
Did We Test All Scenarios for
Automated and Autonomous Driving Systems?

PrePrint for the proceedings of the IEEE Intelligent Vehicles Symposium 2020
Published version: https://doi.org/10.1109/ITSC.2019.8917326

Florian Hauer*, Tabea Schmidt*, Bernd Holzmüller and Alexander Pretschner

Abstract— To ensure safety and functional correctness of
automated and autonomous driving systems, virtual scenario-
based testing is used. Experts derive traffic scenario types
and generate instances of these types with the support of test
generation tools. Since driving systems operate in a real-world
environment, it is always possible to find a new scenario type
as well as new instances of scenario types that are different
from all other scenario types and instances. Thus, the testing
process to find faulty behavior may continue forever. There
is a practical need for test ending criteria for both of the
following problems: Did we test all scenario types? Did we
sufficiently test each type with specific instances? We address the
first question and present a suitable test ending criterion and
methodology. Whether the system is tested in each scenario type
is reduced to the question whether all test scenarios are known.
We analyze driving data to provide a statistical guarantee that
all scenario types are covered. We model this as a Coupon
Collector’s Problem. We present experimental results for the
application of this model to different driving tasks of automated
and autonomous driving systems.

I. INTRODUCTION

Striving for highly automated and autonomous driving
systems results in ever more complex and capable systems.
Due to the complexity of these systems and the complexity
and sheer number of possible traffic scenarios, ensuring
safety and functional correctness is a crucial challenge [1].
Since verification and validation by real test drives alone
become practically infeasible [2], [3], [4], the focus is
currently shifting to virtual test drives. For virtual testing,
scenario-based closed-loop testing in the form of X-in-the-
Loop settings is used [5]. This means, that the automated
or autonomous driving system, e.g. in form of a model,
software, or hardware is tested in a simulated traffic sce-
nario, where the system behavior affects the behavior of the
simulated environment.

Automated and autonomous driving systems must provide
their functionality in every possible scenario of the poten-
tially infinite number of scenarios. These scenarios can be
clustered into scenario types, e.g. “free drive”, “lane change”,
“cut-in”, or “emergency braking”; [6], [7] present related
catalogs of scenario types. One can always come up with
another scenario type as well as with instances of those types
that are different from the types and instances used before.

*: Alphabetically ordered
F. Hauer, T. Schmidt, and A. Pretschner are with the Department

of Informatics at the Technical University of Munich, Germany. (email:
{florian.hauer,tabea.schmidt,alexander.pretschner}@tum.de).

B. Holzmüller is with ITK Engineering, Germany, e-mail:
bernd.holzmueller@itk-engineering.de

Simply adding a new object to the scenario might already
be sufficient to impose a challenge on the system as the
example of a kangaroo shows [8]. Intuitively, there is the
strong need for a test ending criterion, which can be defined
by addressing the two following issues. Firstly, we need to
judge whether all scenario types that occur in real traffic are
known to us. Secondly, we have to decide whether we tested
each of those types sufficiently. Approaches that answer these
questions have to provide statistical guarantees for safety
argumentation and certification while still being applicable
in practice. Such a test ending criterion would greatly benefit
the release process of automated and autonomous vehicles,
since resources can be used more effectively to fulfill the test
ending criteria.

The contribution of this paper is the following: We pro-
vide an approach to the first part of the described test ending
criterion for automated and autonomous driving systems.
The question whether all scenario types that occur in real
traffic are tested is modeled as an instance of the Coupon
Collector’s Problem. The resulting model receives statistical
data from real driving data as input and yields an answer to
the question as output.

§II introduces scenario-based testing. We recap the
Coupon Collector’s Problem in §III in order to model the
test ending criterion accordingly in §IV. §V provides insights
from experiments. We discuss related work in §VI and
conclude in §VII.

II. SCENARIO-BASED TESTING

Testing aims both to (1) gain confidence that functional-
ity was implemented correctly (requirements-based testing)
and (2) provoke failures (defect identification). In software
testing, test case selection is usually done by partitioning the
input domain, and then picking or generating a few inputs
(i.e., test cases) for each block of the partition. If the pur-
pose is requirements-based testing, blocks are chosen w.r.t.
common functionality, which are driving tasks, or scenario
types, in our case. If the purpose is defect identification, then
blocks are chosen w.r.t. some defect hypothesis. For instance,
such a hypothesis may state that failures are more likely to
occur at the boundaries of relevant intervals; or that specific
weather conditions negatively impact the accuracy of sensors.
Either way, the intuition is that the blocks should exhibit
“similar” behavior in terms of (1) requirements and/or (2)
the same class of potential failures they provoke. Partition-
based testing, understood as requirements-based testing, is



Automatic
Clustering

Manual 
Derivation

Specific
System Model

Requirements

Test Cases

Real Driving
Data

Completeness
Check (CCP)

Scenario 
Types

Test Case 
Generation

Start
Manual

Derivation
Of Scenario

Types?
Yes

No

Yes

No

Complete?

End

10

2

1

3

4

5

6

7

8

9

Control Flow

Data Flow

Fig. 1. Big Picture

precisely what we advocate here: the scenario types define
the blocks of the partition of the input domain. These
scenarios types are then used to generate scenario instances,
possibly in a defect-based way.

A. Big Picture

The idea of scenario-based testing is to automatically or
manually identify a reasonably small set of relevant dynamic
traffic situations, or scenario types; check if the set of
scenario types is complete; and then derive system-specific
tests for each scenario type. While this paper is concerned
with checking completeness of scenario types only, we need
to explain the big picture in Fig. 1.

Initially, we choose between manual (1) and automatic (2)
identification of scenario types. For manual identification (3),
several sources of information (5), e.g. requirements, safety
analysis, functional specifications, and traffic rules are used
for the identification of scenario types (6). For automatic
identification of scenario types (4), automated clustering
techniques are applied to a subset of pre-recorded real driving
data (7), e.g. suggested in [9]. Note that depending on the
distance measure used by the clustering algorithm, the auto-
matically identified clusters need not necessarily correspond
to scenario types that a human would identify with typical
recurring traffic situations. Also note our assumption that the
collected data is sufficiently diverse as—usually implicitly—
assumed by most existing data-driven approaches in this
domain: It must cover the multitude of driving tasks of
the automated or autonomous system under test, e.g. data
in different parts of the country for which the system is
designed. The data must not be biased towards a small part
of the driving task, e.g. only collecting highway drive data
on a single straight 10km long segment.

We now want to assess if the identified scenario types
can be expected to cover all real driving situations, which
constitutes the technical contribution of this paper. Using the
real driving data and the catalog of scenario types as input,
we model this problem as a Coupon Collector’s problem
(8), as explained in §III. If the catalog is incomplete, we
iterate the process (and possibly need to record more driving
data, which is not shown in the Figure). Otherwise, we use
the scenario types as a basis for the derivation of system-
specific test cases. We motivate that we cannot simply re-use

c1c2

c3ego

Fig. 2. Example test case for testing lane change functionality

recorded drives as tests (9) in §II-B and sketch how to derive
system-specific tests (10) in §II-C.

B. The Need for System-Specific Tests

The quality of pre-recorded real drives as test cases is
system-specific as the following example demonstrates: The
ego vehicle ego is driving on a two-lane highway behind the
car c3 and performs a lane change into the gap between the
cars c1 and c2. Suppose our goal is to test whether the system
keeps sufficient safety distance (shaded areas in Fig. 2) to
the surrounding cars during the lane change.

Assume that in a specific test case for this scenario type,
one system version (or configuration) does not keep sufficient
safety distance to c1. This means that this test case revealed
faulty system behavior. Now assume that a second system
version is implemented such that it keeps a larger safety
distance to surrounding cars and, because of this, does not
even perform a lane change in this test case! The same test
case that is able to reveal a faulty behavior for one system
is not even a very interesting test case of the correct form
(meaning it contains a lane change of the ego vehicle into the
gap) for another system. This means that the quality of a test
case depends on a specific system’s behavior: Recorded tests
may be good or bad at revealing failures, thus fundamentally
questioning the predictability of the testing procedure.

C. Test Case Derivation

Therefore, system-specific test cases for each scenario type
need to be generated for each version of the system. At first
sight, we could choose random scenario instances from each
scenario type. Analytical as well as empirical considerations
[10] show that if the goal of testing is to reveal failures,
then test cases need to be chosen on the grounds of defect
hypotheses. Otherwise, fully randomly picking tests from
the entire input domain cannot be shown to be inferior to
partition-based testing in general, which in turn questions the
very effort of defining the partition. Empirically, one gener-
ally applicable defect hypothesis states that failures are more
likely to occur at the boundaries of suitably chosen input
blocks, i.e., in “extreme” scenarios for each scenario type.
Therefore, we will first use scenario types to partition the
input domain (and test requirements), and second “extreme”
scenarios in each of the blocks to specifically target failure-
provoking behaviors. In this vein, existing works present a
multitude of test generation techniques. Very popular are
search-based techniques that try to identify the extreme test
cases, e.g. [11], [12]. The topic of test case generation,
however, relates to the second part of a test ending criterion
(Did we test a scenario type sufficiently?), which we do not
further discuss in this work. Our focus instead is on the



number of relevant scenario types that we compute on the
grounds of real test drive data.

III. THE COUPON COLLECTOR’S PROBLEM

The Coupon Collector’s Problem (CCP) is an instance of
the Urn Problem as described in [13]. A famous example
of the CCP are the collectable pictures of soccer players
during a world championship. There exist N different types
of coupons in the urn. Each type j is drawn with a constant
probability of pj > 0. It holds that 1 ≤ j ≤ N and∑N
j=1 pj = 1. One is interested in the number of samples

that have to be drawn independently (with replacement) from
the urn such that each type is at least drawn once. We will
later turn our attention to the problem of unknown numbers
of coupons. Additionally, one would like to know how large
the probability is to have a complete collection of all types
of coupons when we have drawn S coupons [14], [15]. This
means that a solution to the CCP takes the probabilities of
all types of coupons pj as input and yields a number of
necessary samples as output. Existing works distinguish two
cases for this problem: In the first case, pj is equal for all
types j, while in the second one, the probabilities pj may
differ for the distinct types.

In this work, we encounter the case of unequal proba-
bilities of scenario types. Let X be the random variable
describing the number of samples that need to be drawn until
all types are seen at least once. For the CCP, the samples are
assumed to be independent of one another. The following
formula can be used for the computation of the estimated
value E(X) of expected necessary samples for a complete
set [15]:

E(X) =

∫ +∞

0

(1−
N∏
i=1

(1− e−pix)) dx

Unfortunately, there is no analytical solution available
to compute the probability of having seen all types after
drawing S samples. Inspired by [16], we use Monte Carlo
simulations to calculate this probability.

The input for the simulations is a set of types j (those
will be the scenario types later on) and their probabilities
pj . A single simulation of the CCP is achieved by randomly
drawing samples from an urn until all types are seen at least
once. The idea of the Monte Carlo simulation is to repeat
this single simulation many times to yield good estimations
for the mean, variance and standard deviation of the random
variable X . We start with a fixed number of 1000 simulations
to obtain a good estimation of the variance σ and mean X
of X . This allows us to compute the number of necessary
simulations sim as suggested in [17]: When calculating this
number, we use one percent for the standard error e of the
sample mean X . This means that σ√

sim
needs to be smaller

than one percent of the mean value X as estimated by the
first 1000 simulations. We use a confidence level conf of
0.95 (z-score z1−0.05/2 = 1.96) while computing the number
of simulations sim as follows:

sim ≥
z21−α/2 ∗ σ

2

e2

We can derive the probability P (X ≤ S) to discover all
distinct types at least once when drawing at most S samples
after executing an additional sim−1000 simulations. For the
computation of P (X ≤ S) we regard how often it occurs
that X is equal to i during the simulations with 1 ≤ i ≤ S.
By adding up these occurrences occ(i) we can calculate the
probability in a similar way as in [18]:

P (X ≤ S) =
1

sim

S∑
i=1

occ(i)

In the same way we can add up the occurrences occ(i)
until we achieve a given threshold τ . Therefore, we search
for the smallest number of samples S, for which the added
up occurrences are equal to or greater than τ .

S = minimize Y subject to
1

sim

Y∑
i=1

occ(i) ≥ τ

is the number of samples that need to be drawn until all
types are seen at least once with probability τ .

IV. THE TEST ENDING CRITERION AS CCP

We have seen that one test ending criterion can be reduced
to the question whether the list of scenario types is complete.
If all scenario types that happen in real traffic are contained
in the collected data, the list is complete. This means that we
need to see an instance of each scenario type at least once in
the data. We are hence interested in the question of whether
a scenario type exists in real traffic that is not reflected in
the collected data. This can be modeled as a CCP.

Number of
Needed Scenarios 

Samples 𝑆

Real Driving Data
(𝑅 scenario

samples)

Simulation 
Number 𝑠𝑖𝑚

Determination

Histogram
Computation

Simulation 
Execution

Probability 
Computation

Monte Carlo simulation of the 
Coupon Collector’s Problem

Hypothetical
New Scenario

Fig. 3. Process of computing the needed number of samples

We start with a given set of real drive data that may
or may not cover all scenario types. From this data we
derive the number of necessary scenario samples to find all
scenario types at least once as shown in Fig. 3. A scenario
sample is a single instance of an arbitrary scenario type.
Note that scenarios vary in time and in driven distance.
The scenarios in the collected driving data are assigned to
one of the N distinct scenario types, which is usually easy
to do in an ad-hoc way and can also be automated using
machine learning [19]. For each type, we count the number
of occurrences in the collected data. With these numbers we
build a histogram of occurrence probabilities, which serves as
an input for the CCP. However, applying the CCP directly to
these probabilities would compute the necessary number of
scenario samples until all the already known scenario types
have been seen at least once when randomly sampling—and
this of course is of limited interest if we already know which
scenario samples belong to which scenario types. Instead,



we are now interested in deciding if there may be scenario
types in the real world that are not covered by the collected
data. To this end, we assume that there exists a hypothetical
undiscovered scenario with occurrence probability pnew.
This probability is not known a priori, but can iteratively
be estimated. The probabilities of the other scenarios pj
are scaled linearly to p′j such that pnew +

∑N
j=1 p

′
j = 1

holds. The updated probabilities p′j together with pnew serve
as input for the CCP, which then computes the number
of necessary scenario samples to see all scenario types at
least once, including the newly added hypothetical type. For
computation purposes, we use a Monte Carlo simulation as
described above. The number of simulations sim within a
single Monte Carlo simulation is determined and executed to
achieve a result with a given confidence level and error rate
as mentioned in §III. Afterwards, we calculate the necessary
number of scenario samples S to see all scenario types at
least once with a certain probability τ .
S can be used to answer the question whether we did

collect all scenarios: Assume that at some point the collected
data contains R scenario samples and that R > S, meaning
that more scenario samples have been collected than the
computed number of samples to see a new hypothetical
scenario. Further assume that no such new scenario type has
been seen during the collection of the R scenario samples.
However, with probability τ , we should have seen a new
hypothetical scenario type that has an occurrence probability
of at least pnew. Therefore, we conclude that our list of
scenarios is complete with regard to the provided confidence
values. Data collection can hence be stopped.

V. EXPERIMENT

Automated and autonomous driving systems have to han-
dle a variety of driving tasks, most prominently piloting
through highway or city traffic. Depending on the location,
these driving tasks differ a lot. Therefore, certain scenario
types may or may not be encountered in some places. For
instance, on a German highway, the drivers are obligated to
drive on the furthest right lane, when possible. In contrast,
this is not the case in the USA. Analogously, speed limits
vary from country to country with Germany as the extreme
case, where there are no speed limits at all on some parts of
the highway. Similarly, distinct scenarios can be found for
the city driving task. In many European city centers, cars and
bicycles are separated on different lanes, whereas in India,
there is mainly mixed traffic. Therefore, the number of and
kinds of scenarios are highly dependent on the circumstances
under which the data was collected.

Therefore, in our experiments we are interested in finding
out how differently sized and shaped distributions of scenario
types affect the computed number of necessary scenario
samples S. Additionally, we try to gain insight into the
influence of pnew and τ on the number of samples S, since
both variables are required as an input for our approach.

We use four different distributions of scenarios in the
experiments and vary the parameters τ and pnew. The con-
fidence level conf for calculating the number of simulations

sim is set to 0.95 in all experiments. Also, we fix the
standard error e to 1% in the computations of the necessary
number of simulations. Both of these values are set according
to the opinions of experts in the field.

Car manufacturers and suppliers that are developing
automated and autonomous driving systems usually have
databases with real drive data as well as histograms of oc-
currence probabilities for a variety of different locations and
driving tasks. They can directly apply the presented approach
to their data. The histograms of the four distributions used in
the experiments can be found in Fig. 4. The distributions 1,
2, and 4 are fictional. The third one is based on [20], where a
distribution is presented that is derived from real drive data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Distinct Scenario Type ID

0

0.02

0.04

0.06

0.08

0.1

0.12

O
cc

ur
re

nc
e 

P
ro

ba
bi

lit
y

(1) Highway: R = 1, 000

0 10 20 30 40
Distinct Scenario Type ID

0

0.02

0.04

0.06

0.08

O
cc

ur
re

nc
e 

P
ro

ba
bi

lit
y

(2) Highway: R = 50, 000

1 2 3 4 5 6
Distinct Scenario Type ID

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
cc

ur
re

nc
e 

P
ro

ba
bi

lit
y

(3) City: R = 1, 000

0 5 10 15 20 25 30
Distinct Scenario Type ID

0

0.05

0.1

0.15

0.2

0.25

O
cc

ur
re

nc
e 

P
ro

ba
bi

lit
y

(4) City: R = 50, 000

Fig. 4. Histograms of the four distributions used in the experiments

The first two distributions display the task of driving on a
highway. Both are shaped in a way such that the differences
in probabilities are relatively moderate. The first distribution
is a snapshot after collecting R = 1, 000 scenario samples of
fifteen scenario types with a smallest probability of 0.025.
To show the process of data collection and the discovery of
new scenario types, we extended the first distribution and
assume additional scenario types at R = 50, 000 collected
scenario samples. Forty-five different scenario types are
contained with the smallest probability being 0.003. We
regard the city driving task in the third and the fourth
distribution. Analogously to the other two distributions, the
third one displays the state after collecting R = 1, 000
scenario samples, whereas the last distribution is the result
of gathering R = 50, 000 scenario samples. We based the
third distribution on the work in [20], in which the authors
derive a distribution of six different scenario types from data
collected by the U.S. Department of Transportation. There
are only six scenario types, since the authors manually create
these types and map collected data to them, which prevents
the discovery of new scenarios. However, the shape of the
distribution with one very common scenario type and a lot of



rare types with a lowest probability of 0.0019 is in line with
the intuition of traffic in cities with a multitude of uncommon
situations. We extended this distribution to the fourth one
with a few rare and a large amount of very rare scenario
types with lowest probabilities of 0.0001.

Within the experiments, the necessary number of scenario
samples S is computed for different combinations of distri-
bution, pnew, and τ . The results of the experiments can be
found in Table I. We executed each experiment 30 times and
provide S as well as the standard deviation σ of S.

TABLE I
CALCULATED NO. OF NEEDED SAMPLES S AND THEIR STANDARD

DEVIATION FOR THE FOUR DISTRIBUTIONS; 30 EXPERIMENT RUNS

distribution
pnew

τ = 0.95 τ = 0.99
number N S σ S σ

1 15 0.001 2,991 18.72 4,608 59.39
2 45 0.001 3,001 21.60 4,594 57.45
3 6 0.001 3,063 34.49 4,634 67.07
4 30 0.001 46,007 444.68 62,250 893.71
1 15 0.0001 29,966 165.81 45,930 451.78
2 45 0.0001 30,312 226.41 46,561 507.33
3 6 0.0001 29,988 167.46 45,881 333.53
4 30 0.0001 47,876 485.93 63,862 1058.07
1 15 0.00001 332,544 2111.74 510,755 5002.41
2 45 0.00001 333,595 2436.66 512,982 4761.08
3 6 0.00001 299,330 2462.43 460,993 4742.39
4 30 0.00001 299,600 2907.31 458,658 5097.27

Our results provide evidence for the following two con-
clusions. Firstly, and probably not too surprisingly in hind-
sight, if the probability of the new scenario pnew is much
smaller than the probabilities of the other scenarios p′j ,
the probability of the new scenario becomes the dominant
factor in the calculations of the number of needed samples.
The smaller the probability of a scenario, the longer we
have to wait to discover this scenario. Therefore, we need
more samples to see all scenarios at least once. If there
is one scenario with a much smaller probability than the
other ones, we need a large amount of samples to see
this scenario for the first time and often have seen the
others on the way. Thus, the calculated number of needed
samples for a complete collection is largely dependent on
this small probability. We therefore call it “dominant” in the
computations. This dominance can be seen in the results. For
the distributions 1, 2, and 3 even the smallest probabilities
are higher than pnew. All of the distributions lead to a similar
amount of samples for all parameter settings. On the other
hand, the distribution 4 contains fifteen scenarios that have a
low probability between 0.0001 and 0.0005. Therefore, the
results for this distribution are not dominated by probabilities
of 0.001 and 0.0001 for pnew and thus differ from the results
of the other distributions. However, for pnew = 0.00001 the
new scenario becomes dominant in distribution 4 and the
resulting S is similar to the one of the other distributions.
Secondly, associated with the first findings, we discover that
the number N of scenario types that were discovered before
the experiments does not seem to impact the results. This can
be seen especially for the distributions representing the task
of driving on highways. The calculated numbers of necessary

samples for the distributions 1 and 2 are close to each other
with 2, 991 and 3, 001 samples for pnew = 0.001. But, the
first distribution contains only N = 15 distinct scenarios,
whereas the second one consists of forty-five scenario types.
The same can be seen for a lower probability of pnew . In both
distributions the probability of the new scenario is smaller
than the probabilities of the already seen scenarios. In these
cases, the probability of the new scenario dominates the
calculations of the number of needed samples as mentioned
earlier. Therefore, the other scenarios and their quantity
become less relevant. Since we intuitively would search for
a new scenario that has a smaller probability than the others
(as otherwise we should have seen it before), the insights
from these experiments may generalize to real world data.

These concrete examples visualize how the question can
be answered whether we did collect all scenarios: For the
distribution 2, we calculate that for pnew = 0.0001 and τ =
0.99 a number of S = 46, 561 scenario samples is needed to
see each scenario type at least once. Since the distribution
2 contains already R = 50, 000 samples, we can state that
with a probability of 99% there exists no new scenario that
has a probability of 0.0001 or higher. Otherwise, we would
already have seen it. Thus, we know that our list of scenarios
is complete for the case that we are not interested in finding
a scenario that has a lower probability than 0.0001. However,
if we are interested in a hypothetical undiscovered scenario
with pnew = 0.00001 a lot more scenario samples would
be needed (S = 512, 982 > R = 50, 000) and the data
collection has to continue.

VI. RELATED WORK

In [2], a statistical calculation is presented to show that
verification and validation solely by real test drives is in-
feasible. The average driven kilometers between two fatal
accidents on German highways are used to derive that 6.61
billion kilometers need to be driven to encounter at least one
of these scenarios. Similarly, also in [3] fatal accidents are
used. It is stated that tens of billions of kilometers are needed
for direct measurement of sufficient events for statistical
analysis. The authors suggest to use virtual scenarios instead.
Another work [4] states that millions or even billions of miles
have to be driven to arrive at an acceptable level of certainty.
Instead, it is suggested to accelerate testing by using mainly
critical scenarios. All these works did the important task
of raising the awareness that verification and validation by
real drive testing alone is not feasible. However, they do not
provide a practically applicable test ending criterion.

Other works [19], [21] suggest that the driving system
needs to be at least as good as the human driver. The driving
behavior of a human driver is analyzed in all scenario types
of a specific list of scenario types. An expected system
behavior for those scenario types is derived. Then, the
system performance is measured with respect to this expected
behavior. This might be used as a test ending criterion for
those specific scenario types: Stop testing once it can be
shown that the driving system is better than a human driver.
However, it cannot be used as a general test ending criterion,



since the list of scenario types might not be complete. In this
case, it cannot be argued that a system is safe, because it only
performed better than a human driver in some scenarios.

There exist works [22], [23] that analyze real drive data
and generate for each scenario type a histogram of occurring
instances. For example, a cut-in scenario is happening with
different relative positions of the vehicles. Those distri-
butions are then used for test case generation by using
parameterized scenarios and selecting concrete values for
parameters according to the distributions. However, they do
not present a test ending criterion.

VII. CONCLUSION

We started by describing virtual testing of automated and
autonomous driving systems with simulated scenarios. Be-
cause of the potentially infinite number of different scenarios
the system has to cope with, one can always come up with
a new scenario type or a new instance of a type that is
different from all others. This immediately raises the need
for a test ending criterion, consisting of two parts: Did
we test all scenario types? Did we sufficiently test each
type with specific instances? We presented a criterion for
the first question as well as a methodology to apply it
in practice together with other established scenario-based
testing approaches. The test ending criterion is formulated
as the question if sufficient real drive data is collected such
that all scenario types of the real traffic are contained in
the data. For the computation if they are indeed all scenario
types, we model this as a CCP. We show how it can be
used as a test ending criterion for testing automated and
autonomous driving systems, providing the basis for a safety
argumentation for the release of said systems.

It is important not to draw the wrong conclusions from
our results. Our approach effectively indicates that additional
data may be needed if an unspecified scenario type with
a certain occurrence probability is expected not to have
been covered yet. However, it cannot guarantee that this
additional data will eventually contain a specific missing
scenario type: Continuing to collect data in the flatlands
obviously is unlikely to reveal scenario types prevalent in
the mountains.

Further research has to be conducted regarding the prob-
ability of the undiscovered hypothetical scenario pnew as
well as the threshold τ . We assume them to be given and
show experiment results for a variety of different values,
but it is difficult to choose suitable values a priori. Another
assumption in our work is that the samples from the real
drive data are independent from one another. This is needed
to apply the CCP. For the experiments, the manually created
distributions could be far from reality, which is a threat to the
validity of the experimental insights. Methodologically prob-
lematic is the use of an unsupervised clustering technique,
e.g. [9], for drive data clustering. Depending on the applied
distance metric between clusters, the clustering technique
might provide a different number of clusters, which means a
different number of scenario types. We also have mentioned

above that depending on the distance measure, the automat-
ically derived clusters need not necessarily correspond to
real driving situations that a human would come up with.
From a testing perspective, these synthetic clusters are not
necessarily less adequate than real driving situations but are
likely less easy to interpret by certification authorities.

REFERENCES

[1] P. Koopman and M. Wagner, “Challenges in autonomous vehicle
testing and validation,” SAE International Journal of Transportation
Safety, vol. 4, no. 1, pp. 15–24, 2016.

[2] W. Wachenfeld and H. Winner, “The release of autonomous vehicles,”
in Autonomous Driving. Springer, 2016, pp. 425–449.

[3] T. Helmer, L. Wang, K. Kompass, and R. Kates, “Safety performance
assessment of assisted and automated driving by virtual experiments:
Stochastic microscopic traffic simulation as knowledge synthesis,”
in IEEE 18th International Conference on Intelligent Transportation
Systems (ITSC), 2015, pp. 2019–2023.

[4] D. Zhao and H. Peng, “From the lab to the street: Solving the challenge
of accelerating automated vehicle testing,” 2018, online at www.mcity.
umich.edu, retrieved 11th March 2019.

[5] S. Ulbrich, F. Schuldt, K. Homeier, M. Steinhoff, T. Menzel, J. Krause,
and M. Maurer, “Testing and validating tactical lane change behavior
planning for automated driving,” in Automated Driving. Springer,
2017, pp. 451–471.

[6] J. Zhou and L. del Re, “Reduced complexity safety testing for adas
& adf,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 5985–5990, 2017.

[7] H. Hungar, F. Köster, and J. Mazzega, “Test specifications for highly
automated driving functions: Highway pilot,” 2017.

[8] K. Saleh, M. Hossny, and S. Nahavandi, “Kangaroo vehicle collision
detection using deep semantic segmentation convolutional neural net-
work,” in 2016 International Conference on Digital Image Computing:
Techniques and Applications (DICTA). IEEE, 2016, pp. 1–7.

[9] F. Kruber, J. Wurst, and M. Botsch, “An unsupervised random forest
clustering technique for automatic traffic scenario categorization,”
in 2018 21st International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2018, pp. 2811–2818.

[10] A. Pretschner, “Defect-based testing.” In: Dependable Software Sys-
tems Engineering, 2015.

[11] R. B. Abdessalem, S. Nejati, L. Briand, and T. Stifter, “Testing vision-
based control systems using learnable evolutionary algorithms,” in
Proc. of the 40th Int. Conf. on Software Engineering (ICSE), 2018.

[12] J. Deshmukh, M. Horvat, X. Jin, R. Majumdar, and V. S. Prabhu,
“Testing cyber-physical systems through bayesian optimization,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 16,
no. 5s, p. 170, 2017.

[13] J. Kobza, S. Jacobson, and D. Vaughan, “A survey of the coupon
collector’s problem with random sample sizes,” Methodology and
Computing in Applied Probability, vol. 9, no. 4, pp. 573–584, 2007.

[14] A. V. Doumas, “How many trials does it take to collect all different
types of a population with probability p?” Journal of Applied Mathe-
matics and Bioinformatics, vol. 5, no. 3, p. 1, 2015.

[15] M. Ferrante and M. Saltalamacchia, “The coupon collector’s problem,”
Materials matemàtics, pp. 0001–35, 2014.

[16] W. Kurt, “Count bayesie: The toy collector’s puzzle,” online at https:
//www.countbayesie.com/blog/2015/10/13/the-toy-collectors-puzzle,
retrieved 26th February 2019, 2015.

[17] G. D. Israel, “Determining sample size,” 1992.
[18] S. N. Luko, “The “coupon collector’s problem” and quality control,”

Quality Engineering, vol. 21, no. 2, pp. 168–181, 2009.
[19] C. Roesener, F. Fahrenkrog, A. Uhlig, and L. Eckstein, “A scenario-

based assessment approach for automated driving by using time series
classification of human-driving behaviour,” in IEEE 19th Int. Conf. on
Intelligent Transportation Systems (ITSC), 2016, pp. 1360–1365.

[20] D. Zhao, Y. Guo, and Y. J. Jia, “Trafficnet: An open naturalistic
driving scenario library,” in 2017 IEEE 20th International Conference
on Intelligent Transportation Systems (ITSC). IEEE, 2017, pp. 1–8.

[21] C. Roesener, J. Sauerbier, A. Zlocki, F. Fahrenkrog, L. Wang et al.,
“A comprehensive evaluation approach for highly automated driving,”
in 25th International Technical Conference on the Enhanced Safety of
Vehicles (ESV) National Highway Traffic Safety Administration, 2017.



[22] A. Pütz, A. Zlocki, J. Küfen, J. Bock, and L. Eckstein, “Database
approach for the sign-off process of highly automated vehicles,” in
25th International Technical Conference on the Enhanced Safety of
Vehicles (ESV) National Highway Traffic Safety Administration, 2017.

[23] E. de Gelder and J.-P. Paardekooper, “Assessment of automated driving
systems using real-life scenarios,” in Intelligent Vehicles Symposium
(IV), 2017 IEEE. IEEE, 2017, pp. 589–594.


