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Kurzfassung 

Im Jahr 2019 verursachte der Verkehrssektor rund 20 Prozent der gesamten deutschen 

Treibhausgasemissionen, wovon ein Großteil auf den Straßenverkehr entfiel. Um die nationalen 

Klimaschutzziele zu erreichen, werden neben dem Ausbau des ÖPNV und der Förderung des 

Bahnverkehrs Elektrofahrzeuge eine zentrale Rolle in der notwendigen Verkehrswende spielen. 

Deren Emissionsreduktionspotenzial hängt eng mit den Entwicklungen im Stromsektor zusammen. 

Nur durch einen konsequenten Ausbau Erneuerbarer Energien und der damit einhergehenden 

Dekarbonisierung der Strombereitstellung können Elektrofahrzeuge ihr volles Potenzial entfalten 

und einen maßgeblichen Beitrag zum Klimaschutz leisten. Gleichzeitig können sie durch die gezielte 

Steuerung der Ladevorgänge als flexible Speicher genutzt werden und so zur besseren Integration 

dieser Erzeuger beitragen. Ziel dieser Arbeit ist die ökonomische und ökologische Bewertung von 

vier Ladestrategien, die ein besonders hohes Potenzial zur Emissionsreduktion oder zur verbesserten 

Integration von Erneuerbaren Energien haben. Dabei liegt der Fokus auf der Reduktion der 

betrieblichen Emissionen und Kosten der Fahrzeuge, der Glättung der Residuallast sowie der 

Vermeidung von Engpassmanagementmaßnahmen. Letztere beinhalten das Einspeisemanagement 

Erneuerbarer Energien sowie den Redispatch von konventionellen Kraftwerken. 

Um das Potenzial dieser Ladesteuerungen zur bewerten, werden zunächst die historischen und 

zukünftigen Entwicklungen im Stromsektor vorgestellt. Auf dieser Basis wird eine konsistente 

Methodik zur Berechnung historischer und zukünftiger, stündlich aufgelöster Emissionsfaktoren 

sowie zeitlich und räumlich hochaufgelöster Zeitreihen von Einspeisemangement- und Redispatch-

maßnahmen vorgestellt. Empirische Daten der beiden größten, deutschen Mobilitätserhebungen 

„Mobilität in Deutschland“ und „Mobilitätspanel“ werden zur Erstellung von repräsentativen 

Jahresfahrprofilen von Elektrofahrzeugen kombiniert und mit Hilfe eines Verbrauchsmodells in 

elektrische Bedarfsgänge übersetzt. Das lineare Optimierungsmodell eFLAME wird zur Bewertung 

der beschriebenen Ladesteuerungen weiterentwickelt und um ein Modul zur Emissionsbewertung 

erweitert. Das Modell ermöglicht den Vergleich von ungesteuertem Laden mit unidirektional und 

bidirektional optimierten Ladevorgängen. Im Rahmen einer umfangreichen Sensitivitätsanalyse 

werden die wichtigsten Einflussparameter auf das Potenzial der Ladesteuerungen identifiziert und 

mögliche Systemrückwirkungen analysiert. 

Die Analysen zeigen das große Potenzial, insbesondere der bidirektionalen Ladesteuerungen. So 

können die betrieblichen Emissionen der Fahrzeuge im Falle des emissionsoptimierten Ladens in 

zukünftigen Jahren sogar negative Werte erreichen. Das Erlöspotenzial der Ladesteuerungen 

hingegen ist aufgrund der aktuellen Abgabe und Umlagestruktur eher als gering einzuschätzen. Als 

zentraler Einflussfaktor kann das Verhalten der Fahrzeugnutzer identifiziert werden. Durch ihr 

Ladeverhalten, das Vorgeben von Mindestbatteriefüllständen während des Ladens sowie zu 

erzielenden Mindestladezuständen zum Zeitpunkt der Abfahrt haben diese einen maßgeblichen 

Einfluss auf das verfügbare Flexibilitätspotenzial. Dieses wird zusätzlich durch die aus Netzsicht 

notwendigen Restriktionen der aus der optimierten Ladesteuerung folgenden Lastspitzen 

beschränkt. Die Analyse der Systemrückwirkungen der residuallastoptimierten Ladesteuerung zeigt 

den Rückgang konventioneller und die bessere Integration erneuerbarer Stromerzeugung. Aufgrund 

der kleinen Zahl aktuell zugelassener Fahrzeuge ist das Reduktionspotential von 

Engpassmanagementmaßnahmen gering. Das Laden von anderweitig abgeregeltem Strom in 

Kombination mit einer Emissionsoptimierung führt auf Fahrzeugebene jedoch zu den 

geringstmöglichen, betrieblichen Emissionen. Die erzielten Emissionseinsparungen führen im 

Kontext der Lebenszyklusanalyse zu einer deutlichen Reduktion der ökologischen Amortisationszeit 

von Elektrofahrzeugen gegenüber konventionellen Fahrzeugen. 





V 

Abstract 

In 2019, the transport sector accounted for approximately 20 % of Germany's total greenhouse gas 

(GHG) emissions, with road transport constituting a large proportion of this. To achieve the national 

climate protection targets, electric vehicles (EVs) will play a central role in the necessary 

transformation of the transport sector. Their emission reduction potential is closely linked to 

developments in the electricity sector. Only by consistently expanding renewable energies EVs can 

realize their full potential and make a significant contribution to climate protection. At the same time, 

they can be used as flexible electricity storage devices through the targeted control of charging 

processes and thus contribute to the better integration of volatile renewable energies (vRES) such as 

wind and solar.  

The objective of this work is the economic and environmental evaluation of four different charging 

strategies that have a particularly high potential for reducing emissions or improving the integration 

of renewable energies. The charging strategies aim at reducing operational emissions and costs of 

the EVs, smoothing the residual load, and avoiding congestion management (CM) measures in the 

context of the curtailment of renewable energies’ feed-in and the redispatch of conventional power 

plants. 

To evaluate the potential of these charging strategies, the historical and future developments in the 

power sector are presented first. On this basis, a consistent methodology for calculating historical 

and future hourly resolved emission factors (EMFs) as well as temporally and spatially highly resolved 

time series of feed-in management and redispatch measures is presented. Empirical data from the 

two largest German mobility surveys, "Mobility in Germany" and "Mobility Panel," are combined to 

create representative annual mobility profiles of EVs, which are translated into electric demand 

profiles using a consumption model. The linear optimization model eFLAME is further developed for 

the evaluation of the described charging strategies and extended by a module for the assessment 

of operational emissions. The model enables the comparison of uncontrolled charging with 

unidirectionally and bidirectionally optimized charging processes. Within the scope of an extensive 

sensitivity analysis, the most important influencing parameters on the potential of the charging 

controls are identified. 

The analyses show the great potential especially of bidirectional charging strategies. Thus, in the case 

of emission-optimized charging, the operational emissions of the vehicles can even reach negative 

values in future years. The revenue potential, on the other hand, is estimated to be rather low due 

to the current levy and apportionment structure. Moreover, the behavior of the vehicle users can be 

identified as a central influencing factor. They have a significant impact on the available flexibility 

potential through their charging behavior, as well as the specification of minimum state of charge 

(SOC) values during charging and departure to be achieved. The restriction of the load peaks 

resulting from the optimization, which is necessary from the grid point of view, further limits the 

possible potential of an intelligent charging strategy. Nonetheless, the analysis of the system 

feedback effects of the residual load-optimized charging strategy shows the decrease of 

conventional and the better integration of renewable power generation. Due to the small number 

of registered vehicles, the reduction potential of CM measures in 2019 was small. However, charging 

of otherwise curtailed electricity in combination with emission optimization leads to the lowest 

possible operational emissions at the vehicle level. In the context of lifecycle analysis, the emission 

savings achieved lead to a significant reduction in the ecological payback period compared to 

conventional vehicles. 
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1 Introduction 

In this thesis, an assessment of electric vehicles (EVs) charging strategies is conducted with respect 

to resulting costs and emissions and their potential impact on the power system. This introduction 

provides the motivation in section 1.1 and an overview of the current state of research in regard to 

the topic in section 1.2. Based on that overview the research objective and specific research questions 

are presented in section 1.3. 

1.1 Motivation 

In the course of energy transition, Germany's energy supply is being reorganized with the aim of 

reducing greenhouse gas (GHG) emissions by 80 to 95 % by 2050 (compared with the base year 

1990) [1]. This goal can only be achieved if emission reductions are consistently implemented in all 

four final energy sectors and the supply sector. In the transport sector the historical increase in CO2 

emissions has been halted and even slightly reduced despite a tripling of energy consumption since 

1960. They are however stagnating at a consistently high level compared with the other sectors 

private households, industry, and commerce and services [2], [3]. In 2019, these emissions amounted 

to a total of 164 million tons and thus account for around a fifth of the total GHG emissions of 

810 million tons of CO2-equivalents in Germany [4]. To achieve the national climate protection 

targets, it is necessary to decarbonize the transport sector almost completely by 2050 [5]. In addition 

to hydrogen and Power2Liquid fuels, the political and public debate mainly focuses on electrification 

with simultaneous use of renewable electricity. This is manifested in the German government's target 

of seven to 10 million EVs on Germany's roads by 2030 [6]. 

EVs initially represent an additional electrical load, which must be covered at least in part by fossil, 

emissions-intensive power plants. When assessing emissions in the operating phase of those 

vehicles, a large number of influencing factors must be taken into account. On the one hand, the 

driving and charging behavior of the vehicle users must be mapped correctly, which determines how 

much energy the vehicles draw from the system at what point in time. Depending on which 

generators are used for the electricity production at the time of charging, the specific emissions of 

the electricity mix vary significantly. This must be considered when accounting operational emissions 

in the vehicle's utilization phase. In course of the German energy transition, the fundamental 

composition of the electricity generation is undergoing a fundamental change. In this context, the 

German government is focusing primarily on the expansion variable renewable energies (vRES) like 

wind and solar generators while simultaneously phasing out nuclear and coal-fired power plants. 

The increasing share of these volatile power generators poses fundamentally new challenges for the 

electricity system, which has thus far been based mainly on fossil and controllable generators. Wind 

and solar infeed on the other hand is of a volatile nature and does not necessarily coincide with 

electricity demand. In addition to this temporal variance, the spatial distribution of those mostly 

decentralized generators also poses a challenge. Wind turbines are currently mostly installed in 

northern Germany whereas load centers are located in the south. This uneven distribution repeatedly 

leads to grid congestion on the transmission grid level, which is currently being compensated by 

short-term measures such as the redispatch of conventional power plants or the targeted curtailment 

of vRES [7]. With the decision to phase out nuclear power and coal, conventional and flexibly 

controllable power plant capacities are increasingly being ousted from the German generation 
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portfolio. At this point, the charge control of EVs may represent a possibility to provide the flexibility 

required in terms of time and space. 

1.2 Current state of research 

Especially in recent years the general topic of EVs and their interactions with the energy system has 

received considerable interest with a growing body of literature investigating individual aspects. In 

order to present the current state of research on the topic, this section describes studies, 

dissertations, and models relevant to the topic. Due to the fast number of studies, the following 

selection of research is limited to the most relevant topic-related project reports and peer-reviewed 

studies published within the last five years. Studies prior to 2015 are available, but since the 

fundamental composition of the energy system has already changed significantly during this time 

and they do not provide additional insights, they are not presented here. The section is sorted by 

year of publication and follows the scheme:  

1. Name of the institution and the authors 

2. Explanation of the subject of the study and the methodology used 

3. Summary of the central findings 

Based on this overview, a conclusion is drawn in section 1.3 and the research questions of this thesis 

are derived. 

2021, Sabrina Ried, Karlsruhe Institut für Technologie (KIT). Dissertation. „Gesteuertes Laden 

von Elektrofahrzeugen in Verteilnetzen mit hoher Einspeisung erneuerbarer Energien“ [8] 

In the dissertation of Sabrina Ried, the impact of bidirectionally charged vehicles on curtailment 

measures in Schleswig-Holstein is assessed. For that purpose a branch-flow optimizing curtailment 

model is coupled with the temporally dissolved electricity demand of EVs based on the survey 

“Mobility Panel” and extended by a peak-shaving algorithm. A mixed integer optimization model is 

used to assess the influence of a cost- and curtailment-optimized charging of EV in four scenarios 

with increasing flexibility for the years 2015 for 2030. The author concludes that a maximum of 19 % 

of the overall curtailed energy can be used by bidirectionally charged vehicles. She furthermore 

states, that the impact on the vehicle level can be significant with individual vehicles covering up to 

95 % of the charged electricity by otherwise curtailed energy and reductions of operational emissions 

of EVs to a minimum of 7 g CO2/km are possible. 

2020, Kern et al., Forschungsgesellschaft für Energiewirtschaft mbH (FfE). „Integrating 

Bidirectionally Chargeable Electric Vehicles into the Electricity Markets“ [9] 

In this peer-reviewed “energies” publication, the authors assess the potential revenues of 

bidirectionally charged vehicles on the German day-ahead and intraday electricity market. They use 

a mixed integer linear, rolling horizon optimization model considering real trading information based 

on historical data of both markets and assess potential revenues for various user groups considering 

technical and behavioral sensitivities and the regulatory framework. They find, that in the best-case 

scenario revenues of up to 1,300 €/EV/a are possible but emphasize the significant influence of the 

regulatory framework in terms of taxes and levies. 
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2020, Wulff et al., German Aerospace Center (DLR). “Comparing Power‐System and User‐

Oriented Battery Electric Vehicle Charging Representation and Its Implications on Energy 

System Modeling” [10] 

The authors of this peer-reviewed energies paper assess the impact of a power system-oriented 

charging behavior and a user user-oriented charging behavior of EV on energy system optimization 

results. For that purpose they couple the utility‐based stock and flow model VECTRO21, the utility‐

based microsimulation of charging decisions VencoPy, and the energy system model REMix and use 

the framework for a scenario study for nine million EV in Germany in 2030. They come to the 

conclusion that a user-oriented charging and users’ plug-in behavior significantly decreases the load 

shifting potential of the fleet. They also found that the load shifting patterns relate to the weather-

dependent infeed of vRES, due to high wind infeed towards the night hours in northern Germany 

and due to high solar infeed towards midday hours in the south of Germany. They furthermore found 

a significant impact of the underlying charging behavior on the curtailment of wind power. They 

conclude that curtailment can be reduced by 10 % when energy system-oriented charging is 

considered, whereas it is increased by 17 % when user-oriented charging is assumed. 

2020, Gaete-Morales et al., German Institute for Economic Research (DIW Berlin). “An open 

tool for creating battery-electric vehicle time series from empirical data: emobpy” [11] 

The publication by Gaete-Morales et al. doesn’t provide an assessment of EVs charging strategies 

but gives a detailed description of the Python-based open-source tool emobpy, that allows users to 

generate individual EV mobility profiles from the empirical dataset of the survey “Mobility in Germany 

2017”. Based on customizable assumptions, the model creates meaningful and empirically founded 

EV profiles with the option of differentiating the user group of the driver. As an output, three types 

of time series are created that constitute a EV profile, the motor electricity consumption, grid 

availability and the grid electricity demand to charge the battery for different charging strategies. 

These time series can be used for the integration into energy system models or for independent, 

vehicle-specific evaluations. The model itself uses probability distributions of the number of trips per 

day, durations at locations and trips distances from the empirical dataset of the survey to create 

contiguous mobility profiles.  

2020, Lei et al., Karlsruhe Institut für Technologie (KIT). „ Greenhouse gas emissions of electric 

vehicles in Europe considering different charging strategies” [12] 

The authors of this paper, published in the journal “Transportation Research”, assess the effect of 

unidirectional and bidirectional charging strategies on GHG emissions in Europe in 2050 and 

consider the life cycle perspective of EV with regard to emissions from battery production and 

disposal. They integrate an EV module and a LCA model in the European energy system model 

PERSEUS-EU and evaluate four distinct EV scenarios within the context of a highly decarbonized 

European energy system in 2050 (no EV, direct charging, unidirectionally as well as bidirectionally 

optimized charging). Similarly to the results presented in section 8.4.2 they conclude that the 

consideration of an optimized charging considerably reduces the amount of electricity production 

of gas-fired generators and leads to an increase in vRES-use. This effect is even more pronounced, 

when bidirectionally charged vehicles are used. They conclude that the resulting decrease in GHG 

emissions associated with electricity generation more than overcompensate the additional emissions 

from the battery and vehicle production in that case. 
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2019, Wietschel et al., Fraunhofer-Institut für System- und Innovationsforschung (ISI). “Die 

aktuelle Treibhausgasemissionsbilanz von Elektrofahrzeugen in Deutschland“ [13] 

This paper by Wietschel et al. discusses the impact of various electricity supply scenarios on the LCA 

of three configurations of EVs and compares them to equivalent conventional diesel and gasoline 

ICEVs. The authors present and compare different approaches of accounting hourly EMFs (EMF) and 

also come to the conclusion that the attributional approach is the most adequate for the task at 

hand. They use an integrative energy system model approach to map a residual load-optimized 

charging behavior of EVs and describe a similar resulting charging behavior to the one discussed in 

section 8.4. They conclude their analysis by comparing the total emissions from the production and 

operation phase of EVs with equivalent conventional ICEVs. The environmental payback periods 

differ slightly to the ones discussed in section 8.7 in this thesis which can mainly be explained by 

different assumptions on battery capacities, consumption values of ICEV and annual mileages. The 

authors discuss various sensitivities and finally emphasize the importance of underlying energy 

system assumed for both battery production and charging during the operating phase. 

2019, International Renewable Energy Agency (IRENA). “Innovation Outlook: Smart charging 

for electric vehicles” [14] 

The authors of this report carried out an extensive literature review of recent international studies on 

the impact of direct and smart charging on the energy systems of individual countries. They present 

various pilot projects and discuss business models and the current regulatory framework of smart 

charging and necessary adaptations. Based on an exemplary isolated energy system, the short-term 

and long-term effects of a fleet of uncontrolled charging, as well as unidirectionally and 

bidirectionally optimized EVs are assessed. Simulation results show that smart charging provides 

“significant benefits in the short-term operation of isolated systems in terms of curtailment 

mitigation, reduction of peak demand and electricity costs”. The assessment of long-term effects 

shows that unidirectional and bidirectional charging increases the dispatch and potential expansion 

of vRES and reduce their curtailment and, in case of bidirectional charging, significantly increases the 

integration of cheap solar generators, facilitating overall cheaper system costs. They conclude the 

study with 13 concrete action points for policy makers. 

2019, Navigant, Kompetenzzentrum Elektromobilität und RE-xpertise, Agora Verkehrswende. 

“Verteilnetzausbau für die Energiewende - Elektromobilität im Fokus“ [15] 

At the core of the project carried out by the Navigant Consulting Inc. on behalf of Agora 

Verkehrswende, various grid simulations were conducted on the low-voltage and medium-voltage 

level, assessing the impact of EVs under parameter variations and different charging strategies. They 

considered typical network infrastructures of three spatial categories, urban, semi-urban, and rural, 

and evaluated the resulting infrastructure expansion costs for the years 2030 and 2050, taking into 

account a variation of available charging capacity and the total number of EVs. Based on those 

scenarios they evaluated a direct charging and two strategies aiming at the smoothing of local 

residual load and the reduction of load peaks relevant for the dimensioning of the distribution grid. 

The authors conclude that grid-friendly charging strategies lead to a significant reduction in 

necessary grid infrastructure investment but emphasize the lack of a corresponding regulatory 

framework or incentive mechanisms. 

2019, ifeu GmbH, Agora Verkehrswende. “Klimabilanz von Elektroautos. Einflussfaktoren und 

Verbesserungspotenzial“ [16] 

In this study carried out by the ifeu GmbH on behalf of the Agora Verkehrswende, the total climate 

impact of EVs is discussed with a focus on the production of batteries and the use phase of the 
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vehicles. Furthermore, different approaches are shown that can lead to an improvement of the 

climate impact. First, a comprehensive literature review of the emissions generated during battery 

production is provided, illustrating the wide range of these values. Various sensitivity analyses show 

the importance of the production phase of EVs and highlight the impact of the electricity used for 

the production of batteries. For the use phase of the vehicles, the impact of the charged electricity, 

the mobility behavior and lifetime mileage are discussed. The authors show, that in all cases even 

under conservative assumption the overall climate impact of EVs is smaller than the one of ICEV. 

They see significant potential for improving those advantages when more efficient production 

processes are considered but conclude, that the most important influencing factor is the 

decarbonization of the electricity sector resulting in lower operational emissions of the EVs. 

2018, Schill & Gerbaulet, German Institute for Economic Research (DIW Berlin). “Power System 

Impacts of Electric Vehicles in Germany: Charging with Coal or Renewables?” [17] 

In the discussion paper Schill & Gerbaulet compare the effect of a user-driven (direct) charging with 

a cost-optimized unidirectional optimization of charging processes with regard to the impact on the 

electricity generation. For that they use of a mixed-integer linear optimization model that optimizes 

power plant dispatch and simultaneously the charging processes of EVs. They evaluate different 

scenarios for the years 2020 and 2030 with different numbers of EVs and different charging scenarios, 

ranging from user-controlled direct charging to system-optimal unidirectional shifting of charging 

processes, considering different gradations in between. They come to the conclusion, that all 

charging strategies lead to an additional dispatch of fossil generators and that the cost driven 

optimization reduces the use of pumped hydro power plants. The cost driven operation of EVs does 

therefore increase overall system emissions since charging processes are shifted mostly to times in 

which lignite power plants are under-utilized. It should be noted, however, that the model only 

considers the dispatch of power plants and does not include their expansion. To account for this, 

they exogenously increase the installed capacity of vRES and reevaluate the scenarios. That way 

optimized charging does reduce charging costs and emissions and leads to a better integration of 

vRES generation. 

2017, Zhao et al., University of Central Florida, “Boosting the adoption and the reliability of 

renewable energy sources: Mitigating the large-scale wind power intermittency through 

vehicle to grid technology” [18] 

The peer-reviewed “Energy” paper by Zhao et al. aims at the evaluation of GHG emission savings of 

mitigating intermittency resulting from the introduction of wind generation by bidirectionally 

charged vehicles. They assess potential savings in seven independent system operator regions in the 

US with various wind integration levels. The authors consider different additional wind penetration 

rates as well as degrees of willingness on the part of EV owners to use bidirectional charging. The 

bidirectionally charged vehicles are used to mitigate ancillary services, resulting from the volatile 

infeed of those wind generators, and currently mostly provided by combustion generators . They 

compare the potential savings to the additional emissions from marginal electricity generation 

caused by the additional electricity demand from EVs. They conclude, that in most cases the emission 

savings from bidirectionally charged EVs would exceed the additional emissions for marginal 

electricity generation due to the additional load of the fleet. This is true for all but the lowest degrees 

of willingness of EV owners to use bidirectional charging. 
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2015, Jochem et al., Karlsruhe Institut für Technologie. „Assessing CO2 emissions of electric 

vehicles in Germany in 2030” [19] 

The authors of this paper published in the “Transportation Research” journal in 2015 assess 

operational emissions of EVs in Germany in 2030 under consideration of four emissions assessment 

methods (average annual electricity mix, average time-dependent electricity mix, marginal electricity 

mix, and balancing zero emissions). They assume a market penetration of six million EVs in 2030 and 

base the mobility behavior of those vehicles on the survey “Mobility in Germany 2008”. To assess the 

influence of a fleet of direct charging EVs they considering its electricity demand as an additional 

load for the energy system model PERSEUS-NET-TS. For controlled charging the fleet is integrated 

unit into the equation system of the model. In the uncontrolled case the consideration of a time-

dependent average mix yields the same results as the annual average approach. When charging 

processes are optimized, they are reduced by 14 % from 58 to 50 g CO2/km. For the assessment of 

marginal emissions, the authors subtract the resulting electricity generation from a scenario without 

EVs from a scenario with EVs. That way the marginal dispatch as well as the expansion of power 

plants can be evaluated. Results show an increase in generation output from conventional power 

plants leading to the highest value of EVs operational emissions of 110 g CO2/km in the case of direct 

charging. However this value can be reduced by 31 % to 76 g CO2/km when optimized charging is 

considered. They conclude by recommending political measures to support the decarbonization of 

the electricity generation and incentivize controlled charging. 

1.3 Research questions 

There has been extensive research on the topic of EVs and their dynamic interactions with the current 

and future energy system. Most studies however only focus either on an evaluation of those 

relationships in the past or in the future energy system. To the authors knowledge, a consistent 

methodology for comparing the effect of charging strategies under the current state of the system, 

based on real historical market data, and future state, based on simulated scenario data has not yet 

been described. Besides the lag of comparable results of charging strategies for past and future 

years, most studies only consider one or two optimization targets (such as price or a smoothing of 

(local) residual load). However, a comparison of these results across different studies is hardly 

possible due to the sometimes very different assumptions and modeling approaches. This 

dissertation focuses on modeling four individual charging strategies for past and future years and 

comparing them from an economic and environmental perspective. 

Furthermore, most studies view charging strategies from the perspective of the overall optimized 

energy system. However they mostly neglect the influence of the individual charging behavior of EV 

owners with regard to their plug-in or mobility behavior and further user-specific parameters that 

can reduce the effect of such an optimized charging strategy. Ried [8] and Kern et al. [9] do consider 

some of these sensitivities, but neglect others and have a different focus with respect to the 

optimization objective of the considered charging strategies. In the context of this work, the 

evaluations are deliberately made from the perspective of the EV user or the aggregator responsible 

for the implementation of such charging strategies and shed light on the sensitivities in this regard. 

EV users do not always behave rationally, and aggregators have limited information and do not 

necessarily target the optimal solution to the system as energy system models do. It is assumed that 

electric vehicle owners are interested in reducing operating costs and also attach greater importance 

to the environmental impact of their vehicles. For this reason, all of the charging controls examined 

relate to these goals and, where possible, are also evaluated in terms of potential revenue and 

emissions reductions. 
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Since with higher numbers of EVs the feedback effects they and especially the charging strategies 

discussed here have on the energy system, those are considered accordingly. The questions to be 

answered include the contribution that vehicles can make to decarbonizing the transport sector and 

the extent to the assessed charging strategies can contribute to improved integration of vRES. 

Furthermore potential negative feedback effects with regard to resulting additional load on the grid 

as well as the vehicles themselves have to be addressed. 

From this general topic, the following research questions are derived: 

 

• How can the specific emissions in the electricity mix be estimated on a consistent methodological 

basis now and in the future and what is the influence of taking into account the upstream chain 

of fuels and the plants involved in the electricity supply in this context? 

 

• Which type of emission accounting (mix or marginal) should be used for the accounting of 

consumers and which should be used as a target of charging strategies? 

 

• What charging strategies make sense to meet the requirements of an energy system increasingly 

characterized by volatile energy sources? 

 

• What revenue potential can be expected from these charging strategies? 

 

• What are the most important influencing factors that define the potential of such charging 

strategies? 

 

• Can the charge control of EV contribute to the balancing of regional imbalances between 

renewable energy feed-in and electricity demand to reduce grid congestion 

(Redispatch/Curtailment)? 

 

• What contribution can the charge control of EVs make to reducing the operational emissions of 

the vehicles and thus the environmental "payback period" of the vehicles after the energy-

intensive battery production? 

 

• What impact does the optimized charging of EVs have on the energy system? 
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2 Methodology 

This dissertation focuses on emissions during the operating phase of electric vehicles and their 

relationship with the changing energy system. It investigates the extent to which charge control 

strategies (use cases) affect costs and emissions during operation and how the vehicles can play an 

active role in an increasingly integrated energy system. The methodology for mapping these 

relationships is shown in Figure 2-1. 

 

Figure 2-1: Structure of the underlying methodology 

The approaches applied in this work, shown in the diagram, are briefly introduced in the following 

section, and the methodological challenges are explained. 
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Energy system analysis 

Increasing shares of vRES accompanied by a phaseout of both nuclear and coal-fired power plants 

have fundamentally changed the structure of the German energy system. Since EVs operational 

emission directly depend on the electricity mix they use in the charging process, this has to be 

considered when those emissions are assessed. Taking that information into account, the historical 

and future development of installed capacities and electricity generation is described in detail in 

chapter 3. Furthermore, the resulting values of the residual load as well as the day-ahead prices are 

presented, and their correlation is discussed. At this point, the impact on grid infrastructure and 

resulting congestion are not yet addressed. The focus lies on the market-based power generation 

and the associated wholesale prices. 

The emissions of electrical consumers such as EVs are directly linked to the emissions resulting from 

the generation of electricity. Since these emissions change with the deployment of generators over 

time, hourly EMFs are calculated and assessed based on three methodical approaches in chapter 4. 

In the first approach, generation-based EMFs are calculated with respect to the electric output of 

generators in Germany. The second approach considers the existence of an integrated European 

electricity market and the resulting exchange of electricity across national borders. In this 

consumption-based approach, emissions are allocated in accordance with the electricity 

consumption in Germany, considering the exchange of electricity across borders and the emissions 

of all generators in the integrated European energy system. In the third approach, marginal EMFs 

are assessed based on the hourly emissions of the marginal power plant according to the German 

merit order curve. The merit order curve is defined as the power plant capacities sorted in ascending 

order according to their marginal costs. According to this order, power plants are selected in the 

electricity market until the demand for electricity is met. In such a market, based on marginal pricing, 

the marginal cost of the last power plant to be selected determines the market price. All three EMFs 

are calculated for historical and future years and assessed with regard to their correlation with other 

variables in the energy system. Based on that, their suitability as an optimization target for charge 

controls, as well as the right measure for the accounting of operational emissions, is discussed. 

Increasing shares of wind and solar-electric generators in Germany repeatedly lead to grid 

congestion, which is currently compensated for by short-term measures such as the redispatch of 

conventional power plants or the curtailment of those vRES. These congestion management (CM) 

measures and the usage of otherwise diminished and, at least in the case of curtailment, emission-

free electricity comprise another focus of this thesis. To assess the potential reduction of CM-

measures in the past, a methodology is described in chapter 5 for transforming plant-based data on 

individual measures into spatially and temporally high-resolution time series of CM measures. 

Furthermore, redispatch measures are evaluated with regard to their net emission effect. 

Model of electric mobility 

The mobility behavior of vehicle users plays a decisive role in the assessment of the operational 

emissions of EVs as well as the potential of charge control strategies. In that context, it is not sufficient 

to use previously collected first-user profiles of EV owners as a basis for the evaluations as these do 

not necessarily reflect the behavior of users in the broad population. Since no data is yet available 

that meets these requirements, a methodology is developed (in chapter 6) to synthesize coherent 

and statistically correct annual driving profiles based on the two major mobility surveys in Germany. 

The empirical data presented in the surveys “Mobility in Germany 2017” and “Mobility panel” is first 

analyzed regarding the suitability of the modeling approach and key indicators for the assessment 

of charging strategies. For the evaluation of the potential of an electric fleet for the reduction of CM 
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measures, the number of vehicles, and their regional distribution for past and future years are 

derived. 

Model for computation of charging strategies 

As mentioned, the goal of this dissertation is the assessment of the economic and environmental 

impact of charging strategies for EVs. In this context the effect of a unidirectional optimization of 

charging processes by shifting charging processes to time periods corresponding to the optimization 

goal is to be assessed. In addition, the potential effect of a vehicle-to-grid charge control is also 

investigated, where vehicles can be charged and discharged while they are connected to the grid 

and are therefore used similar to an electric storage unit. The focus here is on those use cases that 

have a particularly high potential for reducing emissions or improving the integration of vRES. Along 

with the evaluation of the resulting emissions, an estimation of the revenue potential from the point 

of view of the vehicle users, is also conducted. Figure 2-2 provides an overview of the use cases 

analyzed. 

 

Figure 2-2: Use cases investigated in this thesis 

All assessments are performed on historical data from 2019 and in most cases with regard to scenario 

data for 2030 and 2040. Since no reliable information on future CM-measures was available, these 

evaluations are only carried out for the historical year 2019. In particular, the potential for improved 

integration of vRES in the future energy system and the possible emission savings are evaluated. 

Finally, these results are classified in the LCA along with their influence on the ecological payback 

period of the vehicles.  

To assess the revenue and emission reduction potential, a linear optimization model is developed 

and described in chapter 7. The model is designed in MATLAB and integrated into the framework of 

the PostgreSQL database FREM1 [20]. Due to that structure, dynamic adaptation of input parameters, 

easy usability, and comprehensible results for all use cases can be achieved. In a first step, the 

mobility profiles, synthesized as described in chapter 6, are transformed into time series of electric 

load by means of a consumption model addressing traveled distance, speed, and outdoor 

temperature. The resulting profiles are then merged with the technical parameters of vehicles, 

charging infrastructure, user behavior, and market data, and translated into a linear optimization 

problem. Solving that optimization problem regarding the minimization of costs/emissions and/or 

the reduction of CM measures results in the charging and discharging behavior for every vehicle 

under consideration. 

The modeling approach described in those two chapters works well for large numbers of simulated 

vehicles and only then meets the statistical validity for a sufficient representation of German mobility 

behavior. Computational limitations and practicability, however, restrict the number of profiles that 

can be simulated. The aspired integration of these mobility profiles into the larger modeling 

 
1 The FfE Regionalized Energy System Model (FREM) [20], www.ffe.de/frem 
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framework of the FfE’s energy system model ISAaR2 [21] restricts the number of usable profiles even 

further. Hence, various clustering algorithms and an approach of stochastic drawing are used to 

identify the number of representative profiles needed to meet the requirements of each of those 

applications. 

Assessment of charging strategies 

In chapter 8, the findings and results from the previous chapters are merged in the assessment of 

four different use cases aimed at the reduction of operational emissions, costs, and CM measures. In 

all cases, the potential emission reduction is the focus, but possible revenues for vehicle owners are 

discussed as well. Various sensitivities are then analyzed to understand the most influential 

parameters and their impact on possible emission reductions and repercussions on the vehicle, as 

well as on the energy system. Finally, the resulting annual emissions of vehicles are used in an LCA, 

and their influence on the ecological payback period of EVs is discussed.  

 

 
2 Integrated Simulation Model for Planning the Operation and Expansion of Power Plants with Regionalisation 

[21], www.ffe.de/isaar  

http://www.ffe.de/isaar
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3 Electricity Generation in Germany – Past, 

Present and Future 

As the underlying energy system plays an important role in the evaluation of charging strategies, 

past and future energy-related developments are presented in this section. In contrast to the grid-

side effects of these developments discussed in chapter 5, the focus in this chapter is purely on 

market-based power generation and resulting electricity prices. First, a short introduction of the data 

used for the current and historical electricity production in Germany is provided in section 3.1. 

Numerous gas- and coal-fired power plants in Germany have a combined production of heat and 

power (CHP). In those cases, emissions as well as costs must be allocated according to the heat and 

power output for every hour. Since no data on the operation of these plants is available, a 

methodology is presented in section 3.2. testing various machine learning (ML) algorithms to predict 

their operation based on outdoor temperature and electricity prices. Since charge operations are 

not only assessed for recent years, section 3.3 summarizes the scenario quEU, developed in the 

project eXtremOS [22], which shows a possible development path until 2040. Sections 3.4 and 3.5 

then focus on the historical and (scenario-based) future developments of electricity generation, 

residual load, and wholesale prices of electricity. 

3.1 Data basis—historical market data 

For the evaluation of charging strategies, both hourly and annual data on German electricity 

production is needed. Data on the annual gross electricity production in Germany is derived from 

the Federal Ministry for Economic Affairs and Energy (BMWi) [23]. Further information on the annual 

electricity generation from CHP power plants is provided by the Working Group on Energy Balances 

(AGEB) [24]. Figure 3-1 shows the German gross electricity production in 2019 subdivided by the 

respective energy sources. 

 

 

Figure 3-1: Gross electricity production in Germany 2019 
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Increasing the installed capacities of renewable wind and solar generators, as well as the beginning 

phaseout of nuclear power plants, has substantially altered the generation portfolio. In 2019, a total 

of 39 % of the generated electricity was produced by renewable generators. The remaining fossil 

production mainly consists of nuclear (12 %), lignite (19 %), hard coal (9 %), and gas (15 %). As the 

data show, the last two have a high proportion of CHP plants, which must be considered accordingly 

when assessing operating emissions and costs. CHP plants can be subdivided into two categories: 

public power plants connected to district heating networks and industrial power plants used to cover 

base load process heat. Since no hourly generation data of those power plants exists, a 

methodological approach must be applied here, as described in the following section. 

3.2 Prediction of CHP production with a machine learning approach 

Since no data on the operation of CHP plants is publicly available, a modeling approach was 

developed in [25] and revised in [26]. In both studies, a bottom-up approach is described using 

publicly available data on district heating systems in Germany provided by the AGFW [27] as well as 

hourly data on outdoor temperature and wholesale electricity prices to derive hourly heat and 

electricity production profiles. In a first step, the heating demand for the 33 largest district heating 

networks in Germany is determined from information on outdoor temperature. Then CHP types 

(defined by fuel, generator technology, and efficiency) are allocated to the corresponding district 

heating network, and the hourly wholesale price of electricity is used to attain individual time series 

of heat and power generation for each plant from 2011 to 2015. Figure 3-2 shows the resulting 

electricity generation from CHP plants in Germany as a function of outdoor temperature and day-

ahead prices. 

 

Figure 3-2: Electricity generation from CHP plants in Germany as a function of outdoor 

temperature and day-ahead prices, 2011–2015 (derived from [25]) 

As expected from the model description, a clear correlation between both outdoor temperature as 

well as day-ahead prices and the resulting electricity generation from CHP plants can be observed. 

Lower temperatures lead to higher heating demand in district heating networks, resulting in a higher 

generation from CHP plants. Since at least some share of those plants also considers possible 

revenues on the day-ahead market as an incentive, high prices also increase CHP production. 

However, no simulated data was available for 2019, which is the historical base year for all the 

simulations conducted in the context of this thesis. Furthermore, missing up-to-date input data 

required for the modeling resulted in the need for a different approach. Due to the large dataset of 

simulation results for the years 2011–2015 and the knowledge of the modeling approach depending 

solely on existing power generators, outdoor temperature, and wholesale market prices, supervised 
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ML algorithms are tested to predict hourly time series of Germany’s power generation from CHP 

plants. For the task at hand, four algorithms of supervised ML were tested, decision tree, random 

forest, supper vector regressor and long term/short term memory neural network (LSTM). Supervised 

ML algorithms are used to identify correlations in datasets when inputs and output are known. 

Generally, the dataset is subdivided into separate training and test datasets. The algorithms are 

trained on the training dataset and then used to predict the output for the test dataset. Deviations 

(represented by, e.g., the root mean square error [RMSE] or the coefficient of determination R2) from 

the predicted and original data in the test dataset are then used to quantify the validity of the 

prediction.  

For the prediction, the Python-based module Scikit-learn was used [28]. Scikit-learn provides a wide 

range of ML algorithms, both for supervised and unsupervised problems. For a detailed description 

of the algorithms considered, refer to the documentation in https://scikit-learn.org. For the problem 

at hand, we proceed as follows: 

 

Figure 3-3: Process of ML-based prediction of CHP electricity production 

First, the available output data of the model for the years 2011-2015 are categorized and processed 

into features and outputs (targets). Electricity price, outdoor temperature, and annual electrical 

power produced from CHP were scaled to a standard normal distribution using Scikit-learn 

StandardScaler. The resulting dataset is then subdivided into a training (70 % of all data points) and 

a test dataset (30 % of all data points), and the ML algorithms are tested. Various configurations of 

the algorithms with respect to mode of operation and hyperparameters were tested to identify the 

subset showing the best prediction performance. The following configurations were finally used, 

resulting in the RMSE and R2-values presented in Table 3-1: 

Table 3-1: Configuration and results of the ML algorithms used 

 
Decision Tree Random Forest 

Support Vector 

Regressor 
LSTM Neural Network 

Configuration 

• Max depth: 11 

• Split criterion: 

Mean Square 

Error (MSE) 

• Rest: Default 
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• Out of bag 
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• Epsilon: 0.65 
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layer 

• Lookback: 24 h 

• Loss: MSE 

• Epochs: 32 

• Batch size: 8 

• Optimizer: 

Adam 

• Hidden units: 12 

RMSE train 233 81 1984 701 

R2 train 0.995 0.999 0.651 0.951 

RMSE test 323 214 2044 779 

R2 test 0.99 0.995 0.598 0.94 
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Based on those results, Random Forest was identified as the best-performing algorithm and was 

used to predict the electricity generation from CHP plants for 2014–2019, which is later used as an 

input time series for the calculation of hourly EMFs. 

3.3 Scenario description quEU 

Scenario data for the future development in the electricity sector are derived from the scenario quEU, 

designed in the project eXtremOS [22]. The main objective of the project is the establishment and 

application of methods that allow for the investigation of the value of flexibility under extreme 

technological, regulatory, and social developments. The modeling and scenario approach not only 

focuses on changes in Germany but recognizes the existence of an interconnected European energy 

system and therefore considers an integrated scenario process for 16 European countries. 

The scenario quEU is described in detail by Fiedler et al. in [29] and is explained as follows: “In the 

quEU scenario, the socio-political context in Europe worsens compared to today and society 

perceives that the costs of containing climate change outweigh the benefits. The lack of incentives 

to promote fuel switch measures beyond today’s trends results in only a moderate phase-in of EVs 

and heat pumps in the household, tertiary and transport sector. The energy transition in the industrial 

sector is slowed significantly and solely efficiency improvements are realized, while industry structure 

and process technologies remain similar to today.” (p. 1) This situation is to be considered rather 

conservative, but due to the assumed cost degradation, renewable generators such as wind and 

solar are strongly expanded despite the lack of incentives. While the demand sectors do not undergo 

fundamental changes, and the energy transition especially in the industrial sector is even slowed 

significantly, the trends in electricity production, especially in 2030 and 2040, can still be considered 

as ambitious. Overall, these are the developments that are relevant for the evaluations in the context 

of this thesis. The following section describes the changes in the power sector in Germany “from past 

to the future”, based both on historical data and the scenario data derived from quEU. A more 

detailed description of quEU and the underlying assumptions can be found in [29]. 

3.4 Installed capacities and electricity production by type 

Figure 3-4 shows the installed capacities of renewable as well as fossil generators in Germany from 

2010 to 2040. Here, historical data is derived from [23], whereas future values are based on the 

scenario quEU. 

 

Figure 3-4: Installed generation capacities in Germany in GW 
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Even though the situation cannot be considered a climate mitigation scenario, the generation 

portfolio changes significantly. The phaseout of nuclear and coal leads to a strong decrease of those 

capacities. The scenario assumes a strictly market-based approach without additional subsidies. Due 

to the cost degradation of vRES, installed capacities are heavily expanded, dominating overall 

electricity production in future years, as presented in Figure 3-5. 

 

Figure 3-5: Share of energy carriers in gross electricity production in Germany  

The consideration of the generated electricity quantities shows the same picture. Even without 

subsidies, renewable generation from wind and solar accounts for 70 % in 2030 and 82 % in 2040. 

The only remaining emitting generators are gas-fired turbines, but they account for only 10 % in 

2030 and 8 % in 2040 due to high total renewable generation. 

3.5 Residual load and day-ahead prices 

The term residual load refers to the electrical power demand in an electricity system minus the share 

of fluctuating feed-in from volatile generators such as wind or solar generators (vRES). It represents 

the residual demand for electrical power that must be covered by controllable power plants, such as 

pumped hydro storage and fossil-fuel power plants like gas or coal. It is therefore an important 

indicator of how “green” the electricity generation in each hour is and how much surplus renewable 

energy could potentially be used by charge controlled EVs. Figure 3-6 shows the annual duration 

curve of the residual load in 2019 and 2030. 

 

Figure 3-6: Annual duration curve of residual load in 2019 and 2030 
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dominate the overall electricity production at all times. Residual load values are positive the entire 

year, indicating that there is no excess production of vRES that could be used by EVs. In 2030, the 

circumstances change significantly. Residual load is negative in 2,538 hours of the year, mainly used 

by storage facilities, power-to-x applications, or the export to neighboring countries. Besides 

hydroelectric storage plants, battery storages are increasingly used to store excess electricity. 

Electricity production from fossil generators is drastically reduced, becoming more of a backup 

solution than the general means of production. 

Since renewables enter the market with zero marginal cost, their increasing share also has a strong 

impact on the wholesale electricity price as shown in Figure 3-7. 

 

Figure 3-7: Annual duration curve of wholesale prices in 2019, 2030, and 2040 

Hours on the right with a wholesale price of zero or below are times when renewables constitute the 

marginal power plant. In 2019, that was the case in 212 hours; in 2030, in 761; and in 2040, in 1,006. 

Note that linear optimization models such as ISAaR are not able to map negative price values. 

Besides an increasing number of hours with a wholesale price of zero €/MWh, times with higher 

prices increase as well, leading to overall higher average prices over the course of the year. In 2019 

a heterogenous portfolio of power plants and underlying marginal costs lead to a very smooth 

progression of the annual duration curve. Nuclear plants are still operational, CHP and non-CHP 

lignite and especially hard coal, as well as gas-fired power plants, all with very distinct marginal costs, 

still make up a large share of the overall installed generation capacity. Future years, on the other 

hand, do show an increasingly stepped progression, since the number of distinct generator-types 

regresses. In 2040 mainly high-cost CHP and non-CHP gas-fired power plants with similar marginal 

costs and vRES with zero marginal costs remain. The range of prices in between is defined by storage 

and power-to-x technologies as well as the import of electricity from neighboring countries. This 

future market situation, characterized by periods of low wholesale prices and periods of higher 

prices, indicates an increasing revenue potential of price-based optimization of EVs. A further 

discussion of pricing mechanisms in such a future energy system is presented in 

Böing and Regett (2019) [30] as well as the project report of the project Dynamis in [31]. 

The same smooth progression of the duration curve in 2019, as well as the stepwise progression in 

2040, can be observed when the day-ahead prices are compared to the values of the residual load 

in Figure 3-8. 
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Figure 3-8: Correlation between day-ahead prices and residual load values 

In 2019 the electricity generation is still dominated by fossil power plants leading to positive residual 

load values over the entire year. However, high vRES feed-in already leads to low values of residual 

load accompanied by negative day-ahead prices in 212 hours of the year. In both future years, the 

increased capacity of the vRES generators results in an overproduction of electricity accompanied by 

negative values of the residual load in many hours of the year. However, these times are not always 

characterized by wholesale electricity prices of zero (negative prices cannot be mapped by the 

energy system model ISAaR). The additional demand of power-to-x applications and storage 

capacities, as well as international electricity trading, result in prices sometimes well into double 

digits, even in times of negative residual load. Therefore, price-optimized charging of EVs does not 

necessarily coincide with the goal of targeting periods of high vRES feed-in. 

3.6 Conclusion 

As stated in the beginning of this chapter, the underlying energy system plays an important role in 

the evaluation of both operational emissions of EVs as well as their charging strategies. In this chapter 

the historical and assumed future developments (based in the scenario quEU, section 3.3) in the 

power sector were described. Since a significant share of Germanys power plants are CHP plants and 

no corresponding generation time series of those plants is publicly available, a ML approach was 

described in section 3.2 to predict those time series based on the outdoor temperature and the day-

ahead price. The generation time series of those and all other power plants in Germany are used in 

the following chapter 4 to derive hourly EMFs. The presentation and discussion of historical day-

ahead prices and residual load values forms the basis for the respective charging strategies discussed 

in sections 8.3 and 8.4.
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4 Emission Assessment of Electricity 

Generation 

When assessing the operational emissions of EVs, the most important influencing factor is the 

electricity generation and the resulting specific emissions per kWh electricity (EMF) in the underlying 

energy system. According to Wietschel et al. [13], Johnson et al. [32], and Regett [33], various 

dimensions such as  

• temporal resolution (annual, daily, hourly)  

• geographical resolution (local, regional, national, transnational)  

• accounting method (mix method, marginal method)  

• time horizon (historical, future)  

• considered emissions (CO2 emissions/all GHG emissions, only direct/with upstream) 

• data basis (historical data, power system model results)  

can be considered when assessing EMFs. In praxis, when accounting emissions of electric consumers, 

such as EVs, often historical annual average values of EMFs in g CO2/kWhel are considered. Due to 

the high temporal variability of the charging processes as well as increasingly volatile feed-in of 

renewable generators in the course of energy transition, these are not deemed sufficient for the 

evaluation of the actual ecological footprint of EVs during operation. Hence, hourly EMFs of the 

underlying electricity mix must be considered. In principle, a distinction can be made among three 

types of accounting methods for hourly EMFs. 

The most used method is to calculate average generation-based EMFs based on the shares of 

different generators and energy sources in each country for each hour with distinct efficiencies and 

underlying stoichiometric EMFs of the respective primary energy carriers (see section 4.3). However, 

as stated in Tranberg et al. [34], this generation-based approach only reflects national production 

and neglects the existence of an integrated European electricity market and the resulting exchange 

of electricity across national borders. Hence, a more detailed approach is needed that has the actual 

electrical load in each country as a reference, taking into account the production by type in the 

market area and the import and export of electricity resulting from cross-border electricity trade. 

The resulting consumption-based EMFs reflect these coherences well and can be used to assess the 

actual emissions of electric consumers as part of this integrated energy system. In section 4.4 the 

methodology for the assessment of historical consumption-based EMFs as described in [34] is 

applied and extended to consider electricity generation from CHP plants in Germany. 

When accounting for emissions of EVs, studies can generally be subdivided into two groups 

according to the way EMFs are considered [35]. The attributional approach uses the mix EMF, 

whereas in the consequential approach, marginal EMFs are calculated. After an extensive discussion 

of the mix method, section 4.5 focuses on the calculation of marginal EMFs and the related merit 

order dilemma of emissions. Section 4.6 presents results for past and future years and analyzes 

correlations with other values in the energy system. Furthermore, it discusses the application of each 

of the accounting methods for the assessment of operational emissions and the impact of charging 

strategies.  

In the context of this thesis, a uniform methodology is developed for all three accounting methods 

(generation-based, consumption-based, and marginal), allowing the consistent calculation of EMFs 
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based on both historical market data as well as model-derived future electricity generation data. 

Figure 4-1 provides a brief overview of the input data used for the calculation of the EMFs for 

historical data and that derived from the energy system model for evaluations of future EMFs. 

  

Figure 4-1: Overview of input data for the calculation of the three types of EMFs 

The developed methodology forms the basis for the consistent and comparable ecological 

assessment of EVs and charging strategies in the past and in the future energy system and is 

described in detail in the following sections. 

4.1 Data basis for the assessment of historical emission factors 

Regardless of the time horizon and the accounting method, the specific emissions of the energy 

sources involved in electricity generation are needed to drive hourly EMFs. In principle, a distinction 

can be made here between system boundaries, both in terms of the GHG accounted for and the 

considered upstream emissions that result from fuel extraction and refining as well as the 

construction of the fossil or renewable generator/power plant itself. Since the overall climate impact 

of both the assessment of uncontrolled charged vehicles and charging strategies is the scope of the 

evaluations, GHG EMFs with consideration of upstream emissions are considered. Those factors with 

respect to the produced electricity are derived from the ecoinvent database version 3.6 [36], wherein 

the IPCC 2013 LCIA accounting approach is used. Figure 4-2 shows the resulting CO2 and GHG EMFs 

per generation type considered in the calculation of the hourly EMFs. 
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Figure 4-2: Global warming potential (GWP) of electricity production per energy carrier 

based on [36] 

The CO2 EMFs given in Figure 4-2 are used for validation purposes in section 4.3, where the resulting 

average annual EMFs are compared with the ones published by the German Environment Agency 

(Umweltbundesamt [UBA]) [37]. Furthermore, current national and international climate legislation 

and regulation, as well as public debate of this topic, still mostly considers CO2 emissions. Therefore, 

some of the results are also given with direct CO2 emissions as a reference. The negative value of -

0.792 kg CO2/kWhel for biomass results from the use of different accounting methods. Since biomass 

is considered renewable, the direct CO2 emissions in the LCIA approach are neglected, leading to 

overall emissions of 0.25 kg CO2-eq/kWhel. They are, however, considered in the accounting method 

for direct CO2 emissions, leading to emissions of 0.792 kg CO2/kWhel. 

Strong political support and subsidies have led to a significant share of electricity production from 

gas- and coal-fired CHP plants in Germany, as shown in section 3.4. Since those power plants have 

a combined production of heat and power, EMFs must be accounted for accordingly. As outlined in 

section 4.2, the Carnot method is used in the context of this work, leading to the values presented 

on the right of Figure 4-2. 

4.1.1 Data basis for calculation of historical electricity generation 

Table 4-1 presents an overview of the data used for the calculation of the three types of historical 

EMFs. For future years all the data is derived from simulation results of the energy system model 

ISAaR. 
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Table 4-1: Input data for the calculation of historical hourly EMFs 

Data type 
Temporal 

resolution 

Geographical 

scope 
Provider 

Net generation of CHP plants Hourly D Based on [25] and [26], predicted for 2019 (see 

section 3.2) 

Net electricity generation by 

production type 

Hourly EU European Network of Transmission System 

Operators for Electricity (ENTSO-E) Transparency 

Platform [38] 

Load values Hourly EU ENTSO-E Transparency Platform [38] 

Cross-border physical flows (CBPF) Hourly EU ENTSO-E Transparency Platform [38] 

Day-ahead prices Hourly DE EEX data portal [39] 

List of power plants Annual DE Federal Network Agency [40] 

Gross electricity generation by 

production type 

Annual DE Federal Ministry for Economic Affairs and Energy 

(BMWi) [23] 

Net electricity generation of CHP 

plants by production type 

Annual DE Working Group on Energy Balances (AGEB) [24] 

 

The average EMFs are calculated with reference to the gross electricity production including grid 

losses. Hence, the hourly data on net electricity generation provided by [38] and net electricity 

generation from CHP plants derived from [25] and predicted to the base year 2019 (as described in 

section 3.2) are scaled to the annual data on gross electricity production provided by the Federal 

Ministry for Economic Affairs and Energy (BMWi) [23] and the Working Group on Energy Balances 

(AGEB) [24]. Since the data from the European Network of Transmission System Operators for 

Electricity (ENTSO-E) on hourly electricity generation by type, load, and cross-border physical flows 

(CBPF) are the main source for the calculations, a critical appraisal of the data quality is presented in 

the following section. 

4.1.2 Critical assessment of the ENTSO-E Transparency Platform data quality 

The most comprehensive data source on power system data in Europe is the Transparency Platform 

[41] operated by ENTSO-E. The platform was initiated by ENTSO-E to fulfill the EU Regulation No. 

543/2013 defining the necessity for transparent and open-source access to data on electricity 

production, transportation, consumption, and market prices. The platform offers access to the data 

via a website graphical user interface (GUI) and RESTful API, as well as direct access through an SFTP 

server. Data is provided by several national institutions such as transmission system operators (TSO) 

and distribution grid operators (DSO) as well as power exchanges.  

Hirth et al. [42] have conducted extensive research on data quality, identifying several shortcomings. 

For the evaluations conducted in this study, data completeness and consistency are of utmost 

importance. Hence, a quick review of the data quality is presented in this section with respect to 

completeness of the datasets used for the calculation of historical hourly EMFs, namely actual total 

load [6.1.A], aggregated generation per type [16.1.B&C], and physical flows [12.1.G].  

Figure 12-1 in the appendix displays an overview of the completeness of the date in those types. 

Values for generation by type and individual imports and exports have been aggregated on a country 

level for better presentability. Although the overall completeness of the data in most countries 

amounts to 100 %, there are significant gaps for some countries, making the calculation of EMFs 

impossible. For countries with smaller gaps in load and generation by type, a methodology was 

developed to fill those gaps. Smaller gaps were interpolated, and larger gaps were filled based on 

the development of these values in neighboring countries. Since there is no way to validate or 
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interpret the values of CBPF, no further processing was considered here. After further validation of 

the overall dataset, the number of countries was reduced from 36 to 26 of the neighboring countries 

of Germany. For the calculation of Germany’s consumption-based EMFs, this is deemed adequate 

since their influence on Germany’s consumption-based EMF (including imports and exports) is 

highest. Furthermore, due to missing data points, especially in the past years, for the calculation of 

consumption-based EMFs relying on a complete representation of electricity production and trade 

for all considered countries, only 2019 was included. 

4.2 CHP allocation and its influence on specific emissions 

As shown in Figure 3-1, in 2019, 20 % of German fossil electricity production was generated by CHP 

plants, mostly gas- and coal-fired. Since those power plants have a combined production of heat 

and power, emissions as well as costs must be allocated accordingly. There are many methods for 

the allocation, and various studies have compared those methods in the past decade. Beginning with 

Beer and Wagner [43] in 2007, Wiesemeyer et al. [44] in 2010, and Tereshchenko et al. [45] or Hertle 

et al. [46] in 2014, extensive work has been done on the topic, leading up to the formulation in VDI 

guideline 4661 (2014), stating that there is "no method that would be equally compelling to apply 

overall, i.e. according to thermodynamic, economic and ecological criteria." Since the chosen method 

has a significant influence on the resulting costs and emissions, a brief overview is presented here 

with the example of a gas-fired CHP plant.  

The methodology for the calculations of the respective allocation factors αth/el is described in detail 

in [46], p. 120 et seq and [44]. Since in the scope of this work, the Carnot method is used in the 

calculation of EMFs in general, and the Finnish method is used for the validation of results with the 

annual EMFs published by the German Environment Agency [37], both are described herein. The 

Finnish method considers the primary energy savings (PES) of a CHP plant compared to individual 

and uncoupled generation of electricity and heat in a reference system with reference values for 

efficiency 𝜂𝑒𝑙,𝑟𝑒𝑓 and 𝜂𝑡ℎ,𝑟𝑒𝑓. These values are set by [47] to 𝜂𝑒𝑙,𝑟𝑒𝑓 = 40 % and 𝜂𝑡ℎ,𝑟𝑒𝑓 = 80 %. The 

allocation factors for electricity and heat 𝛼𝑒𝑙/𝑡ℎ are defined as 

𝛼𝑒𝑙 = (1 − 𝑃𝐸𝑆) ∙
𝜂𝑒𝑙

𝜂𝑒𝑙,𝑟𝑒𝑓
 𝛼𝑡ℎ = (1 − 𝑃𝐸𝑆) ∙

𝜂𝑡ℎ

𝜂𝑡ℎ,𝑟𝑒𝑓
 

(4-1) 

with 𝑃𝐸𝑆 = 1 − (
𝜂𝑡ℎ

𝜂𝑡ℎ,𝑟𝑒𝑓
+

𝜂𝑒𝑙

𝜂𝑒𝑙,𝑟𝑒𝑓
)−1 

resulting in allocated absolute emissions 𝐸𝑚𝑒𝑙/𝑡ℎ and specific EMFs 𝑒𝑚𝑓𝑒𝑙/𝑡ℎ for the energy carrier ec 

as 

𝐸𝑚𝑒𝑙(𝑓) = 𝑒𝑚𝑓𝑒𝑐 ∙ 𝛼𝑒𝑙 ∙ 𝑊𝑒𝑐  𝑒𝑚𝑓𝑒𝑙(𝑒𝑐) =
𝐸𝑚𝑒𝑙(𝑒𝑐)

𝑊𝑒𝑙
 

(4-2) 

𝐸𝑚𝑡ℎ(𝑓) = 𝑒𝑚𝑓𝑒𝑐 ∙ 𝛼𝑡ℎ ∙ 𝑊𝑒𝑐 𝑒𝑚𝑓𝑡ℎ(𝑒𝑐) =
𝐸𝑚𝑡ℎ(𝑒𝑐)

𝑊𝑡ℎ
 

with 𝑊𝑒𝑐 in kWh amount of energy carrier used  

𝑊𝑒𝑙 in kWh amount of electricity produced  

𝑊𝑡ℎ in kWh amount of heat produced  

𝑒𝑚𝑓𝑒𝑐 in kg CO2-eq./kWhfuel specific EMF of the energy carrier  

The Carnot method, on the other hand, reflects the exegetic potential of the products electricity and 

heat as the basis for the allocation. In contrast to the Finish method, the allocation does not depend 

on the external definition of reference processes but only uses endogenous parameters. It does, 
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however, consider the temperature level of the produced heat 𝑇𝑜𝑢𝑡 as well as the reference outdoor 

temperature 𝑇𝑎 as a calculation basis for the exegetic Carnot factor 𝜂𝑐 , which is defined as 

𝜂𝑐 =
𝑇𝑎

𝑇𝑜𝑢𝑡
 (4-3) 

Both temperature levels are defined in [48], resulting in 𝜂𝑐  = 26.36 %. The allocation factors for heat 

and electricity are defined as 

𝛼𝑒𝑙 =
𝜂𝑒𝑙

𝜂𝑒𝑙 + 𝜂𝑐𝜂𝑡ℎ
  𝛼𝑡ℎ =

𝜂𝑐𝜂𝑡ℎ

𝜂𝑒𝑙 + 𝜂𝑐𝜂𝑡ℎ
 (4-4) 

The resulting allocated absolute emissions 𝐸𝑚𝑒𝑙/𝑡ℎ and specific EMFs 𝑒𝑚𝑓𝑒𝑙/𝑡ℎ are then calculated 

according to equation (4-2). Figure 4-3 summarizes the resulting allocations of total emissions as 

well as the specific EMF when allocated by the four most discussed allocation methods for an average 

German gas-fired industrial CHP plant with 𝜂𝑒𝑙 l = 24 % and 𝜂𝑡ℎ = 56 %. 

 

Figure 4-3: Influence of CHP accounting methods on resulting EMFs and total emissions 

As stated in VDI guideline 4661, there is no single allocation method that perfectly represents all the 

thermodynamic, economic, and ecological criteria of a CHP plant. Nevertheless, the exegetic 

representation of outputs in the Carnot method factors in their thermodynamic qualities and is 

furthermore unbiased by externally set reference processes. For those reasons, it is chosen as the 

CHP allocation method in this thesis. 

4.3 Calculation of generation-based emission factors 

As shown in Figure 4-1, generation-based EMFs only consider the national gross electricity 

generation by energy carrier 𝑊𝑒𝑐
 as well as the respective EMF 𝑒𝑚𝑓𝑒𝑐 . For each point in time 𝑡, the 

share of each production type on the total electricity generation 𝑞𝑔𝑒𝑛,𝑒𝑐 is calculated as: 

𝑞𝑔𝑒𝑛,𝑒𝑐(𝑡) = 𝑊𝑒𝑐(𝑡)/∑ 𝑊𝑒𝑐(𝑡)
𝑚

𝑒𝑐=1
 (4-5) 

With consideration of the fuel-specific EMFs 𝑒𝑚𝑓𝑒𝑐 , the average generation-based EMFs for 𝑚 energy 

carriers results in: 

𝑒𝑚𝑓𝑒𝑙,𝑔𝑒𝑛,𝑎𝑣𝑔(𝑡) = ∑ 𝑞𝑔𝑒𝑛,𝑒𝑐(𝑡) ∙ 𝑒𝑚𝑓𝑒𝑐

𝑚

𝑒𝑐=1
 (4-6) 

According to these equations, the average consumption-based EMFs can be calculated for both the 

hourly historical data (described in section 4.1.1) and scenario-based generation data derived from 

the energy system model ISAaR for the scenario quEU described in section 3.3. 

electric thermal electric thermal

IEA 93.7 217.4 386.1 386.6

Efficiency 217.4 93.7 895.4 166.7

Finnish 143.8 167.3 592.2 297.6

Carnot 192.6 118.6 793.1 210.9

Allocated total emissions in 

g CO2-eq./kWhfuel 

Allocated emission factor in 

g CO2-eq./kWhel/th

Total emission per kWh fuel = 311 g CO2-eq.
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4.4 Calculation of consumption-based emission factors  

In contrast to generation-based EMFs, consumption-based EMFs are calculated with reference to 

the actual demand for electricity. In an integrated energy market such as the European one, large 

amounts of electricity are transported across national borders. Hence, not only must the national 

generation of electricity be considered but also those electricity flows as well as the generation in 

the neighboring countries. Only such an approach reflects the reality of an integrated energy market 

well and is suitable for accounting for the emissions of consumers, such as EVs, according to their 

cause. Scott [49] has proposed a set of linear equations to evaluate emissions due to consumption 

of electricity in each US state. Li et al. [50] and Zengkai at al. [51] have adopted that method, calling 

it carbon-flow tracing, and applied it to the Chinese energy system. Tranberg et al. used the same 

methodology on the dataset of electricitymap.org and discussed its implications in detail in [34].  

Not only does this approach allow for the allocation of emissions to the consumer of electricity, but 

it also characterizes the hourly imports and exports by share of production types, allowing 

conclusions to be drawn about which energy sources are exported or imported. The underlying 

mathematical formulation was extended to account for the electricity production from German CHP 

plants (as described in section 3.2) and can be summarized as follows. The basic assumption is that, 

as mentioned above, in an interconnected energy system such as the ENTSO-E area, the calculation 

of national generation-based EMFs is not sufficient because it ignores imported emissions from and 

exported emissions to neighboring countries resulting from cross-border electricity trade. Therefore, 

not only must the national generation of a country be considered but also that of its electrical 

neighbors. All these coherences can be represented by a linear system of equations: For any given 

point in time and all r, countries 𝑛1 … 𝑛𝑟 have an electricity production by m different energy carriers 

𝑊𝑛𝑖,𝑒𝑐 for energy carrier 𝑒𝑐 = 1,… ,𝑚 and electric load 𝐿𝑛𝑖
.and the storage charge and discharge of 

pumped hydro storage plants as 𝑆𝑛𝑖,𝑝ℎ𝑝
+  and 𝑆𝑛𝑖,𝑝ℎ𝑝

− . Furthermore, the amount of energy exported 

from country 𝑛𝑖 to country 𝑛𝑗 is defined as 𝐹𝑛𝑖,𝑛𝑗
. The energy balance for each point in time 𝑡 and 

each country 𝑛𝑖 can therefore be described as: 

𝐿𝑛𝑖
+ 𝑆𝑛𝑖,𝑝ℎ𝑝

− + ∑ 𝐹𝑛𝑖,𝑛𝑗

𝑗

= ∑𝑊𝑛𝑖,𝑒𝑐

𝑒𝑐

+ ∑ 𝐹𝑛𝑗,𝑛𝑖

𝑗

+ 𝑆𝑛𝑖,𝑝ℎ𝑝
+  (4-7) 

Rearranging equation (4-7) and applying it to all countries n1, …, nr leads to the following set of linear 

equations (4-8). Solving that system of linear equations, we can now calculate the share 𝑞𝑐𝑜𝑛𝑠,𝑛𝑖,𝑒𝑐 of 

each production type 𝑒𝑐 on the total generation, including the imports and exports of energy due 

to CBPF between the 𝑟 European countries. 

[
 
 
 

𝑧𝑛1
−𝐹𝑛2,𝑛1

… −𝐹𝑛𝑟,𝑛1

−𝐹𝑛1,𝑛2
𝑧𝑛2

… −𝐹𝑛𝑟,𝑛2

⋮ ⋮ ⋱ ⋮
−𝐹𝑛1,𝑛𝑟

−𝐹𝑛2,𝑛𝑟
… 𝑧𝑛𝑟 ]

 
 
 

[

𝑞𝑐𝑜𝑛𝑠,𝑛1,𝑒𝑐

𝑞𝑐𝑜𝑛𝑠,𝑛2,𝑒𝑐

⋮
𝑞𝑐𝑜𝑛𝑠,𝑛𝑟,𝑒𝑐

] =  

[
 
 
 
 
𝑊𝑛1,𝑒𝑐 + 𝑆𝑛1,𝑝ℎ𝑝

+

𝑊𝑛2,𝑒𝑐 + 𝑆𝑛2,𝑝ℎ𝑝
+

⋮
𝑊𝑛𝑟,𝑒𝑐 + 𝑆𝑛𝑟,𝑝ℎ𝑝

+
]
 
 
 
 

 

 

(4-8) 

Here, 𝑞𝑐𝑜𝑛𝑠,𝑛𝑖,𝑒𝑐 is the share of production type 𝑒𝑐 on the total produced electricity in the country 𝑛𝑖 

with reference to the electrical load and 𝑧𝑛𝑖
= 𝐿𝑛𝑖

+ 𝑆𝑛𝑖,𝑝ℎ𝑝
− + ∑ 𝐹𝑛𝑖,𝑛𝑗

𝑟
𝑗=1 . Based on these shares, we 

can then calculate the average consumption-based EMF for each point in time 𝑡 and each country 

𝑛𝑖  as: 

𝑒𝑚𝑓𝑒𝑙,𝑐𝑜𝑛𝑠,𝑎𝑣𝑔,𝑛𝑖
(𝑡) = ∑ 𝑞𝑐𝑜𝑛𝑠,𝑛𝑖,𝑒𝑐(𝑡) ∙ 𝑒𝑚𝑓𝑒𝑐

𝑚

𝑒𝑐=1
 

 

(4-9) 
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where 𝑒𝑚𝑓1, … , 𝑒𝑚𝑓𝑚 are the m-different EMFs for each production type 𝑒𝑐. Solving this system of 

linear equations for all hours of the year results in the desired hourly timeline of consumption-based 

EMFs. This method is applied on the historical data presented in Table 4-1 as well as the simulations 

results of the energy system model ISAaR based on the scenario described in section 3.3. 

4.5 Calculation of marginal emission factors 

The last method for allocating emissions is the marginal method. Marginal EMFs follow the 

consequential approach. According to [52], a consequential approach is a “system modelling 

approach in which activities in a product system are linked so that activities are included in the 

product system to the extent that they are expected to change as a consequence of a change in 

demand for the functional unit.” In the context of EV emission accounting, that approach focuses on 

the impact that the additional load of the vehicles has on the energy system. 

According to Marmiroli et al. [35], a distinction must be made between short-term and long-term 

effects. When assessing the impact of EVs on the electricity generations, short term and long term 

are usually identified with the dispatch of power plants versus the long-term expansion of production 

capacities [53]. While the long-term impacts of major load changes must be simulated with 

expansion models such as ISAaR, the short-term impacts can be estimated with marginal EMFs 

associated with the marginal power plant in each hour according to the merit order of the power 

plants.  

There are two main approaches for the calculation of marginal EMFs. The first, as applied and 

described in Böing & Regett [30], can be used for energy system models by marginally increasing 

the electrical load in each time step and comparing the resulting power plant dispatch with a 

reference scenario. The second approach uses the pricing mechanism of the day-ahead market. 

Since day-ahead prices are set by the marginal power plant with respect to the merit order curve, 

the time series of those prices can be employed as an indicator for marginal EMFs, as described and 

published in [54]. In contrast to the first approach, this allows a consistent calculation applicable to 

both historical and future scenario data from energy system models. The methodology has been 

revised, adapted, and applied to the year 2019 as well as the scenario data for 2030 and 2040.  

For clarity, the methodology is briefly presented here again. In addition to the time series of day-

ahead prices, data on all available power plants, with their technical specifications and economic 

parameters such as fuel and CO2 certificate prices, are needed. This data is derived from the power 

plant database of the Research Center for Energy Economics (FfE). The database consists of three 

parts, namely the lists of existing plants and planned additions or deconstructions ([55], [56], and 

[57]), and manually researched data on plant-specific parameters, and techno-economic parameters 

of different plant types ([58] and [59]). Data for fuel and CO2 costs is derived from the scenario data 

used in quEU [29] as presented in Table 4-2. 
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Table 4-2: Assumed prices for energy carriers and CO2 certificates 

 2019 2030 2040 Unit 

CO2 certificates 22.9 27 75 €/t 

Lignite 4.3 4.3 - €/MWh 

Gas 16.7 27.4 29 €/MWh 

Hard coal 11.1 16  €/MWh 

Nuclear 1.7 -  €/MWh 

Oil 38.6 61.3 66 €/MWh 

 

Based on this data, the merit order curve of power plants in Germany can be derived. In a merit 

order curve, all generators are sorted by their marginal costs in ascending order. Based on this order, 

all power plants that provide electricity in each hour are determined in the day-ahead market. 

Figure 4-4 shows that curve for the data assumed for 2019. Power plants are colored according to 

the underlying energy carrier. 

 

Figure 4-4: Merit order curve (2019) for marginal costs and emissions (CHP allocation 

according to Carnot method) 

In contrast to the original publication in [54], emissions and marginal costs of CHP power plants are 

allocated according to the Carnot method. Furthermore, instead of using direct CO2 EMFs, the GHG 

EMFs, including upstream emissions, are used as described in section 4.1. As shown in Figure 4-4, 

2019 is the first year in history when increasing CO2 prices in combination with low gas prices, lead 

to a so-called fuel switch. In prior years, overall low CO2 prices have led to the merit order dilemma 

of emissions, as described in [60], meaning that emission-intensive lignite and hard coal power plants 

were preferred over gas-fired power plants due to lower marginal costs. Since the reform of the ETS 

market in 2018 [61], prices for CO2 certificates have risen sharply, as described in [62], leading to the 

new dispatch order of power plants beginning to resolve the merit order dilemma, as shown in 

Figure 4-4. Figure 4-5 depicts the same evaluation for 2030. 
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Figure 4-5: Merit order curve (2030) for marginal costs and emissions (CHP allocation 

according to Carnot method) 

Due to the assumption of a steep increase in gas prices from 16.7 to 27.4 €/MWhth with only a 

moderate increase in CO2 prices from 22.9 to 27 €/t CO2, as shown in Table 4-2, the fuel switch has 

been reversed in 2030. Efficient lignite and hard coal plants now have lower marginal costs and are 

therefore still prioritized over most gas-fired power plants. 

For every hour, the day-ahead price is matched with the marginal prices of all German power plants, 

identifying the marginal power plant. The resulting marginal EMF 𝑒𝑚𝑓𝑒𝑙,𝑐𝑜𝑛𝑠,𝑚𝑎𝑟𝑔𝑒 for each hour t is 

then calculated by 

𝑒𝑚𝑓𝑒𝑙,𝑐𝑜𝑛𝑠,𝑚𝑎𝑟𝑔𝑒(𝑡) =
𝑒𝑚𝑓𝑒𝑐,𝑝𝑝𝑚𝑎𝑟𝑔𝑒

(𝑡)

𝜂𝑝𝑝𝑚𝑎𝑟𝑔𝑒
(𝑡)

 

 

(4-10) 

where 𝑒𝑚𝑓𝑒𝑐,𝑝𝑝𝑚𝑎𝑟𝑔𝑒
 is the stoichiometric EMF of the used energy carrier and 𝜂𝑝𝑝𝑚𝑎𝑟𝑔𝑒

 the electric 

efficiency of the marginal power plant 𝑝𝑝𝑚𝑎𝑟𝑔𝑒. To address inaccuracies and reduce excessive 

fluctuations in the resulting time series, a power range of +/- 1 MW is defined around the identified 

marginal power plant, and the resulting average marginal emissions are derived from all power 

plants in this range. The described method is applied on the historical data presented in Table 4-1 

as well as the simulations results of the energy system model ISAaR based on the scenario described 

in section 3.3 for the year 2030 to derive hourly time series of marginal EMFs. 

4.6 Results 

In this section, the methodology described in sections 4.3 to 4.5 is applied to the historical data 

presented in section 4.1.1 as well as the model results for the scenario described in section 3.3. 

4.6.1 Validation of results 

As a first step, the methodology is validated by comparing the resulting average annual generation-

based EMFs to the data on annual specific CO2 emissions of the German electricity mix published by 

the UBA [37]. The report calculates specific CO2 emissions without consideration of upstream 
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production stages (upstream chains) such as fuel extraction and transport, as well as other GHG, 

based on the fuel input used for electricity generation in Germany as published annually by the AGEB 

[63]. Furthermore, the Finnish method is used for allocation of CHP emission instead of the Carnot 

method used here (as described in section 4.2). The UBA also considers imports and exports of 

electricity to derive a consumption-based EMF but uses a different approach, not including electricity 

generation in neighboring countries. Hence, only the generation-based EMFs are considered for the 

validation. Furthermore, the direct CO2 EMFs (as shown in Figure 4-2) and the Finnish method for 

CHP allocation are applied for the validation. Table 4-3 illustrates the comparison of both values for 

the available years 2015 to 2019. 

Table 4-3: Comparison of calculated CO2 EMFs in Germany with data from [37] 

 2015 2016 2017 2018 2019 Unit 

Own calculations 510 503 476 463 399 g CO2/kWhel 

Values by UBA 527 523 485 468 401 g CO2/kWhel 

Deviation + 3.3 % + 4.1 % + 1.9 % + 1.0 % + 0.5 %  

 

Deviations in resulting EMFs can be considered small. Further investigation of the raw data on 

electricity generation by type in [37] already shows minor deviations to the one used in the 

calculations described in this work, explaining some of the overall deviations depicted in Table 4-3. 

Furthermore, the different approach of UBA, using the fuel input as a basis for the calculation of total 

emissions instead of the actual electricity output, leads to expectations of smaller deviations. Overall, 

the differences are insignificant enough to validate the general methodology applied here.  

4.6.2 Development of generation-based emission factors over time 

In a next step, the methodology was applied to historical data from 2015 to 2019 as well as to the 

model results for the scenario for 2030 and 2040, now with respect to GHG EMFs with consideration 

of upstream emissions. Calculations are only conducted for Germany. The resulting values are shown 

as a boxplot in Figure 4-6. 

 

Figure 4-6: Generation-based EMFs for 2015 to 2040 

Since electricity production from vRES has increased significantly over the considered time horizon 

(as described in section 3.4), the median EMF decreases. Especially in the two scenario years 2030 

and 2040, the coal phaseout accompanied by a strong expansion of vRES results in very low median 

values. The still quite high maximum value of 655 g CO2-eq./kWh in 2030 indicates times of low vRES 

feed-in in which the remaining coal-fired power plants provide a large part of the electricity 
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generation. The growing shares of volatile renewable generators also lead to an increase in volatility 

of the resulting EMFs, represented by an overall higher standard deviation σ. The standard deviation 

then decreases in 2040 since all high-emission coal plants are decommissioned, and electricity is 

mostly generated by vRES and low-emission gas-fired power plants. This can be interpreted as a 

good indicator of the increasing potential of especially bidirectionally emission-optimized charge 

controls of EVs in 2030 since a high volatility in EMFs yields higher potential revenues. 

4.6.3 The difference between generation-based and consumption-based emission 

factors 

Next, the historical data is used for the calculation of consumption-based EMFs according to the 

methodology described in section 4.4. For that purpose, not only is data on Germany’s electricity 

generation by type needed but also generation data from its electrical neighbors as well as on CBPF 

and electrical demand. Since the data quality varies significantly in the countries under consideration 

but improves over time (as described in section 4.1.2), the calculation is only performed for 2019. 

Figure 4-7 shows the resulting generation-based EMFs according to the methodology described 

above for all 26 considered European countries, their imported and exported emissions due to CBPF, 

and the sum of those values, which is defined as the consumption-based EMF. 

 

Figure 4-7: Generation-based EMFs of 26 countries in 2019 and imported/exported 

emissions due to electricity trade 

Some countries show significant differences between generation-based and consumption-based 

EMFs. Several countries can be described as net exporters of emissions such as Spain, the 

Netherlands, Estonia, Greece, and Poland; others (e.g., Switzerland, Austria, Slovakia, and Latvia) 

import a large part of their emissions while having a relatively low national generation-based EMF 

themselves. Reasons for that are manifold and can be found in the individual structure of each 

country’s energy market and the ones of their neighboring countries, individual market-coupling 

mechanisms as well as available transmission capacities in-between countries. Austria for example 

has a relatively low average generation-based EMF due to high shares of hydro power plants and 

wind generators but imports large shares of its electricity from its emission-intensive neighbors 

Germany and the Czech Republic. Slovakia is a similar case with a low “local”, generation-based EMFs 

resulting from high shares of nuclear energy and large amounts of high-emission electricity from its 

neighbors Poland and the Czech Republic. Estonia (EE) is a good example of contrasting relations. 

An overcapacity of emission-intensive and cheap shale oil generators and a good integration with 

its neighboring countries results in a significant overproduction and large exports to its neighbor 
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Latvia (12.3 TWh of which 1.9 TWh were exported in 2018, [64]), leading to 24 % lower consumption-

based EMF. 

In addition to these high-level evaluations, the carbon-flow tracing method also allows a more 

precise interpretation of country-specific conditions. Since all the following evaluations are only 

conducted for Germany the country index 𝑛𝑖 is omitted in the description. First, the hourly shares 

𝑞𝑐𝑜𝑛𝑠,𝑒𝑐(𝑡) are multiplied with the respective EMF 𝑒𝑚𝑓𝑒𝑐  resulting in the share of the energy carrier-

specific EMF 𝑒𝑚𝑓𝑒𝑙,𝑐𝑜𝑛𝑠,𝑒𝑐(𝑡) on the total average EMF. The same calculations are applied for national 

electrical generation resulting in 𝑒𝑚𝑓𝑒𝑙,𝑔𝑒𝑛,𝑒𝑐(𝑡). Based on that, the difference between the average 

consumption-based EMF and the average generation-based EMF can be calculated for each energy 

carrier as: 

∆𝑒𝑚𝑓𝑒𝑐(𝑡) =  𝑒𝑚𝑓𝑒𝑙,𝑐𝑜𝑛𝑠,𝑒𝑐(𝑡) − 𝑒𝑚𝑓𝑒𝑙,𝑔𝑒𝑛,𝑒𝑐(𝑡) (4-11) 

It must be noted though, that just as with consumer emissions accounting, there are two views of 

accounting emissions for electricity trade - the marginal and the mix approach. One could argue that 

from a market perspective exports and imports of electricity from the country under consideration 

must be considered as marginal and thus also assessed with marginal EMFs according to the merit 

order curve. On the other hand side just as electric consumers are to be considered as a part of the 

energy system, all countries in an integrated European electricity market must be considered as equal 

parts of the overall European energy system. Based on that assumption, emissions of imports and 

exports must be assessed with the mix-method. Therefore, in case of an exemplary export of 1 MWh 

in a specific hour the exported emissions and shares by generation type are based on the generation 

mix occurring in that hour in the exporting country. Under those assumption the difference of 

generation-based and consumption-based EMFs can be explained in detail for each country in every 

hour. Figure 4-8 shows this annual evaluation for Germany in 2019. 

 

Figure 4-8: Difference between generation-based and consumption-based EMF in Germany 

2019 

The figure illustrates the average annual generation-based EMF on the left and the average annual 

consumption-based EMF on the right side with the delta broken down by generation types ∆𝑒𝑚𝑓𝑒𝑐 

in a waterfall diagram. The evaluation shows, that the main driver for overall lower consumption-

based EMFs in 2019 is the export of electricity from lignite power plants. Exports primarily happen 

when the national electricity prices are lower than the ones in neighboring countries. This mainly 

occurs in times of low loads and heigh shares of renewables in the system. Due to the dispatch of 

power plants according to their position on the merit order curve the residual load is mostly covered 
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by nuclear and lignite power plants in those times. The same is true for cheaper hard coal fired power 

plants leading to a net export of emissions from those generators. 

Table 4-4 presents the evolution of average generation-based and consumption-based EMFs for 

Germany in the considered timeframe from 2019 to 2040.  

Table 4-4: Evolution of generation-based and consumption-based EMFs in Germany from 

2019 to 2050 

 2019 2020 2025 2030 2035 2040 Unit 

Generation-based EMF 490 515 329 234 176 118 g CO2/kWhel 

Consumption-based 

EMF 
472 515 308 205 151 102 g CO2/kWhel 

Deviation - 4 % - 2 % - 7 % - 12 % - 14 % - 13 %  

 

Under the current market scheme, increasing vRES shares with marginal costs of 0 €/MWh lead to 

lower prices in hours with high vRES infeed. As discussed in section 3.5, in 2019, prices were at or 

below 0 in 212 hours; in 2030, in 761; and in 2040, in 1,006 hours, respectively. Due to the 

interconnected electricity market, electricity is exported when prices in Germany are lower than in 

the neighboring countries and imported when prices are higher. Under the historical and assumed 

future development of the European energy system, this leads to Germany being a net exporter.  

Regarding exported and imported emissions, it is assumed that in an integrated system, it is not 

possible to distinguish which type of electricity is imported or exported. Every time an export 

happens, emissions are exported according to the mix method. The same is true for imported 

electricity. Overall, with Germany being and remaining a net exporter, this results in more electricity 

produced than needed and therefore generation-based EMFs being higher than consumption-based 

EMFs. 

Since consumption-based EMFs best represent the reality of an integrated European energy system, 

all the following evaluations are based on these. 

4.6.4 Statistical analysis and correlations 

As mentioned at the beginning of this chapter, EMFs of electric consumers can be accounted for in 

two ways [35]. The attributional approach uses the mix EMF, and the consequential approach 

calculates marginal EMFs. The questions to be answered here are which approach to consider both 

for the accounting of operational emissions and for use as an optimization target for the vehicles 

and the influence that decision has on both assessments. Since the approach has a significant 

influence on results, the characteristics, and correlations of each of the EMFs with relevant values in 

the energy system are evaluated in the following section. 

4.6.4.1 Temporal distribution of consumption-based emission factors 

First, the consumption-based EMFs for 2019 and 2030 are illustrated as a histogram in Figure 4-9 to 

provide a rough sense of the density of the underlying distribution. 
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Figure 4-9: Histogram of consumption-based EMFs in 2019 and 2030 

Increasing shares of RES, as well as a nearing phaseout of coal-fired power plants in 2030, lead to a 

significant shift toward lower emissions, which is even more pronounced in 2040. Not only are the 

median values much lower in the future years but also the number of hours in which EMFs are low. 

Whereas EMFs are below 100 g/kWh in 37 % of all hours in 2030 and 69 % in 2040, respectively, due 

to still high shares of coal-fired power plants, they are distributed more broadly in 2019.  

This can also be observed when considering the daily and annual distribution of these values as 

presented in the form of heat maps for 2019, 2030, and 2040 in Figure 12-3 in the appendix. Two 

patterns can be observed in all years. First, solar infeed during the day leads to low emission values. 

Due to higher installed capacities, this pattern is much more pronounced in the future, not only far 

reaching into the early and late months of the year but also beginning earlier and ending later during 

the days. The second pattern can be explained by the increased expansion of wind energy. In 2019, 

a period of strong winds in early March led to low EMFs over the course of consecutive days. This 

phenomenon occurs with increasing frequency in 2030 and 2040, where many periods can be 

observed with low EMFs throughout several consecutive days. During those days, a unidirectional 

and even bidirectionally optimized charging of EVs will not have a strong effect since EMFs are low 

all the time.  

For the emission reduction potential of optimized charging strategies, the variation of the targeted 

time series is the deciding factor. This variation can best be described by the standard deviation σ. 

Since the emission reduction potential depends on the variation of EMFs while the EV is connected, 

and these periods are usually in the range of eight to 20 hours, the daily standard deviation is 

assessed. The annual duration curve, as well as the histogram of those values for the years under 

consideration, is presented in Figure 4-10. The data for 2040 are not shown in the histogram for 

better readability. 
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Figure 4-10: Daily standard deviation σday,EMF of consumption-based EMFs in 2019, 2030, and 

2040 

The analysis confirms the previously formulated thesis. Comparing the annual duration curve of 

σday,EMF for the years 2019 and 2030 shows an increase of entire days with a low standard deviation 

of EMFs. This phenomenon is even more pronounced in 2040. Increased capacities of vRES 

generators in 2030 compared to 2019 in combination with still existing coal-fired power plants also 

leads to more days when the daily standard deviation is higher than in 2019. Here, solar generators 

dominate electricity production during the day, leading to low EMFs, but coal-fired power plants are 

still widely used during the night, leading to higher EMFs and therefore higher values of daily 

standard deviations. In 2040, those coal-fired power plants are decommissioned and replaced mostly 

by lower-emission gas-fired power plants, hence decreasing the daily standard deviation. 

4.6.4.2 Temporal distribution of consumption-based and marginal emission factors 

In a subsequent step, the statistical distribution of the consumption-based EMFs is compared to that 

of the marginal EMFs. Since marginal EMFs were only assessed for 2019 and 2030, only these years 

are considered for the comparison. Figure 4-11 shows the distribution of marginal and consumption-

based EMFs on the left and their daily standard deviation on the right for 2019. The same evaluation 

is presented for both years in the appendix in Figure 12-2. 

 

Figure 4-11: Histogram of marginal and consumption-based EMFs of 2019 (left) and their 

daily standard deviation (right) 

Starting with the total number of occurrences on the left, we can see the clear dominance of coal-

fired power plants still operational as marginal power plants in 2019. They are to be considered as 
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marginal in 2,660 hours of the year. This dominance of coal-fired power plants also leads to a much 

higher annual average in marginal EMFs. The histogram of marginal EMFs shows three 

accumulations, defined by hours when RES (marginal EMF = 0), gas-fired power plants (marginal 

EMF between 400 and 600), and coal-fired power plants (EMF between 900 and 1,200) are considered 

marginal. The dispersion around these peaks can be explained by the consideration of CHP plants 

as well as different efficiency values. Consumption-based mix EMFs, on the other hand, show a 

smoother distribution of values. This coherence is also reflected by high values of standard deviation 

in the case of marginal EMFs and lower ones in the case of consumption-based EMFs. 

This smoothness in value distribution can also be seen in the assessment of daily standard deviation 

on the right of Figure 4-11. Daily standard deviations of consumption-based EMFs range from 

zero to 120 g CO2-eq./kWhel. Marginal EMFs show a much higher scattering of values during the day, 

resulting in standard deviation values in the range of 100 to 450 g CO2-eq./kWhel. As presented in 

Figure 4-4, increasing price levels of CO2 certificates in combination with decreasing gas prices in 

2019 resulted in a partial fuel switch. Several of the gas-fired power plants now show lower marginal 

costs than coal-fired power plants, leading to a fuel mix in the course of the merit order curve. Under 

these circumstances, even small load increases can lead to a jump in marginal EMFs, resulting in 

those high daily standard deviation values. This scattering of values will lead to high potential 

emission reductions when considered as an optimization target for charging strategies. On the other 

hand, due to this “fuel-mix” in the merit order curve, marginal EMFs are much more sensitive with 

regard to load changes. In addition, the calculation of marginal EMFs depends on a variety of 

parameters, such as fuel prices, CO2-certificates, or the accounting method of CHP-plants, that 

determine the order of power plants in the merit order curve. Even smaller changes of those 

parameters can have substantial impacts on this order and therefore the resulting EMFs. In contrast 

to the mix method, the marginal method is therefore to be regarded as less resilient, both with 

regard to load changes and to the calculation method itself. 

4.6.4.3 Consumption-based emission factors versus day-ahead prices 

With regard to potential revenues, the economic optimization of charging strategies based on 

electricity prices might perhaps be the most obvious charging strategy from the customer’s 

perspective. To assess the potential impact on emissions, the correlation between the hourly 

consumption-based EMFs and the day-ahead price is examined over the course of 2019 to 2040, as 

shown in Figure 4-12. 

 

Figure 4-12: Correlation between generation-based EMFs and day-ahead prices 
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Both the Pearson product-moment correlation coefficient rp and the Spearman rank-order 

correlation coefficient rs are calculated. Where the Pearson correlation evaluates linear relationships, 

the Spearman coefficient is better suited for the evaluation of monotonic relationships between two 

variables [65]. Whereas in the years 2019 and 2030, the correlation of both values can be slightly 

better described as monotonic (rs > rp), the opposite is true for 2040. Generally speaking, the graph 

shows the substitution of low-cost/high-emission generators such as lignite and hard coal in the 

early years with high-cost/low-emission gas-fired power plants in the later years. This is represented 

by a strong decrease in the slope of values, meaning that in 2019, periods with low day-ahead prices 

often coincide with high EMFs, whereas in 2040 (the other extreme case), they increasingly do not. 

EMFs in 2040 only rise significantly at price levels beyond €70/MWh, already indicating that a price-

optimized operation of EVs will result in a reduction of emissions as well. Increasing CO2 prices and 

the removal of coal-fired power plants resolve the so-called merit order dilemma of emissions. 

Correlation between EMFs and prices can overall be considered high but with a decreasing slope in 

future years. The scenario data do not show negative prices due to the model construction as a linear 

optimization model. It must be noted, though, that negative prices only exist in the current system 

because inflexible conventional power plants have high shutdown and startup costs and therefore 

are willing to except negative prices for as long as this is economical from their perspective.  

On the other hand, §51 (1) of the Renewable Energy Sources Act 2017 (EEG2017) only reduces the 

feed-in remuneration of renewable generators when “the value of the hourly contracts for the price 

zone for Germany on the spot market of the power exchange is negative in the previous day's 

auction for at least six consecutive hours” [66]. In the current version of the Renewable Energy 

Sources Act 2021 (EEG2021) [67], this period has been reduced to four hours. Since a growing number 

of inflexible conventional power plants are being replaced by flexible gas-fired power plants, it can 

be assumed that longer periods of negative prices are becoming less likely.  

4.6.4.4 Generation-based emission factors versus residual load 

The residual load in an energy system is defined as the load less the infeed of wind and solar 

generation for every hour (vRES). It gives a good indication of how green the electricity mix is at any 

given point in time. Here, the correlation between the generation-based EMFs and the residual load 

is analyzed as illustrated in Figure 4-13. 

 

Figure 4-13: Correlation between consumption-based EMFs and residual load 

Whereas historical data does not show negative values for residual load, increasing shares of vRES 

in future years lead to negative values in 27 % of all hours in 2030 and 48 % in 2040. These negative 

values in residual load are not necessarily represented well by the EMFs. Especially in the later years 
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of 2030 and 2040, the EMFs alone do not allow statements about how negative the residual load 

actually is and therefore, how much excess vRES infeed is available. If the reduction of operational 

emissions of EVs is the only target, using EMFs as an optimization target will serve its purpose well. 

However, if the goal is the best possible integration of vehicles into the energy system and the 

resulting optimal use of resources, then residual load as an optimization objective better meets this 

requirement. Therefore, the smoothing of residual load is considered one of the optimization targets 

in the context of this thesis (see section 8.4). Furthermore, the resulting system feedback is evaluated 

as well by considering the resulting load curves of such an optimized charging for an iteratively run 

simulation with the energy system model ISAaR. Results of this simulation and the resulting changes 

in the dispatch of power plants and storages are discussed in section 8.4.2. 

4.6.4.5 Marginal emission factors versus residual load 

In Figure 4-14, the same coherences are analyzed for marginal EMFs in the main years of observation, 

2019 and 2030. 

 

Figure 4-14: Correlation between marginal EMFs and residual load 

Each point in the figure is color-coded according to the underlying marginal power plant. 

Furthermore, dots represent normal power plants without CHP, whereas crosses represent marginal 

plants with CHP. The comparison of both years shows the strong increase of negative residual load 

values, where vRES are considered marginal. In those times, the marginal EMF equals zero. Residual 

load values in those times range from four to 25 GW in 2019 and from -40 to 18 GW in 2030. This 

wide range can be explained by transborder electricity trades as well as must-run and CHP power 

plants that are still active despite negative electricity prices (see section 3.5). 

In direct contrast to generation-based EMFs presented in Figure 4-13, marginal EMFs constitute a 

better indicator for surplus renewable electricity and serve well as an optimization target in those 

cases. Considering the positive values of marginal EMFs, however, that correlation does not exist. 

Due to the merit order of power plants and the underlying price structure, in times with high residual 

load values, low-emission gas-fired power plants constitute the marginal plants. Low-cost but high-

emission lignite power plants, on the other hand, are often marginal in times of high shares of vRES 

and low corresponding residual loads. Using marginal EMFs as an optimization target would 

therefore result in an increase in peak residual loads and are not a good indicator to reflect the share 

of vRES in the system. 
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4.6.4.6 Consumption-based emission factors versus marginal emission factors 

As a final correlation assessment, consumption-based EMFs are compared to marginal EMFs. 

Figure 4-15 presents these correlations for the years 2019 and 2030. Again, each point in the figure is 

color-coded according to the underlying marginal power plant. 

 

Figure 4-15: Correlation between marginal and consumption-based EMFs 

Since consumption-based EMFs show high correlation values with the residual load, the overall 

picture is very similar to the comparison of marginal EMFs and residual load. The comparison of both 

EMFs demonstrates that the methods can lead to opposing EMFs. This is especially true in hours 

when lignite or hard coal-fired power plants are marginal. In 2019, the consumption-based EMFs 

span almost the entire range of values from 200 to almost 800 g CO2-eq./kWhel. In 2030, most of 

these power plants are decommissioned, but the same is still true for times when gas-fired plants 

are marginal, with simultaneously occurring consumption-based EMFs spanning the entire range of 

values. 

4.7 Conclusion 

This chapter presented three different ways of accounting for hourly EMFs. The generation-based 

and consumption-based EMFs follow the attributional approach, whereas marginal EMFs are 

calculated in alignment with the consequential approach. In the attributional approach, average mix 

EMFs are derived and used for the assessment of operational emissions. The assumption is that all 

consumers in the system are equally responsible for the dispatch of power plants and are therefore 

attributed the same average emissions in each hour. In the consequential approach, on the contrary, 

the focus is on “the cause-and-effect relationship between possible decisions and their 

environmental impacts” [35] p. 9. The choice of the type of EMF considered both as an optimization 

target for the charging strategies investigated and the actual accounting of operational emissions 

has a significant influence on results. To adequately address this, a summary of the findings is 

provided, and implications are discussed in this section. 

In section 4.6.4, the resulting temporal characteristics and correlations with residual load and 

wholesale prices were evaluated to assess the use of these EMFs as optimization targets for charging 

strategies. Compared to generation-based EMFs, consumption-based EMFs better represent the 
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existence of an interconnected European electricity market, and general statements with respect to 

correlations and temporal characteristics are similar. For this reason, the consumption-based EMFs 

are used for all further analyses and simulations, leaving the comparison of consumption-based mix 

with marginal EMFs. Table 4-5 presents an overview of the discussed strengths and weaknesses of 

those EMFs as well as key indicators for the years 2019 and 2030. The upper part of the comparison 

originates from evaluations presented in [54], © 2018 IEEE. 

Table 4-5: Strengths, weaknesses, and key indicators of consumption-based and marginal 

EMFs for the evaluation of charging strategies in this thesis © 2018 IEEE 

Representation of: Consumption-based mix EMF Marginal EMF 

Share of renewables 

+ 

high correlation 

(R2=0.95) 

- 

low correlation due to merit order 

dilemma (costs versus emissions) 

Excess renewable electricity 

- 

no information about surplus 

electricity 

o 

times with surpluses are shown but 

not amount of surplus 

Carbon intensity of electricity 

sector 

+ 

quantification of average emissions of 

total electricity generation 

- 

only emissions on the margin are 

quantified 

System effects of electrification 

measures 

- 

average values of existing system do 

not reflect effects of load changes 

(+) 

quantification of short-term marginal 

emission effects due to load changes 

Statistical indicators (2019/2030):   

Annual average value 472.2/194.5 g CO2-eq./kWhel 710.1/559.2 g CO2-eq./kWhel 

Standard deviation 130.3/130.7 g CO2-eq./kWhel 296.4/318.4 g CO2-eq./kWhel 

Sensitivity against load change low high 

 

First, the consideration of both EMFs as an optimization target is discussed. The analysis of 

correlations shows that mix EMFs better represent the share of vRES within the total electricity 

generation as well as the resulting carbon intensity of the electricity generation. Due to the 

aforementioned merit order dilemma, however, marginal EMFs do not. In addition, neither approach 

quantifies surplus renewable generation. Figure 4-13 shows that the residual load becomes 

increasingly negative in subsequent years, but this coherence is not reflected well by consumption-

based EMFs. The marginal EMFs are at least zero during these periods but do not contain any 

information about the amount of surplus renewable energy. Those surpluses are only reflected well 

by the actual residual load value. Especially the potential of bidirectional charging mainly depends 

on the variance of the targeted time series. The higher the variance, the more spreads the 

optimization can use to reduce emissions (or costs). Marginal EMFs’ standard deviation in both of 

the considered years is about 2.3 times higher than that of consumption-based EMFs, presumably 

leading to a significantly higher reduction potential. However, the overall goal of the charging 

controls studied is to optimize the overall system utility as well as to better integrate vRES. These 

requirements are fulfilled much better by the mix approach since they correlate better with the share 

of vRES and represent the total carbon intensity of the electricity generation.  

Another aspect that must be discussed here is the fact that load changes generally lead to dynamic 

feedback effects in the energy system. If more electricity is required, more power plants are 

dispatched according to their position in the merit order curve to cover that additional load. The 

only way to fully address these effects is to iteratively run energy system model simulations based 

on those new load curves or even integrate the flexible consumers (e.g., EVs) in the system of 
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equations of the model. Due to high computational efforts, however, this is not deemed practical for 

the number of simulations evaluated in the context of this thesis. Furthermore, such simulations by 

the aggregator responsible for the implementation of such charging strategies in praxis are unlikely. 

Such an iterative approach is, however, applied as a sensitivity to assess the actual system feedback 

of charging strategies aimed at the smoothing of residual loads discussed in section 8.4.2. For all 

other analyses, this leaves the application of static EMFs for the assessment.  

Regarding the retroactive effect of (minor) load changes, the mix method is considered less sensitive 

due to its calculation method. Even though resulting changes in power plant dispatch cannot be 

accounted for here, the overall effect on the average emissions of all power plants deployed can be 

considered negligible. However, due to the structure of the merit order curve, especially in 2019 (see 

Figure 4-4), even small changes in electric load would lead to significant jumps in marginal EMFs. 

Overall, mix EMFs better represent the vRES share, although they are not a good indicator of excess 

vRES feed-in. They also have lower statistical dispersion and are considered less sensitive to load 

changes and therefore more suitable for the task at hand. The implications of using mix or marginal 

EMFs for the emission accounting of EVs, as well as the influence of optimized charging, are 

discussed below. 

In the past, many studies have addressed the emission assessment of EVs in the context of LCAs, 

yielding very different and even contradicting results. For instance, Marmiroli et al. [35] conducted a 

comprehensive meta study in 2018, analyzing 44 such articles published from 2008 to 2018. Using 

statistical regression, they explained 70 % of the variability in these results due to the carbon intensity 

of the electricity mix and the underlying accounting approach. Twenty-five of those studies used the 

mix approach, 17 the marginal, and seven considered both for means of comparable analysis. One 

of the main reasons mentioned for using marginal EMFs when accounting for emissions is that 

electric consumers, such as EVs, are considered marginal. That definition poses the questions why 

other electric consumers are not considered marginal and at what point a marginal consumer 

becomes an integrated part of the overall system and is treated as such. Even in a future energy 

system, marginal power plants will often be constituted by fossil generators, yielding much higher 

corresponding EMFs (see Table 4-5). Consequently, consumers considered marginal will not benefit 

from the ongoing decarbonization of the energy system and will therefore always be disadvantaged 

compared to all other consumers. From the author’s perspective, this differentiation is infeasible and 

or at least not appropriate in the context of an integrated and intersectoral energy transformation. 

If the actual impact of a specific consumer on the ecologic footprint in the short term is to be 

assessed, that approach is deemed adequate. If operational emissions of consumers as an integral 

component of the energy system transformation should be evaluated, it is the author’s opinion that 

the mix method should be used as an accounting method. 

A similar argument can be made when assessing the emissions resulting from EV charging strategies. 

Since smart charging of EVs is not yet the norm, the responsibilities and regulatory framework for 

such charging must still be discussed and defined. However, in an energy system based on flexible 

and decentralized consumers, prosumers, and generators, charging operations will need to be 

planned and optimized by a market participant (e.g., an operator of a virtual power plant or a general 

marketer who has balancing group responsibilities). That means that for every shift in charging 

processes, electricity will have to be sold (in case of discharging) or purchased (in case of charging) 

on the day-ahead, intraday, or equivalent (local) flexibility market, and the balancing group will still 

always have to be closed. When the respective market is closed, the electricity generation from the 

remaining flexible generators is considered a result of all those components that are equal parts of 

that system. When comparing two charge modes, one basically compares two system states, one 

with direct charging and another with optimized charging. Resulting load curves from each charge 
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mode are an integral part of the respective system state. From the author's point of view, it does not 

therefore make sense to consider the flexible charging operation of EVs as marginal. They, as well as 

all other flexible or inflexible consumers, are to be considered as constituent parts of such a system 

and must thus be accounted for with mix EMFs in alignment with the attributional approach. 

Overall, the decision of which approach to follow depends on the specific research question to be 

answered with the evaluations. If the cause-and-effect relationship between marginal load changes 

and their environmental impacts are to be assessed, marginal EMFs or consecutive energy system 

model simulations must be considered. Short-term effects can be assessed by marginal EMFs but 

are based on the current state of the energy system and neglect its dynamic and integrated 

development in combination with all its parts. If long-term effects such as the expansion of additional 

generators should be assessed, complex energy system model simulations must be conducted for 

every evaluation, which is not deemed adequate for the goal of this thesis.  

The main research question here is how charging operations of EVs should be optimized to reduce 

operational emissions and maximize system benefits. Therefore, maximizing the utilization of vRES’ 

volatile infeed is one of the main objectives, and this can be achieved by using the mix EMF as an 

optimization target. Regarding the balancing of operational emissions as well as the evaluated 

charging strategies, EVs and their charging strategies are considered as part of the overall energy 

system state. The use of mix EMFs as a basis for emissions accounting is therefore considered 

plausible. 
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5 Congestion Management in Germany 

The increasing share of vRES power generators poses fundamentally new challenges to the electricity 

system. Their feed-in has a highly volatile character and shows a high temporal variance. For 

example, wind and solar forecast errors must be compensated for in the short term, and long periods 

of low feed-in due to calm and cloudy weather must also be compensated for in the long term by 

additional generation capacities to maintain the balance between generation and consumption. In 

addition to this temporal variance, the spatial distribution of decentralized generators is also a 

challenge. The uneven distribution of wind and solar-electric generators, as in Germany, repeatedly 

leads to grid congestion, which is currently balanced by short-term measures such as the redispatch 

of conventional power plants (targeted adjustment of the feed-in of power plants to avoid grid 

congestions, §13 EnWG) [68] or the limitation of vRES in the course of curtailment (§14 EEG) [69]. One 

target of this thesis is to analyze the extent to which targeted charging control of EVs can be used 

to prevent the restriction of renewable plants in the course of curtailment or the redispatch of 

conventional power plants and how, in the first case, this emission-free electricity can reduce 

operational emissions of the vehicles. Both analyses are only conducted based on historical data for 

2019, since no scenario-based data for future CM-measures was available. However, it can be 

assumed that the basic relationships will also apply to future years. 

Section 5.1 provides a brief overview of the history of German congestion management with a focus 

on redispatch and curtailment. Furthermore, it presents a summary of the recent regulatory reform 

of German congestion management described as Redispatch 2.0. For the assessment of the 

described charging strategies, spatially high-resolution time series of redispatch and curtailment 

measures are needed. Since no such data is published for historical years, section 5.2 describes the 

methodology for deriving these time series based on the discrete data published by German TSO 

and DSO. Since a forecast of the future development of congestion management measures is fraught 

with uncertainty, these evaluations are only conducted for 2019. In the final section, 5.3, the resulting 

spatially high-resolution time series for 2019 are presented, and further analysis describes the 

correlations and the impacts on overall system emissions.  

5.1 Historical development of congestion management 

Since the introduction of the Renewable Energy Law (EEG) in 2000 [70] and the priority feed-in and 

fixed remuneration of vRES formulated therein, the share of these generators on total electricity 

production has increased significantly. In 2019, 54 GW onshore wind turbines, 7.5 GW offshore wind 

turbines, and 47.5 GW PV-solar generators provided renewable electricity of 173.5 TWh and thus a 

share of 28.3 % [23]. An increasing amount of grid congestion has accompanied that rise. Grid 

congestion describes a situation in which the amount of electricity fed into the grid exceeds its 

capacity or that of the affected grid resource for transporting the electrical power. In Germany, 

§13 para. 1 of the German Energy Industry Act (EnWG [68]) states that TSO are obliged and entitled 

to eliminate this congestion and provides a serial order of different congestion management 

measures (CM): 
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1. Network- or market-related instruments such as countertrading and redispatch 

(§13 para. 1 EnWG) 

2. Regulation of conventional power plants, particularly using balancing energy and 

contractually agreed interruptible loads (§13 para. 1 EnWG) 

3. Curtailment of renewable generators in the course of curtailment according to 

§13 para. 2 EnWG and §14 EEG 

According to §13 para. 1 no. 2, power plant operators and owners of curtailed vRES plants must be 

compensated appropriately. Hence, grid congestion is therefore not only a challenge for system 

security but also a financial burden for electricity customers, who indirectly contribute to the 

compensation payments via the grid fees. Figure 5-1 shows the development of both the 

development of these measures in TWh per year as well as the associated compensation costs. 

 

Figure 5-1: Overview of the history of German congestion management 

The data presented in Figure 5-1 is published annually in the “Monitoring Report” of the federal 

network agency (Bundesnetzagentur/BNetzA), pursuant to §63 para. 3 EnWG [71], as well as in the 

quarterly published “Quarterly Report Network and System Security” [72]. Even though overall costs 

and measures seem to have stagnated in the past years, compensation payments in 2019 amounted 

to €207 million for redispatch and €709 million for curtailment measures. The current regulatory state 

of CM prioritizes the redispatch of conventional power plants over the curtailment of vRES due to 

the feed-in priority of the latter as defined in §11 para 1 EEG. With increasing shares of vRES in the 

system, total costs of CM have risen steadily, consequentially leading to higher grid fees. Hence, a 

public discussion of the future of congestion management and system responsibility arose, leading 

to the reform of the regulatory framework in the form of the Grid Expansion Acceleration Act 

(Netzausbaubeschleunigungsgesetz/NABEG, [73]).  

The Grid Expansion Acceleration Act, which came into force on May 17, 2019, revised the grid 

expansion instruments and, in particular, redefined the term “redispatch” as Redispatch 2.0. Starting 

on October 1, 2021, not only are conventional power plants considered for redispatch measures, but 

renewable generators of 100 kW or more will also be included. The further developed Redispatch 2.0 

process is intended to optimize the total costs from conventional redispatch and curtailment and 

thus reduce network fees. Even with the integration of renewable generation into Redispatch 2.0, the 

feed-in priority is to be maintained in principle. [74] states that “if redispatch of conventional 

generation is suitable for relieving a congestion situation, grid operators may only resort to 

curtailment of vRES or CHP electricity if this is many times more effective. This ‘multiple’ is given by 

the so called ‘minimum factor’”. 

6.5

13.3

58

162 198 157

371

890

596

1,002 987 980

€0

€200

€400

€600

€800

€1,000

€1,200

0

5

10

15

20

25

30

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

C
o

st
s 

in
 m

ill
o

n

S
u

m
 o

f 
m

e
a
su

re
s 

in
 T

W
h

Feed-in management Redispatch Total cost

Feed-in management costs Redispatch costs



Methodology for temporally and spatially high-resolution CM-deployment 

47 

5.2 Methodology for temporally and spatially high-resolution CM-
deployment 

One of the thesis objectives is to analyze the extent to which targeted charging control of EVs can 

be used to prevent the curtailment of renewable plants or the redispatch of conventional power 

plants. Especially when EVs can be used to charge otherwise curtailed infeed of renewable and 

therefore emission-free electricity, the benefits on the system- as well as the vehicle-level can be 

considered particularly high. When considering a bidirectional charge control, it is even possible to 

reduce the redispatch of conventional power plants. This type of charging control could allow 

vehicles to make an important contribution to a sustainable energy system while possibly reducing 

their charged emissions. For the evaluation of such a charge strategy, temporally and especially 

spatially high-resolution curtailment and redispatch time series are derived from the historical 

deployment data published by German TSO and DSO. The following sections describe the underlying 

methodology for redispatch (section 5.2.1) and curtailment data (section 5.2.2). 

5.2.1 Redispatch 

Redispatch data for Germany is published by the four TSO on a central register called 

netztransparenz.de [75]. For each redispatch measure, detailed information on the duration, 

direction, maximum power, overall energy, and affected power plant is given. The information on 

power plants is matched to the power plant list of the federal network agency [40]. The latter also 

contains the addresses of each power plant, allowing a geographic assignment of the deployment 

time series. Based on that, a time series of negative and positive redispatch for each power plant, 

with the exact location, can be derived and later used as an optimization target for the vehicles in 

that region. 

5.2.2 Curtailment 

In contrast to redispatch, there is no central register for curtailment where all individual measures 

are published. However, annual aggregated values are published in the “Monitoring Report” of the 

federal network agency (Bundesnetzagentur/BNetzA) [71]. Figure 5-2 shows the development of 

these values over the past nine years subdivided by the types of renewable generators concerned. 

 

Figure 5-2: Annual data on curtailment measures in Germany as published in [71] 

The data published by BNetzA shows that the majority of curtailment measures affect wind 

generators and that 3 % of the total vRES generation is curtailed due to grid congestion.  

To compute temporally and spatially high-resolution time series of curtailed energy, more detailed 

data on individual measures is needed. The methodology described here has originally been 
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developed in [76] and revised in [77]. The following passages provide a summary of these 

publications. 

To begin, §11 para. 3 of the Renewable Energy Sources Act (EEG) obliges the network operator to 

inform the operators of the affected plants "without delay about the actual times, the respective 

scope, the duration and the reasons for the regulation" [69]. The responsible DSO fulfill this 

obligation in different ways and provide data with vastly different information content. In the course 

of this work, a minimum requirement was defined, including the following criteria: location 

information, time boundedness, stated or computable curtailed energy, and a statement of cause of 

the measure. In total, eight DSO were identified whose publications meet the above criteria. The 

curtailment data is then subdivided into two groups according to the structure of the published data: 

I. Curtailment levels provided in percentage and time period for each individual renewable 

generator 

II. Curtailed energy and time period provided for an individual transformer station 

Only eight out of the 800 German DSO met the criteria allowing the computation of the targeted 

time series. Their distribution grid areas as well as the annual sum of curtailment measures according 

to [71] are presented in Figure 5-3. 

 

Figure 5-3: Curtailment measures (2019) by federal state according to [71] (left), grid areas 

of the eight considered DSO (right) 

As illustrated in the figure, the network areas of the DSO from which data can be acquired 

predominantly cover the north, east, and south of Germany. A look at the annual number of 

curtailment measures by state, as published in [71], makes it clear that the northern federal states 

also have the largest values. According to [78], the states of Schleswig-Holstein, Niedersachsen, 

Brandenburg, and Sachsen-Anhalt already accounted for 92 % of all curtailment measures in 

Germany in 2019. It can therefore be assumed that the data basis is representative and adequate for 

the planned evaluations. 

The fundamental methodological challenge for the creation of curtailment time series lies in the fact 

that only a curtailment level CL in percentage (0 %, 30 %, 60 %) is published for each curtailed 
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generation unit. Information on the actual power output of the affected generator after curtailment 

or the hypothetical power output without curtailment, however, is unknown. Therefore, assumptions 

must be made regarding these values. As described in [76] and [77], the following three approaches 

were implemented, each with increasing level of detail, where the curtailed energy is calculated with 

respect to: 

1. Installed capacity of the vRES plant 

2. Installed capacity + capacity factor derived from vRES-infeed-in respective control area 

3. Installed capacity + capacity factor derived from NASA’s MERRA-2 meteorological data 

In the first case, the curtailed energy Wcurt,I for each generator with an installed capacity of Pinst is 

calculated for each time step t as: 

𝑊𝑐𝑢𝑟𝑡,𝐼 = 𝑃𝑖𝑛𝑠𝑡 ∙ (1 − 𝐶𝐿) ∙ 𝑡 (5-1) 

The approach overestimates the curtailed energy since the actual power output of the generator is 

usually smaller than the installed capacity. Therefore, in the second approach, the actual generation 

Pg,ca,ec,t per control area ca and energy carrier ec for each time step t, as published by the four German 

TSO, are taken into account. The control-area-specific capacity factor CFca,ec,t is then calculated in 

respect to the installed capacity in that control area Pinst,ca,ec,t as: 

𝐶𝐹𝑐𝑎,𝑒𝑐,𝑡 = 𝑃𝑔,𝑐𝑎,𝑒𝑐,𝑡/𝑃𝑖𝑛𝑠𝑡,𝑐𝑎,𝑒𝑐,𝑡 (5-2) 

The resulting curtailed energy from that approach is then calculated for each unit as: 

𝑊𝑐𝑢𝑟𝑡,𝐼𝐼 = 𝑃𝑖𝑛𝑠𝑡 ∙ 𝐶𝐹𝑐𝑎,𝑒𝑐,𝑡 ∙ (1 − 𝐶𝐿) ∙ 𝑡 (5-3) 

Due to regionally varying wind speeds in the control areas, this calculation, based on the total 

generation per control area, leads to an underestimation of the curtailed energy. To address the 

regional distribution of wind speeds and solar radiation, meteorological data from NASA’s MERRA-2 

was considered in the calculation of the capacity factor in the third and most detailed approach. For 

biomass, a constant value of 0.65 is assumed, which is based on the full load hours of biomass plants 

in Germany from 2015 to 2017. For wind generators the meteorological data was used to calculate a 

capacity factor time series for a 75 m-high wind turbine with an installed capacity of 2 MW for each 

county in Germany. For the calculation of solar capacity factors, a solar panel with south orientation 

and a tilt angle inclination of 30° and the radiation data from MERRA-2 were considered. Based on 

its county c and energy type ec, every plant is matched with its corresponding capacity factor CFc,ec,t 

for each time step t to derive plant-specific curtailed energy time series Wcurt,III as: 

𝑊𝑐𝑢𝑟𝑡,𝐼𝐼𝐼 = 𝑃𝑖𝑛𝑠𝑡 ∙ 𝐶𝐹𝑐,𝑒𝑐,𝑡 ∙ (1 − 𝐶𝐿) ∙ 𝑡 (5-4) 

Based on the last approach, the curtailed energy for every plant is calculated and aggregated to the 

desired spatial level. The resulting annual values are then calculated for the years 2015–2019 and 

compared to the annual values as published in [71], as presented in Figure 5-4 (here, curtailment of 

wind offshore plants is excluded from the comparison since this information is not available in the 

data of the eight DSO). 
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Figure 5-4: Comparison of calculated curtailed energy with values published in [71] 

Approach III is deemed the most accurate for calculating time series of curtailed energy based on 

the information on individual feed-in measures. Nevertheless, significant deviations from the annual 

values can be observed, reaching up to 35 % in 2019. As discussed in [77], there are several possible 

explanations for this, starting from delays in publication of data in the annual values of BNetzA to 

data quality in general or the simplified approach of basing the calculation of capacity factors only 

on one type of wind turbine and solar power plant. Nonetheless, the described approach is deemed 

sufficient for the evaluation of general correlations and the application of the obtained time series 

for the assessment of charging strategies undertaken in this work. 

5.3 Statistical analysis of correlations of congestion management measures 

Based on the methodology described in sections 5.2.1 and 5.2.2, time series for both redispatch and 

curtailment measures are calculated for 2019. Based on that data, a variety of analyses are conducted 

and presented in this section. 

5.3.1 Temporal distribution 

First, the temporal distribution of measures over the course of 2019 is analyzed. Figure 5-5 and 

Figure 5-6 show these values over the course of each day. 

 

Figure 5-5: Heat map of negative redispatch measures in 2019 
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Figure 5-6: Heat map of curtailed energy due to curtailment in 2019 

As outlined in Figure 5-1, the total number of congestion management measures has increased 

significantly over the past several years. Figure 5-5 and Figure 5-6 provide a clear indication that not 

only has the total annual number of measures increased, but so has the frequency of their dispatch. 

In 2019, curtailment measures were activated in 80 % of all hours and redispatch measures in 60 %. 

On average, 3.17 GW of negative redispatch and 0.5 GW of curtailment was activated during those 

times, with maximum values reaching up to 19.3 GW (negative redispatch) and 5.58 GW 

(curtailment). Thus, measures initially intended only for emergency situations become a regular 

process of system management.  

5.3.2 Correlation analysis 

Both curtailment and redispatch measures seem to occur more often during winter and are more 

pronounced during the day. To better understand the temporal distribution and correlations with 

other key variables in the energy system such as prices, vRES production, and EMFs, Spearman’s 

correlation coefficient is calculated and presented in a Spearman correlation matrix as shown in 

Figure 5-7. The correlation coefficient rs, varies between -1 and +1. 0, indicating there is no 

correlation, +/- 0.1 indicates a weak correlation +/- 0.3 indicates a moderate one, values around +/- 

0.5 show a strong correlation, and +/- 1 refers to a perfect degree of association between the subject 

variables [79]. 

  

Figure 5-7: Spearman correlation matrix for 2019 values 
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electricity production from wind on- (rs = 0.73) and offshore (rs = 0.66). As described in [76] and [77], 

curtailment mainly occurs in times of high wind generation in the north due to a delayed grid 

extension. Negative redispatch measures only show a moderate correlation. Electricity generation 

from solar power plants, on the other hand, does not correlate with congestion management 

measures at all. In [77], these coherences are discussed in detail. Furthermore, by means of a k-

means++ cluster algorithm, four distinctive systems states were identified, allowing further insights 

into those coherences and their future development. 

5.3.3 Spatial distribution 

In the next step, geospatial information on both power plants and renewable generators was used 

to derive the spatial distribution of redispatch and curtailment measures. Figure 5-8 shows this 

distribution for 2019. 

    

Figure 5-8: Redispatch (left) and curtailment (right) in Germany in 2019 

The distribution shows a clear pattern of curtailment and negative redispatch in the northern part of 

Germany, whereas positive redispatch mainly occurs in southwest Germany. A similar geographic 

distribution can be observed when assessing installed capacities of wind turbines. The majority of 

wind turbines is installed in the northern parts of Germany, where wind yields are highest and 

population density is low. As described in [76] and [77], a strong correlation exists between electricity 

generation from wind power and curtailment measures in the years under consideration. This is also 

true for 2019. Furthermore, as stated in [78], 81.5 % of curtailment measures find their cause in grid 

congestion at the transmission grid level, indicating that missing transport capacities are the main 

cause for redispatch and curtailment. 
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5.4 Emission assessment of redispatch measures 

Whereas it may be obvious that the curtailment of vRES-plants leads to overall higher emissions, the 

same does not necessarily apply for the redispatch of power plants. Where some are regulated down, 

others must increase production; hence, it depends on the types of power plants, and the underlying 

energy carriers if redispatch in general has a net positive or negative effect on total emissions. To 

evaluate this effect, an emission assessment of redispatch measures is performed. The plant-specific 

data on redispatch measures as published in [75] is matched to the power plant database of the 

Research Center for Energy Economics (FfE). Using the fuel type as well as the efficiency of each 

affected power plant, the resulting emissions can be derived as presented in Figure 5-9. Since 

redispatch measures can be considered as short-term interventions in the operational management 

of the power plants, in contrast to the assessment of the overall climate impact of EVs, only direct 

CO2 emissions are considered for the evaluation. 

   

Figure 5-9: Redispatched electricity (left) and resulting CO2 emissions (right) in 2019 (derived 

from [75]) 

The evaluation illustrates that the majority of redispatch measures affects lignite- and hard coal-fired 

power plants. Where 1,471 GWh of lignite and 1,282 GWh is regulated down, 2,463 GWh of lignite-

based electricity production is increased. Overall, this leads to a net reduction of emissions by 

531 Mt CO2. The data not only allows a spatial but also a temporal evaluation of redispatched CO2 

emissions, which is needed for the emission accounting of redispatch-optimized charging strategies 

in section 8.5.2.3. The sum over all redispatched power plants is presented in Figure 5-10. 

 

Figure 5-10: Temporal distribution of redispatch emissions in 2019 
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When discharging operations of EVs can be shifted to times when positive redispatch occurs, the 

affected power plants in that area would not have to increase their power output. Therefore, the CM 

measure would be unnecessary, and the “saved” emissions can be counted as negative emissions 

for the responsible EV. On the other hand, when the shift in charging operations leads to a reduction 

of negative redispatch measures, the reduction of generated electricity from a conventional power 

plant is avoided. The emissions of the respective power plant must be completely accounted for 

from the vehicle. Since, as shown in Figure 5-9 and Figure 5-10, a large part of the power plants 

performing positive redispatch are currently fired with hard coal, these emissions are higher than 

those of the electricity mix during this hour. Hence, the goal of reducing costly redispatch measures 

collides with that of reducing operational emissions of the vehicles. 

5.5 Regional approach for evaluation of curtailment and redispatch 

To assess the potential of CM-based charging strategies, a regionalization of both EV numbers as 

well as congestion management measures is needed. Parts of the methodology were published in 

[80] and are summarized in this chapter.  

Since no grid model is available to simulate the actual impact of such charging operations on the 

distribution and transmission grid, assumptions must be made here. In a previous study, it was shown 

that the cause of curtailment measures, at least currently, is mainly due to congestion in the 

transmission grid at the extra-high voltage level [76]. The same applies, at least in large part, to 

redispatch measures. The working hypothesis here is that for this reason, curtailed or redispatched 

energy onsite (i.e., in close vicinity of the affected vRES or conventional plants) can be used by a 

targeted shifting of charging times of EVs, and thus the CM measure would be avoided.  

The key questions at this point are which and how many EVs can be considered for mitigating the 

CM measures without full knowledge of the line-level network topology of the German transmission 

and distribution grid. To begin answering this question, the locations of the extra-high voltage grid 

nodes were first investigated. These were geospatially referenced in the Merit Order Grid Expansion 

2030 (MONA 2030) project [81] and served as the basis for the German-Austrian grid model created 

and used in the project. The geospatial referencing of the lines was conducted using data from 

OpenStreetMap (OSM). For this purpose, the OSM toolkits SciGRID [82], Gridkit [83], and the FLOSM 

power grid map [84] were used. With the application of these tools, the line data were provided with 

exact electrical connection points, and, among other factors, the locations of the 490 grid nodes 

were derived. Figure 5-11 shows on the left the locations of these grid nodes and the Voronoi regions 

derived from their point coordinates. 
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Figure 5-11:  Grid nodes of the high-voltage grid with buffer areas and Voronoi regions on 

the left; newly defined Voronoi regions after merging the overlapping buffer 

areas on the right 

A Voronoi diagram describes a subset of points that have a smaller distance from a given point 

(network node X) in a point set (all 490 network nodes in Germany) than from all other points in the 

point set [85]. In this context, it serves as an estimate of the region around each network node where 

EVs are eligible for the potential assessment of charging controls. Thus, it is assumed that the 

distribution and medium-voltage grid in this area has sufficient capacity to transport the energy that 

is curtailed or redispatched due to the congestion in the transmission grid. Figure 5-11 depicts a clear 

clustering of network nodes in densely populated areas in Germany, which leads to small Voronoi 

regions at these locations. It is assumed, due to the physical intermeshing of the high-voltage grid 

regions, that an energy exchange is also possible across the borders of the so-called Voronoi high-

voltage grid regions. As a first approximation, a buffer zone of 30 km radius around each grid node 

is therefore defined (see Figure 5-11, left). All overlapping circular areas are then combined to form 

an overall area, around the centers of which 86 new Voronoi regions are then formed (see 

Figure 5-11, right).  

In a next step, the data on curtailment and redispatch measures of the years under consideration 

(2019 and 2030) are aggregated to these areas, as shown in Figure 5-12. 
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Figure 5-12: Redispatch (left) and curtailed energy (right) in 2019 per Voronoi region 

The described methodology yields an aggregated time series of curtailment and redispatch 

measures for each Voronoi region, which is used as an optimization target for the EVs present in 

those regions (see description of the scenario in section 3.3 and results in section 8.5). 

5.6 Conclusion 

In the course of this chapter the historical development of CM-measures in Germany was discussed 

in detail. Increasing shares of vRES have led to a significant increase of those measures in the past 

years. Redispatch and curtailment measures have led to annual costs of €916 million in 2019. To 

assess the reduction potential of related EV charging strategies, a methodological approach was 

described, deriving temporally and spatially high-resolution curtailment and redispatch time series 

from the plant/generator-specific data published by the German authorities. Those time series are 

aggregated to Voronoi areas and used as an optimization target for the associated charging 

strategies described in section 8.5. It is assumed, that all vehicles in that area can be used for the 

reduction of those CM-measure. Furthermore redispatch measures were evaluated with regard to 

the resulting emissions. The time series of those emissions is used for the emission assessment of 

the related charging strategies (see results in section 8.5.2.3)
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6 Electric Mobility in Germany 

Besides the boundary conditions set by the underlying energy system, the charged emissions and 

the potential of charging strategies strongly depend on the mobility behavior of vehicle users. Due 

to the still limited market shares of EVs, representative data on electric mobility is scarce. Hence, a 

modeling approach is needed to reflect their mobility behavior. Research on the assessment of 

charging behavior and the interaction with the energy system can generally be subcategorized into 

three main groups, whereby the evaluations are based on:  

• charging data of existing electric fleets 

• measured mobility profiles of conventional or electric vehicles 

• empirical mobility survey data of conventional vehicles 

The first group of studies is based on measured data of electric fleets. Those studies are relevant 

because they represent actual EVs and therefore best map their users’ charging behavior. However, 

these kinds of studies have the limitation that they are only based on a small number of vehicles, 

with users mostly being early adopters, and do not necessarily represent the mobility and charging 

behavior of users in the broader population. One of the bigger studies in Germany in this category 

was conducted by Schäuble et. al. [86] in 2017, merging the results of three field trials (Get eReady 

[87], iZEUS [88], and CHROME [89]) to derive EV load profiles and describe users’ charging behavior. 

It states that the peak simultaneity of charging operations amounts to a value of 0.8 kW/EV, one very 

similar to the results of the modelling approach developed in this thesis. Another recent example is 

Gerossier et al. [90], wherein temporal high-resolution charging data of 46 privately owned EVs in 

Austin, Texas was used to identify charging habit clusters with hierarchical clustering on the Ward 

linkage method. The identified clusters were then used to estimate the future impact of a larger fleet 

of EVs on the grid. A good overview of further studies of that type can be found in Schmidt-Achert 

[91].  

The second group of studies uses measured mobility data of conventional or electric vehicles to 

assess charging operations. An example of this is research conducted by Nobis [92] that used GPS 

data from a fleet of 130 conventional vehicles collected in the project eFlott [93] and a consumption 

model for EVs to synthesize time series of electricity demand and then use this in a distribution grid 

model. Approaches like that again have the limitation that only a small number of vehicles is 

considered. Nobis compared the results with the German mobility survey “Mobility in Germany 2008” 

[94], concluding that the mobility characteristics are similar.  

Mobility surveys like the aforementioned “Mobility in Germany 2008”, with the advantage of being 

based on a large dataset, are to be considered empirically sound and give a good representation of 

overall mobility behavior in the focus area. They represent the empirical data basis for the third group 

of studies. For Germany, three main surveys of that type exist. First is “Mobility in Germany” , 

conducted and published every 10 years and focusing on private mobility, with “Mobility in Germany 

2017” (MiD2017) [95] being the latest update. The study “Mobility panel” (MOP) [96], commissioned 

annually by the Federal Ministry of Transport and Digital Infrastructure, also represents private 

mobility but is based on a different survey method presenting coherent data for one entire week of 

mobility behavior. The last survey of that kind is the “Motor Vehicle Traffic in Germany,” which is also 

updated every 10 years and addresses commercial instead of private traffic. The latest updates were 

published as “Motor Vehicle Traffic in Germany 2010” (KiD2010)” [97] in 2012 by the WVI Prof. Dr. 

Wermuth Verkehrsforschung and Infrastrukturplanung GmbH. All surveys present a large dataset 
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with information on trips and locations as well as socioeconomic information on subjects and are 

therefore well suited as a data basis for the modeling of electric mobility. Hence, many studies 

researching the assessment of charging behavior or time-dependent energy demand of EVs are 

based on those surveys. Dallinger [98], for example, has used the data of MiD2008 [94] to assess the 

potential of smart charging of plug-in EVs to balance the volatile generation of vRES (2012). Heinz 

[99], on the contrary, used the weekly travel surveys of the MOP to synthesize representative car 

profiles and assess a similar research objective. 

Two more studies must be mentioned here regarding the analysis of the most recent mobility data 

from MiD2017 [95] and using it as a basis for the modeling of coherent user profiles. Gaete-Morales 

et al. [11] published an article as well as the open-source code for the tool emobpy in 2020. emobpy 

uses the data of MiD2017 to derive coherent annual time series of EV load, grid availability, and grid 

electricity demand for different charging strategies with customizable technical parameters to be set 

by the user. They used a probabilistic approach for the selection of the number of trips, destinations, 

departure times, and trip distances based on the statistics derived from the survey. In contrast to the 

final study mentioned here (Harbrecht et al. [100]), no interdependencies between trips were 

considered. However, Harbrecht has provided an extensive statistical analysis on coherences within 

the MiD2008 dataset and uses that information to build a stochastic bottom-up model to generate 

load profiles. An inhomogeneous Markov chain has been used to create a sequence of consistent 

arrival and departure locations with respect to the interdependencies within trips. Although the 

authors used a Markov chain regarding the weekday and trip index, a more common approach 

would be inhomogeneity regarding the time of day; however, the authors identified the trip index 

as having higher informative value. Several assumptions of the modeling approach developed in this 

thesis are derived from the statistical analysis provided by Harbrecht, as described in section 6.2.3. 

As shown there, numerous modeling approaches use survey data of conventional vehicles to derive 

driving or charging profiles of EVs. To prove the validity of that basic assumption, Pareschi et al. [101] 

have compared the results of such an empirical modeling approach with data derived from EV field 

tests. They concluded that survey data of conventional vehicles are “an appropriate instrument for 

generating EV insights” but highlight the importance of accurately modeling input parameters such 

as EVs’ battery size and charging power. 

For the potential assessment of charging strategies aiming at the reduction of congestion-

management measures (in section 8.5) and the system feedback of residual load-optimized charging 

(in section 8.4.2) the total number of share of EVs as well as their spatial distribution in Germany is 

needed and described in section 6.1. Section 6.2 then describes the modeling approach for the 

mobility behavior of EVs, which integrates the two largest and most recent mobility surveys in 

Germany, “Mobility in Germany 2017” and “German mobility panel”, as a data basis to combine the 

large amount of data from the first and the information on weekly mobility behavior of the second. 

Both are presented briefly in sections 6.2.1 and 6.2.2.  

Moreover, as shown in the beginning of this chapter, many current models use stochastic approaches 

such as Markov chains for the synthesis of mobility profiles. Here, the original survey data is first 

deconstructed and translated to probability distributions of, for example, departure times, traveled 

distances, and speeds to then reconstruct coherent mobility profiles using further assumptions. 

Dinkel [102] has reviewed several such Markov chain-based approaches in detail and showed that 

they tend to lead to very fluctuant and sometimes inconsistent mobility profiles. It is furthermore 

believed that an intrinsic value lies in the consistent and de facto daily (or weekly in case of the MOP) 

mobility behavior of individual users provided by the surveys at hand. The methodology described 

here therefore refrains from the statistical deconstruction of those trip diaries and instead aims at 

their direct and unaltered utilization in a concatenation process as described in section 6.2.6. This 
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approach was originally developed by the author in the project “MONA 2030” [103] and published 

in [104] based on the previous version of the MiD, MiD2008 [105]. It was then applied to the 

commercial transport survey KID2010 [97] as described in [106]. In the project “Bidirectional Charging 

Management (BCM)” [107], the latest version of the survey MiD was incorporated, in cooperation 

with Schmidt-Achert in [91], where the database was expanded to include the weekly mobility 

behavior provided by the survey MOP [96]. The underlying methodology is described in 

sections 6.2.3 to 6.2.6. The last section, 6.2.7, summarizes the results of this chapter. 

6.1 Development of electric vehicles in Germany 

When evaluating the interdependencies between a fleet of EVs and the underlying energy system, 

the total number of vehicles in the system plays an important role. The reduction potential of 

congestion management measures using EVs directly depends on the number of vehicles present in 

the vicinity of the affected power plant or renewable generator.  

The market share of EVs in Germany developed slowly over the past few years but has experienced 

an enormous increase within the last year. This has mainly been due to the funding program of the 

German government [108] as well as EU regulation limiting the fleetwide average carbon emissions 

for newly registered cars to 95 g CO2/km in 2020 [109]. The latter put pressure on Original Equipment 

Manufacturers (OEM) to increase the share of emission-free (at least under the current regulation) 

EVs in their fleet since efficiency improvement potential of conventional vehicles is limited. 

Companies such as VW and others have now officially committed themselves to their own ambitions 

EV targets, heralding a reversal on their way to largely electrified road transport. Figure 6-1 shows 

the historical number of registered vehicles per year on the left and the results of a meta study 

conducted on the future development of vehicles on the right. 

 

Figure 6-1: Historical development of registered EVs in Germany according to [110] (left), 

estimated future development of EVs based on meta study (right) 

The data presented on the left is derived from the annual balance sheet of the German vehicle fleet 

published every January by the German Federal Motor Transport Authority (Kraftfahrzeugbundes-

amt [KBA] [110]). To estimate the future development, a meta study was conducted based on the 

largest energy system studies of the last several years and other sources on that topic ([111], [112], 

[17], [113], [114], [5], [115], [31], [116], [117], [118]). Most studies have described climate protection 

pathways toward a carbon-neutral energy system in 2050 as well as reference paths, where climate 

targets are not met. The boxplots in Figure 6-1 represent an unweighted collection of all those values. 

Therefore, the range of values is considerable and even increases when adding the year 2050. In 

2030, the estimated numbers span from 0.8 to 10.5 million vehicles.  
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To put these values into context, the climate protection plan (Klimaschutzprogramm 2030 [119]) set 

by the German government identifies a number between seven and 10 million EVs in 2030. Since all 

the evaluations for future years in this study are based on the quEU scenario developed in the project 

eXtremOS [120], the number of EVs is derived from that scenario as well. For 2030, 2.69 million 

vehicles are considered and 5.7 million for 2040. Those numbers are based on the latest version of 

the ENTSO-E’s “Ten-Year Network Development Plan” [121]. Considering the momentum of the past 

years and the commitment of both industry and politics toward an electrified mobility, these values 

should be considered rather conservative. For the analysis of 2019, the abovementioned 136,617 

vehicles are considered. 

Spatial distribution of electric vehicles 

To assess the reduction potential of congestion management measures using EVs on a local level, 

the regional distribution of EVs in Germany is needed in addition to the absolute number. In a study 

for the German TSO as part of the network development plan, a methodology was developed that 

enables this distribution [107]. In this section, only a brief overview of the underlying methodology is 

described, and results for the estimated number of vehicles in three phases are presented. 

The regionalization approach of EVs is divided into three phases, which are calculated independently 

of each other. These are the pioneer phase, the mainstream phase, and the standard phase. In each 

phase, different structural and characteristic parameters are involved, defining the probability of a 

purchase of an EV, and are calculated per 100x100m cell. The structural parameters include the 

availability of private and collective garages, commuting distance, and dispersion and describe the 

extent of mobility in the area. Characteristic parameters are the installed PV capacity per cell, the 

living space per dwelling, and the mean income. Those factors are assumed to describe users’ affinity 

toward electric mobility. These parameters of different units (distinct numbers, kilowatts, euros, etc.) 

are transformed into dimensionless points through the application of corresponding weightings and, 

combined, form the distribution keys per cell for the regionalization approach. Both the 

aforementioned structural and characteristic parameters are varied in their weighting per phase to 

quantify the contextual assumptions.  

The assumption is made that the pioneer phase is mainly dominated by people with a strong affinity 

for electromobility who have a high income in a national comparison and own large flats or single-

family houses. In addition, the pioneers often already have their own PV system on the roof of their 

house, which means that an electric car can be at least partially charged by electricity they produce 

themselves. This phase is capped at three million EVs. After that, the mainstream phase is intended 

to represent a state of increased penetration of EVs in which they do not yet dominate the market 

but are no longer a marginal phenomenon. This phase is capped at five million EVs. At the end of 

the mainstream phase, a maximum of eight million EVs will be distributed in Germany. The final 

standard phase is applied to all numbers of EVs over eight million. In this phase, characteristic 

parameters such as income no longer play a role as it is assumed that the purchase of an EV is not 

dependent on affinity but is only defined by the extent of local mobility. As the three phases are 

regionalized independently of each other, the resulting numbers of vehicles per cell and phase are 

added at the end of the calculation to obtain the total number of EVs per cell. The structural and 

characteristic parameters used for the regionalization approach as well as the corresponding 

weighting factors for each phase are presented in Table 6-1 and Table 6-2. 
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Table 6-1: Structural parameters and weighting factors for every phase 

Structural 

parameter 

Weighting factor 

Pioneer phase 

Weighting factor 

Mainstream phase 

Weighting factor 

Standard phase 
Source 

Private garage 1 0.8 1 [122] 

Collective garage 0.1 0.3 1 [122] 

Commuting 

distance, average 
𝑓(𝑐ommuting dist. ) 𝑓(𝑐ommuting dist. ) 𝑓(𝑐ommuting dist. ) 

Based on [123], see 

[107] 

Commuting 

distance, dispersion 
𝑓(𝑐ommuting dist. ) 𝑓(𝑐ommuting dist. ) 𝑓(𝑐ommuting dist. ) 

Based on [123], see 

[107] 

 

Table 6-2: Characteristic parameters and weighting factors for every phase 

Characteristic 

parameter 

Weighting factor 

Pioneer phase 

Weighting factor 

Mainstream phase 

Weighting factor 

Standard phase 
Source 

Installed solar 

capacity 
min (0,5 × 

𝑝𝑠𝑜𝑙𝑎𝑟

10
, 2) min (0,4 × 

𝑝𝑠𝑜𝑙𝑎𝑟

10
, 2) - [124] 

Living space 
1 point for each 50 m2 over 

70 m2 

0.8 points for each 50 m2 

over 70 m2 
- [125] 

Income 
1 point per 20,000 € over 

20,000 € annual income 

0.8 point per 20,000 € over 

20,000 € annual income 
- [123] 

 

A more detailed description of the application of these parameters is presented in [107]. Figure 6-2 

shows the resulting distribution of EVs for each of the phases. 

 

Figure 6-2: Distribution of EVs in each of the three phases 

The distribution method is applied to the number of vehicles assumed for 2019 and is used as a 

basis for the assessment of charging strategies for the reduction of CM measures, as described in 

section 8.5 

Pioneer-phase Mainstream-phase Standard-phasePioneer phase Mainstream phase Standard phase
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6.2 Modeling of electric mobility behavior 

As stated in the beginning of this chapter, the modeling of electric mobility in the context of this 

thesis is based on the survey data provided by both the survey “Mobility in Germany 2017” (MiD2017) 

[95]) and the “German mobility panel” (MOP) [96]. The following sections present those surveys and 

describe the underlying methodology for the synthesis of coherent annual mobility profiles. 

6.2.1 Survey description: “Mobility in Germany 2017” 

The MiD2017 [95] presents the latest version of a series of traffic surveys in Germany that have been 

conducted since the mid-1970s by the “infas Institute für Angewandte Sozialwissenschaften GmbH” 

in Bonn and the Institute for Transport Research at the German Aerospace Center (DLR) in Berlin. 

The goal is to collect representative data to depict everyday mobility behavior of the German resident 

population. The survey was conducted with a random sample size of more than 150,000 households 

and was implemented by telephone, in writing, or via the web. The aim of the survey was the detailed 

recording of the mobility behavior of all residents of each of the households in one day. In total, data 

on more than 300,000 participants and 960,000 individual trips is provided. In addition, basic data 

to describe and categorize households and individuals was collected. The survey was performed over 

the course of an entire year but only contains information on the individual mobility behavior of 

individual participants over the course of one day. The dataset presents survey information on the 

following subcategories with the respective number of data points: 

• Households (156,420) 

• Persons (316,361) 

• Trips (960,691) 

• Vehicles (216,844) 

• Travels (38,905) 

• Trip stages (11,000) 

In all categories, detailed and comprehensive survey data such as socioeconomic or geographic 

information and various other categories is provided. In the described approach, the first four 

categories are used for the synthesis of coherent mobility profiles. The survey was conducted using 

the following four methods:  

• Computer-assisted telephone interview (CATI) 

• Computer-assisted web interview (CAWI) 

• Paper and pencil interview (PAPI) 

That is relevant because the level of detail of the provided data in these categories varies significantly. 

For example, the information on which car of the household was used for a trip is not provided in 

PAPI, making it a methodological challenge to generate vehicle-specific mobility profiles from the 

participants’ information. 

In some cases, the formation of the sample and the way the survey was conducted lead to a skewed 

distribution of results. For example, the selection basis for the survey is, on the one hand, the 

population registers of the municipalities and, on the other hand, the landline and mobile phone 

register in Germany. A person selected from the population register represents his or her household. 

Since all persons from the household are surveyed in that case, the household sample results directly 

from the sample of individuals. This leads to an underrepresentation of smaller households. In cases 

where representative results are to be calculated for the whole population of Germany, weighting 
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factors are published compensating for those effects. Further information on the study and the 

methodology used is available in the related methodological report [95]. 

In Harbrecht et al. [100], an extensive statistical analysis of the dataset of MiD2008 was conducted, 

identifying the most significant influencing factors on residential mobility behavior. Various questions 

and hypotheses regarding socioeconomic and socio-demographical influencing factors were tested 

with Cliff’s method and the χ2-test of independence. Some of the results are used for the definition 

of behavior-homogeneous user groups in section 6.2.4. In the context of this thesis, only a brief 

overview of the most relevant parameters is presented regarding the modeling approach at hand. 

6.2.2 Survey description: “Mobility panel” 

To assess weekly mobility behavior and increase the statistical database for the synthesis of annual 

mobility profiles, data provided by the MOP [96] is considered as well. The survey is conducted 

annually and represents the mobility behavior of around 3,000 participants and 70,000 trips. In 

contrast to the daily survey of the MiD, the MOP survey spans over a period of one week, providing 

further information needed to synthesize statistically correct mobility profiles. Participants are 

selected randomly and encouraged to partake in the survey for three consecutive years. The survey 

then consists of two stages. First, a trip dairy is filled out over the course of one week, and survey 

data on households and participants is collected. In the second stage, a fuel log is completed over 

the course of two months. The data is provided in the following four categories with the respective 

number of data points for the last available version of the survey published for 2016: 

• Households (1,757) 

• Persons (2,874) 

• Trips (66,109) 

• Fuel log (1,553) 

In addition, in the case of the MOP, the formation of the sample and the way the survey was 

conducted lead to a skewed distribution of results, which is why corresponding weighting factors are 

also published here.  

Since mobility behavior did not considerably change over the course of the past several years, 

according to [96], and to further increase the statistical data basis, the latest survey data from 2010 

to 2016 are considered for the evaluations in this thesis. 

6.2.3 Data processing of survey data 

The data provided by both surveys is first subjected to a screening and validation process to filter 

out those trips and corresponding vehicle and participant data that are implausible, duplicate, or 

lack information needed for further analysis. Table 6-3 shows that filtering process and the 

corresponding number of trips eliminated in the process. 
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Table 6-3: Filtering and validation process for trip data of MiD and MOP 

 MiD 2017 MOP 2010–2016 

Total number of trips 960,619 377,120 

Trips not driven (as a driver of a car) 561,511 180,656 

Removed due to implausible speed values 48,038 14 

Removed due to overlap 1,311 304 

Removed due to missing information - 560 

Remaining trips 349,759 180,642 

 

The foundation of both studies is a sample of persons, whereas the target of the modeling approach 

described here is focused on the mobility behavior of individual vehicles. That poses a 

methodological challenge (addressed later), but as a first step, all trips not driven as the driver of a 

privately owned car are excluded from the dataset. Furthermore, trips that have implausible speed 

values, overlap with other trips of the same user, or lack other information needed for the synthesis 

of vehicles mobility profiles are eliminated. In total, 530,401 remain after that preliminary filtering 

process. 

After that screening process, the remaining dataset is further processed to assign start and end 

locations for every trip and to identify and assign the main driver and the corresponding behavior-

homogenous user group of the vehicle.  

Assignment of start and end locations 

Since no information is given on the actual start and end location of trips in either survey, 

assumptions are made as follows. In the MiD data, the start location of the first trip is defined by the 

variable “W_SO1.” According to its value, the start location of that trip is set either to “at home” or to 

“other.” Since no such variable exists in the MOP data, it is assumed that all first trips start at home. 

All the following start and end locations of trips are then derived from the information on the trip’s 

purpose, given by the variables “w_zweck” (MiD) or “zweck” (MOP). Based on that, three distinct end 

locations—at home, at work/school, and other—are allocated to each trip, and it is assumed that 

the next trip starts at the same location. For 683 (MiD) and 650 (MOP) trips, it was not possible to 

derive a consistent sequence of start and end locations that way, so they are excluded from further 

use. 

Identification of main driver and assignment of corresponding user group 

One of the main challenges of the approach at hand is the fact that the survey data provided is a 

sample of persons, whereas mobility profiles of vehicles are to be generated. At the same time, as 

stated in the beginning of the chapter, the MiD data only includes information connecting the trip 

data of participants with the corresponding vehicle for a small subset of the survey, whereas the 

MOP does not contain that information at all. Hence, a three-step approach with increasing 

methodological vagueness is applied based on the information available for each vehicle: 

1. Corresponding car defined by ID of vehicle (w_wauto, only subset of MiD) 

2. Only one car in household → all trips of household members are considered (MiD + MOP) 

3. More than one car in household → each person is assigned to a single vehicle according to 

the number of trips per car, and this vehicle is used exclusively by this person (MiD + MOP) 

The third approach must especially be considered a strong assumption but at the same time 

represents the only way to use the underlying trip information. Since the subset in the MiD, where 
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information on participants and corresponding vehicles is available, shows that 98 % of vehicles in 

the survey are used by only one main driver, this approach is deemed admissible. 

Socioeconomic information of the assigned main driver of each vehicle is then used to categorize 

vehicles into twelve behavior-homogeneous user groups derived from the statistical analysis in [100]. 

The user groups are defined according to occupation type, presence of underage children in the 

household, and the use frequency of cars and are later used for concatenating individual daily survey 

data to coherent annual mobility profiles. 

The result of this process is data on 234,315 vehicles with the allocated behavior-homogeneous user 

group and on 518,290 trips with information on start and end locations, time, traveled distance, 

duration, average speed, and the weekday of the trips. This dataset is then used for the synthesis of 

annual mobility profiles as described in the next chapter. Figure 6-3 shows the average number of 

trips per day and the average distance traveled per trip for all mobile vehicles that result from the 

process described in this section. 

 

Figure 6-3: Average number of trips per day (left) and average distance per trip (right) of 

mobile vehicles 

It must be noted that vehicles with no mobility on the survey day are considered in the overall 

process but not in the evaluation above. The number of trips traveled per day during the week, rather 

than on weekends, have lower average distances. This could be explained by the assumption of 

commuter traffic during the week, weekend excursions with longer distances, and smaller numbers 

of individual trips on the weekend. There are significant differences between both surveys concerning 

these values, especially considering the average distances per trip. Those differences might be 

explained by the survey design, but no final conclusions can be drawn based on the data provided. 

6.2.4 Definition of behavior-homogeneous user groups 

The basic approach for the synthesis of coherent annual mobility profiles is the concatenating of 

daily mobility profiles provided by the survey data under certain assumptions. The key assumption 

is that vehicle users can be subdivided into behavior-homogeneous user groups. Harbrecht et al. 

[100] have conducted an extensive statistical analysis of the mobility behavior provided by the 

MiD2008 [105]. Various questions and hypotheses regarding the influence of socioeconomic and 

socio-demographical factors on user behavior were tested with Cliff’s method and the χ2 test of 

independence. When considering a regional distribution of vehicles to assess the potential of 

charging strategies to reduce congestion management measures (see results in section 8.5), it is 

important to know if mobility behavior is influenced by the place of residence of the vehicle owner. 

The results in [100] show that that is not the case, and the place of residence does not have a strong 

influence on the vehicle’s mobility behavior.  
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Average values for key indicators of mobility behavior for the four distinct area types provided by 

the current version of the MiD2017 are presented in Table 6-4. Note that in the case in which cars 

without recorded trips are considered here as well, this leads to a lower number of trips in 

comparison to the assessment in Figure 6-3. 

Table 6-4: Key mobility indicators of vehicles located in four distinct area types based on 

evaluation of MiD2017 data [95] 

Average values for… 
Large city 

without a district 

Municipal 

district 

Rural district with 

densification tendencies 

Sparsely 

populated district 

Annual mileage 13,221 14,334 14,805 14,849 

Kilometers per day 13.17 17.58 16.96 15.75 

Average distance per trip 6.6 8.3 8.34 8.36 

Number of trips per day 1.63 1.99 1.87 1.77 

Number of cars per household 1.66 1.96 2.02 2.03 

Share of private parking spots 55 % 81 % 87 % 87 % 

 

The average values reflect several deviations, especially when considering the mobility behavior in 

large cities, but overall, these can be considered small enough not to be relevant for the modeling 

approach of individual vehicles at hand. The most dominant deviations can be found in the number 

of cars per household and the information on the usual parking spot. The latter has an influence on 

the charging behavior of EVs due to the varying availability of a charging infrastructure in public 

spaces but does not necessarily influence the mobility behavior itself. A differentiation according to 

the place of residence is therefore not considered. 

Harbrecht [100], however, has indicated that driving behavior is mainly influenced by the occupation 

of the main user. Full-time employees park significantly longer at work than part-time employees. 

Furthermore, members of households with (underage) children tend to take more trips than those 

without children. These categories are used for the definition of the following 12 behavior-

homogeneous user groups. 

Table 6-5: Definition of behavior-homogenous user groups 

User group 

ID 
Occupation 

Children in 

household 

Frequent 

driver 

User group 

ID 
Occupation 

Children in 

household 

Frequent 

driver 

1 full-time no no 7 part-time yes no 

2 full-time no yes 8 part-time yes yes 

3 full-time yes no 9 unemployed no no 

4 full-time yes yes 10 unemployed no yes 

5 part-time no no 11 unemployed yes no 

6 part-time no yes 12 unemployed yes yes 

 

These user groups are later used for the concatenating process. 

6.2.5 Discussion of commuting behavior 

As stated, the basic approach for the synthesis of coherent annual mobility profiles is the 

concatenating of daily mobility profiles under certain assumptions. In the case of non-commuting 

profiles, this is done by only choosing those from a single behavior-homogeneous user group (as 
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described in section 6.2.4) and respecting additional concatenating criteria. In the case of 

commuters, a more consistent mobility behavior is to be assumed for trips to the workplace. 

Therefore, a more detailed approach must be used here. 

The original version of the mobility profile generator (developed in 2016 and described in this 

chapter) was solely based on the survey data on daily mobility provided by the MiD2008 [105]. Since 

no data on weekly mobility behavior of individual users is provided, assumptions were made to 

concatenate those profiles. To represent commuter behavior, it was assumed that commuters drive 

to work every workday. Furthermore, the assumption was made that those commuters have a 

consistent mobility behavior regarding their arrival times at work and the distance traveled. Based 

on those two values, profiles identified as commuters by a trip to work were categorized into 12 

commuter groups, which were then used to concatenate commuter profiles during workdays (see 

[104]). 

In the context of the revision of that original approach, MOP survey data was considered additionally, 

providing actual information on weekly mobility behavior of commuters. The data show that in 

contrast to the assumptions of a consistent commuting behavior (driving to work every single day 

of the week), a much more inconsistent behavior must be considered.  

   

Figure 6-4: Evaluations on commuting behavior based on MOP-data [96] 

The evaluation shows that only 51 % of all participants (who are defined as commuters since they 

drive to work at least once by car) drove to work by car five days of the week, and 71 % used one 

single means of transport. Hence, the assumption made beforehand of a consistent commuting 

behavior was revised and updated for the concatenating logic of profiles in those groups (see 

section 6.2.6).  

Furthermore, the assumption was made that commuters arrive at work at roughly the same time 

each day and drive the same distance there. To verify this assumption, the distribution of arrival times 

and the standard deviation of those values for every commuter over the course of one week were 

calculated as illustrated in Figure 6-5. Here, only trips driven by car were considered. 
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Figure 6-5: Histogram (left) and cumulative standard deviation of arrival times at work 

The evaluation depicts that 50 % of all users arrive at work every morning before 8:00 a.m. and the 

other half after that. The cumulative distribution of weekly standard deviations of arrival times shows 

that 51 % of all commuters arrive at work within a timeframe of 10 minutes and 81 % within one hour. 

The assumption of homogeneous behavior in that area can therefore be considered valid. The same 

evaluation was applied for the distance traveled to work, as shown in Figure 6-6. 

  

Figure 6-6: Histogram (left) and cumulative standard deviation of distances traveled to work 

The distribution of distances traveled to work is much more heterogeneous and reaches values up 

to 100 km. Forty percent of all commuters travel less than 10 km to work, 25 % between 10 and 20 km, 

22 % between 20 and 40 km, and the remaining 13 % travel more than 40 km. The values of the 

standard deviation of those distances during the week show consistent behavior: 63 % do not deviate 

at all from their daily travel distance to work over the course of one week, and only 5 % deviate more 

than 10 km. Overall, the evaluation of the data confirms the assumption of a homogeneous 

commuting behavior of vehicle users. The following definition of commuter groups is therefore used 

for the concatenating process: 

Table 6-6: Definition of commuter groups 

Commuter 

group ID 

Arrival time 

at work 

Distance to 

work 

Commuter 

group ID 

Arrival time 

at work 

Distance to 

work 

1 before 08:00 <10 km 5 after 08:00 <10 km 

2 before 08:00 10–20 km 6 after 08:00 10–20 km 

3 before 08:00 20–40 km 7 after 08:00 20–40 km 

4 before 08:00 >40 km 8 after 08:00 >40 km 
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6.2.6 Concatenation to annual mobility profiles 

The uniform daily mobility profiles described in section 6.2.3 are then concatenated to annual 

mobility profiles regarding the weekly commuting behavior derived from the survey data of the 

MOP. The algorithm follows the process below: 

1. Pick random weekly profile from MOP survey and identify user group and commuter group. 

2. For each workday, select three random daily profiles meeting the concatenating criteria. 

3. Create annual profile considering holidays. 

In the first step, a random weekly profile from the harmonized MOP data is selected. The profile 

contains the information on the behavior-homogeneous user group (see Table 6-5) and if trips to 

work exist, on the corresponding commuter group (see Table 6-6). Based on that information, three 

random profiles for each day of the week are selected from the sample of daily profiles (based on 

MiD and MOP data) described in section 6.2.3. The profiles must meet the following criteria: 

• same behavior-homogeneous user group 

• same commuter group (if a commuter-week profile is selected) 

• start location of the next day equals the end location of the previous day 

• first trip of the next day does not start before the last trip of the previous day ends 

For every weekday of the year, a random profile is chosen from the preselected candidates. The 

preselection of three candidates for every weekday ensures that the vehicle does not repeat the 

same mobility behavior every day but at the same time does not result in an entirely random mobility 

behavior over the course of the year. In that process, information on public holidays is considered 

by selecting a Sunday profile for each holiday and a Saturday profile for each bridging day as 

described in [126]. The resulting annual mobility profiles are then discretized to 15-minute time steps 

and saved to the FfE database FREM as arrays containing information on location, speed, and 

distance for each time step. 

6.2.7 Results and conclusion 

The methodology described in this chapter was used to derive 2,000 annual driving profiles for each 

user group. This synthesis was employed for 2019 as well as the calendar year of 2012 since the 

simulation results for future years are based on the weather for that year. Based on the data derived 

from both surveys, the shares of the identified user groups in the total fleet are presented in 

Table 6-7. 

Table 6-7: Share of user groups in total fleet 

User group 1 2 3 4 5 6 7 8 9 10 11 12 

Share 9.8 % 19.3 % 3.8 % 8.7 % 5.8 % 7.6 % 3.9 % 6.0 % 18.7 % 13.9 % 1.3 % 1.2 % 

 

These shares are used for the assembly of a statistically correct representation of the German fleet 

from the profiles of user groups. Figure 6-8 shows the share of locations over the course of an 

average week for the complete German fleet for the synthesized annual profiles and the same 

evaluation for the original daily mobility profiles derived from the MiD2017. 
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Figure 6-7: Average distribution of locations of the German fleet 

The most significant difference between the synthesized annual profiles and the unprocessed original 

survey data can be identified in the transition from one day to the next. In case of the synthesized 

profiles a significant number of vehicles is not parked at home during the night. In case of the original 

data on the other hand, more vehicles are reported to end their day at locations “other” or “at work” 

than vehicles that start their trip at the corresponding location on the next day. Further analysis of 

these effects has shown that it is not an issue of the applied methodology, but a problem originating 

in the survey data itself. The official report of the survey also states that almost no cars are parked 

at other locations than at home [127]. The empirical analysis of three electric mobility studies in 

Germany’s southwestern region by Schäuble et al. [86] on the other hand shows, that approximately 

10 % of the vehicles are parked at unknown locations and 12 % are parked at work at the transition 

from one day to the next. Overall, the lack of available information prevents definitive validation of 

these relationships. However, it is assumed that the correlations are sufficiently valid overall, and that 

the procedure can be regarded as permissible. Besides these obvious differences, the progression 

of the shares of locations is very similar between the synthesized and original profiles. 

At all times, at least 50 % of vehicles are parked at home. During the week, about 30 % of the vehicles 

are parked at work at noon. Due to the revised method for the calculation of commuting behavior 

and based on the information derived from the MOP data, some users also work on weekends. The 

ways to and from work lead to small peaks in trips in the morning and in the late afternoon. This is 

even more pronounced when looking at the mobility behavior of user group 2. Figure 6-8 shows the 

location of this group (full-time occupied, no children, frequent driver) in direct comparison to user 

group 9 (unemployed, no children, infrequent driver), a more extreme example at the other end of 

the spectrum. 
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Figure 6-8: Average distribution of locations of user groups 2 and 9 

Here, the difference in driving behavior is clearly pronounced. While only 25 % of the commuters 

leave their cars at home during the week, 60 % are parked at work. In addition, in that case, the 

driving peaks in the morning and evening are even more pronounced, starting a few hours earlier 

on Fridays. The unemployed, infrequent drivers, however, show a completely different driving 

behavior. Since no trips to work are considered, 75 % of the cars are always parked at home. 

Furthermore, behavior between weekdays and weekends does not differ substantially. These 

differences in parking times have a significant influence on the potential of charging strategies and 

are further assessed in the discussion of the potential of charging strategies in section 8.2.4.1. The 

mobility behavior of all user groups is presented in the appendix in section 12.3.  

In a next step, the resulting annual driving distances are compared to the ones derived from the 

original survey data. In both surveys, annual mileage values given by the respondents are 

documented. However, these values are not suitable to be used as a reference since they represent 

the total annual mileage including multiday trips and long vacation trips. The report by [95] states 

that “40 percent of the total annual mileage of passenger cars is generated on routes of more than 

50 kilometers and a good quarter on routes of more than 100 kilometers.” MiD2017 participants, for 

example, reported an average annual mileage of 14,472 km, while multiplying the average daily 

distance derived from the survey data by 365 days only yields an annual short-distance mileage of 

8,196 km. Therefore, a considerable share of the annual mileage must be categorized as long-

distance trips. It is assumed, though, that those trips are not charged at home or at the workplace 

(where the potential of optimized charging is assessed in the context of this work) but during those 

trips at public charging stations. The charged electricity at those charging points is considered for 

the calculation of total emissions and costs, however. The methodology for the estimation of public 

charging behavior is described in section 7.3 For a validation of the annual mileage values of the 

synthesized profiles, this calculated annual mileage "short distance" is used, as presented in 

Figure 6-9. 
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Figure 6-9: Annual mileage for the considered user groups 

The average annual (short trip) mileage of the synthesized profiles is slightly higher than the 

extrapolated values of the harmonized daily profiles for all considered user groups. One explanation 

for this can be found in the concatenating process based on the weekly commuting behavior derived 

from the MOP survey. Survey data from the MOP shows that 41 % of all vehicles are not moved 

during the survey day, while this figure is 49 % for the MID. This leads to higher values in average 

daily driving distances of 24 km compared to 23 km in the MID. Using the weekly commuting 

behavior of the MOP as a concatenating criterion therefore leads to an overrepresentation of the 

MOP data in the model output and could explain the overall higher annual mileage. This can also be 

observed in the average annual mileage value of all vehicles regarding the shares of individual user 

groups on overall traffic. At 9,586 km, this value is higher than the average extrapolated value derived 

from uncoupled raw daily profiles (8,196 km).  

With overall deviations being rather small, the resulting profiles are nevertheless considered sufficient 

for the evaluation of charging controls in the context of the present work and adequately represent 

the daily mobility behavior of German vehicle users.
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7 Model for the Computation of Charging 

Strategies ‐ eFLAME 

The charging strategies assessed herein are modeled in the “electric Flexibility Assessment Modelling 

Environment” (eFLAME). In this chapter, an overview of the structure of the modeling environment 

is described in section 7.1, and the subsequent sections detail the steps from annual mobility profiles 

to the assessment of individual use cases. Section 7.5 presents a mathematical definition of the 

residential optimizer (ResOpt) model, which is used to calculate the optimized charging operations. 

In the context of this thesis unidirectional as well as bidirectional charging strategies are assessed. 

Unidirectional charging strategies only shift the charging operations while bidirectional charging 

control considers both charging and discharging of the vehicles. The last section discusses the 

identification of representative profiles to reduce overall computation time. 

The modeling environment was mainly developed at the FFE within the project [128] and is used to 

assess the potential of various Vehicle to Home (V2H) and Vehicle to Grid (V2G) use cases. The 

MATLAB-based optimization framework ResOpt (described in section 7.5) is implemented in this 

thesis, with various adaptations allowing the assessment of the use cases and sensitivities under 

consideration. 

7.1 Model structure of eFLAME 

The eFLAME model consists of two basic parts. First, all relevant input data as well as the generated 

annual mobility profiles described in section 6.2 are stored in the PostgreSQL database FREM. The 

model for the computation of charging strategies itself is implemented in MATLAB. Figure 7-1 

presents an overview of the current structure of the model and the corresponding sections where 

each module is described in more detail. 
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Figure 7-1: Model structure of eFLAME 

The presented parameters, mobility profiles, and optimization time series are stored in the database 

in various topic-related tables. Further information on the selected solver (MATLAB or CPLEX), the 

optimization mode (linear or mixed-integer linear optimization, rolling horizon or perfect foresight, 

one vehicle at a time or all at the same time), simulation parameters (sample time, optimization time, 

etc.) can be defined in this structure as well. 

An overview of those tables and the available variables is presented in the appendix (Figure 12-5). 

The core table of this structure is the scenario table m_sim_scenario. Here, individual simulation 

scenarios can be defined by combining IDs of all the relevant input data and therefore 

parameterizing the simulation run. When a scenario is defined in this way in the database, the 

appropriate IDs are retrieved from the scenario table in MATLAB, and the simulation run is 

parameterized using the information defined in the corresponding topic-related tables. In this way, 

parameters can be easily changed, sensitivities can be calculated, and scenarios can be simulated 

dynamically and reproducibly. 

Generally, the model allows the simulation of all vehicles at the same time or loops over all 

considered vehicles. Due to the number of vehicles simulated, and to respect the influence of the 

charging decision of each vehicle on that of the next vehicle, the mode “loop-over-EV” was chosen 

here, as illustrated in Figure 7-2. 
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Figure 7-2: Structure of simulation mode "loop-over-EV" 

After the simulation run of each vehicle, the feedback of the resulting electric load is calculated. For 

example, maximum values of charge simultaneity of the fleet can be considered here with respect to 

grid restrictions. Furthermore, when the influence of charge strategies on redispatch and curtailment 

measures is assessed, the coinciding reduction calculated here is weighted by the number of vehicles 

estimated in the coinciding region (see section 6.1). Table 7-1 presents an overview of the variables 

used in the model and in the descriptions in the following sections. 

Table 7-1: Input parameters defining the optimization 

 Parameter Description Unit 

M
o

b
il
it

y
 p

ro
fi

le
s 

𝐶𝑜𝑛𝑛𝑡
𝐸𝑉 Connection of EV at charge point at time interval t (0 - not present, 1 - present) ∈ {0,1} 

𝐷𝑒𝑝𝑡
𝐸𝑉 Departure or arrival of EV at charge point during time interval t ∈ {−1,0,1} 

𝐸𝑡
𝐸𝑉,𝑐𝑜𝑛𝑠. Power consumption of EV while driving during time interval t kWh 

𝐸𝑡
𝐸𝑉,𝑐ℎ𝑎𝑟𝑔𝑒,𝑝𝑢𝑏.

 Public charging of EV while driving during time interval t kWh 

𝐸𝑡
𝐸𝑉,𝑏𝑢𝑓𝑓𝑒𝑟

 Buffer value to satisfy state of charge (SOC)-safety constraint kWh 

V
e
h

ic
le

 

p
a
ra

m
e
te

rs
 𝐸𝐸𝑉,𝑏𝑎𝑡.−𝑐𝑎𝑝. Battery capacity of EV kWh 

𝑒𝑣𝑐𝑙𝑎𝑠𝑠 Vehicle class (small, medium, luxury) ∈ {1,2,3} 

𝜂𝐸𝑉,𝑐ℎ𝑎𝑟𝑔𝑒 Charging efficiency of the vehicle % 

𝜂𝐸𝑉,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 Discharging efficiency of the vehicle % 

U
se

r 

b
e
h

a
v
io

r 𝑆𝑂𝐶𝐸𝑉,𝑠𝑎𝑓𝑒𝑡𝑦 Safety state of charge of EV, available for unexpected driving % 

𝑆𝑂𝐶𝐸𝑉,𝑑𝑒𝑝. Target state of charge of EV, should be available at departure % 

𝜇𝑆𝑂𝐶 Median state of charge (SOC) value to derive SOC-dependent plug-in behavior % 

C
h

a
rg

in
g

 

in
fr

a
st

ru
c
tu

re
 𝑃𝐼𝑉,𝑐ℎ𝑎𝑟𝑔𝑒 Maximum charging power from wall box kW 

𝑃𝐼𝑉,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 Maximum discharging power from wall box kW 

𝜂𝐼𝑉,𝑐ℎ𝑎𝑟𝑔𝑒 Charging efficiency of the wall box inverter % 

𝜂𝐼𝑉,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 Discharging efficiency of the wall box inverter % 

S
im

u
la

ti
o

n
 

p
a
ra

m
e
te

rs
 

𝑆𝑂𝐶𝐸𝑉,𝑖𝑛𝑖𝑡. Initial SOC of EV % 

𝐸𝐹𝐶𝐸𝑉,𝑚𝑎𝑥 Maximum equivalent full cycles of EV in observation period - 

𝑆𝐼𝑀𝑈𝐸𝑉,𝑚𝑎𝑥 Maximum simultaneity of EV  % 

P
ri

c
e
s 

𝑝𝑡
𝑓𝑟𝑜𝑚 𝑔𝑟𝑖𝑑

 Price or incentive parameter per kWh from grid in time interval t €/kWh 

𝑝𝑡
𝑡𝑜 𝑔𝑟𝑖𝑑

 Compensation or incentive parameter per kWh fed to grid in time interval t €/kWh 

𝑝𝑡
𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

 
Gradually increasing price curve incentivizing instant charging if no other 

incentive exists 
€/kWh 

 

The following section describes each of the modules mentioned in Figure 7-1. 
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7.2 Consumption model 

In a first step, the trip information on traveled distance and speed is translated into electric 

consumption values. Most studies in the field of EV modeling only consider fixed consumption values 

(e.g., [100], [129]). However, Pasaoglu et al. [126] have shown that the power consumption not only 

varies with the vehicles speed but also has a significant dependence on the outdoor temperature. 

These relationships are also supported by the empirical study carried out by the NOW GmbH in 

[130]. Therefore, a consumption model for EVs was implemented and used in the context of this 

thesis, respecting both speed and temperature as input values. The model is based on measured 

values of the power consumption of EVs derived from [131] and the study [132] and was originally 

published and described in the projects [133] and [81]. 

The model calculates the energy consumption for three vehicle classes as a function of the average 

speed as well as the outdoor temperature. Energy consumption is comprised of auxiliary 

consumption, air conditioning, and drive consumption, all of which depend on outside temperature 

and speed. In [132], a wide range of measurements was conducted on test rigs to compare the 

consumption of EVs with conventional vehicles. A combination of the Artemis cycle and the new 

European driving cycle (NEDC) was assumed as the speed profile, the temperature was varied from 

-20°C to +30°C in 10°C increments, and the air-conditioning and auxiliary consumption of various 

vehicles was measured. Based on the assumptions made in [59] regarding drive consumption for the 

generic vehicle classes used, the average consumption for each phase of the driving cycle is 

calculated for each of the temperature levels considered. By means of a two-dimensional linear 

interpolation between the support points derived in this way, the consumption of each trip can be 

calculated using the values for speed and outdoor temperature. Figure 7-3 shows a heat map of the 

resulting consumption values 𝐸𝑡
𝐸𝑉,𝑐𝑜𝑛𝑠.

 for an assumed medium class vehicle when values of 

temperature and speed are varied over the model’s data range. 

 

Figure 7-3: Electric consumption for a medium class vehicle as a function of outdoor 

temperature and speed 

The clear influence of outdoor temperatures on the overall electricity consumption of the vehicles 

can be seen, reaching maximum values at the lowest considered temperature. This effect is stronger 

for lower speeds because electric consumption of the air conditioning is time dependent rather than 

speed dependent. This temperature dependency has a strong influence on the seasonal 

consumption values of EVs (see section 7.2) and is even more important when comparing 

consumption values in different countries (see section 8.2.5.1). 

To validate those values, a simulation of all mobility profiles for each class was established for 2019. 

Furthermore, measured consumption values of current EVs were researched and are presented in 
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Table 12-1 in the appendix. The distribution of measured consumption values in comparison to the 

average model values are shown in Figure 7-4. 

 

Figure 7-4: Comparison of real EV consumption values with model results 

The measured values of the vehicles vary considerably within the defined classes. One explanation 

can be found in the vague nature of class definition, leading to a variety of different vehicles assigned 

to one class. Average values start at 15.9 kWh/100 km for small cars, 17.7 for medium class, and reach 

24.3 kWh/ 100 km in the luxury class. These values are well met by the model results with a slight 

underestimation of the consumption of luxury-class vehicles. 

7.3 Public charging module 

As stated, the modeling approach for the creation of annual mobility profiles described in chapter 6 

only considers intraday traffic, neglecting longer multiday trips. On average, only 9,586 of the 14,720 

annually driven kilometers are captured that way. It is assumed that the remaining electricity demand 

for those longer trips is fulfilled by charging at public charging stations. Since no controlled charging 

is to be expected there, those charging operations are not relevant for the assessment of controlled 

charging. They are, however, relevant for the assessment of total annual emissions and costs. Since 

those depend on the points in time of these public charging operations, an estimation approach was 

developed based on the traffic census data of the Federal Highways Research Institute 

(“Bundesanstalt für Straßenwesen” [BASt]) [134]. The dataset includes census station data from 1,914 

automatic census stations on highways and interstates.  

The census data distinguishes between vehicle types and has an hourly resolution. It is assumed that 

long-distance public charging occurs primarily along these freeways and interstates. Therefore, the 

average temporal characteristic of traffic load of all Germany census stations over the course of a 

year is considered as a basis for the estimation of a public charging time series. The time series is 

normalized to one and scaled to the annual electricity demand from public charging derived from 

the remaining 5,134 kilometers mentioned above. This public charging time series is applied to each 

vehicle so that the fleet average annual mileage adds up to 14,700 kilometers. This is clearly a strong 

assumption, but it allows the evaluation of the potential of charging systems and at the same time 

reliable statements about the total electricity demand of the vehicles and the associated costs and 

emissions. 
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7.4 Control-based direct charging module 

Since the direct charging of EVs is not to be considered an optimization problem, the underlying 

behavior is modeled with a control-based approach. For each of the vehicles under consideration, a 

charging scenario is parameterized using the relevant parameters on available charging 

infrastructure, technical parameters of the vehicle, user behavior, and further simulation boundary 

conditions. The mobility data containing information on the SOC of the battery, electric consumption 

of individual trips, and locations is hereby transformed to time series of charging processes. 

In a last step, two more variables are calculated that are relevant for the optimization problem used 

in the module ResOpt to be solvable. The first is the variable 𝐸𝑡
𝐸𝑉,𝑝𝑢𝑏.𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

, which is set when trips 

of the vehicle cannot be covered by the assumed capacity of the vehicle’s battery. In that case, the 

assumption is made that the surplus energy needed is charged at a public charging station. The 

second variable in this module is 𝐸𝑡
𝐸𝑉,𝑏𝑢𝑓𝑓𝑒𝑟

, set when a vehicle arrives at home with a remaining 

battery capacity lower than the selected safety SOC 𝑆𝑂𝐶
𝐸𝑉,𝑠𝑎𝑓𝑒𝑡𝑦

. For the optimization problem the 

be feasible, 𝐸𝑡
𝐸𝑉,𝑏𝑢𝑓𝑓𝑒𝑟

 is defined to fill that gap and to satisfy the associated constraint (see 

section 7.5.2). 

Implementation of an SOC-dependent plug-in probability 

For the assessment of charging strategies presented in the results (chapter 8), the basic assumption 

is made that vehicle users connect their vehicles every time they reach a location with a charging 

infrastructure. This is based on the assumption that users are incentivized, which is confirmed by user 

research in [135]. The resulting potential should therefore be regarded as a maximum estimate. 

Without proper incentives, users usually only connect their vehicles at a low to medium SOC though, 

as is shown in the evaluation of empirical data in [136]. Typical SOCs are reported to reach from 25 

to 75 % according to the study. [137] estimates this value to be 60 % SOC. 

To assess the influence of unincentivized user behavior on the potential of charging strategies, a 

probabilistic model is used to map the plug-in behavior as a function of the current SOC. Fischer et 

al. [138] followed a similar approach and used a logistic function to model the SOC-dependent 

charging decision. Hu et al. [139] used a cumulative prospect theory-based modeling framework to 

describe the charging behavior of EV drivers. They derived an almost normally distributed density of 

plug-in decisions with respect to the SOC at the start of charging events, with an average starting 

SOC level of 40.6 % at home. In the context of this thesis, the charging decision is estimated by an 

inverse cumulative distribution function as: 

𝐹(𝑆𝑂𝐶, 𝜇, 𝜎) = 1 −
1

𝜎√2𝜋
∫ 𝑒

−
(𝑡−𝜇)2

2𝜎2 𝑑𝑡
𝑆𝑂𝐶

−∞

 (7-1) 

The median µ is varied from an SOC at arrival of 50 to 90 %, whereas the standard deviation sigma 

is set to 0.1, resulting in rather smooth behavior of the plug-in probability curve. The resulting plug-

in probabilities for those values are illustrated in Figure 7-5. 
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Figure 7-5: SOC-dependent plug-in probability 

Based on this inverted cumulative distribution function, the plug-in behavior can be modeled in the 

control-based charging module. The time series of connections are adapted according to that plug-

in behavior and then used for the modeling of optimized charge modes as well. That essentially 

means that a vehicle user who does not connect the vehicle in the direct charging mode also does 

not connect it in case of optimized charging. This function can be used to assess the influence of 

such user behavior on the potential of optimized charging. 

7.5 Mathematical description of ResOpt model 

The MATLAB-based optimization framework ResOpt was originally implemented by Englberger [140] 

in 2020 and used to assess the potential of self-consumption-optimized charging strategies, within 

the framework of distribution grid model GridSim3 [141]. The same model was then extended by 

Morlock [142] with a mixed-integer optimization to account for and evaluate the influence of power-

dependent charging efficiency. In cooperation with Schmidt-Achert [91], the model was adapted to 

include emission-optimized charging. The database framework was implemented with various 

adaptations described in this chapter to allow the assessment of the use cases and sensitivities under 

consideration. Furthermore, the CM-based charging strategy was implemented in the course of this 

thesis. In this section, the mathematical description of the model is summarized with a focus on the 

newly implemented features necessary for the assessment of the use cases at hand. The model itself 

also considers various other technical components such as the electricity generation from solar 

plants, heat pumps, and thermal and electrical storage devices. These, however, are not part of the 

charging strategies described here and are therefore excluded from the description in this chapter.  

The model is implemented as a linear optimization problem in the form of a minimization problem, 

which can generally be described as follows: 

min  𝑐𝑇𝑥 (7-2) 

with 𝐴𝑥 = 𝑏  

 𝐵𝑥 ≤ 𝑑  

where x is the decision variable vector, and c is the coefficient vector. The goal is to minimize the 

objective function (in our case, total emissions, costs, the amount of congestion management 

measures, or a combination of those) under consideration of a set of equalities (Ax = b) and 

inequalities (Bx≤d), defined as constraints, so that 

 
3 GridSim - Power Grid and Energy System Model for Distribution Networks [141]f, www.ffe.de/gridsim  
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• A,b are the coefficient matrix and vector for equality constraints 

• B,d are the coefficient matrix and vector for inequality constraints 

The following sections describe the objective function as well as the decision variables and 

constraints relevant for the modeling of charging strategies in the use cases assessed.  

7.5.1 Decision variables and input parameters 

For the use case evaluations in this paper, no components other than the EV and charging 

infrastructure are considered. Accordingly, the number of decision variables is reduced to these two 

components. They are defined as follows for each time step , 𝑡 ∈ 𝑇. Decision variables are 

distinguished from input parameters by a bold typeface. 

Table 7-2: Definition of decision variables 

Decision variable Mathematical description Unit 

EV stored energy 𝟎 ≤ 𝑬𝒕
𝑬𝑽 ≤ 𝐸𝐸𝑉,𝑏𝑎𝑡.−𝑐𝑎𝑝., ∀𝑡 ∈ 𝑇 kWh 

EV charging power 𝟎 ≤ 𝑷𝒕
𝑬𝑽,𝒄𝒉𝒂𝒓𝒈𝒆

≤ 𝑃𝐼𝑉,𝑐ℎ𝑎𝑟𝑔𝑒., ∀𝑡 ∈ 𝑇 kW 

EV discharging power 𝟎 ≤ 𝑷𝒕
𝑬𝑽,𝒅𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆

≤ 𝑃𝐼𝑉,dis𝑐ℎ𝑎𝑟𝑔𝑒., ∀𝑡 ∈ 𝑇 kW 

 

All three decision variables are limited by the technical parameters of the EV and the charging 

infrastructure as an upper bound, as defined in Table 7-1. 

7.5.2 Constraints 

The optimization problem is restricted by a certain set of constraints resulting from the technical 

parameters and simulation restrictions. They are defined as follow: 

Charging power 

The charging and discharging power of the vehicles at a charging location is limited by the charging 

power of the associated wall box. The related constraint reads: 

𝑷𝒕
𝑬𝑽,𝒄𝒉𝒂𝒓𝒈𝒆

 ≤ 𝐶𝑜𝑛𝑛𝑡
𝐸𝑉 ∙ 𝑃𝐼𝑉,𝑐ℎ𝑎𝑟𝑔𝑒 , ∀𝑡 ∈ 𝑇 (7-3) 

𝑷𝒕
𝑬𝑽,𝒅𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆

 ≤ 𝐶𝑜𝑛𝑛𝑡
𝐸𝑉 ∙ 𝑃𝐼𝑉,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 , ∀𝑡 ∈ 𝑇 (7-4) 

Energy conservation of EV 

The energy stored in the EV in a time interval t consists of the following components: 

• + energy stored in the prior time interval t-1 

• + energy from charging process 

• + energy from public charging 

• - energy from discharging process 

• - energy consumption of trips 

The resulting constraint is defined as: 

𝑬𝒕
𝑬𝑽 =𝑬𝒕−𝟏

𝑬𝑽 + 𝑷𝒕
𝑬𝑽,𝒄𝒉𝒂𝒓𝒈𝒆

∙ 𝜂𝐸𝑉,𝑐ℎ𝑎𝑟𝑔𝑒 ∙ ∆𝑡 + 𝐸𝑡
𝐸𝑉,𝑝𝑢𝑏.𝑐ℎ𝑎𝑟𝑔𝑒

− 𝑷𝒕
𝑬𝑽,𝒅𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆

∙
𝟏

𝜂𝐸𝑉,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
∙ ∆𝑡

− 𝐸𝑡
𝐸𝑉,𝑐𝑜𝑛𝑠., ∀𝑡 ∈ {2, … , 𝑁} 

(7-5) 

For the first time step t=1, the state of the battery is defined by the parameter 𝑆𝑂𝐶𝐸𝑉,𝑖𝑛𝑖𝑡.as: 
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𝑬𝒕
𝑬𝑽,𝒊𝒏𝒊𝒕𝒊𝒂𝒍 =𝑆𝑂𝐶𝐸𝑉,𝑖𝑛𝑖𝑡. ∙ 𝐸𝐸𝑉,𝑏𝑎𝑡.−𝑐𝑎𝑝. (7-6) 

 

Safety SOC 

The safety SOC, 𝑆𝑂𝐶𝐸𝑉,𝑠𝑎𝑓𝑒𝑡𝑦 , is a minimum threshold that should always be kept in the battery of 

the vehicle to allow for unplanned emergency trips. For the standard case, this threshold is set to 

30 %. The constraint is defined as: 

𝑬𝒕
𝑬𝑽 + 𝐸𝑡

𝐸𝑉,𝑏𝑢𝑓𝑓𝑒𝑟
≥ 𝑆𝑂𝐶𝐸𝑉,𝑠𝑎𝑓𝑒𝑡𝑦 ∙ 𝐸𝐸𝑉,𝑏𝑎𝑡.−𝑐𝑎𝑝. ∙ 𝐶𝑜𝑛𝑛𝑡

𝐸𝑉 , ∀𝑡 ∈ 𝑇 (7-7) 

Here, the parameter 𝐸𝑡
𝐸𝑉,𝑏𝑢𝑓𝑓𝑒𝑟

 calculated in the control-based direct charging module is expected 

to satisfy this constraint in all cases. 

SOC at departure 

Similar to the safety SOC, the variable 𝑆𝑂𝐶𝐸𝑉,𝑑𝑒𝑝.defines a minimum SOC that must be reached at 

the end of each charging operation. In the standard case, this value is set to 70 %. The constraint is 

defined as: 

𝑬𝒕
𝑬𝑽 + 𝐸𝑡

𝐸𝑉,𝑏𝑢𝑓𝑓𝑒𝑟
≥𝑆𝑂𝐶𝐸𝑉,𝑑𝑒𝑝. ∙ 𝐸𝐸𝑉,𝑏𝑎𝑡.−𝑐𝑎𝑝. ∙ 𝐷𝑒𝑝𝑡

𝐸𝑉 , ∀𝑡 ∈ 𝑇 (7-8) 

Limit maximum equivalent full cycles 

Bidirectional charging often leads to a significant increase in battery use, represented by the 

equivalent full cycles (EFCs). To assess the influence of restrictions of battery use, in several 

simulations, this value is restricted using the EFC constraint defined as follows: 

𝐸𝐹𝐶𝐸𝑉,𝑚𝑎𝑥 ≤∙ ∑(𝑷𝒕
𝑬𝑽,𝒄𝒉𝒂𝒓𝒈𝒆

∙ 𝜂𝐸𝑉,𝑐ℎ𝑎𝑟𝑔𝑒 ∙ ∆𝑡 + 𝐸𝑡
𝐸𝑉,𝑝𝑢𝑏.𝑐ℎ𝑎𝑟𝑔𝑒

+ 𝑷𝒕
𝑬𝑽,𝒅𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆

𝑡∈𝑇

∙
𝟏

𝜂𝐸𝑉,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
∆𝑡) ∙

1

𝐸𝐸𝑉,𝑏𝑎𝑡.−𝑐𝑎𝑝.
 

(7-9) 

The results of a restriction of EFC and its influence on emission reduction potential of the coinciding 

charging strategy are discussed in section 8.2.3.5. 

7.5.3 Objective function 

Based on those constraints and decision variables, the objective function is defined with the goal to 

minimize electricity costs. The price time series 𝑝𝑡
𝑓𝑟𝑜𝑚 𝑔𝑟𝑖𝑑

 and 𝑝𝑡
𝑡𝑜 𝑔𝑟𝑖𝑑

 are set according to the overall 

optimization target for each of the use cases. In the case of an emission reduction, for example, this 

“price” is represented by the EMF. Therefore, in that case, a cost reduction equals an emission 

reduction and is solved using the same objective function. Additionally, a charging priority incentive 

is defined as a time series of prices gradually increasing over the time horizon of the simulation. This 

incentive guarantees that, in case no clear incentive is set by the price during the charging operation, 

the vehicle is charged as soon as possible. The resulting objective function is defined as follows: 

min ∑(𝑝𝑡
𝑓𝑟𝑜𝑚 𝑔𝑟𝑖𝑑

∙ 𝑷𝒕
𝑬𝑽,𝒄𝒉𝒂𝒓𝒈𝒆

− 𝑝𝑡
𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

∙ 𝑷𝒕
𝑬𝑽,𝒄𝒉𝒂𝒓𝒈𝒆

− 𝑝𝑡
𝑡𝑜 𝑔𝑟𝑖𝑑

∙ 𝑷𝒕
𝑬𝑽,𝒅𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆

)

𝑡∈𝑇

∙ ∆𝑡 (7-10) 

This objective function for all time steps 𝑡 ∈ 𝑇 is solved for each vehicle for the unidirectional and 

bidirectional charging operation assuming perfect foresight. Since generic price curves are used in 

some cases to incentivize a particular charging behavior, the results of this optimization process are 

then processed and evaluated in terms of charged emissions, operating costs, or reduction in CM 

measures. 
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7.6 Result processing and assessment of charging strategies 

The model results for individual vehicles are then processed for further evaluation. For all simulations, 

resulting parameters are calculated considering both average values of the whole fleet as well as 

individual values for each vehicle. A summary of the most important simulation results is presented 

in Table 7-3. 

Table 7-3: Resulting simulation parameters  

Parameter Description Unit 

𝐸𝐸𝑉,𝑐𝑜𝑛𝑠. Annual consumption kWh 

𝐸𝐸𝑉,𝑐ℎ𝑎𝑟𝑔𝑒/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 Annual sum of charged electricity kWh 

𝐸𝐸𝑉,𝑐ℎ𝑎𝑟𝑔𝑒,𝑝𝑢𝑏. Charged electricity public kWh 

𝐸𝐸𝑉,𝑐ℎ𝑎𝑟𝑔𝑒/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,ℎ𝑜𝑚𝑒 Charged/discharged electricity at home/work kWh 

𝐸𝐸𝑉,𝑙𝑜𝑠𝑠𝑒𝑠,𝑐ℎ𝑎𝑟𝑔𝑒/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 Annual charging losses kWh 

𝑚𝑖𝑙𝐸𝑉 Annual mileage km  

𝑐𝑜𝑛𝑠𝐸𝑉 Average consumption kWh/100 km 

𝑠𝑖𝑚𝑢𝑐ℎ𝑎𝑟𝑔𝑒/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 Charge/discharge simultaneity % (only for whole fleet) 

𝑠𝑖𝑚𝑢𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 Charging/discharging hours per day hours 

𝐸𝐹𝐶𝐸𝑉 EFC resulting from charging operation  

 

All use cases considered in this thesis are evaluated in terms of annual costs and emissions and, in 

case of the CM use case, in terms of a potential reduction of CM measures. In this context, certain 

assumptions must be made, which are briefly presented in the following. 

7.6.1 Emission assessment 

All use cases are assessed in terms of resulting emissions. As discussed in section 4.7, consumption-

based mix-EMFs are considered for this purpose. This does neglect the feedback effects that the 

charging operations have on the energy system but is considered the best option at hand. For the 

use case of residual load smoothing, the system feedback was evaluated by means of an iterative 

simulation run with the energy system model ISAaR (see section 8.4.2). However, due to the very 

high simulative effort, this evaluation can only be considered as a sensitivity and cannot be 

performed for all use cases. For the general assessment of operational emissions, the time series of 

charging and discharging operations at home/work as well as public charging for each vehicle and 

charge mode is multiplied with that of the consumption-based EMFs as 

𝐸𝑀𝐸𝑉 = ∑(𝑒𝑚𝑓𝑡 ∙ (𝑷𝒕
𝑬𝑽,𝒄𝒉𝒂𝒓𝒈𝒆

∆𝑡 + 𝐸𝑡
𝐸𝑉,𝑐ℎ𝑎𝑟𝑔𝑒,𝑝𝑢𝑏.

− 𝑷𝒕
𝑬𝑽,𝒅𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆

∆𝑡)

𝑡∈𝑇

 (7-11) 

From the perspective of the vehicle, discharging therefore leads to negative emission values, whereas 

charging results in positive values. In the case of the use cases of redispatch and curtailment, a 

different accounting method is used, as described in section 8.5.2. 

7.6.2 Economic assessment 

The use cases of emission-optimized, price-optimized, and smoothing of residual load are also 

assessed with respect to a possible revenue potential. The regulatory framework in Germany 

currently does not consider variable electricity tariffs for customers that represent the variability of 

wholesale electricity prices. There are, however, various research and pilot projects addressing local 
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flexibility markets and similar approaches [143]. For the assessment of revenue potentials, it is 

assumed that such a system would be applied, and vehicle owners could directly profit from the 

provision of their EV’s flexibility.  

Considering electricity price structure, certain assumptions must be made. In 2019, the wholesale 

electricity price (represented by the time series of day-ahead prices 𝑝𝑡,𝐷𝑎) only amounted to 23 % of 

the price that household customers pay (𝑝ℎ𝑜𝑚𝑒 = 30.2 𝑐𝑡/𝑘𝑊ℎ, [144]). For the assessment of 

revenues, it is assumed that that component can be influenced by the charging strategies. For the 

electric consumption of the vehicles, the remaining 77 %, consisting of taxes and levies 𝑝𝑙𝑒𝑣𝑖𝑒𝑠 , apply. 

Since the future development of these price components strongly depends on the regulatory 

framework and must at least be viewed with great caution, the same proportions are also applied 

for future electricity prices in this case. The amount of electricity charged and discharged during the 

bidirectional operation is assumed to be free of taxes and levies since such charging strategies are 

to be considered beneficiary for the overall energy system. This is viewed as a strong assumption 

since the current regulatory framework is far from such regulation, but the discussion about this has 

started, and it can be assumed that steps in that direction will be taken. For instance, Kern et al. [9] 

have discussed in detail the influence of additional charges on electricity on the revenue potential of 

EV and concluded that those charges are the “most decisive parameter for the potential revenues of 

bidirectionally chargeable EVs.” (p. 23). Hence, a careful consideration of these coherences must be 

applied when evaluating these revenue potentials. 

Since public charging is done at public charging infrastructures, different prices must be assumed 

here. [145] lists electricity prices at public charging stations for over 20 providers, amounting to an 

average of 𝑝𝑝𝑢𝑏𝑙𝑖𝑐 = 36 𝑐𝑡/𝑘𝑊ℎ. That value is considered for all public charging operations in the 

evaluations conducted here. 

Overall, annual costs are calculated as follows: 

𝐶𝑜𝑠𝑡𝐸𝑉 = ∑((𝑝𝑡,𝐷𝑎 + 𝑝𝑙𝑒𝑣𝑖𝑒𝑠) ∙ (𝑷𝒕
𝑬𝑽,𝒄𝒉𝒂𝒓𝒈𝒆

− 𝑷𝒕
𝑬𝑽,𝒅𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆

)∆𝑡 + 𝐸𝑡
𝐸𝑉,𝑐ℎ𝑎𝑟𝑔𝑒,𝑝𝑢𝑏.

𝑡∈𝑇

∙ 𝑝𝑝𝑢𝑏𝑙𝑖𝑐) (7-12) 

7.6.3 Assessment of congestion management reduction potential 

Regarding the CM use cases, the primary goal is to reduce CM measures. To assess this reduction 

potential, the spatial distribution of EVs (see section 0) and the spatial assignment of CM measures 

described in section 5.5 are assumed. The number of vehicles in each Voronoi area is used to assess 

the influence of an optimized charging operation of the EV fleet on the CM measures in that region. 

The main assumption here is that the fleet of uncontrolled charging EVs is already part of the total 

electric load of the system. Therefore, when assessing the reduction potential, the delta between 

direct and optimized charging of all vehicles in the area must be considered. The reduction of CM 

measures by N vehicles in region r is calculated as follows: 

𝐶𝑀𝑛𝑒𝑤 = 𝐶𝑀𝑜𝑟𝑔 − ∆𝐶𝑀 

(7-13) 
∆𝐶𝑀 = ∑ ∑(𝑷𝒕

𝑬𝑽,𝒄𝒉𝒂𝒓𝒈𝒆,𝒅𝒊𝒓
− 𝑷𝒕

𝑬𝑽,𝒄𝒉𝒂𝒓𝒈𝒆,𝒐𝒑𝒕
− 𝑷𝒕

𝑬𝑽,𝒅𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆,𝒐𝒑𝒕
)∆𝒕

𝑡∈𝑇

𝑁𝑟

𝐸𝑉=1
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7.7 Identification of representative profiles 

The process for the synthesis of annual mobility profiles requires a certain number of profiles to be 

statistically viable and to adequately represent the average mobility behavior of German residents. 

However, a large number of simulated vehicles also leads to increasing computational effort. An 

initial scenario, for example, was defined for 10,000 profiles, resulting in a total simulation time of 

14 hours. Since numerous simulation runs are necessary to evaluate the use cases under 

consideration and to assess sensitivities, this kind of computational effort is impracticable. 

Furthermore, even though this topic is not in the scope of this thesis, the created mobility profiles 

are to be integrated in the energy system model ISAaR for further analysis of the dynamic 

interactions between EVs and the energy system. Considering computation time and the integration 

of profiles into the system of equations of ISAaR, the number of profiles is the limiting parameter. 

The question is how many profiles are needed to still achieve sufficiently accurate results.  

To reduce the number of profiles, two approaches were tested. The first is based on a randomly 

drawing of an increasing number of profiles (see section 7.7.1), and the second is based on the k-

means clustering algorithm for the identification of representative profiles (see section 7.7.2). The 

evaluation criterion for the quality of the respective approach is the deviation of key indicators (e.g., 

resulting emissions, charging simultaneity, EFCs, etc.) from the reference simulation run with 10,000 

profiles. 

7.7.1 Random profile selection 

The first approach, random profile selection, is based on the assumption that due to the stochastic 

nature of the mobility profiles, with increasing numbers of randomly drawn profiles, deviations from 

the original sample of 10,000 profiles become negligible. To eliminate the element of coincidentally 

drawing a “good” set of profiles, for each sample size, 10,000 drawings were undertaken. They were 

then assessed with respect to the abovementioned deviations of key indicators from those in the 

reference scenario of 10,000 profiles. In each case, the highest deviation in each of the 16 categories 

from the reference scenario was considered for the assessment of that sample size. It can therefore 

be assumed that the results are robust, and deviations represent the worst possible case. Figure 7-6 

shows these values for samples of 25 to 950 randomly drawn profiles. 

 

Figure 7-6: Relative deviation of 16 key indicators for simulation runs with increasing 

numbers of profiles from the reference simulation with 10,000 profiles 

As expected, the deviations of all the indicators under consideration decrease with increasing sample 

sizes. Due to the nature of this worst-case assessment, however, deviations decrease slowly. Only 
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when reaching a sample size of 900+ profiles do deviations in all categories reach levels that are 

considered sufficient for that task at hand. For the largest sample of 950 profiles, all deviations are 

well below 3 %. 

7.7.2 Cluster analysis with k-means 

Especially for the integration of profiles into the system of equations of the energy system model 

ISAaR, the number of 950 individual profiles is not practical. A further reduction can only be achieved 

by a targeted selection of representative profiles. For that purpose, the clustering algorithm k-means 

is tested. 

Cluster algorithms are generally used to divide input data into subgroups. The k-means algorithm 

basically tries to divide n d-dimensional observations into k clusters by reducing the Euclidean 

distance between each observation and the nearest mean. For the clustering, the Python-based 

module Scikit-learn was used [28] (https://scikit-learn.org). To apply k-means, the information 

contained in the profile time series (location, travel distance, speed) must first be translated into 

usable scalar features (defining a d-dimensional observation). Since the main objective of the 

integration of profiles in ISAaR is the assessment of bidirectional charging, it is assumed that the 

availability of vehicles at the charging locations is the most important feature defining the resulting 

load shifting potential. On the other hand, the distances traveled on the trips have an impact on the 

total electricity consumption and charging behavior in the case of direct charging and unidirectional 

optimization, but the impact in the case of bidirectional optimization is considered small. Therefore, 

each of the profiles is translated into average availability values of six hourly intervals (00:00–06:00, 

06:00–12:00, 12:00–18:00, and 18:00–24:00) for each day of the week. For each of those features, a 

percentage value of 0–100 % is defined for each interval (100 % means that the vehicle is present at 

a charging location for all of the six hours, while 0 % means that the vehicle is not present at a 

charging location at all during that interval). In addition, two locations are considered here, resulting 

in a total of 56 features (four intervals per day, seven days per week, two charging locations).  

This example already shows how important the selection of features is for the performance of cluster 

algorithms. The assumption made here focuses on a good representation of bidirectional charging, 

whereas the sole focus on availabilities may not be sufficient for the representation of direct and 

unidirectional charging. Based on these features, different approaches are tested with various cluster 

numbers, feature reduction using principal component analysis (PCA), and the consideration of 

annual mileages as an additional feature. Since cluster analysis was tested only as one of two ways 

to identify representative profiles and is not the focus of this thesis, it is not presented in detail. 

However, a corresponding publication of the exact methodology and results is planned.  

The center of each of the resulting clusters is used as the representative profile, and the resulting 

weighting factors are calculated (i.e., how many of the profiles are represented by each 

representative). The resulting profiles are then used for the simulation of the same scenario as the 

reference case with 10,000 profiles. Key indicators such as annual mileage, EFCs, daily charging hours, 

the maximum charge simultaneity, and the resulting annual emissions are evaluated and compared 

to the values derived from the reference scenario. In total, 77 cluster scenarios were tested that way, 

and a total of 16 key indicators were compared. For all cluster scenarios and key indicators, the 

average deviation from the reference scenario was calculated. Table 7-4 shows the key features of 

the seven cluster scenarios with average deviation below 5 %. 

https://scikit-learn.org/
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Table 7-4: Key features of the seven best clusters identified 

 
Cl_1 Cl_2 Cl_3 Cl_4 Cl_5 Cl_6 Cl_7 

# of clusters 15 20 25 12 16 60 100 

Mileage as a feature no no no yes no no no 

PCA yes yes yes yes no yes yes 

 

In all cases, k-means was used for the clustering of profiles. The number of predefined clusters ranges 

from 12 to 100. In the case of Cl_4, the annual mileage of the profiles was considered as a feature; in 

all other cases, it was not. For all clusters except Cl_5, a PCA was performed prior to the clustering 

for the purpose of dimensionality reduction. Figure 7-7 shows the deviations of several of these 

indicators from those of the reference scenario for these seven cluster scenarios. 

 

Figure 7-7: Deviation of key indicators of identified clusters from reference scenario 

The results indicate that most of the deviations are below 10 % for all clusters under consideration. 

The only exception is the maximum charging simultaneity in direct charging. That makes sense since 

uncontrolled charging occurs very heterogeneously, and the average value over 10,000 profiles is 

considerably low compared to a smaller number of profiles. To further assess validity, the best overall 

cluster CL_3 is used for the simulation of a subset of 10 of the use case scenarios that are also 

simulated with 1,000 randomly drawn profiles. A description of the considered scenarios is presented 

in the appendix in Table 12-2. The resulting deviations of the key indicators of the cluster CL_3 

compared to a simulation run with 1,000 profiles are displayed in Figure 7-8. 

   

Figure 7-8: Deviations of key indicators of cluster 3 from 10 scenarios assessed with runs 

with 1,000 randomly drawn profiles 
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Cl_2

Cl_3

Cl_4

Cl_5

Cl_6

Cl_7

Direct charging Unidirectional Bidirectional

EFC

Charg. 

hours

Max 

simult.

Total 

em.

Sc_1 20 % 12 % 226 % 15 %

Sc_2 20 % 5.1 % 258 % 14 %

Sc_3 15 % 15 % 210 % 16 %

Sc_4 15 % 6.5 % 264 % 15 %

Sc_5 31 % 10 % 233 % 22 %

Sc_6 18 % 12 % 216 % 15 %

Sc_7 17 % 4.6 % 284 % 14 %

Sc_8 14 % 14 % 198 % 14 %

Sc_9 17 % 13 % 214 % 16 %

Sc_10 18 % 12 % 216 % 15 %

Direct charging

EFC

Charg. 

hours

Max 

simult.

Total 

em.

20 % 18 % 5.5 % 19 %

19 % 16 % 5.9 % 18 %

15 % 23 % 5.6 % 20 %

14 % 21 % 5.9 % 19 %

31 % 18 % 5.6 % 36 %

17 % 20 % 5.7 % 20 %

17 % 19.0 % 5.8 % 19 %

13 % 20 % 5.4 % 18 %

17 % 22 % 5.6 % 20 %

17 % 20 % 5.8 % 20 %

Unidirectional

EFC

Charg. 

hours

Max 

simult.

Total 

em.

8.0 % 5.1 % 5.0 % 0.3 %

9.2 % 6.1 % 5.0 % 7.5 %

1.7 % 1.5 % 4.9 % 1.8 %

3.2 % 3.0 % 4.9 % 4.0 %

8.0 % 4.8 % 5.0 % 1.1 %

2.8 % 1.9 % 4.9 % 0.6 %

5.0 % 4.2 % 4.9 % 5.9 %

1.2 % 0.8 % 4.9 % 1.7 %

1.7 % 1.5 % 4.9 % 0.9 %

13 % 10 % 4.0 % 7.4 %

Bidirectional
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Annual mileage is excluded from this evaluation since only one cluster is considered. The highest 

deviations can again be observed with respect to the values of maximum simultaneity in direct 

charging (as explained above). Deviations in the case of bidirectional charging are relatively low 

compared to direct and unidirectional charging. This is logical since the definition of features was 

primarily focused on applicability in bidirectional loading.  

The results prove the general validity of this approach. The use of only 25 representative profiles 

overall shows a maximum deviation of 7.5 % with respect to the resulting total emissions of the 

vehicles in comparison to a scenario run with 1,000 profiles. Especially for the integration of 

bidirectionally charged EVs in the energy system model ISAaR, this can drastically decrease 

implementation effort and computational time. However, in the context of this thesis, bidirectional 

charging is not the only focus. Both operational emissions of EVs and the potential of unidirectionally 

optimized charging are assessed as well, in addition to the influence of charging operations on 

vehicle-specific parameters such as charging hours and EFCs. In those categories, deviations from 

the reference run of scenarios with 1,000 profiles are considerably higher. In comparison, the 

randomly drawn profiles (described in the prior subsection) demonstrate much lower deviations and 

consistency across indicators, especially with larger sample sizes. Since computational effort for a 

simulation with 1,000 profiles is deemed adequate, this approach has been chosen for the evaluations 

conducted in this thesis.
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8 Results: Assessment of Charging 

Strategies 

In this chapter, all four use cases are assessed with respect to resulting emissions, sensitivities, 

revenue potential, and the potential to reduce CM measures in the corresponding use cases. Since 

the emission assessment of charging strategies is the main focus of this thesis, all the fundamental 

coherences and the presentation of results are discussed most fully for emission-optimized charging 

in section 8.2. First, the results for the base configuration are presented for the years 2019, 2030, and 

2040 regarding emission reduction and revenue potential. After that, an extensive sensitivity analysis 

is conducted to assess the influence of various parameters on potential emission reduction for 

unidirectional and bidirectional charging. Coherences and mechanisms of action are discussed in 

detail for each of the parameters under consideration, followed by a summary of the most important 

findings (section 8.2.6). Following the discussion of emission-optimized charging, results for the use 

cases cost reduction (section 8.3), smoothing of residual load (section 8.4), and reduction of CM 

measures (section 8.5) are evaluated. For the smoothing of residual load, an iterative simulation run 

of the ISAaR model was performed to discuss possible feedback effects of a future fleet on the energy 

system with respect to resulting electricity prices and the dispatch of power plants and storage units. 

Section 8.6 presents a comparison of the use cases regarding the revenue and emission reduction 

potential. Finally, the chapter closes with a discussion of the influence of the emission-optimized 

charging strategy on the LCA of EVs and a comparison to internal combustion engine vehicles 

(ICEVs). 

Unless otherwise described, all simulations performed in this chapter are based on a base 

configuration of simulation parameters presented in Table 8-1. 

Table 8-1: Base configuration of simulation parameters 

 Parameter Description Value base configuration 

 𝑛𝐸𝑉 Number of vehicles considered in the simulation 1,000 

V
e
h

ic
le

 

p
a
ra

m
e
te

rs
 𝐸𝐸𝑉,𝑏𝑎𝑡.−𝑐𝑎𝑝. Battery capacity of EV 60 kWh 

𝑒𝑣𝑐𝑙𝑎𝑠𝑠 Vehicle class (small, medium, luxury) Medium class 

𝜂𝐸𝑉,𝑐ℎ𝑎𝑟𝑔𝑒 Charging efficiency of the vehicle 98 % 

𝜂𝐸𝑉,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 Discharging efficiency of the vehicle 98 % 

U
se

r 

b
e
h

a
v
io

r 𝑆𝑂𝐶𝐸𝑉,𝑠𝑎𝑓𝑒𝑡𝑦 Safety state of charge of EV, available for unexpected driving 30 % 

𝑆𝑂𝐶𝐸𝑉,𝑑𝑒𝑝. Target state of charge of EV, should be available at departure 70 % 

𝜇𝑆𝑂𝐶 Median SOC value to derive SOC-dependent plug-in behavior Always connecting 

C
h

a
rg

in
g

 i
n

fr
a
st

ru
c
tu

re
 𝑃𝐼𝑉,𝑐ℎ𝑎𝑟𝑔𝑒 Maximum charging power from wall box 11 kW 

𝑃𝐼𝑉,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 Maximum discharging power from wall box 10 kW 

𝜂𝐼𝑉,𝑐ℎ𝑎𝑟𝑔𝑒 Charging efficiency of the wall box-inverter 94.5 % 

𝜂𝐼𝑉,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 Discharging efficiency of the wall box-inverter 98 % 

𝐸𝐹𝐶𝐸𝑉,𝑚𝑎𝑥 Maximum EFC of EV in observation period Unrestricted 

𝑆𝐼𝑀𝑈𝐸𝑉,𝑚𝑎𝑥 Maximum simultaneity of EV  Unrestricted 
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This base configuration assumes a medium-class vehicle and technical parameters of vehicles and 

charging infrastructure that are to be considered state of the art. All parameters were discussed and 

approved by research partners from OEMs and charging station manufactures in the context of the 

project “Bidirectional Charging Management (BCM) - Intelligent interaction of electric vehicles, 

charging infrastructure and energy system” [128] . With regard to user behavior, the strongest 

assumption is that users are incentivized to plug in their vehicles every time they reach a charging 

station. The resulting potential of the assessed charging strategies must therefore be considered as 

a maximum estimate. 

For each use case, various scenarios (combinations of varied parameters) are simulated. The results 

are presented either as boxplots or median values for all considered vehicles. As discussed in 

section 7.7, a number of 1,000 mobility profiles was identified to adequately represent the mobility 

behavior of the whole fleet. Therefore, all the following simulations are conducted for 1,000 profiles, 

either for the overall German fleet or individual user groups. The initial result representations in 

section 8.2 are discussed in more detail, assuming knowledge of the types of representations in the 

sections that follow. 

8.1 Validation of uncontrolled charging behavior 

Following the base configuration of simulations parameters in Table 8-1 the average hourly load 

from direct charging as well as the average daily energy consumption of all 1,000 vehicles is 

calculated as illustrated in Figure 8-1. 

  

 

Figure 8-1: Average hourly load and average daily consumption of the simulated vehicles 

Both evaluations are based on the average vehicle in Germany without consideration of any user 

groups. Furthermore the graphs only show the charging processes at home, public charging is not 

considered. First of all a clear peak in the evening hours during the week can be identified resulting 

from vehicles arriving at home. This peak starts earlier on Fridays, while on Saturdays the loads are 

more broadly distributed. Due to generally longer trips on Sundays, the evening peak exists here as 

well. The daily electricity demand on weekends is about 25 % lower than during the week. These 

values are perfectly matched by the data provided by Dodson et al. [146]. The empirical study carried 
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out by Element Energy Limited is based on a large data set of over 8.3 million charge events in Great 

Britain and covers the period from 2017 to 2018. The raw data was processed and aggregated to 

derive average load curves that compare well with the evaluations presented in Figure 8-1. The 

average hourly load curve shown in the upper left corner is also very similar to that provided by 

Dodson, but small differences do exist. The causes of these differences can be very diverse. For 

example, the results presented in Figure 8-1 only assume a relatively high charging power of 11 kW. 

The data in Dodson’s field test, on the other hand, is based on a statistical distribution of charging 

powers between 3.7 and 11 kW. Furthermore the empirical data is based on observations in the 

United Kingdom whereas the model is based on German mobility surveys. Overall the course of the 

charging power both on a weekly level as well as on an annual level are similar to real charging data, 

so that a sufficient validity of the modeling approach is assumed. 

Besides the illustration of weekly charging behavior an annual evaluation is carried out as well by 

Dodson, showing a similar pattern as the one presented on the bottom up Figure 8-1. The same 

temperature dependency can be identified leading to a clear seasonal behavior of the consumption 

values. The same temperature dependency and seasonal behavior of the resulting specific 

consumption values is also demonstrated by the empirical study carried out by the NOW GmbH in 

[130], proving the necessity of a consumption model that reflects this temperature influence. 

8.2 Use case 1: Emission reduction 

Figure 8-2 shows the results for the base case in 2019. Besides the resulting annual emissions 

presented in the boxplot, median values for key indicators of the scenario are presented in the table 

below. Such values are the specific resulting emission per km, EFCs, average charge or discharge 

simultaneity of the whole fleet, and other related values. In the following, the type of data presented 

in that table varies among evaluations and is specifically selected to support individual 

interpretations. Furthermore, this figure and all the similar ones following contain an information box 

at the bottom defining the scenario’s key assumptions. The data illustrated in the boxplot represent 

the resulting annual GHG emissions for all 1,000 simulated vehicles. The boxplot displays the median 

value represented by a red line in the middle of the box, the first and third quartiles as the box’s 

edges, and the minimum and maximum values, as well as the extreme outliers as blue circles. Since 

the number of extreme outliers is relatively small (<5 %), they are excluded from all the following 

boxplots for better readability. 
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Figure 8-2: Annual GHG emissions and key indicators for base scenario “Emission-optimized 

2019” 

The simulation of the base case in 2019 already shows the high emission reduction potential of an 

optimized charging operation. Specific emissions in g CO2-eq./km can be reduced from 84.9 to 68.2 

in the unidirectional case and to 16.2 in the bidirectional case. However, this emission reduction is 

accompanied by a significant increase in both EFCs and the overall simultaneity of charging 

operations. The first leads to a faster degradation of the vehicle’s batteries due to electrochemical 

processes, known as cyclic aging. These coherences are discussed in more detail in section 8.2.3.5, 

where the sensitivity of a maximum EFC is presented. High values of charge simultaneity in a fleet of 

EV, on the other hand, lead to an increase in grid load, which may cause voltage band violations, 

especially in the distribution grid. Since no grid simulation is considered in this thesis, the influence 

of a restriction of maximum simultaneity on emission reduction potential of charging strategies is 

discussed in section 8.2.5.2.  

Another aspect that must be considered is the amount of electricity that is charged and discharged 

to and from the battery over the course of the year as well as the associated losses. The simulation 

considers the efficiency of the wall box inverter during the conversion from alternating current (AC) 

to direct current (DC), as well as the efficiency of the charging process in the vehicle itself. Compared 

to direct charging, unrestricted bidirectional charging leads to an increase of charged electricity from 

1.56 to 10.1 MWh and associated losses from 0.115 to 0.74 MWh per year. Those additional charging 

and discharging processes must be considered with respect to cyclic battery degradation as well as 

additional load on electric components. 

It is assumed that one of the main influencing factors on the potential of charging strategies is the 

availability of the vehicles at the charging location. The longer a vehicle is connected to a charging 

station, the more flexibility is available to optimize charging operations, especially in the bidirectional 

case. To validate this assumption, the correlation of the availability (hours connected/hours of the 

year) of all 1,000 vehicles considered in the simulation with the resulting specific emissions in all three 

charging strategies are plotted in Figure 8-3. 

Vehicle type Battery capacity Charge power home / work SOC departure SOC safety User group

Medium class 60 kWh 11 kW / - 90 % 30 % all

84.9

39.5

9 %

1.56

0.115

g CO2-eq./km

EFC

Charge simultaneity

Charged/discharged 

energy in MWh

Losses charging/ 

discharging in MWh

68.2

39.5

86.2 %

1.56
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Figure 8-3: Correlation between resulting specific emissions and availability of vehicles at 

charge locations 

For unidirectional and bidirectional charging, higher availabilities lead to a reduction in specific 

emissions, represented by a negative slope of the compensation line, while availability for direct 

charging shows no significant influence on the resulting emissions. High availabilities close to 100 % 

lead to disproportionately low specific emission values in the bidirectional case. The linear coherence 

can be explained by the availability itself. The longer a vehicle is available for unrestricted 

bidirectional optimization, the higher the possibility to shift loads and to minimize emissions. The 

more than linear drop in the curve at values close to 100 % can be explained by the calculation of 

specific emissions and low annual mileages. Vehicles with availability values as high as these tend to 

have low annual mileage values. Specific emissions are calculated by dividing total annual emissions 

by annual mileage. Low annual mileage means a small denominator and thus strongly negative 

specific emission values. 

In a next step, the same simulation is applied to the two future years under consideration, 2030 and 

2040. Figure 8-4 presents the results for those years in comparison to the historical year of 2019 as 

a boxplot. Again, key indicators relevant for interpretation are shown in the table below. 

 

Figure 8-4: Annual GHG emissions and key indicators for emission-optimized charging for 

base configuration in 2019, 2030, and 2040 
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Since specific emissions in electricity production have been declining over the years, so do the 

charged emissions in the direct charging operation from a median value of 1.17 t CO2-eq. in 2019 to 

460 kg in 2030 and 240 kg in 2040. This coincides with specific emissions per km of 84.9 in 2019, 

33.9 in 2030, and 18.1 in 2040. A notable feature in the comparison of results is the fact that the 

interquartile range and the spread between minimum and maximum values decrease significantly in 

2030 and 2040. Since the same mobility profiles are used, this can only be explained by the 

underlying time series of EMFs. As described in section 4.6.4, solar and wind generators increasingly 

dominating electricity production leads to longer periods of consecutive days with low EMF as well 

as low variations of EMF. In these periods, charging times do not play an important role in actual 

vehicle emissions, hence explaining their lower variability in annual values in future years. 

Furthermore, the emission reduction potential strongly depends on the underlying characteristic of 

the EMFs time series. Absolute and relative annual emission reductions per vehicle for both charging 

strategies are highest in 2030 (-34.8 % for unidirectional and -220 % for bidirectional charging). In 

2030, both emission-intensive conventional generators and renewable generators contribute to 

electricity production, leading to the highest values for annual and daily standard deviations of EMFs 

(see Figure 4-6 and Figure 4-10). This reduction potential decreases slightly in 2040 since electricity 

generation is now mostly based on vRES, which reduces the statistical spread of EMFs. 

8.2.1 Revenue assessment of emission-optimized charging 

As discussed in section 4.6.4, overall improving correlation values between EMFs and wholesale 

electricity prices over time give an indication that an emission-optimized charging of EVs might 

gradually lead to an increase of potential revenues as well. To prove this assumption, resulting 

electricity costs of the emission-optimized charging were calculated for all three years, according to 

the methodology described in section 7.6.2. Figure 8-5 compares relative annual cost reductions 

with a potential emission reduction for unidirectional and bidirectional charging as well as Pearson's 

rank correlation coefficient. 

 

Figure 8-5: Annual revenues and emission reduction potential of emission-optimized 

charging for base configuration in 2019, 2030, and 2040 

First, Pearson's correlation coefficient shows a weak to nonexistent correlation between relative 

emission and cost reduction values. The most dominant correlation can be observed in the 

bidirectional case in 2019 and has a negative sign. That confirms the assumption that due to the 

structure of the electricity market, power plants, and renewable generators, an emission reduction 

leads to an increase in costs in most cases. Correlation values for bidirectional charging in 2030 and 

2040 are negligible but do, however, show a sign inversion, meaning that emission-optimized 

charging increasingly leads to a positive revenue as well.  
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In the unidirectional case, a positive, albeit small, correlation is also observed. Still, in all years, a 

relatively small range of possible emission reductions coincides with a large range of positive as well 

as negative cost reduction values, making the interpretation of rp rather difficult. Overall, however, 

in 2019, an emission reduction coincides with increasing annual costs in 58.8 % of the cases. In 2030 

and 2040, the figure is reduced to 31.8 % and 31.4 %, respectively. 

In conclusion, the assumption made in section 4.6.4 can be confirmed, both in the unidirectional and 

bidirectional case. Figure 8-6 summarizes these findings in values for the median annual revenue 

and emission reduction potential of the first use case (emission-optimized charging). 

 

Figure 8-6: Median annual revenues and emission reduction potential in kg CO2-eq. of 

emission-optimized charging for base configuration in 2019, 2030, and 2040 

Where in the case of bidirectional charging in 2019, an emission reduction of 948 kg CO2-eq. 

results in a negative revenue of €83, emission reductions in future years coincide with increasingly 

positive revenues. The same coherence can be observed for unidirectional charging. 

Another aspect to be discussed at this point is the influence of such charging strategies on the market 

value of vRES generators. The market value of a specific generation type is calculated by multiplying 

its hourly generation with the wholesale price time series and dividing the result by the annual 

generation of this type. It therefore represents the expected revenue over the course of the year, 

compared to the average market price. Böing [147] has shown that increasing shares of vRES 

capacities result in decreasing market values of the same. High simultaneity of especially wind power 

basically leads to a self-cannibalization, reducing the wholesale price at times of high infeed. High 

vRES infeed also leads to low EMFs, which would be targeted by vehicles in the use case at hand. 

Shifting additional loads to times with low EMFs and high vRES infeed would therefore increase 

demand in the electricity market. Increasing demand results in higher prices and increasing market 

values of vRES. Therefore, such a charging strategy would not only reduce operational emissions but 

would also support refinancing of renewable generators on the wholesale electricity market. To 

assess these relationships further, iterative simulations with an energy system model would be 

needed. 

8.2.2 Comparing mix and marginal emission factors as an optimization target 

As discussed in section 4.7, mix EMFs are more suited as an optimization target since they better 

represent the current share of RES on total electricity production. For reasons of energy economic 

relevance and significance, as well as the resilience of the results, marginal EMF are neither deemed 

adequate for the accounting of operational emissions nor the assessment of charging strategies. To 

evaluate and discuss the effects of a consideration of marginal EMFs both as an optimization target 

and for the accounting of resulting emissions, corresponding simulations were performed for 2019 

and 2030. Figure 8-7 shows resulting annual GHG emissions as well as key indicators for both EMF 

types and years.  
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Figure 8-7: Annual GHG emissions and key indicators for emission-optimized charging 

based on mix and marginal EMFs in 2019 and 2030 

First, higher average values lead to higher annual and specific emissions when the accounting of 

operational emissions is based on marginal EMFs. In 2019, average specific emissions amount to 

84.9 g CO2-eq./km in the mix case, whereas accounting based on marginal EMFs leads to a value of 

128 g CO2-eq./km. Secondly, the high volatility of marginal EMFs (see Figure 4-11) leads to a much 

wider range of operational emissions in the case of direct charging. While the annual emissions 

spread over the range of values from 0.49 to 4.8 t CO2-eq. when the mix method is considered, this 

range widens to 0.76 to 7.2 t CO2-eq. in 2019. It should be noted that the same mobility profiles are 

considered for both simulations. This high volatility results in a wider range of emission spreads that 

can be used in the bidirectional case, leading to quite extreme emission reductions. Whereas the 

median annual emissions in the marginal case in 2019 amount to 1.77 t CO2-eq., bidirectional 

charging reduces this value by 530 % to (negative) -7.61 t CO2-eq. per year. However, this massive 

emissions reduction potential is also accompanied by a very significant increase in EFC, increasing 

from 39.4 in the unidirectional to 353 in the bidirectional case.  

As discussed in theory in section 4.7, using marginal EMFs as an optimization target was dismissed 

since they do not reflect RES shares well. Furthermore, they cannot be considered a reliable indicator 

for the accounting of emissions of a larger fleet of vehicles. Their consideration in the present 

simulations supports rejection in practice as well. For those reasons, all the following emissions 

assessments and optimizations are based on consumption-based mix EMFs. 

8.2.3 Influence of technical parameters 

In the following sections, sensitivities are analyzed one factor at a time (OFAT), starting from the 

described base configuration of parameters. That means that only one factor is varied, while all 

others are fixed. That way, the relationship between each parameter and the output (here, the 

emission-reduction potential) can be described (e.g., whether the response is linear or nonlinear), 

and tipping points can be identified as described in Broeke et al. [148]. The approach does not, 

however, consider interrelations between input variables. For that purpose, more advanced methods 

like global sensitivity analysis or regression-based methods would have to be applied. Due to the 

complexity of the model at hand, and therefore the long computational time, such an approach was 

not considered. 

Simulation year Vehicle type Battery capacity Charge power home / work SOC departure SOC safety

2019 Medium class 60 kWh 11 kW / - 90 % 30 %

g CO2-eq./ km

EFC

84.9 68.6 14.3

39.4 39.4 184

128 81.4 -520

39.4 39.4 353

33.9 23.8 -39.1

39.4 39.4 189

97.8 58 -346

39.4 39.4 260
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8.2.3.1 Vehicle class 

In a first step, the influence of three distinct vehicle classes is evaluated. Starting from the base case, 

a medium-class vehicle with 60 kWh of battery capacity, a small car with 40 kWh, and a luxury vehicle 

with 100 kWh are considered for the simulation. Since the consumption model described in 

section 7.2 distinguishes among the three vehicle classes, the associated electric consumption of 

each class is considered. Figure 8-8 shows the simulation results for 2019. 

 

Figure 8-8: Annual GHG emissions and key indicators for emission-optimized charging of 

three vehicle classes in 2019 

In the case of direct charging, the influence of different consumption values appears most dominant. 

The median values of specific emissions per kilometer reach from 77.5 g CO2-eq./km for small cars 

to 103.4 g CO2-eq./km in case of luxury-class vehicles. Due to larger battery capacities, vehicles 

especially of the luxury class, however, have a much higher reduction potential in the bidirectional 

case, enabling lower annual emissions than mid-class vehicles, even though they have a higher 

consumption. EFC values are lower for higher vehicle classes, but this is only due to the higher battery 

capacity as the denominator in the calculation of this value. However, the higher battery capacity 

increases flexibility and the amount of electricity charged and discharged during the year, explaining 

the higher emission reduction potential. In the next step, the influence of battery capacity is isolated, 

considering only medium-class vehicles with battery capacities between 40 and 100 kWh. 

8.2.3.2 Battery capacity 

As described above, increasing battery capacities lead to a higher flexibility and therefore a higher 

potential for charge control strategies. Here, the sole influence of a variation of vehicles’ battery 

capacity is analyzed. Figure 8-9 shows the distribution of battery capacities of EV models in 2019 and 

2021. 
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Figure 8-9: Battery capacities of current EV models [149] 

In addition to the fact that the total number of available models doubled from 57 to 136 in two years, 

battery capacities tend to increase as well in the available models, with OEMs addressing the still-

existing range anxiety of customers. For the sensitivity analysis, battery capacities were increased 

from 40 to 100 kWh, and the resulting emission reduction potential was evaluated for 2019, 2030, 

and 2040. Resulting emission reductions are shown in Figure 8-10. 

 

Figure 8-10: Influence of battery capacity on remission reductions 

In all years, battery capacity does not show a significant influence in the case of unidirectional 

charging. For bidirectional charging, however, increasing battery capacities lead to a strong increase 

in emission reductions, mainly explained by the additional amount of electricity that can be charged 

and discharged compared to the unidirectional case. In all the considered years, this amount remains 

more or less constant. Hence, the resulting emission reduction mainly depends on the underlying 

constitution of the energy system and the associated EMFs. In each of the years, a linear relationship 

between the battery capacity and the emission reduction potential can be observed with an 

increasing slope. 

8.2.3.3 Charging infrastructure 

Available flexibility, hence charged and discharged electricity, depends on the battery capacity of the 

vehicle, on the one hand, and on the assumed power of the wall box on the other. To assess its 

influence, standard charging and discharging powers of 3.7, 11, and 22 kW were considered as 

sensitivities. Figure 8-11 shows absolute emission reductions for both the uni- and bidirectional cases 

as well as the relative reduction in the bidirectional case. 
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Figure 8-11: Influence of available charging power at home on remission reductions 

As with battery capacities, the charging power has almost no influence on the possible emission 

reductions in the unidirectional operation. With bidirectional charging, however, increasing charging 

power substantially increases the emission reduction potential as well. Since the charging duration 

directly depends on the charging power and takes about six times as long with 3.7 instead of 22 kW, 

the time left for optimized charging is limited. This is also notable in the resulting EFC. In the 

directional case in 2019, EFC values increase from 119 in the case of 3.7 kW to 209.2 in the case of 

22 kW, meaning that more optimized charging and discharging can be used to reduce overall 

emissions.  

In direct contrast to the influence of the battery capacity, the relationship between charging power 

and the emission reduction potential cannot be considered as linear. The slope, and therefore the 

additional emission reduction, between 3.7 and 11 kW is much higher than between 11 and 22 kW. 

The base case only considering a 60 kWh battery is the factor limiting flexibility in that case. 

8.2.3.4 Influence of charging at work 

In the base scenario, the configuration of only charging at home is considered. To assess the 

influence of additional charging (at 11 kW) at the workplace, corresponding simulations are 

conducted for the user group “full-time employed.” All other technical and behavioral simulation 

parameters are kept constant. Figure 8-12 compares the annual emissions for the three charging 

strategies resulting from those two configurations. 

 

Figure 8-12: Annual emissions for charging only at home and charging at home and at work 
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In 2019 and 2030, emissions in direct charging actually increase when charging at work is considered. 

It should be noted that in the base configuration, vehicles are always connected and start the 

charging operation in the direct charging mode. As discussed in section 6.2.5, 50 % of all commuters 

reach their workplace before eight o’clock in the morning. In 2019 and 2030, EMFs are still relatively 

high during that time, whereas the increasing share of solar in combination with the 

decommissioning of coal-fired power plants in 2040 also leads to a decrease of EMFs in early-

morning hours. With respect to the emission reduction potential by unidirectional and bidirectional 

charging, on the other hand, charging at work increases the amount of flexibility available for 

optimization of charging processes and therefore leads to an increase in emission reductions. 

Average availability of vehicles connected to a charging station increases from 72 % to 87 %. 

Furthermore, low emission periods due to solar infeed become available for the optimization, further 

increasing potential emission reductions. In 2030, this combination leads to an increase in emission 

reductions of an additional 56.3 % in the case of bidirectional charging. Figure 8-13 shows the 

average hourly charging and discharging power for all considered vehicles over the course of the 

day for 2030 for the scenarios “charging only at home” and “charging at home and at work.”  

 

Figure 8-13: Average charging and discharging operation in kW/vehicle over the course of 

the average day in 2030 

For the yellow curve, charging at work is considered; for the blue curve, it is not. Furthermore, the 

average course of the emission curve is shown in gray. Charging at work enables the vehicles to fully 

utilize the times of low EMFs during the day when they are parked at work. The additional electricity 

charged at work then tends to be discharged again at night, when EMFs are higher, which explains 

the significant increase in emission reduction potential. 

In conclusion, enabling charging at work does not lead to significant improvements for direct or 

unidirectional charging, but due to higher availability values combined with low EMFs during the 

day, it does significantly increase the potential of bidirectional charging.  

8.2.3.5 Influence of EFCs 

All scenarios evaluated to this point show a significant increase in resulting EFCs in the bidirectional 

case, as shown in Table 8-2 for the reference scenario. 
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Table 8-2: Resulting EFCs in reference scenario (EMF-opt., 11 kW, 60 kWh) 

 2019 2030 2040 

Reference direct charging 39.5 39.5 39.5 

Reference bidirectional 184.3 189.1 192.5 

Increase by… x 4.7 x 4.8 x 4.9 

 

In direct comparison to direct charging, EFC values increase by 367 to 387 % in the considered years. 

Higher EFC puts additional stress on the battery's electrochemistry, resulting in faster cyclic aging. 

Aging processes of batteries can generally be subdivided in two types with fundamentally different 

mechanisms of action: calendric and cyclic aging. Calendric aging depends mostly on time, the state 

of charge of the battery, and the ambient temperature. Cyclic aging, on the contrary, refers to the 

loss of capacity due to degradation phenomena in the battery caused by the energy throughput and 

depends on various parameters such as cycle frequency, cycle depth, and charging and discharging 

currents [150]. Current battery degradation studies mostly focus on EFC-dependent degradation 

values of uncontrolled charged vehicles. When evaluating the acceptable number of EFCs, a 

degradation threshold must be defined, after which the battery has reached its end of life. Values 

for this end of life are not clearly defined and vary between 70 and 80 % ([151], [152], [153], [154]). 

Keil [155] has stated that the 1,000 EFCs until end of life can already be achieved under moderate 

outdoor temperatures. Considering the resulting annual EFC values as listed in Table 8-2, 

bidirectional charging could have a negative influence on battery life. However, it must be taken into 

account that values of 1,000 EFCs, mentioned in literature, result from normal driving and charging 

behavior, and as stated above, cyclic aging depends on various parameters such as cycle depth and 

charging/discharging currents. Especially while driving, currents easily exceed the assumed charging 

and discharging values of 3.7 to 22 kW. To reduce the influence of bidirectional charging on battery 

aging, a limitation of EFCs is considered in the simulations. In comparison to direct charging, a limit 

of 50/100 additional EFCs for bidirectional charging is defined. Figure 8-14 shows the influence of 

EFC restriction on bidirectional emission reductions. 

 

Figure 8-14: Influence of EFC restriction on bidirectional emission reductions 

As expected, restricting the maximum number of EFCs limits flexibility and therefore diminishes 

possible emission reductions. In all considered years, a restriction of additional EFCs to 100 only 

affects emission reduction by 4 to 6 %, meaning that enough flexibility remains for the optimizer to 

significantly reduce emissions. Restricting the additional EFCs to 50 shows a more significant impact 

and limits the possible emission reduction by 25 to 33 % in the years considered. 
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8.2.4 Influence of user behavior 

Besides technical parameters of the vehicle and the available charging infrastructure, the influence 

the behavior of vehicle users is also assessed. In addition to the obvious influence of the user’s 

mobility behavior on arrival and departure times and energy consumption, two more charging 

parameters set by the user and a SOC-dependent plug-in probability are considered in this context. 

The influence of mobility behavior can be addressed by evaluating simulations for different user 

groups, as described in sections 6.2.4 and 6.2.5. Considering the two charging parameters, it is 

assumed that users are able to set a safety SOC and a target SOC via an app or a wall box interface 

that influences the charging behavior of the vehicle. The safety SOC defines a minimum allowed SOC 

during charging, and the target SOC defines a minimum value that must be reached at the scheduled 

departure time. The influence of both these parameters on a possible emission reduction for 

unidirectional and bidirectional charging is assessed in section 8.2.4.2. SOC-dependent plug-in 

behavior considers the fact that users might not connect the vehicle every time they reach a charging 

location but actually exhibit a plug-in behavior that depends on the SOC of the battery when arriving 

at a charging location. 

8.2.4.1 User groups 

First, the influence of user behavior with respect to the owner’s behavior-homogeneous user group 

is assessed. Based on socioeconomic data derived from both mobility surveys, mobility profiles were 

subcategorized into 12 user groups considering information on occupation, use frequency of the 

vehicle, and children in the household. For the evaluation at hand, those 12 groups are summarized 

into four: full-time employed, unemployed, frequent driver, and nonfrequent driver. It should be 

noted that these definitions are not selective (e.g., a full-time employed user can be part of the 

frequent driver or nonfrequent driver group and vice versa). The resulting groups differ significantly 

in terms of annual mileage and the availability of vehicles at charging locations, as shown in 

Figure 8-15. For the evaluations, only charging at home is considered, and public charging (see 

section 7.3) is ignored, emphasizing the differences between groups. 

 

Figure 8-15: Annual GHG emissions and key indicators for emission-optimized charging of 

four distinct user groups in 2019 

Annual emissions in the direct charging case vary significantly due to the differences in annual 

mileage. Considering average emissions per km, however, only minor differences can be observed. 

The main difference among user group lies in the influence of optimized charging modes both for 
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the unidirectional and especially for the bidirectional case. Vehicles associated with the unemployed 

as well as the nonfrequent driver groups are parked much longer at charging locations and drive 

less. Hence, the optimization of charging strategies has more flexibility in choosing times with low 

emissions, reducing both annual and specific emissions per km. This correlation is most pronounced 

in the case of bidirectional charging, where both groups reach emission values below zero due to 

that effect. An EV mostly connected to the wall box basically acts as a storage unit and is able to fully 

use that flexibility, also represented by higher EFC values (+21 % full-time employed versus 

unemployed drivers, +11 % frequent versus nonfrequent drivers). 

8.2.4.2 SOC departure and safety SOC 

As mentioned above, another aspect of user behavior falls under the category of charging behavior. 

As described in section 7.5, the optimization of charging strategies provides the consideration of 

SOC limits, both target and safety SOC limits. The target SOC defines a minimum value that must at 

least be reached at scheduled departure. In the base case, that value is set to 70 % and represents 

an approximate range of 230 km (considering a battery capacity of 60 kWh). The safety SOC defines 

a lower limit during the charging operation that cannot be undercut. The idea is that owners can use 

the vehicle spontaneously at any time during the charging process and still have a certain battery 

capacity left for emergency trips. In the base case, this value is set to 30 %, allowing trips of about 

100 km. Both SOC restrictions limit the available flexibility for optimized charging and are varied in 

the following ways to assess the influence on emission reduction potential. Figure 8-32 shows the 

resulting impairment of emission reductions for the years 2019, 2030, and 2040. 

 

Figure 8-16: Impairment of emission reduction potential due to target SOC (left) and safety 

SOC (right) in 2019, 2030, and 2040 

First, the target SOC is gradually increased from 50 % to 100 %, consequently reducing available 

flexibility for the optimization, as shown on the left. The graph depicts the impairment of emission 

reductions compared to the minimal value of the target SOC of 50 %. In the considered range of 

values, the increase of the target SOC leads to an almost linear decrease in the possible emission 

reductions in the bidirectional case. Higher target SOC values limit the available time for optimized 

charging and therefore diminish emission reductions. In the unidirectional case, an increase of the 

target SOC results in an exponential decrease of possible emission reductions, even surpassing the 

ones in the bidirectional case. At a target SOC of 90 % or even 100 %, vehicles must charge almost 
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every time they are connected, while at lower values, they can skip charging for longer periods of 

time with high EMFs even if there are trips in between.  

Moreover, in the case of unidirectional charging, only the absolute value of the EMFs determines the 

result of the optimization. Having to charge every time due to a high SOC departure value can 

therefore significantly increase overall emissions. In bidirectional charging, on the other hand, the 

spread of EMFs during charging and discharging is more decisive than the absolute level of EMFs. 

That means that an emission reduction can be achieved even when the absolute level of emission is 

high during the considered timeframe. Using spreads in EMFs works in times of both high and low 

EMFs, leaving only the reduced optimization timeframe as the decisive factor impairing the possible 

emission reduction.  

In conclusion, EV users’ decisions on the target SOC have a strong influence on the potential of 

optimized charging, especially for high target SOCs in the unidirectional case. Considering a target 

SOC value of 70 %, as defined in the base case of these simulations, only decreases the potential 

emission reduction by a maximum of 12 % and does not necessarily involve a loss of comfort. The 

same impairment can be demonstrated in the bidirectional case, which supports the choice of this 

value. 

The mechanism of action in the case of the safety SOC is fundamentally different, however. Here, 

almost no influence on the resulting emissions can be seen with respect to unidirectional charging. 

Since, in the base case, EV users are assumed to connect their vehicle every time they reach a 

charging location, and they are charged regularly, SOC levels seldomly fall below the threshold 

defined by the safety SOC. Hence, little additional need for charging in unfavorable times arises by 

increasing that parameter. In the bidirectional case, setting this lower threshold basically reduces the 

usable capacity and thus the flexibility for optimization in a similar way as the target SOC. An almost 

linear coherence between the assumed safety SOC and the resulting impairment of emission 

reductions can be observed. 

Consequently, from a user’s perspective, setting a safety SOC in the unidirectional case does not 

influence the emission reduction at all. In the bidirectional case, a linear reduction can be observed, 

and the selected value depends on the user’s sensitivity toward safety and a possible 

revenue/emission reduction potential. 

8.2.4.3 SOC-dependent plug-in behavior 

As the last parameter in the category of user behavior, the plug-in behavior of users is considered. 

In the base case of the simulations, it is assumed that users are incentivized and therefore connect 

their vehicles every time they reach a charging location to maximize the connection time and 

therefore revenues/emission reductions. As a sensitivity, SOC-dependent plug-in behavior is 

considered. As described in section 0, “normal,” unincentivized charging behavior depends on the 

state of charge of the battery when the vehicle reaches a charging location. For the sensitivity analysis 

at hand, the charging probability is estimated by an inverse cumulative distribution, depending solely 

on the SOC of the battery at arrival, as described in section 0 and shown in Figure 8-17 on the left. 

The resulting impairment of possible emission reductions is shown on the right.  



Use case 1: Emission reduction 

105 

 

Figure 8-17: Impairment of emission reduction potential due to SOC-dependent user plug-

in behavior in 2019, 2030, and 2040 

When a SOC-dependent charging behavior is assumed, coherences change fundamentally. The first 

and most obvious effect is that vehicles are connected less frequently, consequently reducing the  

timeframe for optimized charging. Users always connecting their vehicles whenever they reach a 

charging location leads to an average availability of 77 %. This value is reduced dramatically to 13.8 % 

in the most extreme case of a µSOC of 50 %. This explains, at least to some extent, the large 

impairment of potential emission reductions in the bidirectional case and follows the same 

mechanism of action as most of the other sensitivities assessed in this section that reduce the 

available timeframe for optimized charging. Less time at the charging station means less flexibility, 

which means higher impairment.  

Another critical factor that comes into play here is the fact that the amount of energy that must be 

charged increases if the vehicles are not plugged in every time, they reach a charging station. When 

they do connect, more energy must be charged, and the remaining flexibility for optimized charging 

is much lower. For example, with unidirectional charging in 2019, the average SOC on arrival was 

70.6 %, assuming "always connecting". In the most extreme case at a µSOC of 50 %, this SOC is 

reduced to only 28 %. That means that 2.5 times more electricity must be charged in that timeframe, 

significantly reducing the options for optimized charging.  

Those two effects add up to a major impairment of emission reductions, especially in the bidirectional 

case. Even in the most SOC-sensitive case with a µSOC value of 90 %, emission reduction potential in 

the bidirectional case is decreased by 41 %. After that significant reduction for µSOC = 90 %, a further 

decrease of plug-in probability shows an almost perfect exponential decay. 

For unidirectional charging, a more or less linear relationship between µSOC and the resulting 

impairment can be observed, with a steeper slope in 2019. The stronger effect in that year can be 

explained by the underlying energy system. Comparably low shares of RES in combination with large 

capacities of still-operational, emission-intensive coal-fired power plants define the overall structure 

of electricity generation and result in distinct patterns of EMFs. Windy and sunny phases lead to 

longer periods with low EMFs. When wind and solar yield is low, on the other hand, most of the 

electricity is still produced by coal-fired power plants, leading to longer phases of high EMFs. In 

future years, coal phaseout is (almost) completed, resulting in a lower spread between EMFs in times 

of high and low wind and solar yield (see section 4.6.4). Especially in the unidirectional case, if the 
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vehicle is not connected every time, the demand for charging larger amounts of electricity at 

inconvenient times increases, hence the greater impairment. 

Consequently, plug-in behavior has one of the strongest effects on the potential of optimized 

charging strategies. To maximize emission reductions or revenue potentials, users should therefore 

be incentivized to plug in their vehicles as often as possible. Especially in the case of bidirectional 

charging, not connecting the vehicle every time drastically undermines the efficiency of the charging 

strategy. 

8.2.5 Influence of the energy system 

Since operational emissions directly depend on the electricity used for charging the vehicles, the 

underlying energy system must be considered one of the main influencing factors. Analysis 

conducted for future years in the German energy system support this assumption. To further assess 

these coherences, additional simulations were undertaken for a fleet of vehicles in 15 European 

countries, respecting their unique generation portfolio (section 8.2.5.1). Furthermore, simulations 

have shown that unrestricted, optimized charging leads to high simultaneities in charging processes. 

Assuming an increasing number of EVs in the system, these correlations might pose a challenge, 

especially considering the load in the distribution grid. To minimize grid load, the maximum 

simultaneity of charging processes can be restricted. The influence of such a restriction on possible 

emission reductions is assessed in section 8.2.5.2. 

8.2.5.1 Underlying energy system 

Increasing shares of RES in German electricity production in future years significantly influence both 

emissions of EVs in uncontrolled, direct charging operations as well as the potential of uni- and 

especially bidirectional charging in the case of an optimized charging operation.  

However, electricity generation in European countries varies widely. For example, Polish electricity 

generation is dominated by coal-fired power plants, while 70.6 % of French electricity production in 

2019 was provided by nuclear power plants [38]. From the sensitives discussed in this chapter, it is 

clear that both the overall emission intensity of the electricity generation and the statistical 

distribution of EMFs during the charging operation have an influence on resulting operational 

emissions and the emission reduction potential. In section 4.6.3, hourly EMFs were calculated and 

presented for 15 European countries. To assess the influence of the underlying energy system on 

operational emissions and the potential of charging strategies, the base case simulation was applied 

for all these countries. It must be noted that country-specific mobility behavior was not considered 

in this case. First, no coherent survey data are available for all these countries to synthesize 

corresponding annual mobility profiles. Furthermore, by using the same mobility profiles for all 

countries, we can isolate the influence of the underlying EMFs and compare the results across 

countries. The only difference in simulation parameters lies in the consideration of country-specific 

temperature curves. Figure 8-18 shows the resulting specific emission per km per country for 

uncontrolled charging in 2019 and compares these values with the emissions resulting from 

bidirectionally optimized charging. Values on the abscissa show the share of renewable energies on 

the total electricity generation in each country. 
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Figure 8-18: Specific emissions for direct (upper value) and bidirectional (lower value) 

charging in 15 European countries in 2019 

To begin, some correlation between specific emissions resulting from uncontrolled charging and the 

share of RES can be observed. The higher the share of RES on total electricity production, the lower 

the resulting EV emissions. Exceptions do exist, however. France, for example, shows the second 

lowest value of operational specific emissions but only has a share of RES of 20 %. Non-RES 

generators in France are mainly nuclear with low GHG emissions; therefore, overall EV emissions are 

low as well.  

Besides these operational emissions of EVs resulting from uncontrolled charging, the effect of 

bidirectional charging varies widely as well among countries. France, for example, has a very low 

reduction potential, whereas countries like the United Kingdom, Germany, Switzerland, Portugal, and 

Denmark show a very high potential. Shares of RES, however, do not sufficiently explain these results, 

ranging from 31 % in the case of the United Kingdom to 72 % in Denmark (rp=0.293). To further 

analyze these coherences, absolute and relative emission reductions from bidirectional charging 

were compared to the share of volatile renewable energies (vRES) and the standard deviation of the 

hourly EMFs in each country, as presented in Figure 8-19. 

    

Figure 8-19: Correlation between absolute emission reductions and standard deviation of 

EMFs and between relative emission reduction and coefficient of variation 

Both variables are better suited to explain the differences in absolute emission reduction potentials 

from bidirectional charging, shown in Figure 8-18. The higher the share of vRES on total emission 

reduction, the higher the potential of bidirectional charging is. Each of the energy systems under 

consideration has its own individual structure, some leaning more to fossil generators powered by 
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gas (such as Belgium) and others relying more on coal (Poland, Czech Republic) or nuclear 

generators (France) or having their own unique mix. All these factors play an important role when 

assessing the reduction potential of charging strategies.  

When assessing emissions, these coherences can best be represented by calculating hourly EMFs. 

The higher their statistical distribution, the more spreads between these values can be used by the 

optimization to reduce overall emissions and the higher the potential, especially in direct charging. 

This coherence can be observed when considering the correlation between the standard deviation 

of EMFs and the potential emission reductions for bidirectional charging, as shown on the right in 

Figure 8-19.  

8.2.5.2 Consideration of grid restrictions 

As discussed in this chapter, unrestricted, optimized charging leads to high simultaneities in charging 

processes. Assuming an increasing number of EVs in the system, these simultaneities might pose a 

challenge, especially considering the load in the distribution grid. Nobis [92], for instance, conducted 

distribution grid simulations in selected grid areas to assess the influence that increasing numbers 

of EVs have on voltage quality. In case of uncontrolled charging, voltage quality decreased at an EV 

penetration of 40 %. However, charging simultaneity increases by a factor of 8-9 when comparing 

uncontrolled to optimized charging. It can therefore be assumed that unrestricted, optimized 

charging poses a much bigger challenge for grid stability. To fully assess the resulting load on the 

distribution network, simulations would need to be performed using an appropriate distribution 

network model. Such simulations can be performed with the FfE model GridSim; they are, however, 

not the focus of this thesis.  

To still address these coherences properly and to minimize grid load, the maximum simultaneity of 

charging processes can be restricted in the eFLAME model. As described in section 7.1, the model 

iterates through all considered vehicles and performs the optimization individually for each one. 

After each iteration, charge decisions can be used to restrict the optimization space for the following 

vehicles. In the case of grid restrictions, a maximum charge simultaneity can be selected. When this 

maximum value is reached, the following vehicles are prevented from charging during these times. 

Overall, this leads to a smoothing of the resulting grid load and prevents load peaks. In the 

unrestricted case, all vehicles maximize their emission reduction by charging in times of low EMFs 

and discharging in times of high EMFs. Restricting the maximum simultaneity of the fleet also restricts 

the total reduction potential, as shown in Figure 8-20. 
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Figure 8-20: Impairment of emission-reduction potential due to restrictions on maximum 

simultaneity in 2019, 2030, and 2040 

Simulations show only negligible impairment in the unidirectional case. Since only small amounts of 

electricity are charged in the unidirectional mode, restricting simultaneity still leaves enough times 

with low EMFs. In the bidirectional case, much more electricity is charged and discharged. In that 

scenario, a restriction of the maximum simultaneity results in an exponential impairment of possible 

emission reductions, reaching up to 35 % when a maximum charging simultaneity of 20 % is 

considered. With regard to the additional load EVs pose, especially on the distribution grid level, 

such restrictions will most likely be adapted in the future regulatory framework. In a future energy 

system with large numbers of EVs, those restrictions must be considered. As [15] has shown, grid-

serving charging of EVs can even relieve the load on the corresponding operating resources and 

reduce overall system costs. The intelligent combination of grid-serving and simultaneously cost- 

and emission-optimized charging should therefore be the subject of further research. 

Figure 8-20 further shows the number of failed simulations, cases when constraints of the 

optimization problem lead to a mathematical infeasibility. At this point, the disadvantage of an 

iterative optimization looping over vehicles becomes apparent; the implementation iteratively sets 

charging constraints for the following vehicles, respecting the selected maximum charging 

simultaneity. Especially for low values of maximum simultaneity, this limits the periods where 

following vehicles are allowed to charge, resulting in infeasible problem definitions. The only way to 

solve this problem would be to consider an optimization of all vehicles at the same time. Due to 

computational limitations, however, this approach was not considered in the context of this thesis. 

8.2.6 Summary of sensitivity analysis 

As discussed in the beginning of this chapter, sensitivities were analyzed OFAT starting from the 

described base configuration of parameters. For all the parameters under consideration, the effect 

of their variation was assessed with respect to the influence on the potential emission reduction for 

unidirectional and bidirectional charging. Detailed interpretations of the corresponding correlations 

and the mechanisms of action are described in the corresponding section. It can generally be stated 

that limiting flexibility in any way results in a more or less linear reduction of potential emission 

reductions. In some cases, however, additional effects must be considered as well, increasing the 

influence of individual parameters. To present a compact overview of the magnitude of the influence 

for all parameters considered, they are summarized below. To assess all parameters together, the 
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variation of each one is compared to the resulting relative deviation of emission reductions from the 

base configuration. It is assumed that the results of this sensitivity analyses are valid for other use 

cases as well since the mechanisms of action are similar. 

Figure 8-21 presents the results for both the unidirectional and bidirectional case in 2019. Coherences 

for 2030 and 2040 are considered similar, and deviations from that are explained in the 

corresponding section. Figure 12-6 in the appendix presents the same results for those future years. 

It must be noted that categorical parameters like the battery capacity and available charging power, 

where only these categories exist, are mixed here with numerical variables such as the assumed 

safety or departure SOC and the maximum charging simultaneity. 

 

Figure 8-21: Overview of the considered sensitivities and the influence on annual emissions 

In the unidirectional case, only three of the parameters have a significant influence on the resulting 

emission reduction, two of which are categorized as user behavioral parameters. High departure 

SOC set by the vehicle user forces the optimizer to charge almost every time the vehicle is connected. 

When no such restriction is set, vehicles can refrain from charging over longer periods of time even 

when trips are taken in between, allowing a more significant emission reduction. Similar coherences 

apply to the assumed plug-in behavior of vehicle users. The less often that users plug in the vehicle, 

the more energy must be charged during each of the remaining charging operations and the less 

flexibility remains for shifting of charge processes.  

In conclusion, the most dominant influencing factors on the efficiency of unidirectional charging 

operation both depend on user behavior. To maximize efficiency, users should be incentivized to 

connect the vehicles as often as possible and consider setting the SOC departure as low as they are 

comfortable with. 

In comparison to the potential of unidirectional charging, the effect of available flexibility in 

bidirectional charging is higher. In the first case, only small amounts of electricity must be charged 

in mostly longer periods of time. Often, only short trips are taken during the day; the vehicle arrives 

in the early afternoon and is connected during the night. Choosing the hours of low EMFs in 

unidirectional charging leads to an emission reduction. However, if that whole period can be used 

for the bidirectional charging operation, much higher emission reductions can be achieved.  
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On the other hand, if that time is restricted due to the various technical and behavioral parameters 

discussed in this chapter, the resulting relative impairment of the emission reduction from 

bidirectional charging is correspondingly higher as well. For that reason, a variation of battery 

capacities shows a much higher impact, represented by a larger slope of the yellow curve on the 

right. The amount of energy that can be charged and discharged in a fixed period of time, and 

therefore the usable flexibility, depends on the length of the time period and the power of the 

charging infrastructure. Therefore, compared to unidirectional charging, assumed charging power 

values also show a significant influence on potential emission reductions.  

The influence of the selected departure SOC, in contrast, only shows a minor influence compared to 

the impairment in the unidirectional case. Further explanations on the underlying mechanisms of 

action are presented in section 8.2.4.2. Since the safety SOC, selected by the user, directly reduces 

the available battery capacity for the optimization, we see a linear correlation between that value 

and the resulting impairment on potential emission reductions. Restrictions on the maximum 

simultaneity negatively influence the potential emission reductions. However, it is a parameter 

defined by technical grid restrictions and will also be fixed in regulatory terms by the Federal Network 

Agency in the future. Again, as well as in the case of unidirectional charging, the most dominant 

factor is the plug-in behavior of the vehicle’s users. Due to the discussed mechanisms of action, not 

connecting the vehicle as often as possible drastically impairs revenue or emission reduction 

potential. 

As stated above, all these mechanisms of action and correlations do not depend on the optimization 

target but can be applied to all the other use cases universally. For this reason, no further sensitivity 

analyses are performed for the other use cases. 

8.3 Use case 2: Cost reduction 

For the second use case under consideration, the reduction of charging costs is the main focus. As 

discussed in section 7.6.2, the main assumption is that taxes and levies are only applied on electric 

consumption of the vehicle. The amount of electricity charged and discharged during the 

bidirectional operation is assumed to be free of taxes and levies since such charging strategies are 

to be considered beneficiary for the overall energy system. Kern et al. [9] have discussed in detail the 

influence of additional charges on electricity on the revenue potential of EVs and concluded that 

those charges are the “most decisive parameter for the potential revenues of bidirectionally 

chargeable EVs” (p. 23). Not considering taxes and levies for charged and discharged electricity in 

the bidirectional operation therefore must be considered a maximum estimation. Following the logic 

for economic assessment described in section 7.6.2, resulting annual costs are presented in 

Figure 8-22. 
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Figure 8-22: Annual costs and key indicators for price-optimized charging for base 

configuration in 2019, 2030, and 2040 

Due to increasing electricity prices over the course of the analyzed years, costs for direct charging 

slightly increase. However, the restructuring of the power sector leads to significant changes in the 

characteristics of the prices. Increasing RES shares lead to larger periods of low prices, while the 

phaseout of cheap coal and nuclear power plants and the increased need for flexibility result in 

higher peak prices. This price spread can be used both in unidirectional and bidirectional charging, 

resulting in an increasing cost reduction in 2030 and 2040. Since price spreads are the main driver 

for the potential of bidirectional charging, that cost reduction potential is especially pronounced in 

those years, leading to a reduction in annual costs by 43 % in 2030 and 45.8 % in 2040. The effects 

on resulting EFC values and charge simultaneity of the fleet are the same as those described for the 

use case emission reduction, both increasing substantially. 

Emission assessment of price-optimized charging 

The cost-optimized charging behavior is then assessed with respect to the resulting emissions. In 

Figure 8-23, the annual cost reductions for unidirectional and bidirectional charging are compared 

to the resulting emission reduction (or increase). 

 

Figure 8-23: Median annual revenues and emission reduction potential in kg CO2-eq. of 

price-optimized charging for base configuration in 2019, 2030, and 2040 

As described in section 4.6.4, the correlation between EMFs and wholesale prices changes over the 

course of the selected years. In 2019, the merit order dilemma of emissions, (see section 4.5) still 

prevails. Cheap but emission-intensive lignite and hard coal-fired power plants continue to dominate 

the generation of electricity to a large extent, resulting in hours of low prices but high EMFs. Charging 

in those times of low prices therefore increases operational emissions. This coherence is resolved 
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with the phaseout of those power plants, resulting in an improved correlation between electricity 

prices and EMFs. The described relationships have a significant impact on the resulting emission 

reduction potential and revenues of EVs. In 2019, an annual cost reduction of €212 results in quite 

extreme additional emissions of 1,347 kg CO2-eq. In contrast, in 2030 and 2040, potential revenues 

of €344 and €367, respectively, also lead to a reduction of emissions by 520 and 188 kg per year, 

respectively. The same is not true, however, in the unidirectional case. Here, an annual cost reduction 

of €32 in 2019 is also accompanied by an emission reduction of 16 kg. Most charging processes are 

simply shifted from the afternoon to early morning hours. In those specific cases low load values are 

often accompanied by low EMFs. In contrast to that bidirectional charging leads to a steady charging 

and discharging amplifying the effect of the merit order dilemma and resulting in additional 

emissions. Those correlations must be considered when implementing a price-optimized charging 

strategy, especially in current years. 

8.4 Use case 3: Smoothing of residual load 

As discussed in section 4.6.4, consumption-based EMFs only represent the share of RES in the system 

to a certain extent. Especially in future years, when periods of time with negative residual load 

increase, considering the residual load as an optimization target provides a better representation of 

the share of RES on total electricity production. Therefore, the smoothing of residual load is 

considered as a third charging strategy by shifting charging operations to times of negative residual 

loads and discharging operations to times of high residual loads. Even though such a strategy might 

not lead to the same emission reduction for individual vehicles, benefits for the overall energy system 

are high. To assess the actual feedback effect of such charging behavior on the energy system, an 

iterative run of the energy system model ISAaR was performed and is presented in section 8.4.2. 

The corresponding charging strategy was first implemented and simulated in the eFLAME model for 

the base configuration and the years 2019, 2030, and 2040. Resulting emissions are then assessed 

by the associated time series of consumption-based EMFs and presented in Figure 8-24. 

 

Figure 8-24: Annual GHG emissions and key indicators for residual-load-optimized charging 

for base configuration in 2019, 2030, and 2040 

Since consumption-based EMFs have a high correlation with the residual load (see section 4.6.4.4), 

the resulting annual emissions are expected to be quite similar. Comparing results for emission-

optimized charging in Figure 8-4 with those at hand supports that assumption. Using EMFs as an 

Vehicle type Battery capacity Charge power home / work SOC departure SOC safety User group

Medium class 60 kWh 11 kW / - 90 % 30 % all

18.1 14.3 0.3

39.5 39.5 252

33.9 24.9 - 12.6

39.5 39.5 255

84.9 69.7 54.7

39.5 39.5 286

g CO2-eq./ km

EFC

id_scenario in (189,190,191)
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optimization target leads to slightly better results from the perspective of the vehicles, but overall 

quality and assertions prove to be comparable. It must be noted, though, that those results consider 

the base configuration with unrestricted charging of vehicles. Furthermore, no dynamic system 

feedback can be evaluated since simulations are based on but independent from the energy system 

model. To address that shortcoming and assess the actual system feedback on the energy system of 

such optimized charging, resulting loads from charging and discharging are used for an iterative 

simulation run of the energy system model. Findings are discussed in section 8.4.2. 

8.4.1 Revenue assessment of residual-load-optimized charging 

Finally, the resulting charge operations in the use case of smoothing of residual load are assessed 

with respect to potential revenues for vehicle users. This potential is evaluated for unidirectional and 

bidirectional charging and compared to the resulting emission reductions. Figure 8-25 shows this 

comparison for all three years under consideration. 

 

Figure 8-25: Median annual revenues and emission reduction potential in kg CO2-eq. of 

residual-load-optimized charging for base configuration in 2019, 2030, and 2040 

In 2019, the same correlation can be demonstrated that was already present in emission-optimized 

charging. Due to the merit order dilemma of emissions (see section 4.5), a reduction in emissions 

(242 kg CO2-eq. in the case of unidirectional, 397 kg CO2-eq. in the case of bidirectional charging) 

leads to negative revenues (-€14 in unidirectional and -€182 in bidirectional charging). That is also 

true for an optimization aiming at a smoothing of residual load. Due to cheap and emission-intensive 

lignite power plants still in operation, periods of low residual loads (and low emissions) do not 

necessarily coincide with low wholesale prices, resulting in a decrease in revenues. This relationship 

dissipates in the future years of 2030 and 2040. Similar to emission-optimized charging, residual-

load-optimized charging here leads to both emission reduction and positive revenues. 

8.4.2 Assessment of system feedback 

Especially with increasing numbers of EVs, the feedback effects that charging strategies have on the 

energy system must be considered. To address this topic, an iterative analysis is conducted with the 

energy system model ISAaR. Due to the large computational effort of a simulation run with the 

energy system model, this evaluation is only considered for one of the use cases in this thesis. Since 

the residual load best represents the share of RES in the system, the related charging strategy of 

smoothing of residual load is determined most beneficial for the integration of those volatile 

generators. Therefore, the resulting load curves for the number of EVs expected in each year are 

used for three distinct simulations runs for the future years of 2030 and 2040. With regard to the 

assumptions about the future development of the energy system, the same basic scenario was used 

that underlies all other evaluations in this thesis (see section 3.3). 
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As discussed in the course of this chapter, the unrestricted optimization of the entire fleet of vehicles 

with base configuration of simulation parameters results in high charging simultaneities, which lead 

to a significant additional load on the grid infrastructure, especially at the distribution grid level. To 

limit this load, a restriction of 50 % charging simultaneity is considered for the simulation run (see 

section 8.2.5.2). All other simulation parameters correspond to the base configuration. Figure 8-26 

illustrates the influence of a unidirectionally and bidirectionally optimized fleet on the residual load 

over the course of an average day in 2030. Again, 2.69 million EVs are considered for this assessment. 

 

Figure 8-26: Average residual load before and after consideration of a unidirectionally and 

bidirectionally charged fleet of EVs in 2030 (max simultaneity = 50 %) 

The shifting of charge processes in the unidirectional operation from periods with high residual load 

values to those with lower values leads to a slightly smoother course of the curve. Bidirectional 

charging, however, increases that effect significantly. As discussed throughout this chapter, 

bidirectional charging (as well as unidirectional charging) not only leads to higher values of charging 

simultaneity but also increases the total electricity demand of vehicles due to losses in the charging 

and discharging process. Considering a fleet of 2.69 million EVs in 2030 or 4.7 million in 2040, the 

effect on overall electricity demand can be considered significant, as illustrated in Table 8-3. 

Table 8-3: Charged and discharged energy, losses, and resulting net electricity demand in 

2030 and 2040 for residual-load-optimized charging 

  Direct charging/ 

unidirectional optimization 
Bidirectional optimization Unit 

E
V

 l
e
v
e
l 

Charged energy 2,652 13,755 kWh 

Losses charging  119.7 1016.4 kWh 

Discharged energy - 9,499 kWh 

Losses discharging - 812.6 kWh 

S
y
st

e
m

 l
e
v
e
l 

Net electricity demand 

@2.69 million EVs (2030) 
7.13 11.45 TWh 

Net electricity demand 

@5.7 million EVs (2040) 
15.12 24.26 TWh 

 

Where losses might seem relatively small on the EV level, they add up to an additional electricity 

demand of 4.31 TWh in 2030 and 9.14 TWh in 2040 when the whole fleet is considered. This increased 

demand must be met by an expansion of new electricity generators or an increase of conventional 

production. In the following section, the system feedback of a fleet with uni- and bidirectionally 

optimized EVs is compared to a reference case where only direct charging is considered. 
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8.4.2.1 Effect on electricity generation 

Regarding the electricity sector, feedback effects can be divided into two categories: the expansion 

of generators, represented by the installed capacities, and the actual dispatch of those generators 

as well as storage units. Generally, energy system models like ISAaR aim at the reduction of overall 

system costs. Therefore, especially with regard to the resulting (negative or positive) expansion of 

renewable generators, the underlying cost assumptions are vital for the interpretation of results. 

ISAaR considers four types of renewable generators that can be used for the provision of renewable 

electricity: wind on- and offshore as well as offsite and rooftop solar generators. Based on capital 

expenditures (CAPEX) and operational expenditures (OPEX) data summarized in [156], levelized costs 

of electricity (LCOE) are derived for all four, as presented in Table 8-4. 

Table 8-4: Assumed LCOE for vRES generators 

 Wind onshore Wind offshore Offsite solar Rooftop solar 

LCOE in €/MWh 33 35 23 59 

 

To minimize system costs, generators will be expanded and dispatched according to these 

underlying costs as well as with regard to their individual temporal generation characteristics. The 

better this characteristic matches the time characteristic of the electrical load, the more efficient the 

operation of the overall system (less storage required, less curtailment). These relationships must be 

taken into account when interpreting the following results. Findings are discussed based on the 

simulation results for 2030. Results for 2040 can be found in the appendix in Figure 12-7. 

Unidirectional optimization 

First, the influence of a unidirectionally optimized charging of vehicles is discussed. Unidirectional 

charging operations do not result in additional electricity demand but simply shift charging 

operations to times with lower residual load values. As illustrated in Figure 8-26, this charging 

strategy reduces the electric load in the evening hours and shifts charging to the early-morning 

hours and, although less pronounced, to the midday hours. To assess the influence on the energy 

system, the differences of expansion and dispatch of generators as well as the use of storage units 

between the direct charging simulation run and the unidirectional charging simulation run are 

evaluated, as illustrated in Figure 8-27.  

 

Figure 8-27: Influence of unidirectional charging operation on the electricity sector in 2030 
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To begin, due to the rather small number of EVs considered in 2030, the impact on the electricity 

sector is minimal. In relation to total electricity generation (or consumption), the deviations shown 

above are in the low single-digit percentage range. For example, the maximum relative change is 

only 1.7 % in the case of reduced consumption of the water reservoirs. The increase of 770 GWh of 

wind onshore generation only amounts to 0.4 % in relative terms. However, the basic relationships 

and system effects can be demonstrated even at these small values. Starting with the influence on 

electricity generation, the shift from periods of high residual loads to periods of lower values leads 

to a decrease of fossil electricity production as well as offsite solar power. In the case of conventional 

generators, installed capacities do not change, but the generation from existing ones is reduced. In 

the case of offsite solar, however, coherences are not as apparent. Shifting charging processes to 

early-morning hours creates an additional electricity demand that is mainly provided by an 

expansion of wind onshore turbines since no solar generation is possible during that period. The 

resulting additional electricity generation from wind turbines reduces the need for solar generators 

during the day. Corresponding capacities are expanded less and thus also reduce the total 

generation from solar plants.  

The most expansive vRES types, wind offshore and rooftop solar, are not expanded at all, but the 

shifting of charging processes reduces the market-related downregulation (periods where vRES 

infeed cannot be fully used) of those generators and therefore increases overall production. The 

targeted smoothing of the residual load also leads to a reduction of electricity stored in hydro 

storage plants and used for power to heat applications. As flexible consumers, both usually follow a 

price-dependent charging/consumption behavior. The more loads are shifted to periods of low 

residual loads (usually accompanied by low prices), the less often those units are needed to store or 

use electricity. 

Bidirectional optimization 

In the next step, the influence of a bidirectional optimization is assessed. As mentioned, and in 

contrast to unidirectional charging, bidirectional charging increases overall electricity demand of the 

EV fleet due to charging and discharging losses (+4.31 TWh in 2030 and +9.14 TWh in 2040). 

Furthermore, as illustrated in Table 8-3 and Figure 8-26, the amount of energy displaced is much 

higher in bidirectional charging, leading to a more significant reduction of residual loads. Similarly, 

the system feedback effects are more pronounced, as presented in Figure 8-28. 

 

Figure 8-28: Influence of bidirectional charging operation on the electricity sector in 2030 
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Where relative changes in the case of unidirectional were in the low single-digit percentage range, 

bidirectional charging has a much greater influence. One of the most pronounced effects is the 

increase of offsite solar generation by 16.5 %, resulting from an increase in installed capacity of 

15.4 %. The effect on energy consumption of hydro storage facilities is also decreased significantly 

by 15.7 %. As illustrated in Figure 8-26, large amounts of electricity can be shifted from periods of 

high residual loads in the evening to periods of low residual loads during the day. That additional 

demand for electricity during the day can now largely be fulfilled by additional offsite solar capacities. 

This additional electricity demand in times of low residual loads also enables a better integration of 

otherwise curtailed electricity from vRES and reduces the overall curtailment by 23.5 % from 

9.86 TWh to 7.54 TWh. Since that additional electricity can now be shifted to times of higher residual 

loads, less wind and conventional power is needed in those periods. Because offsite solar is the 

cheapest vRES, that shift from wind to offsite solar alone would reduce overall system costs. As with 

unidirectional charging, the consideration of bidirectional charging also leads to a significant 

reduction of electricity used to power hydro-pumped power plants (-15.7 %) and power to heat 

applications (-5.1 %).  

8.4.2.2 Influence on wholesale prices 

As mentioned, shifting loads from periods of higher residual load to periods of lower values leads to 

a change in wholesale prices, as illustrated in Figure 8-29. 

 

Figure 8-29: Annual duration curve of marginal prices resulting from the three charging 

strategies in 2030 

Due to low numbers of EVs, the effect on the overall price structure is considered rather small. 

Average values decrease slightly but are negligible. However, bidirectional charging has an especially 

significant influence on peak prices. High prices result from high demand in combination with low 

supply. Such a period is usually also characterized by high values of residual loads and therefore 

prioritized by EVs that can discharge during those times. The discharging reduces the demand for 

electricity and therefore lowers peak prices significantly. (The influence on resulting wholesale prices 

in 2040 can be found in the appendix in Figure 12-8.) 

8.4.2.3 Conclusion on system feedback 

The simulations show that an optimization of EV charging strategies aiming at the smoothing of the 

residual load curve leads to a better integration of vRES and a decrease of emission-intensive 

conventional generators and use of hydro storage and power to heat applications. Due to the overall 

small number of EVs considered in 2030, a simple shift of charging processes in the unidirectional 

case leads only to a rather small effect. In bidirectional charging, however, more energy can be 

shifted, leading to a more significant system feedback. Especially the discharging in high-residual 
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load periods in the evening and charging during solar-dominated low residual load periods during 

the day leads to a significant increase of usable solar power. Since offsite solar is considered the 

cheapest vRES, large additional capacities are installed, displacing more expensive wind onshore 

generators, and decreasing overall system costs. The discharging of vehicles also reduces peak prices 

significantly, but the overall effect on wholesale prices is small.  

Here, the limitations of the iterative simulation approach used in this context must be discussed. For 

the simulations, it is assumed that EVs optimize their charging strategies based on the fixed residual 

load curve, originating from a prior simulation run. The then-altered electric load of those vehicles 

is used for the next simulation run of the energy system model. That way, the optimization of EVs is 

considered as preexisting, and all other components of the energy system are expanded and 

dispatched based on that new electric load.  

In reality, though, the decision if EVs are considered or other flexibility providers are used is based 

on the dynamic interactions and decisions of all market participants. Hence, to fully assess the 

resulting market behavior of all components at the same time, EVs and all other components would 

have to be mapped in the energy system model and simulated following such an integrated 

approach. To gain further insights into the behavior of individual actors and map their dynamic 

interactions, an agent-based modeling approach could be considered (e.g., Dallinger [98]). The goal 

at this point, however, is the assessment of feedback effects on charging strategies. For that specific 

research question, the described iterative approach is deemed adequate. 

8.5 Use case 4: Reduction of CM measures 

As the fourth and last use case under analysis, possible reductions of CM measures are discussed in 

this section. As outlined in section 5.5, the underlying assumption for the assessment performed in 

this section is that all vehicles in the vicinity of the high-voltage grid nodes, as represented by the 

Voronoi areas, can be used to reduce CM measures. It is also assumed that the grid congestion 

leading to curtailment or redispatch occurs mostly on the high-voltage level (as stated in [78]) and 

that electricity can still be transported in the medium-voltage and distribution grid of each Voronoi 

region. Given the assumed distribution of EVs in 2019 and 2030, described in section 6.1, the 

reduction potential of CM measures by the given fleet is evaluated. Furthermore, the influence of 

such charging strategies on operational emissions of the vehicles is discussed. 

8.5.1 Curtailment 

In case of curtailment, two charging strategies are defined, aiming at the reduction of the otherwise 

curtailed electricity. First, the reduction of those measures is considered as the only target. In that 

case, when no curtailment occurs, vehicles simply charge whenever they reach a location where they 

can be charged. In the second case, a combined charging strategy is assumed. Here, the primary 

target is the reduction of emissions, based on the time series of EMFs. Since otherwise curtailed 

renewable electricity can be considered as free of emissions, the time series of EMFs in these times 

is set to zero. That way, vehicles are incentivized to shift their charging operation to times of 

curtailment measures and otherwise follow the emission-optimized charging strategy. Results for 

both strategies are presented in the following subsections. 

8.5.1.1 Optimization target: reduction of curtailment 

Figure 8-30 illustrates the reduction potential for the case where only curtailment is considered for 

each Voronoi region for the year 2019. The coloring represents the amount of curtailed energy before 
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the simulation, whereas the values featured in each area represent the possible reduction in percent 

as calculated by equation (7-13). The number of vehicles present in each region is estimated based 

on the methodology described in section 6.1 and presented in Figure 8-30 on the right. 

   

Figure 8-30: Reduction of curtailed energy by Voronoi region (left) and estimated number of 

EVs (right) [unidirectional charging] 

First, since only 136,600 EVs are registered in 2019, the actual number of vehicles per Voronoi region 

that can be used to reduce curtailment measures is rather small. Secondly, the distribution of vehicle 

density and curtailment measures does not match well since the majority of (mostly affected) wind 

farms are localized in the less densely populated areas of northern Germany. In high-density 

populated areas like the Ruhr region, with higher numbers of EVs, little to no generation is subject 

to curtailment (R² = 0.0095). For those reasons, the overall reduction of curtailment measures in the 

unidirectional case only amounts to 0.58 % or 20.3 GWh. However, in some regions with high EV 

density and small numbers of curtailment measures, especially in the south and west of Germany, 

up to 100 % of the electricity otherwise curtailed can be used for charging when unidirectional 

charging optimization is considered. Table 8-5 presents the specific data for the top five regions with 

the highest values in curtailment reduction. Results for all regions with considerable curtailment 

measures are presented in Table 12-3 in the appendix. 
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Table 8-5: Top five regions by absolute reduction of curtailment 

Voronoi 

ID 

Number 

of EVs 

Annual 

curtailment in 

GWh 

Hours of 

curtailment 

Reduction of 

curtailment in 

GWh 

Relative 

reduction 

Charged curtailed 

energy per EV in 

kWh 

32 2,582 6.8 1,115 1.5 21.9 % 580 

20 2,161 12.2 417 1.3 10.2 % 577 

3 2,492 5.8 570 1.2 20.3 % 475 

76 1,243 45.4 1,584 1.1 2.4 % 872 

22 2,243 6.3 619 1.1 17.0 % 473 

 

In Voronoi region 32, located at the border between Lower Saxony and Schleswig-Holstein in the 

north of Germany, the highest absolute values of reductions can be observed. Neither the number 

of EVs nor the annual amount of curtailment measures can be characterized as high, but the 

combination of both leads to a significant reduction of 21.9 % (1.5 GWh). In contrast, region 20, which 

ranks second with regard to absolute reduction values, records about twice the amount of annual 

curtailment in less than half the time. The absolute reduction potential in each region depends on 

the quantity of curtailed energy and the number of vehicles but also on the temporal characteristics 

of curtailment measures. Further region-specific analysis beyond the scope of this research would 

be needed to fully characterize those correlations.  

Despite the still rather small influence on overall curtailment measures, the effect on the vehicle level, 

especially in regions with high amounts of curtailed energy, can be very significant. Figure 8-31 

presents the average share of energy charged from curtailment measures for unidirectional charging 

and the 20 regions with the highest shares. 

 

Figure 8-31: Hours of curtailment per Voronoi region and share of charged energy from 

curtailment measures (unidirectional charging) 

Curtailment has become a normal part of system operations, especially in regions with high wind 

shares, leading to a maximum of 6,121 hours of curtailment measures in Voronoi region 24. On 

average, 43 % of the annual consumption of EVs in that region could be charged by vehicles using 

otherwise curtailed electricity. This number remains relatively high even in regions with fewer 

curtailment hours per year. On average, over all regions where curtailment measures occurred, 

otherwise curtailed energy was used to cover 15.1 % (393 kWh) of the vehicles’ annual energy 

consumption. 

4
3
%

4
3
%

4
2
%

4
2
%

5
7
% 6

0
%

6
0
%

6
5
%

6
5
%

6
6
%

6
8
%

6
9
%

6
9
%

7
1%

7
2
%

7
3
%

7
4

%

7
4

%

7
4

%

7
4

%

6,121

2,773

5,452

5,426

1,223

1,808

2,496

1,584
1090.25 894 931.25

0%

20%

40%

60%

80%

100%

0

1000

2000

3000

4000

5000

6000

7000

24 59 31 33 61 68 42 80 66 76 70 60 81 51 74 52 75 1 77 82

H
o

u
rs

 o
f 

fe
e
d

-i
n

 m
g

m
n

t.
 

p
e
r 

V
o

ro
n

o
i 
re

g
io

n

Voronoi region

Normal

charging

Charging

feed-in

mgmnt.

Hours of

feed-in

mgmnt.



Results: Assessment of Charging Strategies 

122 

8.5.1.2 Optimization target: reduction of curtailment and emission-optimized charging 

In a next step, emission-optimized charging is implemented as a secondary optimization target. 

Results show that in the bidirectional case, when emission optimization is considered as well, even 

higher reductions of curtailment measures can be achieved. When bidirectional charging is utilized, 

EVs can provide more flexibility, which can be used for the reduction of curtailment measures. 

Speaking practically, EVs are able to discharge before a measure occurs, and as a result, can therefore 

charge more electricity when it does. By considering a bidirectional charging operation, the 

aforementioned 0.58 % reduction can be increased to 1.65 % or 57.2 GWh. The amount of otherwise 

curtailed energy charged per vehicle can be increased to 1,366 kWh per year. Table 8-6 shows the 

influence of bidirectional charging on the charged curtailed energy per EV for the top five regions 

with respect to the amount of energy charged in the unidirectional case. 

Table 8-6: Charged energy from curtailment measures for unidirectional and bidirectional 

charging for top five regions in Figure 8-31 

   Charged curtailed energy per EV in kWh  

Voronoi 

ID 

Number of 

EVs 

Annual curtailment in 

GWh 

Unidirectional 

charging 

Bidirectional 

charging 

Relative 

increase 

24 786 577 1,120 4,623 +313 % 

31 554 1,598 1,095 5,754 +425 % 

33 859 314 1,091 5,466 +401 % 

59 324 195 1,115 7,453 +568 % 

61 179 58 1,045 5,723 +448 % 

 

The consideration of bidirectional charging leads to an increase of charged energy, which would 

have otherwise been curtailed, of up to 568 %. Since these amounts can be considered emission-

free, the impact of such charging strategies on vehicles’ operational emissions is evaluated next. 

8.5.1.3 Emission assessment of curtailment-optimized charging 

First, the effect on total emissions of the vehicles is assessed and compared to the charging strategy 

solely optimized on EMFs. In a second step, a combination of both charging strategies is considered. 

Since in most regions, curtailment still occurs only sporadically, “normal” emission-optimized 

charging is assumed in those times. Figure 8-32 shows the resulting annual emissions for all three 

cases and charging modes. 
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Figure 8-32: Emission assessment of curtailment-based charging strategies 

In the first case, only the reduction of curtailment measures was considered as an optimization goal. 

Since curtailed energy can only be reduced by shifting charging operations into those periods, only 

unidirectional charging was analyzed here. Overall, an emission reduction of 17.9 % can be achieved 

compared to 22.2 % in the case of emission-optimized charging. Curtailment measures constitute 

routine system operation in some regions, but in most, they are still the exception. This is also 

represented by the overall relatively low share of curtailment electricity used by the vehicles for 

charging. Whereas in several regions, this share adds up to 43 % of the charged energy 

(see Figure 8-31), the average vehicle in all considered regions can only utilize 15.9 %. However, since 

this electricity is considered emission-free, these relatively small values result in a comparatively 

significant reduction in overall emissions. These emission reductions depend strongly on the region 

where the EVs are located. Depending on the number of vehicles, the temporal characteristics, and 

the absolute amount of feed-in management measures, very different values of specific emissions 

can be achieved. Figure 8-33 shows the resulting emissions for direct charging as well as the 

unidirectional optimization aiming at the reduction of curtailment measures. Here, only the 

curtailment-optimized charging is presented without considering the additional EMF optimization 

to highlight the region-specific differences. 
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Figure 8-33: Specific emissions in g CO2-eq./km per region for direct charging as well as 

curtailment-optimized unidirectional optimization in 2019 

The region-specific differences of specific emissions in the direct charging mode are a result of the 

temperature-dependent electric consumption of EVs described in section 7.2. In the case of 

unidirectional optimization, shown on the right, significant differences can be observed with regard 

to resulting emissions. Regions with high amounts of curtailed energy and low numbers of EVs 

generally show the most significant reductions of EV’s operational emissions. The combination of 

region-specific temporal characteristics as well as the absolute amount of curtailment measures and 

the respective number of vehicles makes overarching conclusions very difficult. Those evaluations 

are outside the scope of this thesis but should be the subject of further investigation. 

Those values even increase when a combined optimization, aiming at the reduction of curtailment 

measures and overall emissions, is considered. The availability of emission-free electricity enables 

emission reductions that even undercut those of normal emission-optimized charging. In 

bidirectional charging, this effect is further pronounced since, as discussed, vehicles can discharge 

before curtailment occurs to then utilize those periods fully for charging. This results in a 247 % 

increase of the average amount of otherwise curtailed charged electricity. Increasing the use of that 

emission-free electricity leads to a further reduction of mean annual emissions in the bidirectional 

case by 81 %, resulting in average emissions per km of 6.7 g CO2-eq.. 

8.5.1.4 Conclusion on curtailment charging 

The small number of vehicles considered for 2019 leads to an overall minimal reduction potential of 

curtailment measures. The reduction only amounts to 0.58 % in the unidirectional case and 1.65 % 

when bidirectional charging is considered. However, in some regions with larger numbers of vehicles 

and small amounts of curtailed electricity, up to 100 % of those measures could have been avoided 

if EV charging operations would have been optimized accordingly. The potential reduction depends 

on both the number of vehicles and the absolute amount of curtailed energy as well as their temporal 

characteristics. Due to the large number of variables and dependencies, a more in-depth assessment 

would allow more sophisticated insights into those relationships. Nevertheless, since the focus of this 

thesis is more on the emission assessment and comparison of all four charging strategies, we refrain 

from further analysis at this point. 
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The effects on a vehicle level, on the other hand, can still be significant. The usable amount depends 

on the type of charging (unidirectional/bidirectional), optimization target (sole reduction of 

curtailment measures or the combination with emission-optimized charging), and region, with its 

individual number of vehicles and curtailment measure characteristics. In unidirectional curtailment-

optimized charging, up to 43 % (1,120 kWh) of the annually charged energy can be used from 

otherwise curtailed energy. Considering bidirectional charging, this value can increase to 7,453 kWh 

(or 57 % of the totally charged energy). Since this electricity is regarded as emission-free, using it for 

the charging of vehicles significantly reduces their operational emissions. Especially in the 

bidirectional case, when emission reduction is considered as a secondary optimization target, the 

lowest values of operational emissions in the assessments for 2019 can be achieved. That 

combination should therefore be strongly considered by policymakers and system operators since it 

benefits both the overall energy system and EV emissions. 

To assess the cost reduction potential, individual curtailment measures would have to be monetarily 

quantified. However, this approach would involve large uncertainties and is beyond the scope of this 

research.  

8.5.2 Redispatch 

Besides the curtailment measures of RES, grid congestion is currently primarily addressed by the 

redispatch of conventional power plants. The corresponding use case aims at the reduction of those 

measures through a bidirectionally charging operation. This essentially means that upregulation of 

power plants during positive redispatch is replaced by discharging EVs, and downregulation of 

power plants during negative redispatch is prevented by vehicles shifting their charging operations 

to these times. It should be noted that in direct contrast to the reduction of curtailment measures, 

this reduction of redispatch measures does not necessarily reduce overall system or vehicle emissions 

but aims at the reduction of system costs resulting from redispatch measures. 

Simulations are conducted for the year 2019 in all Voronoi areas where redispatch measures occur. 

Since redispatch is bidirectional, and both directions should be addressed, only bidirectional 

charging is considered here. As with curtailment evaluations, two cases are analyzed in this case: one 

with the reduction of redispatch as the only optimization target and another with the combination 

of redispatch and emission optimization. Both are presented in the following sections. 

8.5.2.1 Optimization target: reduction of positive and negative redispatch 

Figure 8-34 shows the results for each Voronoi region for the first case for 2019. The coloring 

represents the number of redispatch measures before the simulation, whereas the values featured 

in each area represent the possible reduction in percent. The same distribution of vehicles is assumed 

as in the curtailment evaluations (see Figure 8-30 on the right). 
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Figure 8-34: Reduction of negative (left) and positive (right) redispatch in 2019 

In the case of negative redispatch, similar geographical correlations apply as for curtailment. The 

distribution of vehicle density and locations of negative redispatch measures do not match well, 

resulting mostly in minor reductions (R² = 0.0749). Considering all regions, negative redispatch could 

therefore only be reduced by 1.8 % or 53.4 GWh. As shown in Figure 8-34, this relative decline varies 

significantly among regions. Similar to the results of curtailment, in regions with a small number of 

redispatch measures and a larger number of vehicles, even a 100 % reduction is possible. Table 8-7 

presents the specific data for the top five regions with the highest values in negative redispatch 

reduction. Results for all regions are presented in Table 12-4 and Table 12-5 in the appendix. 

Table 8-7: Top five regions by absolute negative redispatch reduction 

Voronoi 

ID 

Number 

of EVs 

Annual negative 

redispatch in GWh 

Hours of 

redispatch 

Reduction of 

redispatch in GWh 

Relative 

reduction 

Charged redispatch 

energy per EV in kWh 

32 2,582 308 1,540 8.1 2.6 % 3,124 

9 13,692 12.4 50.0 7.2 58.3 % 527 

30 2,655 187 990 7.0 3.7 % 2,626 

2 5,385 59 253 5.9 9.9 % 1,089 

20 2,161 414 1,348 5.4 1.3 % 2,480 

 

With regard to the reduction potential in each region, the quantity of redispatched energy, the 

number of vehicles, and the temporal characteristics of redispatch measures are the defining factors. 

Region 32 in the north of Germany, for example, shows the highest absolute reduction of all regions, 

even though the number of vehicles (2,582) is relatively low (the average across all regions results in 

2,674). However, the region has one of the highest levels of negative redispatch (308.3 GWh in 

1,540 h of the year) and ranks fourth in this regard. The relative reduction of 2.6 % is therefore 

considerably low, whereas the amount of energy charged per vehicle to reduce redispatch 

(3,124.4 kWh) ranks third in all the considered regions. Region 9, on the other hand, is a good 

example with opposing correlations. Here, the largest number of vehicles per region meets a 
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relatively low amount of negative annual redispatch measures in only 50 hours of the year. The 

combination of both leads to a significant reduction both in relative (58.3 %) and absolute terms 

(7.2 GWh). 

With respect to positive redispatch and in contrast to negative redispatch, the locations of 

occurrences coincide better with the distribution of vehicles (R² = 0.2141). While power plants in the 

north are mostly downregulated due to high wind yields, others near major load centers in the west 

and south of Germany tend to need to be upregulated to compensate for those shortfalls. In those 

regions, higher densities of EVs are assumed due to higher population density. Whereas negative 

redispatch could only be reduced by 1.8 %, positive redispatch can therefore be reduced by at least 

3.6 % on average or 106.6 GWh in total. As with respect to negative redispatch and shown in 

Figure 8-34, this relative decline varies significantly among regions. To provide a better 

understanding of the coherences in those regions, Table 8-8 presents the specific data for the top 

five regions with the highest values in positive redispatch reduction. Results for all regions are 

presented in Table 12-5 in the appendix. 

Table 8-8: Top five regions by absolute positive redispatch reduction 

Voronoi 

ID 

Number 

of EVs 

Annual positive 

redispatch in 

GWh 

Hours of 

redispatch 

Reduction of 

redispatch in 

GWh 

Relative 

reduction 

Discharged 

redispatch energy per 

EV in kWh 

15 7,181 888 2,241 19.0 2.1 % 2,651 

9 13,692 212 678 16.8 7.9 % 1,224 

13 5,062 132 1,878 12.4 9.5 % 2,456 

14 3,511 188 2,660 8.1 4.3 % 2,309 

34 3,185 153 1,756 7.8 5.1 % 2,460 

 

As mentioned, the regions with high values of annual positive redispatch measures better match 

those with high EV numbers, resulting in higher absolute reductions. All of the top five regions are 

assumed to have above-average number of EVs and an above-average amount of positive 

redispatch measures. Voronoi region 15 combines both values best with the highest value of annual 

positive redispatch measures and the second-highest number of assumed EVs. This combination 

leads to a total reduction of 19 GWh (or 2.1 %) and, in addition, the highest value of energy 

discharged to reduce positive redispatch per vehicle. 

8.5.2.2 Optimization target: reduction of redispatch and emission-optimized charging 

Additionally in the case of redispatch, emission-optimized charging is implemented as a secondary 

optimization target. As with the sole optimization to reduce redispatch measures described before, 

only bidirectional charging is considered in this case. To incentivize charging and discharging during 

times of negative and positive redispatch measures in the case of emission-optimized charging as 

well, the time series of EMFs is adapted accordingly. When negative redispatch measures occur in 

the region, the EMF is set to zero, incentivizing charging operations. In the case of positive redispatch 

measures, the EMF time series is set to its maximum value, incentivizing discharging operations. It 

should be noted that the charging strategy is not implemented as a fixed constraint of the 

optimization problem, leaving a certain amount of flexibility. 

In the case of the sole optimization of curtailment reduction, only unidirectional charging was 

considered. The additional analysis of bidirectional charging in the combined optimization 

(curtailment reduction and emission-optimized charging) led to an increase of potential curtailment 

reductions since bidirectionally charged EVs can provide more flexibility. In the case of redispatch, 
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however, bidirectional charging was already considered in the first case (sole reduction of redispatch 

measures). The additional consideration of EMFs as a secondary optimization target therefore does 

not increase flexibility. Indeed, results show that it actually diminishes the overall reduction of 

redispatch measures slightly. Table 8-9 presents the relative reduction of negative and positive 

redispatch for both cases. 

Table 8-9: Comparison of relative redispatch reduction in top five regions for only 

redispatch versus redispatch and emission optimization 

Negative redispatch Positive redispatch 

Voronoi 

ID 

Relative reduction 

only redispatch 

Relative reduction 

redispatch + EMF-opt. 

Voronoi 

ID 

Relative reduction 

only redispatch 

Relative reduction 

redispatch + EMF-opt. 

32 2.6 % 2.6 % 15 2.1 % 2.1 % 

9 58.3 % 44.0 % 9 7.9 % 7.3 % 

30 3.7 % 3.7 % 13 9.5 % 7.6 % 

2 9.9 % 9.9 % 14 4.3 % 4.0 % 

20 1.3 % 1.3 % 34 5.1 % 4.0 % 

 

Accounting for an additional optimization on EMFs decreases the potential redispatch reduction in 

most of the regions. Overall, the reduction of negative redispatch measures is slightly impaired from 

53.46 to 51.54 GWh (or 1.88 to 1.81 %), while the reduction of positive redispatch measures is 

decreased from 106.6 to 93.48 GWh (or 3.55 to 3.11 %). A simple consideration of redispatch 

reduction as the sole optimization target allows the optimizer to better utilize EVs’ flexib ility for that 

single purpose. 

8.5.2.3 Emission assessment of redispatch-optimized charging 

Both charging strategies are then assessed with respect to the resulting emissions of the vehicles. In 

direct contrast to curtailment-optimized charging, charging otherwise redispatched electricity 

cannot be accounted for with zero emissions. Instead, the actual emissions of the power plants 

undertaking the redispatch measures must be taken into account. For that purpose, the time series 

of redispatch emissions described in section 5.4 is considered in each region. EVs that reduce 

negative redispatch by shifting their charging operations to these periods are therefore offset against 

the emission of the power plant(s) whose downregulation was prevented. EVs that reduce positive 

redispatch by shifting their discharging operations to the related periods are (negatively) offset 

against the emission of the power plant(s) whose upregulation was prevented. Figure 8-35 compares 

the resulting emissions for both redispatch-based bidirectional charging strategies with the results 

of emission-optimized charging. 
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Figure 8-35: Emission assessment of redispatch-based charging strategies 

In 2019, the redispatch of power plants led to a net reduction of emissions by 531 Mt CO2 because, 

overall, more high-emission lignite power plants were regulated down, and lower-emission hard 

coal- and gas-fired power plants were regulated up. EVs used for the reduction of those measures 

essentially charge lignite-based electricity and discharge in times of lower-emission hard coal- or 

gas-based electricity. Overall, such a bidirectional charging strategy leads to an increase in 

operational emissions by 37.6 %, as illustrated in the boxplot in the middle. Hence, the goal of 

reducing costly redispatch measures collides with that of reducing operational emissions of the 

vehicles. As with the curtailment-optimized charging strategy these results strongly depend on 

region where EVs are located. Figure 8-36 shows the resulting specific emissions for direct charging 

as well as the bidirectional optimization aiming at the reduction of both positive and negative 

measures. Again, only the results for redispatch-optimized charging are presented without 

considering the additional EMF optimization to highlight the region-specific differences. 

 

Figure 8-36: Specific emissions in g CO2-eq./km per region for direct charging as well as 

redispatch-optimized bidirectional optimization 

g CO2-eq./ km

Charged energy 

“redispatch” in kWh

Discharged energy 

“redispatch” in kWh

84.9 14.3

- -

- -

Simulation year Battery capacity - SOC departure SOC safety User group

2019 60 kWh 11 kW / - 90 % 30 % all

Emission-opt. Redispatch-opt. Redispatch + emission-opt.

84.9 93.2

- 902

- 763

84.9 32.1

- 897

- 659
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Again, the region-specific differences of specific emissions in the direct charging mode (on the left) 

are a result of the temperature-dependent electric consumption of EVs described in section 7.2. The 

resulting emissions from bidirectional optimization vary considerably, ranging from a 66 % reduction 

in emissions from 85 to 29 g CO2-eq./km to a tripling from 84 to 259 g CO2-eq./km. These significant 

differences can be explained by the way emissions are accounted for, when redispatch is reduced. 

In positive and negative redispatch, the specific emissions of the power plant affected by the 

redispatch measure are fully attributed to the EVs. When positive redispatch, i.e., increasing the 

generation of power plants, is reduced by a shifting of discharging processes, the emission 

accounting leads to a substantial reduction of EVs’ operational emissions. On the other hand, if 

negative redispatch, i.e., shutting down power plants, is prevented by shifting charging operations, 

operational emissions of EVs are significantly increased. Since in some regions both negative and 

positive redispatch occurs and all other complex coherences apply as with curtailment (number of 

vehicles, amount, and temporal characteristics of redispatch measures), overarching conclusions are 

even more difficult here and not within the scope of this thesis. A very promising evaluation would 

lie in focusing exclusively on positive redispatch measures, where both the potential reduction of 

redispatch costs as well as the positive effect of EV’s operational emissions could be achieved. 

When a combination of redispatch-oriented charging with emission optimization is considered, 

however, those increases in emissions can be limited. It must be noted, though, that in this case, the 

marginal and mix emissions accounting approaches are basically combined. In times of redispatch 

measures, the marginal emissions of redispatched power plants are used for the accounting of both 

the charging and discharging processes. Since mostly lignite and hard coal-fired power plants are 

affected (83 % in the case of negative and 76.5 % in the case of positive redispatch), these emissions 

are usually much higher than the time series of consumption-based mix EMFs used for the 

accounting of emission in times when no redispatch measures occur. Overall, the consideration of 

EMFs as a secondary optimization target leads to average annual emissions of 720 kg CO2-eq.. The 

consideration of that combination enables both the reduction of redispatch measures as well as an 

overall reduction of EV operational emissions. 

8.5.2.4 Conclusion on redispatch charging 

As with curtailment-optimized charging, the small number of vehicles limits the effects of redispatch-

optimized charging on a systemwide level. When redispatch reduction is considered as the only 

optimization target, negative redispatch can be reduced by 1.8 % and positive by 3.6 %. Again, as 

with curtailment-optimized charging, those values vary widely among regions, depending on the 

number of EVs and the total number and temporal characteristics of redispatch measures. Positive 

redispatch measures usually occur near load centers in the west and south of Germany, where power 

plants tend to need to be regulated up to compensate for the downregulation of power plants in 

the north of Germany. In most of those regions, larger numbers of vehicles are assumed since those 

areas are usually more densely populated. Discharging those vehicles in times of positive redispatch 

results in a relative reduction of up to 44 % in Voronoi region 35 in southern Germany, underscoring 

the fundamental potential of such charging control.  

In contrast to curtailed energy, however, charging otherwise redispatched electricity results in overall 

higher operational emissions. For that reason, a combined redispatch- and emission-optimized 

charging strategy was assessed. The additional consideration of EMFs as an optimization target 

decreases the potential redispatch reduction slightly but leads to significantly lower operational 

emissions of EVs. At this point, no further strategies were considered. However, a more detailed 

analysis of these relationships should be performed in the future. To optimize system benefits and 
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increase the reduction of EVs’ operational emissions, for example, the sole reduction of positive 

redispatch combined with an emission-optimized charging could prove promising. 

With respect to the quantification of monetary effects, similar constraints apply as for curtailment-

optimized charging. Under the current regulatory framework, small electric consumers such as EVs 

are not used to provide redispatch, and no corresponding compensation models exist. The 

evaluation of possible revenue potential is subject to strong uncertainties and is therefore not 

undertaken within the scope of this work. 

8.6 Comparison of use cases and discussion of results 

The resulting emissions as well as the associated revenue potential of four distinct use cases are 

presented in sections 8.2 (“Emission reduction”), 8.3 (“Cost reduction”), 8.4 (“Smoothing of residual 

load”), and 8.5 (“Reduction of congestion management”). For the main use case of emission 

reduction, different sensitivities regarding technical parameters, user behavior, and the underlying 

energy system were evaluated and are discussed in sections 8.2.3 to 8.2.6.. It is assumed that the 

influence of the studied parameters is also transferable to the other use cases. For the smoothing of 

residual load use case, an iterative simulation run was performed with the ISAaR power system model 

to assess the system feedback effects of such a charging behavior. Results are discussed in 

section 8.4.2. All those scenarios are based on the base configuration of simulation parameters 

presented in the beginning of this chapter in Table 8-1, without restrictions on maximum EFCs or 

charging simultaneity and should therefore be considered a maximum estimation.  

Especially in the bidirectional case, the lack of restrictions leads to a significant increase of EFCs in all 

use cases, which can have an influence on battery aging processes (see section 8.2.3.5 for a more 

comprehensive discussion of that topic). Since no restrictions regarding the maximum charging 

simultaneity were considered either, both unidirectional and bidirectional charging processes lead 

to charging simultaneities of 90 to 98 % in all use cases. Such values result in a significant additional 

load on the distribution networks and will therefore most likely be limited by appropriate regulation, 

especially with increasing penetration of EVs (see section 8.2.5.2 for a further discussion of this topic). 

Considering these assumptions of the base configuration, resulting specific emissions and annual 

costs for 2019 are shown in Figure 8-37. The results for 2030 and 2040 are presented in Figure 12.8 

in the appendix. 
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Figure 8-37: Comparison of resulting emissions and annual costs for 2019 

In the first column of each side, the resulting specific emissions and annual costs from direct charging 

are presented as a reference. Since no costs are assessed for the CM use cases, no corresponding 

values are shown on the right. Furthermore, in the case of redispatch, only bidirectional charging 

was considered. 

Regarding potential emission reduction, the bidirectional charge strategies of EMF optimization and 

curtailment and EMF yield the best results. The use of otherwise curtailed energy in combination 

with the optimization of charge processes based on the specific EMFs leads to the lowest values of 

specific emissions. In addition, both of these charging strategies add value to the overall system by 

mitigating CM measures and therefore reducing operation costs.  

As discussed in section 4.5, the current structure of the electricity market in Germany results in a 

negative correlation of potential revenues and emission reductions, especially in the bidirectional 

case. Therefore, the price-optimized use case leads to an increase in emissions, whereas the 

emission-optimized use case leads to an increase in operational cost. As discussed in the respective 

chapters (see sections 8.2.1 and 0), this negative correlation will dissipate in future years. Accordingly, 

price-optimized charging will then also lead to emission savings and vice versa. Since the EMFs show 

a relatively high correlation with the residual load, the resulting emissions and costs follow the same 

relationships. Both unidirectional and bidirectional charging leads to reduced emissions but 

increasing costs.  

As a general remark, it must be stated again at this point that all those evaluations must be 

considered as static with respect to the feedback effects such charge controls might have on the 

energy system. Especially with increasing numbers of EVs on Germany’s streets, these effects can be 

significant. To address these feedback effects, an iterative simulation run with the energy system 

model ISAaR was conducted based on the electric load time series of EVs resulting from residual-

load-optimized charging. The evaluations show that electricity production from conventional 

generators is reduced and, depending on the charging operation (unidirectional or bidirectional), 

can be replaced by additional capacities of wind or solar generators. Furthermore, the utilization of 

hydro-pumped power plants and power-to-heat applications, as well as peak prices, is reduced. 
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8.7 Influence on the vehicles’ LCA and comparison to ICEVs 

In Fattler and Regett [157], the influence of intelligent charging strategies on the environmental 

impact of EVs was discussed within the context of an LCA of those vehicles. A unidirectional price-

optimized and emission-optimized charging was considered to derive operational emissions and to 

assess the influence of such charging strategies on the environmental payback period compared to 

a conventional ICEV. This payback period describes the time after which lower operational emissions 

of the EV in the operating phase overcompensate for the larger carbon footprint during the 

production of the vehicle. The evaluations were conducted for a compact-class EV with a battery 

capacity of 35.8 kWh in comparison to an equivalent diesel and gasoline ICEV. However, the overview 

of current EV models shows that only 21 % of all models have batteries with capacities lower than 

40 kWh (Figure 8-9). To account for this development, the same evaluations were performed again 

for an EV corresponding to the baseline configuration used in this work. In addition, the energy 

system boundary conditions are adjusted to reflect the same trends that underlie all other 

assessments conducted herein. To assess the impact of the evaluated charging strategies, the 

resulting emissions of the emission-based unidirectional and bidirectional optimization were 

considered. 

With regard to emissions in the production phase of the vehicles, it is assumed that production is 

based in Germany. The coauthor Regett in [157] has shown in [158] that the carbon footprint of the 

vehicle’s battery strongly depends on the state of the art of the production process and the location 

of the manufacturing plant with its underlying electricity mix. For a state-of-the-art industrial plant, 

she calculated energy-related GHG emissions of 106 kg CO2-eq. per kWh battery capacity produced, 

of which electricity demand in battery manufacturing constitutes the largest share with about 40 %. 

This value was adapted considering the average consumption-based EMF of the German electricity 

generation in 2020 of 472 g CO2-eq./kWhel, increasing that value to 110 kg CO2-eq. per kWh battery 

capacity. For a production in Germany in 2030, the average consumption-based EMF of 204.8 g CO2-

eq./kWhel (Table 4-4) is considered, resulting in 83.1 kg CO2-eq. per kWh battery capacity. The 

climate impact of the other components and the ICEV is derived from [159]. With regard to the 

operating phase of the vehicles, the following assumptions are made. 

Table 8-10: Operational parameters of the considered vehicles 

 Diesel ICEV Gasoline ICEV EV (60 kWh) Source 

Consumption 5.0 l/100 km 5.8 l/100 km 17.3 kWh/100 km [160] 

Lifetime 10 years [161] 

Annual mileage 13,257 km [162] 

 

The fuel consumption of the ICEV is translated to GHG emissions with regard to combustion-related 

emissions from [163] and upstream emissions for fuel supply from [164]. With regard to operational 

emissions of the EV, results for 2019, 2030, and 2040 for direct and emission-optimized charging 

presented in section 8.2 are considered. Based on those assumptions, the original evaluation 

conducted in [157] for an EV consistent with the base configuration presented in Table 8-1 is 

reevaluated for 10 years of operation between 2020 and 2030 and 2030 and 2040. It is assumed that 

the difference in operational emissions between the main historical year employed in this thesis 

(2019) and the starting year (2020) is negligible. The resulting production and operational emissions 

over the assumed lifetime of 10 years for an EV, according to the configuration in [157] and this 

work’s baseline configuration, is illustrated in Figure 8-38. 
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Figure 8-38: Comparison of the total climate impact of ICEVs and EVs according to the 

configuration in [157] and this work’s baseline configuration 

The illustration shows the climate impact of the production and the operating phase of each vehicle. 

For the operational emissions of the EVs, the reduction of emissions due to the restructuring of the 

electricity production over the course of their lifetime is analyzed. Here, a linear reduction among 

the years 2020, 2030, and 2040 is imputed. The intersection of the curves of the EVs with those of 

the ICEVs corresponds to the ecological payback period, after which the larger carbon footprint 

during the production phase of an EV is offset by the lower emissions during the operation phase. 

The consideration of a battery capacity of 60 instead of 38 kWh increases the footprint during the 

production phase and leads to a longer payback period. Considering a period of operation between 

2020 and 2030, the payback period compared to the diesel ICEV is increased from 5.3 to 7.7 years. 

In case of the gasoline ICEV, the payback period is increased from 3.8 to 5.5 years. It should be noted 

that the same annual mileage, lifetime, and utilization of all vehicles are assumed, while possible 

advantages due to a larger range of ICEVs and the EVs with 60 kWh of battery capacity are not 

considered. If the further decarbonization of electricity generation in Germany is assumed for an 

operating period between 2030 and 2040, the advantages of EVs become even more apparent. 

Comparing both EVs with the diesel ICEV in that period, these values drop to 3.9 and 2.4 years, 

respectively. In case of the gasoline ICEV the values drop to 3.0 and 1.9 years. 

In all cases, a direct charging of EVs is assumed. To assess the influence of an optimized charging 

operation, the same evaluation is conducted based on the operational emissions resulting from the 

emission-optimized charging strategy described in section 8.2. For that assessment, only the larger 

EV with 60 kWh is considered in alignment with the base configuration of simulation parameters 

presented in Table 8-1. The evaluation is performed for the periods between 2020 and 2030, as 

illustrated in Figure 8-39, and 2030 and 2040. 
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Figure 8-39: Comparison of the total climate impact of ICEVs and EVs considering emission-

optimized charging between 2020 and 2030 

The unidirectional optimization of charging processes leads to a relative reduction in specific 

operational emissions of the EV by 19.2 % in 2020 and 29.5 % in 2030. For the years in between, a 

linear reduction is considered. This reduction leads to a reduced payback period in comparison to 

the diesel ICEV of 6.4 instead of 7.7 years in the case of direct charging. As discussed in section 8.2, 

bidirectional charging can even lead to negative emissions. Those result in a negative slope of 

emissions during the operating phase of the vehicle, further reducing the payback period to 4.9 

years. The decarbonization of the power sector leads to even lower payback periods when an 

operating time between 2030 and 2040 is considered as illustrated in Figure 8-40. 

 

Figure 8-40: Comparison of the total climate impact of ICEVs and EVs considering emission-

optimized charging between 2030 and 2040 

Even considering a relatively high battery capacity of 60 kWh, payback periods only amount to 3.7 

years when compared to the diesel ICEV and 2.9 years for the gasoline ICEV. In case of bidirectional 

charging these values can be reduced to 2.1 and 2 years respectively. 
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Conclusion on impact on LCA 

The evaluations performed in this chapter build on the analyses in Fattler and Regett [157] and 

account for the increasing demand for EVs with higher battery capacities. Higher battery capacities 

result in a larger impact in the production phase of the vehicle and increase the ecologic payback 

period compared to a diesel ICEV by 31 % to 7.7 years when an operation time between 2020 and 

2030 is considered. The decarbonization of the energy system and resulting lower values of 

operational emissions reduce that value significantly to 3.7 years for an operating time between 2030 

and 2040. Further reductions are possible when optimized charging is considered. Using the 

potential emission reductions of the emission-optimized use case leads to a reduction in payback 

periods to 6.4 years in the unidirectional case and, due to potentially negative operational emissions, 

to 4.9 years in the bidirectional case for an operating time between 2020 and 2030. Potential 

reductions are even higher when the operating period between 2030 and 2040 is considered.  

However, negative emissions must be viewed with caution since no dynamic system feedback effects 

are considered, and mix EMFs are employed for the evaluation. The assessment of the system 

feedback effects in section 8.4.2 supports the assertion that the charge optimization of EVs not only 

has positive effects on the operational emissions of the vehicles themselves but can also be regarded 

as beneficial for the operation of the energy system as well. 
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9 Conclusion and Outlook 

The main objective of this thesis was the assessment of electric vehicle (EV) charging strategies with 

respect to resulting costs and emissions. The focus was on those strategies that have a particularly 

high potential for reducing emissions or improving the integration of variable renewable energy 

sources (vRES). To that end, four distinct charging strategies aimed at the reduction of emissions and 

costs, the smoothing of residual load, and a decrease in congestion management (CM) measures 

were identified. Operational emissions as well as operating costs of EVs depend strongly on the 

nature of the underlying energy system. To do justice to this relationship, the historical and future 

(assumed) developments of German electricity generation were first presented in detail. They lay the 

foundation for the assessment of those charging strategies, of which the first three were evaluated 

both for the historical year 2019 as well as the future years 2030 and 2040. The last one, aiming at 

the reduction of CM measures, was only conducted for 2019. 

For the assessment of EVs’ operational emissions, time-resolved emission factors (EMFs) were 

calculated, representing the electricity generation in each hour. Three distinct methods were taken 

into account: generation-based and consumption-based EMFs (following the attributional approach) 

and marginal EMFs (following the consequential approach). All three were evaluated in terms of their 

temporal characteristics and correlations with relevant variables in the power system. Based on these 

assessments, their applicability for the accounting of EVs’ operational emissions, as well as the 

consideration as an optimization target for the charging strategies, was discussed. 

Besides the boundary conditions set by the underlying energy system, the charged emissions and 

the potential of charging strategies strongly depend on the mobility behavior of vehicle users. To 

adequately address this correlation, a methodology was developed for the calculation of annual 

mobility profiles. A consumption model for EVs was implemented to translate those mobility profiles 

into vehicle-specific time series of electric consumption. The linear optimization model eFLAME was 

adapted to allow the economic and ecological assessment of the use cases and sensitivities under 

consideration. Various sensitivities were analyzed with respect to technical parameters, user 

behavior, and the influence and constraints imposed by the power system. Finally, the influence of 

the resulting operational emissions on the lifecycle assessment (LCA) of the vehicles and the 

environmental payback period, in comparison to conventional ICEVs, was analyzed. Overall, based 

on the developed methodology and generated results, the following core statements could be 

identified and are discussed with respect to recommendations for further research. 

The choice of accounting methods for the calculation of EMFs has a significant influence on 

results and must be considered carefully with regard to the research question. 

In the context of this thesis, three distinct accounting methods were applied for the accounting of 

hourly EMFs. Generation-based and consumption-based EMFs follow the attributional approach, 

accounting for the mix of all generators providing electricity, whereas marginal EMFs follow the 

consequential approach and are derived from the marginal power plant at the given hour. 

Consumption-based EMFs take into account the reality of an integrated European energy market 

with the associated exchange of electricity across national borders. If the data needed for the 

calculation is available, the consumption-based approach should always be preferred over the 

generation-based approach since at least in some countries, the difference can be significant. The 

decision between the attributional and consequential approach depends strongly on the research 

question to be answered—in this case, how charging operations of EVs should be optimized to 
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reduce operational emissions and maximize system benefits. Therefore, maximizing the utilization of 

vRES’ volatile infeed is one of the main objectives. Since the mix method better represents those 

coherences, the resulting mix-EMF are used as an optimization target for the vehicles. 

Regarding the accounting of EVs’ operational emissions as well as the evaluated charging strategies 

in the context of this thesis, both are considered to be an integral part of the overall state of the 

energy system. The use of mix EMFs as a basis for emissions accounting is therefore deemed 

plausible. When the causal relationship between marginal load changes and their environmental 

impacts are assessed, however, marginal EMFs or consecutive energy system model simulations 

should be employed. 

Emission-optimized charging leads to significant reductions of operational emissions and, in 

the case of bidirectional charging in future years, even reaches negative values. 

When unidirectional charging is considered, shifting the charging processes to times of lower EMFs 

results in a significant reduction of EVs’ operational emissions. Charging electricity in times of low 

emissions and discharging in times of high emissions results in net negative emissions for that 

bidirectional charging process. In 2030 and 2040, the structure of the power sector results in high 

temporal dispersion of and at the same time overall low average EMFs. This combination leads to 

negative median values of EVs’ operational emissions in case of bidirectional charging. Overall 

negative values of operational emissions essentially means that the benefits arising from the 

bidirectional optimization compensate for the emissions resulting from drive consumption. 

Bidirectionally charged vehicles in this case serve as storage and contribute an integral part of an 

overall more efficient system. The combination of a further decarbonization of the power sector in 

future years and emission-optimized charging of EVs furthermore leads to a significant reduction of 

the ecologic payback period when lifecycle emissions of those vehicles are compared to conventional 

internal combustion vehicles.  

Under the current constitution of the power sector, price-optimized charging leads to 

increasing emissions, and emission-optimized charging results in higher operational costs. The 

phaseout of cheap but emission-intensive lignite and hard coal-fired power plants resolves this 

negative correlation. 

Currently, cheap but emission-intensive lignite and hard coal-fired power plants still dominate the 

generation of electricity to a large extent, resulting in hours of low prices but high EMFs. Charging 

in those times therefore increases overall operational emissions, especially when bidirectional 

charging is considered. The opposite is true when a cost-optimized charging strategy is 

implemented. Those interrelationships must be considered when planning appropriate charging 

strategies. However, the phaseout of these low-cost, high-emission power plants will break this link 

in the coming years, allowing green and low-cost charging strategies to be reconciled. 

Unrestricted optimization of charging processes can lead to a significant additional load on 

both the grid infrastructure and the vehicles themselves and must be addressed accordingly. 

The basic configuration of the simulation parameters does not take into account restrictions on the 

maximum simultaneity of charging operations within the fleet, nor on the number of equivalent full 

cycles (EFC) at the vehicle level. From the perspective of a potential charging strategy provider or EV 

user, this maximizes the potential of the charging strategy. However, as the number of EVs increases, 

the resulting high simultaneity of charging processes can have a significant impact on grid operations 

and will most likely have to be addressed in the future through appropriate regulatory action. 

Restricting the maximum simultaneity does not show a significant impairment of potential emission 

reductions in the unidirectional case but does reduce them by up to 35 % in the bidirectional case. 
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Research has shown that grid-serving charging strategies of EVs on the other hand can even relieve 

the grid load and reduce overall system costs. The intelligent combination of grid-friendly and 

simultaneously user-oriented charging strategies should therefore be the subject of further research. 

Besides the additional grid load, an unrestricted optimization of charging processes leads to a 

significant increase of EFCs. Higher EFCs put additional stress on the battery's electrochemistry, 

resulting in faster cyclic aging. This accelerated aging can have a significant impact on customer 

acceptance regarding such charging strategies. However, the detailed modeling of those 

relationships was not in the scope of this thesis. To fully assess the influence of optimized charging 

on the aging processes of the battery as well as power electronics of the vehicle, an integrated 

approach with a battery aging model would be needed and should be subject to further research. 

With regard to the potential of charging strategies, user behavior is the most significant 

influencing factor. 

The decisive factor for the potential of all considered charging strategies, especially when 

bidirectional charging is considered, is the available flexibility. This flexibility depends on technical 

parameters like the battery capacity and the availability of charging infrastructure but is most strongly 

influenced by the vehicle’s user. First, the mobility behavior of users significantly influences the 

availability for optimized charging and thus the reduction potential of such charging strategies. 

Furthermore, it is assumed that when the vehicle is plugged in, the user can specify a minimum state 

of charge (SOC), which must be met at all times, and a target SOC, which defines the minimum level 

that the battery must reach at the end of the charging process. Both constraints limit the available 

flexibility and thus the potential of the respective charging strategy. An even more decisive factor for 

the potential of charging strategies is the plug-in behavior of the vehicle user. Here, even a small 

decrease in plug-in frequency leads to a significant reduction of the potential. 

Incentivizing vehicle users to be able to utilize the flexibility potential of EVs as fully as possible should 

therefore be the focus of both social sciences and OEMs or charging service providers. As research 

has shown, monetary incentives may not be adequately supportive. Moreover, the resulting 

revenues, especially considering the impact of taxes and duties, will not be sufficient to encourage 

appropriate user behavior. The focus should therefore be on nonmonetary incentives such as 

gamification or similar approaches. 

Due to the small number of EVs in 2019, potential reductions of congestion management (CM) 

measures are relatively small. The reduction of curtailment measures combined with emission-

optimized charging, however, leads to lowest overall operational emissions. 

The simulations have shown that even in the best case of bidirectional charging, the potential 

reduction of CM measures is rather small, mainly due to the low number of EVs registered in 2019. 

However, the effect in some regions, as well as at the vehicle level, can be significant. In some regions 

with larger numbers of vehicles and small amounts of CM measures, up to 100 % of those measures 

could have been avoided if EV charging operations would have been optimized accordingly. Since 

otherwise curtailed renewable energies can be considered emission-free, the combination of 

emission-optimized and curtailment-optimized charging leads to the lowest overall operational 

emissions. In contrast to curtailed energy, however, charging otherwise redispatched electricity from 

conventional power plants results in overall higher operational emissions. 

The combination of region-specific temporal characteristics of CM measures and the respective 

number of vehicles makes overarching conclusions very difficult. Generally it can be assumed, that 

the reduction potential will increase with rising numbers of vehicles. An assessment of such charging 

behavior in a future year with more EVs could thus prove interesting and should be the focus of 
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further research. Furthermore, the large number of region-specific influencing factors necessitates 

further evaluations to clearly identify interrelationships and derive appropriate recommendations for 

action. To optimize system benefits and decrease EVs’ operational emissions, for example, the sole 

reduction of positive redispatch combined with an emission-optimized charging could prove 

promising. Besides the need for more detailed analysis, the regulatory framework for such charging 

strategies must still be defined. Especially the coordination between grid operators and charging 

service providers presents a challenge that must be addressed accordingly. 

The evaluations of system feedback effects have shown that the optimization of vehicles 

charging processes on the smoothing of residual load results in a better integration of vRES 

and a reduced dispatch of conventional power plant and storage units. 

All use cases were implemented primarily from the perspective of the vehicle owner or the provider 

of smart charging strategies. Benefits for the overall system could be assumed in some cases but 

were not the primary target of the strategies. To assess those feedback effects, iterative simulation 

runs were carried out with the energy system model ISAaR based on the charging strategy aiming 

at the smoothing of residual load. The results show a better integration of vRES and a decrease of 

emission-intensive conventional generators and use of hydro storage and power to heat 

applications. Due to the small number of vehicles assumed in the context of these evaluations the 

overall effect is rather small, especially in the unidirectional case. In case of bidirectional charging 

more energy can be shifted, and the overall impact is more pronounced. In addition, a significant 

reduction in peak prices has been demonstrated with bidirectional charging. Due to the high 

simulative effort, these evaluations were only carried out for the use case aiming at the smoothing 

of residual load but should be conducted for the other use cases as well to understand the resulting 

system feedback effects. Furthermore the effects were only described with regard to the dispatch 

and expansion of generation units and the impact on electricity prices. To fully assess system effects, 

more comprehensive evaluations, aiming at overall system costs and emissions, and the dynamic 

interactions between multiple suppliers of flexibility, should be subject to further research. 

Overall, smart charging of EVs can significantly reduce operational emissions and make an important 

contribution toward a decarbonized energy system. The evaluations carried out in this thesis focus 

on the EV’s or marketer’s perspective and provide valuable insights into the most important 

influencing factors on the potential of those charging strategies. They show that an optimized 

charging of EVs can bring economic and environmental benefits to vehicle owners, especially in the 

coming years, while also contributing to a more efficient overall energy system. The developed 

modeling environment can be used to evaluate further combinations and specifications of charging 

strategies to accompany the integration of a growing number of EVs into the energy system of the 

future. In this context, the impact of those charging strategies on grid infrastructure and vehicle 

components should be regarded as crucial. In the interest of a cost-efficient and sustainable design 

of the energy system, an integrated approach should be pursued that respects the requirements of 

all stakeholders and the dynamic interactions of its individual components. 
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12 Appendix 

12.1 Completeness of ENTSO-E data 

 

Figure 12-1: Completeness of data provided by ENTSO-E Transparency Platform and 

discussed in section 4.1.2. This evaluation forms the basis for the selection of 

countries that can be considered for the calculation of the historical 

consumption-based EMFs described in section 4.4 

2015 2016 2017 2018 2019 2015 2016 2017 2018 2019 2015 2016 2017 2018 2019 2015 2016 2017 2018 2019

AL 62 % 12 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 98 % 100 % 100 % 100 % 80 % 97 % 100 % 100 % 100 % 80 %

AT 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

BA 0 % 0 % 84 % 99 % 100 % 0 % 0 % 81 % 87 % 100 % 98 % 100 % 100 % 100 % 100 % 98 % 100 % 100 % 100 % 100 %

BE 100 % 100 % 100 % 100 % 100 % 75 % 100 % 96 % 100 % 96 % 100 % 100 % 74 % 77 % 100 % 100 % 100 % 74 % 77 % 100 %

BG 100 % 100 % 100 % 100 % 100 % 100 % 100 % 74 % 100 % 100 % 83 % 100 % 99 % 98 % 95 % 90 % 80 % 99 % 98 % 95 %

CH 100 % 100 % 100 % 100 % 100 % 70 % 99 % 100 % 100 % 100 % 98 % 100 % 100 % 100 % 100 % 97 % 100 % 100 % 100 % 100 %

CY 0 % 28 % 100 % 98 % 85 % 44 % 100 % 100 % 98 % 85 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %

CZ 100 % 99 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

DE 100 % 100 % 100 % 100 % 100 % 94 % 93 % 86 % 94 % 100 % 99 % 100 % 95 % 100 % 100 % 99 % 100 % 95 % 100 % 100 %

DK 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 83 % 100 % 100 % 100 % 100 % 83 %

EE 100 % 100 % 100 % 98 % 100 % 100 % 100 % 100 % 98 % 100 % 99 % 99 % 100 % 92 % 100 % 99 % 99 % 100 % 92 % 100 %

ES 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

FI 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 99 % 100 % 100 % 100 % 100 % 99 % 100 %

FR 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 99 % 100 % 100 % 100 % 100 % 99 % 100 % 100 % 100 %

GB 99 % 99 % 100 % 100 % 99 % 99 % 99 % 93 % 100 % 99 % 100 % 98 % 100 % 76 % 100 % 100 % 98 % 100 % 76 % 100 %

GR 100 % 99 % 100 % 100 % 100 % 99 % 99 % 100 % 100 % 100 % 98 % 99 % 100 % 100 % 100 % 100 % 99 % 100 % 100 % 100 %

HR 100 % 100 % 100 % 100 % 100 % 0 % 0 % 0 % 0 % 0 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

HU 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 94 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

IE 99 % 99 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 98 % 100 % 100 % 100 % 100 % 98 % 100 %

IT 100 % 100 % 100 % 100 % 100 % 3 % 100 % 100 % 100 % 99 % 93 % 100 % 100 % 100 % 86 % 93 % 100 % 100 % 100 % 86 %

LT 99 % 100 % 99 % 99 % 100 % 97 % 93 % 99 % 100 % 100 % 76 % 94 % 99 % 100 % 100 % 76 % 94 % 99 % 100 % 100 %

LU 100 % 100 % 100 % 100 % 100 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 37 % 100 % 100 % 0 % 0 % 37 % 100 % 100 %

LV 100 % 100 % 100 % 100 % 100 % 83 % 100 % 100 % 100 % 100 % 99 % 97 % 99 % 93 % 100 % 99 % 97 % 99 % 93 % 100 %

MD 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 24 % 99 % 95 % 0 % 0 % 24 % 99 % 95 %

ME 99 % 100 % 100 % 100 % 100 % 98 % 100 % 40 % 79 % 100 % 99 % 100 % 100 % 100 % 60 % 99 % 100 % 100 % 100 % 60 %

MK 91 % 91 % 86 % 97 % 92 % 0 % 54 % 84 % 95 % 89 % 98 % 66 % 99 % 98 % 96 % 89 % 99 % 99 % 98 % 96 %

NL 100 % 100 % 100 % 100 % 100 % 92 % 93 % 74 % 92 % 100 % 100 % 100 % 100 % 100 % 86 % 100 % 100 % 100 % 100 % 86 %

NO 100 % 100 % 100 % 100 % 99 % 100 % 100 % 99 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

PL 100 % 100 % 100 % 100 % 100 % 95 % 100 % 100 % 100 % 100 % 83 % 100 % 98 % 100 % 100 % 85 % 100 % 100 % 100 % 100 %

PT 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

RO 99 % 100 % 100 % 100 % 100 % 99 % 100 % 100 % 100 % 100 % 94 % 100 % 97 % 100 % 100 % 91 % 100 % 97 % 100 % 100 %

RS 91 % 100 % 100 % 100 % 100 % 0 % 2 % 100 % 100 % 100 % 97 % 100 % 100 % 100 % 100 % 98 % 100 % 100 % 100 % 100 %

SE 99 % 100 % 100 % 100 % 100 % 98 % 100 % 100 % 100 % 100 % 100 % 99 % 100 % 100 % 100 % 100 % 99 % 100 % 100 % 100 %

S I 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

SK 100 % 100 % 100 % 100 % 100 % 96 % 100 % 99 % 99 % 100 % 100 % 100 % 98 % 100 % 100 % 100 % 100 % 99 % 100 % 100 %

UA 0 % 0 % 25 % 99 % 95 % 0 % 0 % 0 % 0 % 0 % 97 % 100 % 65 % 99 % 98 % 92 % 100 % 63 % 99 % 98 %

CBPF expor tGenera tion by type CBPF importLoad

excluded due  to da ta  qua lity /considered for  eva lua tion
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12.2 Further statistical analysis of emission factors 

 

Figure 12-2: Histogram of marginal and consumption-based EMFs (left) and their daily 

Standard deviation (right) for the years 2019 and 2030. Discussion of these results 

for the year 2019 can be found in section 4.6.4.1. 

2019

2030
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Figure 12-3: Heat map of consumption-based EMFs in 2019 (top), 2030 (middle) and 2040 

(bottom) (see section 4.4) 

12.3 Mobility behavior of behavior-homogeneous user groups 
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Figure 12-4: Average distribution of locations of user groups (see section 6.2.4) 
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12.4 Info on model eFLAME 

 

Figure 12-5: Database structure of the model eFLAME (see chapter 6) 
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Table 12-1: Electric consumption of current EV models in kWh/100 km 

    

Source: 

ADAC 

U.S. 

Department 

of Energy 

Autobild 

Test 

Drivetribe 

Test 

Elektroauto 

news  

    [165] [166] [167] [168] [169] 

S
m

a
ll 

ca
r 

M
ic

ro
ca

rs
 

Seat Mii Electric Plus 17.3         

Renault Fluence Z.E.         14.0 

Smart Forfour EQ passion 18.4       15.4 

Chevrolet Spark   17.4       

Volkswagen e-up! (18.7 kwh)     23.7     

e.Go Life 20         11.9 

e.Go Life 40         12.1 

e.Go Life 60         12.5 

Smart EQ ForTwo Cabrio (60 kW)         14.5 

Smart ForTwo (17.6 kwh)     21.0 15.1   

Honda Fit   18.0       

S
m

a
ll 

ca
r 

BMW i3 (22 kWh)         12.9 

BMW i3 (33 kWh)         12.7 

BMW i3 (120 Ah) 17.9 18.6       

Peugeot iOn         12.6 

Kia e-Soul EV Play         14.3 

Kia Soul (30 kwh)     18.0     

Kia e-Soul (64 kWh) Spirit 18.8 19.2     14.6 

Renault Zoe Intens (52 kWh) 19.0         

Renault Zoe Intens (41 kWh) 20.3   16.8 13.7   

Hyundai Kona Elektro (150 kWh)         14.3 

Hyundai Kona Elektro (100 kWh)         14.3 

Hyundai Kona Elektro (64 kWh) 19.5 16.7   13.0   

M
e
d

iu
m

 c
la

ss
 

Compact 

class 

VW e-Golf 17.3 17.4 17.2   12.7 

Peugeot iOn         18.0 

Chevrolet Bolt   17.4       

Lo
w

e
r 

m
e
d

iu
m

 c
la

ss
 

Hyundai Ioniq Elektro Style 16.3 15.5 14.6     

Renaul Fluence Z.E.         14.0 

Kia e-Niro Spirit (64 kWh) 18.1 18.6       

Opel Ampera-e First Edition 19.7   22.0   16.0 

Nissan Leaf 3.Zero e +            

Nissan Leaf          20.6 

Nissan Leaf (30 kWh)         15.0 

Nissan Leaf Acenta (40 kWh) 22.1 18.6   18.9   

Nissan Leaf e+ Tekna (62 kWh) 22.7 19.8       

Medium 

class 

Tesla Model 3 Standard Range+ 19.5 14.9     14.1 

Tesla Model 3 Long Range AWD 20.9 15.5       

Lu
xu

ry
 c

la
ss

 

Lu
xu

ry
 c

la
ss

 

Tesla Model X 100D 24.0 21.7       

Tesla Model S       19.5   

Tesla Model S 70          20.5 

Tesla Model S P90D         23.3 

Tesla Model S 70 D         28.0 

Tesla Model S90D         17.7 

Porsche Taycan Turbo S     24.5     

Porsche Taycan Turbo     23.0     

S
U

V
 Jaguar i-Pace EV400 S AWD 27.6 27.3   23.9   

Mercedes EQC 400 AMG Line 27.6         

Audi e-tron 55 quattro 25.8 26.7       
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Table 12-2: Scenario definition of scenarios for cluster assessment described in section 7.7.2 

Scenario ID Description 

Sc_1 Emission-optimized, Germany 2030: 11 kW and 40 kWh, charging only at home 

Sc_2 Emission-optimized, Germany 2030: 22 kW and 40 kWh, charging only at home 

Sc_3 Emission-optimized, Germany 2030: 11 kW and 100 kWh, charging only at home 

Sc_4 Emission-optimized, Germany 2030: 22 kW and 100 kWh, charging only at home 

Sc_5 Emission-optimized, Germany 2030: 11 kW, small car 40 kWh, charging only at home 

Sc_6 Emission-optimized, Germany 2030: 11 kW, medium class 60 kWh, charging only at home 

Sc_7 Emission-optimized, Germany 2030: 22 kW, medium class 60 kWh, charging only at home 

Sc_8 Emission-optimized, Germany 2030: 3.7 kW, medium class 60 kWh, charging only at home 

Sc_9 Emission-optimized, Germany 2030: 11 kW, luxury class 100 kWh, charging only at home 

Sc_10 Emission-optimized, Germany 2030: 11 kW, medium class 80 kWh, charging only at home 

Sc_11 Emission-optimized, Germany 2030: 11 kW, medium class 60 kWh, charging only at home, EFCmax = 100 
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12.5 Sensitivity analysis of emission-optimized charging strategy 2030 & 2040 

 

Figure 12-6: Overview of the considered sensitivities in the sensitivity analyses carried out in 

section 8.2 and their influence on annual emissions for the years 2030 and 2040, 

for detailed discussion of the underlying coherences, see section 8.2.6 
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12.6 System feedback assessment 2040 

 

Figure 12-7: System effects of uni- and bidirectional charging optimized on “smoothing of 

residual load” for the year 2040. For interpretation of underlying coherences, see 

section 8.4.2.1 
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Figure 12-8: Annual duration curve of marginal prices resulting from the three charging 

strategies in 2040. Evaluations describe the system feedback on the three 

charging strategies as described in section 8.4.2 
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12.7 Curtailment and redispatch reductions by Voronoi region 

Table 12-3:  List of potential curtailment reductions by Voronoi region resulting from 

bidirectional optimization of EV in 2019. See section 8.5.1 for detailed discussion 

of results 

Voronoi 

ID 

Number 

of EV 

Annual curtailment 

in GWh 

Hours of 

curtailment 

Reduction of 

curtailment in MWh 

Relative 

reduction 

Charged curtailed 

energy per EV in kWh 

32 2,582 6.8 1,115 1,496.7 21.9 % 579.7 

20 2,161 12.2 417 1,247.4 10.2 % 577.2 

3 2,492 5.8 570 1,184.8 20.3 % 475.4 

76 1,243 45.4 1,584 1,083.7 2.4 % 871.8 

22 2,243 6.3 619 1,061.9 17.0 % 473.4 

39 4,079 2.3 145 991.5 44.1 % 243.1 

23 3,105 1.5 451 954.3 64.7 % 307.4 

33 859 314.2 5,426 936.9 0.3 % 1,090.7 

24 786 576.8 6,121 880.5 0.2 % 1,120.2 

14 3,511 0.9 248 795.6 90.7 % 226.6 

31 554 1597.9 5,452 606.9 0.0 % 1,095.5 

21 2,624 6.4 180 547.0 8.5 % 208.5 

11 3,084 2.3 95 532.5 23.2 % 172.7 

1 754 25.0 881 511.9 2.0 % 678.9 

19 868 5.4 718 477.6 8.9 % 550.2 

45 1,086 3.4 558 441.7 13.0 % 406.7 

25 2,141 2.0 92 415.6 20.9 % 194.1 

10 2,083 1.1 152 364.9 33.9 % 175.2 

59 324 194.9 2,773 361.3 0.2 % 1,115.1 

68 343 17.6 1,808 358.1 2.0 % 1,044.0 

42 294 4.8 2,496 306.1 6.4 % 1,041.2 

56 518 3.0 616 232.8 7.7 % 449.4 

48 464 4.6 554 208.6 4.5 % 449.6 

66 218 40.7 1,768 196.4 0.5 % 900.9 

61 179 58.4 1,223 187.0 0.3 % 1,044.7 

60 231 32.7 1,276 186.9 0.6 % 809.1 

58 821 0.8 111 180.9 23.4 % 220.3 

80 194 91.2 1,802 176.2 0.2 % 908.2 

77 256 31.6 931 170.6 0.5 % 666.4 

81 215 23.5 1,090 169.8 0.7 % 789.8 

79 492 3.4 166 158.0 4.64 % 321.1 

78 409 4.8 170 146.6 3.1 % 358.4 

9 13,692 0.1 0 141.8 100.0 % 10.4 

62 209 12.5 812 136.0 1.1 % 650.7 

46 3,175 0.3 21 135.8 38.8 % 42.8 

74 176 25.4 1,029 129.0 0.5 % 733.0 
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Table 12-4:  Full list of potential reductions of negative redispatch by Voronoi region resulting 

from bidirectional optimization of EV in 2019. See section 8.5.2 for a detailed 

discussion of results. 

Voronoi 

ID 

Number 

of EV 

Annual negative 

redispatch in GWh 

Hours of 

redispatch 

Reduction of 

redispatch in MWh 

Relative 

reduction 

Charged redispatch 

energy per EV in kWh 

32 2,582 308.3 1,540 8,067 2.6 % 3,124.4 

9 13,692 12.4 50 7,217 58.3 % 527.1 

30 2,655 186.5 990 6,974 3.7 % 2,626.6 

2 5,385 59.4 253 5,868 9.9 % 1,089.8 

20 2,161 414.0 1,348 5,360 1.3 % 2,480.5 

39 4,079 78.6 402 3,994 5.1 % 979.1 

46 3,175 27.9 218 2,359 8.5 % 743.0 

63 1,461 51.1 420 2,092 4.1 % 1,432.0 

24 786 160.3 1,216 1,936 1.2 % 2,463.2 

56 518 203.3 1,053 1,485 0.7 % 2,866.2 

11 3,084 52.5 163 1,372 2.6 % 444.9 

84 234 758.4 1,978 1,123 0.1 % 4,800.0 

54 2,096 6.5 174 1,008 15.5 % 481.2 

25 2,141 22.5 162 948 4.2 % 442.7 

86 160 354.1 1,952 772 0.2 % 4,823.1 

15 7,181 1.8 12 770 42.9 % 107.2 

21 2,624 1.5 15 461 31.5 % 175.6 

3 2,492 8.1 31 375 4.6 % 150.5 

27 1,112 1.8 15 353 19.4 % 317.4 

13 5,062 0.2 3 189 80.0 % 37.4 

34 3,185 0.4 5 165 38.4 % 51.8 

64 268 57.8 244 140 0.2 % 522.4 

52 173 70.5 297 111 0.2 % 643.9 

14 3,511 0.1 3 72 53.6 % 20.5 

33 859 3.2 31 64 2.0 % 73.9 

7 4,125 0.5 5 57 11.6 % 13.9 

23 3,105 0.3 3 35 11.0 % 11.2 

55 341 2.9 10 26 0.9 % 76.2 

35 3,651 0.0 0 25 100.0 % 6.9 

67 847 0.0 2 16 74.7 % 18.7 
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Table 12-5:  Full list of potential reductions of positive redispatch by Voronoi region resulting 

from bidirectional optimization of EV in 2019. See section 8.5.2 for a detailed 

discussion of results. 

Voronoi 

ID 

Number 

of EV 

Annual negative 

redispatch in GWh 

Hours of 

redispatch 

Reduction of 

redispatch in MWh 

Relative 

reduction 

Charged redispatch 

energy per EV in kWh 

15 7,181 887.9 2,241 19,041 2.1 % 2,651.6 

9 13,692 212.4 678 16,758 7.9 % 1,224.0 

13 5,062 131.5 1,878 12,433 9.5 % 2,456.2 

14 3,511 188.2 2,660 8,107 4.3 % 2,309.1 

34 3,185 152.5 1,756 7,837 5.1 % 2,460.4 

23 3,105 567.6 2,636 6,915 1.2 % 2,227.0 

35 3,651 14.2 820 6,243 44.1 % 1,709.9 

22 2,243 26.5 2,212 4,835 18.2 % 2,155.6 

46 3,175 73.7 935 4,468 6.1 % 1,407.2 

54 2,096 74.8 1,122 3,538 4.7 % 1,687.8 

11 3,084 106.2 758 2,396 2.3 % 776.8 

7 4,125 67.9 282 2,318 3.4 % 561.9 

3 2,492 182.6 552 2,242 1.2 % 899.6 

6 3,373 88.1 337 2,212 2.5 % 655.9 

63 1,461 28.0 889 1,626 5.8 % 1,112.7 

25 2,141 45.4 735 1,579 3.5 % 737.5 

2 5,385 40.6 146 1,324 3.3 % 245.9 

43 2,493 66.0 268 1,003 1.5 % 402.4 

53 1,611 15.6 267 647 4.1 % 401.8 

30 2,655 1.8 25 441 24.1 % 166.2 

39 4,079 13.4 53 380 2.8 % 93.2 

21 2,624 0.4 5 99 26.1 % 37.5 

32 2,582 0.7 3 59 8.4 % 22.8 

27 1,112 0.5 5 49 10.5 % 44.1 

20 2,161 0.2 3 26 10.5 % 11.8 

55 341 1.8 13 24 1.3 % 71.6 

56 518 0.1 4 15 15.0 % 28.7 

84 234 0.7 4 8 1.2 % 35.5 

64 268 0.2 3 8 4.9 % 29.7 

86 160 0.7 6 8 1.1 % 47.0 

52 173 12.2 61 5 0.04 % 27.7 
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12.8 Summary of optimized charging in 2030 and 2040 

  

Figure 12-9: Comparison of resulting specific emissions and annual costs of the three use 

cases “Emission reduction”, “Cost reduction” and “Smoothing of residual load” 

in 2030. A discussion of results for 2019 is provided in section 8.6 

  

Figure 12-10: Comparison of resulting specific emissions and annual costs of the three use 

cases “Emission reduction”, “Cost reduction” and “Smoothing of residual load” 

in 2040. A discussion of results for 2019 is provided in section 8.6 

 

33.9

23.9

25.1

25.0

-39.1

-4.4

-12.6

Direct charging

Emission factor opt.

Day ahead price opt.

Smoothing of res. load

Specific emission in g CO2-eq./km

Emissions 2030

Uni

Bidi

33.9 797.4

769.6

759.5

760.7

618.9

453.9

477.9

Direct charging

EMF-optimized

Price-optimized

Smoothing of res. load

Annual costs in €

Annual costs 2030

797.4

33.9

23.9

25.1

25.0

-39.1

-4.4

-12.6

Direct charging

Emission factor opt.

Day ahead price opt.

Smoothing of res. load

Specific emission in g CO2-eq./km

Emissions 2040

Uni

Bidi

33.9 802.1

769.2

760.0

761.4

602.6

434.8

457.0

Direct charging

EMF-optimized

Price-optimized

Smoothing of res. load

Annual costs in €

Annual costs 2040

797.4797.4


