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Abstract
Purpose: Brown adipose tissue (BAT) plays a potential role in energy and glucose metabolism 
in humans. Thyroid hormones (TH) are main regulators of BAT development and function. 
However, it remains unknown how the magnetic resonance (MR)-based proton density fat 
fraction (PDFF) of supraclavicular adipose tissue used as a surrogate marker for BAT presence 
relates to TH. Therefore, the purpose of this analysis was to investigate the relationship be-
tween supraclavicular PDFF and serum levels of TH. Methods: In total, 96 adult volunteers 
from a large cross-sectional study who underwent additional MR examination of the neck and 
pelvis were included in this analysis. Segmented PDFF maps of the supraclavicular and gluteal 
subcutaneous adipose tissue were generated. Delta PDFF was calculated as the difference 
between gluteal and supraclavicular PDFF and grouped as high (≥12%) or low (< 12%) based 
on the median and the clinical rationale of a high versus low probability of BAT being present. 
Thyroid-stimulating hormone (mIU/L), free triiodothyronine (FT3, pg/mL) and free thyroxine 
(FT4, ng/dL) levels were determined in blood samples. Body mass index (BMI) was calculated 
as weight (kg)/height (m)2. Statistical analyses included the use of paired samples t test, sim-
ple linear regression analysis and a multivariable linear regression analysis. Results: The me-
dian age of the subjects (77% female) was 33 years, BMI ranged from 17.2 to 43.1 kg/m2. Su-
praclavicular and gluteal PDFF differed significantly (76.5 ± 4.8 vs. 89.4 ± 3.5 %, p < 0.01). 
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Supraclavicular PDFF was associated with FT3 in subjects with high delta PDFF (R2 = 0.17, p < 
0.01), with higher FT3 being associated with lower supraclavicular PDFF (y = 85.2 + –3.6 x). In 
a multivariable linear regression analysis considering further potential prognostic factors, the 
interaction between the delta PDFF group and FT3 remained a predictor for supraclavicular 
PDFF (B = –4.65, p < 0.01). Discussion/Conclusions: Supraclavicular PDFF corresponds to the 
presence of BAT. In the present analysis, supraclavicular PDFF is correlated with FT3 in subjects 
with high delta PDFF. Therefore, the present findings suggest that biologically active T3 may 
be involved in the development of supraclavicular BAT. © 2020 The Author(s)

Published by S. Karger AG, Basel

Introduction

Brown adipose tissue (BAT) is an organ contributing to thermoregulation in mammals 
including humans. This extensively vascularized tissue is characterized by smaller adipocytes 
than those in white adipose tissue (WAT), a high number of mitochondria, a centrally located 
nucleus, multiple small triglyceride droplets and more intracellular water. Brown adipocytes 
express uncoupling protein 1, a protein uncoupling oxidative phosphorylation from adenosine 
triphosphate production, resulting in release of energy as heat. Depots of BAT in adult humans 
can be mostly found in the supraclavicular and cervical region [1]. Notably, there is evidence 
that adults exhibit two types of BAT having a rather similar cell morphology but originate 
from different progenitors: “classic” BAT and “beige” or “brown-in-white/brite” fat. Several 
studies suggest that within WAT depots, “browning,” i.e. the process in which precursor cells 
placed in WAT become beige/brite cells instead of white adipocytes, can be induced [2–4]. 
Activation of BAT and browning of WAT contribute to an increase in total energy expenditure 
[5, 6], and several studies have investigated BAT as a potential target tissue for body fat 
reduction, reduction of elevated blood triglyceride concentrations and diabetes [7–9].

Besides approaches like cold exposure to increase BAT activity and volume or even to 
induce browning of WAT [10, 11], thyroid hormones (TH) have been shown to play a role in 
BAT function and expansion [12–14]. In humans, hyperthyroidism correlates with increased 
BAT activity and browning of WAT [15–19]. A cell-autonomous role of TH in regulating BAT 
function has been postulated [18, 20–22]. In particular, triiodothyronine (T3) has been 
described to not only activate BAT but also to regulate BAT differentiation and induce 
browning of WAT [12, 23, 24].

So far, human studies on correlations between TH and BAT used [18F]-2-fluoro-2-deox-
yglucose positron emission tomography (FDG-PET) and computed tomography (CT) for 
BAT detection based on its glucose uptake [15–17]. Recent developments established 
magnetic resonance imaging (MRI) as noninvasive imaging modality for detecting and char-
acterizing BAT. In contrast to FDG-PET, MRI is independent from the current metabolic 
activity of BAT, free of ionizing radiation and without the need for intravenous contrast. 
Several studies have demonstrated MRI to offer powerful tools in BAT imaging [25–31]. The 
most frequently used approaches are chemical shift encoding-based fat quantification tech-
niques [32, 33]. The state-of-the-art chemical shift encoding-based fat quantification tech-
nique considering multiple confounding factors relies on the measurement of the proton 
density fat fraction (PDFF), defined as the proportion of mobile proton density in fat tissue 
attributable to fat [34], as BAT has been shown to have a lower fat fraction compared to 
WAT [25, 35–37]. Therefore, PDFF can be used as surrogate marker for the presence of BAT. 
Furthermore, it can be assumed that a smaller PDFF difference between (potentially BAT-
containing) supraclavicular and (white) subcutaneous adipose tissue means a higher 
resemblance of the adipose tissue composition within the two compartments. In other 
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words, the more the PDFF values in supraclavicular and subcutaneous adipose tissue 
converge, the more the composition of supraclavicular adipose tissue, which is typically a 
mixture of BAT and WAT, resembles that of subcutaneous WAT. Reversely, a high PDFF 
difference (delta PDFF) between the two compartments reflects a different adipose tissue 
composition in supraclavicular compared to subcutaneous fat, presumably due to a larger 
proportion of BAT in the supraclavicular fat depot [25, 38, 39]. However, PDFF of WAT is 
associated with anthropometric parameters such as body mass index (BMI) and can 
therefore vary interindividually [40]. Thus, WAT PDFF can be used as intraindividual 
reference value for PDFF of WAT. Based on this reference, leading to an individual “delta 
PDFF,” the supraclavicular adipose tissue composition can be interpreted as comparable to 
that of WAT or different from WAT.

To date, it remains unknown how the MRI-based PDFF of adipose tissue relates to TH 
levels. Thus, the purpose of the present analysis was to investigate the relationship between 
the PDFF of supraclavicular adipose tissue and TH levels. The supraclavicular adipose tissue 
was selected as a typical location where BAT might be present in humans, and the gluteal 
region represents a typical location enclosing primarily white adipocytes.

Subjects and Methods

Subjects
For a subgroup of subjects (n = 111; 75 women and 36 men) who participated in a cross-

sectional study at the Institute for Nutritional Medicine, Klinikum rechts der Isar, Technical 
University of Munich [41], additional MRI data are available. The aim of the cross-sectional 
study was to investigate genetic factors and resting metabolic rate. Study protocols and 
procedures were approved by the ethical committee of the School of Medicine of the Tech-
nical University of Munich, Germany. Subjects were screened for eligibility and were included 
if age was equal to or greater than 18 years. Participants who appeared healthy according to 
self-reporting, showed no history of or acute severe diseases (e.g., cancer, renal dialysis, 
inflammatory bowel disease, stroke) or surgery within the last 3 months and did not have 
acute physical impairment were eligible for the study. The study design did not define explicit 
inclusion criteria. Based on collected data on health status and lifestyle factors, this provided 
the possibility to include and exclude participants for specific research questions. Pregnant 
women as well as subjects with standard contraindications for MRI examinations were 
excluded from the additional MRI scan. For the current analysis, subjects who did not complete 
MRI (n = 4), in whom blood sampling was not possible (n = 5), with prior complete thyroid-
ectomy (n = 1), with Graves’ disease (n = 1) and with levels of thyroid-stimulating hormone 
(TSH) of < 0.1 mIU/L, i.e. below detection limit, indicating hyperthyroidism (n = 3) were 
excluded. Furthermore, one subject with a clearly outlying free thyroxine (FT4) level was 
excluded. In total, 96 participants were included in the present statistical analysis. All subjects 
gave written informed consent.

BMI Measurement
Height was measured without shoes in a standing position using a stadiometer (Seca, 

Hamburg, Germany) and reported to the nearest 0.1 cm. Weight was assessed during a 
bioimpedance analysis using Tanita BC 418 MA (Tanita, Tokyo, Japan). Measurements were 
performed in light clothing and with voided bladder, whereby 1.0 kg was subtracted auto-
matically for clothes. BMI was calculated as the quotient of weight in kilogram and height in 
meters squared (kg/m2). Information on the health status and medication was assessed using 
standardized questionnaires.
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TH Analysis
Fasting serum samples were analyzed by SYNLAB MVZ Labor München Zentrum GbR 

(Munich, Germany) for FT4 (ng/dL) and free triiodothyronine (FT3, pg/mL) using chemilu-
minescence immunoassay (CLIA, Siemens Centaur XP; Siemens Healthcare GmbH, Erlangen, 
Germany) according to standard operation procedures. The analytical sensitivity of the test 
was 0.1 ng/dL for FT4 and 0.2 pg/mL for FT3. The tests were standardized according to 
internal standards using United States Pharmacopeia. The coefficients of variations (C.V.) 
between and within runs were as follows for FT4 and FT3: FT4, 2.23–3.33% (within runs) 
and 3.44–4.58% (between runs); FT3, 2.35–3.08% (within runs) and 2.76–4.05% (between 
runs). The reference values specified by the laboratory are as follows: 0.89–1.76 ng/dL for 
FT4 and 2.3–4.2 pg/mL for FT3. The TSH levels (mlU/L) were determined in duplicate using 
an antibody enzyme-linked immunosorbent assay (HUMAN Diagnostic, USA). According to 
the manufacturer’s protocol, the reference values are determined within 0.3–4.0 mlU/L TSH. 
The analytical sensitivity of the test was determined for < 0.10 mlU/L TSH. The standard curve 
was calibrated with the 2nd IRP WHO Reference Standard 80/558. Furthermore, the standard 
curve was based on TSH concentrations across a range of 0–30 mlU/L. The C.V. between  
(C.V. = 2.5%) and within runs (C.V. = 4.7%) were below their advised levels. A monoclonal 
TSH antibody was pre-coated on a microtiter plate. Serum samples, calibrators and enzyme 
conjugates were added forming a sandwich complex fixed by binding to the immobilized 
antibody. After washing out excess components, a substrate reagent was added, and the 
resulting color was measured photometrically (Infinite F50; Tecan GmbH, Crailsheim, 
Germany) at a wavelength of 450 nm. The optical imprecisions were corrected by the reference 
wavelength of 620 nm. Interpolation was used (HUMAN Diagnostic, USA) for the calculation 
of TSH concentrations using Graphpad Prism 7 (GraphPad Software, USA).

MRI Measurements
Subjects underwent an MRI examination of the neck and the abdomen/pelvis on a 3T 

Philips scanner (Ingenia; Philips Healthcare, Best, Netherlands) using a head-neck coil and a 
combination of anterior and posterior coil arrays, respectively. Scans were performed in an 
air-conditioning-controlled scanner room (21  ° C) after some acclimatization time (altogether 
approximately 45 min), while the study procedure was explained and the scanning prepara-
tions were conducted. The scans were performed throughout all seasons.

Supraclavicular and Pelvic PDFF Mapping
In order to determine the supraclavicular and gluteal subcutaneous PDFF, a scan protocol 

as described in detail before [40] was used, including two six-echo multi-echo 3D spoiled 
gradient echo sequences with bipolar gradients of the supraclavicular and the posterior 
upper pelvic region. Sequence parameters are listed in online supplementary Table S1 (for all 
online suppl. material, see www.karger.com/doi/10.1159/000507294). A small flip angle 
was used to minimize T1 bias effects [42, 43]. PDFF maps were generated online using the fat 
quantification routine of the MR vendor [44]. This routine comprises a complex-based water-
fat separation algorithm, accounting for known confounding factors including phase error 
correction, a single T2* correction and the consideration of the spectral complexity of fat 
using the multi-peak fat spectrum model of Ren et al. [45]. The imaging-based PDFF map was 
computed as the ratio of the fat signal over the sum of fat and water signals.

PDFF Analysis
By the use of an in-house semiautomatic segmentation tool implemented in MATLAB 

(MathWorks, Natick, MA, USA), a radiologist (6 years of experience in whole-body imaging) 
segmented the complete supraclavicular and the complete deep gluteal fat depots bilaterally, 



335Obes Facts 2020;13:331–343

Junker et al.: PDFF in Supraclavicular Fat and Thyroid Hormones

www.karger.com/ofa
© 2020 The Author(s). Published by S. Karger AG, BaselDOI: 10.1159/000507294

as described before in detail [40]. PDFF values of the resulting volumes of interest (in %) were 
noted separately for the left and right fat depot, and the average PDFF per region (supracla-
vicular/gluteal) was calculated. Reproducibility of the segmentation was shown in a previous 
publication for the same adipose tissue compartments [36]. Delta PDFF was calculated by 
subtracting the average supraclavicular PDFF from the average gluteal subcutaneous PDFF. 
Two approximately equally sized groups were defined: a high delta PDFF group with delta 
PDFF ≥12% (n = 51) and a low delta PDFF group with PDFF < 12% (n = 45). The cut-off of 12% 
was the median delta PDFF rounded to the nearest integer. The groups were built in order to 
differentiate between subjects where the supraclavicular depot showed a distinctly different 
composition compared to WAT, pointing to a high probability of BAT being present, and 
subjects where the supraclavicular adipose tissue composition resembled that of WAT, i.e. 
with a low probability of BAT being present. The clinical rationale for choosing the rounded 
median delta PDFF were findings from previous studies showing the difference between 
mean fat fraction values in BAT versus WAT to lie between 8% in middle-aged adults and 22% 
in children [25, 38]. Thus, 12% was selected as a reasonable cut-off for the present sample of 
adults with a median age of 33 years.

Statistical Analysis
The collected parameters were normally distributed with the exception of age, weight, 

BMI and TSH; thus, data are expressed as mean ± standard deviation (range in parentheses), 
if not otherwise denoted. Paired samples t test was used for comparison of PDFF values of the 
supraclavicular and subcutaneous gluteal adipose tissue compartment. Associations between 
supraclavicular PDFF and TH (FT3, FT4 and TSH) levels were evaluated using simple linear 
regression analysis and Spearman’s rank correlation, respectively (for normal and non-normal 
distributed parameters). Each analysis was first performed for all subjects and then separately 
for the low delta PDFF group and the high delta PDFF group (low: delta PDFF < 2%; high: delta 
PDFF ≥12%). Subsequently, a multivariable linear regression analysis was performed. The 
analysis was carried out with supraclavicular PDFF as the dependent variable, and age, sex, 
BMI, FT3, FT4, TSH, delta PDFF group and the interaction term between delta PDFF group and 
FT3 as independent variables. This interaction term was supposed to reflect a possible 
difference in the effect of FT3 on supraclavicular PDFF depending on whether the supracla-
vicular adipose tissue depot resembles WAT or possesses a different composition, pointing to 
BAT. Statistical analysis was performed by using MedCalc Statistical Software (version 16.4.3; 
MedCalc Software bvba, Ostend, Belgium; https://www.medcalc.org; 2016) and the software 
package SPSS (IBM SPSS Statistics for Windows, Version 25.0; IBM Corporation, Armonk, NY, 
USA). All tests were performed with a significance level of 0.05 (two-sided), and no correction 
was made for multiple testing due to the explorative character of the analysis.

Results

In total, 96 volunteers were included in the analysis (64 women and 32 men). The subjects 
had a broad range of BMI (17.2–43.1 kg/m2). Median age was 33 years (range, 21.2–77.3) 
(Table 1). Median age in women was 30.9 years (range, 21.2–77.3) and in men 34.4 years 
(range, 22.6–61.3). Within the high and the low delta PDFF groups, sex, age and BMI were 
distributed as follows: in the low delta PDFF group, there were 26 women (58%), median age 
was 44.6 years and mean BMI was 28.2 kg/m2. In the high delta PDFF group, there were 38 
women (75%), median age was 27.9 years and mean BMI was 23.0 kg/m2. Of the 64 women 
included in the analysis, 26 were on oral contraceptives. None of the subjects was on statins 
or took biotin as supplement.
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Supraclavicular PDFF with 76.5 ± 4.8% (66.5–87.2%) was significantly lower (p < 0.01) 
than subcutaneous gluteal PDFF with 89.4 ± 3.5% (78.7–94.8%). Mean delta PDFF was 12.9 
± 4.1% (3.2–22.7%). The unilateral volume of the segmented deep gluteal fat depot ranged 
from 135.6 to 780 mL, the unilateral volume of the segmented supraclavicular fat depot 
ranged from 15.9 to 156.7 mL. Correlations between PDFF values and age, sex and BMI are 
shown in online supplementary Table S2.

Simple linear regression analyses did not show significant associations between the 
supraclavicular PDFF and FT3 when testing for the entirety of the subjects (R2 = 0.007, p = 
0.41). When looking separately at the two delta PDFF groups, regression analysis revealed a 
significant association between supraclavicular PDFF and FT3 in the subjects with high delta 
PDFF (R2 = 0.17, p < 0.01), whereas no association was observed for the low delta PDFF 
subgroup (R2 = 0.02, p = 0.39) (Fig. 1). Figure 2 shows examples of PDFF maps of 2 subjects 

Fig. 1. Scatter plot depicting the association between free triiodothyronine (FT3) and supraclavicular proton 
density fat fraction (PDFF) for the high delta PDFF (blue triangles) versus low delta PDFF (violet dots) group. 
The high delta PDFF group shows a significant association (R2 = 0.17, p < 0.01), while the association in the 
low delta PDFF group is not significant (R2 = 0.02, p = 0.39).  

Table 1. Characteristics of the study population (n = 96)

Females, n (%) 64 (77)
Age, years 33.0 (21.2–77.3)
Weight, kg 70.7 (50.0–134.0)
Height, cm 171.9 (9.6, 152.9–195.0)
BMI, kg/m2 23.9 (17.2–43.1)
FT3, pg/mL 3.2 (0.4, 2.4–4.0)
FT4, ng/dL 1.1 (0.2, 0.8–1.6)
TSH, mlU/L 1.8 (0.3–5.2)

Data are presented as median (range), mean (SD, range), or as stated. BMI, body mass index; FT3, free 
triiodothyronine; FT4, free thyroxine; TSH, thyroid stimulating hormone; SD, standard deviation.
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from the high delta PDFF group with high and low FT3: the subject with high FT3 has a lower 
supraclavicular PDFF compared to the subject with low FT3. There were no significant asso-
ciations between supraclavicular PDFF and FT4 in the entire population (R2 = 0.002, p = 0.69), 
the high delta group (R2 = 0.04, p = 0.18) or the low delta group (R2 = 0.0009, p = 0.85). The 

Fig. 2. A Supraclavicular/zoomed supraclavicular (A1/A2) and gluteal/zoomed gluteal proton density fat 
fraction (PDFF) map (A3/A4) in a 23-year-old male subject (body mass index [BMI]: 19.3 kg/m2). Supracla-
vicular PDFF was 67%, gluteal PDFF was 89%, resulting in a delta PDFF of 22%. Free triiodothyronine (FT3) 
was high with 3.81 pg/mL. B Supraclavicular/zoomed supraclavicular (B1/B2) and gluteal/zoomed gluteal 
PDFF map (B3/ B4) in a 24-year-old female subject (BMI: 20.6 kg/m2). Supraclavicular PDFF was 78%, glu-
teal PDFF was 92%, resulting in a delta PDFF of 14%. FT3 was low with 2.45 pg/mL. Note that both subjects 
have a high delta PDFF. Subject A with a high FT3 has a lower supraclavicular PDFF compared to subject B 
with a low FT3. Greyscale bar shows PDFF values within the tissues.
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same was true for TSH and PDFF values: no association was found for TSH and the supracla-
vicular PDFF in the entire group or the in high or the low delta group (rho = –0.13, p = 0.21; 
rho = 0.03, p = 0.85 and rho = –0.03, p = 0.84, respectively). Online supplementary Figure S1 
shows the plots of the associations between supraclavicular PDFF and FT4 and TSH, respec-
tively. Correlation analyses of gluteal PDFF and delta PDFF with TH did not result in any 
significant associations (online suppl. Table S3).

The results of the multivariable linear regression analysis considering age, sex, BMI, FT3, 
FT4, TSH, delta PDFF group and the interaction term between delta PDFF group and FT3 
revealed that BMI and the interaction between FT3 and the delta PDFF group were the 
strongest drivers for supraclavicular PDFF, next to the weaker driver age. Detailed results are 
presented in Table 2.

Discussion

The present analysis provides evidence for a significant difference between the PDFF in 
the supraclavicular and subcutaneous fat depots, which is likely due to a difference in the 
water-fat cellular composition between the two locations. Furthermore, PDFF in the poten-
tially BAT-containing supraclavicular adipose tissue was inversely correlated with FT3 levels 
in subjects with a high compositional difference between supraclavicular and subcutaneous 
PDFF. In a multivariable linear regression analysis, the interaction between FT3 and the PDFF 
difference (delta PDFF) was one of the main drivers of supraclavicular PDFF.

Regarding the methodology of using adipose tissue PDFF as surrogate marker for the 
presence of BAT, the significantly lower PDFF in supraclavicular adipose tissue compared to 
subcutaneous gluteal adipose tissue is in line with the findings of other studies, suggesting 
different tissue compositions in supraclavicular compared to subcutaneous adipose tissue 
[25, 32, 38, 40, 46, 47]. The lower PDFF in the supraclavicular region indicates a reduced lipid 
content. A highly likely explanation for this is the presence of BAT [38, 40], which is known 
to have lower lipid content and more mitochondria compared to WAT. Moreover, the supra-
clavicular fat compartment is the most common region in adults for BAT detected in PET/CT 
scans [48, 49]. With this knowledge, the use of PDFF as surrogate marker for the presence of 
BAT seems reasonable. However, other explanations for differences in PDFF values need to 
be taken into account, such as variations in vascularization. It has been shown previously that 
PDFF in WAT is associated with BMI and can thus vary from individual to individual [40]. 

Table 2. Results of the multivariable linear regression analysis with supraclavicular PDFF as dependent 
variable

Independent variables Coefficient B Significance p rpartial

FT3 1.98 ns (0.08) 0.19
FT4 –1.28 ns (0.52) –0.07
TSH –0.14 ns (0.66) –0.05
Age 0.06 0.01 0.26
BMI 0.37 <0.01 0.56
Sex 0.38 ns (0.60) 0.06
Interaction term (delta PDFF group × FT3) –4.65 <0.01 –0.31
Delta PDFF group 11.54 0.02 0.25

Adjusted R² = 0.64. PDFF, proton density fat fraction; FT3, free triiodothyronine; FT4, free thyroxine; TSH, 
thyroid stimulating hormone; BMI, body mass index; ns, nonsignificant.
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Based on this knowledge, subcutaneous WAT was used as an intraindividual reference value 
in the present analysis in order to further classify the supraclavicular PDFF with regard to the 
presence of BAT. This intraindividual reference is expressed as delta PDFF, i.e. the difference 
between supraclavicular and gluteal subcutaneous (i.e., WAT) PDFF. A high delta PDFF 
reflects a markedly different composition of supraclavicular adipose tissue compared to 
subcutaneous WAT, while similar PDFF values in supraclavicular and gluteal PDFF point to 
the supraclavicular fat depot resembling a WAT depot.

A central finding of the present analysis is the inverse correlation between supracla-
vicular PDFF as surrogate marker for BAT presence and serum levels of FT3 in subjects with 
a high delta PDFF, i.e. a large compositional difference between the supraclavicular and the 
subcutaneous adipose tissue. When performing a multivariable linear regression analysis for 
further verification of the aforementioned finding under consideration of other potentially 
relevant parameters, an interaction term was created to expand the understanding of the 
relationship between FT3, delta PDFF and supraclavicular PDFF and to express that the effect 
between FT3 and supraclavicular PDFF is different for the two different delta PDFF cate-
gories, i.e. for subjects with a rather different or rather similar adipose tissue in the supracla-
vicular region compared to WAT. Thereby, it was confirmed that the interaction between high 
FT3 and high delta PDFF is associated with lower supraclavicular PDFF, thus again presumably 
with more BAT. This assumed influence of TH on BAT is consistent with results from various 
PET/CT studies, where higher serum TH levels (as in hyperthyroidism) were associated with 
more metabolically active BAT or higher glucose uptake of BAT in rodents [18, 20, 21] and 
humans [15, 16, 50–52]. While some studies could not confirm those findings [17, 53, 54], this 
dissent might be caused by the methodology of PET/CT, with BAT activity and visibility on 
PET images being dependent on a number of factors such as room temperature. T3 values 
have been shown to affect BAT by activating thermogenesis and increasing BAT volume 
[12–14, 55]. However, in the present analysis, the influence of FT3 on supraclavicular adipose 
tissue PDFF becomes only visible when focusing on subjects with a high delta PDFF, i.e. with 
a high compositional difference between supraclavicular adipose tissue and WAT, presumably 
due to higher proportions of BAT being present. In cases of a high resemblance of the supra-
clavicular adipose tissue with pure WAT depots, i.e. non-existent or a very low amount of BAT, 
no effect of FT3 is visible. This is the case in the subjects with a low delta PDFF, where we did 
not find an association between FT3 and supraclavicular PDFF.

The lack of a correlation between supraclavicular PDFF and FT4 as compared to FT3 is 
likely due to T4 being a prohormone and T3 being the active metabolite regulating the differ-
entiation of adipocytes as well as being the factor necessary for BAT function [24, 56, 57]. A 
correlation with TSH might also be expected, but as our cohort consists of individuals in the 
broad euthyroid range of TSH, the visibility of such a correlation probably depends on the 
sample size, which is in this context relatively small in the current study.

The finding that beside the interaction term, BMI and age are drivers of supraclavicular 
PDFF with lower BMI and younger age leading to lower supraclavicular PDFF, thus presumably 
more BAT, is consistent with results from PET/CT studies showing lower BMI and younger 
age being associated with more (activated) BAT [49, 58–60].

The development of brown/beige adipocytes and expansion of BAT is under the complex 
and dynamic control of a variety of factors with activation of the β3-adrenoceptors by catechol-
amines being the most important ones [61]. The potential role of TH in this context is still poorly 
understood. There is some evidence that T3 has a direct stimulatory effect on BAT thermo-
genesis [21, 24, 62], but there is also limited evidence that T3 may exert a central action resulting 
in an activation of the sympathetic nerve system [12]. Other data indicate that at least under 
experimental hyperthyroidism TH promote the browning of WAT [19]. The results of our analysis 
suggest a link between biologically active T3 and the presence of supraclavicular BAT, but the 
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effect only becomes visible in subjects with presumed higher proportions of supraclavicular BAT 
under physiological conditions. However, in a state of hyperthyroidism, elevated biologically 
active T3 may have a much stronger impact on BAT development and function.

Strengths and Limitations
One strength of the present analysis is the relatively high number of volunteers included, 

compared to other studies that are mostly based on PET imaging with smaller patient numbers 
or with a retrospective design [15, 17, 53, 59]. Secondly, imaging of BAT based on PET data relies 
on the current metabolic activity of the tissue, while MRI provides a more robust parameter – the 
PDFF – for differentiating BAT from WAT, independent from the metabolic status.

The present analysis also has some limitations. First, histology was not used as a gold 
standard for characterizing adipose tissue. Without adipose tissue biopsy samples, it is not 
possible to ultimately substantiate the presence of BAT as well as the cellular characteristics 
of the depots under investigation. Second, partial volume effects need to be taken into account 
when performing PDFF measurements with MRI, as due to voxel size limitations, PDFF cannot 
differentiate between intracellular water content and non-lipid tissue portions (e.g., from 
vessels) within a voxel. The isotropic voxel size in the data set was 1.5 mm in each dimension. 
Thus, partial volume effects from very small vessels, lymph nodes and adjacent muscles 
cannot be excluded, and those effects are possibly larger in the supraclavicular adipose tissue 
compared to the subcutaneous adipose tissue due to the distinct anatomy. Furthermore, 
PDFF analyses only present average values of volumes of interest and thus cannot discrim-
inate between a cluster of brown adipocytes and mixed clusters of white and brown adipo-
cytes. Third, 26 of the 64 women included in the analysis were on oral contraceptives, which 
should be taken into account, as a possible influence of oral contraceptives on thyroid function 
is still being discussed [63, 64]. Lastly, deiodinase activity in BAT was not measured. As deio-
dinase is considered an enzyme relevant in BAT physiology [62, 65], not evaluating deio-
dinase activity in the current analysis can be considered a potential limitation.

Conclusion

In conclusion, this analysis shows a significant difference between supraclavicular and 
subcutaneous adipose tissue composition as indicated by MRI-based PDFF, suggesting the 
presence of BAT in the supraclavicular fat compartment. Regarding TH, PDFF in the poten-
tially BAT containing supraclavicular adipose tissue was inversely correlated with FT3 in 
subjects with a high difference between supraclavicular and subcutaneous PDFF (a high delta 
PDFF), i.e. a large compositional difference in the supraclavicular adipose tissue compared to 
the individual’s WAT. The interaction between FT3 and delta PDFF remained a driver for 
supraclavicular PDFF in a multivariable linear regression analysis that also took into account 
age, sex, BMI, FT3, FT4, TSH and delta PDFF group. Therefore, the present findings suggest 
that levels of FT3 might possibly influence the presence of supraclavicular BAT; however, this 
effect only becomes visible in subjects with larger compositional differences between WAT 
and the supraclavicular adipose tissue, i.e. with presumably higher proportions of BAT in 
supraclavicular adipose tissue.
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