
Fitness Functions for Testing Automated and
Autonomous Driving Systems

PrePRint for the proceedings of the 38th International Conference on
Computer Safety, Reliability and Security 2019

The final authenticated publication is available online at
https://doi.org/10.1007/978-3-030-26601-1 5

Florian Hauer1, Alexander Pretschner1, and Bernd Holzmüller2

1 Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
{florian.hauer,alexander.pretschner}@tum.de

2 ITK Engineering GmbH, Im Speyerer Tal 6, 76761 Ruelzheim, Germany
bernd.holzmueller@itk-engineering.de

Abstract. Functional specifications and real drive data are typically
used to derive parameterized scenarios for scenario-based testing of driv-
ing systems. The domains of the parameters span a huge space of possible
test cases, from which “good” ones have to be selected. Heuristic search,
guided by fitness functions, has been proposed as a suitable technique in
the past. However, the methodological challenge of creating suitable fit-
ness functions has not been addressed yet. We provide templates to for-
mulate fitness functions for testing automated and autonomous driving
systems. Those templates ensure correct positioning of scenario objects
in space, yield a suitable ordering of maneuvers in time, and enable the
search for scenarios in which the system leaves its safe operating enve-
lope. We show how to compose them into fitness functions for heuristic
search. Collision and close-to-collision scenarios from real drive data serve
as a use case to show the applicability of the presented templates.

Keywords: System Verification · Automated & Autonomous Driving ·

Scenario-Based Testing · Search-Based Techniques

1 Introduction

Striving for highly automated and autonomous driving systems results in ev-
ermore complex and capable systems. Due to the complexity of these systems
and the complexity and sheer number of possible scenarios, ensuring safety and
functional correctness is a crucial challenge [9]. Since verification and validation
by real test drives alone are practically infeasible [17], the focus shifts to virtual
test drives. For virtual testing, scenario-based closed-loop testing in the form
of X-in-the-Loop settings is used [16]. Such scenarios describe dynamic traffic
situations to test the behavior of the automated or autonomous driving system.
A whole set of such scenarios is encoded by a parameterized scenario. We show
such a parameterized scenario for a highway pilot in Fig. 1. The ego vehicle e

https://doi.org/10.1007/978-3-030-26601-1_5

2 Florian Hauer, Alexander Pretschner, Bernd Holzmüller

accelerates from standstill and approaches car c3, which is driving at lower ve-
locity than e. e then changes to the middle lane, while simultaneously c1 changes
also to the middle lane behind e. During this scenario, e must not violate the
safety distances, e.g. the one to c2 (shaded area in Fig. 1). Each other car ci,
i ∈ {1, 2, 3} has a parameter for its longitudinal starting position s0,ci , a starting
time tstart,ci for accelerating from standstill, and a desired velocity vi it tries to
reach and hold throughout the scenarios. In addition, the lane change of c1 is
triggered at a specific time, described by parameter tlc,c1 . The domains of these
ten parameters span a ten-dimensional space of possible test scenarios.

c2

c3

c1

e

Parameter
Lower
Bound

Upper
Bound

Starting positions s0,ci [m]
Starting times tstart,ci [s]
Target velocities vi [km/h]
Lane change time tlc,c1 [s]

0
0
80
6

300
3

140
13

Fig. 1. Parameterized highway scenario with ten parameters and their domains

Most scenarios in this space are not useful test cases, however. In some sce-
narios, e will not even perform a lane change; will perform it in front of c2
instead of behind it; or c1 performs its lane change several seconds later than e.
Instead, “good” test cases need to be identified within the parameter space. In
one interpretation of “good” test scenarios, a correct system approaches safe op-
erating limits, and a faulty system violates them. Existing works suggest the use
of search-based techniques. These were successfully applied for testing classic ad-
vanced driver assistance systems (SAE levels 1&2 [14]), e.g. a parking assistant,
an adaptive cruise control, an emergency braking system, and their combination.

Those works focus on technical aspects, e.g. on how to improve the search al-
gorithm, and assume the fitness functions to be given or created ad-hoc. This was
an important, and successful, first step. Because these search-based techniques
are so promising, we want to apply them to testing automated and autonomous
driving systems of SAE levels 4&5 [14]. Such systems are fundamentally dif-
ferent, as they take over the complete driving task including decision making
and executing active maneuvers in dynamic traffic scenarios. Thus, the variety
of different possible parameterized scenarios is huge, which requires the defini-
tion of many different fitness functions. However, formulating fitness functions
correctly is difficult, time-consuming, and requires experience. Wrongly derived
fitness functions leave “good” test cases unidentified, which might even lead to
wrong conclusions about the test results. It seems clear that creating fitness func-
tions ad-hoc, as done in the past, is not sufficient. For the derivation of fitness
functions at large scale, methodological guidance for test engineers is needed.

The contribution of this paper is the following: We provide such guidance
in the form of a set of fitness function templates for testing automated and
autonomous driving systems in dynamic traffic scenarios with heuristic search.
It is further explained how those templates can be easily combined and applied
to identify “good” test cases for complex scenario types.

Fitness Functions for Testing Automated and Autonomous Driving Systems 3

§2 explains scenario-based testing and the application of search-based tech-
niques in this domain. The templates are described in §3, before §4 presents ways
to combine them. An application is provided in §5. We discuss related work in
§6 and conclude in §7.

2 Scenario-Based Testing with Search-Based Techniques

In scenario-based testing of automated and autonomous driving systems, the
goal is to test the behavior of such systems in dynamic traffic situations. A mul-
titude of different scenario types exist. Several sources of information are used
for the identification of those types, e.g. requirements, safety analysis, functional
specifications, traffic rules, and real (test) drives. For each scenario type, one or
more parameterized scenarios are derived, each describing a set of test cases.
Generalizing and adapting the formalism of [2] and [10], we define a parameter-
ized scenario as (X,V,D), where X is the data set that describes the scenario
type (e.g. lane change) and context (e.g. two-lane highway). It can be described
using the OpenScenario [1] or CommonRoad [5] formats. The variables vi ∈ V
(i ≤ n) are parameters (e.g. velocities of traffic participants) with their domains
Di ∈ D. Assigning a value to each vi yields a single test case. The domains in
D span an infinite search space A = D1 ×D2 × . . .×Dn ⊂ Rn of test cases.

c1

c2 c3e

Fig. 2. Example of a simple safe operating envelope (green plain rectangle) bounded
by the necessary safety distances (red shaded rectangles) and lane markings

The simulated scenario describes input and environment conditions of a test
case. The expected behavior of continuous systems is described with the help
of domains and thresholds. In this context, a safe operating envelope is used
(Fig. 2). Inside the envelope, the system is allowed to freely optimize its perfor-
mance [9], and as long as it does not leave the envelope, it is considered safe. By
that the safe operating envelope provides a description of safe system behavior.
It depends on the scenario and changes over time during the scenario. Recent
works, e.g. the responsibility-sensitive safety (RSS) model [15], the safety force
field model [11] as well as other formal models [13] presented such envelopes.
These works provide a model of safe system behavior even for scenarios, in which
the system alone cannot guarantee complete safety, as other traffic participants
may still cause accidents. In the spirit of limit testing, we define a “good” test
case as follows (see [12]):

A “good” test case can reveal potentially faulty system behavior. That
means in a “good” test scenario, a correct system approaches the limits

of the safe operating envelope, and a faulty system violates them.

4 Florian Hauer, Alexander Pretschner, Bernd Holzmüller

A fitness function f : A → W assigns every test case a quality value
w ∈ W , which depends on the observed behavior of the system under test in
the respective test case. It is important that a total order on the fitness values
is preserved, such that a scenario gets a better quality value than another if it is
a better test case. If the search space A and the quality function f are created
accordingly, then search-based techniques may be used to find the “good” test
cases in the following way (see Fig. 3):

Test Cases

Input OutputSearch-Based Optimization

Search Space /
Parameterized

Scenario

Fitness Function Test Oracle

Simulation
Results

Fitness Value

New
Candidates

Fitness
Computation

Optimizer

Simulation

Fig. 3. Search-based techniques for scenario optimization

An initial set of scenario candidates is created either by reusing existing
scenarios, by using manually created ones by experts, or by generating them
randomly. These candidates are then executed in a simulation and the simula-
tion results are evaluated by the fitness function, which returns a quantitative
quality measure for the respective scenario. According to these fitness values, the
optimization algorithm tries to adapt the parameter values in order to obtain
scenarios of better quality. This iteration may be continued until a maximum
number of iterations is reached, the assigned computation time is spent or the
optimizer fails to find a better solution. This means that during the optimiza-
tion process, the system is usually tested in one test case per fitness function
evaluation, depending on the applied optimization technique. In the ideal case,
search-based techniques would find the global optimum, which is the best sce-
nario. This scenario is called worst-case. In the case that the system does not
leave the safe operating envelope in the worst-case, it is considered to be safe.

In the following, templates are presented, which may be combined to fitness
functions. For this work, the search space is assumed to be given, e.g. we use a
parameterized scenario created by a domain expert.

3 Fitness Function Templates

In order to capture all potential scenarios, we present templates to aim for qual-
itative and quantitative test goals. Our goal is to find test cases, in which the
system violates the safe operating envelope, e.g. by coming below a distance
threshold. We call this a quantitative test goal, since a quantitative value (e.g.
a distance between cars) is used to assign a fitness value. We present a suitable
template to search for a violation of the safe operating envelope.

Fitness Functions for Testing Automated and Autonomous Driving Systems 5

However, search spaces usually contain many scenarios in which a desired
system behavior, e.g. a lane change, does not take place because the neces-
sary context to provoke it does not occur. For instance, there is no lane change
if there is no car to be overtaken. In theory it might be possible to only use
a quantitative test goal and search for the violation of a safe operating enve-
lope in a search space covering all possible scenarios. However, in practice this
is undesired for several reasons. Scenario types (e.g. lane change, cut-in) are
human-interpretable; testing every type on its own provides information about
the quality of the system behavior in those specific scenarios. Further, testing
these interpretable scenario types will be required by certification authorities.
Lastly, such a theoretical search space that contains all possible scenarios is high-
dimensional and complex. The search for a safety violation would be difficult - or
even practically infeasible - for current search-based techniques. Thus, we need
to ensure that the scenario description encodes the relevant parts of the context.
Those are called qualitative test goals, since the mere existence of the relevant
circumstances is used to assign a fitness value.

For dynamic scenarios, two aspects are of fundamental importance: space and
time. Scenario objects need to be at the correct location at a specific moment,
e.g. one car should be ahead of another. Furthermore, scenario events need to
take place at the right moment in time, e.g. two cars should change the lane
simultaneously. Since the (dynamic) behavior of the ego vehicle is unknown a-
priori, the correct timing of maneuvers and positioning of scenario objects cannot
be established statically and a-priori, e.g. by setting suitable parameter domain
boundaries. However, incorporating such desired qualitative test goals into fit-
ness functions is possible. We hence present specific templates for timing and
positioning to ensure that such qualitative goals are fulfilled. During optimiza-
tion those templates identify the scenarios that fulfill the qualitative test goals.
Among them the best scenario is searched with the template that aims at the
quantitative test goal. Note that in this work, minimization is used for opti-
mization purposes. In the following, we will explain the generic idea first, before
transferring it to templates for automated and autonomous driving systems.

3.1 Template for Testing Against Safe Operating Envelopes

We start with a very basic, simple, and intuitive template. Even though most
of the existing works in this domain do not state it explicitly, their idea is to
measure a certain system behavior and identify a test case in which this system
behavior exceeds a threshold. For the case of a constant threshold, a qualitative
generic example is provided in Fig. 4.

The blue time series describes a system behavior and the red line a threshold
that must not be violated. This means the maximum value of the blue curve must
not be greater than the threshold. During an optimization process, it is desired
that better and better scenarios are found, which means that the maximum
of the blue curve gets closer and closer to the red line or even surpasses it.
The following fitness function idea may be used to achieve the described search
behavior (assuming minimization): fidea,1 = −max(blue curve)

6 Florian Hauer, Alexander Pretschner, Bernd Holzmüller

t[s]

value

system behavior
constant threshold

max

Fig. 4. Generic case of testing system behavior against a constant threshold

Now, this idea is transferred for testing automated and autonomous driving
systems in dynamic traffic scenarios. As described in Section 2, instead of a
constant threshold, a safe operating envelope is used, e.g. as presented in recent
works [15,11,13]. Those works express safety often as a safety distance in time or
space, which is usually depending on velocities of and relative positions among
cars and, thus, is changing over time. We use safeDist as a placeholder for the
computation of a safety distance according to such a safe operating envelope.
We stick to the example of Fig. 1, but for the sake of simplicity, only c2 and the
safety distance to it are considered on a single lane for now (see Fig. 5):

c2e

d(t)− safeDist(t)

d(t)

safeDist(t) t[s]

distance[m]

tstart tend

actual distance d(t)
safety distance safeDist(t)
d(t) − safeDist(t)

min

Fig. 5. Schematic depiction of a safety distance that should not be violated

The ego vehicle e is approaching another vehicle c2, which is driving at lower
velocity. Once e gets closer, it will reduce its velocity until it reaches the velocity
of c2. During this period, e must not violate the safety distance. Applying the
classic idea fidea,1 as fitness function would mean that the scenario is searched, in
which the distance d between e and c2 gets smallest. However, a small d does not
necessarily mean that the safeDist threshold is violated, since safety distances
might be even smaller (relatively speaking) in scenarios with low velocities. One
cannot conclude by the achieved fitness value whether the safe operating envelope
has been violated or not. The dynamically changing safety distance has to be
included into the template:

Template 1: ftemplate,1 = min(d(t)− safeDist(t)) (1)

The difference of d(t) and safeDist(t) is denoted as the remaining buffer until
violation of the threshold (see image 5). Within the scenario, the minimum

Fitness Functions for Testing Automated and Autonomous Driving Systems 7

remaining buffer is used as characteristic value, since it is the most dangerous
moment. By applying this template, search techniques will identify the scenario
in which the minimum of the remaining buffer is smaller than the minimum
remaining buffer in all other scenarios. This has the side effect that the following
test oracle can be applied for this template: If the remaining buffer is greater or
equal than 0 even in the worst-case scenario, the system did never enter and, thus,
never violate the safety distance. It even kept an additional distance equal to
the remaining buffer in the worst-case. It never left the safe operating envelope
and it is considered safe. If the remaining buffer is negative, a faulty system
behavior is revealed. In this case, the absolute value is the amount by which the
system violated the safety distance. Using this template, an argumentation basis
for the release process is provided by making the system behavior measurable.
With the help of this measurement, systems can be compared with respect to
their performance in the system-specific worst-case.

3.2 Templates for Ensuring Qualitative Test Goals

General Idea to Ensure Qualitative Test Goals. A specific scenario does
or does not satisfy the desired qualitative test goals. The following templates
can be used to ensure such goals. By combination of multiple templates (§4),
multiple qualitative test goals can be fulfilled. In the case of non-fulfillment of
a goal, we assign the value m as fitness value, which has to be greater than
any value that corresponds to a qualitative test goal being fulfilled. If m is
constant, the optimizer will perform like random selection. However, we want
to apply search-based techniques to identify scenarios that satisfy the desired
qualitative test goals. Thus, this m should be a gradual measurement to provide
a ranking among the scenarios that do not fulfill this qualitative test goal. In
order to gradually reach a “fulfilling” scenario, a measurement is used for how
far a scenario is away from fulfilling the goal. Since the mere fulfillment of the
qualitative test goal is sufficient, every scenario that does so is equally good and,
thus, receives the same constant fitness value, e.g. 0:

fidea,2 =

{
m, qualitative test goal not fulfilled

0, otherwise
(2)

Assume a time series (blue curve in Fig. 6), which serves as input for the
computation of m. At a specific time t1, a qualitative test goal should be fulfilled.
Fulfillment means that the value of the time series value(t1) at t1 is in between
the red thresholds zmin and zmax. Note that in general those thresholds do not
need to be constant.

If value(t1) is outside the area described by the thresholds, m is the distance
of value(t1) to the closer threshold to reach the area in between. During the
optimization, value(t1) would approach the area. To avoid having one fitness

8 Florian Hauer, Alexander Pretschner, Bernd Holzmüller

function per threshold, the mean of the thresholds is chosen:

fidea,3 =

{∣∣ zmin+zmax

2 − value(t1)
∣∣ , value(t1) outside

0, otherwise
(3)

t[s]

value

input for measurement m
constant threshold

t1

value(t1)

zmin

zmax

Fig. 6. Depiction of the general idea: The value of a curve at a specific moment has to
be within a specific domain.

Template for Correct Positioning of Scenario Objects. This general idea
is now transferred to a template. It ensures that scenario objects, e.g. cars, are
correctly located relative to each other at a specific moment in time during the
scenario. In Fig. 7, a scenario is depicted in which the ego vehicle e and the
other cars c1, c2 are driving on two lanes next to each other. Assume that the
qualitative test goal is that e is located in between c1 and c2 at a specific moment
tevent. This might be desired in the case that e should perform a lane change
into the gap bounded by c1 and c2.

c2 c1

e

∣∣∣∣∣∣(sc1 + sc2)/2− se
∣∣∣∣∣∣

sc2 sc1

se
t[s]

s[m]

tevent

position sc1 (t) of c1
position sc2 (t) of c2
position se(t) of e

|(sc1 + sc2)/2− se|

Fig. 7. Qualitative test goal: e should be located in the gap at tevent

The position of the ego vehicle se is used to compute the measurement m.
The positions of the other cars sc1 , sc2 serve as thresholds. Note that in contrast
to above, here the thresholds are not constant. The transferred template looks

Fitness Functions for Testing Automated and Autonomous Driving Systems 9

as follows:

Template 2a: (4)

ftemplate,2a =

{∣∣∣ sc1 (tevent)+sc2 (tevent)

2 − se(tevent)
∣∣∣ , e not in between c1 and c2

0, otherwise

During the optimization, the structure of the template will bring e closer
and closer to the gap until it is in the gap. However, as it is the case for the
introductory example in Fig. 1, there might not be a gap. Only a single other car
is of interest for relative positioning. The ego vehicle should be located behind
c2 for its lane change. This is reduced to the situation of Fig. 8.

c2

e

se − sc2sc2 se
t[s]

s[m]

se(tevent)− sc2(tevent)

tevent

position of ego se(t)
position of other sc2 (t)

Fig. 8. Qualitative test goal: e should be located behind c1 at tevent

In the case that e is ahead of c2, the distance between them is used as
measurement m. Since there is only one threshold (“behind of”), there is a slight
difference to template 2a. This simplifies the template to the following, where
only the distance to the one threshold is used:

Template 2b: (5)

ftemplate,2b =

{
sc2(tevent)− se(tevent), se(tevent) < sc2(tevent)

0, otherwise

Template for Correct Timing of Scenario Events. So far, a template for
the search of safe operating violations as well as templates for correct positioning
of scenario elements were discussed. In the following, a template for timing is
presented. It can be used to ensure that events, e.g. the start of a maneuver, are
happening at the right moments in time relatively to each other. In the example
of Fig. 1, the ego vehicle and the c1 are supposed to perform their lane changes
onto the middle lane simultaneously. This means that c1 starts its lane change
during the lane change of e. This is resembled in Fig. 9.

To allow c1 to start its lane change even a bit before e, an offset ∆t1 can be
used. In general, also an offset ∆t2 is possible, even though here it is set to 0.
A ∆t2 > 0 would mean that c1 starts lane changing after e already completed
its lane change. The general idea of fidea,3 is adjusted to yield a template for

10 Florian Hauer, Alexander Pretschner, Bernd Holzmüller

c1

e t[s]

lateral position [m]

tevent

tstart

tend

tstart − ∆t1 tend + ∆t2

lateral position of other
lateral position of ego

Fig. 9. Qualitative test goal: Lane changes should happen simultaneously

timings. However, this time the thresholds are not on the vertical axis as it is
the case for the location templates, but on the horizontal one. The thresholds
are the start tstart and the end tend of the ego vehicle’s lane change. In the case
that the start of the other vehicle’s lane change is not in between tstart − ∆t1
and tend+∆t2, the distance to the middle of the interval is chosen. The template
for timing looks as follows:

Template 3: (6)

ftemplate,3 =

{∣∣ tstart−∆t1+tend+∆t2
2 − tevent

∣∣ , tevent not in between bounds

0, otherwise

4 Combining Templates

We have presented several templates, each addressing a specific aspect. In the
following, it is described how those templates can be combined to a fitness func-
tion that can be used by search-based techniques to yield complex scenarios.
There are two possibilities: Combining the set of templates to a single fitness
function allows the usage of single-objective optimizers, while for multi-objective
search, the fitness functions stay separated.

4.1 Combination for Single-Objective Search

The templates are nested into each other with the help of case distinctions.
The innermost level in the nesting is a template that measures the behavior of
the system with respect to a safe operating envelope; it aims for a quantitative
test goal. The outer levels of nesting are templates for qualitative test goals
(e.g. positioning and timing), which need to be fulfilled for the inner ones. Each
level consists of one template returning the measurement m as described above.
Instead of returning 0 in the case that the qualitative test goal is fulfilled, the
measurement m of the next inner level is returned. This structure causes the
optimizer to approach the search in steps. First, scenarios are searched that
are of the desired form. Among those, the best scenario is identified for testing
against a safe operating envelope. To ensure the necessary total order of fitness
values, offsets are added to all levels of nesting except for the most inner one.

Fitness Functions for Testing Automated and Autonomous Driving Systems 11

This offset needs to be greater than the maximum value of the next inner level.
A simple overapproximation of the sum of the m of the next inner level plus the
offset of the next inner level is sufficient.

4.2 Combination for Multi-Objective Search

Most likely, there are some goals that are not dependent on each other, meaning
that each of those independent goals can be fulfilled without the constraint that
the others need to be fulfilled. For instance in the introductory example in Fig.
1, the goal that “e performs its lane change behind c2” can be fulfilled even
though the goal that “c1 performs its lane change simultaneously with e” is not
fulfilled. In contrast to the usage of single-objective search, independent goals
can be optimized simultaneously with multi-objective search. Multi-objective
search optimizes a vector x of fitness values xi instead of a single fitness value.
The concept of Pareto optimization is used. A vector x is better than another
vector y if all xi ≤ yi and at least one xi < yi. Each xi is computed by a
single template fj , which may depend on one or more fk, j 6= k. The fj that are
dependent on other fk, j 6= k need to be adjusted in the following way: In the
case that at least one of the fk is not 0, which means that the qualitative test
goal connected to at least one of the fk is not fulfilled, xj is set to a very bad,
high value. Step by step, the preliminary qualitative test goals will get fulfilled
before the remaining test goals are optimized.

5 Application of the Templates
Since many car manufacturers and suppliers are currently developing a highway
pilot system or a comparable system, such a system is chosen for demonstration
purposes. It has to cope with all possible situations on the highway and does
not require the driver to take over in critical situations. Therefore, the highway
pilot is considered to be an automated driving system of SAE’s level 4 [14].
Many natural driving studies have been conducted to gather data for further
understanding of road traffic and the driver’s task (e.g. [8]). The database of
the biggest one [8] got analyzed for near-collision and collision recordings on
highways. The findings were grouped to 24 scenario types [18]. We used those
as use cases for the presented templates. In fact, the example of Fig. 1 and
Fig. 10 is one of those scenario types. The presented templates ensure that
maneuvers happen at the right moment and objects are located correctly, while
another template searches for violations of the safe operating envelope. Using
these templates, we were able to create suitable fitness functions for all of those
scenario types. Since those are the near-collision and collision scenarios, they
are the most critical ones. By at least covering those 24 scenarios with the
templates, we argue that the presented set of templates is sufficient for most of
the critical highway traffic scenarios. The following depicts the ease of use of the
templates by applying them to the most complex scenario of the 24, which is
the introductory example of Fig. 1 and Fig. 10. A variety of other scenarios is
contained in this one, e.g. a lane change of the ego vehicle behind another car
without further surrounding cars.

12 Florian Hauer, Alexander Pretschner, Bernd Holzmüller

c2

c3

c1

e

Parameter
Lower
Bound

Upper
Bound

Starting positions s0,ci [m]
Starting times tstart,ci [s]
Target velocities vi [km/h]
Lane change time tlc,c1 [s]

0
0
80
6

300
3

140
13

Fig. 10. Most complex (close-to-)collision scenario of the reduced set of scenarios from
the database analysis [18]

For this scenario, several fitness functions are needed:

• The lane change of e needs to happen, for which a constant template is used.
For the given search space, a constant measurement m is not problematic,
since many candidates contain a lane change of e.

α =

{
∞, e does not change lanes

0, otherwise
(7)

• The lane change of e needs to happen behind c2, which indicates the use
of the positioning template. Let the moment, when e gets past the lane
markings between the starting lane and the target lane, be denoted as te,start.

β =

{
se(te,start)− sc2(te,start), sc2(te,start) < se(te,start)

0, otherwise
(8)

• The lane change of c1 needs to happen behind e. Again, the template for
positioning is used. Let the moment, when c1 gets past the lane markings
between the starting lane and the target lane, be denoted as tc1,start.

γ =

{
sc1(tc1,start)− se(tc1,start), se(tc1,start) < sc1(tc1,start)

0, otherwise
(9)

• Lane changes of e and c1 need to be simultaneously, for which the timing
template is used. Let the moment, when e and c1 are fully on the target
lane, be denoted as te,end and tc1,end. If either tc1,start + ∆t1 < te,start or
te,end < tc1,end − ∆t2 is true, the lane changes are not considered to be
simultaneous anymore. ∆t1 is set to 1s to allow for an earlier start of the
lane change of c1, while ∆t2 is set to 0s such that c1 does not finish the lane
change before e starts changing lanes.

δ =

{∣∣∣ te,start−1+te,end+0
2 − tc1,start+tc1,end

2

∣∣∣ , not simultaneous

0, otherwise
(10)

• We need to search for a violation of the safety distance.

ε = min(sc2(t)− se(t)− safeDist(t)) [te,start, te,end] (11)

Fitness Functions for Testing Automated and Autonomous Driving Systems 13

The combined fitness function for single-objective search does look as follows.
Powers of ten are used as offsets oi, e.g. o1 = 103 and o2 = 104.

fsingle =



α+ o4, e does not change lanes
β + o3, sc2(te,start) < se(te,start)
γ + o2, se(tc1,start) < sc1(tc1,start){
δ + o1, not simultaneous

ε, otherwise

(12)

For an application of multi-objective search, the templates need to be changed,
e.g. ε can only be computed if all qualitative test goals underlying the other
templates are fulfilled.

ε̃ =

{
∞, α+ β + γ + δ > 0

ε
(13)

Incorporating the dependencies also in the other templates yields the final vector
of fitness values. β, γ, and δ are independent of each other; they only depend
on α. In contrast to a combination for single-objective search as above, they can
be optimized simultaneously when combined for multi-objective search. α stays
unchanged as it does not depend on other templates.

fmulti = [α β̃ γ̃ δ̃ ε̃] (14)

The actual technical application of search-based techniques is not the focus of
this work as is has been done by various existing works. However, for interested
readers, we provide supplementary material online at https://mediatum.ub.tum.
de/1474281. Contained are two experiments that use the presented parameter-
ized scenario and combined fitness function as well as videos of the worst-case
scenarios identified by single- and multi-objective search during the experiments.

6 Related Work

Search-based techniques have been proposed for test scenario selection. The ini-
tial research presented the idea of applying search-based techniques for the func-
tional testing of advanced driver assistance systems by testing a parking assis-
tant [6] and a braking assistant [7]. Their setup is close to what we describe as
scenario-based testing. Recently, machine learning was introduced to improve the
performance of test case generation in this domain. For instance, with learning
surrogate models the optimization speed may be improved [3] and with build-
ing decision-trees the test engineer receives information about the search space
during test case selection [2]. Both works apply the presented techniques on an
emergency braking system. For testing a feature interaction of an adaptive cruise
control and an emergency braking system, search-based techniques are improved
in a way that they search for multiple faulty interactions simultaneously [4].

https://mediatum.ub.tum.de/1474281
https://mediatum.ub.tum.de/1474281

14 Florian Hauer, Alexander Pretschner, Bernd Holzmüller

While all these technical improvements are important and show great results,
these works assume the fitness function to be given or create them ad-hoc, e.g.
to test the interaction of some specific features [4]. This is, because those works
focus on the technical aspect of the search-based techniques. Neither of them
addresses the methodological aspect of how fitness functions are correctly created
to allow for statements about safety, e.g. by testing against a safe operating
envelope as for instance provided by recent works [15,11,13]. Additionally, the
evaluation systems are rather reactive driver assistance systems of SAE level 1&2
[14] or combination of such. The provided fitness functions for those systems
are mostly not applicable to higher automated systems (e.g. level 4&5) with
decision making and active functionality (e.g. lane changing or overtaking) in
complex dynamic traffic scenarios, which require the fulfillment of qualitative
test goals. This motivates the need for methodological guidance when deriving
fitness functions.

7 Conclusion

We started by describing the necessity of suitable fitness functions to identify
“good” test cases within huge search spaces, described by parameterized scenar-
ios for automated and autonomous driving. A correct derivation of such suitable
functions is crucial, but difficult. For the application of search-based techniques
at larger scale for testing automated and autonomous driving systems, guidance
for test engineers is necessary. In this work, we provide such guidance in form
of templates and the means to combine them to fitness functions for complex
traffic scenarios. To test against thresholds of a safe operating envelope, we pre-
sented a specific template which provides the test engineer with an automated
oracle. Additional templates for relative positioning in time and space ensure
that the optimizer identifies scenarios that fulfill the qualitative test goals. For
combining the templates, we presented both a single and a multi-objective ap-
proach which make use of case distinctions to provide a total ordering on scenario
candidates such that better scenarios are assigned to better fitness values. As
an evaluation, we presented the application of the templates on the most com-
plex (close-to-)collision highway scenario contained in the biggest natural driving
study database (identified by [18]). We conclude that the presented templates
provide a structured way for test engineers to formulate fitness functions to iden-
tify “good” test cases. Thus, this work adds a much needed methodological angle
to the otherwise technical solutions.

The application of search-based techniques requires both a fitness function
and a search space. The derivation of the search space is not discussed in this
work. Similarly to the fitness function derivation, methodological guidance for
the derivation of search spaces (parameterized scenarios) is of high interest.
Both are difficult the creation of a suitable skeleton of a parameterized scenario
and the identification of suitable parameters and their domains. Further, in
addition to the methodological guidance presented in this work, an automated
fitness function derivation would be very useful to support test engineers. Using

Fitness Functions for Testing Automated and Autonomous Driving Systems 15

a suitable scenario description as input, the described combination for single-
and multi-objective techniques might be automated.

References

1. OpenScenario 0.9.1 (2017). Tech. rep., OpenScenario Initiative - online at http:
//www.openscenario.org, retrieved 11th January 2019

2. Abdessalem, R.B., Nejati, S., Briand, L., Stifter, T.: Testing vision-based control
systems using learnable evolutionary algorithms. In: Proceedings of the 40th In-
ternational Conference on Software Engineering (ICSE 2018). ACM (2018)

3. Abdessalem, R.B., Nejati, S., Briand, L.C., Stifter, T.: Testing advanced driver
assistance systems using multi-objective search and neural networks. In: 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE).
pp. 63–74 (2016)

4. Abdessalem, R.B., Panichella, A., Nejati, S., Briand, L.C., Stifter, T.: Testing
autonomous cars for feature interaction failures using many-objective search. In:
33rd ACM/IEEE International Conference on Automated Software Engineering.
pp. 143–154 (2018)

5. Althoff, M., Koschi, M., Manzinger, S.: Commonroad: Composable benchmarks for
motion planning on roads. In: Intelligent Vehicles Symposium (IV), 2017 IEEE. pp.
719–726. IEEE (2017)

6. Bühler, O., Wegener, J.: Evolutionary functional testing of an automated parking
system. In: Proceedings of the International Conference on Computer, Communi-
cation and Control Technologies (CCCT) and the 9th. International Conference
on Information Systems Analysis and Synthesis (ISAS) (2003)

7. Bühler, O., Wegener, J.: Evolutionary functional testing. Computers & Operations
Research 35(10), 3144–3160 (2008)

8. Hankey, J.M., Perez, M.A., McClafferty, J.A.: Description of the shrp 2 naturalistic
database and the crash, near-crash, and baseline data sets. Tech. rep., Virginia Tech
Transportation Institute (2016)

9. Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and valida-
tion. SAE International Journal of Transportation Safety 4(1), 15–24 (2016)

10. Mullins, G.E., Stankiewicz, P.G., Gupta, S.K.: Automated generation of diverse
and challenging scenarios for test and evaluation of autonomous vehicles. In: IEE
International Conference on Robotics and Automation (ICRA). pp. 1443–1450
(2017)

11. Nister, D., Lee, H.L., Ng, J., Wang, Y.: The safety force field. on-
line at https://www.nvidia.com/content/dam/en-zz/Solutions/self-driving-cars/
safety-force-field/the-safety-force-field.pdf, retrieved 10th May 2019

12. Pretschner, A.: Defect-based testing. In: Dependable Software Systems Engineering
(2015)

13. Rizaldi, A., Keinholz, J., Huber, M., Feldle, J., et al.: Formalising and monitoring
traffic rules for autonomous vehicles in isabelle/hol. In: International Conference
on Integrated Formal Methods. pp. 50–66. Springer (2017)

14. SAE: Definitions for terms related to on-road motor vehicle automated driving
systems. J3016, SAE International Standard (2014)

15. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and
scalable self-driving cars. arXiv:1708.06374 (retrieved 5th May 2019)

http://www.openscenario.org
http://www.openscenario.org
https://www.nvidia.com/content/dam/en-zz/Solutions/self-driving-cars/safety-force-field/the-safety-force-field.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/self-driving-cars/safety-force-field/the-safety-force-field.pdf

16 Florian Hauer, Alexander Pretschner, Bernd Holzmüller

16. Ulbrich, S., Schuldt, F., Homeier, K., Steinhoff, M., Menzel, T., Krause, J., Maurer,
M.: Testing and validating tactical lane change behavior planning for automated
driving. In: Automated Driving, pp. 451–471. Springer (2017)

17. Wachenfeld, W., Winner, H.: The release of autonomous vehicles. In: Autonomous
Driving, pp. 425–449. Springer (2016)

18. Zhou, J., del Re, L.: Reduced complexity safety testing for adas & adf. IFAC-
PapersOnLine 50(1), 5985–5990 (2017)

