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Abstract

Rolling-horizon production planning is based on the periodic update of forecasts and

decisions. Today, companies implement a combination of deterministic models and ex-

ogenously calculated safety stocks in rolling horizon. Yet, deterministic models only

react passively to forecast updates. On the contrary, stochastic models anticipate the

uncertainty of forecasts over the horizon and provide cost-optimal safety stocks. Fur-

ther, stochastic programming reflects the flexibility of rolling-horizon planning through

recourse decisions that adapt to uncertainty in each stage. This thesis studies the ap-

plication of stochastic methods to production planning when demand is seasonal and

uncertain. Different problems and solution approaches are analysed in three chapters.

First, a multi-ordering newsvendor problem is considered in which forecasts are peri-

odically updated according to the martingale model of forecast evolution (MMFE). In

each planning period, capacity is limited and holding costs are incurred for carrying in-

ventory up to the selling season. We analyse the key trade-off between producing early

to avoid lost-sales and producing late to minimise inventory costs. The optimal pro-

duction policy is determined analytically for the single-product case and adapted into a

heuristic to plan several correlated products. The value of forecast evolution models is

evaluated in rolling-horizon simulations.

Second, we apply stochastic programming to master production scheduling. We iden-

tify general barriers preventing the application of stochastic programming such as mod-

elling uncertainty from limited data, reflecting the planning processes in stochastic mod-

els, and obtaining accurate evaluations. We propose a framework to overcome the bar-

riers and develop a two-stage stochastic model with production recourse that improves

planning flexibility, communicability and stability. We demonstrate our approach on a

real-world case study in the agrochemical industry.

Third, we focus on dynamic stochastic lot-sizing problems. We show how both ad-

ditive and multiplicative MMFE can be readily integrated in lot-sizing problems and

solved using piecewise-linear approximations of the expected inventory and backlogs.

We introduce scenario-based recourse to allow flexible decisions. The value of forecast
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evolution models and the value of recourse are quantified in rolling-horizon simulations

using both artificial and real-world data.

Stochastic rolling-horizon production planning is thoroughly studied throughout this

thesis. We highlight strengths and limitations of stochastic models and evaluate their

performance in a wide range of problems and production environments.
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Chapter 1

Introduction

1.1. Motivation

Demand forecasts are a key input of production planning systems. Despite constant ad-

vances in forecasting techniques, they remain subject to forecast error. To manage the

resulting demand uncertainty, a common approach is to conduct planning in a rolling-

horizon fashion. In each planning cycle, a production plan is determined over the horizon

but only its first periods are implemented. Decisions for later periods are revised in fol-

lowing planning cycles using newly available forecasts. By frequently updating forecasts

and decisions, improved production plans can be derived.

Rolling-horizon planning is applied extensively to a wide variety of industry settings

(Sahin et al., 2013). Traditionally, a combination of deterministic models and rule-of-

thumbs for safety stock calculations are used to determine production plans (Sridharan

and Berry, 1990; Yano and Carlson, 1987). However, these models react only passively

to updates and errors in forecasts and do not yield cost-effective decisions (Tang and

Grubbström, 2002; Vargas and Metters, 2011). Conversely, stochastic models explicitly

integrate uncertainty through probability distributions to calculate safety stocks that

satisfy demand at minimum cost. Stochastic models have been applied with great success

in production problems such as material requirement planning (Thevenin et al., 2021),

lot sizing (Sereshti et al., 2020), and lot sizing and scheduling (Hu and Hu, 2018).

Using updated demand forecasts in each review period is a major strength of rolling-

horizon planning. Planning performance could be further improved by characterising

the forecast revision process and integrating it in stochastic planning models. The mar-

tingale model of forecast evolution (MMFE) formalised by Heath and Jackson (1994)

proposes two methods to describe forecast evolution as a stochastic process. The additive

version measures the absolute difference between forecasts. The multiplicative version

1



Chapter 1. Introduction

measures forecast updates relative to the forecasts themselves, which has been shown to

better reflect forecasters’ behaviour (Hausman, 1969). The MMFE is a powerful frame-

work that has been applied to varied problems such as defining supply contracts (Dono-

hue, 2000), capacity planning (Boyacı and Özer, 2010), inventory management (Iida

and Zipkin, 2006; Özer and Wei, 2004; Wang and Tomlin, 2009), and multi-ordering

newsvendor problems (Biçer and Seifert, 2017; Wang et al., 2012). The above literature

shows that determining optimal policy with forecast evolution models can provide sig-

nificant cost reductions.

Yet, applications of MMFE models in rolling-horizon production planning problems are

limited. In particular, managing the production of multiple products with limited capac-

ity and correlated forecast evolution is a challenging problem that has only been solved

heuristically so far (Albey et al., 2016; Norouzi, 2012; Ziarnetzky et al., 2018). Further,

despite their dependence on data, MMFE models have seen only limited applications to

real-world data. To the best of our knowledge, the only applications of MMFE to real-

world problems have been proposed by Albey et al. (2015), who apply additive MMFE

in the semi-conductor industry, and Pinçe et al. (2021), who apply the multiplicative

model to an agricultural supply chain. A detailed analysis of both MMFE models on

real-world data is missing.

Forecast evolution models provide a probabilistic description of the forecast evolution

process, which can be integrated in stochastic models. However, determining the result-

ing optimal production policies analytically is often too complex for realistic problems.

Stochastic programming can be used instead to solve multi-stage problems by represent-

ing uncertainty as a scenario tree over the horizon (Dupačová et al., 2000). Multi-stage

formulations describe the progressive resolution of uncertainty in sequential stages in

which decisions can be adapted (King and Wallace, 2012). These recourse opportuni-

ties lead to less conservative first-stage decisions that reduce overall costs. Multi-stage

models are closely linked to rolling-horizon planning since they explicitly model the flex-

ible adaptation of decisions over time. Yet, the application of multi-stage stochastic

models in rolling horizon has received only limited attention for production planning.

A majority of existing literature considers only static evaluation of stochastic models

and ignore rolling-horizon implementations. In particular, the value of recourse offered

by multi-stage formulations has only been partially quantified, since static comparisons

with two-stage models proposed by (Hu and Hu, 2018; Kazemi Zanjani et al., 2010) may

overestimate the value of recourse (Stephan et al., 2010). Another approach to study

the value of flexibility in rolling-horizon planning has been proposed by Tavaghof-Gigloo

2



1.1. Motivation

and Minner (2020) who introduce a heuristic to reduce safety stocks when capacity is

large. They do not discuss the value of recourse when limited capacity is shared by sev-

eral products. Hence, a complete evaluation of the value of recourse in rolling-horizon

planning is still missing.

Designing multi-stage models that fit existing rolling-horizon practice also remains an

open question. An essential but often overlooked aspect of rolling-horizon planning is

the central role of communicating reference plans to coordinate the different planning

processes. Communicability of reference plans is essential in complex supply chains since

planning is decomposed in several consecutive steps. The rolling-horizon cycle is set up

so that plans are propagated through the supply chain and act as input for dependent

planning steps. For instance, raw-material requirements are propagated upward the

supply chain to organise purchasing, production and transportation activities. Simi-

larly, production plans are communicated to downstream parts to schedule workforce

and finished-goods deliveries. Yet, in their common form, multi-stage production plan-

ning models do not provide communicable reference plans. Instead, they determine a

tree of production decisions over the planning horizon (Escudero et al., 1993; Körpeoğlu

et al., 2011).

Reference plans should further remain stable in rolling horizon to efficiently coordinate

upstream and downstream parts of the supply chain. Frequent plan changes create ner-

vousness, which can reduce confidence in planning and increase overall costs (Atadeniz

and Sridharan, 2020). To mitigate planning nervousness, strategies have been proposed

that penalise or prohibit plan changes (Koca et al., 2018; Sridharan and Berry, 1990).

While effective to increase planning stability, these methods reduce flexibility and may

lead to important cost increase. Hence, the trade-off between planning communicability,

stability and flexibility needs to be carefully investigated.

This research is motivated by a collaboration with a company in the agrochemical

industry for a set of products with high seasonality. This dynamic setting is especially

challenging since early forecasts have poor accuracy even in the close future. The flex-

ibility of rolling-horizon planning is then essential to adapt production decisions and

ensure that demand can be met. Analysing the uncertainty of forecasts and integrating

it in stochastic models in rolling-horizon planning is a promising direction to improve

production planning and supply chain management.

3



Chapter 1. Introduction

1.2. Research Questions

This thesis studies the integration of stochastic optimisation in rolling-horizon produc-

tion planning when demand is uncertain and seasonal. We analyse the interactions

between stochastic models, rolling-horizon planning and forecast uncertainty. Research

questions that cover the main contributions proposed in the three chapters of this thesis

are stated as follows.

Stochastic models are still rarely used in practice despite their complementarity with

rolling-horizon planning. This suggests that there remain open questions regarding how

to apply stochastic models in real-world problems. In the academic literature, a very

common assumption is that demand distributions are known. However, distributions

are not given in practice and have to be estimated from past forecast and demand data.

(RQ 1) How can stochastic models be applied from the available history of forecast and

demand data?

This research question aims to foster the application of stochastic optimisation by study-

ing the link between planning data and model development. In Chapter 3, we identify

important barriers that prevent the application of stochastic programming to master

productions scheduling and relate them to existing literature. We develop a framework

to overcome the barriers based on data and apply it to our real-world case study in the

agrochemical industry. A second approach is proposed in Chapter 4, in which we use

MMFE models to characterise forecast uncertainty from data. This method is especially

suitable in rolling-horizon planning since it relies on the history of forecast and demand

data that is readily available to practitioners.

Forecast evolution models can be seen as a bridge between theory and practice for

stochastic rolling-horizon planning. However, the integration of MMFE in complex

planning environments remains challenging. In particular, limited production capacity,

inventory costs and product correlations lead to difficult problems that have only be

solved approximately so far. Further, despite close link to practice and its reliance on

data, MMFE has seen only limited application to real-world problems. In-depth analyses

of the additive and multiplicative models in practical settings are missing.

(RQ 2.1) How can MMFE models be integrated into complex production planning en-

vironments?

(RQ 2.2) What are strengths and limitations of the additive and multiplicative MMFE

when applied from real-world data?

We propose several approaches to integrate forecast evolution models in production
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1.2. Research Questions

planning. In Chapter 2, we consider a short seasonal demand and solve the dynamic

programming model analytically for a single product. Properties of the optimal policy

are analysed to develop a heuristic to plan several correlated products. In Chapter 4, we

integrate the MMFE in a general lot-sizing problem and solve the resulting non-linear

formulation using existing piecewise-linearisation techniques. Both additive and multi-

plicative models are applied with real-world data and their performance are compared.

We identify their advantages and limitations as well as their sensitivity to problem pa-

rameters. We also provide general recommendations to practitioners.

Forecast evolution models and forecast uncertainty models can be used to formulate

multi-stage optimisation models that yield less conservative decisions. However, the

value of recourse offered by multi-stage formulations has not been measured precisely in

rolling-horizon production planning.

(RQ 3) What is the value of recourse in rolling-horizon planning and what parameters

influence it?

This research question is studied thoroughly in the three chapters of this thesis by

performing repeated simulations in rolling horizon. The value of recourse is measured

accurately by defining stochastic models without recourse as benchmarks. We perform

extensive sensitivity analyses to highlight parameters that influence the value of recourse

such as available capacity and product correlation. When possible, we set up out-

of-sample simulations to evaluate the value of recourse when the uncertain process is

unknown and has to be estimated from data.

Recourse can reduce production costs thanks to less conservative decisions. However,

traditional multi-stage models do not respect the constraints of rolling-horizon planning

such as providing stable reference plans in each planning cycle.

(RQ 4) How can stochastic models that satisfy the trade-off between planning flexibility,

stability and communicability be developed?

We use several methods to determine flexible recourse decisions and stable reference plans

with stochastic models. In Chapter 2, a linear policy approximation is used to calculate

expected production plans. In Chapter 3, products are aggregated in optimal families

so that first-stage decisions are placed on the family level and recourse decisions on the

product level. In Chapter 4, we introduce partial recourse over the planning horizon so

that decisions are only flexible in the later part of the horizon. Since reference plans are

available in each review period, the nervousness resulting from stochastic models with

recourse can be quantified. Strategies for improving planning stability such as product

aggregation and freezing decisions are also analysed.
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Chapter 1. Introduction

1.3. Outline

The chapters of this thesis are based on three distinct working papers. The remainder

of this thesis unfolds as follows.

In Chapter 2, we study the production of seasonal goods with short selling season. Pro-

duction capacity is limited so that planning starts ahead of the selling season. Demand

forecasts are uncertain and updated periodically according to the MMFE. Since early

production leads to inventory holding costs, we model the key trade-off between pro-

ducing early to avoid lost sales and producing late to minimise costs. We formulate the

problem as a dynamic programming model and solve it optimally for the single-product

case. A heuristic is developed for managing the production of multiple products with

correlated forecast evolution. The value of forecast evolution models and the recourse

they provide is evaluated in repeated rolling-horizon simulations. Chapter 2 is based on

Forel and Grunow (2020b).

In Chapter 3, we identify barriers that limit the application of stochastic models and

develop strategies to overcome them. In particular, we discuss how to define and model

demand uncertainty from limited available data and how to communicate stable reference

plans while allowing flexible decisions. A two-stage stochastic model with recourse is

derived that increases both planning flexibility and stability based on the aggregation of

decisions over optimal product families. The approach is demonstrated on a real-world

case study from the agrochemical industry. Chapter 3 is based on Forel and Grunow

(2020c).

In Chapter 4, we combine and extend the insights from the previous two chapters as we

introduce forecast evolution models for a dynamic demand realising over several periods.

We integrate additive and multiplicative MMFE into general lot-sizing problems and

solve the resulting non-linear models using existing piecewise-linearisation techniques.

To increase flexibility, we introduce production recourse in later periods of the horizon

via a multi-stage scenario tree. The value of forecast evolution models and the value of

recourse are highlighted in rolling-horizon simulations using both artificial and real-world

data. We identify advantages and limitations of additive and multiplicative MMFE when

probability distributions are estimated from past data. Chapter 4 is based on Forel and

Grunow (2020a).

In Chapter 5, we summarise our findings and answer the research questions. We

discuss the limitations of our work and propose directions for future research.
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Chapter 2

Production planning for a short

seasonal demand with forecast

evolution

Abstract

This paper studies the production of several products in a rolling-horizon setting as

forecasts are periodically updated. Demand is observed over a short selling season

and, since capacity is limited and carrying inventory is expensive, it is essential to

make efficient production decisions ahead of the selling season. We aim to bridge the

gap between current industry practice, that implements deterministic rolling-horizon

planning based on forecasts, and academia, where stochastic models are often developed

while ignoring their rolling-horizon implementation. We integrate forecast evolution

models in a production planning environment with a fill-rate service-level constraints

and inventory costs. We model the evolution of demand forecasts with the martingale

model of forecast evolution, which captures the property that forecast accuracy increases

as the selling season gets closer. The optimal production policy is determined through a

dynamic programming model for the single-product case and is adapted into an iterative

heuristic for the multi-product case. Through repeated rolling-horizon simulations, we

show that stochastic models that do not account for forecast evolution often fail to reach

the service-level targets. Explicit integration of forecast evolution leads to high demand

satisfaction and up to 13% cost reductions. Further, the production policy with forecast

evolution yields a closer link between forecast nervousness and production nervousness

thus improving planning visibility. We show the importance of explicitly integrating

forecast evolution in production planning. We identify the influence of correlation and

timing of uncertainty on the planning policy and performance.
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Chapter 2. Production planning for a short seasonal demand with forecast evolution

2.1. Introduction

Rolling-horizon planning is an effective and flexible framework for dealing with demand

uncertainty that is widely used in practice. It is based on periodically reviewing de-

mand forecasts and adapting production decisions so that a production plan is derived

over the planning horizon in each review period. Often, practitioners implement sim-

ple deterministic rolling-horizon planning without explicit stochastic models for demand

uncertainty. Conversely, academia is constantly pushing the boundaries of decision-

making under uncertainty in terms of scalability, computational efficiency, and relying

on fewer limiting assumptions. However, the interplay between stochastic optimisation

and rolling-horizon planning remains understudied.

In the academic literature, the martingale model of forecast evolution (MMFE) has been

introduced to model the uncertainty of the forecast revision process. It describes the

amplitude and timing of forecast changes over the planning horizon with probability

distributions. The MMFE captures the property that forecast uncertainty reduces over

time and includes correlations between the forecast updates of different products. By

explicitly integrating forecast evolution into planning and determining the corresponding

production policy, we are able to fully utilise the flexibility of rolling-horizon planning to

react to new knowledge. In this light, forecast evolution models implemented in rolling-

horizon planning can be seen as the bridge between academic research and practitioners.

In each review period, production decisions should be determined and communicated

over a prediction horizon. Hence, the optimal production policy should be translated

into a production plan. The plan is not only used to implement the production deci-

sions for the first periods but also provides a reference to upstream and downstream

members of the supply chain. The production plan can support many strategic, tactical

and operational decisions such as whether to outsource part of production, managing

the purchasing and delivery of raw materials as well as determining the workforce sched-

ule. Because the plan is communicated through the supply chain, it is important to

ensure that there are no unnecessary changes and that the plan remains stable. In this

paper, we determine the optimal policy that can be implemented flexibly, the expected

production plan communicated in each review period, and evaluate its nervousness in

rolling-horizon implementation.

The value of forecast evolution can be measured by comparing the MMFE model to a

stochastic model that ignores forecast evolution. Comparing a priori expected perfor-

mance of the two models is not sufficient since this model also benefits from updated
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2.1. Introduction

forecasts in rolling-horizon planning. The value of forecast evolution needs to be assessed

by comparing the results of repeated rolling-horizon simulations in terms of achieved ser-

vice level, operational costs and planning nervousness.

Matching supply and demand is especially difficult for seasonal goods since typical chal-

lenges include stock-out, obsolescence, and inventory left-over. These challenges are

present in many industries. Volatility and unpredictability of demand have been de-

scribed as one of the main causes of shortages of essential medicines and vaccines for

instance (Aditi et al., 2018; Leung et al., 2016). Due to limited capacity, seasonal

demand forces production to start well in advance of the selling periods (Fisher and

Raman, 1996). In the fashion industry, firms may commit up to nine months before

the selling season (Wang et al., 2012), and similarly, in the agricultural goods industry,

production of hybrid seeds starts a year before the selling season (Bansal and Nagarajan,

2017; Jones et al., 2001). Producing ahead of the selling season leads to inventory on

hand, which can be costly for the company. Inventory holding costs include warehouse

facility costs, costs of handling and storing the inventory, and the opportunity costs of

invested capital. Determining the optimal inventory level through the production season

is essential for companies managing seasonal goods.

On the other hand, manufacturer often need to satisfy service-level agreements and are

penalised for not reaching the agreed-upon target. Hence, as demand forecasts are pe-

riodically reviewed, there is a fundamental trade-off between early and late production.

Late production fulfils demand in a just-in-time fashion with low inventory but has only

limited flexibility to react to demand forecast increases since capacity is utilised in later

periods. Early production builds early inventory that allows one to react to potential

forecast increases but implies higher inventory costs. This trade-off becomes even more

challenging when several correlated products share the capacity since the optimal pro-

duction quantity depends on the products inventory, forecast updates and correlation.

In this paper, we formalise the trade-off between early and late production using the

MMFE and study the resulting production policy.

2.1.1. Outline

The remainder of this paper is organised as follows. Related literature is reviewed

in Section 2.2 with a focus on forecast evolution. The problem setting and forecast

evolution model are presented in Section 2.3. In Section 2.4, a fill-rate service level

constraint is presented and solved for additive and multiplicative forecast evolution. In

Section 2.5, a dynamic programming model is developed to determine the optimal pro-
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Chapter 2. Production planning for a short seasonal demand with forecast evolution

duction policy with forecast evolution following the MMFE. The optimal production

policy is determined analytically for the single-product case and is adapted into a de-

composition/coordination heuristic for the multi-product case. In Section 2.6, the value

of forecast evolution is assessed by performing repeated rolling-horizon simulations. We

show that the traditional rolling-horizon model without forecast evolution fails to en-

sure high demand satisfaction in several simulation settings. The MMFE model achieves

high demand satisfaction consistently thanks to efficient planning decisions throughout

the production season and can reduce costs by up to 13%. For the multi-product case,

the heuristic outperforms the benchmark in all instances as the MMFE model achieves

higher demand satisfaction and can reduce inventory and production costs. In Sec-

tion 2.7, we conclude by summarising our findings and provide an outlook for future

research.

2.2. Related literature on forecast evolution

An early analysis of forecast evolution was proposed by Hausman (1969) who shows that

a log-normal distribution can well model the forecast revision process of seasonal goods

such as agricultural products and clothing articles. In a subsequent paper, Hausman and

Peterson (1972) use this forecast evolution model to manage the production of several

products with limited capacity and propose three heuristics to solve the problem. Fore-

cast evolution was then formalised by Graves et al. (1986) and Heath and Jackson (1994)

into the MMFE. Despite its apparent simplicity, the MMFE is a powerful framework

suitable for a wide variety of problems including capacity planning (Boyacı and Özer,

2010) and defining supply contracts (Donohue, 2000).

Inventory management with capacity restrictions has been studied, for instance, by Özer

and Wei (2004) who consider a manufacturer with limited capacity and advance demand

observation. They determine the optimal policy for cases with and without fixed order-

ing costs. Toktay and Wein (2003) study a single-product capacitated production setting

with stationary demand. They model the problem as a single queue to derive the opti-

mal modified base-stock policy. Norouzi and Uzsoy (2014) consider correlated forecast

evolution over several demand periods in a single-product environment with a capacity

constraint. Recently, Ban et al. (2019) have proposed a generalisation of the additive

MMFE to include covariate information and apply it to the procurement of new prod-

ucts with a short life cycle.

While in the above works the demand is observed over multiple periods, the MMFE is
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2.2. Related literature on forecast evolution

particularly adapted to model a seasonal demand contained in a short selling season.

Wang and Tomlin (2009) apply a multiplicative version of the MMFE to a newsvendor

problem facing both lead-time uncertainty and demand uncertainty. They exhibit the

optimal ordering policy and investigate the trade-off between supply and demand risk.

Although the demand season is short, it may be possible to react to forecast evolution

using a second order as presented by Milner and Kouvelis (2005) who study a single

demand period with two ordering opportunities. They consider both limited capacity

and inventory costs and compare three demand models including the additive MMFE.

Li et al. (2009) consider a seasonal demand observed over a season of arbitrary length.

They propose analytical results for the optimal ordering policy for a seasonal demand

incurring inventory and backorder costs in an uncapacitated setting. The two ordering

opportunity structure is especially adapted for managing the production of hybrid seed

where one considers sequentially the production in northern and southern hemispheres:

Jones et al. (2001) provide analytical results on a problem including harvesting costs

and inventory costs and Bansal and Nagarajan (2017) extend the model to account for

limited capacity.

Most closely related to our paper, recent research has looked into applying the MMFE

to multi-ordering newsvendor problems in which the newsvendor has several opportu-

nities to order before satisfying the demand of the selling period. Wang et al. (2012)

study an uncapacitated setting where ordering costs increase as the selling season gets

closer. They prove that a base-stock policy is optimal and that the base-stock level in

each period depends linearly on the updated forecast. Biçer and Seifert (2017) extend

the model by introducing a capacity limit for the quantity ordered in each period. They

propose a heuristic to plan several correlated products sharing capacity. However, exist-

ing literature on the multi-ordering newsvendor does not consider that early production

leads to on-hand inventory and that carrying inventory up to the selling season is costly.

When facing seasonal demand, this may result in carrying expensive inventory for several

months. We extend the multi-ordering newsvendor setting to specifically investigate the

trade-off between early production, which anticipates demand but builds-up expensive

inventory, and late production, which aims for low inventory costs but takes the risk

of not being able to react to an increase in demand forecast due to limited capacity.

Further, the fact that the planning would be implemented in a rolling-horizon fashion is

not considered, which leads to a biased evaluation of the stochastic benchmark without

forecast evolution.

To summarise, our contribution is threefold. First, we extend the multi-ordering newsven-
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Chapter 2. Production planning for a short seasonal demand with forecast evolution

dor to a production environment with fill-rate service level constraints and inventory

holding costs and we determine the optimal production policy. Second, we adapt the

policy to an iterative heuristic for multiple correlated products sharing capacity. Third,

we assess the value of integrating forecast evolution in production planning through

repeated rolling-horizon simulations.

2.3. Problem setting

This section introduces the problem setting for the single-product case and describes

the forecast evolution model. Consider a planning horizon of T production periods with

limited capacity K in each period. The demand is uncertain and observed in period

T + 1. Missed demand is considered a lost sale. In each period, the planner reviews

the initial inventory on hand xt and decides on an immediate production quantity Qt as

well as a production plan over the planning horizon Qt = {Qt,s, s ∈ t+ 1, . . . , T}. Let

xt and yt be the inventory on hand at the beginning and end of period t respectively.

The inventory evolution is then described by yt = xt + Qt = xt+1. Per-unit production

cost p and inventory cost h are incurred so that the overall cost in each period is given

by ct = p + h · (T − t). With positive inventory holding costs, the overall costs ct

are strictly decreasing as the season progresses. Despite demand being uncertain, the

planner needs to guarantee a minimum fill-rate service level. The service-level targets β

is set exogenously, for instance by upper management, and is seen as a hard constraint

by the planner.

2.3.1. Additive MMFE

Let the actual demand observed in the selling period be denoted asDT+1|T+1 = DT+1. At

the beginning of each period t, an updated forecast DT+1|t is available. The evolution

of the demand forecast follows the relation DT+1|t = DT+1|t−1 + εt where εt is the

forecast update in period t. The main assumption of the additive MMFE is that the

forecast updates are independent and identically distributed with a normal distribution

εt ∼ N (0, σ2
t ) where σt is the standard deviation of the forecast update in period t. In

each period, knowing the latest cumulated update forecast At =
∑t

s=1 εs, the demand in

the selling season is a random variable with distribution DT+1 ∼ N (µ + At, σ̃t
2) where

µ = D1 is the initial demand forecast and σ̃t
2 =

∑T+1
s=t+1 σ

2
s is the residual uncertainty

at time t. Thus, uncertainty decreases as the selling season gets closer. The variance
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2.4. Fill-rate service level

of the forecast updates over the planning horizon describes the timing of uncertainty

resolution .

2.3.2. Multiplicative MMFE

Following multiplicative MMFE, the forecast updating process at the beginning of plan-

ning period t is described by DT+1|t = DT+1|t−1 · exp(εt). The forecast update εt is

independent and identically distributed with a normal distribution εt ∼ N (−σ2
t

2
, σ2

t ).

An initial demand forecast D1 is available in the first period. The expectation of the

logarithm of the demand in period 1 is denoted by µ = ln(D1)−
∑T+1

t=1 σ
2
t /2. In period

t, the forecast follows the relation DT+1|t = D1 · exp(ε2 + · · ·+ εt) = exp(µ+At) where

At =
∑t

s=2(εs + σ2
s/2) is the cumulative forecast update at the beginning of period t.

In each period, knowing the cumulative forecast update At, the demand follows a log-

normal distribution ln(DT+1) ∼ N (µ + At, σ̃t
2) where σ̃t

2 =
∑T+1

s=t+1 σ
2
s is the residual

uncertainty at time t.

2.3.3. Timeline of events

In each period t ∈ {1, 2, . . . T}, the sequence of events is as follows: (1) a forecast

update εt is observed, (2) the updated demand forecast µ + At is determined, (3) on-

hand inventory xt is reviewed, (4) the planner decides on the immediate production

quantity Qt and the production plan over the rest of the prediction horizon Qt, (5) the

inventory position is increased to yt and (6) a production cost ct ·Qt is incurred. In the

selling period, demand is observed and satisfied with on-hand inventory and the service

level is finally measured.

2.4. Fill-rate service level

The fill-rate service level is defined as the proportion of demand that is satisfied directly

from on-hand inventory. At the end of the demand season, the achieved fill-rate service

level is measured as β = 1−max(xT+1 −DT+1, 0)/DT+1. At time T , the fill-rate target

β is expected to be reached in period T +1 if the following inequality holds (Silver et al.,

2016; Thomas, 2005):

EDT+1|AT
[max(xT+1 −DT+1, 0)] ≤ (1− β)EDT+1|T [DT+1]. (2.1)
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Chapter 2. Production planning for a short seasonal demand with forecast evolution

Since there is no opportunity for recourse after the last production period, the problem

reduces to a newsvendor problem with a capacity limit and fill-rate constraint.

2.4.1. Additive case

In period T , demand follows a normal distribution DT+1 ∼ N (µ+ AT , σ
2
T+1).

Proposition 2.1. The optimal inventory at the beginning of the selling season is given

by ST (AT ) = µ + AT + bT (AT ) where bT is a safety-stock factor depending on AT and

given by

bT (AT ) = σT+1 · L−1

(
(1− β)(µ+ AT )

σT+1

)
where L−1(·) is the inverse of the first-order loss function of a standard normal distri-

bution.

Proposition 2.1 states the inventory target to be reached at the end of the production

season. The details are provided in Appendix A.1. Since the first-order loss function of

any normal distribution can be reformulated to depend on the first-order loss function

of a standard normal distribution, the computation of the safety stock factor is compu-

tationally inexpensive. The inverse function L−1 can be pre-computed so that the safety

stock factor can be evaluated quickly for any problem settings.

Lemma 2.1. The optimal inventory function ST is defined over ]−µ; +∞[, is convex

with a minimum value obtained in AT
¯

= σT+1

1−β
· L (Φ−1(β))−µ, and is strictly increasing

over
[
AT
¯

; +∞
[
.

The details of the proof are available in Appendix A.2. This proposition specifies the

edge behaviour of the fill-rate constraint for a normally distributed demand when the

distribution mean becomes much smaller than its standard deviation. This is a common,

yet often overlooked, issue of assuming that demand follows a normal distribution.

2.4.2. Multiplicative case

In period T , demand follows a log-normal distribution ln(DT+1 | AT ) ∼ N (µ+AT , σ
2
T+1).

Proposition 2.2. The optimal inventory at the beginning of the selling season is given

by

ST (AT ) = L−1

(
(1− β) exp

(
µ+ AT +

σ2
T+1

2

)
, DT+1 | AT

)
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2.5. Inventory policy and production plan

where L−1(·, DT+1 | AT ) is the inverse of the first-order loss function L(·, DT+1 | AT )

where DT+1 | AT is log-normally distributed. The optimal inventory function ST is

strictly increasing over R.

The details of the proof are available in Appendix A.3. The safety stocks reserved

by the multiplicative MMFE model can be deduced as bT = ST (AT )− E[DT | AT ] even

though no closed form is available.

2.4.3. Comparison of inventory targets

The optimal inventory target functions are illustrated in Figure 2.1 for initial forecast

D1 = 100 and service-level target β = 0.95. The part of the inventory function that

is subject to the edge behaviour described in Section 2.4.1 is shown in dashed line.

Figure 2.1 suggests that the inventory target is approximately linear in the forecast

update for additive MMFE when the coefficient of variation is low, whereas the inventory

target is exponential in the forecast update for multiplicative MMFE. The safety stock
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Figure 2.1.: Optimal last-period inventory as a function of the cumulative update.

is also represented as a function of the residual uncertainty for several fill-rate targets

in Figure 2.2, which shows that the safety stock increases exponentially with both the

standard deviation of the residual uncertainty and the service level target.

2.5. Inventory policy and production plan

The previous section describes the inventory target to reach by the end of the planning

season. The MMFE model should find the optimal inventory trajectory from period 1

to T to reach the last-period inventory target with minimum cost.
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Figure 2.2.: Sensitivity of safety stock as a function of the standard deviation for AT = 0.

2.5.1. No forecast evolution: traditional rolling-horizon planning

A naive approach to solve the planning problem is to ignore forecast evolution and

aggregate forecast and residual uncertainties together. This traditional rolling-horizon

planning model can be modelled as a linear optimisation problem

min
y

T∑
τ=t

cτ · (yτ − xτ ) (2.2a)

s.t. yτ = xτ +Qτ , ∀τ ≥ t, (2.2b)

Qτ ≤ K, ∀τ ≥ t, (2.2c)

yT ≥ S̃t(At) (2.2d)

where constraint (2.2b) specifies the inventory balance in each period, constraint (2.2c)

enforces the capacity limitation, and constraint (2.2d) ensures that the final inventory is

large enough to satisfy the fill-rate constraint. The target inventory S̃t(At) is deduced by

adapting Proposition 2.1 and Proposition 2.2 for the additive and multiplicative model

respectively. Note that the model considers the total residual uncertainty σ̃t at time t

and not only the final demand uncertainty. Since this model ignores forecast evolution

and aims to minimise inventory costs, production is pushed to later periods. Hence,

there is no capacity reserved in later periods and the model cannot react to a forecast

increase.
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2.5. Inventory policy and production plan

2.5.2. Single product: optimal policy

In this section, we consider that the last-period inventory target function ST is strictly

increasing and invertible, as is the case for multiplicative MMFE. The changes needed

for the additive MMFE model to fit these properties are discussed in Section 2.6.1.

Dynamic programming formulation

Since the fill-rate constraint in Equation 2.1 is a hard-constraint, it is not possible to

write the optimisation problem as a dynamic programming problem. To find a feasible

inventory trajectory, we introduce a shortfall penalty cost γ ≥ cT , which penalises the

amount by which the inventory target ST cannot be attained. The minimum costs

incurred in period T are now given by

VT (xT , AT ) = min
xT≤yT≤xT+K

cT (yT − xT ) + γ ·max(ST (AT )− yT , 0). (2.3)

The planning problem from period 1 to T can thus be formulated as a dynamic pro-

gramming problem in which the cost-to-go in each period t ∈ {1, . . . , T − 1} is given

by

Vt(xt, At) = min
xt≤yt≤xt+K

ct(yt − xt) + EAt+1|At [Vt+1(yt, At+1)].

The key trade-off between early and late production is now captured by the inventory

costs in all periods and the shortfall cost in the last period.

Optimal production policy

The optimal production policy can be determined by solving the dynamic programming

problem by recursion using Bellman’s principle of optimality.

Lemma 2.2. The minimum cost incurred in period T is given by

VT (xT , AT ) =


cT ·K + γ · (ST (AT )− (xT +K)), if xT < ST (AT )−K

cT · (ST (AT )− xT ), if ST (AT )−K < xT ≤ ST (AT )

0, if ST (AT ) ≤ xT

and the optimal production volume is given by Q∗
T = max {min {ST (AT )− xT , K} , 0}.

The proof is straightforward since the last-period cost given in Equation (2.3) is convex

and piecewise-linear in yT .
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Chapter 2. Production planning for a short seasonal demand with forecast evolution

Proposition 2.3. The optimal inventory at the end of each period t ∈ {1, . . . , T − 1}
follow a base-stock policy. The inventory targets St(At) are the solution of gt(yt, At) = 0

where the marginal cost function gt(yt, At) is given by

gT−1(yT−1, AT−1) = cT−1−cT
[
FAT |AT−1

(S−1
T (yT−1 +K))− FAT |AT−1

(S−1
T (yT−1))

]
−γ
[
1− FAT |AT−1

(S−1
T (yT−1 +K))

]
for t = T − 1, and

gt(yt, At) = ct − ct+1+

∫ S−1
t+1(yt)

−∞
gt+1(yt, a)fAt+1|At(a)da

+

∫ +∞

S−1
t+1(yt+K)

gt+1(yt +K, a)fAt+1|At(a)da

for all period t < T −1, where fAt+1|At and FAt+1|At are resp. the density and cumulative

distribution functions of At+1 having observed At.

The proof is adapted from Biçer and Seifert (2017) and is given in Appendix A.4.

Proposition 2.3 provides a method to determine the optimal inventory targets in each

period recursively. The optimal inventory targets depend on the cost and capacity

parameters as well as the volatility of the forecast updates in each period.

Expected production plan

In each period, the planner is not only interested in the immediate production quantity

Qt but also in the production plan over the remaining horizon. This plan serves as

a reference and is communicated both internally and externally. However, since the

optimal production quantities in future periods depend on the forecast update, future

production is uncertain. The expected production plan in period t is deduced from the

expected inventory target as

E[Qτ ] = E[min {max {Sτ (Aτ )− E[xτ ], 0}], K} , ∀τ ≥ t.

The production plan is calculated from period t until period T such that the expected

inventory E[xτ ] is given by E[xτ ] = xt +
∑τ−1

s=t E[Qs]. The expectation of the inventory

targets in each period can be determined numerically, for instance by sampling future

forecast updates and averaging the end-inventory targets from Proposition 2.3.
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2.5. Inventory policy and production plan

2.5.3. Multiple products: approximate policy

The manufacturer now manages a portfolio of N products sharing the same production

resources with limited capacity K. Let xjt and y
j
t be the inventory of product j available

respectively at the beginning and end of period t. The per-unit production costs pj and

inventory holding costs hj of all products are different and reflect their value: the higher

the product value, the higher its inventory cost. Without loss of generality, the products

are sorted in decreasing order of value. At time t, the demand forecast is denoted by

DT+1|t =
[
D1

T+1|t . . . DN
T+1|t

]
and the demand of product j observed in the selling

period is Dj
T+1|T+1 = Dj

T+1. An initial demand forecast Dj
1 is available for each product.

Overview of decomposition/coordination algorithm

As observed by Hausman and Peterson (1972) and Biçer and Seifert (2017), determining

the optimal production policy for multiple correlated products with limited capacity is

a very complex problem and one has to resort to heuristic approaches. In this section,

we present a heuristic production policy for N products with correlated demand. The

heuristic is based on results obtained for the single-product setting. For the sake of

simplicity, we focus on the additive MMFE. The method can be easily extended to the

multiplicative setting.

At the beginning of each planning period, the additive MMFE describes the forecast

evolution as DT+1|t = DT+1|t−1 + εt where εt =
[
ε1t . . . εNt

]
is the vector of forecast

updates over all products. The forecast update vector is independent, identically dis-

tributed and follows a multivariate normal distribution εt ∼ MN (0,Σt) where Σt is

the covariance matrix of the forecast updating process at time t. The covariance matrix

is an N × N matrix that can be expressed as Σt = (ρ(i,j),tσi,tσj,t)ij where ρ(i,j),t is the

correlation between the forecast updates of product i and product j at time t. The

covariance matrix describes both the uncertainty of the forecast updates of the different

products and the linear relation between the different product updates. In each period,

knowing the latest cumulative update forecast At =
∑t

s=1 εs, the demand follows a mul-

tivariate normal distribution DT+1 ∼ MN (µ+At, Σ̃t) where Σ̃t = ( ˜σ(ij),t
2)ij describes

the residual uncertainty at time t with σ̃2
(ij),t =

∑T
s=t+1 ρ(i,j),sσi,sσj,s.

The solution procedure contains two main steps. In the first step, the optimal inventory

target to be reached at the end of the production season is determined for each product

independently. It is based on the fill-rate service level constraint and accounts for the

residual demand uncertainty. In the second step, an iterative procedure is developed
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Chapter 2. Production planning for a short seasonal demand with forecast evolution

to determine an aggregated inventory target over all products and allocate it to the

individual products.

Optimal inventory in the last period

In line with industry practice and recent research, the target service level βj is set in-

dependently for each product (Meistering and Stadtler, 2017). The optimal inventory

to have on hand at the beginning of the demand period for each product is then inde-

pendent of the inventory target of the other products and can be deduced directly from

Proposition 2.1.

Aggregated inventory target

The aggregated target is obtained by solving an aggregated problem, equivalent to a

single-product problem. Consider the aggregated forecast update A
(agg)
t =

∑N
j=1A

j
t .

Under additive MMFE, the aggregated forecast update distribution follows a normal

distribution A
(agg)
t ∼ N (0, σ

(agg)
t ) where σ

(agg)
t = [1 . . . 1]Σt[1 . . . 1]

T . We specify the

aggregated initial forecastD
(agg)
1 =

∑N
j=1D

j
1 and costs c

(agg)
t =

∑N
j=1

cjt
Dj

1

. The aggregated

problem can be solved to optimality using the results on the single-product problem from

Section 2.5.2. Thus, inventory targets S
(agg)
t (A

(agg)
t ) are determined in each period.

Inventory target and production for each product

The aggregated target is allocated to individual products through an iterative procedure

consisting of two steps: (1) an estimation of the marginal cost as a function of the

inventory for each product, and (2) a maximisation of the minimum marginal cost across

all products.

Let gjt (yt,At) be the marginal cost of product j in period t as a function of the end-period

inventory and the cumulative forecast update. Since capacity is shared and products

are correlated, the marginal cost of a product depends on the inventory and forecast of

other products. As such, determining the exact marginal cost functions analytically is a

hard problem. To approximate the marginal cost functions, we decompose the problem

into independent sub-problems with dedicated capacity Kj
t for each product j. The

capacity allocated to a product is set as the difference between the overall capacity and

the capacity expected to be used by products with greater value. This is expressed as

Kj
t = K −∑j−1

i=1 E[Qi
t]. This capacity allocation strategy is based on the observation

that, in the case of capacity shortage, planners prioritise products with higher values

20



2.5. Inventory policy and production plan

and accept shortages for lower value products. The marginal cost of product j in period

t can then be deduced from Proposition 2.3 as

gjT−1(y
j
T−1, A

j
T−1) = cjT−1−cjT

[
FAj

T |Aj
T−1

((Sj
T )

−1(yjT−1 +Kj
T ))− FAj

T |Aj
T−1

((Sj
T )

−1(yjT−1))
]

−γj
[
1− FAj

T |Aj
T−1

((Sj
T )

−1(yjT−1 +Kj
T ))
]

in the period T − 1 where γj is the shortfall cost of product j, and

gjt (y
j
t , A

j
t) = cjt − cjt+1+

∫ (Sj
t+1)

−1(yjt )

−∞
gjt+1(y

j
t , a)fAj

t+1|A
j
t
(a)da

+

∫ +∞

(Sj
t+1)

−1(yjt+Kj
t )

gjt+1(y
j
t +Kj

t , a)fAj
t+1|A

j
t
(a)da

for previous periods. The inventory target functions Sj
t can be deduced recursively from

period T to 1 as the solution of gjt+1(y·, Aj
t) = 0 as in the single-product case.

The second part of the iterative procedure calculates a production plan for all prod-

ucts over the prediction horizon. Similarly to Biçer and Seifert (2017), the inventory

allocation is determined through a non-linear max-min optimisation problem:

max
yt

min
{
g1t (y

1
t , A

1
t ), . . . , g

N
t (yNt , A

N
t )
}

s.t.
N∑
j=1

yjt = E[S(agg)
t (A

(agg)
t )],

N∑
j=1

(yjt − xjt) ≤ K,

yjt ≥ xjt , ∀j,
yjt ≤ EAT|At [S

j
T (A

j
T )], ∀j.

(2.4)

Problem 2.4 allocates the aggregated target E[S(agg)
t (A

(agg)
t )] to the individual products

by prioritising products with smaller marginal costs. Further, it ensures feasible produc-

tion volumes through a capacity constraint. Although this problem is non-linear, it is

convex and can be solved using a derivative-free algorithm, see e.g. COBYLA (Powell,

1994).

As in the single-product case, the inventory targets are uncertain over the planning

horizon since they depend on yet unobserved forecast updates. We approximate the

expected inventory targets in future periods as E[S(agg)
t (A

(agg)
t )] ≈ S

(agg)
t (E[A(agg)

t ]) and
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Chapter 2. Production planning for a short seasonal demand with forecast evolution

E[Sj
t (A

j
t)] ≈ Sj

t (E[A
j
t ]). Problem 2.4 can thus be solved to obtain a production plan

over the horizon. The algorithm proceeds to the next iteration using the newly calcu-

lated production plan to derive the capacities available for all products. The iterative

procedure stops when the changes between two successive production plans is below a

convergence criteria.

Summary

An iterative solution procedure has been presented to approximate the optimal inventory

policy and deduce a production plan over the prediction horizon. An advantage of

the method is the integration of product correlation when determining the aggregated

inventory targets. However, correlation is not considered when allocating inventory to

individual products which can lead to sub-optimal allocation especially for settings with

a large number of products and a dense correlation matrix. Still, in the next section,

numerical simulations show that significant improvements can be obtained compared to

the traditional rolling-horizon benchmark that ignores the evolution of forecasts.

2.6. Numerical study

The numerical study is implemented in the Julia programming language (Bezanson et al.,

2017), a fast scientific language with a wide environment of modules. In particular, the

COBYLA algorithm for solving the non-linear optimisation Problem (2.4) is called from

the NLopt module (Johnson, 2014). The simulations are run on an Intel(R) Core(TM)

i7-4810MQ processor at 2.80Ghz using 16GB of RAM. The code used to produce all

results and figures in this paper is openly available online.

In this section, we discuss some computational aspects of our solution approach, we

describe the rolling-horizon simulation setting and assess the value of the forecast evo-

lution models by comparing them to the traditional rolling-horizon benchmark (t-RH)

introduced in Section 2.5.1.

2.6.1. Single product

Simulation setting

Simulations are performed in a rolling-horizon fashion. In each planning period, a pro-

duction plan is calculated and the first period is implemented. The inventory position

is updated and the simulation is rolled forward. A new forecast update is then sampled
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2.6. Numerical study

from the true forecast evolution distribution. In the selling period, the demand and the

amount of lost sales are observed. This simulation framework provides a fair evaluation

of the benchmark without forecast evolution since it can still benefit from the updated

forecasts received in each review period.

The planning horizon is set to T = 4 periods with a capacity of K = 50 in each period

and the fill-rate target is set to β = 0.95. The production and inventory cost parameters

p and h are both set to 1. The shortfall penalty costs are derived proportional to the

overall costs in each period as γ = g ·cT where we define g as the shortfall penalty factor.

The value of the shortfall penalty factor are found numerically, see Appendix A.5.

The performance of the two models is compared using three measures: the actual

costs, the achieved fill-rate service level, and the nervousness. The actual cost is

measured as the sum of production and inventory costs over the simulation period.

The service level is measured at the end of the selling period as the proportion of

demand satisfied directly from on-hand inventory. Nervousness is measured in each

planning period as the average of the absolute changes over the prediction horizon, as

nvt =
1

N(T−t+1)

∑N
j=1

∑T
s=t | Qj

t,s − Qj
t−1,s | and the nervousness of a single simulation

run is determined as the nervousness of across all plans as anv = 1
T−1

∑T
t=2 nvt.

Similarly as in Norouzi and Uzsoy (2014), we investigate the impact of the timing of un-

certainty resolution on the production policy and model performance. The uncertainty

resolution timing describes the periods in which the forecast updates have highest vari-

ability, which can be interpreted as periods in which most information is obtained. Three

uncertainty resolution settings are considered: early, constant and late. With early un-

certainty resolution, the variance of forecast updates is high in the first planning periods

and low in the periods close to the selling season. It is the opposite with late uncertainty

resolution. With constant uncertainty resolution, the cumulative variance decreases lin-

early over time, which corresponds to the setting used by Wang et al. (2012). Note that

the overall forecast and demand uncertainty over the initial planning horizon is identical

in all settings. The standard deviation of the forecast evolution is given in Table 2.1 for

additive and multiplicative MMFE. The initial demand forecast is set to D1 = 100.

Table 2.1.: Standard deviation of forecast evolution over horizon of T = 4 periods.

Uncertainty Additive MMFE Multiplicative MMFE

Early σ =
[
30 20 10 5

]
σ =

[
0.30 0.20 0.10 0.05

]
Constant σ =

[
18.87 18.87 18.87 18.87

]
σ =

[
0.1887 0.1887 0.1887 0.1887

]
Late σ =

[
5 10 20 30

]
σ =

[
0.05 0.10 0.20 0.30

]
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Chapter 2. Production planning for a short seasonal demand with forecast evolution

Inventory target functions under additive and multiplicative MMFE

In Section 2.5, we have identified the optimal production policy under forecast evolution

assuming that the inventory target function in the last period ST (·) is strictly increas-

ing and invertible. We have also shown that these assumptions hold for multiplicative

MMFE, but not for additive MMFE since the target function is convex. To allow the

calculation of the production policy in the additive case, we modify the inventory target

function in the last period as

ŜT (AT ) =

ST (AT ), if AT ≥ AT
¯

ST (AT
¯
)−m(AT

¯
− AT ), otherwise

(2.5)

where the slope m is calculated as m = ST (1.5·D1)−ST (0.5·D1)
D1

. This allows to calculate the

production policy under additive MMFE as described in Section 2.5.2.

The optimal inventory targets are presented in Figure 2.3 as a function of the cumulative

update for additive and multiplicative MMFE under constant uncertainty resolution.

The extended part of S4(A4) obtained from Equation (2.5) is shown as a dotted line. The

figure suggests that the last-period inventory targets increase linearly and exponentially

with the cumulative forecast updates under additive and multiplicative forecast evolution

respectively.
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Figure 2.3.: Inventory target at the end of each planning period as a function of the
cumulative update for γ = 5.
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Comparison to benchmark

For each uncertainty resolution setting, a total of 1000 rolling-horizon simulations are

run. Each set of 1000 runs can be computed in around 60 seconds. The average model

performance are given in Table 2.2. If the average achieved service level is lower than

the target, the statistical significance of the service-level shortfall is assessed through

Student’s t-test. The statistical significance of the difference between the cost and ner-

vousness of the t-RH and MMFE models is assessed using Student’s t-test. Statistical

significance at a p-value smaller than 0.05 is indicated with a star symbol (*) in the

table.

Table 2.2.: Average of performance results for the single-product case.

Early Constant Late
t-RH MMFE t-RH MMFE t-RH MMFE

Service level 0.9200* 0.9483 0.9388* 0.9486 0.9542 0.9447
Objective 154.88 206.91 185.636 200.309 215.796 198.216

Additive (relative in %) (+33.59*) (+7.90*) (−8.15*)
MMFE Nervousness 6.777 7.413 6.445 7.197 4.153 3.309

(relative in %) (+13.32*) (+9.38*) (−20.31*)

Service level 0.9143* 0.9480 0.9362* 0.9440 0.9560 0.9443
Objective 151.22 248.35 185.63 197.81 230.48 198.81

Multiplic. (relative in %) (+64.22*) (+6.56*) (−13.74*)
MMFE Nervousness 7.639 8.361 8.157 8.267 6.393 4.395

(relative in %) (+9.46*) (+1.35*) (−31.25*)

The simulations results show that, despite accounting for aggregated forecast and de-

mand uncertainty, the traditional rolling-horizon benchmark fails to satisfy the service-

level targets in the early and constant uncertainty resolution settings. As uncertainty

resolution is shifted to later periods, the assumptions of the t-RH model are more accu-

rate, which explains the increase in achieved service level. The production decisions of

the two planning models also become more similar.

The forecast evolution model reaches the target service level in all instances. For early

and constant uncertainty resolution, the MMFE model builds the minimum safety stock

amount in early periods to manage forecast uncertainty, thus increasing operational

costs but ensuring that the target service level is reached. Table 2.2 also shows that

nervousness increases as uncertainty resolution is shifted to early periods, especially for

the MMFE model, suggesting that early resolution implies more planning efforts. When
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Chapter 2. Production planning for a short seasonal demand with forecast evolution

uncertainty is resolved late, the MMFE provides cost reductions while reaching the ser-

vice level target. This is because the t-RH model overestimates the safety stock needed

in the last period. The results are similar for additive and multiplicative MMFE. The

value of forecast evolution is overall higher for multiplicative MMFE.

Planning strategy

To identify the planning strategy of the MMFE model, the production plans determined

in the first period by both models are presented in Figure 2.4 for the three uncertainty

resolution settings under additive MMFE. Since the traditional rolling-horizon bench-

mark does not explicitly consider forecast evolution, its production plan is independent

of the uncertainty resolution setting. The figure shows the impact of the uncertainty

resolution timing on planning and the importance of early production and capacity reser-

vation when uncertainty is resolved early.
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Figure 2.4.: Production plan of t-RH and MMFE models determined in the first planning
period.

Another interesting analysis is to relate the nervousness of the production plan to the

nervousness of the forecast. In Figure 2.5, we present the nervousness of the plan as

a function of the nervousness of the forecast under additive MMFE. Each point is the

average nervousness anv over a single simulation run. The figure illustrates that in-

tegrating forecast evolution provides a stronger link between forecast nervousness and
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Figure 2.5.: Planning nervousness as a function of forecast nervousness for each simula-
tion run.

production nervousness for all uncertainty resolution scenarios. This implies that the

plan provided by the MMFE model would change only when the forecast changes, con-

trary to the t-RH model for which planning nervousness is erratic. Integrating forecast

evolution in decision-making thus improves planning predictability as the planner can

estimate planning nervousness when observing the demand forecast.

Summary

In single product environments, integrating forecast evolution in production planning

appears beneficial in all settings. The MMFE model satisfies the expected service level

constraint in all instances and can achieve significant cost savings when uncertainty is

resolved late. The numerical study highlights the value of integrating forecast evolution

as well as the importance of explicitly taking into account the timing of uncertainty

resolution. One important recommendation to planners dealing with seasonal demand

is to analyse the timing of forecast updates and to prepare accordingly: early uncer-

tainty suggests building pre-emptive inventory and reserve capacity buffers while late

uncertainty resolution suggests a more wait-and-see strategy with a high utilisation in

later periods. Further, we have showed that integrating forecast evolution strengthens

the relation between forecast nervousness and planning nervousness, so that the planner

can anticipate planning nervousness when observing the updated forecast.
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2.6.2. Multiple products

Simulation setting

We extend the previous simulation setting to include N = 2 products whose demand

and forecast updates may be correlated. The capacity level is set to K = 80 in each

period. The cost parameter p and h are both set to 2 for the first product and 1 for

the second product. Considering that inventory costs are calculated proportional to the

product value, product 1 can be seen as twice as valuable as product 2. The fill-rate

service-level target is set to βj = 0.95 for each product. The value of the shortfall costs

are given in Appendix A.5. The standard deviation of the forecast evolution process

is set equal for both products. We use the same uncertainty resolution settings as for

the single-product case. To analyse the impact of forecast evolution correlation between

the products, we consider three cases: ρ = 0, ρ = 0.6 and ρ = −0.6. The correlation

coefficient is kept constant throughout the periods. The initial forecast of both products

is D1 = 100.

Convergence of heuristic

In our simulations, we observe that the iterative procedure of the multi-product con-

verges in a few iterations when using the t-RH production plan as an initial guess to

determine the product-specific capacities. In fact, the procedure converges in a single

iteration for two uncorrelated products under constant uncertainty resolution. This is

shown in Figure 2.6, where the relative change between two successive plans is calculated

as rci =
∑

t

∑
j |(Q

j
t )

i−(Qj
t )

i−1|∑
t

∑
j(Q

j
t )

i
where (Qj

t)
i is the production planned in iteration i. In the

following, we stop the iterative procedure if the relative change is such that rci < 1e−4.
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Figure 2.6.: Convergence of iterative procedure for two products with non-correlated
forecast evolution.
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Planning strategy

The impact of product correlation and uncertainty resolution on planning is analysed in

Figure 2.7 which shows the production plan determined in the first planning period for

both models. The production plan of the t-RH model is identical for all combinations

since it ignores both forecast evolution and product correlation. The MMFE production

plans are then presented where each column corresponds to an uncertainty resolution

type and each row to a product correlation. The MMFEmodel exhibits common patterns

over the different settings. For instance, product 2, the lowest priority product, is always

scheduled first since it has the lowest inventory costs, and the last period is almost always

dedicated to product 1, the most valuable product. The timing and volume of capacity

reservation is strongly impacted by the product correlation and uncertainty resolution.

Capacity buffers are reserved in later periods when there is higher uncertainty resolution

in early periods. As product correlation increases, the model increases early production

and reserves more capacity. The same pattern is observed when uncertainty resolution

is shifted to earlier periods. Thus, forecast evolution have highest impact on planning

when both conditions are observed: uncertainty resolution is non-constant and products

are correlated, either positively or negatively.

Simulation results

For each combination of product correlation and uncertainty resolution, 1000 simula-

tions are run in a rolling-horizon fashion. The computation time is around 600 seconds

for each set of 1000 runs. The majority of the computation time is spent solving the

non-linear optimisation Problem (2.4). The average of the performance indicators is

provided in Table 2.3. A statistical significance analysis is performed similarly as in the

numerical study of the single-product case.

The simulations results show that the forecast evolution model outperforms the tradi-

tional rolling-horizon benchmark on all simulation instances. As in the single-product

case, the MMFE model is able to reach the service-level target in all instances. The

benchmark fails to reach the service level target in all but one instance, when uncer-

tainty is resolved late and forecast updates are negatively correlated. The instance with

positive product correlation and early uncertainty resolution sees the highest shortfall

violation of the service level targets by the model without forecast evolution. Corre-

spondingly, it is the setting in which the forecast evolution model yields the highest cost

increase. The forecast evolution model can decrease costs in three out of nine instances.
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Figure 2.7.: Production plan in first period varying for different uncertainty resolution
timing and product correlation.

The highest cost reduction is obtained for late uncertainty resolution and negative cor-

relation. It is also interesting to observe that the achieved costs of the forecast evolution

model vary between the simulation setting. The highest achieved costs are obtained

for late uncertainty resolution and positive correlation, suggesting that this is the most

challenging instance.

2.6.3. Managerial recommendations

Considering aggregated demand uncertainty is not sufficient to reach a service-level tar-

get in almost all instances. Hence, it is essential to explicitly integrate forecast evolution
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Table 2.3.: Average values of simulation results for different product correlation and
uncertainty resolution timing.

Product Early Constant Late
correlation t-RH MMFE t-RH MMFE t-RH MMFE

SL prod 1 0.9295* 0.9487 0.9423* 0.9477 0.9607 0.9555
SL prod 2 0.9700 0.9617 0.9779 0.9576 0.9721 0.9506

ρ Objective 507.25 526.18 600.95 554.53 684.91 612.09
= −0.6 (relative in %) +3.73* −7.72* −10.63*

Nervousness 19.23 17.25 13.89 15.74 7.84 13.53
(relative in %) −10.30* +13.30* +72.49*

SL prod 1 0.9008* 0.9479 0.9231* 0.9591 0.9395* 0.9488
SL prod 2 0.9700 0.9551 0.9776 0.9510 0.9785 0.9519

ρ = 0 Objective 496.46 560.75 586.89 609.50 671.47 614.48
(relative in %) +12.94* +3.85* −8.48*
Nervousness 19.30 17.14 14.08 18.57 8.08 11.89
(relative in %) −11.22* +31.89* +47.03*

SL prod 1 0.8750* 0.9474 0.8989* 0.9620 0.9327* 0.9672
SL prod 2 0.9701 0.9548 0.9772 0.9504 0.9787 0.9505

ρ = 0.6 Objective 477.35 601.90 573.18 673.41 663.12 696.85
(relative in %) +26.09* +17.48* +5.08*
Nervousness 19.32 15.73 14.47 17.56 8.33 32.32
(relative in %) −18.57* +21.41* +287.81*

in planning. When forecasts are periodically updated, the MMFE model suggests that

high demand satisfaction can be achieved only through early inventory. Late uncertainty

resolution and negative correlation is a case with highest potential since considering

forecast evolution can reduce costs. The simulation results highlight the importance for

companies to analyse the timing of uncertainty resolution and understand its impact

on planning. Since actual costs are highest when uncertainty resolves late, it is clearly

beneficial to strive for more information gain in the early periods, for instance, by invest-

ing in forecasting or by increasing communication through the supply chain. Further,

negative correlation between product demands and forecast updates suggest that com-

panies should group products with negative demand correlation and substitution effects

together on the same production lines to benefit most from forecast updates.
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2.7. Conclusion

In this article, we have investigated the situation of a planner facing an uncertain sea-

sonal demand with forecast evolution when production is limited by capacity and in-

ventory is costly. Both single- and multiple-product cases have been considered. For

the single-product case, we have identified the optimal production policy to satisfy an

exogenous fill-rate service-level target. For the multi-product setting, we have proposed

an iterative heuristic derived from our understanding of the single-product problem.

The performance of the heuristic has been demonstrated in an extensive rolling-horizon

simulation study. In all instances, the MMFE model was able to provide either higher

demand satisfaction or lower operational costs. Our study extends the existing literature

on stochastic planning by highlighting that managing demand uncertainty alone does

not immunise against shortages and that it is necessary to implement a more detailed

forecast evolution model. Further, we analysed the planning strategy of the forecast

evolution model to provide guidelines to planners facing the typical trade-off between

building early inventory or waiting for a more precise forecast with limited capacity.

A potential research direction would be to consider that not only the volume but also

the timing of the season is uncertain. This is often the case for agricultural goods, for

instance, since the selling season depends on unpredictable parameters such as weather

conditions. In this context, forecasts on both the selling season volume and timing would

be periodically updated.
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Chapter 3

Stochastic programming in master

production scheduling: overcoming

barriers to industry application

Abstract

This paper stems from the observation that companies still rely on deterministic rolling-

horizon planning despite a substantial body of literature on stochastic planning models.

To foster practical applications, we identify barriers that limit the widespread applica-

tion of stochastic programming in master production scheduling and develop a frame-

work to overcome them. Our solutions include modelling uncertainty from available

data, reflecting planning processes in the optimisation model and evaluating its perfor-

mance accurately. A two-stage stochastic model with production recourse is introduced

to improve planning flexibility, stability and communicability. It is applied on a real-

world case study with large product portfolio, complex production processes and uncer-

tain seasonal demand. Out-of-sample rolling-horizon simulations show that well-defined

stochastic models can provide high demand satisfaction and low inventory costs while

improving planning stability. In particular, planning nervousness can be reduced by

40% and raw-material nervousness by 80% compared to our industry partner’s current

production scheduling solution.

3.1. Introduction

Even when demand is highly uncertain, companies still rely on deterministic rolling-

horizon planning and rule-of-thumbs for safety-stock calculations in master production
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scheduling (Meistering and Stadtler, 2017). Yet, recent applications of stochastic pro-

gramming have shown impressive results in controlled simulation environments (Gruson

et al., 2021; Thevenin et al., 2021). Stochastic programming can accurately determine

the volume and timing of safety stocks based on probabilistic uncertainty models. Fur-

ther, they reflect the flexibility of rolling-horizon planning through recourse decisions

that adapt to uncertainty as it unfolds. When demand is dynamic and forecasts have

poor accuracy, planning flexibility is critical to ensure that demand can be met. Nonethe-

less, stochastic programming is far from widely applied in practice despite promising

complementarity with rolling-horizon planning . This observation is especially surpris-

ing considering the breadth of existing research on stochastic programming. It suggests

that existing models still contain important shortcomings that prevent their applica-

tion. In particular, there appears to be a lack of discussion on how to translate models

from academic settings, that rely on simplifying assumptions, to real-world problems

and their complexity.

In this paper, we study how to overcome barriers facing practitioners when applying

stochastic programming to master production scheduling. First, we identify barriers

that still prevent the application of stochastic programming. We distinguish barriers

relating to the identification and representation of uncertainty, relating to the develop-

ment of stochastic planning models that fit existing planning structures, and relating

to the computational challenges of evaluating model performance. Second, we propose

a decision framework to set up stochastic models in master production scheduling. We

present novel strategies to overcome the barriers such as aggregating products into opti-

mal families, which increases planning stability and allows flexible production recourse.

A two-stage stochastic model is developed to integrate the above strategies and de-

termine a master production schedule that provides high demand satisfaction for low

inventory costs and ensures planning stability on both the production and raw-material

levels. We demonstrate our approach on a real-world case study in the agrochemical in-

dustry and evaluate its performance through out-of-sample rolling-horizon simulations.

The remainder of this paper is organised as follows. In Section 3.2, barriers limiting the

application of stochastic planning models are presented and related to existing literature.

In Section 3.3, the real-world case study is introduced. We discuss the specific form of

the barriers identified in the previous section and we provide an overview of our strate-

gies to overcome them. In Section 3.4, uncertainty models are derived from available

historical data and used to construct scenario trees. In Section 3.5, stochastic planning

models are developed to improve planning flexibility, stability and communicability. In
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Section 3.6, sensitivity analyses are conducted to tune the model and a comparison with

industry benchmarks is presented. In Section 3.7, we summarise our work and propose

directions for future research.

3.2. The barriers of applying stochastic programming in

master production scheduling

This section details barriers that prevent the widespread application of stochastic plan-

ning models. We categorise the barriers in three groups relating to modelling uncertainty,

the planning environment and the numerical challenges.

3.2.1. Modelling uncertainty from data

In practice, probability distributions are not available to describe demand uncertainty.

Instead, uncertainty models have to be constructed from available data.

Barrier 1 (Data scarcity). Data is essential when setting up stochastic models, yet

it is especially scarce in master production scheduling.

Master production scheduling derives tactical decisions typically aggregated on a monthly

granularity with planning horizons between 6 months and 2 years. Data sets cover only

several years of historical data at most, hence only a limited number of observations

are available. Further, the relevance of older data is limited by product life cycles and

changes in market conditions (Chopra and Meindl, 2013). If demand is dynamic, for in-

stance if there is a yearly seasonality, only few observations of the entire demand process

are available in the data set. Yet, data is essential to measure the uncertainty of the

planning environment and to evaluate model performance in simulations. Data scarcity

is an ever-present problem for planners who require quantitative methods to support

their decisions. This limits the application of sophisticated planning techniques. In

particular, recent developments in data-driven operations research (Mǐsić and Perakis,

2020) may not be applicable.

Barrier 2 (Uncertainty definition). Identifying the nature, number and stationarity

or lack thereof of uncertain processes influencing demand is critical.

There are two main methods to characterise demand uncertainty. Most common is the

assumption that demand itself can be modelled as an uncertain process. This method

relies on past demand observations to predict future demand. It may be especially
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relevant when there is (a) a stationary demand process, (b) seasonality, or (c) if demand

follows a type of auto-regressive process (Klabjan et al., 2013). For instance, Ban (2020)

considers seasonal goods whose demand realises over a long season. Demand periods

within the season are assumed correlated but observations of the full season are assumed

independent identically distributed. Li and Disney (2017) model demand as a simple

first-order auto-regressive process. In effect, the first approach assumes that demand is

a seasonal but stationary process, whereas the second approach assumes that demand

evolves over time but is locally stationary. The second method to characterise demand

uncertainty focuses on the error caused by inaccurate forecasts. The key stochastic

process is then the forecast error, which can be modelled as a probability distribution

(Prak et al., 2017; Trapero et al., 2019).

Both approaches ultimately provide uncertainty models for the demand over the planning

horizon. However, the resulting uncertainty models vary drastically when measuring

either demand or forecast uncertainty from data. Using wrong assumptions may lead to

severely inaccurate models with long-lasting consequence. This first step is fundamental

when applying stochastic models from data but is often overlooked in the literature.

Practical guidelines describing methods to identify and measure uncertainty from limited

data are still missing.

Barrier 3 (Uncertainty model). It is not clear when to use past data directly and

when to estimate distributions, which is challenging with scarce data.

Once the uncertain processes are defined and samples have been measured from histor-

ical data, the question arises of whether to use these samples directly in a data-driven

fashion (Kleywegt et al., 2002) or to assume that they are observations of an underlying

probability distribution. Creating scenario trees directly from data allows to capture

correlation between products and period while avoiding distribution assumptions. How-

ever, it may fail to generalise from the data set and lead to overfitting.

In the literature, demand is commonly assumed to follow a known distribution, often

normal, which is fitted to the data (Silver et al., 2016). These distributions can be

sampled to create scenario trees over the horizon (Heitsch and Römisch, 2009; Homem-

de-Mello and Bayraksan, 2014). Still, there is no guarantee that demand follows a

probability distribution. Further, distribution parameters cannot be estimated precisely

from scarce data and are subject to estimation error (Prak and Teunter, 2019). In a

multi-dimensional setting, estimation error plays an even larger role since the number

of observations may be much smaller than the number of parameters to estimate. An

alternative to estimating probability distribution is to use distribution-free methods such
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as robust optimisation (Bertsimas et al., 2018a) or distributionally robust optimisation

(Ben-Tal et al., 2013; Wiesemann et al., 2014). Yet, these methods have been applied

to problems for which hundreds of observations are available and may not be suitable

to problems with scarce data.

Barrier 2 and 3 are closely related but focus on different problems. Barrier 2 describes

the challenges in identifying the source of uncertainty and obtaining relevant samples

from past data whereas Barrier 3 discusses the different methods to process the samples.

Contributions. The strategies to overcome the barriers are typically problem specific.

We propose two approaches to measure uncertainty from limited data based on seasonal

demand uncertainty and forecast error respectively. For both uncertainty definitions,

we compare the use of empirical and estimated probability distributions. The models

are evaluated in simulations using real-world data. We show that accurately defining

uncertainty is critical to ensure high demand satisfaction. In fact, deterministic models

with simple rule-of-thumbs for safety stock but accurate uncertainty definition outper-

form stochastic models with wrong uncertainty definition. Thus, Barrier 2 is found more

critical for performance than Barrier 3, which is remarkable considering that existing

literature mostly focuses on the latter barrier at the expense of the former.

3.2.2. Reflecting the planning process

Stochastic models can reduce costs through recourse decisions that adapt to uncertainty

as it unfolds. However, they also need to respect the constraints of the planning pro-

cesses. The interaction of recourse models with planning flexibility, communicability

and stability remains understudied.

Barrier 4 (Flexibility representation). Stochastic programming models must be de-

signed to properly represent the planning flexibility resulting from rolling-

horizon planning processes.

Since scenario-based stochastic programming can introduce recourse variables that adapt

to the uncertain process as it unfolds (King and Wallace, 2012), it can capture the flexi-

bility of rolling-horizon planning. Flexibility in production planning has been studied in

early works by Escudero et al. (1993) and Brandimarte (2006) who compare different re-

course structures in lot-sizing problems. Recently, Tavaghof-Gigloo and Minner (2020)

propose a heuristic to integrate re-planning opportunities in a single-stage stochastic

model by reducing safety stock levels when capacity is unlimited. Yet, recourse deci-
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sions should also improve costs when capacity is tight thanks lower safety stocks and

better prioritisation of products over the horizon. Hence, how to best match the flexi-

bility of stochastic programming (i.e. the definition of stages and recourse decisions) to

the flexibility of the production environment is also an open question.

Quantifying the value of recourse in rolling-horizon planning has only be done partially.

Existing works conduct static comparison of two-stage and multi-stage formulations in

problems such as production planning with demand and yield uncertainty (Kazemi Zan-

jani et al., 2010), and lot-sizing and scheduling (Hu and Hu, 2018). Static evaluations

ignore the rolling-horizon implementation of planning models, which provides flexible

re-planning opportunities to stochastic models without recourse even if they are not

explicitly modelled. A notable exception has been proposed by Stephan et al. (2010),

who accurately measure the value of multi-stage models in capacity planning problems

by using a rolling two-stage benchmark. Hence, practitioners cannot estimate the value

of applying recourse models in rolling horizon.

Barrier 5 (Communicability). Scenario-independent reference plans need to be com-

municated to upstream and downstream members of the supply chain.

Recourse models typically ignore the communicability requirement of rolling-horizon

planning, which is essential throughout the supply chain. Contrary to deterministic or

stochastic models without recourse, there is no unique plan obtained when solving a

model with recourse. Instead, a tree of decisions is derived over the planning horizon

that merely represents what-if statements. However, unconditional production plans

need to be communicated to downstream parts of the supply chain to coordinate pro-

duction schedules as well as the distribution and sale of finished goods.

In the same vein, raw-material orders are communicated to upstream parts of the sup-

ply chain to coordinate production and purchasing activities. Considerations of raw-

material ordering and availability in production planning problems are rare and seem

restricted to settings in which raw materials exhibit specific properties. For instance,

Cunha et al. (2018) determine raw-material purchases with quantity-based discounts.

Bollapragada et al. (2015) investigate the stochastic optimisation of procurement and

production decisions in a make-to-order environment with supply uncertainty. More

generally, Kanyalkar and Adil (2010) develop a two-stage stochastic model for the pro-

curement, production and distribution including raw materials but consider a simple

product structure with a single raw material. New formulations are thus needed to

ensure communicability of a reference plan while allowing the flexibility of stochastic

models with recourse.
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Further, scenario-based multi-stage solutions are typically not implementable in prac-

tice unless the true uncertainty distribution is discrete and completely captured in the

scenario tree. Thevenin et al. (2021) investigate this issue by proposing several methods

to determine a production policy from scenario-based multi-stage solutions. Yet, it is

not discussed how to translate the obtained policy into a reference plan that provides

long-term visibility.

Barrier 6 (Plan stability). Reference plans should be stable in rolling horizon with

only limited changes between successive review periods, which may restrict

the flexibility of recourse decisions.

Significant plan changes create nervousness, which hinders supply chain performance,

leads to loss of confidence, confusion through the supply chain and ultimately higher

costs (Atadeniz and Sridharan, 2020). Seminal works analyse the nervousness resulting

from lot-sizing heuristics in single-level (Carlson et al., 1979; Sridharan et al., 1988) or

multi-level environments (Blackburn et al., 1986; Ho, 1989; Zhao et al., 2001). They

develop strategies to mitigate nervousness such as freezing periods or penalising plan

changes. Recent research studies the nervousness resulting from optimal planning mod-

els. Lin and Uzsoy (2016) compare chance-constraint formulations to capture demand

uncertainty and their impact on planning stability. Herrera et al. (2016) integrate dif-

ferent nervousness penalty costs in the objective function to identify a balance between

stability and operational costs. Meistering and Stadtler (2017) propose a stabilised-cycle

strategy that allows changes in production decisions only when necessary to reach the

target service level

Existing nervousness mitigation strategies are based on restricting planning flexibility,

which may reduce planning performance when short-term uncertainty is high. While

stochastic models should derive optimal production volumes despite the limited flexi-

bility, it is not clear how they would perform when distributions are not known but

modelled from data. Further, since freezing periods inherently prohibit recourse oppor-

tunities, the trade-off between traditional nervousness reduction methods and stochastic

programming with recourse remains open.

Contributions. We note that existing stochastic models with recourse do not evaluate

the resulting nervousness, since reference plans are not determined in existing stochastic

programming models. By providing reference plans when solving stochastic models with

recourse, we can bridge the gap between research on planning stability and stochastic

programming.
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We contribute to existing literature in several ways. First, we develop a two-stage

model that provides recourse and reference plans based on aggregating products into

optimal families. Second, we measure the value of recourse in rolling-horizon planning

with real-world data. In particular, we show that recourse is especially beneficial when

capacity is limited. Finally, we compare the use of traditional nervousness mitigation

strategies based on frozen decisions and our novel approach based on product aggrega-

tion. We show that freezing decisions on the raw-material level does not limit planning

flexibility while providing significant stability improvements. On the other hand, the

aggregation-based strategy can improve planning flexibility, communicability and sta-

bility, thus outperforming the traditional strategy of freezing production decisions.

3.2.3. Computational challenges

The evaluation of stochastic models is challenging due to several factors including long

computation times, the need for complex simulation settings, and the strong dependence

of results on the assumptions used in simulations.

Barrier 7 (Tractability). Stochastic models often exhibit a trade-off between accuracy

and long computation times.

Stochastic programming approaches, and especially multi-stage formulations, lead to

notoriously long computation times. Significant attention has been given to designing

scenario trees with optimal size. In particular several methods have been developed to

reduce the size of scenario trees while retaining their accuracy (Dupačová et al., 2003;

Heitsch and Römisch, 2003). Other approaches to improve computation times include

decomposition techniques such as progressive hedging (Watson and Woodruff, 2011) and

stochastic dual dynamic programming (Shapiro, 2011). Yet, solving times depend not

only on the scenario tree but also on the recourse structure. The trade-off between

computation times and flexibility offered by recourse also needs to be analysed.

Barrier 8 (Evaluation). The performance of stochastic models should be evaluated

accurately despite limited available data.

A reliable assessment of expected performance is essential to foster the adoption of new

models. This reliability can be achieved by simulating the model in a setting close

to its practical use. Simulations can be implemented in a rolling-horizon fashion to

respect the planning structure and performed in an out-of-sample fashion to accurately

evaluate the uncertainty model. To the best of the authors’ knowledge, out-of-sample

evaluations have not been applied in production planning to evaluate stochastic models
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based on real-world data. Out-of-sample evaluations have been more commonly applied

to inventory management and in particular to newsvendor problems (Bertsimas et al.,

2018b; Beutel and Minner, 2012; Huber et al., 2019; Oroojlooyjadid et al., 2020). When

data is scarce and is used for both model calibration and evaluation, carefully designing

the simulation experiments is crucial.

Contributions. We study the trade-off between model accuracy and tractability by

varying the scenario size as well as the recourse structure. In both cases, we show that

efficient trade-offs can be found. To tune and evaluate the models, we propose the first

out-of-sample rolling-horizon evaluation of stochastic production planning models with

real-world data. We highlight the importance of out-of-sample evaluation by measuring

the bias of in-sample evaluations.

3.3. Real-world case study

In this section, we introduce the industry problem and show the relevance of the barriers

identified above. While barriers may be common to many production planning problems,

we believe that solution approaches are inherently problem specific. We discuss the form

of the barriers in the case study and provide an overview of the strategies to overcome

them.

3.3.1. Problem setting

Our industry partner is a world-leading agrochemical company managing a global supply

chain with a large product portfolio, long production lead times and complex planning

problems. We focus on the production of a restricted product portfolio of pesticides

that embodies the planning challenges of the firm. Since the use of pesticides follows the

crops’ growth cycle, demand patterns exhibit strong seasonality, and accurately fore-

casting demand is limited by unpredictable parameters such as weather conditions.

The production of synthetic pesticides contains two main steps: the active ingredient

synthesis, in which the molecules forming the base of the finished products are synthe-

sised, and the formulation step, in which one or several active ingredients are combined

and diluted. The active ingredient synthesis is the most complex process with important

capital investment, long lead times and low flexibility. At this level, production is con-

ducted in long campaigns that realise over several months to a year. Short-term changes
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to campaigns are limited by cleaning operations that can last up to several weeks. As

the most value-adding process, the active ingredient synthesis highlights the inherent

challenge of agrochemical supply-chain management: production has low flexibility and

long lead times whereas demand is dynamic and hard to predict even in the short future.

Production and supply planners are thus looking for advanced strategies to manage de-

mand uncertainty and to ensure efficient operations throughout the supply chain.

Because of the complexity of the global network, the active ingredient synthesis and

formulation are planned sequentially. Formulation planners derive the intended produc-

tion over the planning horizon and deduce the active ingredient requirements that are

communicated to upstream planners. The aim of our industry collaboration is to im-

prove the formulation planning step to derive plans that satisfy the uncertain demand

while ensuring that stable raw-material orders are provided to upstream planners. In

effect, this improved formulation planning would act as a dampening step, reducing the

uncertainty of the demand forecast as it propagates through the supply chain.

3.3.2. Overcoming the barriers

From the identification of the uncertain processes to the model development and eval-

uation, this industry problem encompasses the barriers of stochastic programming de-

scribed in Section 3.2. We discuss the specific forms taken by the barriers in this industry

case and present an overview of our strategies to overcome them.

Uncertainty. Historical forecasts and past demands are available for the last four years.

Because of the seasonality of demand, this data set corresponds to only few observa-

tion of the entire demand process. Defining the uncertain processes from this limited

data set is challenging since demand is dynamic and forecasts are inaccurate. To over-

come Barrier 2 (Uncertainty definition), we derive seasonal models of uncertainty. Both

demand-driven and forecast-driven are analysed based on the uncertainty of demand and

forecasts respectively. The two approaches provide different samples for the empirical

demand distributions, which can be either used directly or to estimate probability distri-

butions. To overcome Barrier 3 (Uncertainty models), we implement both approaches,

estimating normal and uniform distributions from the empirical samples. Scenarios trees

are created and integrated in two-stage stochastic models.

Planning processes. The supply chain and production processes of the industry case

are complex. In particular, the active ingredients have long production lead times and
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are especially sensitive to planning nervousness. Yet, flexibility is essential to ensure

that demand can be met despite poor forecasts accuracy. We overcome the barriers

linked to planning flexibility, stability and communicability in several way. To overcome

Barrier 5 (Communicability), we ensure that a reference plan is always available on both

the production plan and raw-material levels. Raw-material orders and inventory are ex-

plicitly modelled. Long-term visibility is essential for raw-material planning. However,

a detailed production plan is only required by downstream planners to determine the

schedule of formulation campaigns. Hence, we can aggregate communications on the

production plan level by defining product families. The definition of the families is a key

part of our approach. To ensure that aggregated plans provide the information necessary

to derive production schedules, families are defined through a multi-objective optimi-

sation models with custom rewards and constraints that reflect production processes.

Product families allow to overcome Barrier 4 (Flexibility representation) by introducing

production recourse. First-stage capacity reserves are placed on the family level, which

can be used flexibly by products within in the family through recourse decisions. We

observe that plan changes within product families tend to compensate in rolling horizon

so that aggregating decisions on the family level also improves planning stability. Thus,

we compare the nervousness mitigation techniques of freezing and aggregating decisions

to overcome Barrier 6 (Plan stability). The different planning strategies are integrated

in a mixed-integer linear problems that optimally determines the share of first-stage and

recourse production decisions.

Numerical study. The models are evaluated through rolling-horizon simulations and

extensive sensitivity analyses are performed. We overcome Barrier 7 (Tractability) by

studying the effect of the size of the scenario trees and the number of product families

that both increase the number of recourse variables. In both cases, efficient trade-offs

can be found between solution quality and model complexity. The simulation setting is

crucial to overcome Barrier 8 (Evaluation). The out-of-samples rolling-horizon simula-

tion framework proposed is especially powerful to make generalisable conclusions from

the limited amount of data and avoid in-sample bias. To finalise the model evaluation,

meaningful benchmarks are defined from historical company data, providing an accu-

rate assessment of expected improvements compared to current practice. Barrier 1 (Data

scarcity) is the most fundamental and challenging barrier to overcome. It underlies all

strategies applied in this paper, and is only overcome at the end of the numerical study,

once we finally identify the best model configuration and prove its benefits experimen-
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tally.

3.4. Modelling the uncertain process

In this section, we discuss the definition and representation of the uncertain process.

We present two uncertainty models based on demand uncertainty and forecast error

respectively. Scenarios are obtained for both models and used to construct two-stage

scenario trees.

3.4.1. Seasonal demand uncertainty

A data set is available covering Y seasons of S periods each. Historical demand of

the portfolio of K products has been observed where ds,yk is the demand for product

k observed in period s of season y. To reflect seasonality, the first uncertainty model

assumes that demand follows a stationary distribution in each period of the season and

that demand periods within the season may be correlated. The planner can either use

the empirical distribution Ds = {ds,yk , y ∈ {1, . . . , Y }} derived from past observations

of demand in period s of the season, or estimate a probability distribution to derive

additional scenarios. This uncertainty model is based solely on past demand data and

ignores forecasts available in each review period. It is a static approach that does not

benefit from forecast updates obtained in rolling horizon.

3.4.2. Seasonal forecast error

In rolling horizon, an updated forecast is obtained in each review cycle covering a plan-

ning horizon of T periods. Let f s,y
k,t be the forecast for product k in period t of the

planning horizon as seen in review period s of season y. We introduce an additional

time index to distinguish the different versions of forecast relating to the same demand

period.

To model uncertainty in a forecast-driven fashion and reflect the seasonality of both

the demand and forecast processes, we introduce the concept of seasonal forecast er-

ror. The forecast error associated to planning period s of season y is defined by by

es,y = (es,yk,t) ∈ RK×T where

es,yk,t = ds+t−1,y
k − f s,y

k,t , ∀k ∈ K, t ∈ T .
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The novelty of this model is to assume that each planning period s has its own forecast

error distribution, which is stationary across seasons. For each review period s in the

season, the set of forecast error Es = {es,y, y ∈ {1, . . . , Y }} is the empirical distribution

of the (unknown) multivariate random forecast error distribution. The forecast error

can be measured a posteriori for all periods for which the actual demand has been

observed. The empirical distribution can be used to estimate the parameters of an

assumed distribution and sampled to create additional forecast error scenarios. Since

it is not straightforward to decide a priori which uncertainty model provides the best

results, we compare their performance numerically through out-of-sample simulations in

Section 3.6.2.

3.4.3. Two-stage scenario tree

Let yo be the current season for which we want to derive a production plan using Y past

seasons. Demand-driven samples obtained in Section 3.4.1 can be used directly to form

a scenario tree.

Forecast error samples can also be used to generate a scenario tree by correcting the

currently available forecast with forecast error samples. Let N − 1 be the number of

forecast error samples equal to Y if one uses the empirical distribution. A two-stage

scenario tree can be constructed as a fan containing N equiprobable sample paths. The

first path is set to the deterministic demand forecast f 1,s,yo
k,t = f s,yo

k,t for all products over

the planning horizon. The remaining scenarios can be determined as

f ,s,yo
k,t,n+1 = f s,yo

k,t + esk,t,n, ∀k ∈ K, t ∈ T , n ∈ {1, . . . , N − 1} .

to correct the deterministic forecast with the seasonal forecast error samples of the same

review period. Scenarios with negative demand are corrected to take the value zero.

3.4.4. Summary

We have shown strategies to overcome Barrier 2 (Uncertainty definition) and Barrier 3

(Uncertainty model) with limited available data. Seasonal uncertainty models based

on forecast and demand data have been presented and integrated in two-stage scenarios

trees. The use of scenarios based on the empirical distribution and estimated distribution

have been considered.
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3.5. Stochastic planning model with flexibility, stability

and communicability

The uncertainty model and scenario tree presented in the previous section are now

integrated in a stochastic planning model. We present different recourse structures and

strategies to ensure communicability and flexibility of reference plans for both production

and raw-material decisions. The notation for this section is summarised in Table B.1 in

the appendix.

3.5.1. Stochastic model without recourse

The planner manages a portfolio of K products made from A raw materials and needs

to determine a production plan over a horizon of T periods. Consider a general product

structure in which raw material can be used for several products and each product can

require multiple raw materials. The bill of material is given by U = (uk,a) ∈ RK×A

where uk,a is the amount of raw material a required to produce one unit of product

k. The planner is responsible for several production sites that serve a regional market.

Each site contains parallel lines with different capacity κl and product portfolio. The

set of production lines at site w is denoted by Lw. The set of products that can be

formulated on line l is given by Kl = {k ∈ K | ρk,l = 1}. Raw-material inventory is

kept in a single warehouse and shared over the production sites whereas finished goods

are held at the production sites. At the end of each review period, the company incurs

a per-unit holding costs νa for raw-material a and µk,w for product k in site w. The

problem setting is illustrated in Figure 3.1 for two production sites and five lines.

𝑙2

𝑙1

Site 𝑤1

𝑙4

𝑙5
Site 𝑤2

𝑙3

Raw-material 

inventory 𝒀

Finished-goods 

inventory 𝑰

Finished-goods 

inventory 𝑰

Production lines

Production lines

Demand 

𝒅

Figure 3.1.: Supply, production and inventory system for W = 2 sites and L = 5 lines.
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3.5. Stochastic planning model with flexibility, stability and communicability

In each review period, the planner uses a scenario tree f ∈ R(K×T×N) to determine

a production plan over the horizon and to communicate raw-material orders to the

upstream level. The planner’s goal is to satisfy the uncertain demand while minimising

the inventory costs of raw materials and finished goods. Unmet demand is considered

a lost sale and penalised with per-unit cost γk. The planning model is formulated as

a two-stage stochastic model. Production decisions and raw-material orders are set as

first-stage variable in order to provide a reference plan over the horizon. The inventory,

sales and lost-sales decisions are set as recourse variables. The model is presented in

Problem (3.1) where the season and review period indices are dropped for clarity.

min
T∑
t=1

(
1

N

K∑
k=1

W∑
w=1

µk,w

N∑
n=1

ik,w,t,n +
A∑

a=1

νa · ya,t +
1

N

K∑
k=1

γk

N∑
n=1

·bk,t,n
)

(3.1a)

s.t. ik,w,t,n = ik,w,t−1,n +
∑
l∈Lw

qk,l,t − sk,w,t,n, ∀k, w, t, n

(3.1b)

fk,t,n = bk,t,n +
W∑
w=1

sk,w,t,n, ∀k, t, n

(3.1c)

K∑
k=1

qk,l,t ≤ κl, ∀l, t

(3.1d)

ya,t = ya,t−1 + za,t −
K∑
k=1

L∑
l=1

βk,a · qk,l,t, ∀a, t

(3.1e)

qk,l,t, ya,t, za,t ≥ 0, ∀k, w, l, a, t
(3.1f)

ik,w,t,n, bk,t,n, sk,t,n ≥ 0, ∀k, l, w, t, n
(3.1g)

The objective function in (3.1a) minimises the expected costs of inventory and lost sales

over the different scenarios where the lost-sales penalty cost γk adjusts the conservative-

ness of the solution. Constraint (3.1b) describes the inventory balance at the production

sites. Constraint (3.1c) ensures that demand is satisfied from sales or accounted as a lost

sale in each scenario path. Constraint (3.1d) limits the production on each line to its
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capacity in each period. Constraint (3.1e) describes the raw-material inventory balance.

Constraints (3.1f) and (3.1g) specify the domain of the first-stage and recourse decisions

variables respectively.

To improve planning stability, production and raw-material decisions can be frozen over

the short-term horizon, prohibiting changes from decisions made in the previous review

period. The frozen horizon can be implemented through the additional constraints

za,t = z0a,t, ∀a, t ≤ τa (3.2a)

qk,l,t = q0k,l,t, ∀k, l, t ≤ τk (3.2b)

where z0a,t and q0k,l,t are raw-material orders and production values determined in the

previous review period. The length of the frozen horizon for production decisions τk and

raw-material orders τa is chosen by the planner.

The stochastic model presented in (3.1) overcomes Barrier 5 (Communicability) by pro-

viding a reference plan on both the production and raw-material levels. Barrier 6 (Plan

stability) can be overcome by freezing decisions on either the raw-material, the produc-

tion levels, or both. However, the resulting model provides low flexibility since there is

no recourse production and short-term decisions are frozen.

3.5.2. Improving flexibility through production recourse

By allowing recourse, decisions can be adapted to each scenario leading to less conserva-

tive here-and-now decisions. However, recourse variables limit planning communicability

since the planner does not determine a unique reference plan but a tree of decisions. We

introduce a stochastic model with recourse that provides high flexibility and communica-

bility. The model is based on product families built through a data-driven optimisation

model with custom rewards and constraints that reflect the product structure. The

families are integrated in the planning model that reserves capacity on the family level

through first-stage decisions. Thus, a reference plan is obtained on the family level.

Recourse production decisions that consume the reserved capacity are implemented for

products within families. In the numerical study, we show that aggregating production

decisions over products improves planning stability since production changes tend to

compensate within product families.
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Product families: a multi-objective problem

The product-to-family assignment problem is a multi-criteria decision problem. Together

with our industrial partner, we identify properties that the final assignment should ex-

hibit: (1) the family assignment should cover many products, (2) a large share of the

demand should be covered in product families, and (3) products with high uncertainty

should be prioritised in the allocation. Each property is formulated as a normalised re-

ward function, so that the rewards can be weighted easily to reflect planners’ preferences.

The product families should also respect the operational constraints and provide high

visibility to site planners and schedulers. The product families are built in a data-driven

fashion by using the historical data set of Y seasons.

Custom reward functions. Let xk,f be the binary variable equal to 1 if product k is

assigned to family f . The first reward function is given by

ψ1(X) =
1

K

F∑
f=1

K∑
k=1

xk,f

and simply counts the number of products assigned to families. The second reward

quantifies the share of demand covered by assigned products. It is given by

ψ2(X) =
1∑K

k=1 tdk

F∑
f=1

K∑
k=1

tdk · xk,f

where tdk =
∑Y

y=1

∑S
s=1 d

s,y
k is the total demand of product k over the data set. The

third reward prioritises products with high uncertainty. It is expressed by

ψ3(X) =
1∑K

i=1 fei

F∑
f=1

K∑
k=1

fek · xk,f

where fek represents the difficulty to forecast product k. In this paper, we measure

the uncertainty of a product using the weighted mean absolute percent error (wMAPE).

This measure is normalised and allows to compare the forecast error of products with

different demand share. The wMAPE forecast error in review period s of season y is

given by

fes,yk,t =

∑T
t=1 ωt | ds+t−1,y

k − f s,y
k,t |∑T

t=1 ωt · ds+t−1,y
k

∀k, t.
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where the weighting factor ωt emphasises forecast error over the short-term horizon. The

average product forecast error is then calculated as fek =
1
T

∑T
t=1 fek,t.

Model formulation. The optimisation model is formulated in Problem (3.3).

max
x

3∑
i=1

wi · ψi(x) (3.3a)

s.t.
F∑

f=1

xk,f ≤ 1, ∀k (3.3b)

xk1,f · xk2,f ≤ ρk1,l · ρk2,l, ∀k1, k2, l, f (3.3c)

xk1,f · xk2,f ≤ 1−mk1,a1 ·mk2,a2 · (1−mk1,a2) · (1−mk2,a1) (3.3d)

−mk1,a2 ·mk2,a1 · (1−mk1,a1) · (1−mk2,a2), ∀k1, k2, a1, a2, l, f,
xk,f ∈ {0; 1}, ∀k, f. (3.3e)

The objective function in (3.3a) maximises the weighted sum of rewards. Constraint

(3.3b) ensures that a product is assigned to at most one family. Constraint (3.3c) specifies

that all products within a family must be produced on the same set of production lines.

Constraint (3.3d) states that there is always a sequence of products feasible without

cleaning operation within a product family. Although cleaning operations are outside

the scope of tactical planning, we ensure that the reference plan on the family level

provides high visibility for the site schedulers. In the agrochemical industry, cleaning

operations are conducted each time a raw material is removed when switching equipment

from one product to the next. Let m = (mk,a) be the raw-material usage matrix where

mk,a is equal to 1 if product k requires raw material a and 0 otherwise. Constraint (3.3d)

holds for any number of products and raw materials. Although the above formulation

is non-linear, the product of binary variables in Constraints (3.3c) and (3.3d) can be

linearised by adding auxiliary variables zk1,k2,f and the following constraints:

zk1,k2,f ≤ xk1,f , ∀k1, k2, f (3.4)

zk1,k2,f ≤ xk2,f , ∀k1, k2, f (3.5)

zk1,k2,f ≥ xk1,f + xk2,f − 1, ∀k1, k2, f. (3.6)
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Two-stage stochastic model with production recourse

The product families are integrated in a stochastic model that allows recourse production

decisions. The extended stochastic model with family reserves and production recourse

is formulated in Problem (3.7).

min
T∑
t=1

K∑
k=1

W∑
w=1

µk,w

N∑
n=1

1

N
ik,w,t,n +

A∑
a=1

νa ·
N∑

n=1

1

N
ya,t,n +

K∑
k=1

γk

N∑
n=1

1

N
· bk,t,n (3.7a)

s.t. ik,w,t,n = ik,w,t−1,n +
∑
l∈Lw

(
qk,l,t + rk,l,t,n

)
− sk,w,t,n, ∀k, w, t, n (3.7b)

fk,t,n = bk,t,n +
W∑
w=1

sk,w,t,n, ∀k, t, n (3.7c)

K∑
k=1

qk,l,t +
F∑

f=1

hf,l,t ≤ κl, ∀l, t (3.7d)∑
k∈Kf

rk,l,t,n ≤ hf,l,t, ∀f, l, t, n (3.7e)

rk,l,t,n ≤
F∑

f=1

xk,f · hf,l,t, ∀k, l, t, n (3.7f)

qk,l,t + rk,l,t,n ≤ κl · ρk,l, ∀k, l, t, n (3.7g)

ya,t,n = ya,t−1,n + za,t −
K∑
k=1

L∑
l=1

βk,a · (qk,l,t + rk,l,t,n), ∀a, n, t (3.7h)

uk,t,n ·
L∑
l=1

κl · ρk,l ≥
L∑
l=1

rk,l,t,n, ∀k, t, n (3.7i)

N∑
n=1

uk,t,n = N − 1, ∀k, t (3.7j)

∑
k∈Kf

L∑
l=1

rk,l,t,n ≥
L∑
l=1

hf,l,t − vf,t,n ·
L∑
l=1

κl, ∀f, t, n (3.7k)

N∑
n=1

vf,t,n = N − 1, ∀f, t (3.7l)

rk,l,t,n, hf,l,1 = 0, ∀k, l, f, n (3.7m)

za,t = z0a,t, ∀a, t ≤ τa (3.7n)

qk,l,t = q0k,l,t, ∀k, l, t ≤ τk (3.7o)
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hf,l,t = h0f,l,t, ∀f, l, t ≤ τk (3.7p)

qk,l,t, hf,l,t, za,t,≥ 0, ∀k, l, a, f, t (3.7q)

ik,w,t,n, bk,t,n, sk,t,n, ya,t,n, rk,l,t,n ≥ 0, ∀k, l, w, a, t, n (3.7r)

uk,t,n, vf,t,n ∈ {0; 1}, ∀f, k, t, n. (3.7s)

The objective function in (3.7a) minimises the expected costs of finished-goods inven-

tory, raw-material inventory and lost sales. Constraint (3.7b) describes the inventory

balance of finished goods at each production site. Constraint (3.7c) tracks the demand

satisfaction from the sites. Constraint (3.7d) ensures that production and capacity

reserves on each line do not exceed available capacity. Constraint (3.7e) states that

recourse production within a family is restricted by its capacity reserve in each scenario.

Constraint (3.7f) ensures that there is no recourse production for unassigned products.

Constraint (3.7g) specifies that production on a line is restricted to its feasible portfolio.

Constraint (3.7h) describes the raw material balance. Constraints (3.7i) and (3.7j) en-

sure that the minimum recourse production over all scenarios is zero for each product and

time period. Constraints (3.7k) and (3.7l) force the maximum recourse production over

all scenario to be equal to the capacity buffer reserved for each product in each period.

These two sets of constraints ensure that the capacity buffer reserved for each family

accounts exactly for the volatile part of demand. Constraint (3.7m) states that there is

no recourse variable in the first period. Constraints(3.7n) implements a frozen horizon

on the raw-material orders. Constraints (3.7o) and (3.7p) implement a frozen horizon

on first-stage production decisions and capacity reserves respectively. Constraints (3.7q)

and (3.7r) express the domain of the continuous first-stage and recourse variables respec-

tively. Constraint (3.7s) defines the auxiliary binary variables to identify the minimum

and maximum production recourse over the scenarios.

3.5.3. Summary

The stochastic model with recourse determines the optimal first-stage raw-material or-

ders, production and capacity reserves that allows flexible second-stage production de-

cisions, overcoming Barrier 4 (Flexibility representation). Recourse production can only

be used for products within families if enough resources have been reserved. Although it

uses scenarios, the model overcomes Barrier 5 (Communicability) by providing an aggre-

gated reference plan defined so that a detailed production schedule can still be derived

by downstream planners. Barrier 6 (Stability) is overcome by aggregating first-stage
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decisions on the family level. The model also explicitly distinguishes between parts of

the plan likely to be conducted (first-stage production) and parts of the plan potentially

subject to changes (recourse production).

3.6. Numerical study

The numerical study applies the strategies developed in the previous sections to the real-

world case study and details the final steps to overcome barriers of stochastic program-

ming in practice. Due to the large number of parameters and performance indicators,

it is difficult to investigate their interactions in a full factorial experiment. Instead, we

analyse sequentially the strategies related to the uncertainty process from Section 3.4

and the planning structure from Section 3.5. First, we present the simulation setting,

the performance metrics and the problem parameters. Second, we compare the per-

formance of demand-driven and forecast-driven uncertainty models as well as the use

of empirical or estimated distributions. Third, we evaluate the stochastic models with

varying nervousness mitigation strategies. Finally, we compare our model to the current

practice of our industrial partner.

Simulations are implemented in the Julia programming language (Bezanson et al., 2017)

and are run on an Intel(R) Core(TM) i7-4810MQ processor at 2.80Ghz using 16GB of

RAM. The optimisation problems are formulated using JuMP (Dunning et al., 2017)

and solved with Gurobi 9.0. The relative MIP gap is set to 0.1% for all instances of the

stochastic model with production recourse.

3.6.1. Simulation setting

All simulations from model parameterisation to final evaluation are conducted in an out-

of-sample rolling-horizon fashion. In each review period, the following steps are taken:

(1) a production plan is calculated over the planning horizon using the available forecast

or scenario tree, (2) the production quantity of the first period is added to the on-hand

inventory, (3) the actual demand is observed, (4) sales are subtracted from the inventory

and lost sales are observed if demand is higher than the on-hand inventory, and (5) the

new inventory position is determined.

We gather a data set containing the planning history of our industrial partner over Y = 4

seasons of S = 12 months each. Rolling-horizon simulations are run for each season

independently using the other (Y − 1) seasons to construct the uncertainty model. In
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each review period, the forecast and demand are taken from the historical data set of our

industrial partner. This simulation setting allows to carry Y independent out-of-sample

simulations.

The initial inventory in the first period of the season is set to the historical inventory of

the company. Each simulation is started τ = max(τa, τk) periods earlier than the first

period of the season and the demand and forecast are set to zero during this warm-

up phase. The corresponding review periods are ignored for the model evaluation. To

neglect the interactions between consecutive seasons, we replace demand and forecast

values by zero for all periods later than the last period of the current simulation season.

Key performance indicators

The models are evaluated using four key performance indicators: the service level, the

inventory costs, the planning nervousness and the nervousness of the raw-material orders.

Key trade-off: service level and inventory. The service level is measured as the

proportion of satisfied demand over the season given by

sl =

∑S
s=1

∑K
k=1(dk,s − b

(r)
k,s)∑S

s=1

∑K
k=1 dk,s

where b(r) are the realised lost sales of product k in simulation period s respectively. The

inventory costs are measured as the sum of finished-goods and raw-material inventory

costs over the season as

ic =
S∑

s=1

K∑
k=1

W∑
w=1

µk,w · i(r)k,w,s +
S∑

s=1

A∑
a=1

νa · y(r)a,s

where i
(r)
k,w,s and y

(r)
a,s are the realised finished-goods inventory and raw-material inventory

observed at the end of period s. All inventory costs reported are normalised by dividing

them by the company’s average historical inventory costs.

Planning stability. There is a large body of literature discussing how to measure ner-

vousness. Quantity-oriented and setup-oriented nervousness measures have been distin-

guished, which are particularly relevant in lot-sizing contexts (Tunc et al., 2013). Early

measures focus on setup-oriented nervousness such as Carlson et al. (1979) who account

only for the nervousness induced by adding a new setup in the plan. Sridharan et al.
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(1988) have proposed a quantity-oriented measure that assigns weights to periods in the

horizon in order to emphasise short-term stability. While the majority of existing mea-

sures are absolute, relative nervousness measures are more interpretable. Jensen (1993)

proposes a normalised nervousness measures that relate nervousness to the maximum

nervousness possible, which can be determined from the available capacity. However,

this measure has several practical shortcomings: it cannot be applied if the maximum

nervousness is unbounded, and it might give a false sense of stability if capacity is large.

We propose a novel quantity-oriented nervousness measure that is relative to the plan

itself. This measure provides high interpretability and allows to compare several plan-

ning steps. For instance, we compare production planning nervousness, raw-material

nervousness and forecast nervousness in Section 3.6.4.

Planning stability is measured independently on both the production and raw mate-

rial levels. Planning nervousness is measured as the average sum of absolute changes

between production volumes aggregated on the product family level. It is based on

the observation that nervousness within a family is negligible compared to nervousness

between families. Planning nervousness is measured as

nsf =
1

S − 1

S∑
s=2

1

max

(
T−1∑
t=1

L∑
l=1

K∑
k=1

Q
(s)
k,l,t +

F∑
f=1

HK
(s)
f,l,t,

T−1∑
t=1

L∑
l=1

K∑
k=1

Q
(s−1)
k,l,t+1 +

F∑
f=1

HK
(s−1)
f,l,t+1

)

×
( T−1∑

t=1

F∑
f=1

|
L∑
l=1

(HK
(s)
f,l,t +

∑
k∈Kf

Q
(s)
k,l,t −HK

(s−1)
f,l,t+1 −

∑
k∈Kf

Q
(s−1)
k,l,t+1) |

+
∑

k∈K\KF

|
L∑
l=1

Q
(s)
k,l,t −Q

(s−1)
k,l,t+1 |

)
(3.8)

where K \ KF is the set of products not assigned to any family. Raw-material orders

nervousness is given by

nsa =
1

S − 1

S∑
s=2

T−1∑
t=1

A∑
a=1

| Z(s)
a,t − Z

(s−1)
a,t+1 |

max

(
T−1∑
t=1

A∑
a=1

Z
(s)
a,t ,

T−1∑
t=1

A∑
a=1

Z
(s−1)
a,t+1

) . (3.9)

The nervousness measures are quantity oriented. They account for plan changes due

to both volume and timing. Nervousness is calculated relative to the reference plan.

This normalisation does not guarantee that nervousness is always between 0 and 1 but
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increases interpretability and allows the comparison of different models.

Problem parameters

The product portfolio contains K = 55 products formulated from A = 13 raw materials.

There are W = 2 production sites with 2 production lines at the first site and 3 lines

at the second site. The demand is seasonal with periodicity S = 12 periods and the

planning horizon is set to T = 12 periods. The raw-material frozen horizon is set to

τa = 2 periods. There is no frozen horizon for production decisions. The line capacities,

bill of materials, each line’s product portfolio and the inventory costs have been collected

together with our industrial partner. The lost-sales penalty cost is set proportional to

the product inventory cost as γk = λ ·maxw∈W(µk,w).

3.6.2. Evaluation of uncertainty models

Pareto fronts

The stochastic models are implemented in out-of-sample rolling-horizon simulations to

measure the value of different uncertainty models and decide on the optimal configura-

tion. We compare the performance of the empirical distribution and estimated distri-

butions as well as the use of forecast-driven and demand-driven models. The value of

augmenting the scenario tree with scenarios sampled from assumed distribution is also

measured.

Normal and uniform distributions are fitted to the empirical samples. A normal dis-

tribution is estimated from the empirical mean and variance of the forecast error inde-

pendently for each product and time period. The bounds of the uniform distribution

are taken as 80% and 120% of the minimum and maximum empirical forecast error for

each product and time period. We refrain from estimating covariance parameters since

the number of samples (Y − 1) is significantly smaller than the number of parameters

to estimate (K2 × T 2). Demand scenarios are then sampled using Descriptive Sampling

(Saliby, 1990). To identify the value of stochastic programming, we also show the Pareto

front of deterministic models with exogenous safety stock calculations. The determinis-

tic optimisation model presented in B.1 is implemented with additional exogenous safety

stocks determined by ssk,t = z · σk,t where σ is the standard deviation of demand (DD)

or forecast error (DF) and z is a conservativeness parameter set by the planner.

Since the planning problem has four objectives, several trade-offs exist between the

performance indicators presented in Section 3.6.1. We focus on the most important
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trade-off between realised service level and inventory costs. While the planner is inter-

ested in achieving high demand satisfaction, it comes at the price of more conservative

decisions yielding higher inventory costs. We determine the Pareto front of stochastic

forecast-driven (SF) and demand-driven (SD) models using empirical, normal and uni-

form distributions. We study the effect of varying the number of scenarios by setting

N ∈ {4, 8, 16, 32} for the normal and uniform distributions while the number of empir-

ical scenarios remains equal to N = 4. For each scenario tree, a sensitivity analysis of

the lost-sales penalty cost factor is performed with λ ∈ {1, 2, 5, 10, 15, 20, 25, 30, 50, 200}.
Similarly, the conservativeness of the deterministic models is adjusted through parame-

ter z ∈ {0, 0.2, 0.4, . . . , 1.8, 2}.
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(c) N = 16 scenarios
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Figure 3.2.: Pareto front between service level and inventory costs for different model
configurations.

The Pareto fronts are shown in Figure 3.2 where each mark corresponds to the average
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performance over the Y seasons for a given lost-sale penalty cost or deterministic safety

factor. Several conclusions can be drawn from the simulation results: (a) forecast-driven

models outperform demand-driven models, (b) stochastic models dominate determinis-

tic models with exogenous safety stock calculations, (c) the value of sampling additional

scenarios decreases quickly so that only few scenarios are necessary to achieve good

performance, and (d) the uniform distribution dominates other distributions for small

scenario trees but appears equivalent to the normal distribution for larger tree sizes.

This analysis highlights the importance of the uncertainty modelling step identified in

Barrier 2 (Uncertainty definition) when applying stochastic programming from data.

Notably, the deterministic forecast-driven model outperforms all stochastic demand-

driven models, confirming our intuition that defining uncertainty correctly may be more

important that applying advanced stochastic techniques. Still, using a stochastic model

instead of a deterministic model provides significant benefits. For small sample sizes, the

uniform distribution provides the best results, which may be explained by the fact that

it contains more extreme scenarios that allows it to reach high service levels. For large

scenario trees, which provides a more accurate evaluation of the distribution quality,

the normal and uniform probability distributions yield similar performance. The results

suggest that overcoming Barrier 2 (Uncertainty definition) is even more important than

Barrier 3 (Uncertainty model), even though the latter has received much more attention

in the literature.

Out-of-sample regret

To highlight the importance of performing out-of-sample simulations, we compare the

results of in-sample and out-of-samples simulations. We investigate the relative out-

of-sample regret, which is defined as the difference between the average performance

obtained with in-sample and out-of-sample simulations divided by the in-sample perfor-

mance.

The relative regret of service level and inventory costs is shown on Figure 3.3 as a func-

tion of the lost-sales penalty factor. The figure shows that all service level regrets are

negative. In-sample simulations have an optimistic bias, which is consistent over all

uncertainty models. Similarly, the inventory regret shows that out-of-samples inventory

costs are overall higher than their in-sample estimates. Interestingly, the empirical distri-

bution shows the highest regret on both the service level and inventory costs. Increasing

the size of the scenario trees does not reduce the out-of-sample regret of estimated dis-

tributions. On the contrary, it leads to overall higher service level regret.
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Figure 3.3.: Out-of-sample regret of realised (a) service level and (b) inventory cost.

Summary

Determining the Pareto fronts of the models with different uncertainty process definition

and representation allows to overcome Barrier 2 (Uncertainty definition) and Barrier 3

(Uncertainty model). The out-of-sample evaluations are a key component for overcoming

Barrier 1 (Data scarcity) and Barrier 8 (Evaluation). They provide an accurate and

unbiased estimate of model performance. They also highlight the ability to generalise

from past observations by estimating probability distributions and sampling from them.

We overcome Barrier 7 (Tractability) by observing that a small scenario tree is enough

to provide good out-of-sample performance. In the remainder of the numerical study,

we use the forecast-driven stochastic model with N = 8 scenarios sampled from the

uniform distribution. The lost-sales penalty cost factor is set to λ = 15, which ensures

a satisfying trade-off between between service level and inventory costs.

3.6.3. Stochastic programming, recourse and planning stability

In this part, we investigate the trade-off between planning flexibility, stability and com-

municability. First, we illustrate the reference plan obtained with product families.

Then, we evaluate the value of recourse and compare the effect of freezing and aggre-

gating production decisions to mitigate nervousness.
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Planning communicability

The stochastic model with production recourse presented in Section 3.5.2 determines a

reference plan as a combination of capacity reserves and first-stage production decisions.

An example is shown in Figure 3.4 for F = 4 product families, where production is shown

relative to available capacity in each period. The figure shows the first-stage decisions

aggregated over all products as well as the capacity reserves for the four families. It

illustrates the variation in volume and timing between the different families over the

planning horizon. The capacity reserves can be understood as the volatile part of the

plan since they are used differently in each recourse scenario by the products in the

family. Hence, a reference plan can be communicated while allowing flexible product-

specific decisions.
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Figure 3.4.: Capacity reserves and first-stage production decisions relative to available
capacity.

Raw-material stability

We analyse the impact of freezing raw-material ordering decisions by varying the frozen

horizon length τa within the set {0, 1, 2, 3, 4, 5, 6}. The results are shown in Figure 3.5,

which shows that freezing raw-material ordering decisions is an effective strategy to im-

prove raw-material stability although it leads to increased inventory costs.

The stochastic model maintains high service level by increasing safety inventory, sug-

gesting that the scenario tree accurately captures the raw-material uncertainty over the

prediction horizon. Interestingly, there is no distinguishable effect on planning nervous-

ness. Freezing raw-material orders does not reduce planning flexibility if enough safety

inventory is available on the raw-material level. Hence, we fix the raw-material lead time

to τa = 2 to decrease raw-material nervousness with acceptable inventory costs increase.
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Figure 3.5.: Sensitivity analysis of raw-material ordering lead time.

Plan stability

In Section 3.5, two methods are presented to mitigate planning nervousness. The first

strategy freezes production decisions over the short-term horizon while the second ag-

gregates decisions over optimally defined families. We evaluate and compare their per-

formance in a sensitivity analysis. In Figure 3.6, we show a side-by-side comparison of

the effect of increasing the length of the frozen horizon and increasing the number of

product families.

As for raw materials, implementing a frozen horizon on the production level gives signif-

icant reduction in planning nervousness. However, it leads to small decrease in average

service level and comes at the cost of increased inventory costs. Freezing the production

horizon also has a stabilising effect on raw-material orders since production flexibility is

strongly reduced. On the other hand, the stochastic model with recourse provides high

stability, high demand satisfaction and low costs. Since the product-to-family assign-

ment model prioritises the assignment of products with high demand and large forecast

errors, few product families are sufficient to observe large improvements in planning

stability. As the number of families increases, planning nervousness decreases with di-

minishing marginal returns. For F = 4 families, the model can reduce inventory costs
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Figure 3.6.: Comparison of nervousness mitigation strategies on planning level.

by 6% while the average service level is decreased by only 1% and planning nervousness

is reduced by 40%. On the contrary, freezing production decisions overly restricts the

flexibility of the model, which may lead to unacceptable cost increase.

Value of recourse under varying capacity utilisation

In the agrochemical industry, capacity is expensive and capacity planning is an important

long-term problem. To demonstrate the robustness of our approach in diverse settings,

we analyse performance under varying capacity. Available capacity is reduced in 5%

increments from 100% to 40%. The average performance are shown in Figure 3.7 for the
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stochastic model without recourse corresponding to F = 0 family, the stochastic model

with recourse and F = 4 families, as well as the stochastic model without family and

frozen horizon τk = 1.
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Figure 3.7.: Performance of stochastic models under varying capacity.

Figure 3.7 shows that inventory increases as capacity is further reduced, leading to higher

costs but also higher service level. When capacity is severely limited, a steep decline in

service level is observed. The simulations highlight that the value of recourse is robust

over a wide range of capacity settings. Remarkably, the stochastic model with recourse

provides highest service level and lower costs when capacity is highly utilised, which

corresponds to capacity reduction of 65% and lower. On the contrary, the stochastic

model with frozen production decisions yields the highest inventory costs and lowest

service level over all instances. Hence, production flexibility is essential to manage

short-term uncertainty when capacity is limited.

It is interesting to observe that realised service level is overall higher when capacity is

limited. With little available capacity, production starts earlier and uses less accurate

forecasts. Hence, additional safety stock are placed, leading to both higher inventory

and service level. Yet, we note that the obtained solutions is a dominated solution on the

Pareto front shown in Figure 3.2. The Pareto analysis performed in Section 3.6.2 should

be performed with the new capacity to decide on the optimal trade-off between service
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level and inventory costs and identify the lost-sales penalty cost factor that achieves the

target service level.

Summary

The barriers linked to the planning processes have been overcome thanks to several

strategies. Barrier 5 (Communicability) is solved by explicitly integrating raw-material

orders and determining a reference plan on the family level. Barrier 4 (Flexibility repre-

sentation) is overcome through recourse decisions, which proves especially relevant when

capacity is highly utilised. Barrier 6 (Plan stability) is resolved by implementing a frozen

horizon on raw-material orders and aggregating decisions over families. We show that

there is not necessarily a trade-off between planning stability and flexibility. The pro-

posed approach based on product aggregation is especially successful since it overcomes

the above barriers jointly.

3.6.4. Comparison with industry benchmarks

To conclude the numerical study, we compare our approach to the current practices of

our industrial partner. The stochastic model with N = 8 scenarios sampled from a

uniform distribution and F = 4 families is compared to two benchmarks based on the

historical data of our industry partner.

Benchmark definition

The forecast benchmark assesses the quality of the demand forecast. The service level of

the benchmark is measured through a rolling simulation in which the on-hand inventory

is set equal to the demand forecast, thus evaluating the forecast accuracy of the first pe-

riod in the horizon. Planning and raw-material nervousness are determined by applying

Equation (3.8) and Equation (3.9) respectively using the demand forecasts and forecasts

translated into raw materials using the bill-of-material. The forecast benchmark does

not lead to inventory costs, which are not reported.

The company benchmark represents the practice of our industrial partner. Currently, a

combination of deterministic automated MRP software and expert knowledge is used to

derive a production plan in each review period. The benchmark is based on the history

of production plans and inventory levels. The service level of the company benchmark

is measured by comparing the sum of historical on-hand inventory and the production

plan implemented in rolling horizon to the demand. The inventory costs are determined
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from the historical inventory of raw materials and finished goods. Planning nervousness

is measured using Equation (3.8). Raw-material orders are obtained by converting the

finished-goods production plan on the raw-material level and by accounting for on-hand

raw-material inventory. Raw-material nervousness is then deduced using Equation (3.9).

Simulation results

The out-of-sample rolling-horizon simulation results are presented in Figure 3.8 for all

seasons. The average results are given in Table 3.1. The forecast accuracy is poor since

the forecast benchmark yields lowest service level in all seasons. Interestingly, the deter-

ministic model provides higher service level although it uses the same demand forecasts.

This can be explained by the fact that the deterministic model carries inventory from

one period to the next if it produces more than the actual demand. This highlights a bias

in the forecasting process: demand tends to be forecast earlier than it actually realises,

which leads to inventory build up that is used in later periods. Overall the company

benchmark achieves a high service level and outperforms the forecast and deterministic

models, highlighting the value of planner expertise.

The stochastic model with F = 4 families achieves high service level consistently over

the four seasons. It reduces inventory costs by more than 33% compared to the company

benchmark, which suggests an efficient placement of safety stocks. It also yields sub-

stantial improvements in stability as planning nervousness is reduced by 40% thanks to

the aggregation of planning decisions on the family level. Raw-material nervousness is

reduced by almost 80% on average, which results in lower nervousness than the forecast

benchmark. Thus, the planning step acts as a dampening step. Short-term demand

variability is effectively mitigated, which provides a robust ordering signal to upstream

raw-material planners.

The simulation setting and benchmark definition allows us to overcome Barrier 8 (Eval-

uation). The results show that the stochastic model with production recourse improves

all performance indicators compared to the company historical practice: customer sat-

isfaction is increased, inventory costs are reduced and planning is more stable on both

the finished-goods and raw-material orders levels.

3.7. Conclusion

This paper aims to foster the use of stochastic programming in master production

scheduling. First, we identify barriers that challenge the application of stochastic pro-
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Figure 3.8.: Simulation results over four seasons: (a) service level, (b) inventory, (c)
planning nervousness, and (d) raw-material nervousness.

gramming and relate them to a real-world case study in the agrochemical industry. Then,

we discuss how to model the uncertainty from limited available data and construct sce-

nario trees to represent future demand. The scenario trees are integrated into stochastic

planning model that reflect the planning processes. The trade-off between planning

communicability, stability and flexibility are integrated in a two-stage stochastic model

that determine the optimal recourse production volumes. Finally, we demonstrate our

framework on the case study, determine the best model configuration through sensitivity

analyses and compare its result to industry practice.

The results of this paper extend beyond the scope of the case study considered. The bar-

riers identified are common to a wide array of manufacturing environment. We hope to

stimulate the discussion on their relevance and encourage the development of solutions

suitable to varied production settings. The simulation study allows us to emphasise the

importance of the definition and representation of the uncertain processes. Whereas
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Table 3.1.: Average value of KPIs over all seasons and value relative to company.

KPI Company Forecast Determ. Stoch. F = 0 Stoch. F = 4

Service level [in %] 90.69 81.54 83.66 94.74 94.14
relative [in %] 100 89.9 92.2 104.5 103.8
Rel. inv. costs [in %] 100 - 46.7 71.5 66.2
Rel. fin.-goods inv. costs [in %] 100 - 33.8 80.3 76.2
Rel. raw-mat. inv. costs [in %] 100 - 62.2 61 54.2
Planning nervousness [in %] 54.5 22 34.4 53.9 31
relative [in %] 100 40.4 63.1 99 56.8
Raw-mat. nervousness [in %] 60.7 17 7.9 13.1 12.9
relative [in %] 100 28 13 21.6 21.3

existing literature overwhelmingly assumes that uncertainty models are available, we

show that the carefully modelling uncertainty is critical. Indeed, a simple deterministic

model with the right uncertainty model outperforms advanced stochastic models with

inaccurate uncertainty definition.

We discern several directions for future research. The analysis of nervousness mitigation

by aggregating production decisions could be extended to a multi-level supply chain.

The application of advanced models to characterise the forecast revision process such

as the Martingale Model of Forecast Evolution of Heath and Jackson (1994) could be

investigated to further exploit available data and derive robust uncertainty models.
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Chapter 4

Dynamic stochastic lot sizing with

forecast evolution in rolling-horizon

planning

Abstract

Stochastic lot-sizing problems arise in many production settings in which inventory and

setup costs are incurred and demand is uncertain. While existing approaches assume that

demand follows known probability distributions, many industries struggle to determine

stochastic distributions from available data. Instead, they implement a rolling-horizon

planning framework based on frequent forecast updates and deterministic models. Using

the Martingale model of forecast evolution, we integrate stochastic forecast evolution in

lot-sizing problems and solve the models efficiently using piecewise-linear approximation

of the expected inventory and backlogs. The formulation is extended with production

recourse through discrete demand scenarios to reflect the flexibility of rolling-horizon

planning. Extensive rolling-horizon simulations on both synthetic and real-world data

show the value of forecast evolution models. Forecast evolution models reduce realised

costs by 14% on average compared to traditional deterministic planning. The advantage

of the extended model with production recourse depends on several factors including

capacity, correlation and uncertainty. Sensitivity analyses show that recourse can reduce

cost by up to 10%. We conclude by identifying advantages and limitations of forecast

evolution models and provide general recommendations to practitioners.
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4.1. Introduction

Rolling horizon is a planning framework based on the periodic updating of demand fore-

casts and production decisions. This paradigm underlies the planning cycle of many com-

panies. In academia, demand uncertainty has been studied extensively in the stochastic

programming community using probability distributions to model the uncertain demand.

However, only limited attention has been given to the performance of these stochastic

models in rolling horizon, and the value of these methods compared to traditional deter-

ministic planning is not always clear to practitioners. Further, there is an overall lack of

pragmatic guidelines describing how to determine demand distributions from the data

available to planners. In this light, we believe that forecast evolution models can allow

the successful application of stochastic models in practical settings. The martingale

model of forecast evolution (MMFE) developed by Graves et al. (1986) and Heath and

Jackson (1994) is based on measuring forecast revisions in successive planning periods

and modelling future forecast changes as a stochastic process. Not only do forecast

evolution models rely on an existing rolling-horizon planning framework, they benefit

directly from the history of past demand and forecasts routinely collected by practition-

ers.

Stochastic models, such as chance-constrained models, can be formulated to account for

forecast uncertainty. Solving the models in each review period provides a production

plan that can be implemented in a rolling-horizon fashion. However, this approach does

not capture the progressive resolution of uncertainty as described by forecast evolution

models. Planners can react to the updated forecast in each period and adapt their pro-

duction plan accordingly.

Traditional stochastic approaches that formulate all decisions as first-stage variables over

the planning horizon typically ignore this re-planning opportunity. Resulting produc-

tion decisions are overly conservative. They create unnecessary safety stock and increase

inventory costs. On the contrary, scenario-based stochastic models can explicitly inte-

grate re-planning opportunities through recourse decisions. In particular, multi-stage

scenario trees include a recourse opportunity in all periods of the planning horizon. By

capturing the inherent flexibility of rolling-horizon planning, recourse models provide

less conservative decisions and reduce operational costs. However, it is well known that

the computational times of multi-stage models may become prohibitively long for large

scenario trees.

This paper is motivated by a collaboration with a large company in the chemical in-
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dustry that manages expensive multi-purpose equipment in the face of uncertain and

seasonal demand. Since capacity is limited, production often starts ahead of the peak

selling season, which can lead to expensive on-hand inventory. Extensive cleaning op-

erations have to be conducted each time the equipment is setup for a different product

family. The company’s planning problem exhibits the key trade-off between demand

satisfaction, inventory costs, and setup costs that is captured by the lot-sizing problem.

Because early forecasts often have poor accuracy, planning is implemented in a rolling-

horizon fashion to benefit from frequent forecast updates.

Even without recourse, stochastic lot-sizing problems are notoriously hard to solve. In

this paper, we use the piecewise-linear approximation (PLA) introduced by Helber et

al. (2013) to determine the expected inventory and backlogs over the planning horizon.

We show that forecast evolution can be readily integrated into lot-sizing problems and

solved efficiently using PLA. Further, we develop an extended stochastic model that

combines the strengths of PLA and scenario methods to allow production recourse while

maintaining tractable computations.

There are two methods to model the forecast evolution process according to the MMFE:

additive and multiplicative. The additive model measures the difference between suc-

cessive forecasts and assumes that the forecast evolution follows a multivariate normal

distribution. The multiplicative model measures the ratio between successive forecasts

and assumes that demand follows a log-normal distribution. While it has been argued

that the multiplicative model is more relevant when demand fluctuates over time, ex-

tensive comparisons of the two MMFE models are still missing. In particular, the cost

of modelling error, that is to use the additive or multiplicative model when the true

process is unknown, has not been evaluated so far in the MMFE literature.

Despite the central role of data in forecast evolution models, application of MMFE to

real-world case studies are rare and many questions remain open regarding the choice

and tuning of the right forecast evolution model. To the best of the authors’ knowl-

edge, the application of MMFE to real-world data has only been presented by Albey

et al. (2015) for the additive model and Pinçe et al. (2021) for the multiplicative model.

Through a simulation study using both synthetic and real-world data, we aim to provide

insights on the value of forecast evolution models and derive guidelines to choose, tune

and apply MMFE models.

Our contributions revolve around the application of forecast evolution models to stochas-

tic lot-sizing problems in rolling horizon. We extend the state of the art by (i) presenting

a general method to integrate forecast evolution in lot sizing and solve the problems ef-
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ficiently, (ii) identifying the value of forecast evolution models for lot-sizing problems in

rolling-horizon planning, (iii) assessing the strengths and weaknesses of the additive and

multiplicative models when the true forecast evolution process is unknown, (iv) develop-

ing an extended model that allows production recourse while preserving computational

tractability, and (v) assessing the value of recourse in stochastic lot sizing in rolling-

horizon planning.

In the following section, a brief review of related literature is presented. In Section 4.3,

we introduce the additive and multiplicative MMFE and recall how to obtain the dis-

tributions of demand and cumulative demand from the forecast evolution process. In

Section 4.4, the stochastic lot-sizing problem is formulated and solved using piecewise-

linear approximations. We then introduce a multi-stage model that provides production

recourse thanks to a scenario-based representation of demand uncertainty. In Section 4.5,

we assess the value of forecast evolution models and the value of recourse through ex-

tensive rolling-horizon simulations using synthetic and real-world data. Our findings are

summarised in Section 4.6, where we also provide suggestions for future research.

4.2. Literature review

In this section, we review literature on stochastic lot-sizing problems and forecast evo-

lution models. We locate our work at the intersection of the two research streams and

highlight gaps in the existing literature.

4.2.1. Stochastic lot sizing

While deterministic lot-sizing problems have been extensively studied in the academic

literature (Buschkühl et al., 2010), less attention has been given to the stochastic ver-

sion of the problem. Seminal works represent demand uncertainty using discrete sce-

nario trees. Escudero et al. (1993) use a multi-stage scenario tree to model demand

uncertainty and present several model formulations to allow increasing level of recourse.

Brandimarte (2006) investigate the value of scenario-based stochastic lot-sizing in rolling

horizon through repeated simulations. They show that scenario models are flexible and

allow recourse decisions but require long computation times. Thevenin et al. (2021)

use a combination of heuristics, advanced sampling techniques and rolling-horizon im-

plementation to efficiently solve stochastic lot-sizing problems with multi-stage scenario

trees in a material requirement planning context.
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To improve computational performance, Helber et al. (2013) develop approximations of

the expected inventory and backlog functions through piecewise-linear function and show

that they outperform scenario-based formulations without recourse. Tempelmeier and

Hilger (2015) and Pelt and Fransoo (2018) adapt the formulation to fill-rate service level

constraints. Rossi et al. (2015) use PLA to determine the parameters of near-optimal

production policies. PLA-based formulations are efficient and flexible. Sereshti et al.

(2020) show that PLA can be used to formulate several types of service-level constraints

in stochastic lot-sizing. De Smet et al. (2020) extend the model to include sequence-

dependent changeovers in a lot-sizing and scheduling problem.

A downside of PLA methods is that they define all decision variables as first-stage

decisions and do not allow production recourse. This can lead to overly conservative

decisions and goes against the idea of rolling-horizon planning, which is based on a pe-

riodic update of forecasts and decisions. Tavaghof-Gigloo and Minner (2020) developed

a heuristic to incorporate the replanning opportunity in lot-sizing problems by reducing

the safety-stock with a replanning opportunity coefficient.

We contribute to this research stream in two ways. First, all above cited works assume

that the demand distributions are known. However, in practice, these distributions are

seldom available. We show that forecast evolution models can provide meaningful de-

mand distributions from available data and be readily integrated and solved in lot-sizing

with PLA. Second, we extend existing PLA formulations to allow production recourse

at discrete scenarios. We combine the strengths of PLA and scenario methods to allow

flexible decisions and ensure fast computation times.

4.2.2. Forecast evolution models

Since early analyses of the forecast revision process conducted by Hausman (1969) and

Hausman and Peterson (1972), the MMFE has been applied to a wide variety of prob-

lems including defining supply contracts (Donohue, 2000), capacity planning (Boyacı

and Özer, 2010), and inventory management (Biçer and Seifert, 2017; Iida and Zipkin,

2006; Özer and Wei, 2004; Wang et al., 2012; Wang and Tomlin, 2009). While the

aforementioned works focus on determining optimal policies analytically, they do not

integrate forecast evolution in rolling-horizon planning.

A second research stream studies the rolling-horizon implementation of forecast evo-

lution models. Norouzi and Uzsoy (2014) determine key properties of the uncertain

demand under additive and multiplicative MMFE and derive the optimal base-stock

policy for a single-product, uncapacitated planning problem with a chance-constraint.
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Albey et al. (2015) extend their work with a heuristic to solve a multi-product problem

with exogenous capacity allocation. They evaluate the rolling-horizon performance of

the MMFE model on a real-world case study in the semiconductor industry. Ziarnetzky

et al. (2018) adapted the method to a multiplicative MMFE and evaluate it in rolling

horizon with synthetic data. Albey et al. (2016) combine the model with a genetic

algorithm to allocate capacity to products. They show the benefits of the improved

allocation in a simulation study under additive MMFE.

We extend the research stream on MMFE by further relaxing the limiting assumptions

of the model. We consider a general lot-sizing setting with multiple products, limited ca-

pacity, inventory holding costs and fixed costs for setup operations. The model does not

rely on an a priori allocation of capacity and is solved to arbitrary optimality using PLA.

An extended model is introduced that combines PLA and scenario-based production re-

course. Further, we provide insights on the strengths and weaknesses of the additive

and multiplicative MMFE, analyse the risk of forecast evolution model mismatch, and

evaluate performance through rolling-horizon simulations.

4.3. Martingale model of forecast evolution

The methodology to solve the stochastic lot-sizing problem with forecast evolution con-

tains two main parts: determining the cumulative demand probability distributions over

the horizon and solving the resulting stochastic lot-sizing problem with PLA. In this sec-

tion, we introduce the additive and multiplicative MMFE as formalised by Heath and

Jackson (1994). For each model, we recall the probability distributions underlying the

demand and cumulative demand over the planning horizon. The results on demand

covariance and cumulative demand distributions are adapted from Norouzi and Uzsoy

(2014). We also compare the effect of forecast update correlation on the cumulative

demand covariance for the additive and multiplicative MMFE. The cumulative demand

distributions obtained in this section are used to solve the stochastic lot-sizing problem

in Section 4.4.

4.3.1. Problem setting

Consider the rolling-horizon planning of K products with a horizon of T periods. In

each review period, updated forecasts are observed and used to calculate a production

plan. Let Fs ∈ R(K×T ) be the forecast vector obtained at the beginning of period s given
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by Fs =
[
F s
1,1 . . . F s

1,T . . . F s
k,t . . . F s

K,1 . . . F s
K,T

]⊺
where F s

k,t is the forecast of

product k in period t obtained in review period s. An initial forecast vector is available

in the first review period denoted by F1. In each review period, a new demand forecast

is also obtained for the last period in the planning horizon. The MMFE models the

evolution of the forecasts to the demand realisation as a stochastic process. The demand

observed at the end of period s is denoted by Ds
k. After the demand has been observed,

the forecast is not further updated.

4.3.2. Additive MMFE

The additive MMFE describes the evolution of the forecast vector in each review period

by the relation

Fs = Fs−1 + εs (4.1)

where the forecast update vector εs is observed at the beginning of review period s. The

forecast update vector follows a multivariate normal distribution εs ∼ MN (0,Σ). The

covariance matrix Σ ∈ R(K×T,K×T ) can be expressed as

Σ =

 (σ1
1)

2 . . . ρ1,T1,Kσ
1
1σ

T
K

. . . ρt1,t2k1,k2
σt1
k1
σt2
k2

. . .

ρT,1K,1σ
T
Kσ

1
1 . . . (σT

K)
2


where σt

k is the standard deviation of the t-th period of the forecast updating process

for product k, and ρt1,t2k1,k2
is the correlation between the forecast update of product k1

at time t1 and product k2 at time t2. The covariance matrix describes the uncertainty

of the forecast updating process over the horizon as well as the correlation between the

forecast updates of different products and time periods.

Demand distribution

The demand realisation follows the same updating process as the forecast and is given

by Dk,s = F s
k,1 + εs+1

k,1 . In any review period s, the demand for the t-th period in the

planning horizon is subject to t forecast updates. As such, the demand realisation in

period s+ t− 1 as seen from period s follows the relation

Ds+t−1
k = F s

k,t +
t∑

τ=1

εs+τ
k,t−τ+1.
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Since the forecast update vectors ε are independent and normally distributed, the de-

mand in period s + t − 1 follows a normal distribution Ds+t−1
k ∼ N (F s

k,t, ˜σk,t
2) where

˜σk,t
2 =

∑t
τ=1(σ

τ
k)

2 is the residual uncertainty of the t-th period in the planning horizon.

The residual uncertainty depends only on how far the demand period is in the planning

horizon and is a direct measure of the forecast accuracy over the horizon. The demand

and forecast revision process are illustrated in Figure 4.1 for three review periods.

𝑠 = 1
𝐹𝑘,1
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Figure 4.1.: Demand and forecast observed at three successive review periods.

Demand covariance

Although the forecast update vectors are observed independently in each review period,

the forecast updating process in Equation (4.1) can exhibit correlations between the

updates of different products and time periods. It follows that demand distributions of

a product k in different periods of the planning horizon may be correlated. In review

period s, the covariance between the demands of product k in period t1 and t2 of the

planning horizon is given by

γt1,t2k = Cov
(
Ds+t1−1

k , Ds+t2−1
k

)
=

min(t1,t2)∑
τ=1

ρt1−τ+1,t2−τ+1
k,k σt1−τ+1

k σt2−τ+1
k .

The demand correlation depends only on how many forecast update vectors are observed

in which the two periods are both in the planning horizon. The covariance between

demands in different periods is necessary to determine the distribution underlying the

cumulative demand.
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Cumulative demand distribution

The cumulative demand of product k in period t of the planning horizon at review pe-

riod s, CDs
k,t =

∑t
τ=1D

s+τ−1
k , is uncertain since demand is uncertain over the planning

horizon. As a sum of correlated, normally distributed random variables, the cumula-

tive demand CDs
k,t follows a normal distribution with mean

∑t
τ=1 F

s
k,τ and variance∑t

t1=1

∑t
t2=1 γ

t1,t2
k .

The variance of the cumulative demand of product k depends only on the variance of the

demands and covariance between the demands of different periods for the same product

k. The variance of the cumulative demand depends linearly on the time correlation

coefficient. The variance increases (resp. decrease) linearly with the forecast update

correlation between time periods. The cumulative demand distribution describes the

demand uncertainty over the planning horizon and allows to solve the stochastic lot-

sizing problem with cumulative demand formulation introduced in Section 4.4.

4.3.3. Multiplicative MMFE

In the multiplicative model introduced by Heath and Jackson (1994), the forecast evo-

lution process follows the relation

F s
k,t = F s−1

k,t · exp(εsk,t) (4.2)

where the forecast update vector εs follows a multivariate normal distribution εs ∼
MN (µ,Σ) and each marginal distribution is given by εk,t ∼ N

(
−σ2

k,t

2
, σ2

k,t

)
.

As for the additive model, the forecast updating process is unbiased. However, there

is a key difference between the two models: in the additive model, forecast uncertainty

depends only on the variance of the forecast update distribution, whereas in the multi-

plicative MMFE the uncertainty associated to a forecast update is relative to the forecast

value. The variance of the forecast updating process depends both on the forecast up-

date covariance matrix Σ and on the forecast vector Fs. Because of these properties,

the multiplicative MMFE has been described as more relevant in practice since forecasts

tend to be reviewed in a relative manner. The multiplicative model can also be suitable

when demand has important fluctuations over time since relative forecast updates re-

main of similar magnitude. Yet, there remain many open questions on how to apply the

multiplicative model from available forecast and demand data. In the numerical study

in Section 4.5, we detail the estimation process of the multiplicative model from data
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and assess its expected and actual performance in rolling-horizon planning.

Demand distribution

The demand of product k in each review period s follows the same relation as the forecast

update so that Ds
k = F s

k,1 ·exp(εs+1
k,1 ). From this relation and Equation (4.2), the demand

in period s+ t− 1 as seen from review period s is given by

Ds+t−1
k = F s

k,t · exp
(

t∑
τ=1

εs+τ
k,t−τ+1

)
.

The demand in period s+ t− 1 follows a log-normal distribution

log
(
Ds+t−1

k

)
∼ N

(
log
(
F s
k,t

)
− ˜σk,t

2

2
, ˜σk,t

2

)
where ˜σk,t

2 =
∑t

τ=1(σ
τ
k)

2 is the residual uncertainty of the t-ahead period. As for the

additive model, the residual uncertainty in the log domain is independent of the review

period. However, demand variance depends on both the forecast update variance and

the value of the forecast.

Demand covariance

The demands of product k in period t1 and t2 of the planning horizon in review period

s are correlated with covariance

γt1,t2k = Cov
(
log
(
Ds+t1−1

k

)
, log

(
Ds+t2−1

k

))
=

min(t1,t2)∑
τ=1

ρt1−τ+1,t2−τ+1
k,k σt1−τ+1

k σt2−τ+1
k .

The demand covariance can be deduced similarly as for the additive case by analysing

the covariance of the forecast evolution process in the log domain. The covariance of

the demand periods is used to estimate the parameters of the distribution underlying

the cumulative demand.

Cumulative demand distribution

Contrary to the additive case, there is no closed-form expression for the cumulative

demand since it is the sum of correlated log-normal distributions. However, it has

been observed that the sum of log-normal distributions can be well approximated by a
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log-normal distribution. To estimate the cumulative demand distributions with mul-

tiplicative MMFE, we follow the approach of Norouzi and Uzsoy (2014) and apply

the Fenton-Wilkinson approximation (FWA). The method is attractive because of its

computational simplicity and overall high approximation quality over a wide range of

parameters. The approximation is based on matching the first two moments of the

approximating log-normal distribution with the moments of the sum of the correlated

log-normal distributions (Abu-Dayya and Beaulieu, 1994).

Following the moment-matching approximation, the cumulative demand CDk,t approx-

imately follows a log-normal distribution, log(CDk,t) ∼ N (mk,t, vk,t), with parameters

mk,t = 2 log(u1)− 1
2
log(u2) and vk,t = log(u2)− 2 log(u1) where u1 =

∑t
τ=1 Fk,τ and

u2 =
t∑

τ=1

(Fk,τ )
2 exp

(
˜σk,τ

2
)
+ 2

t−1∑
i=1

t∑
j=i+1

Fk,iFk,j exp

min(i,j)∑
τ=1

ρi−τ+1,j−τ+1
k,k σi−τ+1

k σj−τ+1
k

 .

This approximate cumulative demand distribution is used in Section 4.4 to solve the

stochastic lot-sizing problem.

4.3.4. Influence of forecast update correlation on variance of

cumulative demand

The variance of the cumulative demand has been shown to depend linearly on the forecast

update correlation for the additive model. In the multiplicative model, although the

relation between the forecast update correlation and the cumulative demand variance

appears exponential, it is approximately linear over the relevant domain.

Proposition 4.1. Under multiplicative MMFE, the variance of the cumulative demand

of product k in period t, Var(CDk,t), is approximately linear in the forecast update cor-

relation ρt1,t2k,k for t1, t2 ≤ t with slope given by

∂ Var(CDk,t)

∂ρt1,t2k,k

≈ 2σt1
k σ

t2
k

t−t2+1∑
i=1

Fk,t1+i−1Fk,t2+i−1.

Proof. The variance of the cumulative demand is given by

Var(CDk,t) = u2 − (u1)
2 =

t∑
τ=1

(Fk,τ )
2 exp

(
˜σk,τ

2
)
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+ 2
t−1∑
i=1

t∑
j=i+1

Fk,iFk,j exp

min(i,j)∑
τ=1

ρi−τ+1,j−τ+1
k,k σi−τ+1

k σj−τ+1
k

−
(

t∑
τ=1

Fk,τ

)2

.

It can be expressed as

Var(CDk,t) = α + 2
t−1∑
i=1

t∑
j=i+1

Fk,iFk,j exp

min(i,j)∑
τ=1

ρi−τ+1,j−τ+1
k,k σi−τ+1

k σj−τ+1
k


, where α is independent of ρt1,t2k,k . Clearly, if t1 > t or t2 > t, the variance is independent

of the correlation coefficient ρt1,t2k,k . Without loss of generality, we set t1 < t2 ≤ t and

deduce

Var(CDk,t) = α + 2

t−t2+1∑
i=1

Fk,t1+i−1Fk,t2+i−1 exp

(
t1+i−1∑
τ=1

ρt1+i−τ,t2+i−τ
k,k σt1+i−τ

k σt2+i−τ
k

)
,

which can be further simplified as

Var(CDk,t) = α + 2

t−t2+1∑
i=1

Fk,t1+i−1Fk,t2+i−1 exp
(
βi + ρt1,t2k,k σ

t1
k σ

t2
k

)
where βi is independent of ρ

t1,t2
k,k . Since the covariance parameters of the multiplicative

MMFE are small, the variance of the cumulative demand is well approximated by its

Taylor expansion as Var(CDk,t) ≈ α+2
∑t−t2+1

i=1 Fk,t1+i−1Fk,t2+i−1

(
βi + ρt1,t2k,k σ

t1
k σ

t2
k

)
.

Proposition 4.1 states that the variance of the cumulative demand depends linearly

on the forecast update correlation between two time periods of the same product. This

implies that ignoring the correlation between demand periods can lead to under- (resp.

over-) estimation of the cumulative demand variance if the correlation is positive (resp.

negative). The effect of the correlation coefficient is proportional not only to the variance

but also to the forecast values. Thus, ignoring correlation has a greater impact for large

forecast values.

We illustrate the evolution of the variance of the cumulative demand distribution with

the forecast update correlation and compare additive and multiplicative MMFE. We

consider a single product planned over a horizon of T = 2 periods and investigate

the effect of forecast update correlation on the cumulative demand CD2. The forecast

updating process is defined with standard deviation σ1 = σ2 = 20 for the additive model

and σ1 = σ2 = 0.2 for the multiplicative model. The initial forecast in periods 1 and 2
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are set equal F 1 = F 2 and chosen within the set {50, 100, 150}.
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Figure 4.2.: Evolution of variance with correlation coefficient for (a) additive and (b)
multiplicative MMFE.

Figure 4.2 shows the evolution of the variance of the cumulative demand in period 2

with varying correlation for the additive and multiplicative models. The figure highlights

the linear relationship between the forecast update correlation and the variance of the

cumulative demand for both the additive and multiplicative cases. It further illustrates

the impact of the forecast value on the variance of the cumulative demand for the

multiplicative model.

4.3.5. Summary

In this section, the multivariate forecast evolution process has been introduced for addi-

tive and multiplicative MMFE. The parameters of the resulting demand and cumulative

demand distributions have been obtained. The cumulative demand distributions can

be determined exactly for the additive model and approximately for the multiplicative

model. Finally, we have analysed the dependency of the cumulative demand variance

on the forecast update correlation coefficient. In the next section, we derive efficient

formulations for the stochastic lot-sizing problem based on the cumulative demand dis-

tributions estimated from the MMFE models.

4.4. Stochastic lot sizing

We integrate the additive and multiplicative MMFE in lot-sizing problems through the

cumulative demand distributions described in the previous section. We introduce the
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PLA to solve the problem efficiently and extend the model with scenario-based pro-

duction recourse. The extended model combines the strengths of PLA and scenario

methods, providing fast computations and flexible decisions.

4.4.1. Non-linear stochastic lot-sizing formulation based on

cumulative demand

Consider the planning of K products over a horizon of T periods. The planner aims

to satisfy the uncertain demand while minimising costs. The operational costs include

inventory costs incurred at the end of each period with unit cost hck for product k and

setup costs incurred each time a new product is set up with per-unit cost sck. Unsat-

isfied demand is backordered and penalised with per-unit cost bck. The products share

the same equipment with limited capacity cap in each period.

In each review period, the planner determines the production quantity Qk,t for all prod-

ucts over the horizon. Since demand is uncertain, the inventory Ik,t and backlog Bk,t at

the end of each period are random variables. The initial inventory is denoted by in0
k and

can be positive or negative depending on whether there is on-hand inventory or back-

logs. The stochastic lot-sizing problem that minimises expected costs is a mixed-integer

non-linear problem given by

min
T∑
t=1

K∑
k=1

(hck · E[Ik,t] + bck · E[Bk,t] + sck ·Xk,t) (4.3a)

s.t. E[Ik,t] = E

[
max

(
in0

k +
t∑

τ=1

Qk,τ −
t∑

τ=1

Dτ
k , 0

)]
,∀k, t, (4.3b)

E[Bk,t] = E

[
max

(
t∑

τ=1

Dτ
k − in0

k −
t∑

τ=1

Qk,τ , 0

)]
,∀k, t, (4.3c)

K∑
k=1

Qk,t ≤ cap, ∀t, (4.3d)

Qk,t ≤ cap ·Xk,t, ∀k, t, (4.3e)

Qk,t ≥ 0, ∀k, t, (4.3f)

Xk,t ∈ {0; 1}, ∀k, t. (4.3g)

The objective function in (4.3a) minimises the expected costs of inventory, backlogs and

setup for all products over the horizon. Constraints (4.3b) and (4.3c) determine the
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expected inventory and backlogs at the end of each period as a function of the uncertain

cumulative demand. Constraint (4.3d) ensures that the production over all products is

limited by the available capacity in each period. Constraint (4.3e) states that production

of a product can occur only if a setup operation is conducted. Constraints (4.3f) and

(4.3g) describe the domain of positive and binary variables respectively.

Since the expected inventory and backlog in constraints (4.3b) and (4.3c) depend on the

production quantity, Problem (4.3) is non-linear and cannot be solved directly. How-

ever, it has been shown that the expected inventory and backlog function could be well

approximated by piecewise-linear functions.

4.4.2. Stochastic lot-sizing model with PLA

The PLA method is based on evaluating the first-order loss function at a selected number

of breakpoints and determining the slope of the expected inventory and backlog between

the breakpoints. The first-order loss function of a real variable x and random variable

ω with p.d.f. ϕ and c.d.f. Φ is defined as

L(x, ω) = E [max(ω − x, 0)] =

∫ +∞

x

max(t− x, 0) · ϕ(t)dt =
∫ +∞

x

(1− Φ(t)) dt (4.4)

Let u = (uk,t,l) be the set of L+1 breakpoints determined independently for each product

and time period. The first breakpoint is set to uk,t,0 = in0
k, which can be either positive

or negative, and the last breakpoint is set to the highest inventory position attainable at

the end of period t with full capacity utilisation as uk,t,L = in0
k + cap · t. The remaining

breakpoints are set uniformly between these two bounds. For each segment, the slope

of the expected inventory and backlog can be determined as

∆l
Bk,t

=
L (uk,t,l+1, CDk,t)− L (uk,t,l, CDk,t)

uk,t,l+1 − uk,t,l
(4.5)

∆l
Ik,t

=
L (uk,t,l+1, CDk,t) + uk,t,l+1 − L (uk,t,l, CDk,t)− uk,t,l

uk,t,l+1 − uk,t,l
(4.6)

where CDk,t is the cumulative demand distribution of product k in period t as determined

in Section 4.3. Calculating the slopes of the L segments of the expected inventory and

backlog requires evaluating the first-order loss function K · T · (L + 1) times at each

review period. This evaluation is computationally very cheap for a normal probability

distribution since the first-order loss function of a normal variable can be expressed as a

function of the first-order loss function of a standard normal (Rossi et al., 2014), and can
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thus be calculated offline. The calculation is more intensive for a log-normal variable

since it requires evaluating many integrals as in Equation (4.4). Note also that the

domain of the c.d.f. of a log-normal variable needs to be extended for negative values

since the initial inventory in each period may be negative. The PLA of two demand

distributions following a normal and log-normal with equal mean and similar variance is

shown on Figure 4.3. The figure shows that the expected inventory and backlog functions

can be well approximated with only L = 6 segments for both distributions.
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Figure 4.3.: Piecewise-linear approximation of expected inventory and backlog for de-
mand following (a) normal distribution and (b) log-normal distribution.

The stochastic lot-sizing problem solved using PLA approximates the expected inventory

and backlog with variables EIk,t and EBk,t respectively. The formulation requires the

introduction of auxiliary variables wk,t,l to measure the cumulative production from

period 1 to t associated to segment l and binary auxiliary variables λk,t,l to ensure

that the L segments are used consecutively. The formulation is adapted from Pelt and

Fransoo (2018) to penalty cost for backlogs, and is given by

min
T∑
t=1

K∑
k=1

(hck · EIk,t + bck · EBk,t + sck ·Xk,t) (4.7a)

s.t. EIk,t = ∆0
Ik,t

+
L∑
l=1

(
∆l

Ik,t
· wk,t,l

)
, ∀k, t, (4.7b)

EBk,t = ∆0
Bk,t

+
L∑
l=1

(
∆l

Bk,t
· wk,t,l

)
,∀k, t, (4.7c)

L∑
l=1

(wk,t,l − wk,t−1,l) = Qk,t, ∀k, t, (4.7d)
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wk,t,l−1 ≥ (uk,t,l−1 − uk,t,l−2)λk,t,l, ∀k, t, l ≥ 2, (4.7e)

wk,t,l ≤ (uk,t,l − uk,t,l−1)λk,t,l, ∀k, t, l, (4.7f)

Xk,t, λk,t,l ∈ {0; 1}, ∀k, t, l, (4.7g)

Constraints (B.1d)− (B.1f)

Constraints (4.7b) and (4.7c) approximate the expected inventory and backlog using

the slopes of the first-order loss function previously determined. Constraint (4.7d) de-

termines the production volume from the cumulative production over the linearisation

segments. Constraints (4.7e) and (4.7f) ensure that the linearisation segments are used

in increasing order thank to the auxiliary variable λk,t,l.

4.4.3. Extended lot-sizing formulation with PLA and production

recourse

The stochastic lot-sizing formulation in (4.7) provides significant computational im-

provements compared to traditional scenario-based stochastic formulations. However, it

ignores that the planner has the opportunity to react to forecast updates in each review

period. More precisely, Problem (4.7) defines all production decisions as first-stage de-

cision variables, which can lead to overly conservative decisions.

Scenario trees can model multi-stage stochastic processes allowing recourse decisions.

However, they require notoriously long computation times that grow exponentially with

the problem size and scenario tree. The main idea of our extension is to combine PLA

and scenario trees in a single model to allow fast computations and flexible recourse de-

cisions. In this section, we describe the integration of the two methods, build multi-stage

scenario trees from the MMFE models, and formulate the extended model.

Combining PLA and scenario-based recourse

The extended model combines PLA and scenarios over the planning horizon. The first

periods are modelled with PLA so that all production decisions are set as first-stage

variables. This provides accurate approximation of the expected inventory and backlogs

over the short-term horizon. In parallel, a multi-stage scenario tree is created to describe

the demand and forecast uncertainty over the planning horizon. Applying the first-

stage decisions from PLA, several inventory and forecast positions are reached when

following the scenario tree. The multi-stage scenario tree allows recourse in each of the

inventory/forecast positions to react to the different situations created by the first-stage
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decisions. Because of the recourse opportunities in later periods, the model can take

less conservative first-stage decisions in the short-term horizon. Formally, we define

tb ∈ {1, . . . T} such that PLA is applied from period 1 to tb, and scenario recourse is

applied from period tb + 1 to T . Clearly, tb = 1 and tb = T reduce to a multi-stage

scenario lot-sizing formulation and the PLA model in (4.7) respectively.

There are two main motivations for applying first PLA and then scenario trees with

recourse. First, since the scenario tree grows exponentially over the horizon, and the

precision of scenario tree increases with the number of scenarios, this decomposition

allows PLA to provide high accuracy on periods with few scenarios. Second, since

recourse production decisions reduce the visibility of the planner as there is no single

reference plan, the proposed method ensures the availability of a reference plan over the

short-term horizon, which is often indispensable. The trade-off between flexibility and

visibility is adjusted through the parameter tb.

The scenario-based extension of the PLA model can be seen as an approximation of

the optimal production policy that would be obtained if the corresponding dynamic

programming model could be solved. The scenario part of the model acts as a look-

ahead approximation of the optimal policy (Powell, 2016). In this sense, the scenario

part approximates the true problem in which decisions are revised in each period, whereas

PLA provides the solution of a more conservative version of the problem in which there

is no production recourse. Our approach combines the two methods efficiently to allow

fast computations and good approximation of the optimal policy.

The combination of PLA and scenario-based recourse is illustrated in Figure 4.4. The

multi-stage scenario tree is generated with a branching factor of 2 over a planning horizon

of T = 6 periods with tb = 3. Thus, there are [2, 4, 8, 16, 32, 64] demand scenarios,

[1, 2, 4, 8, 16, 32, 64] inventory positions, and [1, 1, 1, 8, 16, 32] production decisions over

the horizon.

Generating scenario trees from forecast evolution

The demand scenario tree is generated from the MMFE from period 1 to T by updating

the initial forecast Fk,t with forecast updates vectors sampled in each node. The forecast

update vectors are drawn from the multivariate forecast evolution distribution. The

forecast of product k in period t of the horizon in scenario node n can be expressed as

F n
k,t = Fk,t +

∑t−1
τ=0 ε

aτ (n)
k,t−τ for the additive MMFE and F n

k,t = Fk,t · exp
(∑t−1

τ=0 ε
aτ (n)
k,t−τ

)
for

the multiplicative MMFE where εaτ (n) is the forecast update vector obtained at node

aτ (n), the τ -th ancestor node of node n with a0(n) = n.
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Figure 4.4.: Demand realisations, production decisions and inventory trajectories over
T = 6 periods with tb = 3.

Advanced sampling techniques have been extensively studied for sampling univariate

distributions but are less commonly applied to multivariate distributions. To sample

the high-dimensional, correlated forecast update vectors in each node, we apply the

Latin Hypercube with multivariate uniformity (LHMU) method developed by Deutsch

and Deutsch (2012). The method is designed to reduce sampling variability and increase

uniformity over all dimensions by applying Latin Hypercube on deterministic strata.

Extended lot-sizing formulation

The extended stochastic lot-sizing formulation with PLA and scenario-based recourse is

given by

min
K∑
k=1

tb∑
t=1

(hck · EIk,t + bck · EBk,t) +
T∑

t=tb+1

(
hck
N

·
N∑

n=1

Ik,t,n +
bck
N

·
N∑

n=1

Bk,t,n

)
+

T∑
t=1

sck ·Xk,t

(4.8a)
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s.t. EIk,t = ∆0
Hk,t

+
L∑
l=1

(∆l
Hk,t

wk,t,l), ∀k, t ≤ tb, (4.8b)

EBk,t = ∆0
Bk,t

+
L∑
l=1

(∆l
Bk,t

wk,t,l), ∀k, t ≤ tb, (4.8c)

L∑
l=1

(wk,t,l − wk,t−1,l) = Qk,t, ∀k, t ≤ tb, (4.8d)

wk,t,l−1 ≥ (uk,t,l−1 − uk,t,l−2)λk,t,l, ∀k, t ≤ tb, l ≥ 2, (4.8e)

wk,t,l ≤ (uk,t,l − uk,t,l−1)λk,t,l, ∀k, t ≤ tb, l, (4.8f)

K∑
k=1

Qk,t ≤ cap, ∀t ≤ tb, (4.8g)

Qk,t ≤ cap ·Xk,t, ∀k, t ≤ tb, (4.8h)

Ik,t,n −Bk,t,n = Ik,t−1,n −Bk,t−1,n +Qk,t − F n
k,t, ∀k, t ≤ tb, (4.8i)

Ik,t,n −Bk,t,n = Ik,t−1,n −Bk,t−1,n +Qk,t,n − F n
k,t,∀k, t > tb, (4.8j)

K∑
k=1

Qk,t,n ≤ cap, ∀n, t > tb, (4.8k)

Qk,t,n ≤ cap ·Xk,t, ∀k, n, t > tb, (4.8l)

Qk,t,n non-anticipative, (4.8m)

Qk,t ≥ 0, ∀k, t, (4.8n)

Qk,t,n, Ik,t,n, Bk,t,n ≥ 0, ∀k, t, n, (4.8o)

Xk,t, λk,t,l ∈ {0; 1}, ∀k, t, l. (4.8p)

The objective function in (4.8a) minimises the PLA expected inventory and backlog

costs over the first tb periods and the sample average inventory and backlog costs over

the remaining T − tb + 1 periods. Constraints (4.8b) to (4.8h) are adapted from the

PLA model to the first tb periods. Constraints (4.8i) and (4.8j) describe the discrete

inventory positions through the planning horizon with first-stage and recourse produc-

tion decisions respectively. Note that the discrete inventory and backlog determined in

Constraint (4.8i) are not used in the objective function. They determine sample inven-

tory positions resulting from the first-stage decisions, at which the scenario model starts

to be applied. Constraint (4.8m) describe the so-called non-anticipative structure of

the recourse decisions, which ensures that production decisions in a certain time period

cannot use information obtained in later periods, as is also illustrated on Figure 4.4.
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4.4.4. Summary

In this section, we have presented a general stochastic lot-sizing formulation and a high-

quality approximation based on piecewise-linear functions. The model was extended

to production recourse through a discrete scenario tree. The forecast evolution models

presented in Section 4.3 are integrated in the lot-sizing problem through the cumulative

demand and forecast evolution distributions. We have shown that both additive and

multiplicative MMFE models can be readily included in lot-sizing problems through

PLA and that additional flexibility can be provided through recourse decisions.

4.5. Numerical study

The numerical study investigates several questions relating to the use of forecast evolu-

tion models in practice from model estimation to its application. We aim to provide a

fair assessment of forecast evolution models by investigating

� how can MMFE model parameters be estimated from real data? How sensitive

are they to data?

� What are the advantages and weaknesses of the additive and multiplicative MMFE?

What are the risks of using a misspecified MMFE model?

� What is the value of forecast evolution models in practice?

� What is the value of recourse provided by multi-stage formulations in rolling-

horizon planning and what factors influence it?

The numerical study is composed of two parts based on synthetic and real-world data

respectively. First, we construct forecast evolution distributions for the additive and

multiplicative models and specify their parameters. As the forecast evolution process

is fully known, this ideal situation allows us to assess the cost of modelling error. We

evaluate the risk of using the additive model when the actual forecast evolution follows

a multiplicative model and conversely. Further, we quantify the value of recourse for the

MMFE model with known forecast evolution process. Sensitivity analyses are set up to

identify parameters that drive the performance of forecast evolution models including

capacity, forecast update covariance, and demand pattern. In a second part, we solve

the real-world case study of a global company in the process industries. A large data

set of forecast and demand history is used to estimate the MMFE models and assess

their performance. Simulation are run in an out-of-sample setting in which the forecast

evolution process is unknown and can only be estimated with past historical data. We
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conclude with general recommendations on the use of MMFE models.

The numerical study is implemented in Julia, a fast scientific language with a large en-

vironment of modules (Bezanson et al., 2017). The optimisation problems are modelled

in JuMP (Dunning et al., 2017) and solved with Gurobi 9.0. The simulations are run

on an Intel(R) Core(TM) i7-4810MQ processor at 2.80Ghz using 16GB of RAM. The

code used to produce all results and figures using synthetic data in this paper is made

publicly available on the online repository.

4.5.1. Synthetic data

We consider the rolling-horizon planning of K = 2 products over a prediction horizon of

T = 6 periods. Each simulation contains S = 12 review periods. The inventory holding

cost is sampled randomly for the two products as hc ∼ U [1, 1.5]. The backlog cost is

set to bc = 10 · hc and the setup cost is set to sc = 150. The initial inventory is set to

in0 = 50 for each product.
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Figure 4.5.: Mean demand for (a) stationary, (b) random, and (c) seasonal patterns over
simulation of 8 periods.

First, we perform repeated rolling-horizon simulations under varying capacity, uncer-

tainty and demand pattern. The capacity in each period is set to cap ∈ {300, 500}
to consider limited and ample capacity settings. The initial forecast values are gen-

erated from three demand patterns with different dynamics. Stationary, random and

seasonal patterns are used as illustrated in Figure 4.5. The stationary pattern sets the

initial forecasts to a constant value F = 100 over the simulation length. The ran-

dom pattern samples each forecast from a uniform distribution U [50, 150]. The seasonal
pattern is generated with periodicity S/2 periods from a sinusoid function with values

[16, 93, 145, 159, 129, 65] over the season length. The three demand patterns have similar
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average demand over the simulation length but different dynamics, which may impact

the additive and multiplicative MMFE models differently.

MMFE models: known and mismatched

For each demand pattern, we run two distinct sets of simulations in which the true

forecast evolution process follows the additive and multiplicative MMFE respectively.

The forecast evolution models are set unbiased and uncorrelated with equal forecast

update variance for all products and time periods. Low, medium and high forecast un-

certainty settings are defined with variance σ2 ∈ {100, 400, 700} for the additive model

and σ2 ∈ {0.01, 0.04, 0.07} for the multiplicative model.

In practice, it is unknown whether the forecast evolution follows an additive or mul-

tiplicative model and practitioners have to decide a priori what is the most suitable

MMFE model. To estimate the risks associated with using a mismatched forecast evolu-

tion model, we simulate the forecast evolution process over 1 million review periods for

each MMFE model and demand pattern. The sampled forecast updates are then mea-

sured according to the mismatched MMFE model and used to estimate its distribution

parameters.

While the procedure is straightforward for the additive model, it is less consistent for

the mismatched multiplicative model. When the forecast evolution process follows an

additive MMFE, demand is normally distributed and there is a positive probability that

demand is zero or negative. In simulations with additive MMFE, we truncate the dis-

tributions so that demand cannot be negative. It is also possible that a forecast with

zero value is updated to a positive forecast. Although these two cases realistically oc-

cur in practical settings, they are incompatible with the relative forecast measure of

the multiplicative MMFE. Thus, when estimating the parameters of the multiplicative

MMFE we remove all sampled forecast updates in which the initial or updated forecasts

for at least one product in a time period are zero. For the setting with low uncertainty,

this amounts to removing 0%, 1% and 41% of samples for the stationary, random and

seasonal patterns respectively, 13%, 26% and 64% for the medium uncertainty setting,

and 37%, 50% and 74% for the high uncertainty setting. Clearly, more sample updates

are removed from the data set as the demand pattern is more dynamic and as uncer-

tainty increases. The high number of unusable samples is an important shortcoming

of multiplicative MMFE. Collecting data is often an expensive process and it is highly

undesirable to discard such large portions of the data set.
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Results

A full-factorial sensitivity analysis of the forecast evolution models to the demand pat-

terns, uncertainty levels, and capacity settings is performed. The PLA model is im-

plemented with L = 40 segments. The extended model uses a scenario tree with

[3, 6, 12, 24, 48, 48] nodes over the planning horizon sampled with LHMU. We set tb = 3

so that the first half of the planning horizon is modelled with PLA and the second half

with scenario recourse. Model performance are measured as the sum of realised inven-

tory, backlog and setup costs. Each of the 36 simulation setting is repeated 1000 times.

Table 4.1.: Average simulation results over all configurations for additive MMFE.

Demand Uncert. cap Det. Additive PLA Multiplicative PLA Ext. Add. PLA

Stationary
Low

300 4701.1 4158.9 (88.8% (*)) 4127.3 (88.2% (*)) 4122.1 (88.1% (*))
500 4664.4 4169.6 (89.8% (*)) 4145.7 (89.3% (*)) 4137.4 (89.1% (*))

Medium
300 5247.7 4641.0 (89.4% (*)) 5129.3 (99.0% (*)) 4571.2 (88.1% (*))
500 5068.1 4589.7 (91.3% (*)) 4992.3 (99.4%) 4530.9 (90.1% (*))

High
300 5896.5 4930.7 (85.7% (*)) 6712.2 (116.7% (*)) 4848.2 (84.1% (*))
500 5456.2 4821.6 (89.5% (*)) 5794.9 (107.7% (*)) 4740.0 (88.0% (*))

Random
Low

300 4585.3 4017.8 (88.1% (*)) 4110.1 (90.1% (*)) 3982.1 (87.3% (*))
500 4511.9 3981.2 (88.7% (*)) 4050.4 (90.2% (*)) 3945.4 (87.9% (*))

Medium
300 5301.2 4571.8 (87.5% (*)) 5622.0 (107.6% (*)) 4484.9 (85.8% (*))
500 5052.8 4468.8 (89.3% (*)) 5174.6 (103.5% (*)) 4406.5 (88.0% (*))

High
300 5990.8 4921.4 (84.2% (*)) 7299.0 (125.2% (*)) 4823.0 (82.5% (*))
500 5532.4 4764.1 (87.2% (*)) 6038.6 (110.7% (*)) 4675.9 (85.6% (*))

Seasonal
Low

300 4611.3 3973.7 (87.0% (*)) 5789.2 (127.0% (*)) 3892.7 (85.2% (*))
500 4194.7 3716.6 (89.1% (*)) 4567.0 (109.7% (*)) 3671.8 (88.1% (*))

Medium
300 5714.1 4569.0 (82.4% (*)) 8238.2 (149.4% (*)) 4485.1 (80.8% (*))
500 4951.6 4238.9 (86.5% (*)) 5986.6 (122.4% (*)) 4137.2 (84.4% (*))

High
300 6554.3 5095.4 (82.0% (*)) 9704.7 (158.6% (*)) 4973.5 (79.6% (*))
500 5431.7 4526.7 (84.7% (*)) 8029.5 (150.6% (*)) 4447.0 (83.2% (*))

Average 5192.6 4453.2 (85.8% (*)) 5861.8 (112.9% (*)) 4381.9 (84.4% (*))

The simulation results under additive and multiplicative MMFE are presented in Ta-

ble 4.1 and Table 4.2. The statistical significance of all costs relative to the deterministic

models are assessed using Student’s t-test. Statistical significance is indicated with a (∗)
symbol for all relatives values for which the associated p−value is strictly smaller than

5%.

Our first observation is that the average costs of the deterministic model have large vari-

ations among the simulation settings while the true MMFE models yield more stable

costs over the instances. The deterministic costs are especially high when capacity is

low, uncertainty is high and when demand is dynamic such as for the random and sea-
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Table 4.2.: Average simulation results over all configurations for multiplicative MMFE.

Demand Uncert. cap Det. Additive PLA Multiplicative PLA Ext. Mult. PLA

Stationary
Low

300 4694.8 4186.5 (89.6% (*)) 4140.6 (88.6% (*)) 4121.7 (88.2% (*))
500 4649.2 4184.3 (90.5% (*)) 4147.9 (89.7% (*)) 4114.9 (88.9% (*))

Medium
300 5455.8 4871.1 (91.3% (*)) 4831.9 (90.9% (*)) 4717.2 (88.4% (*))
500 5098.7 4731.8 (93.8% (*)) 4680.3 (93% (*)) 4634.1 (92.0% (*))

High
300 6309.1 5419.3 (90.0% (*)) 5440.6 (91.4% (*)) 5188.6 (86.1% (*))
500 5516.5 5080.5 (93.8% (*)) 5007.0 (93.1% (*)) 4897.7 (90.8% (*))

Random
Low

300 4598.3 4059.4 (88.8% (*)) 4006.2 (87.7% (*)) 3978.9 (87.0% (*))
500 4503.9 4015.2 (89.6% (*)) 3955.6 (88.3% (*)) 3925.1 (87.6% (*))

Medium
300 5594.2 4884.6 (89.8% (*)) 4791.5 (88.8% (*)) 4675.1 (86.0% (*))
500 5080.3 4655.9 (92.9% (*)) 4549.8 (91.1% (*)) 4472.2 (89.3% (*))

High
300 6732.9 5710.8 (89.7% (*)) 5674.0 (91.0% (*)) 5481.1 (85.3% (*))
500 5600.8 5130.1 (93.9% (*)) 5053.5 (93.4% (*)) 4870.0 (89.4% (*))

Seasonal
Low

300 4854.6 4172.8 (87.2% (*)) 4085.5 (85.7% (*)) 4026.9 (84.3% (*))
500 4270.2 3858.1 (90.9% (*)) 3743.0 (88.3% (*)) 3699.1 (87.2% (*))

Medium
300 6440.4 5363.9 (88.3% (*)) 5309.0 (89.1% (*)) 5066.6 (82.6% (*))
500 5164.1 4628.1 (91.4% (*)) 4425.9 (88.2% (*)) 4313.8 (85.7% (*))

High
300 8261.4 6373.7 (85.4% (*)) 6485.8 (91.5% (*)) 6188.9 (81.6% (*))
500 5997.5 5199.3 (89.8% (*)) 5079.8 (89.5% (*)) 4838.3 (84.3% (*))

Average 5490.2 4807.0 (87.6% (*)) 4744.9 (86.4% (*)) 4622.8 (84.2% (*))

sonal patterns. It is also in these settings that the MMFE models with known forecast

evolution process provide the highest cost reduction. On average, the additive and multi-

plicative MMFE models can reduce realised costs by 14% compared to the deterministic

model when the forecast evolution process is known. The cost of modelling error is low

for the additive model and high for the multiplicative model. Table 4.1 shows that a

mismatched multiplicative model can significantly increase costs compared to traditional

deterministic planning. Over all instances, the costs of the multiplicative are larger by

13% on average and more than 50% when demand is seasonal and uncertainty is high.

Value of recourse

The value of recourse is quantified by comparing the costs of the stochastic model with-

out recourse solved with PLA and the extended stochastic model combining PLA and

scenario-based recourse. Table 4.3 and Table 4.4 provide a statistical overview of the

value of recourse on the previous simulation instances under additive and multiplicative

MMFE respectively. The average, median and quartiles of the relative cost of extended

model compared to the PLA model are provided. The statistical significance of the aver-

age relative cost is assessed through Student’s t-test. It is indicated with a star symbol

(∗) if the p-value is smaller than 5%.
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Table 4.3.: Value of production recourse under additive MMFE.

Demand Uncert. cap
PLA Extended PLA with recourse
Cost Cost Relative avg. First quart. Median Third quart.

Stationary
Low

300 4158.9 4122.1 99.1% (*) 97.9% 99.1% 100.3%
500 4169.6 4137.4 99.3% (*) 97.1% 99.2% 101.4%

Medium
300 4641.0 4571.2 98.6% (*) 96.1% 98.3% 101.1%
500 4589.7 4530.9 98.9% (*) 95.4% 98.8% 102.0%

High
300 4930.7 4848.2 98.5% (*) 94.6% 97.9% 101.9%
500 4821.6 4740.0 98.5% (*) 94.3% 98.4% 102.5%

Random
Low

300 4017.8 3982.1 99.2% (*) 97.5% 99.1% 100.6%
500 3981.2 3945.4 99.1% (*) 97.7% 99.1% 100.5%

Medium
300 4571.8 4484.9 98.2% (*) 95.0% 98.0% 100.8%
500 4468.8 4406.5 98.7% (*) 96.4% 98.3% 100.9%

High
300 4921.4 4823.0 98.2% (*) 94.8% 97.8% 101.3%
500 4764.1 4675.9 98.3% (*) 94.9% 98.0% 101.6%

Seasonal
Low

300 3973.7 3892.7 98.0% (*) 96.0% 98.1% 100.0%
500 3716.6 3671.8 98.8% (*) 97.4% 98.5% 99.9%

Medium
300 4569.0 4485.1 98.3% (*) 94.7% 98.0% 101.6%
500 4238.9 4137.2 97.7% (*) 95.3% 97.3% 99.8%

High
300 5095.4 4973.5 97.6% (*) 92.9% 96.9% 101.1%
500 4526.7 4447.0 98.4% (*) 95.0% 98.0% 101.3%

All settings 4453.2 4381.9 98.5% (*) 95.9% 98.4% 101.0%

The value of recourse varies over the simulation settings similarly for both MMFE models

and is overall higher under multiplicative MMFE. It is higher for more complex plan-

ning settings: when demand is dynamic, uncertainty is high, and capacity is limited.

On average, the value of recourse is around 1.5% and 2.5% over all simulation settings

and can reach 2.3% and 6.2% for the additive and multiplicative models respectively. It

is interesting to note that the median relative cost is always smaller than the average

value. This suggests that the relative cost distribution is skewed: in the majority of

cases, observed costs are smaller than the average value.

Sensitivity analysis of capacity

To further investigate the value of recourse in stochastic models and to identify set-

tings in which it is most beneficial, we perform several sensitivity analyses. First,

we analyse the influence of the available capacity in each period by varying cap ∈
{250, 275, 300, 325, 350, 375, 400, 450, 500, 600}. We fix the demand pattern to seasonal

and set medium uncertainty as this setting is close to the real world-case study. For each

capacity setting, rolling-horizon simulations are repeated 1000 times. The results are

shown in Figure 4.6 and Figure 4.7 for the additive and multiplicative models respec-
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Table 4.4.: Value of production recourse under multiplicative MMFE.

Demand Uncert. cap
PLA Extended PLA with recourse
Cost Cost Relative avg. First quart. Median Third quart.

Stationary
Low

300 4140.6 4121.7 99.6% (*) 96.9% 99.3% 102.0%
500 4147.9 4114.9 99.3% (*) 96.8% 99.0% 101.4%

Medium
300 4831.9 4717.2 97.7% (*) 93.0% 97.4% 101.7%
500 4680.3 4634.1 99.2% (*) 94.7% 98.7% 103.1%

High
300 5440.6 5188.6 95.2% (*) 89.0% 94.1% 99.9%
500 5007.0 4897.7 98.0% (*) 92.4% 97.0% 102.5%

Random
Low

300 4006.2 3978.9 99.4% (*) 97.3% 99.1% 101.2%
500 3955.6 3925.1 99.3% (*) 97.2% 98.9% 101.1%

Medium
300 4791.5 4675.1 97.5% (*) 92.6% 96.5% 101.5%
500 4549.8 4472.2 98.4% (*) 94.7% 97.7% 101.7%

High
300 5674.0 5481.1 95.4% (*) 87.5% 93.2% 99.8%
500 5053.5 4870.0 96.4% (*) 91.1% 96.0% 101.3%

Seasonal
Low

300 4085.5 4026.9 98.6% (*) 95.5% 98.1% 100.9%
500 3743.0 3699.1 98.9% (*) 97.0% 98.5% 100.5%

Medium
300 5309.0 5066.6 94.6% (*) 86.3% 91.7% 98.6%
500 4425.9 4313.8 97.6% (*) 93.6% 97.2% 101.1%

High
300 6485.8 6188.9 93.8% (*) 81.2% 87.7% 98.5%
500 5079.8 4838.3 95.3% (*) 89.0% 94.0% 100.3%

All settings 4744.9 4622.8 97.4% (*) 92.9% 97.5% 101.2%

tively. Each figure shows the average absolute cost for the PLA and extended model as

well as the relative improvement of the extended model with recourse. The 95% confi-

dence intervals of the average values are represented with error bars.
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Figure 4.6.: (a) Absolute and (b) relative cost of PLA and extended model for additive
MMFE with varying capacity.

For both forecast models, the average costs decrease exponentially as the available capac-

ity increases. Under additive MMFE, the value of recourse increases almost monotonously

with capacity. Under multiplicative MMFE, the value of recourse is higher when capac-
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(b) Relative cost of extended model with recourse

Figure 4.7.: (a) Absolute and (b) relative cost of PLA and extended model for multi-
plicative MMFE with varying capacity.

ity is constrained. Cost reductions of 6.8% are provided by the recourse model when

are cap = 325, which corresponds to a setting with limited capacity but not overly

constrained. Overall, the multiplicative model benefits most from recourse, achieving

substantial cost reductions over all capacity settings.

Sensitivity analysis of scenario extension

The extended model with production recourse can provide significant cost savings thanks

to more flexible decisions. However, it implies longer computation times due to the ex-

ponential scenario structure. The trade-off between cost reduction and increased compu-

tations can be managed in two ways: by adapting the scenario structure and by deciding

the split between PLA and scenario models through tb. In this sensitivity analysis, we

compare three scenario tree structures: a small tree with nodes [2, 4, 8, 8, 16, 16], an inter-

mediate tree with nodes [3, 6, 12, 24, 48, 48] and a large tree with nodes [3, 9, 18, 36, 36, 72]

in each stage. We perform N = 1000 rolling-horizon repetitions with varying parame-

ter tb ∈ {2, 3, 4, 5} and compare the results of the extended model to the PLA model

without recourse, equivalent to tb = 6. We focus on the simulation setting with seasonal

demand, medium uncertainty and large capacity cap = 300. The average costs relative

to the PLA model and the average solver times are shown in Figure 4.8 with a 95%

confidence interval.

The value of recourse as a function of tb has different patterns for the additive and mul-

tiplicative models. Under additive MMFE, the costs of the extended model decrease

as more recourse decisions are included for both the intermediate and large trees. The

small scenario tree does not show further cost reduction below tb = 5, which suggests
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Figure 4.8.: (a) Relative cost and (b) solving time of extended model for varying tb and
scenario tree under additive MMFE.
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Figure 4.9.: (a) Relative cost and (b) solving time of extended model for varying tb and
scenario tree under multiplicative MMFE.

that the tree size is too small to accurately capture the forecast evolution and recourse

opportunities. Under multiplicative MMFE, the value of recourse is higher but does not

seem to be impacted by tb. For both MMFE models, the intermediate tree size provides a

good trade-off between observed costs and computations times. The sensitivity analysis

shows that it is possible to obtain cost reductions through recourse by keeping solving

times low. Indeed even the small tree can reduce costs on all instances with almost no

computation times increase compared to the PLA model.

Sensitivity analysis of correlation structure

In Section 4.3 we have shown that positive (resp. negative) forecast time correlation

was equivalent to higher (resp. lower) cumulative demand variance for both MMFE
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models. For the extended model with recourse, correlation has an even larger impact

since the recourse model can react to correlated forecast updates. We analyse the im-

pact of the correlation structure on the value of recourse for both forecast evolution

models on the simulation setting with seasonal demand and medium uncertainty. The

capacity is fixed to cap = 300. The intermediate tree is used for the extended model

with [3, 6, 12, 24, 48, 48] nodes over the horizon.

The influence of both product and time correlation are investigated. Product correlation

is set constant over the horizon as ρt,t1,2 = ρk with ρk ∈ {−0.6, 0, 0.6}. Time correlation is

set between the first and second periods of the horizon for both products ρ1,2k,k = ρt with

ρt ∈ {−0.6, 0, 0.6}. If both product and time correlation parameters are non-zero, then

the first and second periods of the two products are also correlated and ρ1,21,2 ̸= 0.

Table 4.5.: Value of recourse for different correlation structure.

Additive MMFE Multiplicative MMFE
ρk = −0.6 ρk = 0 ρk = 0.6 ρk = −0.6 ρk = 0 ρk = 0.6

ρt = −0.6 97.4(*) 96.9(*) 96.8(*) 92.1(*) 91.2(*) 89.2(*)
ρt = 0 98.3(*) 98.5(*) 99.0(*) 93.9(*) 94.6(*) 93.3(*)
ρt = 0.6 98.7(*) 100.1 100.9(*) 97.4(*) 97.1(*) 95.8(*)

The relative costs of the extended model with recourse compared to the PLA model

without recourse are presented in Table 4.5. Statistical significance of the relative cost

is assessed with Student’s t-test and is shown with a star symbol (∗) if the p-value is

below p < 0.05. The correlation structure has a strong influence on the value of recourse

but impacts the two forecast evolution models differently. Under additive MMFE, the

value of recourse appears to increase monotonously as correlation coefficients decrease.

The value of recourse is again higher for the multiplicative model. Time correlation has a

strong effect on the value of recourse, which increases as time correlation decreases. The

value of recourse is highest for negative time correlation and positive product correlation

as costs can be reduced by more than 10% compared to the stochastic model without

recourse. This analysis shows the importance of including correlation in stochastic plan-

ning especially when using recourse models.

4.5.2. Real-world case study

We now apply our approach to the real-world case study of a large company manufac-

turing chemical products used in agriculture. The demand follows the growth cycle of

crops and therefore exhibit strong seasonality and high uncertainty. The products are
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grouped into K = 6 families for which a cleaning operations is required each a time

a new family is set up. Together with our industrial partner, we gather the history of

forecasts and demand realisations on a monthly granularity over 4 years. The historical

demand is shown in Figure 4.10, which clearly shows the yearly seasonal pattern. The

planning horizon is set to T = 8 to capture the majority of the season while keeping

computation times low. The inventory costs are determined together with our industry

partner and range between 0.04 and 0.1 over the product families. The backlog costs

are set to bc = 15 · hc and the setup costs to sc = 15. The initial inventory is set to

zero. The monthly production capacity, cap = 4934, is large relative to the demand so

that the case study strongly resembles the setting previously investigated with synthetic

data. The PLA model is implemented with L = 60 segments. The extended model uses
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Figure 4.10.: Demand evolution over the four years of historical data for 6 product fam-
ilies.

a scenario tree with [3, 6, 6, 12, 12, 24, 24, 48] nodes over the planning horizon sampled

with LHMU. We set the extended model with tb = 4 so that the first half of the planning

horizon is modelled with PLA and the second half with scenario-based recourse.

Estimation of MMFE models

The first step for using the MMFE is to measure the forecast updates from the fore-

cast and demand realisation history following the additive and multiplicative processes

described in Section 4.3. As in the analysis with synthetic data, the occurrence of zero

values for the forecast and demand realisation complicates the estimation of the multi-

plicative model parameters. All forecast and demand vectors in which at least one value

is zero are removed from the data set, which amounts to around 50% of the data set.

The mean and covariance matrix of the MMFE model are estimated using the sample

mean and covariance respectively. To conform to the unbiased assumption of the MMFE
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models, we correct the sample bias. In Section 4.3, special attention has been given to

the correlation of forecast updates in different time periods. The correlation matrix of

the two MMFE models is represented in Figure 4.11. Interestingly, the additive MMFE

exhibits strong positive correlation for the first three products over the horizon, while

the multiplicative MMFE has high positive time correlations for the two last products.
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Figure 4.11.: Correlation matrix of (a) additive and (b) multiplicative MMFE models.

After estimating the distribution parameters, a practitioner might be interested in eval-

uating the goodness-of-fit of the update samples to the assumed distributions of the

additive and multiplicative models. Intuitively, one would think that the goodness-of-

fit provides a first measure of the expected performance of the MMFE models. The

goodness-of-fit is assessed through a Shapiro-Wilk test performed on each marginal nor-

mal distribution of the additive and multiplicative models. The p-values of the tests are

provided in Table 4.6 and Table 4.7 for the additive and multiplicative samples respec-

tively. The statistical tests reject the assumptions that the forecast updates are normally

distributed for all products and all time periods for the additive model. The results are

more nuanced for the multiplicative model as some p-values are strictly greater than 5%.

This first analysis suggests that the multiplicative model, having a better fit to the data,

is likely to provide good results whereas the additive model should perform poorly.

Table 4.6.: p-value of Shapiro-Wilk normality test for additive samples.

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

k=1 2.50E-04 4.52E-05 0.077 1.18E-03 7.07E-03 5.50E-08 6.83E-09 5.70E-10
k=2 5.83E-03 8.63E-06 7.61E-09 7.29E-07 1.19E-08 1.58E-10 1.16E-09 1.65E-12
k=3 5.68E-05 1.48E-06 1.78E-10 6.56E-07 9.98E-05 1.58E-02 3.24E-03 2.60E-09
k=4 7.82E-07 1.12E-06 1.80E-11 4.21E-13 8.15E-12 2.28E-10 2.41E-13 9.97E-11
k=5 7.16E-05 1.75E-07 2.68E-07 1.35E-08 1.24E-08 6.79E-11 7.59E-09 1.64E-10
k=6 1.84E-03 9.99E-05 7.45E-07 6.85E-11 3.52E-10 3.82E-08 1.42E-09 3.45E-09
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Table 4.7.: p-value of Shapiro-Wilk normality test for multiplicative samples.

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

k=1 0.072 1.93E-02 0.779 1.79E-05 2.54E-06 0.114 4.37E-03 1.20E-05
k=2 6.51E-04 4.60E-02 7.34E-04 2.08E-05 4.81E-07 0.147 2.91E-07 6.35E-05
k=3 2.42E-02 0.912 0.115 0.068 0.681 0.149 7.06E-04 0.054
k=4 2.41E-03 0.459 5.43E-04 2.14E-03 1.39E-06 1.61E-03 5.80E-04 1.38E-03
k=5 4.01E-04 6.45E-06 2.43E-05 7.87E-04 2.11E-06 5.77E-06 2.05E-05 1.30E-04
k=6 4.43E-02 9.31E-05 7.05E-05 3.43E-02 0.05 8.07E-05 6.27E-05 3.76E-03

Out-of-sample simulation results

To accurately assess the value of the MMFE model, the simulation is run in an out-

of-sample fashion. Only past observations of the forecast evolution process are used

to estimate the MMFE parameters in each review period. The simulation start at

period 25, so that half the data set is available to estimate the MMFE models at the

first simulation period, and half the set is used for rolling-horizon simulations. In each

period, a new forecast update is observed and the model parameters are re-estimated in

an online fashion. Forecast updates are taken from the data set. Thus, the simulation

assesses the value of the models in a practical setting and, in particular, the ability to

generalise the forecast evolution process based on past observations. The realised costs

over the 24 periods out-of-sample simulation are presented in Table 4.8.

The additive MMFE model with PLA reduces realised costs by 11% thanks to relevant

safety stock that increase inventory costs but provide significant reduction of backlog and

setup costs. The extended additive model with production recourse further reduces costs

by 3% through less conservative inventory decisions. The multiplicative MMFE model

performs poorly over the simulation as it builds large inventory reserves. The results

are contradicting with the goodness-of-fit analysis suggesting that goodness-of-fit is not

a reliable a priori criterion to decide on the best MMFE model to use.

Table 4.8.: Results of out-of-sample case study.

Model Total cost (rel.) Inventory cost (rel.) Backlog cost (rel.) Setup cost (rel.)

Deterministic 3513 (100%) 796 (100%) 1442 (100%) 1275 (100%)
Additive PLA 3116 (89%) 1293 (162%) 803 (56%) 1020 (80%)
Extended Add. PLA 3015 (86%) 1112 (140%) 868 (60%) 1035 (81%)
Multipicative PLA 3612 (103%) 2424 (304%) 288 (20%) 900 (71%)
Extended Mult. PLA 3560 (101%) 2431 (305%) 259 (18%) 870 (68%)
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4.5.3. Summary and recommendations

The numerical study shows that integrating forecast evolution models in stochastic lot-

sizing problem can significantly improve planning quality. The additive MMFE model is

robust and performs well over all simulation instances investigated: (1) when the fore-

cast evolution process is known, (2) when it is unknown and estimated from mismatched

updates, and (3) when it is learned from real-world past data. On the contrary, the mul-

tiplicative model is undermined by several limitations: it requires costly evaluations of

the first-order loss function, it cannot use demand or forecast having zero value, and it

can lead to important cost increases as shown in the mismatched analysis and real-world

case study. Thus, we recommend practitioners to prioritise the implementation of the

additive MMFE. Further, we highlight that the choice of relevant MMFE models should

not be based on an a priori goodness-of-fit analysis but instead on evaluating model

performance through out-of-sample rolling-horizon simulations using historical data.

The extended model with production recourse can provide consistent cost reductions on

both synthetic and real-world data. Over all simulation settings, the value of recourse is

higher for the multiplicative model. Still, recourse can consistently provide lower costs

for the additive model as well. Several parameters that impact the value of recourse

have been analysed such as the demand pattern, uncertainty, capacity, and correlation.

In particular we have identified that the value of recourse is especially high when de-

mand is dynamic, uncertainty is high and when forecast updates exhibit negative time

correlation.

The extended model with recourse requires managerial decisions as it impacts planning

in several ways including longer computation times and lower planning visibility due to

the presence of recourse decisions. In our analysis, we have provided some first guidelines

to tune the model and find a good compromise between its advantages and limitations.

4.6. Conclusion

In this paper, forecast evolution models are integrated in dynamic, stochastic, capac-

itated lot-sizing problems. After presenting the forecast evolution process, we have

shown that determining the cumulative demand distributions is the only step needed

to solve stochastic lot-sizing problems efficiently with PLA. The model was extended

with a scenario-tree representation of uncertainty to allow production recourse over the

planning horizon and provide flexible decisions. The value of forecast evolution models
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has been quantified in a large-scale numerical study using both synthetic and real-world

data. Forecast evolution models have been shown to provide significant cost reductions

compared to traditional deterministic planning. However, when the forecast evolution

process is unknown, the multiplicative MMFE tend to generalise poorly from available

data and to increase realised costs due to important inventory build-ups. On the con-

trary, the additive model performs robustly over all simulation instances. We advise

practitioners to focus on the additive MMFE because of its ability to generalise the

stochastic forecast evolution process from available data.

Production recourse has been shown to consistently reduce costs on average for both

additive and multiplicative MMFE thanks to less conservative inventory decisions. Im-

portant parameters that impact the value of recourse have been identified through sen-

sitivity analyses.

This work proposes the first numerical comparison of the performance of additive and

multiplicative MMFE in rolling-horizon planning. As several shortcomings have been

identified for the multiplicative model, further work could investigate more robust tech-

niques to estimate the model parameters. In particular, estimation techniques that

better handle cases with zero forecast or demand are needed to use available data more

efficiently. More generally, MMFE models cannot differentiate between volume and tim-

ing change of forecasts. In practice, it is often the case that an order is shifted in time

with the same volume. An interesting research direction would be to adapt the MMFE

framework to this setting.
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Chapter 5

Conclusions

5.1. Summary

This thesis studies the integration of stochastic optimisation in rolling-horizon produc-

tion planning. Several planning problems with uncertain and seasonal demand have

been presented and solved with different approaches. In Chapter 2, a multi-ordering

newsvendor problem with inventory carrying costs and forecast evolution is solved as

a dynamic programming model. In Chapter 3, two-stage stochastic programming with

optimally defined product families is applied to a real-world case study. In Chapter 4,

additive and multiplicative martingale model of forecast evolution (MMFE) are inte-

grated in a general lot-sizing problem and combined with a multi-stage scenario tree

to allow production recourse. We summarise our findings by answering the research

questions stated in Section 1.2.

(RQ 1)How can stochastic models be applied from the available history of forecast and

demand data?

We have proposed several approaches to develop stochastic models from available fore-

cast and demand data. In Chapter 3, demand-driven and forecast-driven uncertainty

models are defined and used to build scenario trees. We compare the use of empirical dis-

tributions and estimated distributions that are sampled to obtain additional scenarios.

We show that forecast-driven uncertainty models with estimated distributions achieve

high demand satisfaction at low cost on out-of-samples simulations with real-world data

and outperform demand-driven uncertainty models. In Chapter 4, a second approach

to apply stochastic models from data focuses on modelling the forecast revision pro-

cess. Additive and multiplicative MMFE models are estimated from available forecast

and demand data and integrated in lot-sizing problems. Out-of-sample simulations with

105



Chapter 5. Conclusions

real-world data show that forecast evolution models consistently improve demand satis-

faction compared to deterministic models.

(RQ 2.1) How can MMFE models be integrated into complex production planning

environments?

(RQ 2.2)What are strengths and limitations of the additive and multiplicative MMFE

when applied from real-world data?

We develop two methods to solve stochastic models with forecast evolution. In Chap-

ter 2, the optimal production policy is determined analytically for the single-product

case and extended to a heuristic for multiple correlated products. The heuristic is based

on a decomposition/coordination procedure that iteratively allocates capacity between

products and determines the products’ inventory targets independently. The numeri-

cal study shows that explicitly modelling forecast evolution is essential to reach target

service levels when products have correlated forecast evolution and when uncertainty

resolution is not constant. In Chapter 4, we show that MMFE models can be inte-

grated in lot-sizing problems by determining the cumulative demand distributions over

the planning horizon. The resulting non-linear problems can be solved efficiently us-

ing existing piecewise-linearisation techniques. The additive MMFE can be solved to

arbitrary optimality whereas the multiplicative model relies on an approximation to de-

termine probability distributions of the cumulative demand. We compare the additive

and multiplicative MMFE models in extensive rolling-horizon simulations using both

synthetic and real-world data. In particular, we quantify the risk of modelling error due

to using an inappropriate MMFE model. The additive model is shown to be the more

robust MMFE model as it consistently reduces production costs over a wide range of

problem settings. On the contrary, the multiplicative model appears sensitive to mod-

elling error and is shown to increase costs in several instances when compared to a simple

deterministic benchmark. Overall, we show that the value of forecast evolution is closely

linked to the recourse opportunities given by multi-stage stochastic models.

(RQ 3) What is the value of recourse in rolling-horizon planning and what parameters

influence it?

The three chapters of this thesis measure the value of recourse through repeated rolling-

horizon simulations. Parameters that affect the value of recourse are identified over the

different problems. In particular, we show that the value of recourse is high when there

is a complex correlation structure between products and time periods. Further, recourse

is especially beneficial when capacity is limited, suggesting that planning models with

recourse determine a better prioritisation of production. In Chapter 2 and 4, we show
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that stochastic models that ignore forecast evolution and recourse fail to meet service

level targets and provide overall higher inventory costs. Hence, forecast evolution and

recourse are intimately linked and are both necessary to provide optimal decisions in

rolling-horizon.

(RQ 4) How can stochastic models that satisfy the trade-off between planning flexi-

bility, stability and communicability be developed?

Multi-stage stochastic models with recourse can derive cost-efficient decisions but are

challenging to set up and solve while respecting the constraints of rolling-horizon plan-

ning. In Chapter 2, we use a linear policy approximation to obtain reference plans from

the optimal and approximate production policies. We compare the nervousness resulting

from planning models with and without explicit forecast evolution. We show that using

a flexible policy does not increase nervousness on average and lead to a linear relation-

ship between forecast nervousness and production nervousness. In Chapter 3 we solve

the trade-off between planning flexibility, stability and communicability by determining

optimal product families that reflect production processes. The families allow to reserve

capacity through first-stage decisions that can be used by individual products in recourse

decisions. This approach ensures that a reference plan is available while providing high

flexibility. It is shown to also improve planning stability as plan changes compensate

within product families. This strategy is notable in the way that it improves flexibil-

ity and stability simultaneously, whereas existing techniques such as freezing decisions

or penalising changes inherently reduce planning flexibility. In Chapter 4, multi-stage

stochastic programming and piecewise-linearisation techniques are combined so that re-

course is available for later periods in the horizon. Flexible decisions are allowed but a

unique reference plan is determined on the short-term horizon. This approach provides

substantial cost reductions and remains tractable as small scenario trees are sufficient

to represent the multi-stage process accurately.

This thesis has highlighted the importance of integrating recourse in stochastic pro-

duction planning models. Several methods have been developed to derive forecast uncer-

tainty models from data and to formulate optimisation problems with successive decision

stages. Stochastic planning models with recourse have been solved with specific tech-

niques pertinent to each problem. To allow the implementation of models with recourse

in existing rolling-horizon planning practice, we have put emphasis on determining stable

reference plans in each review period. We have set up extensive rolling-horizon simula-

tions that show that stochastic models with recourse can increase demand satisfaction,

reduce inventory costs and even provide more stable plans.
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5.2. Outlook

Several research directions are identified to extend the main research topics in this thesis.

In the three chapters of this thesis, we use recourse to adapt decisions to uncertainty

in rolling-horizon planning. We have shown that a linear policy approximation provides

good results on multi-ordering newsvendor problems. We have also applied a more

traditional multi-stage scenario-based model to lot-sizing problems. Using linear policy

approximations to introduce recourse in lot-sizing problems could be a first extension,

which may resolve two of the main difficulties of scenario-based models: their long

computation times and the discretisation errors due to sampling. The linear policy

approximation could be included directly in the lot-sizing model presented in Chapter 4

and solved by adapting the piecewise-linear approximation. This method would be

similar to Adjustable Robust Optimisation (Yanıkoğlu et al., 2019) but applied in a

stochastic context. Scenario-based recourse and linear policy approximations could also

be combined so that different variables use different recourse formulations in the same

optimisation model.

In Chapter 3, we develop a strategy to obtain flexible and stable decisions based on

the aggregation of products in families. The definition of the product families is done

in a optimisation problem that reflects the constraints of the production processes of

the real-world case study. The generalisation of this method to different industries and

problem settings could be investigated. The value of aggregating decisions could also be

evaluated for varied product structures.

Forecast evolution models act as a bridge between academia and practitioners as

they allow the application of stochastic models with meaningful uncertainty distribu-

tions estimated from readily available data. The additive and multiplicative versions

of the MMFE have been applied in Chapter 4 and their strengths and limitations have

been identified. In particular, we have shown that multiplicative MMFE is sensitive to

modelling error when demand is dynamic even though it has been designed precisely

for situations with fluctuating demand. We argue that two aspects of forecast evolu-

tion models are currently conflated: (1) how to measure forecast update samples from

data, and (2) identifying the underlying probability distribution. While the two exist-

ing methods measure forecast updates as absolute difference or log-ratios, there may

be other ways to measure forecast evolution such as ratios or percentages. The addi-

tive and multiplicative models both use the assumption that forecast updates follow a

normal distribution. While this distribution provides nice mathematical properties, it

108



5.2. Outlook

may not be suitable to most problem settings. Other probability distributions could be

investigated to model additive or relative forecast evolution. Another noteworthy direc-

tion is to apply distribution-free approaches such as robust or distributionally robust

optimisation to model forecast evolution from data.

The intermittency of demand is another practical aspect that is not captured by existing

MMFE models. In Chapter 4, we show that the occurrence of zero values for demand

and forecasts is frequent in real-world data but can lead to estimation problems, espe-

cially for multiplicative MMFE. Extending forecast evolution models to capture demand

intermittency could allow the application of MMFE to more realistic problem settings.

Finally, the interaction of planning nervousness and forecast evolution has been only

tangentially studied. A challenging but promising research direction is to develop event-

driven planning frameworks that calculate updated production plans only when neces-

sary. In Chapter 2, we have shown that using the optimal production policy with forecast

evolution creates a linear relationship between forecast nervousness and production ner-

vousness. This result could be used to trigger replanning actions in an event-driven

fashion. This new planning paradigm could be linked to existing research in control

theory and production scheduling to provide an automated planning framework with

high flexibility and stability.
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Póvoa (2018). An integrated approach for production lot sizing and raw material

purchasing. European Journal of Operational Research 269 (3), pp. 923–938.

De Smet, Niels, Stefan Minner, El-Houssaine Aghezzaf, and Bram Desmet (2020). A

linearisation approach to the stochastic dynamic capacitated lotsizing problem with

112



Bibliography

sequence-dependent changeovers. International Journal of Production Research 58

(16), pp. 4980–5005.

Deutsch, Jared L and Clayton V Deutsch (2012). Latin hypercube sampling with multidi-

mensional uniformity. Journal of Statistical Planning and Inference 142 (3), pp. 763–

772.

Donohue, Karen L (2000). Efficient supply contracts for fashion goods with forecast

updating and two production modes. Management Science 46 (11), pp. 1397–1411.

Dunning, Iain, Joey Huchette, and Miles Lubin (2017). JuMP: A modeling language for

mathematical optimization. SIAM Review 59 (2), pp. 295–320.
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Appendix A

Production planning for a short

seasonal demand with forecast

evolution

A.1. Proof of Proposition 2.1

The lost-sales on the right-hand side of Equation (2.1) correspond to the well-studied

first-order loss function. The first-order loss function of a random variable ω with cumu-

lative distribution Fω and probability distribution fω evaluated at a scalar x is defined

as L(x, ω) = E[max(ω − x; 0)] =
∫∞
−∞max(t− x, 0)gω(t)dt.

Let ω be a normal distribution with mean µ and variance σ2, probability density func-

tion ϕ and cumulative density function Φ. The first-order loss function of ω can be

expressed as a function of the first-order loss function of a standard normal distribution

L(x, ω) = σL(x−µ
σ

) (Snyder and Shen, 2019, p. 663). This property allows significant

computational advantages since values of the first-order loss function of a standard nor-

mal can be pre-computed. The first-order loss function of a standard normal can further

be expressed as L(x) = ϕ(x)−x·(1−Φ(x)), which further facilitates calculations (Snyder

and Shen, 2019, p. 98). It is straightforward to show that the first-order loss function

of a standard normal distribution is strictly decreasing and invertible, with L−1 being

defined over ]0; +∞[.

A.1.1. Proof of optimal inventory in the last-period

The expected lost sales as a function of the inventory position yT is strictly decreas-

ing. The optimal inventory in the last period is the smallest inventory yT for which
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the constraint in Equation (2.1) holds, namely EDT+1|T [max(DT+1 − y∗T ; 0)] = (1 −
β)EDT+1|T [DT+1]. Since demand follows a known normal distribution, it follows from

the properties of the first-order loss function that the optimal last-period inventory y∗T
is such that

LT (y
∗
T , DT+1) = σT+1 · L

(
y∗T − EDT+1|T [DT+1]

σT+1

)
= (1− β)EDT+1|T [DT+1].

The final expression is obtained knowing that the first-order loss function is invertible.

A.2. Proof of Lemma 2.1

A.2.1. Preliminary result: derivative of inverse of first-order loss

function

First note that the inverse of the first-order loss function of a standard normal distri-

bution is differentiable as the inverse of a differentiable function. The first-order loss

function can be also expressed L(x) =
∫∞
x
(1 − Φ(t))dt. Applying the inverse of the

first-order loss function to both sides of the equation gives

L−1 (L (x)) = L−1

(∫ ∞

x

(1− Φ(t))dt

)
= x.

Now since the first-order loss function and its inverse are differentiable, the following

holds
d

dx

(
L−1 (L (x))

)
=

d

dx

(
L−1

(∫ ∞

x

(1− Φ (t)) dt

))
= 1.

Finally, the derivative of the inverse of the first-order loss function is solution to the

following differential equation

d

dy

(
L−1(y)

)
=

1

(Φ(L−1(y))− 1)
(A.1)

A.2.2. Proof of convexity

ST is differentiable since L is differentiable. Using Equation (A.1), the derivative of ST

can be calculated as

d

dA
(ST (A)) = σT+1 ·

d

dA

[
L−1(

(1− β)(µ+ A)

σT+1

)

]
+ 1
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= σT+1 ·
[
1− β

σT+1

·
(
d

dA

(
L−1

))((1− β)(µ+ A)

σT+1

)]
+ 1

(A.1)
=

1− β

Φ
(
L−1

(
(1−β)(µ+A)

σT+1

))
− 1

+ 1.

The derivate of ST is increasing since L−1 is decreasing, as it is the inverse of a decreasing

function, Φ is increasing, and so Φ(L−1(·)) is decreasing. The root of the derivative of

ST can be found as

d

dA
(ST (A)) = 0 =⇒ 1− β = −

(
Φ

(
L−1

(
(1− β)(µ+ A)

σT+1

))
− 1

)
=⇒ L−1

(
(1− β)(µ+ A)

σT+1

)
= Φ−1(β)

=⇒ A
¯
=

σT+1

1− β
· L
(
Φ−1(β)

)
− µ.

The root A
¯

always exists since σT+1

1−β
· L (Φ−1(β)) is positive for all β ∈ ]0, 1[ and A

¯
∈

]−µ;∞[.

A.3. Proof of Proposition 2.2

The proof is similar to the additive setting and requires to exhibit a few properties of

the first-order loss function of a log-normal distribution. Let ω be a random variable

that follows a log-normal distribution with log-mean µ and log-variance σ2 and let gω

and Gω be its p.d.f and c.d.f respectively. The first-order loss function is defined for any

positive x as L(x, ω) = E [max(ω − x), 0] = L(x, ω) =
∫∞
x
(t− x)gω(t)dt.

Lemma A.1. The first-order loss function L(·, ω) is strictly decreasing over its domain

[0,+∞[.

Proof. Consider the function h(·, ω) defined over [0,∞[ as h(x, ω) =
∫ b

x
(t − x)gω(t)dt

where b > x. h is differentiable and using Leibniz’s integral rule we have dh
dx
(x, ω) =∫ b

x
−gω(t)dt = Gω(x) − Gω(b). Knowing that limb→+∞ h(x, ω) = L(x, ω) we deduce

dL
dx
(x, ω) = Gω(x)− 1 < 0.

Lemma A.2. The first-order loss function L(·, ω) is invertible and its inverse is defined

on ]0,E[ω]].

Proof. The function L(·, ω) is strictly decreasing, limx→+∞ L(x, ω) = 0 and L(0, ω) =
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∫∞
0
t · gω(t)dt = E[ω]. Hence the minimum inventory that satisfies the service level

constraint is found by inverting the first-order loss function.

A.3.1. Proof that ST is increasing

Without loss of generality let x be a fixed positive real number. Let ω be a log-normal

random variable defined as ln(ω) ∼ N (µ + AT , σ
2
T+1) and denote its cumulative dis-

tribution function Fω(x,AT ). With a small notation change, define the first-order loss

function as L(x,AT ) =
∫∞
x
(1− Fω(t, AT ))dt. The cumulative distribution function can

be expressed using the error function as

L(x,AT ) =

∫ ∞

x

(
1− 1

2

[
1 + erf

(
ln(t)− µ− AT√

2σ

)])
.

This function is differentiable with regards to AT and we can derive the partial derivative

of L as
∂L(x,AT )

∂AT

=
1

σ
√
2π

∫ ∞

x

exp

(
−
(
ln(t)− µ− AT√

2σ

)2
)

which is positive for all values of AT and x. The first-order loss function L(x,DT+1 | AT )

and its inverse are thus strictly increasing in AT for any fixed x. Now, note that

L(ST (AT ), AT ) = (1 − β) exp(µ + AT +
σ2
T+1

2
) is strictly increasing in AT . The inven-

tory target function ST is then strictly increasing as the inverse of a strictly increasing

function.

A.4. Proof of Proposition 2.3

The optimal target inventory as a function of the forecast update St(At) in each pe-

riod can be found by recursion. Define the auxiliary cost function Gt(yt, At) = ctyt +

EAt+1|At [Vt+1(yt, At+1)] such that Vt(xt, At) = minxt≤yt≤xt+K Gt(yt, At)− ct ·xt. The min-

imum costs incurred in period T are known from Lemma 2.2. Hence, the auxiliary costs
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in period T − 1 are given by

GT−1(yT−1, AT−1) = cT−1 · yT−1 + EAT |AT−1
[VT (yT−1, AT )]

= cT−1 · yT−1 +

∫ S−1
T (yT−1+K)

S−1
T (yT−1)

cT (ST (a)− yT−1)fAT |AT−1
(a)da

−cT ·K · FAT |AT−1
(S−1

T (yT−1 +K))

+

∫ +∞

S−1
T (yT−1+K)

γ · (ST (a)− yT−1 −K)fAT |AT−1
(a)da.

Since ST is strictly increasing and differentiable, GT−1(yT−1, AT−1) is differentiable with

regards to yT−1 as a sum of differentiable functions. The partial derivative of Gt−1 with

regards to yT−1 gives the marginal costs and is determined as

gT−1(yT−1, AT−1) = cT−1 +
∂

∂yT−1

(∫ S−1
T (yT−1+K)

S−1
T (yT−1)

cT · (ST (a)− yT−1)fAT |AT−1
(a)da

)

−cT ·K · fAT |AT−1
(S−1

T (yT−1 +K)) · dS
−1
T (yT−1 +K)

dyT−1

+
∂

∂yT−1

(∫ +∞

S−1
T (yT−1+K)

γ · (ST (a)− yT−1 −K) · fAT |AT−1
(a)da

)
.

We use Leibniz’s integral rule to find that

∂

∂yT−1

(∫ S−1
T (yT−1+K)

S−1
T (yT−1)

cT · (ST (a)− yT−1)fAT |AT−1
(a)da

)
= cT ·K · fAT |AT−1

(S−1
T (yT−1 +K)) · dS

−1
T (yT−1 +K)

dyT−1

−cT ·
[
FAT |AT−1

(S−1
T (yT−1 +K))− FAT |AT−1

(S−1
T (yT−1))

]
and

∂

∂yT−1

(∫ +∞

S−1
T (yT−1+K)

γ · (ST (a)− yT−1 −K) · fAT |AT−1
(a)da

)
=

−γ ·
[
1− FAT |AT−1

(S−1
T (yT−1 +K))

]
and deduce the expression of the marginal cost function gT−1(yT−1, AT−1). Since γ ≥
cT−1, the marginal cost function is strictly increasing in yT−1. Being first negative and

then positive, it has a unique root. The inventory target ST−1(AT−1) is exactly the root
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of the marginal cost function.

The inventory targets for previous periods t < T − 1 can be found by recursion using

the same principle as the proof as Biçer and Seifert (2017). Let t ∈ {1, . . . , T − 2} such

that St+1(At+1) is known, strictly increasing and invertible. The cost-to-go in period

t+ 1 depends on the action in period t and is given by

Vt+1(yt, At+1) =


Gt+1(yt, At+1)− ct+1 · yt, if yt > St+1(At+1)

G∗
t+1(At+1)− ct+1 · yt, if yt +K > St+1(At+1) ≥ yt

Gt+1(yt +K,At+1)− ct+1 · yt, if St+1(At+1) ≤ yt +K

where G∗
t+1(At+1) = Gt+1(St+1(At+1), At+1) is the minimum cost-to-go in period t + 1.

The auxiliary cost function in period t can then be expressed as

Gt(yt, At) = ct · yt + EAt+1|At [Vt+1(yt, At+1)]

= yT−1(ct − ct+1) +

∫ S−1
t+1(yt)

−∞
Gt+1(yt, a)fAt+1|At(a)da

+

∫ S−1
t+1(yt+K)

S−1
t+1(yt)

G∗
t+1(a)fAt+1|At(a)da+

∫ +∞

S−1
t+1(yt+K)

Gt+1(yt +K, a)fAt+1|At(a)da

The marginal cost gt are deduced as gt(yt, At) =
∂
∂yt
Gt(yt, At).

A.5. Shortfall penalty costs

A.5.1. Single product: sensitivity analysis of shortfall costs

For each uncertainty resolution setting, a total of 1000 rolling-horizon simulations are

run with varying shortfall penalty factor. For selected values of the penalty cost factor,

the average of the key performance indicators over the simulations are given in Table A.1.

If the average achieved service level is lower than the target, the statistical significance

of the service-level shortfall is assessed through Student’s t-test using a p-value of 0.05.

Statistical significance is shown with a star symbol (*). The value of the shortfall cost

factor is found to satisfy the service level target with lowest costs. The final values

chosen for the penalty cost factor are shown in bold in Table A.1.
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Table A.1.: Sensitivity analysis of penalty cost factor g.

Uncertainty g Service
level

Objective Nervousness

25 0.9433* 181.82 7.241
Early 50 0.9483 206.90 7.413

75 0.9498 220.97 7.445
5 0.9242* 167.42 5.720

Additive Constant 10 0.9486 200.33 7.195
MMFE 15 0.9534 212.28 7.541

4.5 0.9386* 189.89 2.879
Late 5 0.9447 198.21 3.309

5.5 0.9488 204.55 3.644

50 0.9460* 228.67 8.306
Early 75 0.9480 248.35 8.361

100 0.9498 265.96 8.365
5 0.9199* 160.84 6.221

Multiplicative Constant 10 0.9440 197.81 8.267
MMFE 15 0.9491 211.87 8.591

4.5 0.9368* 186.27 3.732
Late 5 0.9442 198.81 4.394

5.5 0.9486 207.95 4.892

A.5.2. Multiple products: shortfall costs

The shortfall penalty costs are set as γj = gj · cjt and g2 = 3 · g1. The final shortfall cost
value is found by using the values found in the single-product sensitivity analysis and

progressively adjusting them so that the MMFE model reaches the expected service-level

target for both products with minimum cost. The final values are given in Table A.2.

Table A.2.: Values of shortfall penalty factor g.

Early Constant Late

Two products, negative correlation 50 30 g1 = g2 = 60
Two products, no correlation 25 20 10
Two products, positive correlation 25 20 15
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Appendix B

Stochastic programming in master

production scheduling

B.1. Deterministic model

The deterministic production planning and raw-material ordering problem can be for-

mulated in Problem (B.1) as a deterministic optimisation problem.

min
T∑
t=1

(
K∑
k=1

W∑
w=1

µk,wik,w,t +
A∑

a=1

νa · ya,t +
K∑
k=1

γk · bk,t
)

(B.1a)

s.t. ik,w,t = ik,w,t−1 +
∑
l∈Lw

qk,l,t − sk,w,t, ∀k, w, t (B.1b)

fk,t + ssk,t = bk,t +
W∑
w=1

sk,w,t, ∀k, t (B.1c)

K∑
k=1

qk,l,t ≤ κl, ∀l, t (B.1d)

ya,t = ya,t−1 + za,t −
K∑
k=1

L∑
l=1

βk,a · qk,l,t, ∀a, t (B.1e)

qk,l,t, ik,w,t, bk,t, sk,t, ya,t, za,t ≥ 0, ∀k, w, l, a, t (B.1f)

The objective function in (B.1a) minimises the inventory costs of finished goods and

raw materials as well as the lost-sales costs over the planning horizon. The lost-sale

costs relax the problem to allow feasible solutions when capacity or raw materials are

insufficient to satisfy demand. As such, the lost-sales penalty cost is typically set to a

high value (λ = 1000 in our numerical study). Constraint (B.1b) describes the inventory
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balance of finished goods in each site. Constraint (B.1c) ensures that demand is either

satisfied by each site’s production or counted as lost sales. Constraint (B.1d) limits the

production of each line to its capacity in each period. Constraint (B.1e) describes the

raw-material inventory balance. Constraint (B.1f) specifies the domain of the continuous

decision variables.

B.2. Notation of stochastic models.

Table B.1.: Notation of stochastic models

Sets
A Set of raw materials {1, . . . , A}
L Set of production lines {1, . . . , L}
K Set of products {1, . . . ,K}
Kf Set of products within family f
T Set of time periods {1, . . . , T}
W Set of production sites {1, . . . ,W}
Lw Set of lines {1, . . . , Lw} at site w

Parameters
fk,t Demand forecast for product k in period t
κl Capacity of line l
γk Lost-sale penalty cost of product k
βk,a Consumption of raw material a per unit of product k
µk,w Inventory holding cost of product k at site w
νa Inventory holding cost of raw material a
ρk,l Equal to 1 if product k can be produced on line l, 0 otherwise
xk,f Product-to-family assignment, equal to 1 if product k is assigned to family f

Decision variables
qk,l,t Production volume of product k on line l in period t
za,t Order of raw material a for period t
bk,t,n Lost sales of product k at the end of period t in scenario n
sk,w,t,n Sales of product k assigned to site w in period t in scenario n
ik,w,t,n Inventory of product k on hand at site w at the end of period t in scenario n
rk,l,t,n Recourse production of product k on line l in period t in scenario n
Ya,t,n Inventory of raw material a at the end of period t in scenario n
uk,t,n Auxiliary variable to track minimum recourse production over all scenarios n

for product k in period t
vf,t,n Auxiliary variable to track maximum recourse production over all scenarios n

for family f in period t
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