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From the translation editor

It is a pleasure to introduce the book “Rank codes” written by an outstanding
Russian scientist, my teacher, Ernst M. Gabidulin. Ernst Mukhamedovich
Gabidulin, Honored Scientist of the Russian Federation, is a Professor at the
Moscow Institute (National Research University) of Physics and Technology.

The book contains the theory and some applications of the rank metric codes
developed by the author and called Gabidulin codes by the scientific community.
The book can be recommended to students and researchers working with rank
metric codes.
A matrix code C is a set of m× n matrices (codewords) of fixed size over a

finite field Fq of order q. The matrix codes are considered in the rank metric
that is defined as follows. The distance between two matrices is the rank of their
difference. The code distance d(C) of a code C is the minimum distance between
different code matrices. Given a metric, the main directions of coding theory
are to design codes with a maximum number of codewords for a fixed code
distance, to obtain the properties of the codes, to construct efficient decoding
algorithms that find a code matrix nearest to a given matrix.
The fundamental results in three mentioned directions were obtained in the

famous paper “Theory of Codes with Maximum Rank Distance” by Gabidulin
[Gab85]. The author introduced a class of Fqm-linear vector (n, k, d) codes,
consisting of vectors of length n over the extension field Fqm . Here k is the code
dimension and d is the code distance in the rank metric. Every code vector of
length n over Fqm can be represented as an m× n matrix over the base field
Fq, hence a vector code is simultaneously the matrix code endowed by the rank
metric.
The author introduced a subclass of linear vector codes called Rank codes.

These codes reach the upper Singleton bound in the rank metric and therefore
they are called maximum rank distance (MRD) codes. The vector representation
of the linear rank metric codes allowed to the author to propose an efficient
decoding algorithm, which made the rank codes ready for practical applications.
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In recognition of the author’s work on rank metric codes, the scientific community
named the Rank codes in [Gab85] Gabidulin codes.

The rank metric codes were independently introduced by Delsarte in [Del78]
and by Gabidulin in [Gab85], and rediscovered by Roth in [Rot91] (see com-
ments in [GR92]) and by Cooperstein in [Coo97]. Current applications of
rank-metric codes include network coding, code-based cryptography, criss-cross
error correction in memory chips, distributed data storage, space-time codes for
MIMO systems, and digital watermarking.
Further theoretical results and potential applications relating to rank codes

were obtained by Gabidulin alone [Gab92], [GA86] and with coauthors, see
e.g., [GPT92] with Paramonov and Tretjakov, [GP04], [GP08], [GP16], [GP17b]
with Pilipchuk, [KG05] with Kshevetskiy, [GB08], [GB09] with Bossert, [GL08]
with Loidreau, [GOHA03] with Ourivski, Honary and Ammar, [LGB03] with
Lusina and Bossert. Many of these results are included in this book.

Nowadays, the topic of rank metric codes is a subject on which a great deal of
research in being carried out. An Internet search for “rank metric code” returns
more than 37 millions results. We cannot give an overview of the topic here,
but let us mention some of the publications.
The works of Silva, Kschischang and Kötter [KK08], [SKK08] showed that

subspace codes based on rank metric codes can be used in random linear network
coding. They proposed efficient decoding algorithms correcting errors and
erasures in the rank metric. This greatly increased interest in Gabidulin codes.
In [GY08], Gadouleau and Yan investigated the packing and covering properties
of codes in the rank metric. Augot, Loidreau and Robert [ALR18] generalized
Gabidulin codes to the case of infinite fields, eventually with characteristic zero.
Cyclic codes over skew polynomial rings were considered in [BU09] by Boucher
and Ulmer and in [Mar17] by Martínez-Peñas.
An interesting direction of research is a direct sum of Gabidulin codes also

called interleaved Gabidulin codes. Vertical interleaving was introduced by
Loidreau and Overbeck [LO06]. Horizontal interleaving by Sidorenko, Jiang and
Bossert [SJB11] results in the linear vector codes. An interest in this direction
is due to the fact that both types of interleaving give MRD codes and can
efficiently correct errors of rank almost up to the code distance.
Recent dissertations, defended in Ulm University and Technical University

of Munich, contain interesting results about interleaved Gabidulin codes and
give an overview of the topic. These are dissertations [WZ13] by Wachter-Zeh,
[Li15] by Li, [Bar17] by Bartz, and [Puc18] by Puchinger.

Another interesting results can be found in [GX12] by Guruswami and Xing,
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in [LSS14] by Li et al., in [PRLS17] by Puchinger, Rosenkilde, et al., in [HTR18]
by Horlemann-Trautmann and Rosenthal, in [GR18] by Gorla and Ravagnani,
in [MV19] by Mahdavifar and Vardy, and in [Ner20] by Neri.

I am very grateful to Prof. Gerhard Kramer for his support during preparation
and publishing the book.

Vladimir Sidorenko
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Preface

Coding theory studies methods of error correcting that occur during transmission
over a channel with noise. These methods are based on using discrete signals
and on adding artificial redundancy. Discreteness allows us to describe signals in
terms of abstract symbols that are not related to their physical implementation.
Artificial redundancy makes it possible to correct errors using fairly complex
combinatorial signal designs.
In the modern coding theory, one can distinguish several main interrelated

areas, which include

• algebraic coding theory;

• classic questions related to proving the existence of encoding and decoding
methods;

• finding bounds for error correcting ability;

• creating models of networks and communication channels;

• performance evaluation of special code ensembles for communication
channels;

• development of efficient coding and decoding algorithms.

The central place in this theory belongs to the algebraic coding theory, which
uses a wide range of mathematical methods from simple binary arithmetic
to modern algebraic geometry. The main objects of coding theory are vector
spaces with a metric. Subsets of these spaces are called codes. The main task
is to build codes of a given cardinality having the maximum possible pairwise
distance between the elements. The dual task is to build codes of maximum
cardinality for a given minimum pairwise distance.

The most popular metric in coding theory is the Hamming weight of a vector,
defined as the number of its nonzero components. Most results in algebraic
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coding theory are obtained for the Hamming metric. Thousands of articles and
books have been dedicated to this metric. However, the Hamming metric does
not always provide a good fit for the characteristics of real channels; therefore,
other metrics are of interest. One such metric is the rank metric, and this book
is devoted to coding theory in this metric. The book considers one of the most
interesting areas of algebraic coding theory, namely codes with distance in rank
metric. Currently, these codes are very popular both from a theoretical point of
view and for applications in communications and cryptography. Many articles
have been written on these topics. But there are almost no books in which the
main ideas and modern results are brought together.
It is worth mentioning two books on rank metric codes. First, “Coding for

radio-electronics” [GA86] by Gabidulin and Afanasyev, which was published
(in Russian) in 1986, i.e., 30 years ago. It needs to be supplemented with new
scientific results obtained in the years since. Second, “Lectures on algebraic
coding” by Gabidulin, 2015, is a brief guide, in which, along with the main
known codes, only one small chapter is devoted to rank codes, where the basic
concepts are introduced and coding and decoding algorithms are given.

This book presents the main scientific results obtained over more than three
decades and provides brief information about the pioneers of this direction in
coding. Most of the results presented here were obtained by the author alone,
while others were co-authored, for which references are given. In the scientific
community, these codes are given the name of the author – Gabidulin codes.

Here is a brief guide for the book.
Chapter 1 is an introduction. Here, definitions of groups, rings, fields, basis,

trace, degree, and so on are given. The main issues related to finite fields are
explained, the Euclidean algorithm is given, and operations with linearized
polynomials are described. This chapter contains the necessary information for
understanding the rest of the book.

Chapter 2 starts the presentation of the material directly related to the theory
of rank coding.

A class of q-cyclic rank codes, which are similar to cyclic codes in the Hamming
metric, is introduced in Chapter 3.

Chapter 4 is devoted to one of the main problems – decoding. Fast decoding
algorithms, i.e., algorithms with a polynomial, rather than an exponential,
complexity of decoding, are considered.
Chapter 5 outlines special constructions of rank codes built on symmetric

matrices. It is shown that such codes allow us to exceed the existing error-
correction bound in certain situations.
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Chapters 6, 7, and 8 consider applications of rank codes.
In Chapter 6, rank codes are applied in random network coding. The principles

of constructing subspace codes based on the Gabidulin rank codes proposed by
Kötter, Kschischang, and Silva are considered.
Chapter 7 is devoted to multicomponent subspace codes. It shows the

connection of these codes with random network coding. It gives a description
of the constructions involved, and provides an estimate of the cardinality of the
codes.
Principles for building multicomponent subspace codes using combinatorial

block designs and rank codes are developed in Chapter 8. An iterative decoding
algorithm is proposed for the new codes.
Problems and exercises are given in Chapter 9.

The author believes that for young people who intend to master the theory
of algebraic coding, in particular in the rank metric, this manual will provide
such an opportunity. Specialists in this field can find suggestions for further
developments in the ideas presented here.

The author is very grateful to Vladimir Sidorenko for his enormous efforts to
create the book in English.
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1
Finite fields, polynomials, vector
spaces

1.1 Metrics

Let us recall the definition of a metric space. Let a set X be an additive group,
i.e., the operations of pairwise addition and subtraction are defined on this set.
Define the norm function N : X → R on X . This function should satisfy the
following axioms:
For all elements x,y ∈ X ,

N (x) ≥ 0 (non-negativity);
N (x) = 0 ⇐⇒ x = 0 (positive definite or point-separating);
N (x + y) ≤ N (x) +N (y) (triangle inequality).

The norm function allows us to define the pairwise distance between elements
x,y ∈ X :

d(x,y) := N (x− y).

An additive group X equipped with the norm function N : X → R is called a
metric space.
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1 Finite fields, polynomials, vector spaces

1.2 Rank metric

The distance between matrices of the same size over a certain field was introduced
by the Chinese mathematician Hua Loo-Keng in 1951 under the name “arithmetic
distance” [Hua51]. Matrix weight (norm) was defined as the standard algebraic
matrix rank. The transition from one matrix to another can be made by
sequentially adding matrices of rank 1 to the original matrix. The distance
is defined as the minimum number of matrices required for such a transition.
It was shown that the distance is equal to the rank of the difference of these
matrices. However, this work did not consider applications of this concept to
coding theory.

The rank distance (or q-distance) in the set of bilinear forms was introduced
in [Del78]. It is defined as the rank of the difference of two rectangular matrices
representing the corresponding bilinear forms. A family of optimal linear matrix
codes (sets of matrices over a finite field) with a given rank distance was proposed
and the number of matrices of a given rank in the code was found.

The rank distance for vector spaces over an extension field was introduced in
[Gab85]. The rank norm of a vector with coordinates from an extension field
is defined as the maximum number of vector coordinates linearly independent
over the base field. The rank distance between two vectors is defined as the
rank norm of their difference. A rank code in vector representation is a set of
vectors over an extension field, where distance between vectors is measured in
the rank metric. For all admissible parameters, families of optimal vector codes
with a given rank distance were found [Gab85], and fast coding and decoding
algorithms were proposed for these codes.

1.3 Finite field constructions

A discrete message is a sequence of symbols selected from a given finite alphabet.
The error control coding of discrete messages is a transformation of the mes-
sage. The transformation may be linear or nonlinear. Further on we consider
linear transformations. The requirement of one-to-one encoding and one-to-one
decoding in the absence of errors in the channel imposes certain restrictions on
the choice of the final alphabet of symbols and their transformations. The most
significant successes were achieved when the final alphabet is considered as a
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1 Finite fields, polynomials, vector spaces

finite field.

A set F is called an additive group if the following conditions hold.

1. An addition operation is given in which two elements a and b from the set
F are associated with the third element a+ b from the same set, called
the sum, and a+ b = b+ a.

2. For any three elements from F , the associativity law (a+b)+c = a+(b+c)
holds.

3. There is a zero element1 0 ∈ F for which the relation a+ 0 = a holds for
all a ∈ F .

4. For each element a ∈ F there is an opposite element, denoted by −a, with
the property: −a+ a = 0.

Example 1. The set if integers, including 0, is an additive group.

A set F is called a multiplicative set if

1. The multiplication operation is given in which two elements a and b from
this set are mapped to the third element, denoted by a · b (or ab), from
the same set and called the product ;

2. For any three elements from F the associativity law (ab)c = a(bc) is
fulfilled.

A multiplicative set is called a multiplicative group if it contains an unit
element2 1 for which the relation 1 · a = a · 1 = a holds for all a ∈ F and if
for any element a ∈ F there exists a multiplicative inverse element, denoted by
a−1, with the property a · a−1 = a−1 · a = 1.
A multiplicative group is called abelian (or commutative) if a · b = b · a.

Example 2. All nonzero rational numbers with the identity element 1 form a
multiplicative abelian group.

The set of all integers is not a multiplicative group, since the inverse element
is not an integer.

1the identity element for an additive group
2the identity element for a multiplicative group

3



1 Finite fields, polynomials, vector spaces

On the same set, the operations of addition and multiplication can be defined
simultaneously. A set that is an additive group with respect to the addition
operation in which all nonzero elements form a multiplicative set with respect
to the multiplication operation is called a ring.
The existence of inverse elements for all nonzero elements of the ring is not

required.

Example 3. All integers form a commutative ring; all even integers form a
ring without unity.

A field is a commutative ring with unity, where each non-zero element has a
multiplicative inverse. All elements of the field, including 0, form an additive
group, and all nonzero elements form a multiplicative group.

Of the above examples, only rational numbers form a field. Fields containing
a finite number of elements are called finite fields or Galois fields (GF). They
are often denoted by Fq or by GF (q), where q is the number of elements in the
field.

Consider some constructions of finite fields.
A prime field Fp, where p is a prime. For example, the field of residues of

integers modulo a prime, where the minimum positive residual A modulo N is
the remainder when A is divided by N .

The operations of addition, subtraction, multiplication on the set of residue
classes can be introduced through operations with integers. Therefore, the set
of residue classes is a commutative ring with zero 0 and one 1. This residue
class ring is also known as a quotient ring or a factor ring.

Theorem 1.1. The ring of residue classes modulo prime p forms a finite field
of order p.

The integers 0, 1, . . . , p− 1 are usually taken as representatives of elements
of the prime field. The operations of addition, subtraction, multiplication in
Fp are defined as standard operations with integers followed by calculation of
the residue (remainder) of the operation modulo p. The inverse element a−1 is
defined as the solution of the equation a · a−1 ≡ 1 mod p.

The extension field Fpm is an extension of the prime field of order m. It can
be defined as a vector space of dimension m. Every element a ∈ Fpm is defined
as a linear combination of vectors αi ∈ Fpm

a = a0α0 + a1α1 + · · ·+ am−1αm−1 (1.1)

4



1 Finite fields, polynomials, vector spaces

with coefficients (coordinates) ai ∈ Fp. Linearly independent vectors

α0, α1, . . . , αm−1

form a basis of the vector space. The number of different elements (1.1) is pm.

1.4 Multiplicative structure of a finite field

Let a be a nonzero element of the field Fq. Compute sequential powers 1 =
a0, a, a2, . . . , an, . . .. Since every power of a is an element of the field, this series
can have at most q − 1 different nonzero elements of Fq. Hence, there exist two
integers i and j such that ai = ai+j or aj = 1. The set of different sequential
powers ai of the element a ∈ Fq for i = 0, n− 1 such, that every ai 6= 1 except
a0 = an = 1, is called a multiplicative cyclic group of order n of the field Fq.
The element a is called a generator of order n or simply an element of order n,
if n is the minimum integer such that an = 1, n > 0.
An element of order q − 1 is called a primitive element of the field Fq.
Let us give the following important theorems without proofs.

Theorem 1.2 (Fermat). Every element b of the field Fq satisfies the congruence
relation bq ≡ b.

Theorem 1.3. Every element of the field GF (q) belongs to a cyclic group of
order n, where n divides q − 1.

A field Fq has primitive elements. Indeed, if q − 1 is prime, then in Fq, all
elements except 0 and 1 are primitive, since q − 1 has only two trivial divisors:
1 and q − 1.

Let q − 1 be non-prime. Assume that one primitive element α ∈ Fq is known
and the decomposition q − 1 =

∏
i p
li
i to prime factors pi, where li are positive

integers, is also known.
Consider the element β = an. If n divides q − 1 then the order of β is at

most (q−1)
n . If n and q − 1 are coprime then there exists an integer N = n−1

(mod q−1). Then the sequence of residuals k ≡ ni (mod q−1) for i = 0, 1, . . . ,
runs through the full set of residuals from 0 to q − 2, since Nk = Nni ≡ i
(mod q − 1). Hence, the elements β = an are primitive if n and q − 1 are
coprime.

5



1 Finite fields, polynomials, vector spaces

The number of primitive elements of the field Fq, i.e., the number of integers
n which are coprime to q − 1, is given by the Euler function

φ(q − 1) =

k∏
i=1

pli−1
i (pi − 1),

where q − 1 =
∏k
i=1 p

li
i .

For practical implementation of a field and algebraic coding methods, at least
one primitive element should be found. The following theorem helps to solve
this problem.

Theorem 1.4. Let q − 1 =
∏k
i=1 p

li
i . The element α ∈ Fq is primitive if it

satisfies: α
(q−1)
pi 6= 1, i = 1, . . . , k.

It follows from the above theorems that every element of the field Fq is a root
of the equation xq − x = 0. Elements of order n that divides q− 1 are the roots
of xn − 1 = 0.
It follows from the definition of a primitive element α ∈ Fq that elements

1, α, . . . , αm−1 form a power basis of the field with operations modulo the
minimal polynomial of the element α. Also every sequential powers αl, αl+1,
. . . , αl+m−1 form a basis.

Theorem 1.5. For any elements a and b from Fpm , m ≥ 1, it holds that

(a+ b)p = ap + bp.

1.5 Polynomial ring over a finite field

A polynomial f(x) in variable x over a finite field Fq is the following sum

f(x) =

n∑
i=0

fix
i (1.2)

with coefficients fi ∈ Fq.
Computation of this sum for x = γ is called evaluation of the polynomial at

γ and the result of computation f(γ) is called the value of the polynomial at
the point γ. If γ ∈ Fqm , then f(γ) belongs to the field Fqm or its subfield.

6
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The degree of the polynomial f(x) is the maximum index of nonzero coefficient.
The degree of polynomial f(x) is denoted by deg(f). In the above definition,
deg(f) = n, if fn 6= 0. If fn = 1, then the polynomial is called monic.

For any n, all polynomials of degree up to n form an additive abelian group,
for which the sum is

h(x) = f(x) + g(x) =

n∑
i=0

(fi + gi)x
i,

where deg(h) ≤ max{deg(f),deg(g)}. Commutativity of the polynomial ad-
dition follows from commutativity of addition in Fq of the coefficients. The
polynomial with all zero coefficients is the zero in the group.
The product of polynomials of arbitrary degrees is as follows

h(x) = f(x)g(x) =
t∑
i=0

xifi
s∑
i=0

xigi

=
∑s+t
i=0 x

k
∑k
i=0 figk−i =

∑s+t
k=0 x

khk,

where hk =
∑
figk−i. The degree of h(x) is s + t, if fs 6= 0 and gt 6= 0.

Commutativity of polynomial multiplication follows from commutativity of
multiplication of their coefficients. Multiplication of polynomials requires at
most: st additions and (s+ 1)(t+ 1) multiplications of the coefficients.
The set of polynomials of finite degree forms a commutative ring with the

unit element e(x) = 1.
Division with remainder on the set of polynomial of any degree is defined by a

division algorithm. Given arbitrary polynomials f(x) and g(x) over Fq, the goal
of a division algorithm is to find two polynomials: the quotient Q(x) and the
remainder R(x) that satisfy f(x) = g(x)Q(x)+R(x) and deg(R) < deg(g). Any
polynomial of degree s can be written as gs(xs +

∑
gi)x

i, where the expression
in the brackets is a monic polynomial. With this, let us give a division algorithm
for a monic divisor.
Input:

f(x) =

t∑
i=0

fix
i, g(x) =

s∑
i=0

gix
i, gs = 1, ft 6= 0.

Begin:

Fi =

{
fi, if i = 0, t,
0, i > t;

}
Gi =

{
gi, if i = 0, s,
0, if i > s.

}

7



1 Finite fields, polynomials, vector spaces

If t < s, then set
Q(x) = 0, R(x) = f(x)

and stop.
If t ≥ s, then use long division, shown by the following two examples.

1. Polynomials having the same degree:

f(x) = ftx
t+ft−1x

t−1 + · · ·+f1x+f0, g(x) = xt+gt−1x
t−1 + · · ·+g1x+g0.

Step 1: Divide the leading coefficient of f(x) by the one of g(x), get ft, which
is one coefficient from Q(x).
Step 2. Multiply g(x) by ft and subtract the result from f(x):

R(x) = f(x)− ftg(x) = (ft−1 − ftgt−1)xt−1 + · · ·+ (f1 − ftg1)x+ (f0 − ftg0).

The degree of R(x) is less than the degree of g(x) and the algorithm stops after
two steps with results

Q(x) = ft, R(x) = (ft−1 − ftgt−1)xt−1 + · · ·+ (f1 − ftg1)x+ (f0 − ftg0).

2. The degree of g(x) is less than the degree of f(x) by 1:

f(x) = ftx
t+ft−1x

t−1+· · ·+f1x+f0, g(x) = xt−1+gt−2x
t−2+· · ·+g1x+g0.

Step 1. Divide the leading coefficient of f(x) by the one of g(x), obtain ft,
which is a coefficient from Q(x).
Step 2. Multiply g(x) by ft and subtract the result from f(x):

f̂(x) = f(x)−ftxg(x) = (ft−1−ftgt−2)xt−1 + · · ·+(f1−ftg1)x2 +(f0−ftg0)x.

The degree of f̂(x) equals the degree of g(x). Hence, we have the case of the
first example where the algorithm stops in two steps. The total number of steps
is four in this case.

This algorithm requires at most (t − s + 1)s multiplications and the same
number of additions in the field of coefficients. This bound can be replaced by
(t− s+ 1)w if the divisor has only w nonzero coefficients.

If the divider g(x) is not monic then one can use the division algorithm
with the monic polynomial g−1

s g(x). This requires computation of the inverse
element g−1

s and s multiplications. Then t− s+ 1 multiplications are required
to make corrections of the quotient.

8
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A ring of residue classes modulo a polynomial of degree m, irreducible over
Fq, is a field of order qm. In the general case, any polynomial can be used
as a modulo. For example, the theory of cyclic codes over Fq uses modulo
xn − 1 and its factorization, where n is code length. The set of codewords of a
length n of a cyclic code forms an ideal in the residue class ring modulo xn − 1,
generated by its factor. Every codeword can be written as c(x) ≡ g(x)u(x)(
mod xn − 1), where u(x) is a polynomial of degree n− deg(g)− 1 representing
encoded message.

1.6 Inverse elements

Every nonzero element of a field has the inverse element satisfying aa−1 = 1.
From Fermat’s theorem we get a−1 = aq−2, where a ∈ Fq. In multiplicative
representation we have a−1 = α−i, for some i, where α is a primitive element
of the field.

It is asymptotically faster to compute a−1 using the Euclidean algorithm,
which for any integers (or polynomials) a and b gives the solution of equation
aQ+ bP = d, where d is the greatest common divisor (GCD) of a, b. Consider
the prime field Fp. For any integer b < p, GCD of (b, p) = 1. From the equation
pQ+ bP = 1 we have b−1 ≡ P mod p.

In the case of a residual field Fpm modulo a non-reducible polynomial µ(x) of
degree m, for any b(x) over Fp of degree less than m, the GCD of (b(x), µ(x)) =
γ, where γ ∈ Fp. From the equality µ(x)Q(x) + b(x)P (x) = γ we obtain
b−1(x) = γ−1P (x)( mod µ(x)), where γ−1 is the inverse element in the prime
subfield.

1.7 Division with remainder for integers and poly-
nomials

For integers and polynomials there are algorithms for division with remainder
(Euclidean algorithms).

9



1 Finite fields, polynomials, vector spaces

For integers. For any two integers r0 and r1 there exist unique integers
quotient q1 and remainder r2 such that

r0 = q1r1 + r2,
where

0 ≤ r2 < |r1|.

For polynomials. For any two polynomials r0(x) and r1(x) over Fp there
exist unique polynomials quotient q1(x) and remainder r2(x) such that

r0 = q1(x)r1(x) + r2(x),
where either r2(x) = 0,
or deg(r2(x)) < deg(r1(x)).

Algorithms computing division with remainder are used to find the greatest
common divisor of two integers or two polynomials.
Let us consider the Euclidean algorithm for polynomials in details.

1.8 Euclidean algorithm for polynomials

For any two polynomials r0(x) and r1(x) over Fp there exists a monic polynomial
d(x) = gcd(r0(x), r1(x)), called the greatest common divisor (GCD), which
divides both polynomials r0(x) and r1(x) and is divisible by any other common
divisor of polynomials r0(x) and r1(x). The Euclidean algorithm allows us to
compute d(x) by using a division algorithm multiple times.
Later on we write f instead of f(x) if it is clear from the context that we

mean a polynomial f(x).
First of all, let us introduce two sequences of auxiliary polynomials ai and bi:

ai = −qi−1ai−1 + ai−2, a0 = 1, a1 = 0.
bi = −qi−1bi−1 + bi−2, b0 = 0, b1 = 1.

We will assume that deg(r0) ≥ deg(r1).

Step 1. Divide with remainder r0(x) by r1(x). Compute auxiliary polynomials
a0(x) and b0(x).

1. r0 = q1r1 + r2, a0 = 1, b0 = 0.

10
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If r2(x) = 0 then stop. In this case, GCD is d(x) = r1(x) normalized to the
monic form.
If r2(x) 6= 0, then go to the next step.

Step 2. Divide r1(x) by r2(x), compute a1(x) and b1(x).

1. r0 = q1r1 + r2, a0 = 1, b0 = 0.

2. r1 = q2r2 + r3, a1 = 0, b1 = 1.

If r3(x) = 0 then stop. In this case d(x) = r2(x) normalized to the monic
form.
If r3(x) 6= 0 then go to the next step.

Step 3. Divide r2(x) by r3(x), compute a2(x) and b2(x).

1. r0 = q1r1 + r2, a0 = 1, b0 = 0.

2. r1 = q2r2 + r3, a1 = 0, b1 = 1.

3. r2 = q3r3 + r4, a2 = −q1a1 + a0, b2 = −q1b1 + b0.

If r4(x) = 0 then stop. In this case d(x) = r3(x), normalized to the monic
form.

If r4(x) 6= 0 then go to the next step. Continue until Step s+ 1 such that at
the previous step s the remainder rs+1(x) 6= 0 and at step s+ 1 the remainder
rs+2(x) = 0.

Step s+ 1. Divide rs(x) by rs+1(x), compute as(x) and bs(x).

1 r0 = q1r1 + r2, a0 = 1, b0 = 0.

2 r1 = q2r2 + r3, a1 = 0, b1 = 1.

3 r2 = q3r3 + r4, a2 = −q1a1 + a0, b2 = −q1b1 + b0.

...
...

...
...

s+ 1 rs = qs+1rs+1, as = −qs−1as−1 + as−2, bs = −qs−1bs−1 + bs−2.

Since the degree deg(r1) is finite and deg(ri) is decreasing, the procedure will
stop after a finite number of steps. The GCD of r0(x) and r1(x) is

d(x) = gcd(r0(x), r1(x)) = a−1rs+1(x),

11
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where a is the leading coefficient of the last nonzero remainder rs+1(x).
On the way, one can observe that

ri = air0 + bir1, i = 0, 1, . . . .

1.9 Computation of powers and logarithms

Some procedures of algebraic decoding require computation of sequential powers
of a field element. Let us consider two methods to compute bt, where b ∈ Fq
and the exponent t is any integer.
1. If t = t1t2 then bt = (bt1)t2 . This method requires at most t1 + t2

multiplications in Fq.
2. Let t =

∑m
i=0 τi2

i, where τm = 1, τi ∈ 0, 1, then t = τ0 + 2(τ1 + 2(. . . τm)).
Computation using the formula bt = (((bτm)2 . . .)2bτ1)2bτ0 requires at most
2(m − 1) multiplications in Fq. More precisely, it requires at most (m − 1)
multiplications and (m− 1) squarings.
The second method is convenient for arbitrary t, while for a given t it is

convenient to combine these two methods to compute, e.g., an inverse element
of a field.

Computation of a fractional power 1
t of an element is connected with solving

the polynomial equation xt − b = 0.
Logarithm of b ∈ Fq base α ∈ Fq is the exponent in multiplicative representa-

tion of b: logα b = u, if b = αu, u ≥ 0. In general, α is any element of order n
of the field Fq, where n divides q − 1.

1.10 Trace and normal basis

The trace of an element a ∈ Fpm is the sum Tr(a) = a+ ap + ap
2

+ . . .+ ap
m−1

.
The main properties of the trace function:

1. Tr(a) ∈ Fp;

2. Tr(a+ b) = Tr(a) + Tr(b);

3. (Tr(a))p = Tr(ap) = Tr(a);

12
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4. Tr(1) = m( mod p);

5. Tr(0) = 0;

6. Tr(β) = fi−1
m
t ( mod p),

where f(β) = 0, f(x) =
∑t
i=0 fix

i is the minimal polynomial of the element β;
t divides m. The trace over any subfield Fq is defined similarly.

There are many applications of the trace function. The most important are:
solving polynomial equations, building Galois fields, construction of sequences
over Fp with good correlation properties.
A basis of a vector space is not unique. The most frequently used are

polynomial basis and normal basis. A normal basis is as follows: γ, γp, γp
2

,
. . . , γp

m−1

, γ ∈ Fpm . An important property of a normal basis is Tr(γ) 6= 0.
For every field Fpm there exists a normal basis.

1.11 Ring of linearized polynomials

Denote [i] = q{i mod m}. Let q be a prime power. The polynomial

F (z) =

n∑
i=0

Fiz
[i],

where Fi ∈ Fqm , i = 0, 1, . . . , n is called linearized over the field Fqm . Denote
by Rm[z] the set of all such linearized polynomials. Let us define operations of
addition and multiplication on this set.

1. Addition is defined in the same way as for ordinary polynomials: if

F (z) =

n∑
i=0

Fiz
[i], G(z) =

n∑
i=0

Giz
[i],

then

C(z) = F (z) +G(z) =

n∑
i=0

(Fi +Gi)z
[i]. (1.3)

The sum of linearized polynomials is a linearized polynomial.

13
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2. The operation of symbolic multiplication, denoted by ∗, differs from

multiplication of ordinary polynomials. If F (z) =
n1∑
i=0

Fiz
[i] and G(z) =

n2∑
k=0

Gkz
[k], then

C(z) =
n1+n2∑
i=0

Ciz
[i] = F (z) ∗G(z) = F (G(z))

=
n1∑
i=0

Fi(G(z))[i] =
n1+n2∑
j=0

( ∑
i+k=j

FiG
[i]
k

)
z[i+k].

(1.4)

Thus, the product C(z) of linearized polynomials is also a linearized polynomial
with coefficients Cj =

∑
i+k=j

FiG
[i+k]
k . In contrast to ordinary multiplication,

the symbolic multiplication is a non-commutative operation: F (z) ∗ G(z) 6=
G(z) ∗ F (z) in general. However the symbolic multiplication is associative:

F (z) ∗ (G(z) ∗H(z)) = (F (z) ∗G(z)) ∗H(z).

The defined operations are also distributive:

(F (z) +G(z)) ∗H(z) = F (z) ∗H(z) +G(z) ∗H(z),

H(z) ∗ (F (z) +G(z)) = H(z) ∗ F (z) +H(z) ∗G(z).

Hence, the set of linearized polynomials Rm[z] with the operations of addition
and (symbolic) multiplication is a non-commutative ring. The unit of the
ring Rm[z] is the linearized polynomial e(z) = z. Indeed, for any polynomial
F (z) ∈ Rm[z] it holds that z ∗ F (z) = F (z) ∗ z = F (z).

The q-degree of the polynomial F (z) =
∑
i Fiz

[i], denoted by qdeg(F ), is the
maximum index i for which Fi 6= 0. This coefficient Fi is called the leading
coefficient. If F (z) 6= 0 and G(z) 6= 0, then qdeg(F ∗G) ≥ qdeg(F ).

1.11.1 Left and right Euclidean algorithms

There are Euclidean algorithms for left and right divisions in the ring Rm[z]. Let
us start with the left division. Let F1(z) =

∑n
i=0 F1iz

[i] be any polynomial of

14
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q-degree qdeg(F1) = n and F0(z) =
∑m
k=0 F0kz

[k] be any polynomial of q-degree
qdeg(F0) = m > n. Subtract from F0(z) the polynomial F0mF

[n−m]
1n zm−n ∗

F1(z). Then the q-degree of the difference D(z) will be less than m. If the
qdeg(D) is at least n, then the leading coefficient of D(z) can be removed
by subtracting correct left multiple of the polynomial F1(z). By continuing
this procedure, at the end we have F0(z) = G1(z) ∗ F1(z) + F2(z) where the
remainder F2(z) is either the all zero polynomial or the polynomial of q-degree
less than n, i.e., qdeg(F2) < qdeg(F1).

The right division algorithm can be obtained by subtracting the right multiples
of the polynomial F1(z): F0(z) = F1(z) ∗Q(z) + f2(z), where either f2(z) = 0,
or qdeg(f2) < qdeg(F1).
Let us consider the left division in details. The right division is similar. Let

us write the sequence of equalities:

F0(z) = G1(z) ∗ F1(z) + F2(z), qdeg(F2) < qdeg(F1);
F1(z) = G2(z) ∗ F2(z) + F3(z), qdeg(F3) < qdeg(F2);
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fs−1(z) = Gs(z) ∗ Fs(z) + Fs+1(z), qdeg(Fs+1) < qdeg(Fs);
Fs(z) = Gs+1(z) ∗ Fs+1(z).

(1.5)

Here, the last nonzero remainder Fs+1(z) is the right symbolic GCD of the
polynomials F0(z) and F1(z). If GCD is cz with c ∈ Fqm , then the polynomials
F0(z) and F1(z) are called coprime.
Let us recurrently define polynomials Ui(z), Ai(z), Vi(z), Bi(z), for i ≥ 1:

Ui(z) = Ui−1(z) ∗Gi(z) + Ui−2(z), U0(z) = z, U−1(z) = 0,
Ai(z) = Gi(z) ∗Ai−1(z) +Ai−2(z), A0(z) = z, A−1(z) = 0,
Vi(z) = Vi−1(z) ∗Gi(z) + Vi−2(z), V0(z) = 0, V−1(z) = z,
Bi(z) = Gi(z) ∗Bi−1(z) +Bi−2(z), B0(z) = 0, B−1(z) = z.

(1.6)

Then
F0(z) = Ui(z) ∗ Fi(z) + Ui−1(z) ∗ Fi+1(z),
F1(z) = Vi(z) ∗ Fi(z) + Vi−1(z) ∗ Fi+1(z),

(1.7)

and

Fi(z) = (−1)i(Bi−1(z) ∗ F0(z)−Ai−1(z) ∗ F1(z)). (1.8)
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1.11.2 Factor ring of linearized polynomials

Together with the ring Rm[z] defined above let us consider its factor ring modulo
polynomial z[m] − z consisting of the right residue classes. The elements of the
factor ring can be identified with linearized polynomials of q-degree at most
[m− 1] = qm−1.

Let F (z) =
∑m−1
i=0 fiz

[i] ∈ Rm[z]. Then

F [1](z) = f
[1]
m−1z

[0] + f
[1]
0 z[1] + . . .+ f

[1]
m−2z

[m−1].

Hence, q-powering of a polynomial in the ring Rm is equivalent to q-powering
of its coefficients followed by the right cyclic shift of the coefficients. We call
this operation a q-cyclic shift. Every ideal in the ring Rm[z] is the main ideal
generated by a polynomial G(z), which satisfies z[m] − z = H(z) ∗ G(z), i.e.,
G(z) is the right divisor of the polynomial z[m] − z. Notice, if the leading
coefficient of G(z) is 1, then polynomials G(z) and H(z) commute. The ideal
{G} is invariant with respect to q-cyclic shift, i.e., if g ∈ {G}, then g[i] ∈ {G}
as well.
The two-sided ideal in the ring Rm[z], generated by z[m] − z, splits Rm[z]

into the set of residue classes modulo polynomial z[m] − z, isomorphic to the
facror ring Rm[z]/(z[m] − z). Denote this factor ring by Lm[z]. Elements of
Lm[z] can be identified with all possible linearized polynomials over the field
Fqm with q-degree at most m− 1.

To do this, addition and multiplication of polynomials F (z) =
m−1∑
i=0

Fiz
[i] and

G(z) =
m−1∑
i=0

Giz
[i] from the ring Lm[z] should be defined as follows

F (z) +G(z) =

m−1∑
i=0

(Fi +Gi)z
[i] (1.9)

F (z)~G(z) = F (z) ∗G(z) mod z[m] − z. (1.10)

The ring Lm[z] is a finite non-commutative ring which consists of qm
2

linearized
polynomials. The Euclidean division algorithms in this ring are induced by the
correspondent algorithms in Rm[z]. Hence all ideals in Lm[z] are main.

Consider the structure of a left ideal in details. Any such ideal is defined by
a generator polynomial G(z), where G(z) is a divisor of z[m] − z. Elements of
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the ideal {G} are all possible polynomials of the form

g(z) = c(z)~G(z), (1.11)

where c(z) is any polynomial from Lm[z].
If the generator polynomial has q-degree r, then the dimension of the ideal

equals k = m− r.
Another way to define the ideal {G} uses the polynomial H(z) satisfying

z[m] − z = G(z) ∗H(z) as follows. A polynomial g(z) belongs to the ideal {G}
if and only if

g(z)~H(z) = 0. (1.12)

Indeed, if g(z) is the same as in (1.11), then

g(z)~H(z) = c(z)~G(z)~H(z) = c(z)~ (z[m] − z) = 0. (1.13)

Inversely, if (1.12) holds, then

g(z) ∗H(z) = c(z) ∗ (z[m] − z) = c(z) ∗G(z) ∗H(z). (1.14)

Hence, g(z) = c(z)~G(z).

Consider the polynomial

g(z) = g0z + g1z
[1] + · · ·+ gm−2z

[m−2] + gm−1z
[m−1]. (1.15)

Recall that q-cyclic shift of the polynomial is

g̃(z) = g
[1]
m−1z + g

[1]
0 z[1] + g

[1]
1 z[2] + · · ·+ gm−2z

[m−1]. (1.16)

If g(z) ∈ {G(z)} then z[1] ~ g(z) ∈ {G(z)}. Hence, z[1] ~ g(z) = g(z)[1]

mod (z[m] − z) = g̃(z) ∈ {G(z)}. Thus, if a polynomial belongs to the ideal,
then all its q-cyclic shifts also belong to the same ideal.
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2
Rank metric codes

Introduction

Denote by Fq a finite field consisting of q elements, where q is a prime power.
Later on, this field is called the base field. The extension of the field of degree
m consists of qm elements and is denoted by Fqm .

There are two representations of codes in rank metric: matrix representation
and vector representation.
Matrix representation uses the space {Fm×nq } of rectangularm×nmatrices

over the base field Fq. Dimension of the space is mn.
The norm N(M) of a matrix M ∈ Fm×nq is its algebraic rank over the field

Fq, N(M) = RkFq (M).
The rank distance between two matrices M1,M2 ∈ Fm×nq is defined as the

norm of their difference: dr(M1, M2) = RkFq (M1 −M2).
The matrix code M is a subset of the space {Fm×nq } of matrices.
The rank code distance dr is the minimum rank distance between two different

code matrices:

dr = min{RkFq (Mi −Mj) : Mi,Mj ∈M, i 6= j}.

A matrix code M with code distance dr is Fq-linear if the code is a k-
dimensional subspace of the space Fm×nq , where k ∈ {1, . . . ,mn}. The code is
named [m× n, k, dr]-code.
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2 Rank metric codes

The cardinality of any matrix code M with m ≥ n and code distance dr
satisfies the Singleton bound:

|M| ≤ qm(n−dr+1).

The dimension k of a Fq-linear [m× n, k, dr]-code satisfies: k ≤ m(n− dr + 1).
If a matrix codeM reaches the Singleton bound, i.e.

|M| = qm(n−dr+1),

or for a linear code
k = m(n− dr + 1),

then the code is called the maximum rank distance (MRD) code.

For the vector representation, the ambient space is the space Fnqm of
vectors of length n over the extension field Fqm .

Norm of a vector v ∈ Fnqm is the column rank of the vector

N(v) = RkFq (v),

which is defined as the maximum number of the vector components linearly
independent over the base field Fq.

The rank distance between two vectors v1, v2 is defined as the norm of their
difference: dr(v1, v2) = RkFq (v1 − v2).
The vector code V is any subset of the vector space {Fnqm}.
The rank code distance dr is the minimum rank distance between two different

code vectors:

dr = min{RkFq (vi − vj) : vi,vj ∈M, i 6= j}.

A vector code V with rank code distance dr is Fqm-linear if the code V is
a k-dimensional subspace, k ∈ {1, 2, . . . , n}, of the vector space Fnqm , where
scalars are elements of the extension field Fqm . The code is named [n, k, dr]-code.
Fq-linear vector codes can also be defined, where codewords are elements of
Fnqm and the scalars are elements of the base field Fq.

The cardinality |V| of any vector code with code distance dr and with m ≥ n
satisfies the Singleton bound:

|V| ≤ qm(n−dr+1).

For any Fqm -linear vector [n, k, dr]-code holds k ≤ n− dr + 1.
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If a code reaches a Singleton bound then it is called an MRD code.

There exists close connection between vector and matrix codes. Let Ω =
{ω1, ω2, . . . , ωm} be a basis of the extension field Fqm considered as a vector
space over Fq. Take a vector v = (v1, v2, . . . , vj , . . . , vn), vj ∈ Fnqm . Every its
component can be uniquely written as

vj = a1,jω1 + a2,jω2 + · · ·+ ai,jωi + · · ·+ am,jωm,

where the coefficients ai,j are taken from the base field Fq. As a result, the
vector v of length n over the extension field Fqm can be written as the m× n
matrix over the base field Fq by replacing every component vj by the column
vector (a1,j , a2,j , . . . , am,j)

T using a fixed basis Ω of the extension field. Inverse
mapping is also possible.

2.1 Delsarte matrix codes in rank metric

Delsate proposed codes in rank metric in the space of bi-linear forms. Let us
describe these codes as matrix codes in the space of rectangular m× n matrices

{Fm×nq }, n ≤ m. The function Tr(x) =
m−1∑
l=0

xq
l

, x ∈ Fqm , is the trace function

from the extension field Fqm to the base field Fq.
The Delsarte code is a Fq-linear [m×n, k, dr] MRD matrix code of dimension

k = m(n− dr + 1). The code is defined by the following parameters:

1. the rank code distance dr, 1 ≤ dr ≤ n,

2. the length k = n− dr + 1 of message vectors

u =
[
u0 u1 . . . un−dr

]
∈ Fn−dr+1

qm ,

3. the subspace, spanned by elements N = {ν1, ν2, . . . , νn} from the exten-
sion field Fqm linearly independent over Fq,

4. a basis Ω = {ω1, ω2, . . . , ωm} of the extension field Fqm .

The codeM is a set of m× n matrices. Every code matrix is defined by a
message vector u

M =
{
M(u) : u ∈ Fn−dr+1

qm

}
,
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where elements Mi,j(u), i = 1, 2, . . . ,m, j = 1, 2, . . . , n, of the matrix M(u)
are given by

Mij(u) = Tr

(
ωi

n−dr∑
s=0

usν
qs

j

)
.

The code distance dr of the codeM reaches the Singleton bound. Hence the
Delsarte code is an MRD matrix code. General decoding methods for these
codes are not described in existing publications in this field.

2.2 Dual bases

Recall, that for x ∈ Fqm the map σ(x) = xq is called the Frobenius automor-
phism. This map preserves the base field: σ(Fq) = Fq. The map for vectors x
and for matrices (Mij) is defined element-vise as follows:

σ(x) = xq = σ(x1, x2, . . . , xn) = (xq1, x
q
2, . . . , x

q
n)

for x = (x1, x2, . . . , xn) ∈ Fnqm and

σ((Mij)) = (Mq
ij).

To construct MRD vector codes we need some of the properties of dual bases.
Let components of the vector λ =

(
λ1 λ2 . . . λm

)
form a basis of the

extension field Fqm . The Moore matrix [Moo96] for this basis is

Λ =



λ
λq

λq
2

. . .

λq
m−2

λq
m−1

 =



λ1 λ2 . . . λm
λq1 λq2 . . . λqm
λq

2

1 λq
2

2 . . . λq
2

m

. . . . . . . . . . . .

λq
m−2

1 λq
m−2

2 . . . λq
m−2

m

λq
m−1

1 λq
m−1

2 . . . λq
m−1

m


.

This matrix is nonsingular [LN83].
There is a unique dual basis µ =

(
µ1 µ2 . . . µm

)
such that the transpose
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of its Moore matrix

M =



µ
µq

µq
2

. . .

µq
m−2

µq
m−1

 =



µ1 µ2 . . . µm
µq1 µq2 . . . µqm
µq

2

1 µq
2

2 . . . µq
2

m

. . . . . . . . . . . .

µq
m−2

1 µq
m−2

2 . . . µq
m−2

m

µq
m−1

1 µq
m−1

2 . . . µq
m−1

m


is inverse to the matrix Λ:

ΛM> =



λ
λq

λq
2

. . .

λq
m−2

λq
m−1


(
µ> (µq)

>
. . .

(
µq

m−2
)> (

µq
m−1

)>)
=

=



λ1 λ2 . . . λm
λq1 λq2 . . . λqm
λq

2

1 λq
2

2 . . . λq
2

m

. . . . . . . . . . . .

λq
m−2

1 λq
m−2

2 . . . λq
m−2

m

λq
m−1

1 λq
m−1

2 . . . λq
m−1

m




µ1 µq1 . . . µq

m−2

1 µq
m−1

1

µ2 µq2 . . . µq
m−2

2 µq
m−1

2

. . . . . . . . . . . . . . .

µm µqm . . . µq
m−2

m µq
m−1

m

 = Im,

or equivalently for i = 1, 2, . . . ,m holds

λq
i

·
(
µq

j
)>

=

m∑
s=1

λq
i

s µ
qj

s =

{
1, if i = j;
0, if i 6= j. (2.1)

2.3 MRD Gabidulin vector codes

Below we consider Fqm -linear maximum rank distance (MRD) vector codes over
the extension field Fqm of maximal possible length m. Shorter codes of length
n < m can be obtained by deleting m− n columns from the generator or from
the check matrix.
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The rank metric [m, k, dr] vector code V can be defined by a full rank generator
k ×m matrix Gk over the extension field Fqm . Code vectors are all possible
Fqm -linear combinations of rows of the matrix.

Equivalently, this code can be defined by a full rank check (m−k)×m matrix
Hm−k over the extension field Fqm . The matrices should satisfy GkH

>
m−k = 0,

where 0 is the all-zero k × (m− k) matrix. A vector code is an MRD code if
dr = m− k + 1. The following lemma allows us to verify this property.

Lemma 2.1 ([Gab85]). Let Hm−k ∈ F(m−k)×n
qm be a check matrix of the code

V. The code V is an MRD code if and only if

RkFqm (YH>m−k) = m− k

for every matrix Y ∈ F(m−k)×m
q over the base field with rank RFq (Y ) = m− k.

Another test is based on the known property [Gab85] that the dual code V⊥
is also an MRD code with code distance d⊥r = k+ 1 and the generator matrix of
the dual code V⊥ coincides with the check matrix Hm−k of the code V. Hence
the following lemma is true:

Lemma 2.2. Let Gk ∈ Fk×nqm be a generator matrix of the code V. The code V
is an MRD code if and only if

RkFqm (YG>k ) = k

for any matrix Y ∈ Fk×mq over the base field of rank RkFq (Y ) = k.

2.3.1 Vector codes based on dual bases

Theorem 2.3 ([Gab85]). Given dual bases λ and µ, the code V with generator
and check matrices

Gk =



λ
λq

λq
2

...
λq

k−2

λq
k−1


, Hm−k =


µq

k

µq
k+1

...
µq

m−2

µq
m−1

 (2.2)
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is an MRD code, i.e., it has cardinality qmk and code distance dr = m− k + 1.

Indeed, both matrices are of full rank. From bases duality and from (2.1) it
follows that Gk H>m−k = 0. Using Lemma 2.1 one can prove that the distance
of the code V is dr − 1 = m− k.

2.3.2 Generalized vector codes

The following theorem shows another class of vector codes.

Theorem 2.4 ([KG05]). Let s be a positive integer co-prime with the extension
degree of the field, gcd(s,m) = 1. Then the code V with the following generator
and check matrices

Gk =



λ
λq

s

λq
2s

...
λq

(k−2)s

λq
(k−1)s


, Hm−k =


µq

ks

µq
(k+1)s

...
µq

(m−2)s

µq
(m−1)s


is an MRD code.

These codes are called generalized vector codes.
The codes introduced in Theorems 2.3 and 2.4 are Fqm-linear vector codes

with the maximum rank distance, i.e., MRD-codes.

2.3.3 Vector codes based on linearized polynomials

Another way to construct rank metric vector codes is to use linearized polyno-
mials. A linearized polynomial is a sum

u(x) = u0x+ u1x
q + u2x

q2 + · · ·+ uk−1x
qk−1

, (2.3)

where coefficients ui belong to the field Fqm .
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Let us use the polynomial (2.3) to construct a vector code V. In order to do
this, select a basis λ =

(
λ1 λ2 . . . λm

)
and evaluate the polynomial (2.3)

“at the point” x = λ. In this way we obtain the following vector u(λ)

u(λ) =
(
u0 u1 . . . uk−1

)


λ

λq

...
λq

k−1

 ,

which is a code vector of the code V. Here, one can see the message vector
u =

(
u0 u1 . . . uk−1

)
and the generator matrix Gk of the vector MRD

code.
By evaluation all linearized polynomials of degree at most qk−1 at the point

x = λ we obtain all code vectors of the code V in Theorem 2.3.
For many years, the only known MRD matrix codes were those of Delsarte

[Del78] and the vector MRD codes described in Theorems 2.3 and 2.4. Recently,
new classes of vector MRD codes were suggested. In [She16], codes are defined
using another type of linearized polynomials:

u(x) = u0x+ u1x
q + u2x

q2 + · · ·+ uk−1x
qk−1

+ ηuq
h

0 xq
k

, (2.4)

where ui ∈ Fqm , i = 0, 1, . . . , k and the coefficients ui belong to the field
Fqm . The coefficient η also belong to Fqm , with the restriction that its norm
N(η) satisfies

N(η) = η
qm−1
q−1 6= 1. (2.5)

For a basis λ =
(
λ1 λ2 . . . λm

)
let us compute the vector

u(λ) = u0λ+ u1λ
q + u2λ

q2 + · · ·+ uk−1λ
qk−1

+ ηuq
h

0 λ
qk .

This is one of the code vectors. By considering polynomials (2.4) with all
possible message coefficients {u0, u1, . . . , uk−1} we obtain all the code vectors
u(λ) of the new code. The cardinality of the code is qmk and the rank code
distance is dr = m− k + 1, i.e., the new code is an MRD code.

The code construction based on the polynomial (2.4) gives Fqm -linear vector
codes if the parameter h = 0. Otherwise, if h ≥ 1 it gives Fq-linear vector codes.

These codes are called twisted codes.
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Remark 2.5. This construction can’t be used if q = 2, since any nonzero
element η ∈ F2m has norm 1.

Another class of MDR codes obtained using the linearized polynomials

u(x) = u0x+u1x
qs +u2x

q2s + · · ·+uk−1x
q(k−1)s

+ ηuq
h

0 xq
ks

, ui ∈ Fqm (2.6)

is described in the papers [She16, LTZ18]. Here s is a positive integer such
that gcd(s,m) = 1 and the parameter η satisfies (2.5). These codes are called
generalized twisted codes.

The generator and check matrices of Fqm -linear twisted codes [She16] are as
follows

G̃k =



λ+ ηλq
k

λq

λq
2

...
λq

k−2

λq
k−1


, H̃m−k =


µq

k − ηµ
µq

k+1

...
µq

m−2

µq
m−1

 . (2.7)

Similarly, the generator and check matrices of Fqm -linear generalized twisted
codes [LTZ18, She16] can be written as

G̃k =



λ+ ηλq
ks

λq
s

λq
2s

...
λq

(k−2)s

λq
(k−1)s


, H̃m−k =


µq

ks − ηµ
µq

(k+1)s

...
µq

(m−2)s

µq
(m−1)s

 , gcd(s,m) = 1. (2.8)

New generalizations of Fqm -linear codes are proposed in the paper [PRS17]. It
is shown that such MRD codes exist for the code length n = 2−lm, where l is
an integer and 2l|m. Explicit code construction uses the polynomials

u(x) = u0x+u1x
q+· · ·+uk−1x

qk−1

+ηu0x
qk−1+t

: ui ∈ Fqm , 1 < t < s−1. (2.9)

Among other recent constructions of MDR codes let us mention the codes
described in [OÖ16, OÖ17]. The paper [OÖ16] proposes (independently of
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[She16]) Fq-linear MRD codes for the cases m = 3, dr = 2 and m = 4, dr = 3.
The authors of [OÖ17] suggest a class of MRD codes under the name additive
generalized twisted codes. If the base field is Fq = Fpu , where p is prime and
u ≥ 2 is integer, then additive generalized twisted MRD codes are Fp-linear,
but not necessarily Fq- or Fqm -linear.

The papers [She16, LTZ18, OÖ16, OÖ17, PRS17] do not consider any decod-
ing methods to correct errors of restricted rank.
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q-cyclic rank metric codes

In this chapter, we introduce a code class that is similar to cyclic codes in the
Hamming metric.

Definition 1. A code M is called q-cyclic if together with any code vector
g =

(
g0 g1 . . . gn−1

)
it contains the vector ĝ =

(
g

[1]
n−1 g

[1]
0 . . . g

[1]
n−2

)
,

obtained from g by the cyclic shift of its components by one position to the right
with raising them to the q-th power.

Later on, we consider only linear q-cyclic rank metric codes. For simplicity,
we will restrict ourselves to the case when n = m, i.e., when the code length n
coincides with the extension degree m of the field Fqm .

3.1 q-cyclic codes as ideals

Denote by Lm[z] the ring of linearized polynomials modulo z[m] − z.
A linear (m, k)-codeM is q-cyclic if and only if it is a left ideal of the ring

Lm[z]. Since all ideals are principal in this ring, a q-cyclic (m, k)-code can be
defined by a generator polynomial G(z) of q-degree r = m− k. The polynomial
G(z) divides z[m] − z:

H(z) ∗G(z) = z[m] − z. (3.1)
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Given the polynomial G(z), all code polynomials g(z) can be obtained using
the rule

g(z) =

(
k−1∑
i=0

ciz
[i]

)
∗G(z) =

k−1∑
i=0

ciG
[i](z), (3.2)

where the coefficients ci, i = 0, 1, . . . , k − 1, independently take values from the
field Fqm .

3.2 Check polynomials

Another way to define a q-cyclic code is to use a check polynomial H(z) =
H0z + · · ·+Hkz

[k], Hk = 1, obtained from (3.1). Code polynomials g(z) are
all the solutions in the ring Lm[z] of the equation

g(z)~H(z) = 0. (3.3)

Encoding using the check polynomial is based on the relation (3.3), which can
be rewritten as(

m−k−1∑
i=0

giz
[i]

)
~H(z) = −

(
m−1∑
i=m−k

giz
[i]

)
∗H(z). (3.4)

The q-degree of the polynomial in the left part of the equation is at most
m − 1. Hence, the operation of multiplication ~ in the ring Lm(z) can be
replaced by the operation of multiplication ∗ in the ring Rm(z).
The encoding algorithm is as follows. We right multiply the “information

part” of a code polynomial

G0(z) = gm−kz
[m−k] + · · ·+ gm−1z

[m−1]

by H(z) in the ring Lm(z), i.e., we reduce the product modulo z[m]− z. Having
obtained the polynomial we left divide byH(z) in the ringRm(z). The remainder
gives “the check” part g0z+g1z

[1]+· · ·+g[m−k−1]z
[m−k−1] of the code polynomial.
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3.3 Defining q-cyclic codes by roots

Let {α1, α2, . . . , αr} be a set of Fq-linear independent elements of the field Fqm .
A q-cyclic code can be defined by these elements as follows.

The polynomial g(z) belongs to a q-cyclic (m, k)-code if and only if the roots
of the polynomial are all linear combinations u1α1 + u2α2 + · · · + urαr with
coefficients ui from Fq:

g(u1α1 + u2α2 + · · ·+ urαr) = 0. (3.5)

In fact, it is enough to require that

g(αs) = 0, s = 1, 2, . . . , r, (3.6)

since the polynomial g(z) is linearized and hence g(u1α1 +u2α2 + · · ·+urαr) =
r∑
s=1

usg(αs) for us ∈ Fq. So, if g(z) = g0z+· · ·+gm−1z
[m−1] is a code polynomial,

then
m−1∑
i=0

giα
[i]
s = 0, s = 1, 2, . . . , r. (3.7)

From here it follows that a check matrix of the q-cyclic code defined by the
roots can be written as

H =


α

[0]
1 α

[1]
1 . . . α

[m−1]
1

α
[0]
2 α

[1]
2 . . . α

[m−1]
2

...
... . . .

...
α

[0]
r α

[1]
r . . . α

[m−1]
r

 . (3.8)

In this case, the generator polynomial G(z) is the linearized polynomial of
minimal q-degree that has {α1, α2, . . . , αr} as the roots.

Example 4. Let r = 2. Let α1 = γ, α2 = γ[1], where γ is an element of a
normal basis of the field Fqm . Then

H =

[
γ γ[1] . . . γ[m−2] γ[m−1]

γ[1] γ[2] . . . γ[m−1] γ

]
.

The code defined by the check matrix H has distance 3 in rank metric.
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3.4 Generator matrices

In coordinate vector representation, a q-cyclic code can be defined by a generator
matrix G. Denote by c = (c0, c1, . . . , ck−1) a vector of information symbols.
Then the correspondent code vector g is

g = cG. (3.9)

Sometimes it is convenient to have a systematic encoding, where components
of the information vector c can be found at fixed positions of the code vector.
In a q-cyclic code, the information symbols can be placed at any k sequential
position. It is convenient to place the information symbols to k leading positions
m− 1, m− 2, . . . , m− k. In this case, the generator matrix can be obtained as
follows. Divide in the ring Rm[z] the monomial z[i] by the generator polynomial
G(z) :

z[i] = Qi(z) ∗G(z) +Ri(z). (3.10)

Then
z[i] −Ri(z) = Qi(z) ∗G(z) (3.11)

are code polynomials. For i = {m− 1, m− 2, . . . , m− k}, these polynomials
and correspondent vectors are linearly independent. These vectors form the
rows of the generator matrix:

G = (−R Ik). (3.12)

Here Ik is the identity matrix of order k, and R is the k × (m− k) matrix in
which i-th row is the remainder Rm−i(z) in the vector representation.

This encoding of a q-cyclic code can be implemented using the Euclidean
algorithm as follows. Denote the information symbols

cr−1 = gm−1, ck−2 = gm−2, . . . , c0 = gm−k

and the polynomial

G0(z) = gm−1z
[m−1] + gm−2z

[m−2] + · · ·+ gm−kz
[m−k].

Using right division of this polynomial by the generator polynomial G(z) obtain

G0(z) = Q(z) ∗G(z) + F (z), qdeg(F ) < qdeg(G) = m− k. (3.13)
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Then the coefficients gm−i, i = k + 1, . . . , m of the remainder F (z) give the
remaining (check) symbols of the code vector:

g =

(
g0, g1, . . . , gm−k−1︸ ︷︷ ︸, ︷ ︸︸ ︷

gm−k, . . . , gm−1

)
.

3.5 Check matrices

The check matrix H is defined by the check polynomial H(z) =
k∑
i=0

Hiz
[i] and

has the form

H =


Hk H

[1]
k−1 . . . H

[k]
0 0

. . . 0

0 H
[1]
k . . . H

[k]
1 H

[k+1]
0 0 0

. . . . . . . . . . . . . . . . . . 0

0 0 . . . 0 H
[r−1]
k . . . H

[m−1]
0



=


hk hk−1 . . . h0 0

. . . 0

0 h
[1]
k . . . h

[1]
1 h

[1]
0 0 0

. . . . . . . . . . . . . . . . . . 0

0 0 . . . 0 h
[r−1]
k . . . h

[r−1]
0

 ,
(3.14)

where we denote hi = H
[k−i]
i , i = 0, 1, . . . , k.
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Fast algorithms for decoding rank
codes

4.1 Error correction in rank metric

Codes with check matrix (2.2) allows error correction using the algorithms
similar to decoding algorithms for generalized Reed–Solomon codes.
Let g = (g1, . . . , gn) be a code vector, e = (e1, . . . , en) an error vector, and

y = g + e the received vector. Compute the syndrome

s = (s0, s1, . . . , sd−2) = yHT = eHT . (4.1)

The task of the decoder: given the syndrome s find an error vector. Let the
rank norm of the error vector be t. Then it can be written as

e = EY = (E1, . . . , Et)Y, (4.2)

where E1, . . . , Et are linearly independent over Fq, and Y = (Yij) is an (t× n)-
matrix of rank t with elements from Fq. Then (4.1) can be rewritten as

s = EYHT = EX, (4.3)
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4 Fast algorithms for decoding rank codes

where the matrix X = YHT has the form

X =


x1 x

[1]
1 . . . x

[d−2]
1

x2 x
[1]
2 . . . x

[d−2]
2

. . . . . . . . . . . . .

xt x
[1]
t . . . x

[d−2]
t

 ,
where

xp =

n∑
j=1

Ypjhj , p = 1, . . . , t, (4.4)

are linearly independent over Fq. Equation (4.1) is equivalent to the following
system of equations with unknowns E1, . . . , Et, x1, x2, . . . , xt:

t∑
i=1

Eix
[p]
i = sp, p = 0, 1, . . . , d− 2. (4.5)

Let a solution of the system be found. Then from (4.4) a matrix Y can be
calculated, and from (4.2) an error vector e can be obtained. Note that the
system (4.5) for a given t has many solutions, however for t ≤ (d−1)

2 all solutions
lead to the same vector e.

So, the decoding problem is reduced to solving system (4.5) for the minimal
t.

Define the polynomial S(z) =
∑d−2
j=0 sjz

[j]. Let ∆(z) =
∑t
p=0 ∆pz

[p], ∆t = 1,
denote a polynomial that has all possible Fq-linear combinations of E1, E2, . . . , Et

as roots. Let F (z) =
∑t−1
i=0 Fiz

[i], where Fi =
∑i
p=0 ∆ps

[p]
i−p, i = 0, 1, . . . , t− 1.

Lemma 4.1. The following equality holds

F (z) = ∆(z) ∗ S(z) mod z[d−1]. (4.6)

Indeed,

∆(z) ∗ S(z) =

t∑
p=0

∆p(S(z))[p] =

t+d−2∑
i=0

z[i]

 ∑
p+j=i

∆ps
[p]
j

 .

For t ≤ i ≤ d− 2 we have∑
p+j=i ∆ps

[p]
j =

∑t
p=0 ∆ps

[p]
i−p =

∑t
p=0 ∆p

(∑t
j=1Ejx

[j−p]
j

)[p]

=

=
∑t
j=1 x

[i]
j ∆(Ej) = 0
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4 Fast algorithms for decoding rank codes

since ∆(Ej) = 0, j = 1, 1, . . . , t.

If the coefficients of F (z) are known, then the coefficients of the polynomial
∆(z) can be found recurrently as follows. Let s0 = . . . = sj−1 = 0, sj 6= 0. Then

∆0 =
Fj
sj
,

∆p =

(
Fj+p−

∑p−1
i=0 ∆is

[i]
p+j−i

)
s
[p]
j

, p = 1, 2, . . . , t,

(4.7)

where for j + p ≥ t we set Fj+p = 0.
Now assume that E1, . . . , Et and the polynomial ∆z are known. Consider

the “shortened” system of equations

t∑
j=1

Ejx
[p]
j = sp, p = 0, 1, . . . , t− 1 (4.8)

with unknowns x1, x2, . . . , xt.
Let us solve (4.8) by sequential exclusion of variables. Denote A1j =

Ej , Q1p = sp. Multiply the (p+ 1)-th equation of the system by Aq−1
11 , take the

root of order q and subtract it from p-th equation. As a result, obtain a system
without x1:

p∑
j=2

A2jx
[p]
j = Q2p, p = 0, 1, . . . ,m− 2, (4.9)

where

A2j = A1j −
(
A1j

A11

)[−1]

A11, j = 2, . . . , t,

Q2p = Q1p −
(
Q1p+1

A11

)[−1]

A11, p = 0, 1, . . . , t− 2.

(4.10)

By repeating this procedure t − 1 times and leaving the first equations in
the system at every step we get a system of linear equations with a triangular
matrix of coefficients:

t∑
j=1

Aijxj = Qi0, i = 1, 2, . . . , t, (4.11)
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where

A1j = Ej , j = 1, . . . , ;

Aij =


0, j < i,

Ai−1,j −
(

Ai−1,j

Ai−1,i−1

)[−1]

Ai−1,i−1, p = 0, . . . , t− i, i = 2, . . . , t.

(4.12)
Q1p = sp, p = 0, . . . , t− 1,

Qip = Qi−1,p −
(
Qi−1,p+1

Ai−1,i−1

)[−1]

Ai−1,i−1, p = 0, 1, . . . , t− i, i = 2, . . . , t.

(4.13)
System (4.11) can be solved using the following recurrent formulas

xt = Qt0
Amm

,

xt−i =
(Qt−i,0−

∑t
j=t−i+1 A−i,j)

At−i,t−i
, i = 1, . . . , t− 1.

(4.14)

The decoding algorithm is as follows.
I. Compute the syndrome vector s = (s0, . . . , sd−2) and obtain correspondent

polynomial S(z) =
∑d−2
i=0 siz

[i].
II. Set F0(z) = z[i−1], F1(z) = S(z), and apply the Euclidean algorithm until

Ft+1(z) is such that
qdeg(Ft(z)) ≥ q

d−1
2 . (4.15)

Then
∆(z) = γA(z),

F (z) = γ(−1)tFt+1(z),

(4.16)

where γ is selected such that the coefficient ∆t is equal to 1.
Indeed, if the number of rank errors is at most (d−1)

2 , then equalities (4.16)
follow from (1.8) and from Lemma 4.1. The uniqueness of polynomials F (z)
and ∆(z) can be proved in the same way as in the case of standard generalized
Reed–Solomon codes.
The polynomial ∆(z) can be found either by the first formula in (4.16), if

the polynomials Ai(z), i = 1, 2, . . . , have been computed using the Euclidean
algorithm, or using (4.7), where the coefficients of remainders Fm+1(z), com-
puted with the algorithm, are required. Then any Fq-linearly independent roots
E1, . . . , Em of the polynomial ∆(z) can be found.
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4 Fast algorithms for decoding rank codes

III. Using (4.11)-(4.14) and known E1, . . . , Et compute x1, . . . , xt. Find the
matrix Y from decomposition (4.4). Finally, compute the error vector e from
(4.2).

As an example, consider the case d = 3, q = 2. Here we can correct single
rank errors in a field of characteristic 2.

1. Compute the syndrome s = (s0, s1). If s0 = 0 and s1 = 0 then conclude
that there were no errors.

2. If s0 6= 0 and s1 6= 0 then the Euclidean algorithm gives the polynomial
∆(z) = −(

s10
s[1]

)z + z[1]. Conclude that it was a single error and find E as

a nonzero root of the equation ∆(z) = 0, i.e., E = (
s
[1]
0

s1
). In this case, the

system (4.10) has a single equation and gives x = s1
s0

= y1h1 + y2h2 + . . .+
ynhn, where yi = 0 or 1. The error vector is e = (y1E, y2E, . . . , ynE).

3. If s0 = 0, s1 6= 0 or s0 6= 0, s1 = 0, then conclude that the error has a
rank at least 2 since the Euclidean algorithm would give the polynomials
∆(z) = z[1] and ∆(z) = z[2], which have no roots.

4.2 Error and erasure correction by MRD codes

Assume we need to correct errors and also erasures of columns and rows up
to the theoretical bound. If there have been no erasures then the decoding
algorithm from Section 4.1 will correct rank errors.

Later we will show that in general the variables corresponding to row erasures
can be excluded from the (first) system of syndrome equations, giving the second
system, and the decoding problem will be reduced to error and column erasure
correction. In turn, the column erasures can be excluded from the second
system of syndrome equations in a similar way, and the decoding problem will
be reduced to error correction only. After error correction we will return to
column erasure correction and then to row erasures. As a result, we will correct
all three types of distortions: errors and erasures of both columns and rows.

Before we describe the general decoding algorithm let us recall the construction
of the rank distance (n, k, d)-code, where n is the code length, k is the number
of information symbols, and d is the code distance.
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4 Fast algorithms for decoding rank codes

The rank of a vector x = (x0, x1, . . . , xn−1), xj ∈ Fqn , denoted by RkFq(x),
is the maximum number of components that are linearly independent over Fq.

Let the vector
g = (g0, g1, ..., gn−1) (4.17)

give a basis of the extension Fqn of the base field Fq, i.e., components gj ∈
Fqn , j = 0, . . . , n− 1, are linearly independent over the base field Fq. Then any
n-vector x ∈ Fnqn can be uniquely represented as

x = (x0, x1, . . . , xn−1) = (g0, g1, ..., gn−1)A(x) = gA(x), (4.18)

where A(x) is a n× n matrix over the base field Fq.
Equivalently, the rank of a vector x can be defined as the standard algebraic

rank of the matrix A(x), i.e., RkFq (x) = Rk(A(x)).

A code in vector representation (vector code) with rank distance d is defined
as a set V ⊆ Fnqn of vectors xj ∈ Fnqn such that min

i 6=j
RkFq (xi − xj) = d.

The same code in matrix form (matrix code) is the set of corresponding
matrices A(xj), j = 1, . . . , V .
An Fqn-linear code with rank distance d having V = (qn)k code vectors we

denote by (n, k, d)-code. An (n, k, d)-code is called the maximum rank distance
(MRD) code if d = n− k + 1.

An MRD (n, k, d = n − k + 1) code in vector form can be defined by a
generator matrix. The standard form of a generator matrix is:

Gk =


g0 g1 . . . gn−1

g
[1]
0 g

[1]
1 . . . g

[1]
n−1

. . . . . . . . . . . .

g
[k−1]
0 g

[k−1]
1 . . . g

[k−1]
n−1

 , (4.19)

where g[i]
j = gq

i mod n

j .
The first row of the generator matrix is the vector

g = (g0, g1, ..., gn−1),

over the extension field Fqn , where the components gj ∈ Fqn , j = 0, . . . , n− 1,
are linearly independent over the base field Fq. Hence, the vector g is a basis of
the extension field Fqn over the base field Fq. Every next row of the generator
matrix is the Frobenius power of the previous row.
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4 Fast algorithms for decoding rank codes

Denote by u = (u0, u1, . . . , uk−1) the information vector, which has informa-
tion symbols, uj ∈ Fqn , j = 0, 1, . . . , k− 1 as components. Then the code vector
g(u) corresponding to the information vector u can be obtained as

g(u) = uGk. (4.20)

The rank norm of any nonzero code vector is at least n− k + 1, hence the code
distance is d = n− k + 1.
Known fast decoding algorithms use the following check matrix

Hn−k = Hd−1 =


h0 h1 . . . hn−1

h
[1]
0 h

[1]
1 . . . h

[1]
n−1

. . . . . . . . . . . .

h
[n−k+1]
0 h

[n−k+1]
1 . . . h

[n−k+1]
n−1

 , (4.21)

where elements h0, h1, . . . , hn−1 are linearly independent over the base field Fq.
The generator and the check matrices satisfy

GkH
>
n−k = 0. (4.22)

4.3 Rank errors and rank erasures

Rank metric codes can be used for telecommunication as follows.
Select an MRD (n, k, d)-code in vector form. The vector form is convenient

for coding and decoding. A code word g(u) to be transmitted is converted
using (4.18) to a square q-ary matrix of order n. For definiteness assume that
the first row of the generator matrix Gk is the basis of the extension field.
The code matrix is transmitted over a system of n parallel channels. Ele-

ments of the i-th row enter the i-th channel. Elements of the j-th column are
transmitted during the j-th time interval.

The code matrix can be distorted during the transmission by adding a noise
matrix of order n. Consider three types of distortions.

1. The noise matrix E is added to the code matrix and the receiver does
not know which columns or rows are distorted. The received matrix is
transformed to a vector using (4.18). Hence, the decoder should process
the received vector

y = g(u) + e.
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We say that there is an error of rank m, or m rank errors, if RkFq (e) = m.
To be corrected, the error of rank m is written as

e = (e1, e2, . . . , em)U, (4.23)

where the unknown elements ej ∈ Fqn , are Fq-linearly independent and U
is a q-ary m× n matrix

U =


u1,1 u1,2 . . . u1,n

u2,1 u2,2 . . . u2,n

...
... . . .

...
um,1 um,2 . . . um,n

 (4.24)

with unknown elements.

2. The noise matrix Erow is added to the code matrix and the receiver knows
the side information that the rows i1, i2, . . . , iv can be distorted. The
received matrix is transformed to a vector using (4.18). If only the i-th
row R of Erow is nonzero then the code vector is distorted by giR, where
gi is a known basis element. Hence, the decoder should work with the
vector

y = g(u) + erow,

where
erow = (gi1 , gi2 , . . . , giv )Rrow. (4.25)

Here the elements gij are known, while the q-ary v × n matrix

Rrow =


r1,1 r1,2 . . . r1,n

r2,1 r2,2 . . . r2,n

...
... . . .

...
rv,1 rv,2 . . . rv,n

 (4.26)

is unknown. We say that the vector erow defines an erasure of v rows.

3. The noise matrix Ecol is added to the code matrix and the receiver knows
the side information that the columns j1, j2, . . . , jr can be distorted. The
received matrix is transformed to a vector using (4.18). If only the j-th
column of Ecol is nonzero then Ecol will be transformed to the vector wjc,
where wj ∈ Fqn is an unknown while c is a known q-ary n-vector that
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has the j-th component 1 and all the rest are zeros. Hence, the decoder
should work with the vector

y = g(u) + ecol,

where
ecol = (wj1 , wj2 , . . . , wjr )Ccol. (4.27)

Here wjk are unknown while the q-ary r × n matrix

Ccol =


0 . . . 0 c1,j1 = 1 0 . . . 0
0 . . . . . . 0 c2,j2 = 1 . . . 0
0 . . . . . . . . . . . . . . . 0
0 . . . . . . . . . 0 cr,jr = 1 . . .

 (4.28)

is known. We say that the vector ecol defines erasure of r columns.

In the general case, rank errors and erasures can occur simultaneously and a
decoder should process the received vector

y = g(u) + e + erow + ecol (4.29)

where the error vectors are given in (4.23), (4.25) and (4.27).

Lemma 4.2. An MRD (n, k, d = n−k+1) code corrects simultaneously erasures
of v rows, r columns and errors of rank m if

2m+ v + r ≤ d− 1. (4.30)

Proof. Consider all the code matrices of order n. Delete v rows and r columns
in all these matrices. We obtain a new code of (n− v)× (n− r) matrices with
rank distance at least d̃ = d− v − r. Hence, this code corrects errors of rank m
if m ≤ (d− v − r − 1)/2, or

2m+ v + r ≤ d− 1.

�

Simultaneous error and erasure correction is considered in the next section
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4.4 Simultaneous error and erasure correction

Consider an algorithm for error and erasure correction. The algebraic decoding
starts with computation of the syndrome vector s = (s0, s1, . . . , sd−2). For a
received vector y, given by (4.29), we have

s> =


s0

s1

...
sd−2

 = Hd−1y
>

= Hd−1U
>


e1

e2

...
em

+ Hd−1R
>
row


gi1
gi2
...
giv

+ Hd−1C
>
col


wj1
wj2
...
wjr

 .

(4.31)

Using (4.24), (4.26) and (4.28) we can rewrite the syndrome as follows

s>=


s0

s1

...
sd−2

=

m∑
k=1

ek


xk

x
[1]
k

...
x

[d−2]
k

+

v∑
k=1

gik


fk

f
[1]
k
...
f

[d−2]
k

+

r∑
k=1

wjk


hjk
h

[1]
jk

...
h

[d−2]
jk

 .

(4.32)
Here xk =

∑n
p=1 hp−1uk,p, k = 1, . . . ,m, fk =

∑n
p=1 hp−1rk,p, k = 1, . . . , v.

Without loss of generality we can assume that the elements of each of the
following sets

{x1, . . . , xm, f1, . . . , fv, hj1 , . . . , hjr}
and

{e1, . . . , em, gi1 , . . . , giv , wj1 , . . . , wjr}
(4.33)

are linearly independent over Fq. Otherwise the number of unknowns can
be decreased. The decoding can be done using the syndrome (4.32) and its
modifications.
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Together with the syndrome s let us use the modified syndrome smod:

s>mod =


s

[n]
0

s
[n−1]
1
...
s

[n−d+2]
d−2



=

m∑
k=1

xk


e

[n]
k

e
[n−1]
k
...
e

[n−d+2]
k

+

v∑
k=1

fk


g

[n]
ik

g
[n−1]
ik
...
g

[n−d+2]
ik

+

r∑
k=1

hjk


w

[n]
jk

w
[n−1]
jk

...
w

[n−d+2]
jk

 .

(4.34)

The decoder should solve system of equations (4.32) or (4.34) and find
unknowns {xk, fk, ek, wjk}. After this, rank errors e and rank erasures erow, ecol

should be corrected.
Let us show that it is possible if conditions of Lemma 4.2 are satisfied. The

idea is as follows.
First assume that there were no erasures, i.e., erow = ecol = 0 and only rank

errors should be corrected. In this case, the syndrome (4.32) contains unknowns
{xk, ek} only. Existing standard algorithms allow rank error correction if the
rank m satisfies 2m ≤ d− 1.
Let us show that in the general case, the unknowns {fk}, that define row

erasures, can be excluded from the system of equations (4.32). The problem
will be reduced to correction of rank errors and column erasures. In turn, the
column erasures also can be excluded and we only need to correct errors.

4.4.1 Exclusion of row erasures

Row erasures are included in in the syndrome as:

v∑
k=1

gik


fk

f
[1]
k
...
f

[d−2]
k

 ,
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where the elements gik , k = 1, . . . , v, are known while fk, k = 1, . . . , v, are
unknown.
Define the linearized polynomial

T (z) =

v∑
i=0

Tiz
[i], (4.35)

that has all Fq-linear combinations of gik , k = 1, . . . , v, as roots. In particular,

T (gik) = 0, k = 1, 2, . . . , v. (4.36)

The coefficients Ti are used to exclude unknowns fk, k = 1, . . . , v, and to
modify the syndrome. Denote the modified syndrome by s̃ = (s̃0 s̃1 . . . s̃d−2−v).
It has dimension d− 1− v and can be computed as follows:

s̃> =


s̃0

s̃1

...
s̃d−3−v
s̃d−2−v

 =



sv s
[1]
v−1 . . . s

[v−1]
1 s

[v]
0

sv+1 s
[1]
v . . . s

[v−1]
2 s

[v]
1

...
... · · ·

...
...

sd−3 s
[1]
d−4 . . . s

[v−1]
d−4−v s

[v]
d−3−v

sd−2 s
[1]
d−3 . . . s

[v−1]
d−3−v s

[v]
d−2−v




T0

T1

...
Tv−1

Tv

 .

(4.37)
Denote:

ẽk = T (ek); x̃k = x
[v]
k ; k = 1, 2, . . . ,m;

w̃jk = T (wjk); h̃jk = h
[v]
jk

; k = 1, 2, . . . , r.
(4.38)

Lemma 4.3. The modified syndrome s̃ can be written as:

s̃> =


s̃0

s̃1

...
s̃d−2−v

 =

m∑
k=1

ẽk


x̃k

x̃
[1]
k

...
x̃

[d−2−v]
k

+

r∑
k=1

w̃jk


h̃jk
h̃

[1]
jk

...
h̃

[d−2−v]
jk

 . (4.39)
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Proof. From (4.32) and (4.37) we get

s̃j = sv+jT0 + s
[1]
v+j−1T1 + · · ·+ s

[v−1]
j+1 Tv−1 + s

[v]
j Tv =(

m∑
k=1

ekx
[v+j]
k +

v∑
k=1

gikf
[v+j]
k +

r∑
k=1

wjkh
[v+j]
jk

)
T0 +(

m∑
k=1

e
[1]
k x

[v+j]
k +

v∑
k=1

g
[1]
ik
f

[v+j]
k +

r∑
k=1

w
[1]
jk
h

[v+j]
jk

)
T1 +

... +(
m∑
k=1

e
[v]
k x

[v+j]
k +

v∑
k=1

g
[v]
ik
f

[v+j]
k +

r∑
k=1

w
[v]
jk
h

[v+j]
jk

)
Tv =(

m∑
k=1

T (ek)x
[v+j]
k +

v∑
k=1

T (gik)f
[v+j]
k +

r∑
k=1

T (wjk)h
[v+j]
jk

)
=(

m∑
k=1

T (ek)x
[v+j]
k +

r∑
k=1

T (wjk)h
[v+j]
jk

)
=(

m∑
k=1

ẽkx̃
[j]
k +

r∑
k=1

w̃jk h̃
[j]
jk

)
.

Here conditions (4.36) and notations (4.38) were used. �

From (4.39) it follows that row erasures are temporary excluded. The decoder
should correct errors of rank m and column erasures of rank r. The next step
is to exclude column erasures.
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4.4.2 Exclusion of column erasures

Continue modifications of syndrome equations. Let us modify (4.39) similar to
(4.34):

s̃>mod =


s̃0,mod

s̃1,mod

...
s̃d−2−v,mod

 =


s̃

[n]
0

s̃
[n−1]
1
...
s̃

[n−d+2+v]
d−2−v



=
m∑
k=1

x̃k


ẽ

[n]
k

ẽ
[n−1]
k
...
ẽ

[n−d+2+v]
k

+
r∑

k=1

h̃jk


w̃

[n]
jk

w̃
[n−1]
jk

...
w̃

[n−d+2+v]
jk

 .

(4.40)

Elements h̃jk , k = 1, 2, . . . , r, are known. Define the linearized polynomial

L(z) =

r∑
i=0

Liz
[i], (4.41)

that has all Fq-linear combinations of h̃jk , k = 1, 2, . . . , r, as roots. In particular,

L(h̃jk) = 0, k = 1, 2, . . . , r. (4.42)

Coefficients Li are used to exclude unknowns w̃jk , k = 1, . . . , r, and modify the
syndrome (4.39). Denote the final syndrome by ŝ = (ŝ0 ŝ1 . . . ŝd−3−v−r ŝd−2−v).
It has dimension d− 1− v − r and can be computed as follows:

ŝ> =
(

ŝ0 ŝ1 . . . ŝd−3−v−r ŝd−2−v−r

)>

=



s̃0,mod s̃
[1]
1,mod . . . s̃

[r]
r,mod

s̃1,mod s̃
[1]
2,mod . . . s̃

[r]
r+1,mod

...
... · · ·

...
...

s̃d−3−v−r,mod s̃
[1]
d−2−v−r,mod . . . s̃

[r]
d−3−v,mod

s̃d−2−v−r,mod s̃
[1]
d−1−v−r,mod . . . s̃

[r]
d−2−v,mod




L0

L1

...
Lr

 .

(4.43)
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Lemma 4.4. The final syndrome ŝ can be written as:

ŝ> =


ŝ0

ŝ1

...
ŝd−3−v−r
ŝd−2−v−r

 =

m∑
k=1

êk


x̂

[n]
k

x̂
[n−1]
k

...
x̂

[n−d+2+v+r]
k

 , (4.44)

where
êk = L(x̃k); k = 1, 2, . . . ,m;
x̂k = ẽk; k = 1, 2, . . . ,m.

(4.45)

Proof. From (4.40) (4.43) we get

ŝj = s̃j,modL0 + s̃
[1]
j+1,modL1 + · · ·+ s̃

[r−1]
j+r−1,modLr−1 + s̃

[r]
j+r,modLr =(

m∑
k=1

x̃kẽ
[n−j]
k +

r∑
k=1

h̃jk w̃
[n−j]
jk

)
L0 +(

m∑
k=1

x̃
[1]
k ẽ

[n−j]
k +

r∑
k=1

h̃
[1]
jk
w̃

[n−j]
jk

)
L1 +

. . . +(
m∑
k=1

x̃
[r]
k ẽ

[n−j]
k +

r∑
k=1

h̃
[r]
jk
w̃

[n−j]
jk

)
Lr =(

m∑
k=1

L(x̃k)ẽ
[n−j]
k +

r∑
k=1

L(h̃jk)w̃
[n−j]
jk

)
=

m∑
k=1

L(x̃k)ẽ
[n−j]
k =

m∑
k=1

êkx̂
[n−j]
k .

Here we use conditions (4.42) and notations (4.45). �

Equations (4.44) allow us to compute errors of rank m if 2m ≤ d− 1− v − r.

4.4.3 Short description of the algorithm correcting errors
and erasures simultaneously

The basic steps of the algorithm are as follows.
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1. Input: the received matrix Y and side information about row and column
erasures:

gis , s = 1, 2, . . . , v,
hju , u = 1, 2, . . . , r.

Compute the corresponding linearized polynomials T (z) and L(z).

2. Transform the received matrix Y to the vector y and compute the syn-
drome (4.31).

3. Compute the final syndrome (4.43) and find {êk, x̂k}.

4. Find {ẽk, x̃k} from (4.45) and compute w̃jk from (4.39).

5. Find {ek, xk, wjk} from (4.38) and compute {fk} from (4.32).

6. Correct the received vector by removing all errors found.

4.4.4 Correction of erasures only

The above algorithm can be simplified if only erasures occur during transmission
and there are no errors. In this case, the syndrome is as follows:

s> =


s0

s1

...
sd−2

 =

v∑
k=1

gik


fk

f
[1]
k
...
f

[d−2]
k

+

r∑
k=1

wjk


hjk
h

[1]
jk

...
h

[d−2]
jk

 . (4.46)

If there are erasures of columns only, then (4.46) is a system with d− 1 linear
equations with unknowns {wjk , k = 1, 2, . . . , r}, which can be solved using a
standard method.
If there are erasures of rows only, then (4.34) is a system of d − 1 linear

equations with unknowns {fk, k = 1, 2, . . . , v}, which can be solved in a similar
way.

In the general case with row and column erasures, the modified syndrome
(4.39) is a system of (d − 1 − v) linear equations with unknowns {w̃jk , k =
1, 2, . . . , r}. Unknowns {fk, k = 1, 2, . . . , v} can be found using another linear
system of equations.
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4.5 Examples

As an example let us consider a MRD (5, 1, 5)-code over F25 . with the generator
matrix

G = (αα30 α18 α7 α20).

A check matrix is :

H4 = Hd−1 =


α2 α29 α5 α14 α9

α4 α27 α10 α28 α18

α8 α23 α20 α25 α5

α16 α15 α9 α19 α10

 . (4.47)

These matrices are connected by the equation: GH>4 = 0.

If the information symbol u = 1 then the code vector is

g(u) = (αα30 α18 α7 α20).

The corresponding code matrix M(u) is

M(u) =


0 0 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 0 1
0 1 0 1 0

 .

Let us consider some variants of errors and erasures.

Variant 1: 1 error and 2 erasures
Let the noise matrix be

E =


0 0 1 1 1
1 1 0 0 0
0 1 0 0 0
1 1 0 0 0
1 0 0 0 0

 .
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Here we assume that the first row and the first column are erased, and the rest
is an error. The received matrix is

Y = M(u) + E =


0 0 0 1 1
0 0 1 0 0
0 1 0 1 1
1 1 0 0 1
1 1 0 1 0

 .

Transform the received matrix Y to the vector y:

y = (α21 α13 αα22 α18).

Compute the syndrome

s> = Hy> =


α17

α22

α17

α15

 .

Extract the known variables gi1 = 1, hj1 = h0 = α2. Compute the linearized
polynomials

T (z) = z2 + z, T0 = 1, T1 = 1.

L(z) = z(z + h̃0) = z(z + h2
0) = z2 + α4z, L0 = α4, L1 = 1.

Compute the syndromes

s̃> =

 s̃0

s̃1

s̃2

 =


s1 s2

0

s2 s2
1

s3 s2
2

( T0

T1

)
=


α3

α23

α26

 ,

s̃>mod =

 s̃0,mod

s̃1,mod

s̃2,mod

 =


s̃0

s̃16
1

s̃8
2

 =


α3

α27

α22

 .

ŝ> =

(
ŝ0

ŝ1

)
=

(
s̃0,mod s̃2

1,mod

s̃1,mod s̃2
2,mod

)(
L0

L1

)
=

(
α16

α14

)
.
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Find ê1,x̂1:

ŝ> =

(
α16

α14

)
= ê1

(
x̂1

x̂16
1

)
,

ê1x̂1 = α16,

ê1x̂
16
1 = α14.

ê1 = α12,

x̂1 = α4.

To find errors we solve the following equations:

x̃2
1 + α4x̃1 = ê1 = α12 −→ x̃1 = α16.

ẽ1 = x̂1 = α4, x̃1 = x2
1 = α16 −→ x1 = α8.

ẽ1 = e2
1 + e1 = α4 −→ e1 = α12.

(u1 u2 u3 u4 u5)(α2 α29 α5 α14α9)> = x1 −→
(u1 u2 u3 u4 u5) = (1 1 0 0 0) −→

e = (α12 α12 0 0 0)

To find column erasures we solve the following equations:

s̃0 = α3 = ẽ1x̃1 + w̃1h̃0 = α4α16 + α4w̃1 −→ w̃1 = α29.

w2
1 + w1 = w̃1 = α29 −→ w1 = α22.

ecol = (α22 0 0 0 0)

To find row erasures we solve the following equations:

s0 = α7 = e1x1 + g1f1 + w1h0 = α12α8 + 1 · f1 + α22α2 −→ f1 = α19.

(α2 α29 α5 α14α9)(r1 r2 r3 r4 r5)> = f1 −→
(r1 r2 r3 r4 r5) = (1 0 1 1 1) −→

erow = (1 0 1 1 1)

The total error vector is

etotal = e + ecol + erow = (α9, α12, 1, 1, 1)
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The decoding result:

y + etotal =

(α21, α13, α, α22, α8) + (α9, α12, 1, 1, 1) = (α, α30, α18, α7, α20) =

g(u).

Variant 2: Column erasures
Let the noise matrix be

E =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0


where 4 columns 2, 3, 4, 5 are erased. The noise vector is: e = (0, α3, α2, α, 1).
The received matrix is

Y = M + E =


0 0 1 0 1
1 1 1 1 0
0 0 1 1 1
0 1 0 0 1
0 1 0 1 0

 .

Transform the received matrix Y to the vector y = (αα9 α11 α28 α8).
First, compute the syndrome

s> = Hy> =


α17

α28

α4

α25

 .

Since we have the case of column erasures only, using (4.46) we get the system
of equations for unknowns wk, k = 1, 4:

s0 = h1w1+ h2w2+ h3w3+ h4w4;
s1 = h2

1w1+ h2
2w2+ h2

3w3+ h2
4w4;

s2 = h4
1w1+ h4

2w2+ h4
3w3+ h4

4w4;
s3 = h8

1w1+ h8
2w2+ h8

3w3+ h8
4w4,

(4.48)
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with h1 = α29, h2 = α5, h3 = α14, h4 = α9, s0 = α17, s1 = α28, s2 = α4, s3 =
α25. Hence, we have the system

α17 = α29w1+ α5w2+ α14w3+ α9w4;
α28 = α27w1+ α10w2+ α28w3+ α18w4;
α4 = α23w1+ α20w2+ α25w3+ α5w4;
α25 = α15w1+ α9w2+ α19w3+ α10w4

(4.49)

with solution: w1 = α3, w2 = α2, w3 = α,w4 = 1. Accordingly, the noise vector
is e = (0, α3, α2, α, 1.)

To find the transmitted information vector u subtract from the received
vector y = (αα9 α11 α28 α8) the noise vector e = (0, α3, α2, α, 1) and get
u = (α, α30, α18, α7, α20).

Variant 3: Column and row erasures. Consider the case of 2 row erasures
and 2 column erasures. Let the noise matrix be the same as in Variant 2

E =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0

 , (4.50)

but here we assume that the 1-st and the 4-th rows as well as the 3-rd and 4-th
columns are erased. The noise vector is again e = (0, α3, α2, α, 1), the received
matrix is again

Y = M + E =


0 0 1 0 1
1 1 1 1 0
0 0 1 1 1
0 1 0 0 1
0 1 0 1 0

 ,

and the received vector is again y = (αα9 α11 α28 α8).
The syndrome is again

s> = Hy> =


α17

α28

α4

α25

 .
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In this variant of mixed erasures we need the linearized polynomial

T (z) =

v∑
i=0

Tiz
[i] = T0z + T1z

2 + T2z
4 (4.51)

that has all Fq-linear combinations of gik , k = 1, 2, as roots. In particular,

T (gik) = 0, k = 1, 2. (4.52)

In this case, the elements 1, α3, 0, (1 + α3) are all the roots of the polynomial
T (z), hence

T (z) = (z − 0)(z − 1)(z − α3)(z − 1− α3) = αz + α18z2 + z4

with coefficients T0 = α, T1 = α18, T2 = 1.
We use the coefficients Ti to exclude the unknowns fk, k = 1, 2, and to obtain

the modified syndrome s̃ = (s̃0s̃1). It has dimension d− 3 = 2 and is computed
as follows

s̃> =

(
s̃0

s̃1

)
=

 s2 s
[1]
1 s

[2]
0

s3 s
[1]
2 s

[2]
1

 T0

T1

T2

 , (4.53)

where s0 = α17, s4
0 = α6, s1 = α28, s2

1 = α25, s2 = α4, s2
2 = α8, s3 =

α25, T0 = α, T1 = α18, T2 = 1. From (4.53) we obtain the modified syndrome
s̃0 = 1, s̃1 = α19.
Now we use (4.39) to remove items that correspond to errors and to keep

items with unknowns w̃jk

s̃0 = w̃3h̃3 + w̃4h̃4;

s̃1 = w̃3h̃
2
3 + w̃4h̃

2
4,

(4.54)

where h̃3 = h4
3 = α20, h̃4 = h4

4 = α25. The solution of the system is w̃3 =
α4, w̃4 = α21.

Taking into account notations (4.38) and using w̃3, w̃4, we solve the following
system of equations to find wjk , jk = 3, 4,

α4 = w4
3 + α18w2

3 + αw3;
α21 = w4

4 + α18w2
4 + αw4.

(4.55)

The solution is w3 = α2, w4 = α.

56



4 Fast algorithms for decoding rank codes

Substitute obtained w3 = α2, w4 = α into (4.34), where we remove items
that include errors, and find unknowns fk, k = 1, 2, :

s>mod =

(
s

[n]
0

s
[n−1]
1

)
=

2∑
k=1

fk

(
g

[n]
ik

g
[n−1]
ik

)
+

2∑
k=1

hjk

(
w

[n]
jk

w
[n−1]
jk

)
. (4.56)

Using the values n = 5, s0 = α17, s1 = α28, g11
= 1, g42

= α3, w31
=

α2, w42
= α gives the following system of equations for f11

, f42
:

α17 = f11
+ α3f42

+ α7 + α15;
α14 = f11 + α17f42 + α6 + α30.

(4.57)

with the solution f11 = α9, f42 = α29.
Express f11

, f42
using elements of the first and the fourth rows of the error

matrix fik =
∑5
p=1 hp−1rk,p, k = 1, 2, i = 1, 4. Using the additive form of the

field elements for powers greater than 4, yields

α4 + α3 + α = α4(r14 + r15) + α3(r12 + r14 + r15)
+ α2(r11 + r13 + r14) + αr15 + (r12 + r13 + r14);

α3 + 1 = α4(r41 + r45) + α3(r42 + r44 + r45)
+ α2(r41 + r43 + r44) + αr45 + (r42 + r43 + r44).

(4.58)

Equating coefficients of the same powers of α in the first equation gives the
system of linear equations for rk,p, k = 1, p = 1, 5,

1 = r14+ r15;
1 = r12+ r14 + r15;
0 = r11+ r13 + r14;
1 = r15;
0 = r12+ r13 + r14

(4.59)

with the solution
r11 = r12 = r13 = r14 = 0; r15 = 1.

To find rk,p, k = 4, p = 1, 5, we use the second equation of (4.58) in the same
way which yields the system

0 = r44+ r45;
1 = r22+ r44 + r45;
0 = r41+ r43 + r44;
0 = r45;
1 = r42+ r43 + r44

(4.60)
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with solution r41 = r43 = r44 = r45 = 0; r42 = 1.
Using the elements of the third and the fourth columns of the noise matrix

w3 = α2, w4 = α, which were obtained earlier, and obtained values rk,p, k =
1, 4, p = 1, 5, we obtain the following noise matrix:

E =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0

 .

Comparison with the given noise matrix (4.50) shows that both matrices coincide.
Hence the decoding is correct.

4.6 Error correction in the Hamming metric

A vector MRD code is simultaneously a Maximum Distance Separable (MDS)
code in the Hamming metric, which reaches the Singleton bound. Hence, it is
natural to ask the question: What is the Hamming norm for the error vectors
corrected by the decoding algorithm proposed above?

First of all, of course, all error vectors of Hamming weight at most t = d−1
2 will

be corrected. In case of ordinary MDS codes, the Berlekamp-Massey algorithm
or its modifications corrects these error vectors only. The decoding algorithm
for MRD codes corrects many more (Ni) error vectors, where

Ni =

t∑
i=1

Li(n) =

t∑
i=1

[
n
i

]
(qN − 1)(qN − q) . . . (qN − qi−1), (4.61)

and Li(n) is the number of n-vectors over FqN with rank norm t.
Let us count the number of error vectors with Hamming norm s that are

corrected by our algorithm. Denote by An(s, i) the number of vectors of length
n with rank norm i and Hamming norm s. For s < i, set An(s, i) = 0.

Lemma 4.5. For An(s, i) holds

An(s, i) = Csn

s∑
k=0

(−1)k+sCksLi(k). (4.62)
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Indeed, An(s, i) = CsnAs(s, i). In addition, for all i ≤ s ≤ n
s∑
i=1

An(s, i) =

n∑
s=i

CsnAs(s, i) = Li(n). (4.63)

By inverting the system (4.63) we obtain (4.62).
From Lemma 4.5 follows

Theorem 4.6. The proposed above decoding algorithm for MRD codes corrects

Ms =

s∑
i=1

An(s, i) = Csn

t∑
i=1

s∑
k=i

(−1)k+sCksLi(k), s = 1, 2, . . . , n, (4.64)

error vectors of Hamming norm s.

It can be shown that for s ≤ t holds: Ms = Csn(qN − 1)s .
As an illustration consider codes over F2N with n = N and d = 3. In this

case t = 1 and according to (4.61) the total number of correctable error vectors
is N1 = (2N − 1)2. Out of this number, M1 = C1

N (2N − 1) error vectors have
Hamming norm 1 and M2 = C2

N (2N − 1) vectors have Hamming norm 2, i.e.,
double errors. The fraction of correctable double errors is 1

(2N−1)
. The norm of

other correctable errors is at least 3.
A slight modification of the decoding algorithm allows us also to interpret

these error vectors as double errors. Assume that our decoding algorithm
outputs the error vector (E,E, . . . , E, 0, . . . , 0), with rank norm 1 and with
Hamming norm s ≥ 3. Let us solve the system

Xh1 + Y h2 = E(h1 + h2 + . . .+ hs),

Xh
[1]
1 + Y h

[1]
2 = E(h

[1]
1 + h

[1]
2 + . . .+ h

[1]
s ),

(4.65)

where h1, h2, . . . , hN are the elements of the first row of the check matrix. Then
the vector (X,Y, 0, . . . , 0) has Hamming norm 2 and belongs to the same coset as
the vector (E,E, . . . , E, 0, . . . , 0). Thus, in the Hamming metric, the modified
algorithm gets closer to the full decoding algorithm. The full algorithm corrects
22N − 1 error vectors of Hamming norms 1 and 2. The modified algorithm
corrects only (2N − 1)2 error vectors of norms 1 and 2, i.e., it does not correct
2N+1 − 2 double errors in comparison with the full algorithm.

Similar modifications are possible for codes with a larger distance as well,
however the complexity of the additional part of the algorithm grows fast with
the Hamming norm of correctable errors.
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5.1 Introduction

Rank metric codes can be described using either the matrix or the vector form.
We recall it here again since we are going to introduce a new class of rank metric
codes called symmetric rank codes.

Let Fq be a field consisting of q elements and Fqn be its extension of order n.
In this chapter we consider square code matrices only.
To obtain the matrix description consider a normed ring Mn(Fq) of n × n

square matrices over the base field Fq. The norm of a matrix G is its rank,
rank(G), and the rank distance d(G1, G2) between matrices G1, G2 is the rank of
their difference, d(G1, G2) = rank(G1−G2). Any subsetM⊆Mn(Fq) is called
a code. The code distance d(M) = d is the minimum pairwise distance between
code matrices, d = min{rank(G1 − G2) : G1, G2 ∈ M;G1 6= G2}. A code is
called Fq-linear, if any linear combination of code matrices with coefficients
from Fq also belongs to the code. The code obtained by transposing matrices
ofM is called the transposed code MT . The codesM andMT have the same
number of code matrices and the same code distance. IfM is Fq-linear then
MT is Fq-linear as well.

To get the vector description consider the normed space Fnqn of n-vectors over
the extension field Fqn . The norm or the rank of a vector g is the maximum
number r(g) of its components that are linearly independent over the base field
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Fq. The rank distance d(g1,g2) between vectors g1,g2 is the norm of their
difference, d(g1,g2) = r(g1 − g2). A code V ⊆ Fnqn is a subset of vectors Fnqn .
The code distance d(V) = d is the minimum pairwise distance between code
vectors, d = min{r(g1 − g2) : g1,g2 ∈ V; g1 6= g2}. The code V is Fq-linear if
any linear combination of code vectors with coefficients from Fq also belongs to
the code. The code V is Fqn-linear if any linear combination of code vectors
with coefficients from Fqn also belongs to the code, i.e., if V is a linear subspace
of the space Fnqn . Fq-linearity follows from Fqn-linearity, however, the inverse
statement is not true. For k = 1, 2, . . . , n there are known Fqn linear (n, k, d)-
codes with maximum possible rank distance (MRD) d = n− k+ 1. These codes
are k-dimensional subspaces of the space Fnqn .
Let Ω = {ω1, ω2, . . . , ωn} be a basis of the extension field Fqn over the base

field Fq. Let θ−1 : Fqn ⇒ F
n
q be the isomorphism from the field Fqn to the space

of column n-vectors over Fq. Elements of the basis are transformed to the linear
independent columns b1,b2, . . . ,bn ∈ Fnq , where bj = θ−1(ωj), j = 1, 2, . . . , n.

Let θ : Fnq ⇒ Fqn be the inverse transform θ(b) = β. Applying it to each
column of the matrixM ∈Mn(Fq) we obtain one to one mapping Θ : Mn(Fq)⇒
Kn

n of the space of (n× n)-matrices over Fq to the space of n-vectors over Fqn .
Obviously, the rank of matrix M after the transform Θ(M) = g coincides with
the rank of the vector g, i.e., rank(M) = r(g).

The transform Θ is isometric. Given a matrix codeM the transform allows
us to get the vector code using V = Θ(M). And vice versa, given a vector code
V, we get the matrix codeM = Θ−1(V) with the same distance properties.

Vector form is more convenient to describe rank metric codes and fast decoding
algorithms. Matrix form is useful in the systems with coded modulation, e.g.
in the theory of space-time codes.
Using a known rank metric code one can design a new code with the same

cardinality and code distance as follows. Given a code V in vector form, two
transforms θ and θ̃, and also connected with them transforms Θ and Θ̃. We
obtain a new code VT using the following chain of transforms

V Θ−1

−→M −→MT Θ̃−→ VT . (5.1)

The code VT we call the transposed code in vector form. Note that transforms
θ and θ̃ may be different.
The code VT has the same volume and the same rank-weight distribution

as the code V. However, if the code V is Fqn-linear (e.g. an MRD (n,k,d=n-
k+1)-code), then the code VT is not necessarily Fqn -linear, despite it remaining
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Fq-linear. This is a drawback of the construction, since fast decoding meth-
ods for such codes are not known. One can decode the corrupted code vec-
tor y = w + e, w ∈ VT , transforming it using (5.1) to the corrupted vector
z = v + ẽ, v ∈ V, and use a standard method for decoding V. However, in
this case the question arises: Why should we use the code VT at all? Another
disadvantage of Fq-linear codes is an increase in the size of a generator matrix
in comparison with Fqm-linear codes.
Let us demonstrate this with the following example.
Example 1. Let q = 2. For the code V we take the following one dimensional

Fqn-linear (n, 1, n)-code, n = 3.

V =
{(0, 0, 0), (1, α, α2), (α, α2, α3), (α2, α3, α4),
(α3, α4, α5), (α4, α5, α6), (α5, α6, 1), (α6, 1, α)},

where α is a root of the primitive polynomial f(λ) = λ3 +λ2 + 1. The generator
matrix of the code consists of a single row G = (1, α, α2), u = (u), u ∈ F23 , is an
one dimensional information vector, the code vectors are v = uG = (u, uα, uα2).
Let θ−1 be defined by 0 ↔ (0, 0, 0)T , 1 ↔ (1, 0, 0)T , α ↔ (0, 1, 0)T , α2 ↔

(0, 0, 1)T . Then the codeM is the following set of (3× 3)-matrices:

M0 =

0 0 0
0 0 0
0 0 0

,M1 =

1 0 0
0 1 0
0 0 1

,M2 =

0 0 1
1 0 0
0 1 1

 ,M3 =

0 1 1
0 0 1
1 1 1

,

M4 =

1 1 1
0 1 1
1 1 0

,M5 =

1 1 0
1 1 1
1 0 1

,M6 =

1 0 1
1 1 0
0 1 0

,M7 =

0 1 0
1 0 1
1 0 0

.
The transposed code in vector form using θ is

VT =
{(0, 0, 0), (1, α, α2), (α2, 1, α6), (α6, α2, α4),
(α4, α6, α3), (α5, α4, α3), (α3, α5, α), (α, α3, 1)}.

The code VT is Fq-linear, but it is not a linear space, i.e., it is not Fqn-linear.
A generator matrix of the code is

G =

 1 α α2

α2 1 α6

α6 α2 α4

 ,
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an information vector is u = (u1, u2, u3), u1, u2, u3 ∈ F2. Code vectors are
w = uG = (u1 + u2α

2 + u3α
6, u1α+ u2 + u3α

2, u1α
2 + u2α

6 + u3α
4).

The finite field Fqn can be described in terms of (n× n)-matrices A over the
field Fq such that powers Ai, i = 1, 2, . . . , qn − 1, correspond to all nonzero
elements of Fqn . In this chapter, we will show that for fields Fqn of characteristic
2 one can select a symmetric matrix A. We will show constructions of symmetric
matrices representing a field. Together with all-zero matrix these matrices form
a Fqn-linear code with maximum distance d = n and with maximum possible
volume qn for this distance. These codes are called symmetric rank codes. In
vector form, they are MRD (n, 1, n)-codes with maximum rank distance and
can be decoded using known methods of error correction in rank metric. For
the symmetric codes, we will suggest a method for erasure symmetrization that
allows for decreasing decoding complexity substantially in comparison with
standard approaches.

We will also show that a linear (n, k, d = n − k + 1) MRD code Vk that
includes the previously mentioned one-dimensional symmetric code as a subcode
has the following property: corresponding transposed code is Fqn-linear. Such
codes have increased capability to correct symmetric errors and erasures.

Given a linear (n, k, d = n− k + 1) MRD code V in vector form, can we find
transforms Θ and Θ̃ (if they exist) such that the transposed code VT in vector
form is also a linear (n, k, d = n− k + 1) MRD code?

A positive answer will be given for a special case (n, 1, d = n) MRD codes
and for fields Fqn of characteristic 2, i.e., q = 2r. From(5.1) it is easy to see:
if the set M consists of symmetric matrices, then M = MT and for Θ = Θ̃
we obtain V = VT . A linear (n, 1, d = n) MRD code V can be defined by a
single-row generator matrix

G = (g1, g2, . . . , gn),

where elements gj ∈ Fqn , j = 1, 2, . . . , n, are linearly independent over Fq.
In this case, the code consists of the all zero vector 0 and vectors αsG, s =
0, 1, . . . , qn − 2. We will show that there exist a single-row matrix G and a
transform Θ such that Θ−1(αsG) = As, where A is a symmetric matrix.
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5.2 Matrix and vector representations of exten-
sion finite fields

Let A ∈Mn(Fq).

Definition 2. A matrix A represents the field Fqn if the algebra of polynomials
Fq[A] is isomorphic to Fqn .

We say that the matrix A gives a primitive representation of the field if all
matrices As, s = 1, 2, . . . , qn − 1, are different. The following lemma gives a
characterization of such matrices.

Lemma 5.1. A matrix A ∈ Mn(Fq) gives a primitive representation of the
field Fqn if and only if its characteristic polynomial det(λIn −A) is a primitive
polynomial f(λ) over Fq of degree n,

f(λ) = λn + fn−1λ
n−1 + fn−3λ

n−2 + . . .+ f1λ
1 + f0. (5.2)

Recall the definition: A non-reducible over Fq polynomial f(λ) of degree n is
called primitive if f(λ) divides the binomial λq

n−1 − 1, but does not divide the
binomials λs − 1, 1 ≤ s ≤ qn − 2.

Proof. Let det(λIn − A) = f(λ), where f(λ) is primitive. Then f(A) = On,
where On is the n × n all zero matrix. Since the polynomial f(λ) divides
λq

n−1 − 1, but does not divide the binomials λs − 1, 1 ≤ s ≤ qn − 2, we
have Aq

n−1 = In, and all the matrices As, s = 1, 2, . . . , qn − 1, are different.
Moreover, all the matrices As can be written as linear combinations of matrices
In, A,A

2, . . . , An−1 using An = −fn−1A
n−1 − fn−2A

n−2 − . . . − f1A − f0In.
Hence, the algebra of matrix polynomials Fqn [A] is isomorphic to the field Fqn
obtained by joining a root α of the primitive polynomial f(λ) to the field Fq.
Thus, the matrix A gives primitive representation of the field Fqn .

The inverse is also true. Let the matrix A give primitive representation of
the field Fqn . Then the minimal polynomials of A and α are the same and they
coincide with a primitive polynomial f(λ). Since the characteristic polynomial
is divisible by the minimal polynomial and has the same degree and the same
leading coefficient, we get det(λIn −A) = f(λ). �
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Corollary 5.2. All the matrices A that represent the field Fqn are similar to
the matrix

C =


0 0 . . . 0 −f0

1 0 . . . 0 −f1

· · · · · · ·
0 0 . . . 0 −fn−2

0 0 . . . 1 −fn−1

 ,

i.e., A = QCQ−1, where Q ∈Mn(Fq) is a nonsingular matrix and f0, f1, . . . , fn−1

are coefficients of a monic primitive polynomial

f(λ) = λn + fn−1λ
n−1 + fn−3λ

n−2 + . . .+ f1λ
1 + f0.

Proof. Characteristic polynomials of similar matrices coincide. We have
det(λIn −C) = λn + fn−1λ

n−1 + fn−2λ
n−2 + . . .+ f1λ

1 + f0 = f(λ). Let A be
an n× n matrix with a characteristic polynomial det(λIn −A) = f(λ). Since
f(λ) is primitive, the sets of invariant polynomials of the matrices λIn − A
and λIn − C are the same: f(λ), 1, . . . , 1. Hence, according to the necessary
and sufficient condition [Gan67], the matrix A is similar to the matrix C, i.e.,
A = QCQ−1, where Q is a non-singular matrix over the base field Fq. �

LetM [j] denote the j−th column of a matrixM. Let A be a matrix that gives
primitive representation of the field Fqn . Define induced vector representation
of the field Fqn as follows

θ−1(0) = On[1],
θ−1(αs) = As[1],

θ(On[1]) = 0,
θ(As[1]) = αs, s = 0, 1, . . . , qn − 2.

. (5.3)

We say that this representation is agreed with the matrix A.

Lemma 5.3. Let c ∈ Fqn then

θ−1(αc) = Aθ−1(c),

where α is a primitive element of Fqn .

Proof. Since c = αs for some s, then θ−1(αc) = θ−1(α1+s) = A1+s[1] =
AAs[1] = Aθ−1(c). �

Recall: given a vector c = (c1, c2, . . . , cn) ∈ Fqn , we define

Θ−1(c) = (θ−1(c1), θ−1(c2), . . . , θ−1(cn)). (5.4)

66



5 Symmetric rank codes

Thus, Θ−1(c) = M is an (n× n)-matrix over the field Fq.
Clearly

Θ−1(αc) = AΘ−1(c) = AM,

and in general case

Θ−1(αsc) = AsΘ−1(c) = AsM, s = 1, 2, . . . . (5.5)

The inverse also holds:

Θ(AsM) = αsΘ(M) = αsc.

In addition, if c ∈ Fqn and R is an (n×m)-matrix over the field Fq, then

Θ−1(cR) = Θ−1(c)R = MR.

5.3 Symmetric matrices representing a field

Let us show that the matrix A representing the field Fqn , q = 2n, of characteristic
2 can be selected to be symmetric1. The first such construction was suggested
in [GP02] for fields of characteristic 2, and it uses 2n− 1 free parameters. Here
we describe a simpler construction with n free parameters only [GP04, GP06].

5.3.1 Auxiliary matrices and determinants

All operations are in a field F of characteristic 2.
Let Dn(λ) be the tridiagonal λ−matrix of order n, with λ on the main

1Examples show that for n = 2, 3 one can find symmetric matrices representing the field of

arbitrary characteristic p. For example, the matrix A =

(
1 1
1 0

)
represents the field F32 .

However, a general construction is not known. The fields of characteristic 0 cannot be
represented by symmetric matrices.
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diagonal and 1 in the neighboring positions

Dn(λ) =



λ 1 0 . . . 0 0 0
1 λ 1 . . . 0 0 0
0 1 λ . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . λ 1 0
0 0 0 . . . 1 λ 1
0 0 0 . . . 0 1 λ


. (5.6)

The determinant of this matrix is denoted by dn(λ).
Let Hn(λ) be the tridiagonal λ−matrix of order n, where the last element of

the main diagonal is λ+ 1:

Hn(λ) =



λ 1 0 . . . 0 0 0
1 λ 1 . . . 0 0 0
0 1 λ . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . λ 1 0
0 0 0 . . . 1 λ 1
0 0 0 . . . 0 1 λ+ 1


. (5.7)

Denote the determinant of this matrix by hn(λ). Let us define d−1(λ) =
0, d0(λ) = 1, h−1(λ) = 1, h0(λ) = 1. It is easy to see that d1(λ) = λ, h1(λ) =
λ+ 1.

The determinants dn(λ) and hn(λ) can be computed recurrently

dn(λ) = d1(λ)dn−1(λ) + dn−2(λ), n ≥ 2;
hn(λ) = d1(λ)hn−1(λ) + hn−2(λ), n ≥ 2.

(5.8)

Further, using (5.8) repeatedly, we get for s ≥ 1

dn(λ) = ds(λ)dn−s(λ) + ds−1(λ)dn−s−1(λ), n ≥ 2;
hn(λ) = ds(λ)hn−s(λ) + ds−1(λ)hn−s−1(λ), n ≥ 2.

(5.9)

5.3.2 The main construction

In fields of characteristic 2, every element is a square of another. Select
the elements an−1, an−2 = b2n−2, an−3 = b2n−3, . . . , a0 = b20 ∈ F. Let b =
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(bn−2, bn−3, . . . , b0). Consider the following bordered symmetric matrix:

A =

(
an−1 b
bT Hn−1(0)

)
=



an−1 bn−2 bn−3 bn−4 . . . b2 b1 b0
bn−2 0 1 0 . . . 0 0 0
bn−3 1 0 1 . . . 0 0 0
bn−4 0 1 0 . . . 0 0 0
...

...
...

...
. . .

...
...

...
b2 0 0 0 . . . 0 1 0
b1 0 0 0 . . . 1 0 1
b0 0 0 0 . . . 0 1 1


.

(5.10)
Let

g(λ) = λn + gn−1λ
n−1 + gn−3λ

n−2 + . . .+ g1λ
1 + g0 (5.11)

be an arbitrary monic polynomial of degree n over F.

Theorem 5.4. There exists a matrix (5.10) with a characteristic polynomial
g(λ).

Proof. Let us compute the characteristic polynomial of A

χn(λ) = det(λIn +A) = det

(
λ+ an−1 b

bT Hn−1(λ)

)

= det



λ+ an−1 bn−2 bn−3 bn−4 . . . b2 b1 b0
bn−2 λ 1 0 . . . 0 0 0
bn−3 1 λ 1 . . . 0 0 0
bn−4 0 1 λ . . . 0 0 0
...

...
...

...
. . .

...
...

...
b2 0 0 0 . . . λ 1 0
b1 0 0 0 . . . 1 λ 1
b0 0 0 0 . . . 0 1 λ+ 1


.

(5.12)

By decomposing the determinant using elements of the first row, and then
decomposing the determinants obtained using elements of the first column, after

69



5 Symmetric rank codes

simplifications we obtain

χn(λ) = (λ+ an−1)hn−1(λ) + b2n−2hn−2(λ) + b2n−3d1(λ)hn−3(λ) + . . .
+b21dn−3(λ)h1(λ) + b20dn−2(λ)
= (λ+ an−1)hn−1(λ) + an−2hn−2(λ) + an−3d1(λ)hn−3(λ) + . . .
+a1dn−3(λ)h1(λ) + a0dn−2(λ),

(5.13)
where polynomials hi(λ) and di(λ) are defined by (5.8).

The relation (5.13) shows that the characteristic polynomial χn(λ) is a linear
combination of polynomials

(λhn−1(λ), hn−1(λ), hn−2(λ), d1(λ)hn−3(λ), . . . , dn−3(λ)h1(λ), dn−2(λ))
(5.14)

with coefficients

(1, an−1, an−2, . . . , a1, a0). (5.15)

Let us show that the polynomials (5.14) are linearly independent over F. The
polynomial λhn−1(λ) has degree n, the polynomial hn−1(λ) has degree n− 1,
and the rest of the polynomials

(hn−2(λ), d1(λ)hn−3(λ), . . . , dn−3(λ)h1(λ), dn−2(λ)) (5.16)

have degree n−2. It is sufficient to show the linear independency of polynomials
(5.16). Let us add the polynomial hn−2(λ) in the system (5.16) to all the other
polynomials ds(λ)hn−2−s(λ), s = 1, 2, . . . , n− 2. Using (5.9), we get hn−2(λ) +
ds(λ)hn−2−s(λ) = ds−1(λ)hn−3−s(λ), where the degrees of polynomials
ds−1(λ)hn−3−s(λ) are n− 4. As a result, the system of polynomials (5.16) is
transformed to the system

(hn−2(λ), hn−4(λ), d1(λ)hn−5(λ), . . . , dn−5(λ)h1(λ), dn−4(λ), dn−3(λ)).
(5.17)

The first polynomial hn−2(λ) of the system has degree n − 2, the last one,
dn−3(λ), has degree n− 3, the remaining polynomials

(hn−4(λ), d1(λ)hn−5(λ), . . . , dn−5(λ)h1(λ), dn−4(λ))

have degree n− 4 and are similar to (5.16). By iterative continuation of this
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procedure, we reduce the system (5.16) to the system

(hn−2(λ), hn−4(λ), hn−6(λ), . . . , h2(λ), h0(λ), d1(λ), d3(λ), . . . , dn−3(λ))
for even n, and

(hn−2(λ), hn−4(λ), hn−6(λ), . . . , h1(λ), d0(λ), d2(λ), d4(λ), . . . , dn−3(λ))
for odd n.

(5.18)
All the polynomials in this system have different degrees and hence they are
linearly independent over F.
We proved that the system of polynomials (5.14) is linearly independent.

Hence, there exists a nonsingular matrix Mn of order n with elements 0 and 1,
such that

(λhn−1(λ), hn−1(λ), hn−2(λ), d1(λ)hn−3(λ), . . . , dn−3(λ)h1(λ), dn−2(λ))T

= Mn(λn, λn−1, λn−2, . . . , λ, 1)T .
(5.19)

The rows of the matrix Mn are formed by coefficients of the corresponding
polynomials from the left part of (5.19).

Thus, for a given polynomial (5.11), elements of the symmetric matrix (5.10)
with this characteristic polynomial can be obtained by

(1, an−1, an−2, . . . , a1, a0) =
(1, gn−1, gn−2, . . . , g1, g0)M−1

n
(5.20)

and taking the square root of as, s = 1, 2, . . . , n− 1, defined earlier. �
In particular, if the polynomial (5.11) coincides with the primitive polynomial

(5.2) then the matrix A represents the field Fqn .

Example 5. Let q = 4, Fq = F4, n = 2, Fq2 = F16. Let t be a primitive element
of the field Fq, i.e, t2 + t+ 1 = 0. The polynomial f(λ) = λ2 + λ(t+ 1) + (t+ 1)
is primitive over Fq. The symmetric matrix

A =

(
t t
t 1

)
represents the field Fq2 = F16 since it has the characteristic polynomial f(λ).

Example 6. Let q = 2, Fq = F2, n = 4, Fq4 = F16. The polynomial f(λ) =
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λ4 + λ3 + 1 over Fq is primitive. The symmetric matrix

A =


0 0 1 1
0 0 1 0
1 1 0 1
1 0 1 1


has the characteristic polynomial f(λ) and hence A represents the field F16.

5.3.3 Other constructions

Let n = ms. Then the field Fqn can be defined by an irreducible over Fqm
primitive polynomial or degree s. Let a symmetric matrix A ∈Ms(Fqm) of order
s represent the field Fqn . In turn, let a symmetric matrix B ∈Mm(Fqs) of order
m represent the field Fqm . Let us replace every element of the matrix A by
corresponding symmetric matrix of order m. As a result we obtain a symmetric
matrix D of order ms = n with elements from Fq. The characteristic polynomial
of the matrix will be irreducible. If it is also irreducible then D represents
Fqn . Otherwise, one can consider a linear combination of powers of the matrix
D that has a primitive characteristic polynomial (frequently it is sufficient to
consider the matrix D + In).

Example 7. The matrix B =

(
0 1
1 1

)
represents the field F4. We replace

elements in the matrix A of Example 5 by corresponding powers of the matrix
B:

A =

(
t t
t 1

)
→ D =


0 1 0 1
1 1 1 1
0 1 1 0
1 1 0 1

 .

The characteristic polynomial of the matrix D is λ4 + λ+ 1, hence D represents
the field GF (16), since the characteristic polynomial is primitive over F2.
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5.4 Codes based on symmetric matrices

Let a symmetric matrix A ∈Mn(Fq) primitively represent the field Fqn . Consider
the matrix codeM that consists of qn matrices

M =
{
On, In, A,A

2, . . . , Aq
n−2
}
. (5.21)

Lemma 5.5. The codeM is an Fq−linear MRD code with rank code distance
d = n.

Proof. Since A represents Fqn , an Fq−linear combination of matrices fromM
belongs toM. The difference of any two different matrices fromM is a nonzero
matrix from M and has rank n. The code volume is maximum possible for
the code distance d = n, since the code parameters reach the Singleton bound.
VolumeM of the code is maximum possible for the distance d = n, since any
code with cardinality more than qn has a pair of matrices, such that their
difference has all-zero row, hence the distance between them is less than n. �

Let us transform the matrix code M to the vector code V1 using a vector
representation of the field (5.3) agreed with the matrix A.

Lemma 5.6. The vector code V1 is Fqn-linear (n, 1, n) MRD code.

Proof. Take the vector Θ(In)

g0 = (g1, g2, . . . , gn) = Θ(In) (5.22)

as the only row of the generator matrix. Fqn-linear (n, 1, n) MRD code V1,
generated by this matrix, consists of the vectors

0,g0, αg0, α
2g0, . . . , α

qn−2g0. (5.23)

According to (5.5) we have: Θ−1(αg0) = AΘ−1(g0) = AIn = A and similarly
Θ−1(αsg0) = AsΘ−1(g0) = AsIn = As, s = 2, . . . , qn − 2. This proves that the
vector linear code (5.23) is the preimage of the matrix code (5.21). �

Obviously, the transposed code VT1 coincides with V1 and hence is linear too.
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5.5 Erasure correction

It is appropriate to explain rank erasures for the matrix form of a code. For
general MRD codes joint error and erasure correction was considered in Chapter
4.

In applications, a code vector should be converted to a matrix form, and
every element of the matrix is transmitted over a channel. The receiver makes a
hard decision about every element. Only after this, is the matrix converted to a
vector to be used by an algebraic decoder. The received matrix is Y = M + E,
where M is a code matrix and E is an error matrix, which will also be called
a rank error. If rank(E) ≤ (d− 1)/2, then the algebraic decoder corrects this
error.

Sometimes, while making the hard decision the unreliability of every symbol
can be estimated. Then the matrix of unreliabilities Z can be used for decoding
together with the matrix Y . An element zij of the matrix Z shows the unrelia-
bility of the element yij of the matrix Y . We consider an idealized case where
the matrix Z consists of zeroes and ones only. The value zij = 0 shows that the
decision about yij is correct. The value zij = 1 means that the decision about
yij can be wrong. In this case, we assume that the symbol was erased, despite,
in fact, some decision about the symbol having been made. In this case, we call
the matrix E rank erasure. The decoder obtains the matrix Y and the matrix
Z of reliabilities, and hence it knows the error free positions. The matrix E has
zeros at these positions, known to the decoder. We say that such a matrix E is
agreed with the matrix of unreliabilities Z.

The rank of erasure is the rank of the matrix E. Consider all the matrices E
agreed with the matrix Z. Let rmax(Z) denote the maximum possible rank of
the matrix E. Obviously, a code with rank distance d corrects rank erasure E
agreed with the matrix Z if rmax(Z) ≤ d− 1.

To estimate rmax(Z) it is convenient to use the concept of the term rank of a
matrix from combinatorics.
The term rank of a matrix A, denoted by termrank(A), is the maximum

number t of nonzero elements in the matrix such that no two of them belong to
one line (row or column).

Lemma 5.7. The term rank of a (0, 1)-matrix Z is the minimum number t of
lines (rows and columns) that contain all nonzero elements of the matrix Z.

Using this lemma we obtain
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Lemma 5.8. rmax(Z) = termrank(Z).

Proof. We have rank(E) ≤ termrank(E). For any matrix E, agreed with the
matrix Z, it holds that termrank(E) ≤ termrank(Z). Hence, on the one hand
it follows that

rmax(Z) ≤ termrank(Z).

On the other hand, let termrank(Z) = t. Then there are t positions with
nonzero elements in Z such that no two of them belong to one line. Take a
matrix E agreed with Z that has nonzero elements at these positions and zeros
elsewhere. The rank of E is t, hence

rmax(Z) ≥ termrank(Z)

and the statement of the lemma follows. �

Consider erasure correction using the code V1, defined by (5.21) and (5.22).
Denote [j] = qj if j ≥ 0 and [j] = qn+j if j < 0. The expression g[j] = gq

j

is called j-th Frobenius power of the element g. In particular, g[n] = gq
n

= g.
Frobenius power of a vector is computed componentwise.
For decoding we will use the following check matrix Hn−1 = (h

[i]
j ), i =

0, 1, . . . , n− 2, j = 1, 2, . . . , n, such that g0H
T
n−1 = 0.

Let y = αsG+e be the received signal in vector form where e = (e1, e2, . . . , en)
denotes the vector form of the rank erasure E. Calculation of the syndrome
gives the system of n− 1 equations over the field Fqn :

n∑
j=1

ejh
[i]
j = si, i = 0, 1, . . . , n− 2.

Since the positions of possible errors in the matrix E are known, the system
can be rewritten as a system with n(n− 1) linear equations over the base field,
considering possible errors as unknowns. The number of unknowns depends on
the configuration of the matrix E. If the rank of erasure is n− 1 and errors are
in n− 1 rows or in n− 1 columns, then the number of unknowns is maximal
and equals n(n− 1). In this case the complexity to obtain a solution is maximal.
If the rank of erasure is n− 1 and errors are in bn/2c rows and in b(n− 1)/2c
columns, then the number of unknowns s is s = n(n− 1)− bn/2cb(n− 1)/2c,
i.e., it is decreased by approximately a quarter. Thus, the syndrome decoding
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of erasures can be reduced to solving a system of n(n − 1) linear equations
with n(n − 1) unknowns at most. The complexity decreases with decreasing
the number of unknowns.
In the case of symmetric rank codes, the number of unknowns can be sub-

stantially decreased using a trick that we call symmetrization of rank erasures
Let Y = M +E be a received signal in matrix form and E be a rank erasure.

Additional information about errors can be obtained by computing the matrix
Q = Y +Y T = M+MT+E+ET . Since for symmetric codesM = MT , M ∈M,
we have for fields of characteristic 2: M +MT = On, therefore we know

Q = Y + Y T = E + ET .

The matrix of unreliabilities Z shows the positions of zeroes in the matrix
E. This allows us, during analysis of the matrix E + ET , to obtain part of the
errors directly and obtain additional information for another part.
Let us show the possible situations by the following example.
Example 5. Let n = 4, d = 4 and let the matrix of unreliabilities be

Z =


1 1 1 1
1 1 1 1
0 0 0 1
0 0 0 1

 .

This means that the matrix of errors is

E =


a1 a2 a3 a4

a5 a6 a7 a8

0 0 0 a9

0 0 0 a10

 ,

and it has the rank d − 1 = 3 at most. In total, the matrix has ten binary
unknowns ai at known positions. Then we have

Q = E + ET =


0 a2 + a5 a3 a4

a5 + a2 0 a7 a8

a3 a7 0 a9

a4 a8 a9 0

 .

From this matrix, we immediately obtain the error values a3, a4, a7, a8, a9. We
also know the sum a2 + a5 = b. However, the matrix Q has no information
about “diagonal” errors a1, a6, a10.
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Let us modify the received matrix Y by adding the upper triangular known
matrix

R =


0 b a3 a4

0 0 a7 a8

0 0 0 a9

0 0 0 0

 .

We obtain

Ymod = Y +R = M + E +R = M + Emod,

where

Emod =


a1 a5 0 0
a5 a6 0 0
0 0 0 0
0 0 0 a10


is a symmetric error matrix, which has only four unknown error values at known
positions. We call this procedure symmetrization of erasures.
The matrix Ymod can be decoded using the syndrome correction of erasures.

The preliminary symmetrization decreased the number of unknowns from 10 to
4.

Remark. In the class of codes under consideration, any line (row or column)
of a code matrix is an information set. If for every known line we precompute
the rest of the code matrix, then the decoding can be simplified when one of
lines in the received matrix is error free. In Example 5, after symmetrization
we have the error matrix that has zero lines (the third row or column), hence
the syndrome decoding can be avoided.
In the general case, the symmetrization decreases the number of unknowns

by at least half. For the case where erasure rank is d− 1 = n− 1 and all errors
are in n − 1 rows, the symmetrization decreases the number of unknowns to
n(n− 1)/2 in comparison with n(n− 1) without symmetrization.
Let n = 2s + 1. If the erasure rank is n − 1 and the errors are in the first

s rows and the last s columns then after the symmetrization the number of
unknowns decreases from (3n2−2n−1)

4 to (n2−1)
4 , i.e., making it approximately

three times smaller.
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5.6 Codes with subcodes of symmetric matrices

Consider the Fqn-linear rank (n, k, d = n − k + 1) MRD code Vk with the
generator matrix

Gk =


g1 g2 · · · gn

g
[1]
1 g

[1]
2 · · · g

[1]
n

· · · · · ·
g

[k−1]
1 g

[k−1]
2 · · · g

[k−1]
n

 . (5.24)

As the first row of this matrix we take the vector g0 from (5.22).
A code Vk is based on symmetric matrices if it contains a one-dimensional

subcode V1 of symmetric matrices.
Let the transposed code VTk be obtained using the transforms Θ and Θ−1

defined by (5.3) and (5.4). We will show that the code VTk is also Fqn -linear and
it is based on symmetric matrices. Moreover, the joint use of codes Vk and VTk
allows us to correct symmetric errors (erasures) beyond the bound b(d− 1)/2c
( d− 1 respectively).
Auxiliary results. Denote by

gi = (g
[i]
1 , g

[i]
2 , . . . , g

[i]
n ), i = 0, 1, 2, . . . , n− 1,

the vectors obtained by Frobenius powers of the vector g0 = (g1, g2, . . . , gn).
These vectors are linearly independent over Fq.

The components of every vector gi form a basis of the field Fqn over Fq.
Hence, there exists a nonsingular matrix D ∈ Mn(Fq) such that g1 = g0D.
From here it follows that gi = g0D

i. Besides, Di 6= In if i ≤ n−1, but Dn = In,
since gn = g0D

n = (g
[n]
1 , g

[n]
2 , . . . , g

[n]
n ) = (g1, g2, . . . , gn) = g0. In matrix form,

the vectors gi are as follows

Gi = Θ−1(gi) = Di. (5.25)

Recall that A is a symmetric matrix representing the field.

Lemma 5.9. The following relations hold

g0A = αg0, (5.26)
g1A = αqg1, (5.27)
DA = AqD, (5.28)

DrAs = Asq
r

Dr, r = 0, 1, . . . , n− 1, s = 0, 1, . . . , qn − 2. (5.29)
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Proof. To prove (5.26) we apply to its both parts the transform Θ−1:
Θ−1(g0A) = Θ−1(g0)A = InA = A. On the other hand according to (5.5) we
obtain Θ−1(αg0) = AΘ−1(g0) = AIn = A.

The relation (5.27) follows from (5.26) if we raise both parts of (5.26) to the
first Frobenius power and take into account that A ∈Mn(Fq). We obtain (5.28)
if we apply the transform Θ to both parts of (5.27).
The relation (5.29) follows from (5.28) if we separate factors DA in the left

part of (5.29) and use (5.28). �

Lemma 5.10. The matrices D and DT are connected by the relation

DT = AmDn−1, (5.30)

where m is an integer.

Proof. Transpose matrices in (5.28) and take into account that A is a symmetric
matrix, then we obtain DTAq = ADT . Left multiply both parts of (5.28) by
the matrix DT and obtain DTDA = DTAqD = ADTD. It follows from here
that the matrix DTD commutes with the matrix A. Since all eigenvalues of the
matrix A (in some field extension) are different, the matrix DTD can only be a
polynomial in A and hence it is a power m of A [Gan67]. �

Matrix form of the code Vk. A generator matrix of the code Vk consists of
the first k vectors gj , j = 0, 1, . . . , k−1.Write components of an information vec-
tor u = (u0, u1, . . . , uk−1) as powers of α, i.e., u = (ε0α

s0 , ε1α
s1 , . . . , εk−1α

sk−1).
Here the coefficients εj equal zero if uj = 0 and equal 1 if uj 6= 0. Then the
code vector corresponding to the information vector u is

g(u) =

k−1∑
j=0

εjα
sjgj .

Let us convert this vector to the matrix M(u) using (5.5) and (5.25):

M(u) = Θ−1(g(u)) =

k−1∑
j=0

εjA
sjDj . (5.31)

The set of matricesM = {M(u)} from (5.31) for the all possible information
vectors u define the code Vk in matrix form.
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Matrix and vector forms of the transposed code. Let us obtain the
transposed matrix codeMT =

{
M(u)T

}
:

M(u)T =

k−1∑
j=0

εj(D
j)TAsj .

Using (5.30) and (5.29) and changing the order of summation we obtain

M(u)T =

n∑
i=n−k+1

εn−iA
miDi,

where

mi = sn−iq
i +m(qi+1 + qi+2 + · · ·+ qn),

i = n− k + 1, n− k + 2, . . . , n− 1, mn = s0q
n.

Let us obtain the transposed code in vector form using the transform Θ:

g̃(u) = Θ(M(u)T ) =

n∑
i=n−k+1

Θ(εn−iA
miDi) =

n∑
i=n−k+1

εn−iα
migi. (5.32)

The vector (5.32) can be considered as a code vector of the Fqn -linear [n,k,d=n-
k+1] MRD code VTk with the generator matrix

G̃k =


g

[n−k+1]
1 g

[n−k+1]
2 · · · g

[n−k+1]
n

g
[n−k+2]
1 g

[n−k+2]
2 · · · g

[n−k+2]
n

· · · · · ·
g

[n]
1 g

[n]
2 · · · g

[n]
n


and with the information vector ũ = (εk−1α

m0 , εk−2α
m1 , . . . , ε0α

mk−1). This
code contains one dimensional subcode V1 defined by the last row of G̃k and
consisting of symmetric matrices.
Thus, we have proved that the transposed code VTk is also Fqn-linear and it

is based on symmetric matrices.
Joint decoding using both Vk and VTk . Let a check matrix of the code
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Vk be written as follows

Hn−k =



h1 h2 · · · hn

h
[1]
1 h

[1]
2 · · · h

[1]
n

h
[2]
1 h

[2]
2 · · · h

[2]
n

· · · · · ·
h

[d−2]
1 h

[d−2]
2 · · · h

[d−2]
n


. (5.33)

It can be shown that a check matrix of the code VTk can be written as follows

H̃n−k =



h
[d]
1 h

[d]
2 · · · h

[d]
n

h
[d+1]
1 h

[d+1]
2 · · · h

[d+1]
n

h
[d+2]
1 h

[d+2]
2 · · · h

[d+2]
n

· · · · · ·
h

[2d−2]
1 h

[2d−2]
2 · · · h

[2d−2]
n


. (5.34)

First, consider correction of rank errors. Let y = g(u) + e be a received signal
in vector form, where e = (e1, e2, . . . , en) is the error in vector form. Let E be
the same error in matrix form.
For the transposed code we have ỹ = g̃(ũ) + ẽ, where ẽ = (ẽ1, ẽ2, . . . , ẽn) is

the error vector, the matrix form of which is Ẽ = ET . For decoding we compute
two syndromes r = yHT

n−k = eHT
n−k and r̃ = ỹ H̃T

n−k = ẽ H̃T
n−k. Using both

syndromes does not give any advantage in comparison with standard decoding
methods in general. One of these syndromes is sufficient for decoding. If the
rank of an error is at most t = (d − 1)/2 then it will be corrected using the
syndrome r.
However, to correct errors of a special class, it can be useful to use both

syndromes. One class of such errors is the class of symmetric errors, i.e., errors
having symmetric matrix: E = Ẽ = ET , or equivalently e = ẽ. In this case, one
can use the joint syndrome

R = (r, r̃) = (eHT
n−k, ẽ H̃T

n−k) = (eHT
n−k, e H̃T

n−k).

The syndrome R can be considered as the syndrome of the code that has a
check matrix consisting of different rows of both matrices (5.33) and (5.34).
Depending on the code rate, there are two cases:
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1. Let 2d− 2 < n, i.e., R = k/n > 1/2. Then all rows of both matrices are
different. The corresponding code can have a distance up to D = 2d− 1,
hence, symmetric errors of rank up to (D− 1)/2 = d− 1 can be corrected
using the syndrome R.

2. Let 2d− 2 ≥ n, i.e., R = k/n ≤ 1/2. Then the number of different rows in
both matrices is n− 1. The corresponding code has the distance D = n,
and symmetric errors of rank up to (n− 1)/2 can be corrected using the
syndrome R.

Similar results hold for correction of symmetric rank erasures. If R = k/n >
1/2 then for some codes, symmetric erasures of rank up to D − 1 = 2d− 2 can
be corrected using the syndrome R. If R = k/n ≤ 1/2 then symmetric erasures
of rank up to n− 1 can be corrected using the syndrome R.

5.7 Conclusions

We have shown that finite fields of characteristic 2 can be defined by symmetric
matrices, and we have presented a matrix code with maximum possible distance
and volume.
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Rank metric codes in network coding

6.1 Principles of network coding

Network coding is a relatively new research field. It is based on modification of
information flow in a ordinary network. Formally, a communication network can
be described as a finite directed graph, where vertices (nodes) can be connected
by more than one edge. A vertex without input edges is called a source node.

Consider the following model. A communication network consists of vertices
connected by communication channels (lines). Information is transmitted over
each channel without distortions with a rate up to the channel capacity. Data
from a source vertex should be transmitted to a set of fixed destination nodes.
The natural question is: Given the restrictions above on the communication
channels, can this problem be solved and how can it be done efficiently?
Existing computer networks transmit messages (packets) from a source to

destinations using a number of intermediate nodes working on the principle
“receive and forward”. An intermediate node receives a packet from an input line,
stores it in a buffer, and then sends copies of the packet via output lines that
can deliver the packet to destinations possibly using other intermediate nodes.
No other processing of packets at intermediate nodes is assumed. The optimal
routing problem should be solved for this traditional approach. A simple model
of a traditional network consists of one source, one destination, and a number
of intermediate nodes.

83



6 Rank metric codes in network coding

The concept “network coding” was introduced in 2000 [ANLY00]. The authors
consider packets as vectors over finite fields and assume that intermediate nodes
can compute linear combinations of received packets. In the new model, an
intermediate node is responsible for the following operations:

• receive packets;

• store them in a buffer;

• compute linear combinations of received packets;

• send the linear combinations to a next node.

Transmission of linear combinations of packets makes it possible to increase the
network capacity: the maximum number of packets that can be transmitted to a
destination per time unit. In the case of multiple destinations, the transmission
time is the minimum time until all the destinations have received all the
transmitted packets. The authors of [ANLY00] were the first to show by an
example that network coding can increase the capacity of a network.
The possibility of increasing network capacity aroused considerable interest

among researchers. In a number of publications, linear combinations of packets
were considered with both random and deterministic coefficients. It was shown
that the problems of network coding intersect with problems of error correcting
codes and with general information theory. The first publications assumed that
network coding should depend on the known topology of a network. This was
not convenient for both theory and practice.
A new approach based on the subspace metric was suggested in 2007 by

Kötter and Kschischang [KK08]. Soon after this, Silva, a PhD student of
Kschischang,joined the research team. In their research, Silva, Kötter, and
Kschischang [SKK08] considered linear combinations of packets with random
coefficients. Such network coding was called random network coding. Later it
was also called non-coherent coding. Network coding with known coefficients
was called non-coherent. Silva, Kötter, and Kschischang show that problems of
subspace coding can be reduced to problems of algebraic coding, such as design-
ing codes in a given metric, obtaining bounds for optimal codes, constructing
coding and decoding algorithms. They used Gabidulin rank metric codes for
error correction in networks.
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6.2 Spaces and subspaces

Before we describe subspace network codes let us recall main definitions con-
nected with spaces and subspaces [Sag10].

6.2.1 Linear vector spaces

A linear vector space over the finite field Fq is a set of vectors V that satisfies
the following conditions.

• The set V is an abelian additive group.

• For any γ ∈ Fq and v ∈ V it holds that γv ∈ V .

• Axioms of distributivity are satisfied: if γ ∈ Fq and v, u ∈ V , then
γ(u+ v) = γu+ γv; if γ, λ ∈ Fq and v ∈ V , then (γ + λ)v = γv + λv.

• Associativity of multiplication: (γλ)v = γ(λv).

Elements γ, λ ∈ Fq are called scalars.
The maximum number of linearly independent vectors of a space is called its

dimension, and a set of such vectors is called a basis of the space.
A subset of a space is called a subspace if this subset satisfies the conditions

of a space.
Denote by WN,q a fixed N -dimensional vector space over the finite field Fq

and by P(WN,q) denote the set of all subspaces in WN,q.
The dimension of an element V ∈ P(WN,q) is denoted by dim(V ). There are

subspaces of dimensions 0, 1, . . . , N . The subspace O of dimension 0 consists
of a single all zero N -vector. An m-dimensional subspace V consists of qm
vectors of length N over the field Fq. It can be viewed as a row space of an
n × N matrix M(V ) of rank m over Fq, where n ≥ m. The matrix M(V ) is
called a generator matrix of m-dimensional subspace V and it is not unique.
Let T be a nonsingular square matrix of order n over the field Fq, then the
row space of the matrix TM(V ) coincides with the subspace V . Hence, the
matrix TM(V ) is a generator matrix of the subspace V as well. Obviously, the
dimension of the subspace and the rank of a generator matrix are equal, i.e.,
dim(V ) = Rk(M(V )), where Rk(A) denotes the rank of matrix A. If n = m,
then the matrix M(V ) is called a basic generator matrix.
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6.2.2 Subspace metric

Let us define two operations on the set P(WN,q).
The sum of two subspaces U, V ∈ P(WN,q) is defined as a unique subspace

C ∈ P(WN,q) of minimum dimension containing both subspaces U and V . The
sum is denoted by C = U ]V . If U and V are given by their generator matrices
M(U) and M(V ), then the subspace C = U ] V coincides with the row space
of the following block matrix

M(C) =

[
M(U)
M(V )

]
.

The dimension dim(C) of the sum can be computed as rank of the block matrix

dim(C) = Rk(M(C)) = Rk

([
M(U)
M(V )

])
.

The product also called the intersection of two subspaces U, V ∈ P(WN,q)
is defined as a unique subspace C ∈ P(WN,q) of maximum dimension that is
contained simultaneously in both subspaces U and V . The product is denoted
by C = U ∩ V .

Kötter and Kschischang [KK08] use the following metric on the set P(WN,q).
The subspace distance between subspaces U and V is defined as

d(U, V ) = dim(U ] V )− dim(U ∩ V ). (6.1)

Since dim(U ] V ) = dim(U) + dim(V )− dim(U ∩ V ), the following equalities
hold

d(U, V ) = dim(U) + dim(V )− 2 dim(U ∩ V ),

d(U, V ) = 2 dim(U ] V )− dim(U)− dim(V ).
(6.2)

If M(U) and M(V ) are generator matrices of subspaces U and V , then

d(U, V ) = Rk(M(U)) + Rk(M(V ))− 2 dim(U ∩ V ),

d(U, V ) = 2Rk

([
M(U)
M(V )

])
− Rk(M(U))− Rk(M(V )).

(6.3)

The function of distance has values {0, 1, 2, . . . , N}.

86



6 Rank metric codes in network coding

It should be noted that implicitly this metric can be obtained from the
papers of Delsarte [Del76], [Del78], or from Ceccherini [Cec84], and also from
the paper by Barg and Nogin [BN06], however, these papers do not mention
communication networks.

Notice that the subspace distance is not invariant with respect to the sum of
subspaces. For example, the distance between O and WN,q is d(O,WN,q) = N .
Let Z ∈ P(WN,q) be a subspace of a positive dimension. Add it to O and to
WN,q. We get O ] Z = Z, WN,q ] Z = WN,q. Hence, d(O ] Z,WN,q ] Z) =
d(Z,WN,q) = N − dim(Z) < d(O,WN,q) = N . In the general case

d(U, V ) ≥ d(U ] Z, V ] Z).

6.2.3 Grassmannian

The set of all l-dimensional sub-spaces of N -dimensional vector space P(WN,q)
over the field Fq is called the Grassmannian Gl(N, q). The cardinality of a
Grassmannian is given by Gaussian binomial coefficients

[
N
l

]
q
defined for

l = 0, 1, . . . , N as follows[
N
l

]
q

=

{
1, if l = 0;
(qN−1)(qN−q)···(qN−ql−1)

(ql−1)(ql−q)···(ql−ql−1)
, if 1 ≤ l ≤ N .

(6.4)

The Gaussian binomial coefficients satisfy[
N
l

]
q

=

[
N

N − l

]
q

, l = 0, . . . , N ;[
N
l

]
q

= ql
[
N − 1
l

]
q

+

[
N − 1
l − 1

]
q

;[
N
0

]
q

<

[
N
1

]
q

< · · · <
[
N⌊
N
2

⌋]
q

.

(6.5)

The cardinality of the Grassmannian Gl(N, q) is given by the l-th Gaussian
coefficient

|Gl(N, q)| =
[
N
l

]
q

. (6.6)

87



6 Rank metric codes in network coding

The space P(WN,q) can be written as

P(WN,q) =

N⋃
l=0

Gl(N, q).

The cardinality of P(WN,q) is

L = |P(WN,q)| =
N∑
l=0

[
N
l

]
q

. (6.7)

6.3 Subspace codes

Let us consider the set P(WN,q) as a code alphabet or as a signal space.
A nonempty subset of C ⊆ P(WN,q) is called a code. Code cardinality |C| is

the number of elements (codewords), which is the number of subspaces in this
case. The minimum distance of the code C is d(C) = min

U,V ∈C:U 6=V
d(U, V ). The

maximum dimension of code elements is l(C) = max dim(V ), (V ∈ C), where
dimV is dimension of the subspace V . The code rate is defined as R =

logq(|C|)
Nl(C) .

The main problem of coding theory for this metric is to design codes with a
given distance. In [SKK08], some code classes for subspace metric are proposed,
including codes with distance 2 (not optimal), and also code constructions that
are similar to Reed-Solomon codes in rank metric. The two last constructions
are essentially the same. In all these codes, every codeword (subspace) has the
same dimension.

6.3.1 Kötter-Kschischang model

Consider a network with one source and one destination. The source should
transmit n row vectors (packets) X(1), . . . , X(n) of length n+m over the field
Fq, and forms an n× (n+m) matrix X having these packets as rows. In the
Kötter-Kschischang model, a message is a row space of the matrix X. Hence,
the matrix X is a generator matrix of the message subspace.
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Each intermediate node in the network computes a random Fq-linear com-
bination of input packets, where every packet is considered as an element of
the finite field Fqn+m , and sends the linear combination via an outgoing line.
The destination node collects nr received packets Y (1), . . . , Y (nr) of length
n+m over Fq and make an nr × (n+m) matrix Y using the packets as rows.
The number nr of received packets can differ from the number of transmitted
packets n, nr can be equal to n, or can be more or less than n.
The task is to recover transmitted packets X(1), . . . , X(n), i.e., to recover

the matrix X, using the received matrix Y.
The channel can be described by the following equation

Y = AX + Eout, (6.8)

where A – nr × n is the matrix over Fq that corresponds to all the linear
combinations of packets computed at intermediate nodes. The relation (6.8)
is a basic channel model for random network coding. In the general case, the
matrix A creates internal distortions of the transmitted matrix X and Eout

is an outer nr × (n + m) matrix over Fq of errors. The rows of Eout disturb
the rows of the matrix AX. For example, such disturbances can be created by
so called Byzantine intruders inside the network that create erroneous packets
z1, . . . , zp of length n + m. These packets can be seen as rows of l × (n + m)
matrix Z, l = p, over Fq. Then, on the way to the destination, these packets
z1, . . . , zp undergo their linear transformations, which are described by an nr×p
matrix B. The outer error matrix of rank p can be written as Eout = BZ. In
wireless networks, the matrix Eout appears because of a source of noise outside
the network. If the rank of the matrix is p, it can be written again as BZ like
in the Byzantine model.

6.3.2 Lifting construction of network codes

Let us consider the construction of network codes by Silva, Kötter, and Kschis-
chang (SKK codes) proposed in 2008 [SKK08].

LetM be a matrix code consisting of n×m matrices M. A lifting code X is
the set of generator matrices X

X =
{
X : X =

[
In M

]
,M ∈M

}
,

where In is the identity matrix of order n.
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The authors of [SKK08] use a rank code in matrix form asM.

6.3.3 Matrix rank codes in network coding

Since a matrix rank metric code is a component of a subspace lifting code,
let us recall the main definitions. The rank norm of a matrix X is defined as
NRk = Rk(X), the rank distance between matrix X and Y of the same size is
the rank of their difference dRk(X,Y ) = Rk(X − Y ).
Denote by Fq the finite field consisting of q elements and by Fqm denote its

extension of order m. If α is a primitive element of Fqm , then every nonzero
element β from Fqm is a power of α, i.e., β = αs. For integers r 6= s there exists
an integer k, such that αr − αs = αk. Let A be a nonsingular square matrix
of order m over the base field Fq, representing the field Fqm . This means that
all matrices Aj , j = 0, 1, . . . , qm − 2, are different and for integers r 6= s there
exists an integer k, such that Ar −As = Ak. A matrix A represents the field
Fqm if and only if its characteristic polynomial has degree m and coincides with
a monic primitive polynomial over the field Fq .

For any matrix A representing the field Fqm define the set A1 of m×m square
matrices

A1 = {Om, Im, A,A2, . . . , Aq
m−2}, (6.9)

where Om is the all-zero matrix and Im is the identity matrix. This set will be
used later to design some block matrices.

Simultaneously, the set A1 can be seen as a matrix code in rank metric with
maximum possible code distance dRk(A1) = m and with cardinality |A1| = qm.

Let Ashort
1 be a punctured code obtained from A1 by puncturing m− n rows

and columns in every code matrix. The code Ashort
1 is a punctured code of

rectangular matrices of size n×m or m× n, n < m, with a maximum distance
dRk = n for a rank code of this size. The code cardinality is

∣∣Ashort
1

∣∣ = qm.
In the general case, there exists a matrix D such that the set of matrices

Ak =

{
k−1∑
i=0

εiA
siDi, εi ∈ {0, 1}, 0 ≤ si ≤ qm − 2

}
(6.10)

is a code with rank distance dRk(Ak) = m− k + 1 and with cardinality |Ak| =
qmk.
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Let Ashort
k be a shortened punctured code of rectangular matrices of size

n × m or m × n, n < m, obtained from Ak by puncturing m − n rows and
columns in every code matrix. The code Ashort

k has cardinality
∣∣Ashort

k

∣∣ = qmk

and maximum rank code distance dRk = n− k + 1.

Assume that the source uses SKK code X and transmits the matrix

X =
[
In M

]
.

Using the channel model (6.8), the destination node receives the matrix Y

Y = AX + Eout.

Let us write matrices AX and Eout = BZ as

AX =
[
A AM

]
,

Eout =
[
E1 E2

]
,

where E1 and E2 are matrices of sizes nr × n and nr ×m respectively. Then

Y =
[
A + E1 AM + E2

]
=
[
Y1 Y2

]
, (6.11)

where
Y1 = A + E1, Y2 = AM + E2, (6.12)

We can assume that rank of matrices B, Z, and BZ is p.
Given the received matrix Y or equivalently Y1 and Y2, the task is to recover

the matrix M.
Since linearly dependent packets can be discarded by the receiver, later on

we assume w.l.o.g. that the received matrix Y has full rank, i.e.,

Rk(Y) = nr. (6.13)

Denote Rk(Y1) = r ≤ min{nr, n} and recall that Rk(Eout) = p.

6.3.4 Preliminary linear transformations

Using A = Y1 −E1 rewrite (6.11) as

Y =
[
Y1 Y1M−E1M + E2

]
. (6.14)
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Let us apply Gaussian elimination to the matrix Y to obtain the reduced row
echelon form of the matrix Y1. There exists a unique nonsingular (nr × nr)
matrix S that transforms the matrix Y1 to the reduced row echelon form:

SY1 =

[
G
O

]
, (6.15)

where G is an r × n matrix with leading coefficients “1” in every row and O is
((nr − r)× n) all zero matrix. Left multiply both sides of (6.14) by the matrix
S:

SY =
[
SY1 SY1M− SE1M + SE2

]
=

[
G GM + S1(−E1M + E2)
O S2(−E1M + E2)

]
=

[
G R
0 C

] , (6.16)

where S1 and S2 are the upper and the lower blocks of the matrix S respectively:

S =

[
S1

S2

]
.

The matrix S1 consists of r first rows of the matrix S. The matrix S2 consists of
(nr−r) last rows of the matrix S. After these transformations, the receiver knows
the matrix GM+S1(−E1M+E2) denoted by R and the matrix S2(−E1M+E2)
denoted by C. By (6.13) rank Rk(C) = nr − r.

Lemma 6.1. The following inequality holds

nr − r ≤ p. (6.17)

Proof. We have

Rk(C) = nr − r = Rk(S2(−E1M + E2))

≤ min{Rk(S2),Rk(−E1M + E2)}.

From Rk(S2) = nr − r it follows that

Rk(S2) ≤ Rk(−E1M + E2) ≤ p.

�
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Recall that we write
Eout = BZ, (6.18)

where B is an nr × p matrix of rank p and a Z is p× (n+m) matrix of rank p.
Such decomposition is not unique. Indeed, if V is an invertible square matrix
of order p, then we have Eout = B̃Z̃, where B̃ = BV and Z̃ = V−1Z.

Lemma 6.2. There exist a decomposition (6.18) with a matrix B =
[
B1 B2

]
,

where B1 is the nr×(nr−r) submatrix of rank nr−r, B2 is the nr×(p−nr+r)
submatrix of rank p− nr + r, such that the square matrix T = S2B1 of order
nr − r is invertible.

Proof. Matrix S2B has size (nr−r)×p and should have rank nr−r. Otherwise
the rank of matrix C would be less than nr − r. Hence, there exist nr − r
linearly independent columns L =

[
bj1 bj2 . . . bjnr−r

]
of the matrix B

such that S2L is an invertible matrix. We can shift these columns to the first
nr − r positions by selecting a proper matrix V. Thus, B1 = L and T = S2B1

is an invertible matrix. �

We have also E1 = BZ1, E2 = BZ2, where Z =
[
Z1 Z2

]
. Rewrite the

matrix (−E1M + E2) as

−E1M + E2 = B(−Z1M + Z2)

=
[
B1 B2

] [W1

W2

]
= B1W1 + B2W2.

−Z1M + Z2 =

[
W1

W2

]
.

Now (6.16) can be written as

SY =

[
G R
0 C

]
=

[
G GM + S1B1W1 + S1B2W2

O S2B1W1 + S2B2W2

]
=

[
G GM + S1B1T

−1TW1 + S1B2W2

O TW1 + S2B2W2

]
.

(6.19)

Since TW1 = C− S2B2W2, we get

R = GM + S1(B1T
−1)C− S1(B1T

−1S2 − S1)B2W2. (6.20)
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The matrix R consists of r rows. If r < n let us include all-zero rows to get
n rows as follows. If the matrix G has a gap between two rows with leading
“1”s, and the value of gap is a, then a allzero rows are inserted between these
two rows. Let, for example, the leading element “1” be in the first column of
the first row and in the 6-th column of the second row. The gap equals 4, and
4 all-zero rows are inserted between the first and the second rows. Denote this
operation by “hat”. Thus, e.g. matrix R after including all-zero rows is denoted
by R̂. We use the same notation for other matrices as well. We have

R̂ = ĜM+ Ŝ1B1T
−1C− Ŝ1(B1T

−1S2 − S1)B2W2. (6.21)

Write (n× n) matrix Ĝ as
Ĝ = In + L,

where L has exactly (n − r) nonzero columns. Denote D = Ŝ1B1T
−1 and

Erest = −Ŝ1(B1T
−1S2 − S1)B2W2. Rank of D is at most Rk(B1) = (nr − r).

Rank of Erest is at most Rk(B2) = (p− nr + r). We can write

R̂ = M + LM + DC + Erest, (6.22)

where
Rk(L) ≤ n− r, (6.23)

Rk(C) = nr − r, (6.24)

Rk(Erest) ≤ p− nr + r. (6.25)

Thus, the decoding of SKK subspace codes is reduced to decoding rank codes
with errors and generalized erasures.

6.4 Decoding of rank codes

6.4.1 When errors and generalized erasures will be cor-
rected

Let us analyze (6.22). The item R̂ can be considered as a received matrix
of the rank code that consists of four items shown in the right part of the
equation. The first item M is the transmitted matrix of the rank code. The
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second item LM, where the matrix L is known, corresponds to a generalized
row erasure of rank at most n − r. The third item DC, where the matrix C
is known, corresponds to a generalized column erasure of rank at most nr − r
(since matrix D in product DC can have rank at most nr − r). The fourth item
Erest corresponds to a random rank error of rank at most p− nr + r.
The matrix M can be successfully recovered if the following condition is

satisfied

(n− r) + (nr − r) + 2(p− nr + r) = 2p+ n− nr ≤ dr − 1. (6.26)

Simultaneous correction of rank errors and some types of erasures of columns and
rows was described in 1992 by Gabidulin, Paramonov and Tretjakov [GPT92], by
Gabidulin and Pilipchuk [GP08] in 2008, and by Silva, Kschischang, and Kötter
[SKK08] in 2008. In [GPT92] rank erasures of exactly v rows or l columns with
known positions are described.
The results in [GP08] can be applied unchanged to correct generalized rank

erasures of rows and columns. If the receiver knows the generalized erasures,
then column erasures and then row erasures can be excluded. As a result,
the length of the modified syndrome becomes (d− 1− v − l). If the modified
syndrome is a nonzero vector then there are also rank random errors and they
can be corrected using fast decoding algorithms if the rank t of the error satisfies
(2t ≤ d−1−v− l). As it shown in [GP08], generalized erasures can be corrected
after correction of random errors. In the example of Section 6.5 this decoding
algorithm is shown in detail.

6.4.2 Possible variants of errors and erasures

Let us consider different scenarios arising during decoding. Parameters n, nr, r
as well as matrices S, S1, S2, L, C are known to the decoder after preliminary
computations. Parameter p is not known but can be estimated during decoding.
To obtain conditions for parameters n, nr, r, p, so that the receiver has

different combinations of errors and erasures, let us analyze (6.22). There
are three different events: random rank errors, generalized row erasures and
generalized column erasures. These events can happen in different combinations:
separately, or combinations of two events, or all three events together. In total,
there are seven combinations of the events, which will be considered below.
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Random error and generalized rank erasures of rows and columns

There are random errors if the rank of the matrix Erest is greater than zero, i.e.
p− nr + r > 0, where p is the rank of the outer error Eout, nr is the number of
rows in the received matrix Y1, r is the rank of its submatrix Y1. Row erasures
occur if the rank of matrix L is greater than 0, i.e., when n− r > 0, where n
is the number of rows in the transmitted matrix. Column erasures take place
if the rank of the matrix C is greater than 0, i.e., when nr − r > 0. Values
of r, n, nr are known to the decoder, parameter p can be lower bounded by
nr − r ≤ p using Lemma 6.1.

For this combination of events, any relations between n and nr are possible:
it can be that nr > n, or nr < n, or nr = n. But in every case the rank p of the
outer error Eout is greater than 0 and all the following conditions are satisfied
simultaneously:

r < n, r < nr, nr − r < p. (6.27)

Generalized erasures of rows and columns

We start the consideration of combinations of two events by analyzing the case
of simultaneous erasures of rows and columns. Hence the first two conditions in
(6.27) are satisfied and the third one is replaced by p = nr − r. Indeed, it was
shown that rank of the error matrix Rk(Erest) = p− nr + r For the rank equal
to zero we get p = nr − r. However, it should be p = nr − r > 0 since when
p = nr − r = 0 there are no column erasures. Thus we get the relations

r < n, r < nr, p = nr − r > 0. (6.28)

For this combinations of erasures any relations between n and nr: nr > n, or
nr < n, or nr = n are also possible. The rank p of outer-error-matrix Eout is
equal to the rank of matrix C, which describes column erasures, and is greater
then zero.

Random rank errors and generalized row erasures

Random errors occur if p > nr − r. Row erasures take place if n− r > 0. There
are no column erasures if nr − r = 0. Hence, we get the following relations

nr < n, nr = r, p > 0. (6.29)

Thus, for this combination of errors and erasures, the number of rows of the
transmitted matrix is larger than the number of rows of the received matrix,
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which is equal to rank of the submatrix Y1 of the matrix Y. There is an outer
matrix Eout with unknown rank p > 0.

Random rank errors and generalized column erasures

Random errors occur if p > nr − r. Column erasures take place if nr − r > 0.
There are no row erasures if n− r = 0. Hence, we get the following relations

n = r < nr, n < nr, p > nr − r > 0. (6.30)

Thus, for this combination of errors and erasures, the number of rows of the
transmitted matrix is less than the number of rows of the received matrix and
is equal to the rank of the submatrix Y1. The number of rows in the received
matrix is larger than the rank of Y1. The rank of the matrix Eout is larger
than the difference between the number of rows in the received matrix and the
rank of the matrix Y1.

Let us consider now single events.

Random rank errors

Random errors occur if p > nr − r. There are no row erasures if n − r = 0.
There are no column erasures if nr − r = 0. It means that the relations between
parameters are

r = n = nr, p > 0. (6.31)

The transmitted and the received matrices have the same number of rows that
is equal to the rank of the matrix Y1. The rank of the outer error matrix Eout

is strictly positive.

Generalized row erasures

In this case, there are no errors and no column erasures. There are no column
erasures if nr − r = 0. No errors if p = nr − r, i.e., in this case rank of matrix
of outer error Eout equals p = 0. Since there were row erasures, the relation
n− r > 0 should be satisfied. Hence, we have the relations:

r < n, r = nr, p = 0. (6.32)

The transmitted matrix has more rows than the received matrix. The number
of rows of the received matrix is equal to rank of the matrix Y1. The rank of
the matrix of outer error Eout equals 0.
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Generalized column erasures

In this case, there are no errors and no row erasures, but there are column
erasures. There are no row erasures if n − r = 0. There are column erasures
if nr − r > 0. There are no errors if p = nr − r. It means that the relations
between parameters are:

r = n < nr, p = nr − r > 0. (6.33)

The transmitted matrix has fewer rows than the received matrix.
The number of rows of the received matrix is more than the rank of matrix

Y1. The rank p of the outer error matrix Eout is strictly positive.

The results of the above analysis are shown in the following table.

Table 6.1: Parameters for seven combinations of errors and erasures
1 Errors only nr = n = r, p > 0
2 Row erasures only r = nr < n, p = 0
3 Errors and row erasures r = nr < n, p > 0
4 Column erasures only r = n < nr, p = nr − r
5 Errors and column erasures r = n < nr, p > nr − r
6 Erasures of rows and columns n > r, nr > r, p = nr − r
7 Errors and erasures of rows and columns n > r, nr > r, p > nr − r > 0

6.5 An example

Let us give an example of simultaneous correction of errors and erasures of rows
and columns.

6.5.1 Code, channel, received matrix

For q = 2 let us design a (5, 1, dr = 5) MRD code using nonreducible polynomial
f(λ) = λ5 + λ2 + 1 with a primitive element α. We take the generator matrix
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G1 = (α, α30, α18, α7, α20) then a check matrix is

H4 =


α2 α29 α5 α14 α9

α4 α27 α10 α28 α18

α8 α23 α20 α25 α5

α16 α15 α9 α19 α10

 . (6.34)

Select code vector
v =

[
α α30 α18 α7 α20

]
. (6.35)

Using the table of powers of α we write the code vector in matrix form:

M =


0 0 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 0 1
0 1 0 1 0

 =


m1

m2

m3

m4

m5

 , (6.36)

where mi, i = 1, 5 denote rows of the matrix. Using the lifting construction we
obtain the matrix of subspace code to be transmitted:

X =
[
I5 M

]
=


1 0 0 0 0 0 0 1 0 0
0 1 0 0 0 1 1 1 0 0
0 0 1 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 1 0 1 0

 (6.37)

The channel from source to destination we describe by the matrices

A =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 1 1 0
1 0 0 0 1

 , BZ1 =


0 1 0 1 1
1 1 1 1 0
0 1 0 1 1
1 1 1 1 0
1 0 1 0 1

 , BZ2 =


1 1 1 0 0
1 1 1 1 0
1 1 1 0 0
1 1 1 1 0
0 0 0 1 0

 .
The received matrix is

Y =
[
Y1 Y2

]
=


1 1 0 1 1 1 1 0 0 0
1 0 1 1 0 0 0 0 1 0
0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 1 0 0


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where

Y1 = A + BZ1 =


1 1 0 1 1
1 0 1 1 0
0 1 1 1 1
0 0 0 0 0
0 0 1 0 0

 , Y2 = AM + BZ2 =


1 1 0 0 0
0 0 0 1 0
1 1 1 1 1
0 0 1 0 0
0 1 1 0 0

 .
(6.38)

The transmitted and the received matrices have the same number of rows:
n = nr = 5. In this example, all three types of errors occur.

6.5.2 Preliminary transformations

The matrix S of Gaussian eliminations that brings the matrix Y1 to the reduced
echelon form and its blocks S1, S2 are

S =

[
S1

S2

]
=


1 0 1 0 1
1 1 0 0 1
0 0 0 0 1
1 1 1 0 0
0 0 0 1 0

 ,
where

S1 =


1 0 1 0 1
1 1 0 0 1
0 0 0 0 1
1 1 1 0 0

 , S2 =
[
0 0 0 1 0

]
.

The reduced row echelon form is:

SY1 =

[
G
O

]
=


1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 ,
where

G =


1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

 , O =
[
0 0 0 0 0

]
,
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hence, the parameter r = Rk(Y1) = Rk(SY1) = Rk(G) = 4. Next,

SY2 =

[
R
C

]
=


0 1 0 1 1
1 0 1 1 0
0 1 1 0 0
0 0 1 0 1
0 0 1 0 0

 , (6.39)

where

R =


0 1 0 1 1
1 0 1 1 0
0 1 1 0 0
0 0 1 0 1

 , C =
[
0 0 1 0 0

]
.

For decoding we need to obtain the equation like (6.22). For this, we should
add an all-zero row to the 4× 5 matrix G, to obtain a square matrix. Leading
elements “1” in the matrix G are it positions i1 = 1, i2 = 2, i3 = 3, i4 = 4,
hence, before rows 1 . . . 4 we can not insert the all zero row. So, we insert
n− i4 = 5− 4 = 1 all zero row after the last row and obtain:

Ĝ =


1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 .
Write Ĝ = I5 + L and obtain

L =


0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 . (6.40)

Rank of the matrix L is 1.
Similarly, we obtain the matrix R̂ by adding one all-zero row after the last

row of the matrix R:

R̂ =


0 1 0 1 1
1 0 1 1 0
0 1 1 0 0
0 0 1 0 1
0 0 0 0 0

 . (6.41)
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For rank decoding we obtain the equation

R̂ = M + LM + DC + Erest (6.42)

wher R̂, L, C are defined by (6.42), (6.40), (6.39). Since the rank of the matrix
L is 1, and rank of C is 1, it is necessary to correct single row and single column
erasures.

6.5.3 Syndrome computation

Transform the matrix R̂ to the vector y:

y =
[
α α5 α12 α18 α29

]
. (6.43)

Compute the syndrome s:

s = yH>4 =
[
s0 s1 s2 s3

]
=
[
α5 α28 α3 0

]
. (6.44)

Since the code distance is dr = n = 5, the rank of row erasure is 1, and rank
of column erasures is 1, we can correct an error of rank 1: 1 + 1 + 2 = dr − 1.

An error and its components we write in the vector form:

e = (erand + erow + ecol)

where erand = e1u1 is a random error of rank 1, e1 is an element of the extension
field F25 , u1 = [u11 u12 u13 u14 u15] is a vector with 5 components from the
base (binary in our case) field. The element e1 and the vector u1 are unknown.

erow = ar1, where a = α30 is a known element of the field F25 , defined by the
matrix L, r1 = [r11 r12 r13 r14 r15] is an unknown vector over the base field.

ecol = w1C = w1[0 0 1 0 0], where w1 is unknown element of the field F25 .
Let us find the parts of the syndrome due to components of the error. The

part of the syndrome due to the random error:

srand = e1u1H
>
4 = e1[x1 x

2
1 x

4
1 x

8
1], (6.45)

where
x1 = α2u11 + α29u12 + α5u13 + α14u14 + α9u15. (6.46)
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The part of the syndrome due to row erasures

srow = α30[r11 r12 r13 r14 r15]H>4 = α30[θ1 θ
2
1 θ

4
1 θ

8
1], (6.47)

where
θ1 = α2r11 + α29r12 + α5r13 + α14r14 + α9r15. (6.48)

Part of the syndrome due to column erasures

scol = w1[0 0 1 0 0]H>4 = w1[α5 α10 α20 α9] = w1[γ1 γ
2
1 γ

4
1 γ

8
1 ], (6.49)

where γ1 = α5. By equating corresponding syndrome components we obtain
the system of syndrome equations

α5 = e1x1 + α30θ1 + w1γ1;
α28 = e1x

2
1 + α30θ2

1 + w1γ
2
1 ;

α3 = e1x
4
1 + α30θ4

1 + w1γ
4
1 ;

0 = e1x
8
1 + α30θ8

1 + w1γ
8
1 .

(6.50)

6.5.4 Exclusion of column erasures

Let us define a linearized polynomial Γ(x) = Γ0x + Γ1x
2 with roots γ1 and

0. Consider the equation Γ(γ1) = Γ0γ1 + Γ1γ
2
1 = 0. Set Γ1 = 1, and find

Γ0 = γ1 = α5. Build the matrix

Γ =


Γ0 0 0
Γ1 Γ2

0 0
0 Γ2

1 Γ4
0

0 0 Γ4
1

 =


α5 0 0
1 α10 0
0 1 α20

0 0 1

 .
As the first modification we multiply the syndrome and its components by

the matrix Γ

s̃ = sΓ = [α11 α13 α23] = [s̃0 s̃1 s̃2], (6.51)

srandΓ = e1[x̃1 x̃1
2
x̃1

4
], (6.52)

where x̃1 = Γ(x1).

srowΓ = α30[θ̃1 θ̃1

2
θ̃1

4
], (6.53)
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where θ̃1 = Γ(θ1).
scolΓ = [0 0 0]. (6.54)

By equating components of the modified syndrome we obtain:

s̃0 = α11 = e1x̃1 + α30θ̃1,

s̃1 = α13 = e1x̃1
2

+ α30θ̃1

2
,

s̃2 = α23 = e1x̃1
4

+ α30θ̃1

4
.

(6.55)

6.5.5 Exclusion of row erasures

Let us make the second (intermediate) modification of the syndrome to avoid
powers of θ1 higher than 1. The first component of the modified syndrome we
raise to the power 2n = 25 = 32, we raise the second component to the power
2n−1 = 24 = 16, and the third component to power 2n−2 = 23 = 8:

s̃0mod = s̃32
0 = α11, s̃1mod = s̃16

1 = α22, s̃8
2 = α29.

For the third modification of the syndrome we use the linearized polynomial
Λ(x) = Λ0x + Λ1x

2 with roots a = α30 and 0. Set Λ1 = 1 in the equation
Λ0α

30 + Λ1α
29 = 0 and obtain Λ0 = α30. Similar to the previous modification,

we build the matrix

Λ =

Λ16
1 0

Λ16
0 Λ3

1

0 Λ8
0

 =

 1 0
α15 1
0 α23

 .
As the third modification we multiply the syndrome and its component due to
the random error by the matrix Λ:

ŝ = s̃Λ = [α8 α8] = [ŝ0 ŝ1]

x̃1[e1 e
16
1 e8

1]Λ = x̃1[ẽ1
2 ẽ1]

(6.56)

where ẽ1 = (Λ(e1))8. By equating the components of the modified syndrome we
obtain the following system of two equations with two unknowns x̃1, ẽ1

ŝ0 = α8 = x̃1ẽ1
2,

ŝ1 = α8 = x̃1ẽ1
(6.57)

with solution x̃1 = α8, ẽ1 = 1.
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6.5.6 Correction of random error

Trying all field elements we solve the equation

x̃1 = α8 = x2
1 + α5x1.

There are two solutions: x1 = α12 or x1 = α27. Similarly we solve

ẽ1 = 1 = (α30e1 + e2
1)8.

There are two solutions: e1 = α5 or e1 = α26.
Let us use the first solutions: x1 = α12 and e1 = α5. Given x1, let us find

the components of the vector u1 using

x1 = α12 = α2u11 + α29u12 + α5u13 + α14u14 + α9u15 (6.58)

we obtain a solution u1 = [0 1 0 1 1].
Write the random error in the vector form: erand = e1u1 = α5[0 1 0 1 1].
Transform the random error to the matrix form:

Erand =


1
0
1
0
0

 [ 0 1 0 1 1
]

=


0 1 0 1 1
0 0 0 0 0
0 1 0 1 1
0 0 0 0 0
0 0 0 0 0

 .

6.5.7 Erasure correction

Substitute the known values of s̃0 = α11, e1 = α5, x̃1 = α8, a = α30 to the
first equation of the system (6.55). Solving the equation

α11 = α5α8 + α30θ̃1.

we obtain θ̃1 and obtain solutions θ1 = α7 or θ1 = α10.
We use (6.48) for θ1 and substitute the solution θ1 = α7. Solve the equation

α7 = α2r11 + α29r12 + α5r13 + α14r14 + α9r15
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and obtain: r1 = [0 1 0 1 0]. The vector of row erasures is erow = α30[0 1 0 1 0],
i.e., in matrix form

Erow =


0
1
0
0
1

 [ 0 1 0 1 0
]

=


0 0 0 0 0
0 1 0 1 0
0 0 0 0 0
0 0 0 0 0
0 1 0 1 0

 .
To find w1 we substitute to first equation of the main system (6.50):

s0 = e1x1 + α30θ1 + α5w1 = α5,

the known values x1 = α12, e1 = α5, θ1 = α7. We obtain w1 = α8. The column
erasures in vector form are ecol = α8[0 0 1 0 0], and in matrix form

Ecol =


1
0
1
1
0

 [ 0 0 1 0 0
]

=


0 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 0

 .
The error vector is

e = erand + erow + ecol

= [0 α5 0 α5 α5] + [0 α30 0 α30 0] + [0 0 α8 0 0]

= [0 α26 α8 α26 α5].

(6.59)

Let us check the solution. Subtract from the received vector y (6.43) the error
vector (6.59):

y + e = [α α5 α12 α18 α29] + [0 α26 α8 α26 α5]
= [(α+ 0) (α5 + α26) (α12 + α8) (α18 + α26) (α29 + α5)]
= [α α30 α18 α7 α20].

(6.60)

Comparing the solution with the transmitted code vector (6.35), we see that
they coincide.
In matrix form the error is

E = Erand + Erow + Ecol =


0 1 1 1 1
0 1 0 1 0
0 1 1 1 1
0 0 1 0 0
0 1 0 1 0

 . (6.61)
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The rank of the error matrix is 4.
The difference of the received matrix R̂ and error matrix E (6.61) is

R̂ + E =


0 1 0 1 1
1 0 1 1 0
0 1 1 0 0
0 0 1 0 1
0 0 0 0 0

+


0 1 1 1 1
0 1 0 1 0
0 1 1 1 1
0 0 1 0 0
0 1 0 1 0

 =


0 0 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 0 1
0 1 0 1 0

 = M.

(6.62)
The solution is correct since the code matrix M was transmitted.

6.6 Conclusions

We have considered the principles suggested by Kötter, Kschischang, Silva for
designing subspace codes based on rank Gabidulin codes. The code matrices
consist of the identity matrix and a matrix of the rank code. This construction is
called the lifting of rank codes. The network channel forms linear combinations
of rows of a code matrix and adds outer errors. The decoding algorithm consists
of two steps: first obtain the distorted matrix of the rank code using Gaussian
elimination and then use a standard algorithm for decoding rank codes.
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7
Multicomponent prefix codes

In this chapter, we introduce a class of codes that is called multicomponent prefix
codes. These codes generalize the codes of Silva-Kötter-Kschischang (SKK). A
multicomponent code is a union of different component codes that are SKK
codes with a fixed code distance, and the minimum subspace distances between
the code components are not less than the code distance of the components.

7.1 Gabidulin–Bossert subspace codes

Subspace codes with maximum code distance were proposed by Gabidulin and
Bossert in [GB08].

Lemma 7.1. Let U and V be subspaces of N-dimensional vector space. The
subspace distance between them is d(U, V ) = N , if and only if

1. Subspaces U and V intersect trivially, i.e., the intersection is the subspace
of dimension zero.

2. The dimension of the union is dim(U) + dim(V ) = N .

Proof. If both conditions are satisfied then from (6.2) it follows that d(U, V ) =
dim(U) + dim(V )− 2 dim(U ∩ V ) = N since dim(U ∩ V ) = 0.
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Assume now that d(U, V ) = N . Denote Z = U ∩ V . We have

d(U, V ) = dim(U) + dim(V )− 2 dim(Z) = N,
dim(U ] V ) = dim(U) + dim(V )− dim(Z) ≤ N,
dim(Z) ≥ 0.

(7.1)

The system of equations (7.1) has a unique solution dim(Z) = 0. This means
that the subspaces U and V intersect trivially and dim(U) + dim(V ) = N . �

Let C be a code with maximum subspace distance d(C) = N .

Theorem 7.2. If N is odd, then the cardinality of any code C with subspace
distance N is |C| = 2. Such a code consists of two subspaces C = {U, V }, where
U and V intersect trivially and

dim(U) + dim(V ) = N. (7.2)

Proof. The code C has at most 2 subspaces. Otherwise, at least two subspaces
would have dimensions of the same parity and an even distance d ≤ N between
them. The second part of the theorem follows from Lemma 7.1. �

The situation changes drastically if N is even, N = 2m.

Lemma 7.3. If the code C with the maximum (even) distance N consists of
|C| ≥ 3 subspaces, then the subspaces pairwise intersect trivially and have equal
dimension N/2 = m.

Proof. Let a code C consist, for example, of 3 subspaces U1, U2, U3. By Lemma
7.1, any pair of subspaces intersect trivially. In addition to this dim(U1) +
dim(U2) = 2m, dim(U1) + dim(U3) = 2m, dim(U3) + dim(U2) = 2m. Hence,
dim(U1) = dim(U2) = dim(U3) = m. �

Lemma 7.4. The cardinality of a code C with maximum even distance N = 2m
satisfies the bound

|C| ≤ qm + 1. (7.3)

Proof. Every m-dimensional subspace has qm − 1 nonzero vectors from N -
dimensional vector space. The number of nonzero vectors in C equals |C|(qm−1),
since the subspaces of the code C intersect trivially. The relation |C|(qm − 1) ≤
qN − 1 = q2m − 1 holds, and we have, |C| ≤ qm + 1. �
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Theorem 7.5. There exists a code C with maximum even distance N = 2m
and with maximum cardinality

|C| = qm + 1. (7.4)

Proof. Represent m-dimensional subspace by m×2m basis matrices of full rank
[C D], where C and D are square matrices of order m. Let A be a matrix of
order m that represents the field Fqm (6.9). Define the set of m-dimensional
subspaces in C by the following basis matrices:

[Im Om], [Im Im], [Im A], · · · , [Im Aq
m−2], [Om Im]. (7.5)

The number of matrices in this set is qm + 1. Each matrix has full rank m.
Hence, the corresponding subspaces have rank m each. Let us show that these
subspaces pairwise intersect trivially. Denote by S the subspace generated
by the matrix M(S) = [Im Om], by Vj , j = 0, . . . , qm − 2 denote subspaces
generated by the matrices M(Vj) = [Im Aj ], and by R the subspace generated
by the matrix M(R) = [Om Im]. Then we have

dim(S ] Vj) = Rk

([
Im Om
Im Aj

])
= 2m ⇒ dim(S ∩ Vj) = 0,

dim(S ]R) = Rk

([
Im Om
Om Im

])
= 2m ⇒ dim(S ∩R) = 0,

dim(Vi ] Vj) = Rk

([
Im Ai

Im Aj

])
= 2m ⇒ dim(Vi ∩ Vj) = 0,

dim(Vi ]R) = Rk

([
Im Ai

Om Im

])
= 2m ⇒ dim(Vi ∩R) = 0.

Hence, the code defined by (7.5) is an optimal code with distance N = 2m. �

7.2 Multicomponent Gabidulin-Bossert subspace
codes

New subspace codes based on rank codes were proposed by Gabidulin and
Bossert [GB09] and were called multicomponent prefix codes. Let us consider
constructions of these codes.
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Write N = m1 + m2 + · · · + mk, where m1 ≥ m2 ≥ · · · ≥ mk. We will
design a code X as the union of component codes X = X1 ∪ X2 ∪ · · · ∪ Xk.
Pairwise intersection of the component codes should be empty. Let us define
the component codes as follows:

X1 =
{
X : X =

[
Im1 x1

]
| x1 ∈M1

}
X2 =

{
X : X =

[
Om1
m2

Im2 x2

]
| x2 ∈M2

}
...
Xk−1 =

{
X : X =

[
O
m1+···+mk−2
mk−1 Imk−1

xk−1

]
| xk−1 ∈Mk−1

}
Xk =

{
X : X =

[
ON−mkmk

Imk
]}
.

(7.6)

Here

• M1 is a rank code consisting of m1 × (N −m1) matrices over Fq with
rank code distance dr1 ≤ min{m1, N −m1};

• M2 is a rank code consisting of m2 × (N −m1 −m2) matrices over Fq
with rank code distance dr2 ≤ min{m2, N −m1 −m2};

•
...

• Mk−1 is a rank code consisting of mk−1× (N−m1−· · ·−mk−1) matrices
over Fq with rank code distance dr (k−1) ≤ min{mk−1, N −m1 − · · · −
mk−1}.

Obviously, Xi ∩ Xj = ∅, i 6= j.
The code has the following characteristics:

• cardinality

X = |C| =
k∑
i=1

|Ci| ,

• subspace distance

d(X ) = min{min
i6=j

(mi +mj), min
1≤i≤k−1

{2dri}}.
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7.3 Decoding codes with maximum distance

First consider the subspace code of length N consisting of two subspaces: the
first is generated by rows of the identity matrix X1 = IN , the second by rows
of all zero matrix X2 = ON .
If the matrix X1 has been transmitted, then the received matrix is

Y = AX1 +BZ = A+BZ,

if X2 was transmitted, then the received matrix is

Y = AX2 +BZ = BZ.

The decoder computes rank Rk(Y ) of the received matrix Y and the distance
between the subspace 〈Y 〉 and 〈X1〉 and 〈X2〉 respectively:

d1 = d(〈Y 〉, 〈X1〉) = 2Rk

([
Y
IN

])
− Rk(Y )− Rk(IN ) = N − Rk(Y )

and

d2 = d(〈Y 〉, 〈X2〉) = 2Rk

([
Y
ON

])
− Rk(Y )− Rk(ON )

= 2Rk(Y )− Rk(Y ) = Rk(Y ).

If d1 < d2, i.e., Rk(Y ) > N/2, then the decoder makes a decision X1 = IN ,
otherwise the decision is X2 = ON .

For N = 2m, the code X with maximum subspace distance 2m can be seen
as the union of two subcodes X = X1 ∪ X2, where

X1 =
{
X : X =

[
Im x

]
, x ∈ C

}
is the code of cardinality qm having a single m×m code matrix x of the rank
code, and

X2 =
{
X : X =

[
Om Im

]}
is the code of cardinality 1.
Let the received matrix be

Y = AX +BZ =
[
Â y

]
.
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Decoding consists of two steps. In the first step, the decoder tries to determine
whether the received subspace 〈Y 〉 corresponds to the transmitted matrix X1

or X2. This is equivalent to finding whether the subspace 〈Â〉 originates from
〈Im〉 or from 〈Om〉. It was shown above that the solution is based on the rank
of the matrix Rk(Â):

• If Rk(Â) < m/2, then the subspace 〈Y 〉 originates from X2. Then we go
to the second step: consider the matrix

[
Om Im

]
as the decoding result.

• If Rk(Â) ≥ m/2, then the subspace 〈Y 〉 originates from X1. Go to
the second step: run SKK decoder, extract the matrix x ∈ C and get
X =

[
Im x

]
as the decoding result.

7.4 Decoding multicomponent prefix codes

Let us generalize the approach we considered for decoding multicomponent
codes. Let Y be a received matrix

Y = AX +BZ

and X belongs to one of the component codes (7.6). Write Y as

Y =
[
Â1 Â2 . . . Âk−1 y

]
,

where Â1 is an nr × m1 matrix, Â2 is an nr × m2 matrix, . . . , Âk−1 is an
nr ×mk−1 matrix.

• The decoder should solve the following problem: does the received subspace
〈Y 〉 originate from the subcode X1or from X2 ∪ · · · ∪ Xk? Instead, the
decoder solves an equivalent problem: does the subspace 〈Â1〉 originate
from the subspace 〈Im1

〉 or from 〈Om1
〉? To find the solution, the decoder

computes the rank of Â1: r1 = Rk(Â1).

1. If r1 ≥ m1/2, then the decision is: 〈Y 〉 originates from X1. Using
the SKK decoder, find x1 ∈ M1. The decoder outputs the matrix
X =

[
Im1

x1

]
as the decoding result.
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2. If r1 < m1/2, then the decision is: 〈Y 〉 originates from the subcode
X2 ∪ · · · ∪ Xk. The decoder goes to the next step.

• The decoder should solve the following problem: does the received subspace
〈Y 〉 X2 or from the subcode X3 ∪ · · · ∪ Xk? Instead, the decoder solves an
equivalent problem: does the subspace

〈[
Â1 Â2

]〉
originate from the

subspace
〈[
Om1
m2

Im2

]〉
or from

〈[
Om1
m2

Om2

]〉
? To find the solution,

the decoder computes the rank r2 = Rk
([
Â1 Â2

])
.

1. If r2 ≥ m2/2, then the desicion is: 〈Y 〉 originates from the subcode
X2. Using the SKK decoder to find x2 ∈ M2. The matrix X =[
Om1
m2

Im2 x2

]
is the decoding result.

2. If r2 < m2/2, then the decision is: 〈Y 〉 originates from the subcode
X3 ∪ · · · ∪ Xk. The decoder goes to the next step.

• The algorithm is running until the final decision is found. The number of
required steps is k at most.

7.5 Cardinality of MZP codes

The multicomponent codes with zero prefix (MZP) were presented in 2008 by
Gabidulin and Bossert [GB08]. They were based on the lifted rank codes by
Kötter, Kschischang, Silva [KK08], [SKK08]. Let n = m+rδ+s be code length,
where m is the dimension, r is an integer, r ≥ 1, 0 ≤ s ≤ δ − 1.

The first component is the SKK-code. It consists of a set of matrices

Cskk =
{(

Im M1

)
|M1 ∈M1

}
, (7.7)

where Im is the identity matrix of order m, while M1 is a code matrix of size
m× (n−m) of the rank matrix codeM1 with rank distance drank = δ [Gab85].
The subspace distance of the code Cskk is more than twice the rank distance of
the matrix codeM1: dsub(Cskk) = 2drank(M1) = 2δ.

The cardinality of a subspace code is a very important characteristic. There
are many works which estimate this characteristic and compare it with upper
bounds (see, for example, [GP17b], [GP17a]) .
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The cardinality |Cskk| of SKK-code is equal to the size of the rank code with
rank distance drank = δ and code length (n−m) :

|Cskk| = q(n−m)(m−δ+1), (7.8)

where δ ≤ m,n ≥ 2m.
For i = 2, . . . , r, the (i)-th component consists of matrices of the form

Cmzp i =
{(

0δm . . . 0δm Im Mi

)
|Mi ∈Mi

}
,

where the first i− 1 block matrices are the all-zero matrices 0δm of size m× δ.
Im is the identity matrix, Mi is a code matrix of size m× (n−m− (i− 1)δ)
of the rank matrix codeMi with rank distance δ. The cardinality of the ith
component is as follows:

|Cmzp i| = q(n−m−(i−1)δ)(m−δ+1) = qni(m−δ+1), (7.9)

where ni = n − m − (i − 1)δ is the code length of the rank code. The last
component is the concatenation of all-zero matrix of size m × (n − m), the
identity matrix IM , and a matrix Asm of size m× s which may have a rank less
than or equal to s ≤ δ − 1. Hence the last component delivers only one code
matrix. The total number of components is equal to l + 1. The cardinality of
the MZP code is the sum of the cardinalities of all components because the
components do not intersect:

Mmzp = |Cmzp| =
l∑
i=1

q((n−m)−(i−1)δ)(m−δ+1) + 1. (7.10)

7.6 Additional cardinality

In many articles the most attention is given to SSK codes as subspace codes
obtained by lifting of rank codes. The cardinality of the lifting codes obtained
can differ just by one code word, but this code word is not known. This case
corresponds to our two components code and we use the last word. In matrix
presentation it is the concatenation of zero matrix and the identity matrix.

Here, we show that multicomponent code can increase cardinality by consid-
erably more than one code word. Let us construct the multicomponent code,
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where n is code length, m is dimension, d = 2δ is code distance. The cardinality
of each component is the following:

Mskk = M1 = q(m−δ+1)(n−m);

M2 = q(m−δ+1)(n−m−δ);

Mi = q(m−δ+1)(n−m−(i−1)δ).

Let the total number of components be (i+1), where n−m− (i− 1)δ = m, that
is i = 1 + n−2m

δ . The last component is a concatenation of the all-zero matrix
of size m× (n−m), the identity matrix Im, and a matrix Asm.
The total cardinality is

Mmzp = qk(n−m) +
qk(n−m−δ)qkδ − qkm

qkδ − 1
+ 1 = Mskk + ∆,

where k = m− δ + 1 and

∆ =
qk(n−m−δ)qkδ − qkm

qkδ − 1
+ 1.

∆ is the number of additional words except words of the first component.
Now, let us estimate the ratio that is the additional cardinality to the first

component cardinality ν = ∆
Mskk

.

ν =
1

qkδ − 1
− qkm − qkδ + 1

(qkδ − 1)qk(n−m)
.

ν ' 1

qkδ − 1

under the condition

qk(n−m)�(qkm−qkδ+1qkm−qkδ+1).

If m = δ, k = 1, then this condition is the following

qk(n−m) � 1,

and it is evident that Mskk = qk(n−m). Let us give numerical examples. They
are shown in Table 7.1.
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Table 7.1: Additional cardinality

ν 0.312 0.328 0.321 0.333 0.143
Mskk 16 64 256 4194304 4096

∆ 5 21 85 1398101 585
n 6 8 10 24 15
m 2 2 2 2 3
δ 2 2 2 2 3

7.7 Efficiency of MZP codes with maximal code
distance

From now on we consider MZP-codes with the following parameters: n = mr+s,
δ = m, 0 < s ≤ (m− 1). Recall that we call these codes MZP spreads. Let us
calculate their cardinality for different parameters and compare their values with
the existing bounds. Put δ = m in (7.10) and obtain the following equation:

Mmzp = |Cmzp| =
r−1∑
i=1

q(mr+s−im) + 1 =
qn − qm+s

qm − 1
+ 1. (7.11)

If s = 0 and n = rm are used the cardinality coincides with the upper bound
Msegre = qn−1

qm−1 (see, [Seg64], [Beu75], [DF79], [WXSN03], [CW13], [Kur16],
[HKK18], [Kur17], [SN17b], [SN17a]).
Now, if n = rm+ 1 and s = 1 we have from (7.11)

Mmzp = |Cmzp| =
qn − qm+1

qm − 1
+ 1.

This value coincides with the upper bound [Beu75] Mbeut = qn−1
qm−1 − (q − 1).

If n = rm+ 2 and s = 2 we have from (7.11)

Mmzp = |Cmzp| =
qn − qm+2

qm − 1
+ 1.

[DF79] gives the upper bound for spreads with parameter s ≥ 2. Using the
corresponding formula in [GP16] represent it as a sum of two terms: the first
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term is the cardinality of the MZP spread and the second is γ1, where γ1 is
some quantity.

Mdr−fr ≤
qn − qm+s

qm − 1
+ 1 + γ1, (7.12)

where γ1 = (qs − bθc) − 2, parameter θ depends on m and s in the following
way:

bθc =

 qs−1 − 1, if 2s < m+ 2;
qs−1 − 2, if 2s = m+ 2;
qs−1 − 22s−m−3 − 1, if 2s > m+ 2.

Let q = 2, m = 3 and s = 2. Then γ1 = 1. In this case the cardinality of this
MZP spread does not coincide with the upper bound with difference 1. To
increase cardinality up to the upper bound in the paper [GP16] a subspace code
from the paper [EZJS+10] was used. It was obtained there for parameters r = 2,
m = 3, s = 2, n = 8 by exhaustive search. We used it as the last component
MZP code for n = mr + 8, where m = 3.
Here, for q = 2, r ≥ 2, m = 4 and s = 2 we use the upper bound from the

paper [Kur16]:

MKurz =
24r+2 − 49

15
. (7.13)

Applying our formula for cardinality to the MZP spread (7.11) with the same
parameters, one can see that the cardinality of the MZP spread coincides with
this upper bound.
Now we will use the upper bounds from [HKK18]. In this paper there are

two important theorems. Let us give our interpretation and our designations
for these theorems.

Theorem 7.6. If 0 < s < m and m > qs, then the maximal cardinality of
subspace code is the following: MHKK1 = qmr+s−qm+s+qm−1

qm−1 .

Let us compare MHKK1 (7.6) and Mmzp (7.11). One can see that both
formulas for cardinality coincide. That means that the cardinality of the MZP
spread achieves the upper bound if the conditions indicated in the theorem are
satisfied: 0 < s < m and m > qs.
If the conditions are not satisfied there is another theorem in the paper

[HKK18].
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Theorem 7.7. If 0 < s ≤ (m− 1) and m < qs, then the maximal cardinality
of subspace code is the following: MHKK2 = qn−qm+s+qm−1

qm−1 + γ2, where γ2 > 1,
it is calculated by means of auxiliary parameters.

We see that the MZP spread does not coincide with the upper bound at these
conditions.
There are two values γ2: γ21 > 1 and γ22 > 1. We have

γ21 = d2m − 1

2
(1 + 2m+2(2m − 2s))

1
2 e − 1

and

γ22 = d2s − 1

2
(1 + 2s+2(m− s)) 1

2 e − 1.

For γ2 one should select the minimum between γ21 and γ22.
We would also like to estimate by Drake–Freeman [DF79]. For this purpose

we will use the parameter γ1 = (qs − bθc) − 2. At the chosen parameters we
calculate three values γ1, γ21 and γ22, take the smallest value and add to the
cardinality value of the MZP spread. We consider the value obtained as an
estimation Mup of the upper bound at these conditions. The efficiency of the
MZP spread is denoted η =

Mmzp

Mup
.

Table 7.2: Efficiency of MZP spread

η 0.971 0.970 0.985 0.996 0.992 0.997 0.996
Mmzp 33 129 513 513 2049 2049 4097
Mup 34 133 521 515 2066 2055 4112
n 8 11 14 15 17 18 19
m 3 4 5 6 6 7 7
s 2 3 4 3 5 4 5
γ21 1 4 8 2 18 6 15
γ22 1 5 11 3 25 7 22
γ1 1 4 10 3 17 7 19

One can see from Table 7.2 that the efficiency η =
Mmzp

Mup
is about η = 0.99

for all the cases where m < 2s.
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7.8 Dual multicomponent codes

Let a subspace X of dimension m be given by a matrix L of size m× n with
rank m. The orthogonal subspace X⊥ of dimension n−m will be given by the
matrix L⊥ of size (n−m)× n such that

(L⊥)(L>) = 0,

where L> means the transposed matrix L.
Let us construct the dual multicomponent code (DMC). For j = 1, . . . r, the

components of the MZP codes with dimension m and length n = rm+ s are
given by matrices of rank m with the following form:

Lj =
[
0m . . . 0m Im Mj

]
.

The matrices consist of the zero matrix prefix of size m× (j − 1)m, the unity
submatrix Im of order m and the submatrix Mj of size m× n− jm.
The orthogonal matrixL⊥j with rank n−m is the following

L⊥j =

[
I(j−1)m 0m(j−1)m 0n−jm(j−1)m

0
(j−1)m
n−jm −M> In−jm

]
,

where 0vl is the zero matrix of size l × v.
DMC code L⊥j has dimension n−m and subspace code distance dsub = 2m.

For the parameters n = mr + s,m = 2, 3, s = 0, 1 these codes have maximal
cardinality.

7.9 Maximal cardinality MZP and DMC codes

First we consider MZP code. Let the parameters be δ = m and n = (r + 1)m+
s, s = 0. Then

Mmzp =

r−1∑
i=1

q(r−i+1)m(m−m+1) + 1 =
qn − 1

qm − 1
.

This formula coincides with the upper bound Mmax(0) [WXSN03].
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Now n = (r + 1)m+ 1, s = 1, then

Mmzp = q
q(r+1)m − 1

qm − 1
− (q − 1).

This formula coincides with the more precise upper bound

Mmax(1) = q
q(r+1)m − 1

qm − 1
− (q − 1).

It means that for m = 2 the MZP codes have the maximal cardinality for any
value of the parameters n, d. If m = 3 the MZP codes have maximal cardinality
at δ = 3 and n = (r+ 1)m+ s, s = 0, 1. The corresponding dual codes have the
same cardinality at the same parameters except dimension, which is m′ = n−m.

Example 8. Let us construct MZP codes with parameters n = (2× 3) + 1 =
7, d = 6 and the corresponding dual code with dimension n− 3 = 4. In this case
the MZP code consists of two components.

The first component is concatenation of two matrices I3 of order 3 and
the matrix M of size 3 × 4 of the rank code. The second component is also
concatenation of two matrices. The first matrix is zero matrix 04

3 of size 3× 4,
the second matrix is the identity matrix I3 of order 3. The cardinality of the
first component is M1 = 24, the cardinality of the second component is M2 = 1.
The total cardinality is Mmax = 17. This value coincides with the upper bound.

The corresponding dual code also consists of two components. The first
component is concatenation of two matrices, where the first matrix is the
transposed 4× 3 matrix −MT of the rank code and the initial MZP code has
dimension 3. In this case the code word length is not equal to the double
dimension (2×m′ = 8). Nevertheless, this dual code has maximal cardinality.
This small example shows that construction of dual codes increases the general
number of codes with maximum cardinality.

7.10 ZJSSS codes with maximal cardinality

Now let us use the following parameters: (n = rm + 2) = 8, m = 3. In this
case our MZP code has cardinality M = 33, but the upper bound is one word
greater, that is Mmax = 34.
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The paper [EZJS+10] constructs the code with the parameters indicated above.
The method used is exhaustive search. This code has maximal cardinality 34.
We designated this code ZJSSS using the first letters of author names. Here
code subspaces of dimension m = 3 are given by binary generating matrices of
size 3× 8. For brevity each 8-bits row is written as a decimal binary number.
The code matrices are the following.

A1=(169, 75, 5) A2 = (195, 43, 6) A3 = (108, 29, 3)
A4=(130, 72, 20) A5=(144, 68, 33) A6 = (65, 61, 2)
A7 = (66, 19, 4) A8=(140, 87, 1) A9=(35, 16, 9)
A10 = (147, 99, 7) A11 = (155, 76, 38) A12=(69, 40, 24)
A13=(132, 103, 12) A14 = (152, 88, 56) A15 = (153, 94, 39)
A16=(196, 34, 11) A17=(167, 97, 15) A18 = (159, 84, 32)
A19 = (154, 71, 55) A20=(145, 80, 50) A21=(131, 54, 13)
A22 = (134, 74, 53) A23 = (166, 18, 8) A24=(164, 64, 31)
A25=(138, 90, 60) A26 = (135, 73, 27) A27 = (146, 77, 37)
A28=(171, 105, 17) A29=(158, 79, 52) A30 = (128, 89, 47)
A31 = (129, 22, 10) A32=(143, 83, 46) A33=(205, 36, 21)
A34 = (137, 91, 44)

7.11 Dual ZJSSS code

We designate dual ZJSSS code as DZJSSS.

A⊥1 =(135, 66, 39, 16, 13) A⊥2 = (137, 73, 40, 16, 7)
A⊥3 = (128, 43, 75, 12, 19) A⊥4 =(130, 72, 32, 20, 1)
A⊥5 =(144, 68, 33, 8, 4) A⊥6 = (128, 69, 36, 20, 12)
A⊥7 = (128, 32, 8, 67, 17) A⊥8 =(134, 66, 32, 18, 14)
A⊥9 =(128, 64, 34, 11, 4) A⊥10 = (144, 85, 53, 8, 3)
A⊥11 = (129, 71, 35, 17, 14) A⊥12=(128, 65, 56, 5, 2)
A⊥13=(141, 65, 33, 16, 3) A14 = (232, 24, 4, 2, 1)
A⊥15 = (161, 98, 19, 11, 6) A⊥16=(132, 68, 42, 16, 9)
A⊥17=(138, 67, 41, 16, 6) A⊥18 = (129, 69, 20, 9, 3)
A⊥19 = (131, 98, 51, 11, 5) A⊥20=(129, 83, 34, 8, 4)
A⊥21=(137, 64, 43, 27, 7) A⊥22 = (129, 71, 33, 17, 15)
A⊥23 = (132, 64, 36, 22, 1) A⊥24=(133, 37, 17, 9, 3)
A⊥25=(150, 84, 36, 14, 1) A⊥26 = (132, 67, 32, 22, 13)
A⊥27 = (130, 72, 41, 18, 5) A⊥28=(130, 74, 40, 25, 4)
A⊥29=(131, 65, 38, 21, 10) A⊥30 = (67, 34, 19, 9, 6)
A⊥31 = (129, 64, 32, 20, 14) A⊥32=(135, 70, 35, 22, 12)
A⊥33=(136, 72, 37, 25, 2) A⊥34 = (131, 66, 36, 18, 13)
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7.12 The family of MZP and combined codes

The algorithm of MZP code construction makes it possible to input ZJSSS code
as two last components in order to increase cardinality of the MZP code.

Example 9. Let n = 11. The MZP code consists of 3 components.

The first component is SKK . Let us substitute the last two components of
MZP code for the code ZJSSS, where we add zero prefix matrix 03 of order 3.
The cardinality of this ZJSSS code is 34 which is maximal for chosen parameters
n = 8 and d = 2m = 6. We have obtained a two component combined [11, 6, 3]
MZP-ZJSSS code with maximal cardinality 290.

Table 7.3: Cardinality of MZP and MZP-ZJSSS codes

r n Mmax Mmzp Mmax −Mmzp

2 8 34 33 1
3 11 290 289 1
4 14 2338 2337 1
5 17 18722 18721 1

Use the same method and set parameters n = 3(r−1)+8 = 3(r+1)+2, m = 3,
d = 6. We will obtain a family of subspace codes with maximal cardinality. First
of all, we construct an MZP-ZJSSS code with code word length n = 3× r + 2,
where r is an integer. For example r = 2, 3, 4, 5, n = 8, 11, 14, 17. Let us
calculate the cardinality of MZP and MZP-ZJSSS codes. We put this data in
the Table 7.3.

Example 10. Two component combined MZP-ZJSSS code). Using combined
MZP-ZJSSS code with parameters n = 11, m = 3, d = 6, we construct a
combined dual two component code and designate it by CD2C.

The first component is given by the matrix:[
MT I8

]
.

The second component is given by the matrix:[
I3 08

3

03
5 Z⊥

]
,

124



7 Multicomponent prefix codes

where Z⊥ is a DZJSSS code matrix with size 5 × 8. The matrix with size
8× 11 is a concatenation of two submatrices, where the first submatrix MT is
a transposed rank code matrix of size 3× 8, and the second submatrix is the
identity matrix I8 of order 8. The second component is the dual ZJSSS code in
the form of the general matrix of size 8× 11. The general matrix consists of
four submatrices: the identity matrix I3 of order 3 is located in the left upper
corner, the zero matrix 08

3 with size 3× 8 is located in the right upper corner,
the zero matrix 03

5 of size 5× 3 is located in the left down corner, the matrix of
size 5× 8 is located in the right down corner. This matrix is orthogonal to the
ZJSSS code matrix of size 3× 8.

Example 11. Three component combined MZP-ZJSSS code.

We construct a three component combined MZP-ZJSSS code with maximal
cardinality with the following parameters: code word length n = 14, dimension
m′ = n − m = 14 − 3 = 11. The matrix of the first component is in the
form [I3 M11 M12 M13 M14] , where the rank code matrix M1 is written as the
concatenation of four matrices M1 = [M11M12M13M14], where the size of each
of the first three matrices is 3× 3, the size of the fourth matrix is 3× 2. The
corresponding first component of the dual code is in the form:

MT
11 I3 03 03 02

MT
12 03 I3 03 02

MT
13 03 03 I3 02

MT
14 03 03 03 I2

 .
The second component of the MZP code is the following

[
03

3 I3 M21 M22 M23

]
,

where the rank code matrix M2 is in the form of concatenation of three matrices
M2 = [M21 M22 M23]. The size of each of the first three matrices is 3× 3, the
size of the fourth matrix is 3× 2. The corresponding second component of the
dual code is 

I3 03 03 03 02

03 MT
21 I3 03 02

03 MT
22 03 I3 02

03 MT
23 03 03 I2

 .
The third component of the combined three component code is presented as
the concatenation of two zero matrices with size 3× 3 and the matrix of the
ZJSSS code with size 3× 8: [

03
3 03

3 Z
]
,
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where Z is a matrix of the ZJSSS code. The corresponding third component of
the dual code is the following: I3 03

3 08
3

03
3 I3 08

3

03
5 03

5 ZT

 ,
where ZT is a transposed matrix with size 5× 8 of the ZJSSS code.

7.13 MZP codes with dimension m ≥ 4 and dual
codes

In [Kur17] it is shown that the upper bound is equal to Mmax = 2m+2 + 1 if the
parameters are the following n = 2m+ 2, m ≥ 4, d = 2m. Our two component
MZP code has this cardinality.

Let m = 4, n = 10, d = 8. The first component is SKK code with the matrix
[I4 M11 M12] and the cardinality M1 = 2m+2 = 64, the second component is
the identity matrix with zero prefix which is a zero matrix with size 4× 6. The
cardinality of the second component is one code word.
The corresponding dual code also consists of two components. The first

component is [
MT

11 I4 02
4

MT
12 04

2 I2

]
.

The second component is [
I4 04

4 02
4

04
2 04

2 I2

]
.

The new dimension is m′ = n −m = 10 − 4 = 6. As one can see the double
value of dimension 2m′ = 12 does not coincide with the code distance d = 8.
Let n = 3m+ 2 = 14, m = 4, d = 8. The initial three component code isI4 M11 M12 M13

04
4 I4 M21 M22

04
4 04

4 02
4 I4

 ,
where each matrix row is the corresponding component, each of the matrices
M11, M12, M21 has size 4× 4, the size of each matrices M13 and M2 is 4× 2
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The first component of the dual code is in the formMT
11 I4 04

4 02
4

MT
12 04

4 I4 02
4

MT
13 04

2 04
2 I2

 ,
The second component of the dual code is in the formI4 04

4 04
4 02

4

04
4 MT

21 I4 02
4

04
2 MT

22 04
2 I2

 .
The third component of the dual code is in the formI4 04

4 04
4 02

4

04
4 I4 04

4 02
4

04
2 04

2 04
2 I2

 .

7.14 Conclusions

This chapter is devoted to multicomponent subspace codes. We have shown
the place of these codes in random network coding. We have described the
constructions and have estimated the cardinality of the codes. The efficiency
of the MZP codes is defined as ratio of its cardinality to the upper bound at
the same parameters. At maximum code distance, the efficiency is maximum,
i.e., it is equal to 1 or near 1. It depends on the dimension. We have also
demonstrated the iterative decoding algorithm.
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8
Multicomponent codes based on
combinatorial block designs

8.1 Introduction

A code cardinality, i.e., the number of codewords, is an important code pa-
rameter. Therefore, researches try to design multicomponent codes with large
cardinality and distance d as a union of several codes having the same distance
d. The cardinality of a multicomponent code is usually equal to the sum of
the cardinalities of its components. Etzion and Silbershtein [ES09] show that
projective spaces can be used to design multicomponent codes.

In this chapter, we will show multicomponent subspace codes, based on
rank metric codes and combinatorial block designs [Hal67]. Examples of some
multicomponent subspace codes will be given. Special rank metric codes with
restrictions for these constructions will be considered. We also will pay attention
to the decoding of multicomponent subspace codes in networks.
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8.2 Reduced row echelon form of matrices

Recall that an SKK-code for network coding is a set of k × n matrices over the
base field Fq

C =
{[
Ik M

]}
, (8.1)

where Ik is the identity matrix of order k, and matrix M ∈ M is a code
matrix of the codeM that consists of k × (n− k) matrices over the base field
Fq. Let dr(M) be rank distance of the code, then subspace code distance is
d(C) = 2dr(M).

Because of the identity matrix Ik, the code matrices can be seen as a particular
case of matrices in reduced row echelon form. Let us consider a general case of
such matrices.
Let X be a matrix of size k × n and rank k. Apply Gaussian elimination to

X to obtain the matrix in reduced row echelon form, which satisfies:

• the leading element of a row is on the right of the leading element of the
previous row;

• the leading entry in each nonzero row is a 1 (called a leading 1);

• each column containing a leading 1 has zeros in all its other entries.

Thus, a matrix in reduced row echelon form has k ones as leading elements and
a number of neighboring zeroes. All the rest elements are called free parameters.
Denote the set of free parameters by a.

Assume that the leading element of the first row has position i1, the leading
element of the second row has position i2, the leading element of the last
k-th row has position ik. Then 1 ≤ i1 < i2 < · · · < ik ≤ n. The integers
i1, i2, . . . , ik and the free parameters a completely define the basis matrix in
reduced row echelon form.

We call the vector i = [i1 i2 . . . ik] indicator of reduced row echelon form
and denote it by (ID). The corresponding (subspace-) basis matrix is denoted
by X(i,a). Let n = 6, k = 3, ID = [i1 i2 i3] = [1 3 4]. Then the basis matrix
X(i,a) for this indicator is

X(i,a) =

1 a1,1 0 0 a1,2 a1,3

0 0 1 0 a2,2 a2,3

0 0 0 1 a3,2 a3,3

 .
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This matrix has 7 free parameters ai,j , which can be selected arbitrarily from
the field Fq. Hence, there are q7 different 3-dimensional subspaces for this
indicator.
In general case, the first row has n − k + 1 − i1 free parameters, the j-th

row has n− k + j − ij free parameters, j = 1, . . . , k. The total number of free
parameters is

f =

k∑
i=1

fi = nk − (k − 1)k

2
− i1 − i2 − · · · − ik. (8.2)

From this example one can see that a code matrix of SKK code is a particular
case of a matrix in reduced row echelon form with the identity matrix on the
left part and a rank code matrix on the right. In other cases, columns of the
identity matrix can occupy other positions, and the remaining positions can
be occupied by columns of a rank code. Keep in mind that some elements of
these remaining positions must be zero, the other elements, denoted by a in the
example, are free.

8.3 Rank codes with restrictions

Consider a vector MRD [n, k, d]-code with generator matrix G. Let the infor-
mation vector be u = (u1, . . . , uk), then the code vector is g(u) = uG,
and gives code matrix

M(uG) =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
...

aN1 aN2 . . . aNn

 .
A code matrix is called a matrix with restrictions if aij = 0 for fixed positions.
Rank code with such matrices is called rank code with restrictions.
Problem: Given a rank distance, design the rank code with restrictions.
Let us solve the problem as follows: find the restrictions on the information

vectors u, design a vector code with these restrictions and transform it to the
matrix form.
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8.4 Singleton bound

First we give the Singleton bound for standard rank codes, then we derive a
bound for the rank metric codes with restrictions.

Let a rank metric code in matrix form consist of |M | matrices of size N × n,
n ≤ N , with rank distance d.
Let us obtain an upper bound for |M |. Every code matrix we write as [Ai,

Bi], i = 1, |M |, where matrices Ai have size N × (d − 1), and matrices Bi
have size N × (n − d + 1)). All matrices Bi are different, otherwise, if say
B1=B2 then the code matrix [A1 −A2, 0] has rank at most d− 1. For the code
without restrictions, every matrix Bi has N × (n − d + 1) elements. Hence,
the number of code words is upper bounded by qN×(n−d+1), the number of
different matrices Bi. Thus, the Singleton upper bound for a rank metric code
is logq |M | ≤ N × (n− d+ 1). The rank codes we considered before reach this
bound.
Let us obtain an upper bound for the cardinality of a rank metric code

with distance d and with restrictions, i.e., there are fixed positions in the code
matrices that are always zero. Let us select d − 1 columns with maximum
number of free elements, move these columns to the left part of the matrix
and call the submatrix A. The remaining columns we order in a way that the
number of free elements decreases from left to right and denote this submatrix
by B.
Denote the number of free elements in columns of A by N1, N2, . . . , Nd−1,

and for the matrix B by Nd, Nd+1, . . . , Nn. We will use the same derivation
as in the case without restrictions. The number of different matrices B is
qNd+Nd+1+...+Nn . Hence, the Singleton type bound for a code with restrictions
depends on the restrictions and has the form |M | ≤ qNd+Nd+1+...+Nn .

Let us show by an example how to compute the bound and design a code
that reaches this bound. Code parameters: q = 2, n = 3, k = 2, d = 2. The
primitive polynomial to generate the field is α3 + α2 + 1 = 0. The generator
matrix of the rank [3,2,2] code is

G =

[
1 α α2

1 α2 α4

]
. (8.3)
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A code matrix with restrictions is

Mrestrict(ûG) =

a11 a12 a13

0 a22 a23

0 a32 a33

 . (8.4)

To obtain the bound we transpose the matrix. The matrix A has the first
column (of the transposed matrix) that has N1 = 3 free elements. The matrix
B has other two columns with Nd + Nn = 2 + 2 = 4 free elements. Hence,
|M | ≤ 24 = 16.

Let us show that the [3,2,2] code with restricted information symbols reaches
the Singleton bound. We take 1, α, α2 as the basis of the field F23 . Transform a
code matrix into the vector form b = (b1, b2, b3),

b = ((a11 ·1+a21 ·α+a31 ·α2), (a12 ·1+a22 ·α+a32 ·α2), (a13 ·1+a23 ·α+a33 ·α2)).

Here a21 = a31 = 0, hence, b1 = a11.
For the information vector (u1, u2) we get the code vector (b1, b2, b3)

(u1, u2)

[
1 α α2

1 α2 α4

]
= ((u1 + u2), (u1α+ u2α

2), (u1α
2 + u2α

4)),

where b1 = a11 = (u1 + u2) , u2 = u1 + a11. Let the information symbol u1 be
equal to one of 23 = 8 field elements of F23 . Since a11 can be 0 or 1 only, the
information symbol u2 = u1 + a11 takes only 2 values for fixed u1. Thus with
the restrictions on information symbols we have 2× 23 = 16 codewords, and
the restricted code reaches the Singleton type bound.
Now consider the case d = 3. We will use [3,1,3] rank code with generator

matrix
G =

[
1 α α2

]
. (8.5)

The matrix A has d− 1 = 2 columns, where all elements are free. The matrix
B has one column, which contains one free element a11 and two zero elements,
and we obtain the bound |M | ≤ 21 = 2.

The information vector of length 1 is (u1). The corresponding code vector is
b = (u1)G = (u1, u1α, u1α

2) = (b1, b2, b3). From the restriction (8.4) we have
restriction for the information symbol u1 = a11 ∈ F2. Hence, there are two code
words in the restricted code, and the Singleton type bound is reached.
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8.5 Combinatorial block designs

To construct multicomponent subspace codes we will use basis matrices of the
subspaces in reduced row echelon form and rank metric codes with restrictions.
The multicomponent code is a union of subcodes that are called components of
the code. To guarantee a fixed subspace distance between code components, we
will use combinatorial block designs [Hal67].

In combinatorial analysis, one of the problems is: place in a special way some
elements in given sets. The i-th element should appear ri times in the sets
such that the j-th set contains kj elements, and also pairs, triples and other
combinations of elements should appear a fixed number of times. Such placement
is called an incidence structure or tactical configuration. A particular type of
such placements is balanced incomplete block designs. By definition, balanced
incomplete block design is a placement of v different elements in b blocks, such
that every block contains exactly K different elements, every element appears in
r different blocks, and every pair of different elements ai, aj appears in exactly
λ blocks. In combinatorics, balanced incomplete block designs can be called
simply block designs or designs. We will mostly use the name combinatorial
block designs.

Given the finite set N = {1, 2, . . . , n} and integers K, r, λ ≥ 1, we will build
a design, called 2 B-block, as a set of subsets consisting of K elements from
N . The following conditions should be satisfied: the number r of blocks that
contain i ∈ N does not depend on i, and the number λ of blocks that contain
different pairs i, j ∈ N also does not depend on i, j. Here:

1. n is the number of elements in N ;

2. b is the number of blocks;

3. r is the number of blocks containing a given element from N ;

4. K is the number of elements in every block;

5. λ is the number of blocks that contain a given pair of different elements.

Such designs are defined by parameters (n,K, λ), or equivalently by
(n, b, r,K, λ). It is shown in [Hal67] that these parameters are connected as
follows: bK = vr and r(K − 1) = λ(v − 1).

Construction of a code with 7 components
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Let k = 3, n = 7, dr = 2. We construct subspace code will consist of 7
components and will have subspace code distance 2dr = 4. We use b = 7 blocks
of block design as the following indicators of reduced echelon forms of code
matrices

B>1 =

1
2
3

 , B>2 =

1
4
5

 , B>3 =

1
6
7

 , B>4 =

2
4
6

 ,
B>5 =

2
5
7

 , B>6 =

3
4
7

 , B>7 =

3
5
6

 .
(8.6)

(Every two blocks have in common exactly λ = 1 components.)
The corresponding structures of code matrices of 7 components are:

B>1 =

1
2
3

→
 1 0 0 a1 a2 a3 a4

0 1 0 a5 a6 a7 a8

0 0 1 a9 a10 a11 a12



B>2 =

1
4
5

→
 1 a1 a2 0 0 a3 a4

0 0 0 1 0 a5 a6

0 0 0 0 1 a7 a8


B>3 =

1
6
7

→
 1 a1 a2 a3 a4 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1


B>4 =

2
4
6

→
 0 1 a1 0 a2 0 a3

0 0 0 1 a4 0 a5

0 0 0 0 0 1 a6


B>5 =

2
5
7

→
 0 1 a1 a2 0 a3 0

0 0 0 0 1 a4 0
0 0 0 0 0 0 1


B>6 =

3
4
7

→
 0 0 1 0 a1 a2 0

0 0 0 1 a3 a4 0
0 0 0 0 0 0 1


B>7 =

3
5
6

→
 0 0 1 a1 0 0 a2

0 0 0 0 1 0 a3

0 0 0 0 0 1 a4

 ,
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where ai denotes free parameters.
Here we used a balanced incomplete block design with parameters n = v =

b = 7, r = K = 3, λ = 1. The blocks Bi of the design above serve as the
indicators for the 7 base matrices for the 7 components. Next, we will fill
columns of matrices with free elements by columns of restricted rank code. This
allows us to construct the required subspace code with subspace distance 4 as a
union of the 7 component codes of cardinalities 256, 16, 1, 16, 2, 4, 2 respectively.

The rank code distance of every component code will be at least dr = 2, since
we use restricted rank metric mother code with dr = 2. Hence, the subspace
code distance of every component code will be at least 2dr = 4. The minimum
subspace distance between components of the code will be 4. As a result, the
multicomponent code has subspace distance 4 and 297 code words, which is
16% more than the cardinality of the first component.

Below we will show code matrices of the first two components of the code.

8.5.1 Matrices of the first and the second components

Matrices of the first component code. In the example above, the first
component of the multicomponent code coincides with the SKK code. Let us
construct a code matrix of the subspace code for a given information vector.

The parameters of the rank code are q = 2, dr = 2, k = n−dr+1 = 3−2+1 =
2.

To design the extension field select the primitive polynomial f(λ) = λ4 +λ+1.
The generator matrix of the rank code is

G =

[
1 α α2

1 α2 α4

]
. (8.7)

For information vector (u1, u2) compute the code vector

g = (u1, u2)G = ((u1 + u2), (u1α+ u2α
2), (u1α

2 + u2α
4)) = (g1, g2, g3).

Let the information symbols be u1 = α, u2 = α2. Then the code vector is
g = (α5, α10, α2) and the code matrix is

M1 =


0 1 0
1 1 0
1 1 1
0 0 0

 ,
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with the transposed matrix

MT
1 =

0 1 1 0
1 1 1 0
0 0 1 0

 .
Using lifting we obtain the basis of the code subspace as rows of the matrix
X1 = [I3 MT

1 ]

X1 =

1 0 0 0 1 1 0
0 1 0 1 1 1 0
0 0 1 0 0 1 0

 .
The first component has 28 = 256 code matrices.

Matrices of the second component code. The code parameters and
the generator matrix are the same for all components: q = 2, dr = 2, k =
n− dr + 1 = 3− 2 + 1 = 2.
The indicator for the second component is

B2=[1 4 5] (8.8)

and the code matrices of the second component have the following structure

X2 =

 1 a11 a12 0 0 a13 a14

0 0 0 1 0 a23 a24

0 0 0 0 1 a33 a34

 , (8.9)

hence, the structure of a code matrix of the restricted rank code is

M1 =


a11 0 0
a12 0 0
a13 a23 a33

a14 a24 a34

 . (8.10)

Here we have 8 free elements a11, a12, a13, a14, a23, a24, a33, a34. Four positions
are filled by zeros a21 = 0, a22 = 0, a31 = 0, a32 = 0. These are restrictions. Let
us design all the code matrices and all the allowed information vectors.
We use 1, α, α2, α3 as a basis of the extension field. Transform the second

and the third columns of the matrix into elements g2 and g3 of the extension
field. Using, G, we obtain for information symbols u1, u2 the following system
of equations
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0 · 1 + 0 · α+ a23α
2 + a24α

3 = u1α+ u2α
2;

0 · 1 + 0 · α+ a33α
2 + a34α

3 = u1α
2 + u2α

4,
from which we get
u1 = a33α

11 + a34α
12 + a23α

13 + a24α
14

u2 = a33α
10 + a34α

11 + a23α
11 + a24α

12.
We see that four binary elements of the matrix define the information vector

and, hence, the code word. Thus, there are 16 allowed information vectors out of
256 defined by 4 bits a23, a24, a33, a34, which can be considered as 4 information
bits. Three out of the 16 allowed information vectors and corresponding 16
code matrices are listed below.

1. Let a23 = a24 = a33 = a34 = 0. The information vector is all-zero

M1 =


0 0 0
0 0 0
0 0 0
0 0 0

 .

2. Let a23 = a24 = a33 = 0, a34 = 1. Then u1 = α12, u2 = α11 and
g1 = u1 + u2 = 1, g2 = u1α + u2α

2 = 0, g3 = u1α
2 + u2α

4 = α3. The
code vector is g = (1 0 α3) and the code matrix of the rank code is

M2 =


1 0 0
0 0 0
0 0 0
0 0 1

 .

3. Let a23 = 1, a24 = 1, a33 = 1, a34 = 1. Then u1 = α13 + α14 + α11 +
α12 = α8, u2 = α11 + α12 + α10 + α11 = α3 and g1 = u1 + u2 = α13,
g2 = u1α + u2α

2 = α6, g3 = u1α
2 + u2α

4 = α6. The code vector is
g = (α13 α6 α6) and the code matrix

M16 =


1 0 0
0 0 0
1 1 1
1 1 1

 .
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8.6 Decoding a restricted rank code

Let us consider the decoding of the restricted rank code used in the second
component. Since the restricted code is a subcode of the mother rank code, we
can decode the received word by decoding the mother code using any known
decoding algorithm.

Assume the code matrix M16 has been transmitted over a noisy channel that
adds the following noise matrix of rank 1

Mn =


0 0 0
0 0 0
1 1 1
1 1 1

 .

The received corrupted matrix is

Y =


1 0 0
0 0 0
0 0 0
0 0 0

 .

To start decoding we transform the received matrix to the vector form y = (1 0 0).
Using the generator matrix (8.3), let us compute a check matrix

H =

 h1

h2

h3

 .

Since the generator matrix is orthogonal to a check matrix we write GHT = 0
as (

1 α α2

1 α2 α4

) h1

h2

h3

 =

(
0
0

)
(8.11)

and obtain the system of equations for elements of the matrix H

h1 + αh2 + α2h3 = 0, h1 + α2h2 + α4h3 = 0. (8.12)

Setting h1 = 1 we find h2 = α2 and h3 = α12.
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The syndrome of the received vector is S = yHT , i.e.,

S = (1 0 0)

 1
α2

α12

 = 1. (8.13)

Since the syndrome is nonzero we can detect an error during the transmission.
The restricted code has code distance dr = 2 like the mother code, and can
detect errors but cannot correct them.

8.7 Decoding subspace code

Let us use the following matrix of restricted rank code

M16 =


1 0 0
0 0 0
1 1 1
1 1 1


to build the code matrix X16 of the second component, having the indicator
B = [1 4 5]:

X16 =

 1 1 0 0 0 1 1
0 0 0 1 0 1 1
0 0 0 0 1 1 1

 . (8.14)

Assume that the rows of the matrix X16 were transmitted as packets via a
network with linear random network coding and the matrix received is

Y = AX16. (8.15)

Let the matrix A in our example be the singular matrix

A =

 1 0 1
0 1 0
1 1 1

 (8.16)
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then the received matrix is

Y = AX16 =

 1 0 1
0 1 0
1 1 1

 1 1 0 0 0 1 1
0 0 0 1 0 1 1
0 0 0 0 1 1 1

 = 1 1 0 0 1 0 0
0 0 0 1 0 1 1
1 1 0 1 1 1 1

 .

(8.17)

Transform the matrix Y to the reduced row echelon form

Ỹ =

 1 1 0 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 0 0 0

 . (8.18)

The positions of leading elements in the first two rows of the matrix Ỹ allow us
to find two columns of the identity matrix: the first and the forth. The fifth
column can be found using indicators. As a result, we have the positions of
indicators 1, 4, 5. Fixing the positions 1, 4, 5 of the component indicators, allows
us to find the channel matrix A from Ỹ . Let us write A = I + L, where

L =

 0 0 1
0 0 0
0 0 1

 . (8.19)

The unindexed columns of the matrix Ỹ form the matrix AM̃16

AM̃16 = M16 + LM16 =

 1 0 0 0
0 0 1 1
0 0 0 0

 . (8.20)

Write the transposed matrices

MT
16 +MT

16L
T =


1 0 0
0 0 0
0 1 0
0 1 0

 (8.21)

and

LT =

 0 0 0
0 0 0
1 0 1

 . (8.22)
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Transform the matrix MT
16 into a vector, denoted by (m1 m2 m3). Multiply the

vector by the matrix LT : (m1 m2 m3)LT = (m3 0 m3). Write the syndrome
using the unknown m3 as

S1 = m3(1 0 1)

 1
α2

α12

 = m3(1 + α12) = m3α
11. (8.23)

Transform the matrix M̃T
16 into the vector y = (1 α6 0) and compute the

syndrome

(1 α6 0)

 1
α2

α12

 = 1 + α8 = α2. (8.24)

By equating the expressions for the syndrome we obtain m3α
11 = α2, i.e.,

m3 = α6. Error in vector form is e = (m3 0 m3) = (α6 0 α6). The transmitted
vector is y + e = (1 + α6 α6 α6) = (α13 α6 α6) and corresponding decoded
matrix is

M16 =


1 0 0
0 0 0
1 1 1
1 1 1

 . (8.25)

The decoding was correct.

Construction of a code with 13 components

Let us use a block design with parameters n = v = b = 13, r = K = 4, λ = 1
from Table 1 in [Hal67] to construct a multicomponent subspace code with
subspace distance 2dr = 6, where code binary matrices have size n × r. The
rows of the following table, which are blocks of the code design, will be used as
indicators for 13 components. Here every row and every column has 4 different
positions.
Table of indicators (rows) of 13 components
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1 2 3 4
1 5 6 7
1 8 9 10
1 11 12 13

2 5 8 11
2 6 9 12
2 7 10 13

3 5 9 13
3 6 10 11
3 7 8 12

4 5 10 12
4 6 8 13
4 7 9 11

As an example let us show structures of code matrices of the second and the
thirteens components of the subspace code.
A code matrix of the second component has the following structure

1 a a a 0 0 0 a a a a a a
0 0 0 0 1 0 0 a a a a a a
0 0 0 0 0 1 0 a a a a a a
0 0 0 0 0 0 1 a a a a a a

 .

A code matrix of the 13-th component has the following structure
0 0 0 1 a a 0 a 0 a 0 a a
0 0 0 0 0 0 1 a 0 a 0 a a
0 0 0 0 0 0 0 0 1 a 0 a a
0 0 0 0 0 0 0 0 0 0 1 a a

 .

Symbols a denote free elements. These free positions can be filled by elements
of a code word of the restricted [13, 11, 3] rank metric code over the extension
field F24 .
The number of code words in this subspace code with 13 components and

subspace distance 6 is 218+212+26+20+26+24+22+23+24+25+23+24+25 =
266501. Using this multicomponent construction we increase the cardinality of
the first component, which is the SKK code of cardinality 218 = 262144, by less
than 2%. However, the multicomponent code has 4357 additional code words.
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8.8 Conclusions

We have developed the principles for building multicomponent subspace codes
using combinatorial block designs and rank codes. The required parameters
have been selected in such a way that the minimum subspace distances between
the code components are not less than the code distance of the components.
We have also elaborated the rank codes with restriction, which are required for
the multicomponent codes.
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9
Problems

9.1 Subgroups

Problem 1.

1. Find all subgroups of the additive group of the ring Z30. Specify which
subgroups are cyclic and give generator elements for them.

2. Find the maximal multiplicative group of the ring Z30 and give all sub-
groups of the group.

Solution

1. An operation of addition in additive group of the ring Z30 is the addition
modulo 30. The group is cyclic and consists of elements {0, 1, 2, . . . , 28, 29}
with the generator element 1. The order of the group is 30. Orders of
subgroups should divide 30, i.e., the orders are 1, 2, 3, 5, 6, 10, 15, 30.
The subgroup of order 1 consists of one element 0. The subgroup of order 2
(which is cyclic with the generator element 15) consists of elements {0, 15}.
The subgroup of order 3 (which is cyclic with the generator element 10)
consists of elements {0, 10, 20}. The subgroup of order 5 (which is cyclic
with the generator element 6) consists of elements {0, 6, 12, 18, 24}. The
subgroup of order 6 (which is cyclic with the generator element 5) consists
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of elements {0, 5, 10, 15, 20, 25}. The subgroup of order 10 (which is cyclic
with the generator element 3) consists of elements {0, 3, 6, 9, 12, 15, 20, 25}.
The subgroup of order 15 (which is cyclic with the generator element 2)
consists of elements {0, 2, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28}.

2. An operation of multiplication in the ring Z30 is the multiplication modulo
30. The maximal multiplicative group consists of all elements that are
co-prime with the module 30. These are {1, 7, 11, 13, 17, 19, 23, 29}. The
order of the group is 8. The group is not cyclic. Orders of subgroups
should divide 8, i.e., the orders are {1, 2, 4, 8}. The subgroup of order
1 consists of one element 1. There are 3 different subgroups of order 2.
These are: the cyclic subgroup {1, 11} with the generator element 11; the
cyclic subgroup {1, 19} with the generator element 19; the cyclic subgroup
{1, 29} with the generator element 29. The are 3 different subgroups of
order 4. These are: the cyclic subgroup {1, 7, 19, 13} with the generator
element 7; the cyclic subgroup {1, 17, 19, 23} with the generator element
17; the subgroup {1, 11, 19, 29} (which is the product of two different
subgroups of order 2 with the generator elements 11 and 19).

Problem 2.

1. Find all subgroups of the additive group of the ring Z19 and specify the
generator elements for the subgroups.

2. Show that the maximal multiplicative group of the ring Z19 is cyclic and
find all the generator elements. Give all subgroups of the group.

Solution

1. An operation of addition in the additive group of the ring Z19 is the
addition modulo 19. The group is cyclic and consists of the elements
{0, 1, 2, . . . , 17, 18}. A generator element is any nonzero element of the
group. Since the order 19 of the group is prime, there are two subgroups:
the group itself and {0}.

2. The operation of multiplication in the ring Z19 is the multiplication
modulo 19. The maximal multiplicative group consists of all elements
that are co-prime with the module 19. These are all nonzero elements
{1, 2, 3, . . . , 17, 18}. The order of the group is 18. The order of the sub-
group {18, 9, 6, 3, 2, 1} divides 18. The maximal group of order 18 is cyclic.
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A generator element is, e.g., 2. Indeed, all 18 powers 2, 22, 23, . . . , 217, 218

are different modulo 18. Other generator elements are 3, 10, 13, 14, 15.
The subgroup of order 9 is cyclic with the generator element 4. The
subgroup of order 6 is cyclic with the generator element 8. The subgroup
of order 3 is cyclic with the generator element 7. The subgroup of order
2 is cyclic and consists of elements {18, 1}. The subgroup of order 1 has
only one element 1.

Problem 3.
Find the greatest common divisor of the polynomials r1(x) and r2(x) in the

ring GF(2)[x].
r1(x) = x7 + x5 + x4 + x3 + x,
r2(x) = x14 + x12 + x8 + x6 + x5 + x4 + 1.

Solution
r(x) = x2 + x+ 1.

Problem 4.
Find the greatest common divisor of the polynomials r1(x) and r2(x) in the

ring GF(2)[x], where
r1(x) = x10 + x9 + x7 + x6 + x5 + x2 + 1,
r2(x) = x16 + x15 + x14 + x13 + x12 + x9 + x6 + x4 + x2 + x+ 1.

Solution
r(x) = x3 + x2 + 1.

9.2 Rank codes

Problem 1.
Consider linearized polynomials r1 = αx + α4x2, r2 = α3x + α8x2 over

the field GF (24), generated by the irreducible polynomial x4 + x3 + 1. Find
linearized polynomials r1 + r2, r1 ∗ r2, r2 ∗ r1.
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Problem 2.
The check matrix of the rank code of length n = 3 with code distance d = 3

over GF (23) is

H =

[
1 α α2

1 α2 α4

]
,

where α is a root of the polynomial ϕ(x) = x3 +x2 + 1. Find a generator matrix
of the code.

Let a code word matrix V has been transmitted. Decode the received matrix

Y = V + E =

0 1 1
1 0 0
1 0 1


assuming that the error matrix E has rank 1.

Solution

1. Build the table of the field generted by x3 + x2 + 1:

0 1 = α0 α α2 α3 α4 α5 α6

0 1 α α2 1 + α2 1 + α+ α2 1 + α α+ α2 .

2. Find a generator matrix G =
[
g1 g2 g3

]
using the equation

GH> = 0.

Let g1 = 1, then g2 = α3, g3 = α4, and

G =
[
1 α3 α4

]
.

3. Transform the matrix Y into the vector form:

Y = V + E =

0 1 1
1 0 0
1 0 1

⇒ y = v + e =
[
α6 1 α3

]
.

4. The error vector of rank 1 can be written as

e = e1

[
u1 u2 u3

]
= e1U,

where e1 ∈ GF (23), ui ∈ GF (2).
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5. Compute the syndrome vector yH> = (v + e)H> = eH>:

yH> =
[
s0 s1

]
=
[
α3 α6

]
= e1

[
1 · u1 + αu2 + α2u3 12 · u1 + α2u2 + α4u3

]
= e1[x1 x

2
1].

6. Get the system of equations

α3 = e1x1,

α6 = e1x
2
1.

Here x1 = s1
s0

= α3, e1 = s0
x1

= 1.

7. Find

x1 = α3 = 1 · 1 + α · 0 + α2 · 1 = 1 · u1 + α · u2 + α2 · u3.

The error vector is

e = e1

[
u1 u2 u3

]
= 1 ·

[
1 0 1

]
=
[
1 0 1

]
.

The output of decoding is the code vector

v = y + e =
[
α6 + 1 1 + 0 α4 + α3 + 1

]
=
[
α4 1 α

]
.

Problem 3.
The check matrix of the rank code of length n = 3 with code distance d = 3

over GF (23) is

H =

[
1 α α2

1 α2 α4

]
,

where α is a root of the polynomial ϕ(x) = x3 +x2 + 1. Find a generator matrix
of the code.
A code vector v has been transmitted. Decode y = v + e =

[
α5 0 α6

]
assuming that rank af the error vector e is 1.

Solution

1. Build the table of the field generated by x3 + x2 + 1:

0 1 = α0 α α2 α3 α4 α5 α6

0 1 α α2 1 + α2 1 + α+ α2 1 + α α+ α2 .
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2. Find a generator matrix G =
[
g1 g2 g3

]
using the equation

GH> = 0.

Let g1 = 1, then g2 = α3, g3 = α4, and

G =
[
1 α3 α4

]
.

3. Write the error vector of rank 1 as

e = e1

[
u1 u2 u3

]
= e1U,

where e1 ∈ GF (23), ui ∈ GF (2).

4. Compute the syndrome yH> = (v + e)H> == eH>:

yH> =
[
s0 s1

]
=
[
1 α6

]
= e1

[
1 · u1 + αu2 + α2u3 12 · u1 + α2u2 + α4u3

]
= e1[x1 x

2
1].

5. We obtain the system of equations

1 = e1x1,

α6 = e1x
2
1.

Here x1 = s1
s0

= α6, e1 = s0
x1

= α.

6. Find
x1 = α6 = 1 · 0 + α · 1 + α2 · 1 = 1 · u1 + αu2 + α2u3.

The error vector is

e = e1

[
u1 u2 u3

]
= α

[
0 1 1

]
=
[
0 α 0α

]
.

The output of the decoder is the code vector

v = y + e =
[
α5 + 0 0 + α α6 + α

]
=
[
α5 α α2

]
.
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Problem 4.
The check matrix of the rank code of length n = 3 with code distance d = 3

over GF (23) is

H =

[
1 α α2

1 α2 α4

]
,

where α is a root of the polynomial ϕ(x) = x3 +x2 + 1. Find a generator matrix
of the code.
A code vector v has been transmitted.

Decode y = v + e =
[
α3 1 0

]
assuming that the rank of error vector e is 1.

Solution

1. Build the table of the field generated by x3 + x2 + 1:

0 1 = α0 α α2 α3 α4 α5 α6

0 1 α α2 1 + α2 1 + α+ α2 1 + α α+ α2 .

2. Find a generator matrix G =
[
g1 g2 g3

]
using the equation

GH> = 0.

Let g1 = 1, then g2 = α3, g3 = α4, and

G =
[
1 α3 α4

]
.

3. The error vector of rank 1 write as

e = e1

[
u1 u2 u3

]
= e1U,

where e1 ∈ GF (23), ui ∈ GF (2).

4. Compute the syndrome yH> = (v + e)H> = eH>:

yH> =
[
s0 s1

]
=
[
1 α6

]
= e1

[
1 · u1 + αu2 + α2u3 12 · u1 + α2u2 + α4u3

]
= e1[x1 x

2
1].

5. Obtain the system of equations

1 = e1x1,

α6 = e1x
2
1.

Here x1 = s1
s0

= α6, e1 = s0
x1

= α.
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6. Find

x1 = α6 = 1 · 0 + α · 1 + α2 · 1 = 1 · u1 + αu2 + α2u3.

The error vector is

e = e1

[
u1 u2 u3

]
= α

[
0 1 1

]
=
[
0 α 0α

]
.

The output of the decoder is the code vector

v = y + e =
[
α5 + 0 0 + α α6 + α

]
=
[
α5 α α2

]
.

9.3 q-cyclic codes

Problem 1.
Let q = 2, m = 3. Consider the ring of linearized polynomials over the field

Fqm = F8. Let α be a primitive element of the field that satisfies α3 +α+ 1 = 0.
Let us write the binomial xq

3 − x as xq
3 − x = H1 ⊗ G1, where H1(x) =

xq + αx, G1(x) = xq
2

+ α4xq + α6x. Factorize the binomial x[12] − x as follows

x[12] − x = (xq
3 − x)⊗ (xq

3 − x)⊗ (xq
3 − x)⊗ (xq

3 − x)
= H1 ⊗G1 ⊗H1 ⊗G1 ⊗H1 ⊗G1 ⊗H1 ⊗G1

= H1 ⊗G1 ⊗H1 ⊗G1 ⊗H1 ⊗H1 ⊗G1 ⊗G1

= H ⊗G,

where
H = H1 ⊗G1 ⊗H1 ⊗G1 ⊗H1 ⊗H1,

G = G1 ⊗G1 = xq
4

+αxq
3

+xq
2

+α5xq+α5x.

Build a q-cyclic code of length 12, then a 3-shortened q-cyclic code. Using
this code build a 6-shortened q-cyclic code that is also a pseudo-cyclic code.

Solution
Let us build a q-cyclic code of length 4m = 12 using the polynomial G(x). A
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generator matrix of the code is as follows

G =



α5 α5 1 α 1 0 0 0 0 0 0 0
0 α3 α3 1 α2 1 0 0 0 0 0 0
0 0 α6 α6 1 α4 1 0 0 0 0 0
0 0 0 α5 α5 1 α 1 0 0 0 0
0 0 0 0 α3 α3 1 α2 1 0 0 0
0 0 0 0 0 α6 α6 1 α4 1 0 0
0 0 0 0 0 0 α5 α5 1 α 1 0
0 0 0 0 0 0 0 α3 α3 1 α2 1


.

By deleting the last three rows and the last three columns in the matrix G we
obtain a generator matrix G1 of 3-shortened q-cyclic code of length 3m = 9:

G1=


α5 α5 1 α 1 0 0 0 0
0 α3 α3 1 α2 1 0 0 0
0 0 α6 α6 1 α4 1 0 0
0 0 0 α5 α5 1 α 1 0
0 0 0 0 α3 α3 1 α2 1

 .

This code is also a pseudo-q-cyclic code of length 3m = 9, generated by the
same polynomial G(x) in the factor-ring Lm(f1(x))[x] = Rm[x]/f1(x), where

f1(x) = (xq
3−x)⊗ (xq

3−x)⊗ (xq
3−x)

= x[9]+x[6]+xq
3

+x.

By deleting the last three rows and the last three columns in the matrix G1 we
obtain a generator matrix G2 of a 6-shortened q-cyclic code of length 6:

G2 =

(
α5 α5 1 α 1 0
0 α3 α3 1 α2 1

)
.

This code is also a pseudo-q-cyclic code of length 2m = 6, generated by the
same polynomial G(x) in the factor-ring Lm(f2(x))[x] = Rm[x]/f2(x), where

f2(x) = (xq
3−x)⊗ (xq

3−x)
= x[6] + x.

This code is a q-cyclic code of length 6. In this problem, we analyzed sm-
shortened q-cyclic codes for q = 2, m = 3, s = 4, s = 1, 2. However, if the
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shortening is not a multiple of m, then we can not obtain shortened cyclic or
pseudo-q-cyclic codes. Remark. Consider, e.g., an 8-shortened q-cyclic code of
length 5 and dimension 1. It has a generator matrix

G3 =
(
α5 α5 1 α 1

)
.

This code of length 5 is neither a q-cyclic nor a pseudo-q-cyclic code.

9.4 Fast decoding algorithms

Problem 1.
The check matrix of a rank code is

H4 =


α α2 α4 α8 α16 α32 α64

α2 α4 α8 α16 α32 α64 α
α4 α8 α16 α32 α64 α α2

α8 α16 α32 α64 α α2 α4

 ,
where α is a root of an irreducible polynomial of degree 7.

Let the received matrix be

Y =



1 1 1 1 1 1 1
1 0 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1


.

Find the error matrix and the transmitted matrix assuming that the rank of
the error matrix is at most 2.
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9.5 Symmetric rank codes

Problem 1.
Find symmetric matrices that generate the fields F27 and F28 .

9.6 Rank codes in network coding

Problem 1.
A subspace code X is defined by the set of base matrices

X =
{
X : X =

[
In M

]}
,

where In is the identity matrix of order n, and M is an n × m matrix of a
matrix codeM with a rank distance d. Find the subspace distance of the code
X .

9.7 Codes based on combinatorial block designs

Problem 1.
Let the parameters of the block design be v = 9, n = b = 12, r = 4,K =

3, λ = 1. The i-th row of Table 9.1 gives indicators of the i-th component of
the code. Design these 12 components and find their cardinalities.
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Table 9.1: Table of indicators of 12 components
1 2 3

4 5 6
7 8 9

1 4 7
2 5 8

3 6 9
1 5 9

2 6 7
3 4 8

1 6 8
2 4 9

3 5 7

Problem 2.
Let the parameters of the block design be n = v = b = 13, r = K = 4, λ = 1.

The i-th row of Table 9.2 gives indicators of the i-th component of the code.

Table 9.2: Table of indicators of 13 components
1 2 3 4
1 5 6 7
1 8 9 10
1 11 12 13

2 5 8 11
2 6 9 12
2 7 10 13

3 5 9 13
3 6 10 11
3 7 8 12

4 5 10 12
4 6 8 13
4 7 9 11

Design these 13 components and find their cardinalities.
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Epilogue

This monograph presents the main results related to rank metric codes, obtained
so far by the author of the book and by other authors. It is shown that rank
codes can be successfully applied in multichannel communication systems, in
network coding and for information protection against unauthorized use. The
work of the following authors deserves special attention: Kötter (Germany),
Kschischang (Canada), and Silva (Brazil). Their joint works [KK08], [SKK08]
in 2007-2008 created new subspace codes for random network coding. They use
the so-called lifting principle, where an identity matrix is concatenated with a
matrix of a rank code as if the former matrix had lifted the letter up. Because
of this principle, these codes are sometimes called lifted codes. The merit of
creating these new codes, which are characterized by high cardinality, belongs
entirely to these three authors. Following these authors, the works of Bossert
and Gabidulin [GB08], [GB09] increased the power of these codes and brought
them to the upper limit. Over a series of papers, these authors introduced and
elaborated the concept of subspace multicomponent codes. Here, these results
are presented.
The theory of rank codes is developing successfully. New designs are being

created. The constructions of Kshevetskiy-Gabidulin [KG05] are among them.
New rank codes have been published by Irish scientist Sheekey [She16]. Research
in this area is being carried out in Germany, Turkey, Switzerland and other
countries. It is generally agreed that the new codes can be used in cryptosystems
to increase security.

The development of rank coding theory is also reflected in a series of papers
by Sidorenko with coauthors [SJB11], [LSS14], where the new codes are called
interleaved rank metric codes. They improve the correcting ability of Gabidulin
codes.
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