C. J. C. Burges, L. Bottou, Z. Ghahramani, and

K. Q. Weinberger, pp. 1457–1465. url: https://proceedings.neurips.

cc/paper/2013/hash/fb89705ae6d743bf1e848c206e16a1d7-Abstract.

html (cit. on pp. 59–61).

Okal, B. and K. O. Arras (2016). “Learning socially normative robot navigation

behaviors with bayesian inverse reinforcement learning”. In: 2016 IEEE

International Conference on Robotics and Automation (ICRA). IEEE,

pp. 2889–2895 (cit. on p. 32).

Omohundro, S. M. (1989). Five balltree construction algorithms. International

Computer Science Institute Berkeley (cit. on p. 49).

Perozzi, B., R. Al-Rfou, and S. Skiena (2014). “DeepWalk: online learning of so-

cial representations”. In: The 20th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA

- August 24 - 27, 2014. Ed. by S. A. Macskassy, C. Perlich, J. Leskovec, W.

Wang, and R. Ghani. ACM, pp. 701–710. doi: 10.1145/2623330.2623732.

url: https://doi.org/10.1145/2623330.2623732 (cit. on p. 76).

Pickup, D., X. Sun, P. L. Rosin, R. R. Martin, Z. Cheng, Z. Lian, M. Aono,

A. Ben Hamza, A. Bronstein, M. Bronstein, S. Bu, U. Castellani, S. Cheng,

V. Garro, A. Giachetti, A. Godil, J. Han, H. Johan, L. Lai, B. Li, C. Li,

H. Li, R. Litman, X. Liu, Z. Liu, Y. Lu, A. Tatsuma, and J. Ye (2014).

“SHREC’14 track: Shape Retrieval of Non-Rigid 3D Human Models”. In:

Proceedings of the 7th Eurographics workshop on 3D Object Retrieval. EG

3DOR’14. Eurographics Association. url: https://www.cs.cf.ac.uk/

shaperetrieval/shrec14/ (cit. on pp. 17, 27, 30).

Pinkall, U. and K. Polthier (1993). “Computing discrete minimal surfaces and

their conjugates”. In: Experimental mathematics 2.1, pp. 15–36 (cit. on

p. 20).

Pinsler, R., J. Gordon, E. T. Nalisnick, and J. M. Hernández-Lobato (2019).

“Bayesian Batch Active Learning as Sparse Subset Approximation”. In:

Advances in Neural Information Processing Systems 32: Annual Conference

on Neural Information Processing Systems 2019, NeurIPS 2019, December

107

https://proceedings.neurips.cc/paper/2013/hash/fb89705ae6d743bf1e848c206e16a1d7-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/fb89705ae6d743bf1e848c206e16a1d7-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/fb89705ae6d743bf1e848c206e16a1d7-Abstract.html
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://www.cs.cf.ac.uk/shaperetrieval/shrec14/
https://www.cs.cf.ac.uk/shaperetrieval/shrec14/

Bibliography

8-14, 2019, Vancouver, BC, Canada. Ed. by H. M. Wallach, H. Larochelle,

A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, pp. 6356–

6367. url: https://proceedings.neurips.cc/paper/2019/hash/

84c2d4860a0fc27bcf854c444fb8b400-Abstract.html (cit. on p. 60).

Precup, D., R. S. Sutton, and S. Singh (1998). “Theoretical results on reinforce-

ment learning with temporally abstract options”. In: European conference

on machine learning. Springer, pp. 382–393 (cit. on pp. 82, 87).

Ramachandran, D. and E. Amir (2007). “Bayesian inverse reinforcement learn-

ing”. In: Urbana 51.61801, pp. 1–4 (cit. on p. 33).

Ratliff, N. D., J. A. Bagnell, and M. Zinkevich (2006). “Maximum margin

planning”. In: Machine Learning, Proceedings of the Twenty-Third Inter-

national Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June

25-29, 2006. Ed. by W. W. Cohen and A. W. Moore. Vol. 148. ACM Inter-

national Conference Proceeding Series. ACM, pp. 729–736. doi: 10.1145/

1143844.1143936. url: https://doi.org/10.1145/1143844.1143936

(cit. on p. 33).

Reuter, M., S. Biasotti, D. Giorgi, G. Patanè, and M. Spagnuolo (2009).

“Discrete Laplace-Beltrami operators for shape analysis and segmentation”.

In: IEEE International Conference on Shape Modelling and Applications

(cit. on p. 20).

Rodolà, E., S. R. Bulò, T. Windheuser, M. Vestner, and D. Cremers (2014).

“Dense Non-rigid Shape Correspondence Using Random Forests”. In: 2014

IEEE Conference on Computer Vision and Pattern Recognition, CVPR

2014, Columbus, OH, USA, June 23-28, 2014. IEEE Computer Society,

pp. 4177–4184. doi: 10.1109/CVPR.2014.532. url: https://doi.org/

10.1109/CVPR.2014.532 (cit. on p. 17).

Roger A. Horn, C. R. J. (2013). Matrix analysis. New York: Cambridge

University Press (cit. on p. 91).

Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and the theory

of brain mechanisms. Tech. rep. Cornell Aeronautical Lab Inc Buffalo NY

(cit. on p. 10).

Rosenkrantz, D. J., R. E. Stearns, and P. M. Lewis II (1977). “An analysis of

several heuristics for the traveling salesman problem”. In: SIAM journal

on computing 6.3, pp. 563–581 (cit. on p. 75).

Rumelhart, D. E., G. Hinton, and R. Williams (1986). “Learning internal repre-

sentations by error propagation”. In: Foundations. MIT Press, Cambridge

(cit. on p. 10).

Rustamov, R. M. (2007). “Laplace–Beltrami eigenfunctions for deformation

invariant shape representation”. In: Proceedings of the fifth Eurographics

symposium on Geometry processing. Eurographics Association, pp. 225–233

(cit. on p. 28).

108

https://proceedings.neurips.cc/paper/2019/hash/84c2d4860a0fc27bcf854c444fb8b400-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/84c2d4860a0fc27bcf854c444fb8b400-Abstract.html
https://doi.org/10.1145/1143844.1143936
https://doi.org/10.1145/1143844.1143936
https://doi.org/10.1145/1143844.1143936
https://doi.org/10.1109/CVPR.2014.532
https://doi.org/10.1109/CVPR.2014.532
https://doi.org/10.1109/CVPR.2014.532

Bibliography

Saffari, A., M. Godec, T. Pock, C. Leistner, and H. Bischof (2010). “Online

multi-class LPBoost”. In: The Twenty-Third IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13-

18 June 2010. IEEE Computer Society, pp. 3570–3577. doi: 10.1109/CVPR.

2010.5539937. url: https://doi.org/10.1109/CVPR.2010.5539937

(cit. on p. 54).

Saffari, A., C. Leistner, J. Santner, M. Godec, and H. Bischof (2009). “On-

line random forests”. In: Computer Vision Workshops at International

Conference on Computer Vision (ICCV), pp. 1393–1400 (cit. on p. 54).

Sajjadi, M., M. Javanmardi, and T. Tasdizen (2016). “Regularization With

Stochastic Transformations and Perturbations for Deep Semi-Supervised

Learning”. In: Advances in Neural Information Processing Systems 29:

Annual Conference on Neural Information Processing Systems 2016, De-

cember 5-10, 2016, Barcelona, Spain. Ed. by D. D. Lee, M. Sugiyama, U.

von Luxburg, I. Guyon, and R. Garnett, pp. 1163–1171. url: https://

proceedings.neurips.cc/paper/2016/hash/30ef30b64204a3088a26bc2e6ecf7602-

Abstract.html (cit. on p. 42).

Sener, O. and S. Savarese (2018). “Active Learning for Convolutional Neural

Networks: A Core-Set Approach”. In: 6th International Conference on

Learning Representations, ICLR 2018, Vancouver, BC, Canada, April

30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. url:

https://openreview.net/forum?id=H1aIuk-RW (cit. on pp. 58, 60, 67,

69).

Sun, J., M. Ovsjanikov, and L. Guibas (2009). “A Concise and Provably

Informative Multi-Scale Signature Based on Heat Diffusion”. In: Computer

graphics forum. Vol. 28. Wiley Online Library, pp. 1383–1392 (cit. on pp. 17,

21).

Tehrani, H., Q. H. Do, M. Egawa, K. Muto, K. Yoneda, and S. Mita (2015).

“General behavior and motion model for automated lane change”. In: 2015

IEEE Intelligent Vehicles Symposium (IV). IEEE, pp. 1154–1159 (cit. on

p. 32).

Tehrani, H., K. Muto, K. Yoneda, and S. Mita (2014). “Evaluating human &

computer for expressway lane changing”. In: 2014 IEEE Intelligent Vehicles

Symposium Proceedings. IEEE, pp. 382–387 (cit. on p. 32).

Tosh, C. and S. Dasgupta (2017). “Diameter-Based Active Learning”. In:

Proceedings of the 34th International Conference on Machine Learning,

ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. Ed. by D. Precup

and Y. W. Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR,

pp. 3444–3452. url: http://proceedings.mlr.press/v70/tosh17a.

html (cit. on pp. 59, 60, 64, 67).

109

https://doi.org/10.1109/CVPR.2010.5539937
https://doi.org/10.1109/CVPR.2010.5539937
https://doi.org/10.1109/CVPR.2010.5539937
https://proceedings.neurips.cc/paper/2016/hash/30ef30b64204a3088a26bc2e6ecf7602-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/30ef30b64204a3088a26bc2e6ecf7602-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/30ef30b64204a3088a26bc2e6ecf7602-Abstract.html
https://openreview.net/forum?id=H1aIuk-RW
http://proceedings.mlr.press/v70/tosh17a.html
http://proceedings.mlr.press/v70/tosh17a.html

Bibliography

Triebel, R., K. Arras, R. Alami, L. Beyer, S. Breuers, R. Chatila, M. Chetouani,

D. Cremers, V. Evers, M. Fiore, H. Hung, O. A. I. Ramı́rez, M. Joosse, H.

Khambhaita, T. Kucner, B. Leibe, A. J. Lilienthal, T. Linder, M. Lohse, M.

Magnusson, B. Okal, L. Palmieri, U. Rafi, M. van Rooij, and L. Zhang (2015).

“SPENCER: A Socially Aware Service Robot for Passenger Guidance and

Help in Busy Airports”. In: Proc. Field and Service Robotics (FSR) (cit. on

p. 32).

Tsitsiklis, J. N. and B. Van Roy (1997). “An analysis of temporal-difference

learning with function approximation”. In: IEEE transactions on automatic

control 42.5, pp. 674–690 (cit. on p. 34).

Valko, M., B. Kveton, L. Huang, and D. Ting (2010). “Online Semi-Supervised

Learning on Quantized Graphs”. In: UAI 2010, Proceedings of the Twenty-

Sixth Conference on Uncertainty in Artificial Intelligence, Catalina Island,

CA, USA, July 8-11, 2010. Ed. by P. Grünwald and P. Spirtes. AUAI Press,

pp. 606–614. url: https://dslpitt.org/uai/displayArticleDetails.

jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=2077%5C&proceeding%5C_

id=26 (cit. on p. 43).

Vapnik, V. (1998). “Statistical learning theory new york”. In: NY: Wiley

(cit. on p. 6).

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. New York,

NY, USA: Springer-Verlag New York, Inc. isbn: 0-387-94559-8 (cit. on

p. 42).

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin (2017). “Attention is All you Need”. In:

Advances in Neural Information Processing Systems 30: Annual Conference

on Neural Information Processing Systems 2017, December 4-9, 2017, Long

Beach, CA, USA. Ed. by I. Guyon, U. von Luxburg, S. Bengio, H. M.

Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, pp. 5998–

6008. url: https://proceedings.neurips.cc/paper/2017/hash/

3f5ee243547dee91fbd053c1c4a845aa-Abstract.html (cit. on p. 82).

Velickovic, P., G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio

(2018). “Graph Attention Networks”. In: 6th International Conference

on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April

30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. url:

https://openreview.net/forum?id=rJXMpikCZ (cit. on p. 81).

Vinyals, O., M. Fortunato, and N. Jaitly (2015). “Pointer Networks”. In:

Advances in Neural Information Processing Systems 28: Annual Conference

on Neural Information Processing Systems 2015, December 7-12, 2015,

Montreal, Quebec, Canada. Ed. by C. Cortes, N. D. Lawrence, D. D. Lee,

M. Sugiyama, and R. Garnett, pp. 2692–2700. url: https://proceedings.

110

https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=2077%5C&proceeding%5C_id=26
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=2077%5C&proceeding%5C_id=26
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=2077%5C&proceeding%5C_id=26
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJXMpikCZ
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html

Bibliography

neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-

Abstract.html (cit. on pp. 75, 76).

Weinberger, K. Q., J. Blitzer, and L. K. Saul (2005a). “Distance Metric

Learning for Large Margin Nearest Neighbor Classification”. In: Advances in

Neural Information Processing Systems 18 [Neural Information Processing

Systems, NIPS 2005, December 5-8, 2005, Vancouver, British Columbia,

Canada], pp. 1473–1480. url: https://proceedings.neurips.cc/paper/

2005/hash/a7f592cef8b130a6967a90617db5681b-Abstract.html (cit.

on pp. 17, 26).

— (2005b). “Distance Metric Learning for Large Margin Nearest Neighbor

Classification”. In: Advances in Neural Information Processing Systems 18

[Neural Information Processing Systems, NIPS 2005, December 5-8, 2005,

Vancouver, British Columbia, Canada], pp. 1473–1480. url: https://

proceedings.neurips.cc/paper/2005/hash/a7f592cef8b130a6967a90617db5681b-

Abstract.html (cit. on p. 24).

Werling, M., J. Ziegler, S. Kammel, and S. Thrun (2010). “Optimal trajectory

generation for dynamic street scenarios in a frenet frame”. In: Robotics

and Automation (ICRA), 2010 IEEE International Conference on. IEEE,

pp. 987–993 (cit. on p. 32).

Windheuser, T., M. Vestner, E. Rodolà, R. Triebel, and D. Cremers (2014).

“Optimal Intrinsic Descriptors for Non-Rigid Shape Analysis”. In: British

Machine Vision Conference, BMVC 2014, Nottingham, UK, September 1-5,

2014. Ed. by M. F. Valstar, A. P. French, and T. P. Pridmore. BMVA Press.

url: http://www.bmva.org/bmvc/2014/papers/paper015/index.html

(cit. on p. 17).

Wulfmeier, M., P. Ondruska, and I. Posner (2015). “Deep Inverse Reinforcement

Learning”. In: arXiv preprint arXiv:1507.04888 (cit. on p. 33).

Yamauchi, B. (1997). “A frontier-based approach for autonomous exploration”.

In: Proceedings 1997 IEEE International Symposium on Computational

Intelligence in Robotics and Automation CIRA’97.’Towards New Computa-

tional Principles for Robotics and Automation’. IEEE, pp. 146–151 (cit. on

p. 74).

Zaheer, M., S. Kottur, S. Ravanbakhsh, B. Póczos, R. Salakhutdinov, and A. J.

Smola (2017). “Deep Sets”. In: Advances in Neural Information Processing

Systems 30: Annual Conference on Neural Information Processing Systems

2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by I. Guyon, U. von

Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan,

and R. Garnett, pp. 3391–3401. url: https://proceedings.neurips.

cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.

html (cit. on p. 76).

111

https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/a7f592cef8b130a6967a90617db5681b-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/a7f592cef8b130a6967a90617db5681b-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/a7f592cef8b130a6967a90617db5681b-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/a7f592cef8b130a6967a90617db5681b-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/a7f592cef8b130a6967a90617db5681b-Abstract.html
http://www.bmva.org/bmvc/2014/papers/paper015/index.html
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html

Bibliography

Zhang, C., S. Bengio, M. Hardt, B. Recht, and O. Vinyals (2017). “Understand-

ing deep learning requires rethinking generalization”. In: 5th International

Conference on Learning Representations, ICLR 2017, Toulon, France, April

24-26, 2017, Conference Track Proceedings. OpenReview.net. url: https:

//openreview.net/forum?id=Sy8gdB9xx (cit. on p. 59).

Zhang, M. and Y. Chen (2018). “Link Prediction Based on Graph Neural Net-

works”. In: Advances in Neural Information Processing Systems 31: Annual

Conference on Neural Information Processing Systems 2018, NeurIPS 2018,

December 3-8, 2018, Montréal, Canada. Ed. by S. Bengio, H. M. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, pp. 5171–

5181. url: https://proceedings.neurips.cc/paper/2018/hash/

53f0d7c537d99b3824f0f99d62ea2428-Abstract.html (cit. on p. 76).

Zhu, X. (2005). “Semi-Supervised Learning with Graphs”. PhD thesis. Lan-

guage Technologies Institute, School of Computer Science, Carnegie Mellon

University (cit. on pp. 44, 46).

Zhu, X. and Z. Ghahramani (2002). Learning from Labeled and Unlabeled

Data with Label Propagation. Tech. rep. CMU-CALD-02-107. Pittsburgh:

Carnegie-Mellon Univ. (cit. on pp. 42, 43, 45, 46, 55, 89).

Zhu, X., Z. Ghahramani, and J. D. Lafferty (2003). “Semi-Supervised Learning

Using Gaussian Fields and Harmonic Functions”. In: Machine Learning,

Proceedings of the Twentieth International Conference (ICML 2003), August

21-24, 2003, Washington, DC, USA. Ed. by T. Fawcett and N. Mishra.

AAAI Press, pp. 912–919. url: http://www.aaai.org/Library/ICML/

2003/icml03-118.php (cit. on p. 43).

Ziebart, B. D., A. L. Maas, J. A. Bagnell, and A. K. Dey (2008). “Maximum

Entropy Inverse Reinforcement Learning.” In: AAAI, pp. 1433–1438 (cit. on

p. 33).

112

https://openreview.net/forum?id=Sy8gdB9xx
https://openreview.net/forum?id=Sy8gdB9xx
https://proceedings.neurips.cc/paper/2018/hash/53f0d7c537d99b3824f0f99d62ea2428-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/53f0d7c537d99b3824f0f99d62ea2428-Abstract.html
http://www.aaai.org/Library/ICML/2003/icml03-118.php
http://www.aaai.org/Library/ICML/2003/icml03-118.php

