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Abstract

This thesis is aimed at expanding the linear thermoacoustic modeling spectrum, especially by
models that account not only for acoustic, but also convective waves, as well as interactions bet-
ween the mean flow and the perturbations. The most advanced models derived in this work even
account for locally linearized reaction mechanisms, thus yielding more accurate predictions of
combustion instabilities than previous state-of-the-art approaches.

In addition to new conceptual approaches, the Discontinuous Galerkin Finite Element Method is
applied for the first time in linear thermoacoustic modeling. This numerical ansatz unites several
desirable features, which include robust and flexible flux discretization, physically motivated
stabilization by means of upwinding and straight forward adaptability to higher order basis
functions.

The spatially discretized models emerging from this special Finite Element Method can be
cast in state-space form, which is a generalized representation for linear, time-invariant first
order differential equations. The state-space framework allows the interconnection of multiple
(thermo-)acoustic models stemming from different sources and employing different assumpti-
ons. Thus, it is possible to couple one dimensional network models, which account only for
acoustic waves, to geometrically complex three dimensional models, which include beyond
acoustics also vortical as well as entropic perturbations. This divide et impera approach facili-
tates highly accurate modeling strategies where necessary (e.g. in the vicinity of the flame) and
reduced order modeling where possible (e.g. in regions where the flow is predominantly axial).

The methodology suggested in this thesis is shown to predict thermoacoustic eigenmodes with
increased accuracy compared to modeling strategies that employ stronger simplifications, albeit
the computational cost is very low compared to high fidelity methods such as reacting Large
Eddy Simulation. For laminar flames, the flame response to acoustic forcing is derived with
high accuracy in a fraction of the time that would be required for state-of-the-art approaches
employing broadband forcing of non-linear reacting flow simulations coupled to system identi-
fication. This is extremely appealing, as the determination of the flame dynamics is by far the
most costly aspect of numerical thermoacoustic stability analysis. The presented methodology
thus supports fast and predictive assessment of operational stability in the design phase of gas
turbines.
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Kurzfassung

Die vorliegende Arbeit zielt darauf ab, das Spektrum der Modellierungsansätze in der Ther-
moakustik zu erweitern, insbesondere um Modelle, die nicht nur akustische, sondern auch kon-
vektive Wellenarten, sowie deren Interaktion mit dem mittleren Strömungsfeld berücksichtigen.
Die am weitesten entwickelten Modelle in dieser Arbeit betrachten hierzu sogar örtlich aufge-
löste linearisierte Reaktionschemie, was genauere Vorhersagen von Verbrennungsinstabilitäten
erlaubt als Ansätze gemäß dem vorherigen Stand der Technik.

Zusätzlich zu den neuen Modellierungsansätzen wird erstmals die Discontinuous Galerkin Fi-
nite Elemente Methode in linearen thermoakustischen Modellen verwendet. Dieser numerische
Ansatz vereint einige wünschenswerte Eigenschaften, wie zum Beispiel die robuste und flexible
Diskretisierung numerischer Flüsse, eine durch die Physik des Problems motiviert Stabilisie-
rung des Verfahrens durch richtungsabhängige Schemata, sowie die einfache Erweiterbarkeit
hin zu Ansatzfunktionen höherer Ordnung.

Die örtlich diskretisierten Modelle, die durch diese spezielle Finite Elemente Methode ent-
stehen, können im Zustandsraum formuliert werden, was eine generalisierte Darstellungswei-
se für lineare, zeitinvariante Differentialgleichungen erster Ordnung ist. Die Zustandsraum-
darstellung ermöglicht die Verbindung mehrerer (thermo-)akustischer Modelle verschiedenen
Ursprungs, die auf unterschiedlichen Vereinfachungen basieren. So ist es möglich, eindimen-
sionale Netzwerkmodelle, die nur akustische Wellen berücksichtigen, mit dreidimensionalen
Modellen komplizierter Geometrien zu koppeln, die darüber hinaus auch Störungen in der Wir-
belstärke und der Entropie auflösen. Diese divide et impera Herangehensweise ermöglicht den
Einsatz präziser Modellierungsansätze, wo nötig (beispielsweise in Flammennähe), und von
Modellen mit reduzierter Ordnung, wo möglich (beispielsweise in Regionen, in denen die Strö-
mung hauptsächlich axial ist).

Die Methodiken, die in der vorliegenden Arbeit vorgestellt werden, können thermoakustische
Eigenmoden genauer vorhersagen als Modellierungsansätze die stärkere Vereinfachungen nut-
zen, obwohl der Rechenaufwand im Vergleich zu hochaufgelösten Methoden wie der Large
Eddy Simulation reagierender Strömungen sehr gering ist. Für laminare Flammen kann die
Flammenantwort auf akustische Anregung mit hoher Präzision bestimmt werden, wobei die
Laufzeit nur einen Bruchteil der Zeit beträgt, die der gängige Ansatz mit einer Kombinati-
on aus breitbandiger Anregung einer nichtlinearen Verbrennungssimulation und anschließender
Systemidentifikation braucht. Das ist vor allem deshalb sehr attraktiv, da die Bestimmung der
Flammendynamik der kostspieligste Aspekt der numerischen thermoakustischen Stabilitätsana-
lyse ist. Die in dieser Arbeit vorgestellte Methodik ist deshalb gut für die schnelle und prädiktive
Evaluierung der Betriebsstabilität von Gasturbinen im Entwicklungsstadium geeignet.
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1 Introduction

The ecological challenge of the 21st century is to meet the drastically growing need for electrical
power, while reducing the generated emissions of the production [1]. The long term solution,
generation of electrical power from renewable resources such as wind and solar energy, comes
with one significant drawback: the unsteadiness in supply. To counterbalance the fluctuating
availability of electrical energy from renewable sources, gas turbines are commonly used as one
of the more ecologically friendly conventional power sources. Beyond the importance during
the transitional phase towards renewable energy sources, “power-to-gas“ technologies that store
excess energy in chemical form rather than by means of batteries, can utilize gas turbines in the
conversion process to electrical energy [2]. Quick start-up times as well as a wide operational
range are required to guarantee the flexibility needed for the on-demand operation. Additionally,
combustion is kept in the lean premixed regime to reduce pollutant emissions, which however
makes the engines susceptible to thermoacoustic combustion instabilities [3–5]. Meeting the
requirements for stable, flexible and robust operation under aggravated conditions leads to a
significant increase in complexity during the design phase of gas turbines.

The most challenging kind of combustion instabilities found in lean premixed gas turbines are
thermoacoustic instabilities [6]. These are based on a feedback loop between acoustic waves
impinging on the flame and unsteady combustion, which in turn generates acoustics, leading
to oscillations possibly throughout the whole engine. When positive interference between the
unsteady combustion and the acoustic waves at the flame occurs, the amplitudes of these oscil-
lations can grow in time and be detrimental to safe and efficient operation of the machine [7].
High pressure amplitudes can damage finer structures of the engine and lead to increased noise
emission. Additionally, the unsteady combustion has a negative influence on material wear as
well as pollutants in the exhaust gas. In extreme cases, thermoacoustic instabilities lead to blow
out, flash back or even the destruction of the engine.

Therefore, tools are required to predict combustion dynamics with high accuracy, but at afford-
able cost, as early as possible in the design phase of a gas turbine. Lord Rayleigh was already
aware of the interaction between acoustic waves and combustion in the 19th century [7]. The
interest for technical applications grew in the 1950s when rocket engines failed in spectacular
manner due to thermoacoustic instabilities. The first quantitative descriptions of the reaction of
the perturbed combustion due to acoustic waves [8] as well as the relation between the perturbed
heat release rate and the generated acoustics were formulated [9]. Today, a plethora of analytical
as well as numerical models for the prediction of thermoacoustic instabilities are available, from
inexpensive reduced order descriptions that rely heavily on simplifying assumptions to highly
complex compressible reactive flow solvers that require a super computer to run, but therefore
include the interaction between acoustics, turbulence, species mixing and combustion kinetics,
to name only a few.

The focus of the work summarized in this publication-based thesis is the extension of the lin-
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Introduction

ear thermoacoustic model spectrum in terms of introducing more detailed governing equations.
Thus, the gap between linearized reduced order models, which often employ strong simpli-
fications to the physics, and non-linear thermoacoustic modeling approaches based on more
sophisticated governing equations, can be closed (compare e.g. Fig. 1 in [10]). The motiva-
tion to account for the intricate interplay between flow perturbations, acoustic waves and the
unsteady combustion by making as few a priori assumptions as possible about the perturbed
flow is to increase the predictive quality of linear thermoacoustic methods. This is achieved by
introducing the Linearized Reactive Flow (LRF), a modeling approach that takes into account
not only perturbations of the flow, but also in the species transport and the local combustion
reaction rates.

The main difference between the LRF and current state-of-the-art reduced order models is that
it is not hybrid in nature, i.e. the reacting flow is modeled as one monolithic system instead of
the common divide et impera approach to represent the thermoacoustic system by connection of
dedicated submodels for the flow perturbations and the flow-flame interaction. Furthermore, the
disadvantages of the hybrid modeling approach are investigated and it is shown that spurious
entropy perturbations are produced if the coupling of the submodels does not account for flame
movement, which is a crucial property of every flame.

Beyond the linearized thermoacoustic modeling equations, their numerical treatment with a
Discontinuous Galerkin Finite Element Method is introduced. It provides a robust ansatz with
straight forward extensibility to higher order schemes to discretize the governing equations and
thus the overall approach allows predictive thermoacoustic modeling. Beyond the scope of LRF,
the presented numerical methodology is applied to hybrid models based on Linearized Navier-
Stokes and Linearized Euler Equations.

The purpose of this publication-based thesis is to give an overview of the fundamentals of
thermoacoustic modeling with the Discontinuous Galerkin Finite Element Method and provide
the context around and connections between the papers of this thesis.
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2 Governing Equations

Experimental investigation of gas turbines and rocket engines, including the required measure-
ments to diagnose the occurring thermoacoustic instabilities, are prohibitively expensive and
only possible after the initial design phase. The restricted access to quantities of interest via
diagnostics additionally complicates the investigation of those instabilities by means of an ex-
perimental setup. Therefore, numerical simulations are often employed to complement or even
replace those setups. This chapter introduces the governing equations employed for those kinds
of studies.

2.1 Reactive Flow

The basis for the numerical tools in thermoacoustics are the governing equations for a reactive
flow, consisting of the Navier-Stokes Equations alongside the species transport equations. For
combustion, the formulation of the energy equation in terms of total enthalpy is oftentimes
favorable [5]. Note that in the frame of this thesis work, viscous heating is neglected, because
the Mach number in combustion chambers is typically small enough such that this effect has
no major contribution to the energy balance. The term for the heat flux caused by diffusion of
species with different enthalpies is also ignored.

∂ρ

∂t
+ ∂

∂x j

(
ρu j

)= 0 (2.1)

∂

∂t

(
ρui

)+ ∂

∂x j

(
ρui u j

)=−δi j
∂p

∂x j
+ ∂τi j

∂x j
(2.2)

∂

∂t

(
ρht −p

)+ ∂

∂x j

(
ρht u j

)= ∂

∂x j

(
λ
∂T

∂x j

)
+ q̇V (2.3)

∂

∂t

(
ρYk

)+ ∂

∂x j

(
ρYk u j

)= ∂

∂x j

(
Dk

∂Yk

∂x j

)
+ ω̇k (2.4)

Here, thermal and species diffusion is modeled by Fourier’s and Fick’s law, respectively. As-
suming Stokes’ hypothesis and a Newtonian fluid, the viscous stress tensor is given by

τi j =µ
(
∂ui

∂x j
+ ∂u j

∂xi
−δi j

2

3

∂uk

∂xk

)
, (2.5)

and the relation between pressure, density and temperature can be modeled via the ideal gas law
for the cases presented in this thesis.

p = ρRT (2.6)

The reaction rates that govern the volumetric heat release rate q̇V and the production rate of
species k, ω̇k , are typically expressed as non-linear functions of the thermodynamic state vari-
ables T, p,ρ as well as the species mass fractions Yk .
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Governing Equations

2.2 Linearized Reactive Flow

Equations (2.1) - (2.4) can be solved numerically for laminar cases, together with a suitable
chemical reaction model. For turbulent cases, it is common to employ filtering techniques to
avoid the resolution of small-scale turbulent structures. Two popular approaches employ tem-
poral filtering via Reynolds averaging (Reynolds Averaged Navier Stokes, RANS) or spatial
filtering (Large Eddy Simulation, LES) to these equations and subsequently solve them with
similar approaches to a laminar flow. Due to the non-linear nature of the governing equations,
phenomena such as mode coupling, transfer of perturbation energy between different frequen-
cies as well as the excitation of higher harmonic oscillations can be represented. Although these
are effects that can appear in real thermoacoustic systems, and thus their nature needs to be
studied, they complicate the identification of the fundamental instability mechanisms. For ex-
ample, the non-linear dynamics can obscure the presence of a second unstable thermoacoustic
eigenmode, which is suppressed by a primary instability.

Beyond the challenges in interpretation of results, non-linearity of the reactive flow equations
also restricts the solution algorithms predominantly to simulations in the time-domain. Com-
pared to computations in the frequency domain as well as an eigenvalue analysis (both are
methods that can be employed in a straight-forward manner for linear systems), time-domain
simulations require significant computational effort, provided the phenomenon under investiga-
tion is inherently connected to (a superposition of) harmonic oscillations. Therefore, it is desir-
able to broaden the variety of investigation methods by linearization of the governing equations,
simultaneously eliminating non-linear thermoacoustic effects. This linearization, consequently,
results in methods that can only predict the linear onset of combustion instabilities, and lack
any information about their non-linear temporal evolution, e.g. the amplitude of limit-cycle
oscillations.

2.2.1 Governing Equations

A commonly made perturbation ansatz employed as a first step towards linearization of the
governing equations is the Reynolds decomposition, which splits the unknown variables Φ =
(ρ,ui , p) in a steady-state mean flow Φ̄(x) and perturbations Φ′(x , t ),

Φ(x , t ) = Φ̄(x)+Φ′(x , t ). (2.7)
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2.2 Linearized Reactive Flow

Inserting this ansatz into Eqs. (2.1)-(2.6) and neglecting non-linear terms, the Linearized Reac-
tive Flow (LRF) equations can be obtained.

∂ρ′

∂t
+ ∂

∂x j

(
ρ′ū j + ρ̄u′

j

)
= 0 (2.8)

∂

∂t

(
ρ′ūi + ρ̄u′

i

)+ ∂

∂x j

(
ρ′ū j ūi + ρ̄u′

j ūi + ρ̄ū j u′
i

)
+δi j

∂p ′

∂x j
=
∂τ′i j

∂x j
(2.9)

∂
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k
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)
+ ω̇′

k

(2.11)

τ′i j = µ̄
(
∂u′

i

∂x j
+
∂u′

j

∂xi
−δi j

2

3

∂u′
k

∂xk

)
+µ′
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∂ūi

∂x j
+ ∂ū j
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−δi j

2

3

∂ūk

∂xk

)
(2.12)

T ′

T̄
= p ′

p̄
− ρ′

ρ̄
(2.13)

Expressions for the perturbations in material properties dynamic viscosity µ′, thermal conduc-
tivity λ′ and species diffusivity D ′ have to be provided additionally. The source terms q̇ ′

V and ω̇′
k

of the monolithic LRF approach depend on the unknown variables via a linearized combustion
mechanism. Examples are the linearized one-step Westbrook and Dryer mechanism [11, 12] or
the linearized two-step 2S-CM2 mechanism [13, 14] (both for methane-air combustion).

As can be seen from Eq. (2.7), a steady-state mean flow is required for the LRF. This steady
state is usually computed from non-linear Computational Fluid Dynamics (CFD). It should be
noted that the computation of this steady-state takes only a fraction of the effort it would take
to determine the thermoacoustic stability of a system purely via CFD. Thus, the LRF approach
with comparatively small computational cost to solve for the linearized governing equations, has
significant cost advantages even after factoring in the effort to compute the mean flow. For cases
that are inherently unsteady, e.g. turbulent flow, usage of a time-averaged, instead of a steady-
state flow field was demonstrated to be viable [15–19]. This is important especially for reacting
cases, as RANS, which produces steady-state solutions, as well as unsteady RANS, were shown
to be incapable of reproducing accurately the flame shape and dynamics [20]. Solutions from
LES, on the other hand, although capable of representing the flame dynamics in good agreement
to experimental observations, are inherently unsteady due to turbulent fluctuations.

2.2.2 Transformation to the Laplace Domain

The linearized governing equations given in this chapter are presented in the time-domain. In
thermoacoustics, it is often advantageous to perform a space-time separation of the perturbed
variables and to assume harmonic time dependence.

Φ′(x , t ) = Φ̂(x)e st (2.14)

5



Governing Equations

Here, s =σ+ iω is the Laplace variable, used to represent a temporal oscillation with frequency
ω and growth rate σ. Φ̂(x) is the complex valued spatial distribution of the perturbation vari-
able. Inserting this ansatz into one of the governing equations allows to determine the system’s
response to external forcing in the linear regime for a given s. Alternatively, the computation
of the eigenfrequencies and -modes of the system in the homogeneous case is possible. It is
often preferred to investigate thermoacoustic systems in the Laplace instead of the time-domain
because of the reduced computational effort and the clear separation between oscillation fre-
quencies.
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3 Hybrid Thermoacoustic Modeling
Approaches

This chapter introduces and motivates the concept of hybrid as opposed to monolithic linearized
thermoacoustic models like the LRF. Both of these approaches, however, rely on non-linear
computations to provide a steady-state mean-flow as the basis for linearization, and are thus not
a stand-alone approach for thermoacoustic stability analysis.

3.1 Scale Disparity in Thermoacoustic Models

The physical mechanisms involved in thermoacoustic combustion instabilities happen on
largely different scales: acoustic waves feature large spatial extent and propagate comparatively
fast, with the speed of sound augmented by the mean flow velocity. This fast propagation limits
the time step size in numerical simulations, as typically the Courant-Friedrichs-Lewy number
should stay below unity [21]. The chemical reactions in the combustion zone are strongly im-
pacted by the species and heat transport, which are diffusive processes that require high spatial
resolution to be correctly represented. Additionally, the strong non-linear nature of the reac-
tion mechanisms leads to a stiff system of equations, requiring iterative solution procedures.
Convective waves are usually of intermediate spatial extent and propagate slower than acoustic
waves.

This disparity in scales, which is present in monolithic thermoacoustic models, leads to strong
restrictions on the time step as well as the mesh size. As a result, the computational effort to
deduce the flame response to acoustic forcing from laminar CFD or LES in the time domain is
very significant. A strong gain in efficiency can be achieved by employing the LRF. Due to the
linear nature, iterative solution procedures can be avoided and a transformation to the Laplace
domain is possible. This allows to directly deduce the response of the system at a given complex
frequency by solving only one system of linear equations. Note however, that the restrictions
on mesh size are not alleviated by the LRF approach. The combustion zone as well as parts of
the geometry that produce significant hydrodynamic perturbations have to be highly resolved to
correctly capture thermoacoustic instabilities.

3.2 Hybrid Models

Due to the high computational demand of monolithic models, a common approach in thermoa-
coustics is the use of hybrid models, in which the small and large scales of the problem are
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treated separately.

First, a non-linear CFD simulation is employed to determine the response of the flame to acous-
tic forcing. Because most often, the combustion zone is compact with regard to the acoustic
wavelength, the correct propagation velocity of the acoustics is insignificant for the flame re-
sponse. Therefore, the assumption of a weakly compressible flow is justified, which expresses
density as a function of temperature, but not pressure. This alleviates the computational demand
because the time-step size can be increased compared to a fully compressible approach. The
flow-flame interaction model is determined via post-processing methods of the forced combus-
tion simulation. Two commonly used approaches are Fourier transformation of a harmonically
forced case, leading to a model that is only known at the discrete frequencies of forcing, and
system identification of a broadband forced case. The latter method is a form of regression anal-
ysis, usually between the time series of the spatially integrated heat-release perturbation (output)
and the velocity fluctuations at a reference position (input), both induced by the forcing. This
methodology requires only one simulation, as opposed to the necessity for an individual simu-
lation for each forcing frequency in the Fourier transformation procedure. However, the quality
of the model determined via system identification is dependent on the parameters as well as the
signal-to-noise ratio and the frequency content in the time series.

In a second step, the flow-flame model is connected to a linear reduced order model for the
propagation of acoustic and possibly also flow perturbations, see Fig. 3.1. The solution of this
connected hybrid model is orders of magnitudes cheaper than solving for a monolithic non-
linear model, although the cost for determination of the flow-flame interaction model has to be
factored in.

flow perturbations

Acoustic submodel

Flow-flame interaction submodel

at reference position
heat release rate

fluctuations

Figure 3.1: Connection of submodels in thermoacoustic hybrid approaches.

3.2.1 Acoustic Models

The submodel governing the flow perturbations in hybrid modeling can be derived by intro-
ducing various simplifications to the LRF governing equations. Omitting the linearized species
transport, Eq. (2.11), as well as the linearized reaction mechanism for the source terms from the
LRF equations, the Linearized Navier-Stokes Equations (LNSE) are obtained.
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3.2 Hybrid Models

Further simplifying the LNSE by omission of the thermo-viscous terms, i.e. τ′ = λ′ = λ̄ = 0,
yields the Linearized Euler Equations (LEE), which have seen frequent use in aero- but also
thermoacoustics. The underlying reasoning is that viscous terms have little impact on large-
scale acoustic waves. However, the damping due to unsteady boundary layers as well as the
viscous dissipation of vortices in shear layers of the mean flow can significantly contribute to
the perturbation field, as shown by Meindl et al. [22] for the acoustic scattering behavior of
swirl generators. Beyond this, the LEE can lead to inconsistencies with the mean flow: the
steady-state flow fields are most often a solution of the Navier-Stokes Equations from laminar
CFD, RANS or LES, which feature thermo-viscous effects. These inconsistencies are especially
critical for the velocity boundary conditions on no-slip walls of the mean flow (ū = 0), as the
LEE only allow for slip boundary conditions (u′ ·n = 0, where n is the boundary normal vector)
due to the lack of viscous terms. Consequently, unphysical vortical perturbation structures can
ensue in the boundary layers of the mean flow, which pollute the solution and might even grow
unstable [22, 23].

When zero mean velocities are assumed for the LEE, the wave equation can be obtained. The
homogeneous wave equation can be derived from linearized mass and momentum equation.
For inclusion of the source term due to heat release rate perturbations, as required in thermoa-
coustics, the linearized energy instead of the mass conservation equation has to be used in the
derivation. For this to work, we have to assume no mean heat release rate and constant specific
heat capacities in the mean flow [24].

∂2p ′

∂t 2
− p̄γ

∂

∂x j

(
1

ρ̄

∂p ′

∂x j

)
= (

γ−1
) ∂q̇ ′

V

∂t
(3.1)

Due to the zero mean velocity assumption, p̄ = const follows directly from the mean flow mo-
mentum conservation equation, as no viscous pressure losses occur. Thus, with c2 = γp̄/ρ̄, the
wave equation becomes (without any further assumptions):

∂2p ′

∂t 2
− ∂

∂x j

(
c2 ∂p ′

∂x j

)
= (

γ−1
) ∂q̇ ′

V

∂t
(3.2)

Under the assumption of isentropic perturbations, i.e. p ′ = c2ρ′, the wave equation with the c2

term outside the spatial gradient can be derived.

∂2p ′

∂t 2
− c2∂

2p ′

∂x2
j

= (
γ−1

) ∂q̇ ′
V

∂t
(3.3)

The homogeneous part of the wave equation is self-adjoint, as opposed to the LRF/LNSE/LEE.
This is advantageous for the numerical treatment, as no stabilization terms for the discretization
of the spatial gradients are required. Together with the reduced degrees of freedom following
from only one scalar unknown, this makes the wave equation attractive for reduced order mod-
eling in thermoacoustics. However, it should be noted that the assumption of zero heat release
rate and constant heat capacities in the mean flow, necessary to derive Eqs. (3.1) and (3.2), both
strongly contradict the nature of reactive flows. The simplification towards Eq. (3.3) introduces
an additional unjustified assumption, as perturbations only behave isentropically if there are no
velocities and entropy gradients in the mean flow, both of which are ubiquitous in combustion
chambers. Thus, the use of the wave equation as shown in Eq. (3.3), but also Eq. (3.2), in ther-
moacoustics comes with strong restrictions and one has to be aware of the modeling mistakes
made when interpreting the results.
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3.2.2 Flow-flame Interaction Models

To account for the flow-flame coupling in hybrid models, the source term q̇ ′
V (x , t ) for the per-

turbed heat release rate is governed by an external model, like a Flame Transfer Function (FTF)
determined from CFD/LES and appropriate post-processing. The FTF F is a linear model con-
necting q̇ ′

V (x , t ) to the time lagged axial velocity perturbations u′
ref(t − τ) normal to a plane

located at a reference position xref. In the most general case, a local FTF FL is employed, which
depends on both space x and complex frequency s. This relation is conveniently formulated in
the Laplace domain as

ˆ̇qV (x)
¯̇Q

=FL(x , s)
ûref

ūref
. (3.4)

Here, the volume integral of the mean heat release rate, ¯̇Q = ∫
Ω

¯̇qV dx , as well as the mean
velocity at the reference position, ūref, are used for normalization.

For acoustically compact flames, and in connection to governing equations that do not support
entropy waves, the spatial distribution of the perturbed heat release rate can be neglected and a
global FTF FG , which only depends on complex frequency s, can be employed.

ˆ̇Q
¯̇Q
=FG (s)

ûref

ūref
(3.5)

Note that ˆ̇Q = ∫
Ω

ˆ̇qV dx . A comparison of the ensuing heat release rate perturbations for FL and
FG connected to LNSE is shown in Fig. 3.2 for a duct flame, which was investigated in [13].

Figure 3.2: Instantaneous heat release rate perturbations of a 2D duct flame as governed by a
fully local FTF (top) and a global FTF (bottom). Forced response at 400Hz. The
spatial distribution for the global FTF has been chosen proportional to the mean
heat release rate and is in-phase along the length of the flame due to the lack of
knowledge about the spatial phase information.

The identification of FG , rather than FL, requires less sophisticated techniques and computa-
tional effort. Thus, it is very common in thermoacoustics to employ a global FTF, if the system
to be modeled permits this simplification. For cases where the acoustic submodel does not sup-
port entropy waves, but the flame is not compact with regards to the acoustic waves traveling
in axial direction, segmented FTFs FS were applied in several studies to correctly account for
the correct phase and gain between the acoustics and the perturbed heat release rate [25–33]. A
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3.2 Hybrid Models

segmented FTF is only resolved in the axial direction (here assumed to be x1). The perturbed
heat release rate is either continuously axially distributed, or in a discrete manner by averag-
ing over a sequence of contiguous sub-domains, which are small enough to assume acoustic
compactness for each.

ˆ̇qV (x1)
¯̇Q

=FS(x1, s)
ûref

ūref
(3.6)

Beyond the scope of linear flow-flame models, non-linear models such as the Flame Describing
Function (FDF) are employed to determine limit cycle amplitudes of thermoacoustic instabili-
ties with hybrid models. Those, however, are out of the scope of this thesis.

3.2.3 Common Hybrid Modeling Approaches

The various linear thermoacoustic models can be sorted by complexity. Higher complexity
comes with a more detailed description of the system (usually by applying less simplifications
to the governing equations), but at a higher computational cost. Therefore, a trade-off between
accurate predictions and effort is the unavoidable result.

LRF

LNSE/LEE

Helmholtz

Network

modelling assumptions

cost and accuracy

increase in

increase in

Figure 3.3: Hierarchical representation of the most common linear thermoacoustic modeling
approaches.

The following bullet points list some of the most common thermoacoustic hybrid models in
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order of ascending accuracy and cost, without any claim to be comprehensive. Compare also
Fig. 3.3.

• Network models are most often based on the assumption that the acoustics mainly travel
along one dimension (usually the axial or azimuthal direction). The gas turbine is then
represented by the connection of multiple fundamental elements, such as ducts of constant
cross-section, area jumps or (non-)reflecting terminations. The flame is assumed to be
compact with respect to acoustic waves in most models, i.e. the acoustic wave lengths are
much larger than the spatial extent of the flame, such that it can be approximated by a
discontinuity in the network. The propagation of acoustic waves through the fundamental
elements as well as the influence of perturbed heat release rate on the acoustics is known
analytically. It is thus possible to connect these elements to form a compound model.
To account for the flow-flame interaction that can not be described sufficiently in a 1D
manner, a global FTF relating the perturbed heat release rate to time delayed upstream
velocity fluctuations is often employed. The connected network model can be used to
analyze the thermoacoustic stability of the system.

• Thermoacoustic models based on the 2D/3D Helmholtz equation describe the acoustic
wave propagation purely with the speed of sound, neglecting the influence of the mean
flow velocities. The system under consideration is often modeled as a continuous com-
putational domain, which can feature geometrically complex shapes, as are common in
gas turbines. The flow-flame interaction is accounted for in a similar way to the network
model approach, although the heat release zone has a finite extent. The influence of per-
turbed heat release rate on the acoustic field is inherently represented by the source term in
the Helmholtz equation, as opposed to the explicitly formulated relation used in network
models.

• The Linearized Navier-Stokes and Linearized Euler Equations are used to model the
acoustic, hydrodynamic and entropic perturbations of a flow which account for or ne-
glect, respectively, thermo-viscous effects. The augmentation of the acoustic propagation
velocity by the mean flow is inherently accounted for. These features lead to an increased
accuracy in thermoacoustic stability predictions, but come at significant additional cost
and numerical challenges compared to the Helmholtz equation. As for the previous mod-
els, the flow-flame interaction is taken into account by an external submodel such as an
FTF.

3.2.4 Disadvantages

The ramifications of introducing simplifying assumptions to the governing equations can be
severe. As shown in the course of this thesis research, the seemingly appropriate assumption
that an acoustically compact flame can be modeled with a single input / single output global
FTF, generates significant amounts of spurious entropy in a thermoacoustic hybrid model that
relies on the LNSE to represent the propagation of acoustics and flow perturbations. Contrarily,
the more general LRF, as well as LNSE coupled to a local FTF, show good agreement with
reference solutions from CFD. Thus, care has to be taken when simplifying assumptions are
made, and it is often preferable to solve for the computationally more expensive LRF equations.
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3.2 Hybrid Models

In addition to the advantage of not requiring an external flow-flame interaction model, the results
from LRF allow investigation of the involved species transport, which can be advantageous
especially for technically premixed flames. For these, acoustic forcing induces fluctuations in
mixture ratio at the injector, which are then dispersed while being convected towards the flame.
Representing this mechanism in a hybrid model requires an additional input for an FTF, while
it is inherently captured by the LRF.
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4 The Discontinuous Galerkin Finite
Element Method in Thermoacoustics

The Finite Element Method (FEM) is one of the most generic approaches to solve partial differ-
ential equations numerically. Due to its flexibility regarding the formulation, easy extensibility
to higher order schemes as well as the applicability to curved meshes, FEM is widely used in
nearly every field of science and engineering. The following section will shed light on the dif-
ficulties for employing a standard FEM in problems of fluid mechanics, as well as an adaption,
the Discontinuous Galerkin Finite Element Method (DG-FEM), to circumvent these.

4.1 Fundamentals of the Discontinuous Galerkin Finite Ele-
ment Method

For ease of demonstration, this section is only concerned with scalar-valued governing equa-
tions. The Finite Element Method can also be expanded to systems of equations without essen-
tial difficulty.

The idea behind the Finite Element Method is to project a differential equation for the unknown
quantity u(x , t ),

L(u(x , t )) = 0, (4.1)

onto a function w(x) based in a space V of finite dimensionality and then postulate that the
residual integrated over the domain of interest Ω, instead of the residual of the differential
equation at every point, has to vanish for all w(x). As this alleviates the conditions that the
solution has to adhere to, this form is called the weak form.∫

Ω
w(x)L(u(x , t ))dx = 0 (4.2)

If the solution u(x , t ) is sought from the same space V , onto which the differential equation
is projected, a Galerkin method results. One major difference to other numerical methods for
solving differential equations is that the FEM solves the approximate problem exactly (within
computational accuracy), rather than finding an approximate solution to the exact problem (Fi-
nite Difference Method, Finite Volume Method). This is due to the projection of the differential
equation with an infinite dimensional solution space onto a finite dimensional space, in which
the exact solution can be found.

Various formulations of the FEM can be derived by choosing the spaces for the projection of the
differential equation and the basis for the solution. In the context of the FEM, the computational
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domain is approximated by a partition Ph , which is the union of K non-overlapping elements
Ωe ,

Ω≈
K (Ph )⋃
Ωe∈Ph

Ωk
e . (4.3)

The functions w(x),u(x , t ) are then approximated as the sum of local functions w k
h (x),uk

h(x , t ),
which are non-zero only within one respective element Ωk

e ,

w(x) ≈ wh(x) =
K⊕

k=1

w k
h (x), (4.4)

u(x , t ) ≈ uh(x , t ) =
K⊕

k=1

uk
h(x , t ). (4.5)

The element wise defined functions w k
h (x) and uk

h(x , t ) are chosen as a weighted sum of test and
trial functions, respectively. Two common choices for the test/trial functions are the modal and
the nodal form. The former employs locally defined polynomialsψn(x) of order n = 0, . . . , Np−1
as basis with ŵ k

n and ûk
n(t ) as the weights for the test and trial functions. The basis for the nodal

form can be defined by a set of interpolating Lagrange polynomials l k
i (x) on Np local stencils

with position xk
i , alongside their weights w k

i and uk
i [34].

w k
h (x) =

Np∑
n=1

ŵ k
nψn(x) =

Np∑
i=1

w k
i l k

i (x) (4.6)

uk
h(x) =

Np∑
n=1

ûk
n(t )ψn(x) =

Np∑
i=1

uk
i (t )l k

i (x) (4.7)

Note that in this context, the index i of the expression xk
i does not refer to the spatial coordinate,

but is instead the summation index representing the i -th stencil position that is connected to the
weighting factor uk

i of element k. The nodal basis functions l k
i (x) are unity at xk

i and zero at
xk

j , j 6= i .

The properties of the resulting method are determined by the space from which ψn(x) or l k
i (x)

are taken. For the Discontinuous Galerkin method used in this thesis, discontinuous nodal basis
functions with Gauß-Lobatto node positions are employed and the test and trial functions are
taken from the same space V (Ph). Figures 4.1 and 4.2 show continuous and discontinuous nodal
basis functions of first order in one dimension, represented by Lagrange polynomials. While the
continuous basis has only one node at the element interfaces, which is a shared anchor point for
the basis in both adjacent elements, the discontinuous basis has a duplicate node at the element
interfaces. Thus, the basis for adjacent elements in the DG-FEM has no inherent connection.

x
k k +1k −1

Figure 4.1: Continuous linear nodal basis functions in one dimension.
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x
k k +1k −1

Figure 4.2: Discontinuous linear nodal basis functions in one dimension.

Due to the discontinuous nature of the basis functions, the integration of the governing equa-
tion as defined in Eq. (4.2) can not be performed on the computational domain Ω as a whole,
but on the individual elements Ωk

e instead. In contrast to the standard FEM, the solutions of
the elements are thus not inherently coupled. To reintroduce this connection, the Gauß theorem
is applied to the divergence terms of the governing equation, leading to a term describing the
flux over the boundaries of every cell. This manipulation is a necessity in deriving the discrete
form of the governing equations in the Finite Volume Method, thus the similarity between both
methods. On a very general level, the DG-FEM can be seen as a Finite Volume Method be-
tween cells, where the flux conveys information, and a Finite Element Method in the element
interiors, where the solution is approximated on a given basis. Thus, the best of both worlds
can be combined: a stable and robust flux can be chosen to guarantee a conservative and stable
numerical scheme, and higher order basis functions may be employed, tailored to the physics
of the problem, which provide superior convergence and accuracy.

The main field of application for DG-FEM is the numerical solution of pure or mixed hyperbolic
differential equations, such as the Euler, Navier-Stokes, or Maxwell’s equations. An otherwise
unstabilized FEM discretization leads to a numerically unstable scheme for these equations
[35]. In the framework of the DG-FEM, the inter-cell flux can be chosen based on the solutions
of the two neighboring cells, analogously to the Finite Volume formulation. Due to the decades
of experience in hyperbolic problem solving with the Finite Volume Method, there is a plethora
of flux formulations available, which generate stable, non-oscillatory solutions for differential
equations governing directional physical processes. There is no essential difficulty in applying
these formulations to the DG-FEM, facilitating the rapid development of consistent and stable
methods.

4.2 Comparison to other Numerical Methods

The Finite Difference Method (FDM) and the Finite Volume Method (FVM) are, next to FEM in
general, two of the most popular methods for numerically solving partial differential equations
in science and engineering. Some important aspects to evaluate when choosing one of these
methods in comparison to (DG-)FEM are as follows (loosely based on [34]):

• Mesh compatibility: Due to the higher order basis functions usable in the FEM, curved
meshes consisting of non-straight elements can be employed. This is especially impor-
tant if round shapes, such as a circular duct, have to be represented. While it is possible
to treat curvilinear meshes with the FVM [36], it requires much more effort to achieve
highly accurate schemes than with the FEM. For the FDM, curved boundaries are not
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commonly used. Beyond the treatment of curved meshes, the FVM suffers from conver-
gence and accuracy falloff if the connection line between two neighboring cell centers
is not orthogonal to their inter-cell boundary. This is because the values of the unknown
variables have to be known on the interface to compute the flux, but are typically stored
in the cell centers. For flux reconstruction, interpolation schemes are employed, which
are not representative for the whole interface if the cells are strongly non-orthogonal or
skew. The DG-FEM method excels in this regard, because the solution by means of the
weighted trial functions is known throughout the whole cell, and therefore the variables
to compute the flux can be evaluated directly at the inter-cell boundary.

• Extensibility to higher order schemes: The extension of both the order of the discretiza-
tion as well as the representation of the solution is straight forward with the (DG-)FEM, as
the formulations for higher order basis functions are readily available. For the FDM, con-
sidering additional neighboring nodes allows to derive higher order schemes with rather
low effort. For the FVM, this issue is more complex because the flux reconstruction on the
element boundaries is required. Thus, the industry standard for FVM solvers are second
order schemes. Note that while the (DG-)FEM approach to increasing the order is a local
one, i.e. the basis function stays within the element even if the order is increased, both
FDM and FVM require extended stencils ranging to (multiple) neighboring nodes. Inclu-
sion of neighboring cells in the flux discretization has three main disadvantages; firstly,
the bandwidth of the discretized system matrix increases, which is detrimental for paral-
lelization; secondly, at the boundaries, where no neighboring cells exist in one direction,
either lower order or one-sided schemes have to be used, both of which negatively impact
the accuracy of the method; and thirdly, on unstructured meshes it is not a trivial task to
define what the neighboring cells are.

• Efficient explicit time-stepping: The mass matrix resulting from the standard continu-
ous FEM is, opposed to all other methods including DG-FEM, not block-diagonal. This
leads to a comparatively costly matrix inversion if explicit time-stepping is employed. In
contrast, a block-diagonal matrix can be inverted by individual inversion of the blocks,
which are usually much smaller than the mass matrix as a whole.

• Degrees of freedom: The major drawback of the DG-FEM is that a multiple degrees of
freedom for each variable are stored at each node, cf. Fig. 4.2. For linear basis functions,
this increases the degrees of freedom by a factor of 2D compared to the standard FEM,
where D is the spatial dimension. However, because increasing the order of the method
does not add additional nodes to the mesh, but only stencils for the basis functions inside
the cells, this factor between the Discontinuous Galerkin and continuous FEM approaches
unity for very high orders. From a cost oriented perspective, it is thus desirable to employ
a coarser mesh with higher order basis functions in the DG-FEM approach, i.e. to strive
for an optimal combination of p and h convergence.

Beyond DG-FEM, there are also various other stabilized Finite Element Methods that can be
applied to solve aero- and thermoacoustic governing equations. Two well known representa-
tives are the Streamline-Upwind Petrov-Galerkin (SUPG) [37] and the Galerkin Least Squares
(GLS) [38] approach. In both of these methods, artificial terms weighed by a stabilization pa-
rameter are added to the governing equations in order to suppress spurious solutions. These
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methods are very sensitive to the amount of the introduced stabilization, as shown by Hofmeis-
ter et al. [39] for the investigation of vortex shedding at a combustor inlet, employing LEE
with an SUPG scheme: while too little may not be sufficient to produce a stable scheme, too
much stabilization leads to artificial dissipation of the physical perturbations in the solution.
Choosing the amount of stabilization for a predictive method, i.e. without any available valida-
tion data to match numerical results, is challenging. However, strategies are being developed to
elicit the physical damping of stabilized FEM solutions by comparison to results produced with
governing equations that do not require stabilization [40].

4.3 Application to Thermoacoustics

The DG-FEM has been widely employed in aeroacoustics (see e.g. [41–44]), but has not seen,
to this date, any application in thermoacoustics except for the studies connected to this thesis.
The connection of these two topics is straightforward however, because the governing equa-
tions of aero- and thermoacoustics share commonalities to a great extent, with the exception of
the source terms. Starting with LEE, which are commonly used governing equations in aeroa-
coustics, one can arrive at the various governing equations used in thermoacoustics by adding
additional terms. The addition of thermo-viscous terms to the LEE yields the LNSE. Further
expanding the set of equations by adding linearized species transport equations alongside a
linearized reaction mechanism leads to the LRF.

In the DG-FEM framework, these additional terms and equations are treated independently from
each other, thus allowing the numerical formulation to mirror the hierarchy of the governing
equations. For example, when the LEE are expanded to the LNSE by addition of the thermo-
viscous terms, the original discretization of the LEE stays untouched. The convective terms are
discretized employing either an approximate (local Lax-Friedrichs flux) or exact upwinding flux
(e.g. obtained by flux difference splitting) in order to construct a stable scheme. For the diffusive
terms, a penalty formulation first introduced by Babuška et. al [45] for pure diffusion problems,
and later expanded to convection-diffusion problems [46] and the Navier-Stokes Equations [47]
by Baumann et al., is used. Source terms require no special numerical treatment.

Boundary conditions can be given either in the strong or the weak form. While the former
method directly eliminates the respective unknown variable and replaces it with the given value,
the latter approach is based on providing the flux (e.g. the perturbed energy flow), such that
the desired constraint (e.g. T ′ = 0) will automatically be fulfilled by the governing equations.
Providing the boundary conditions in the weak form is the naturally emerging alternative to the
strong form, and lends itself very well to the DG-FEM formulation, in which the communication
between cells and across the boundary of the computational domain is purely realized via the
flux. Beyond this, it is straight forward to incorporate coupled boundary conditions, such as
an anechoic outlet (p ′ = ρ̄cu′ ·n for zero mean flow), in the weak form. In practice, it proved
useful to combine the use of boundary conditions in both strong form and weak forms. Velocity
perturbations at no-slip walls can easily be eliminated via strong boundary conditions, whereas
giving isothermal boundary conditions (T ′ = 0) is not possible in the strong form, because T ′

is not one of the independent variables. Instead, the coupled boundary condition p ′/p̄ = ρ′/ρ̄ is
given in the weak form.
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4.4 Diagonalization of the Non-Viscous Flux

The LRF, Eqs. (2.8)-(2.11), as well as all derived equations thereof, can be written in matrix
vector representation.

M
∂Φ′

∂t
+ ∂F j

∂x j
=
∂F v

j

∂x j
+ s (4.8)

F j and F v
j are the non-viscous and viscous flux, respectively, while M is the mass matrix and

s is a vector containing the sources. Both F j and F v
j can be expressed as product of operators

containing only the mean fields (and spatial derivatives thereof) and the unknown perturbation
quantities Φ′.

F j = K jΦ
′, F v

j = K v
jΦ

′ (4.9)

The formulation of F j is of special interest here, as the eigenvalues of the matrices K j are the
flux characteristics of the non-viscous part of the flow. The diagonalization of the non-viscous
flux prefactor matrix K j normal to a surface with unit normal vector components n j reveals the
eigenvalues and -vectors [47]:

F n = K j n jΦ
′ =VΛV −1Φ′. (4.10)

V is a matrix containing the eigenvectors of K j as rows, while Λ is a diagonal matrix with the
eigenvalues λ1 . . .λND+NK +2 of the non-viscous flux of LRF equations on the diagonal, where
ND is the spatial dimension and NK is the number of species transport equations. Subsequently
to the diagonalization, the flux can be split into contributions leaving and entering the domain
through the boundary. This is done by accounting for only the positive or negative entries of Λ.
Based on this procedure, the numerical boundary conditions can be given in terms of the char-
acteristics entering the computational domain, and accurate directional discretization schemes
such as the flux difference splitting approach can be employed.

The resulting eigenvalues exhibit either acoustic λac = ū j n j ±c or convective λcon = ū j n j prop-
agation speed. The convective waves comprise vortices (if ND > 1), entropy waves and the
characteristics for species transport. Note that due to the diagonal form of Λ, these characteris-
tics propagate independently of each other, as long as the mean flow is homogeneous, viscous
effects are absent and no coupling at boundaries exists. In a homogeneous mixture without
viscous effects and spatial gradients in the mean flow, i.e. a flow governed by the LEE, the vor-
tical characteristics only influence velocity perturbations, the entropy waves only act on density
perturbations, while the acoustic waves perturb all fields, including the pressure [6]. As soon as
viscous effects are accounted for in the governing equations, such as the LNSE, the system is no
longer hyperbolic in nature, and thus strictly speaking, no characteristics exist. This is caused by
the impact of the diffusion-type terms, which act on the whole domain with infinite propagation
velocity due to the continuum assumption on the fluid. In applications, however, it is found that
when viscous terms are not dominant, i.e. at sufficiently large Peclet numbers, the LNSE and
LRF can be treated as a superposition of the hyperbolic system with its characteristics and the
diffusion-type terms, thus allowing for flux-difference splitting and boundary conditions based
on the characteristic waves.

Figure 4.3 illustrates the propagation of the vortical and acoustic characteristics in a perturbed
nozzle flow governed by the LNSE. Even though viscous effects are present, the separation
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Figure 4.3: Radial velocity perturbations (top half of each depiction) and pressure perturbations
(bottom half) of a nozzle forced acoustically at the inlet, computed with LNSE. The
mean flow is slightly subsonic, forcing frequency is 800Hz.

between the characteristics is still obvious. Vortices form in the shear layers induced after the
throat of the nozzle and are convected downstream. Their wavelength reduces with increasing
nozzle diameter as a result of reduced axial mean flow velocity. The acoustic perturbations can
clearly be seen in the pressure perturbations. They feature larger wavelengths than the vortices.
The coupling between both characteristics is strong only in the throat, where flow separation
at the transition from the convergent section induces pressure fluctuations at the no-slip bound-
aries.

4.5 Implementation: felicitaX

felicitaX is a Finite Element Linearized Combustion Thermo-/Aeroacoustics solver using
the above described DG-FEM discretization method. It is based on the open-source computing
platform FEniCS [48], version 2019.1.0. FEniCS provides the framework for the automated
derivation of discretized systems based on the weak form of the governing equations, as well
as pre- and post-processing routines such as mesh interfacing, file in-/output and evaluation of
symbolic expressions. The software is written in C++ and Python, and provides interfaces in
both languages for the user interaction. The focus of felicitaX is on extensibility, modularity
and rapid prototyping.

4.5.1 Dogma and Fundamentals

Making use of the Python interface of FEniCS, felicitaX provides a modularized, object-
oriented approach to generate the weak form of the governing equations for thermo- and aeroa-
coustics, including LEE, LNSE and LRF. This includes the appropriate treatment of the mean
flow via interpolation, as well as providing boundary conditions in strong and weak forms. The
aim of the development was to abstract the numerical details of the implementation from the
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user, such that minimal input is required, albeit the user should stay in full control over the form
of the governing equations and boundary conditions. Therefore, the required inputs are:

• A mesh for the linearized computations. The open-source mesher GMSH [49] was found
to be well suited for all geometries and cases encountered in connection to this thesis.
FEniCS provides easy interfacing for GMSH meshes.

• Mean flow fields in the form of a comma-separated-value (.csv) file. The spatial reso-
lution provided here is usually (but not necessarily) higher than that of the mesh for the
linearized computations. The interpolation of the mean flow values to the mesh is then
handled by felicitaX via a multi-dimensional unstructured interpolation algorithm pro-
vided in the Python package scipy. First, triangulation with the Quickhull algorithm is
performed [50]. Afterwards, the mean flow values at the nodes of the target mesh are
computed via piecewise linear barycentric interpolation on the input data.

• A study type (time-domain, frequency response or eigenvalues) with appropriate param-
eters, e.g. the time-step width and the total simulation time, or the frequencies to be solved
for.

• A flux scheme. Currently, the local Lax-Friedrichs flux as well as flux difference splitting
are implemented. Note that the user can choose the flux, but does not need to provide
details about the implementation.

• The order of the basis functions.

• The physical model, from which the parameters used for simplifications of the governing
equations can be derived. This includes whether viscous terms and the fluctuation of
the material values such as µ′ and λ′ should be included, whether the perturbed flow is
isentropic, and whether a reacting flow is present.

• An optional FTF in state-space representation, stored in .csv files. If an FTF is provided,
a reference position as well as the field of the mean heat release rate needs to be defined
by the user as well.

After these inputs are made by the user, felicitaX returns the according weak form of the gov-
erning equations in a symbolic representation that is not yet discretized. Subsequently, boundary
conditions are set either in the strong or the weak form. Boundary conditions in the strong form
can only be applied to the unknown variables of the perturbed flow, i.e.

(
ρ′,u′

i , p ′,Y ′
k

)T . Weak
boundary conditions are required for isothermal walls and characteristics based conditions, such
as arbitrary acoustic reflection coefficients. However, many of the physical boundary conditions
such as an acoustically open end (p ′ = 0) or a slip-wall (u′ ·n = 0) can be prescribed both in
the strong or weak form. To make it easier for the user to provide the correct flux in the weak
form, common cases are already pre-defined in flux functions, e.g. set_flux_pressure (al-
lows for pressure fluctuations at a boundary, should be omitted at an acoustically open end) or
set_flux_heat_conduction (admits a flux through heat conduction at the boundary, should
be set for isothermal and omitted for adiabatic walls). In this way, the weak boundary conditions
are set in an additive way, i.e. adding the flux expressions for the mechanisms that occur at a
certain boundary, rather in a subtractive way, which would be to provide the full flux and then
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eliminate the mechanisms that should not be present. This step requires knowledge of the gov-
erning equations as well as physically sensible boundary conditions from the user. Providing an
incomplete or inconsistent flux can lead to spurious artifacts in the solution of the problem.

Once the weak form, including boundary conditions, is fully set up, the discretization is per-
formed with a FEniCS built in function. The resulting system of linear equations can subse-
quently be solved with direct solvers (based on a lower/upper decomposition of the system
matrix) or through iterative solvers employing Krylov subspace methods, such as GMRES or
BiCGStab [51].

For post-processing, felicitaX provides functionality to visualize full-period animations for
complex solutions stemming from studies in the Laplace domain, such as eigenmodes.

4.5.2 Usage Examples

The following code snippets are intended to give the reader an impression of the usage of
felicitaX. They do not serve as a documentation and are not executable on their own, as
they are embedded in a bigger script.

# Read meanflow from .csv file and interpolate to mesh.
fieldnames = {

"U:0":"uMean_axial", "U:1":"uMean_radial", "rho":"rhoMean",
"T":"TMean", "p":"pMean", "h":"hSensMean"

}
meanflow = ctf.interpolate_all_meanfields_from_csv(

meanflow_file , fieldnames , mesh , order=2, parallel=True
)

One of the first steps after loading the mesh (not shown here) is the interpolation of the mean-
flow fields onto the computation mesh. The first expression defines a dictionary of the fields to
be read from .csv file via their column header name as key and their name in the workspace
as value. Then, the interpolation routine is called in a second step with parallel execution via
threading being requested.

# Options class for felicitaX.
DGOpts = felicitax.fem.opts.Opts()
DGOpts.viscous = ’viscousfluctuation ’
DGOpts.isentropic = ’nonisentropic ’
DGOpts.reacting = ’nonreacting ’
DGOpts.physical_space = ’frequency ’
DGOpts.flux_scheme = ’LFF’
DGOpts.lagrange_multiplier = ’none’
DGOpts.order = 2
DGOpts.mesh = mesh
DGOpts.ds = ds
DGOpts.meanflow = meanflow
DGOpts.lff_prefactor = 1.0

# Create an instance of the LNSE that contains the equations ,
# the mean flow as well as the finite element spaces.
LNSE = felicitax.fem.weakform.WeakForm(DGOpts)
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This part of the code illustrates the options the user sets for the flow, as described in the
previous subsection. Note that the ds holds the boundaries of mesh and is defined ear-
lier in this script from an imported mesh file generated with GMSH. The Python dictio-
nary meanflow is the result of mean-field interpolation from the previous step. The local
Lax-Friedrichs flux prefactor lff_prefactor controls the amount of upwinding. The class
felicitax.fem.opts.Opts serves as a container for the options and includes parameter
checks to ensure sensible settings. The weak form is generated when an instance of the class
felicitax.fem.weakform.WeakForm is generated with the DGOpts object as input.
# Set the flux and implicitly account for weak boundary conditions.
LNSE.set_flux_pressure ([ boundary["inflow"], boundary["walls"],

boundary["lower_symmetry"],
boundary["upper_symmetry"]])

LNSE.set_flux_normal_velocity ([ boundary["inflow"],
boundary["outflow"]])

LNSE.set_flux_convection ([ boundary["outflow"]])
LNSE.set_flux_convection_isothermal ([ boundary["inflow"]])
LNSE.set_flux_viscous ([ boundary["inflow"], boundary["walls"]])
LNSE.set_flux_viscous ([ boundary["outflow"]], penalty=False)
LNSE.set_flux_viscosity_fluctuation ([ boundary["lower_symmetry"],

boundary["upper_symmetry"],
boundary["outflow"]])

LNSE.set_flux_viscous_slip ([ boundary["lower_symmetry"],
boundary["upper_symmetry"]])

LNSE.set_flux_heat_conduction ([ boundary["inflow"], boundary["walls"]])

The above code gives an example for setting boundary conditions in the weak form. Due to the
choice of flux contributions, and the intentional omission of some parts on specific boundaries,
the conditions are enforced. boundary is a dictionary relating the human readable boundary
specifiers (like inflow) to their respective internal representations as integers.
# Dirichlet boundary conditions in strong form.
BCmethod = "geometric"
bcs = [

DirichletBC(LNSE.V.sub(LNSE.get_field_id("uR")), (u_forcing , 0.0),
boundaries , boundary["inflow"], BCmethod),

DirichletBC(LNSE.V.sub(LNSE.get_field_id("uI")), (0.0, 0.0),
boundaries , boundary["inflow"], BCmethod),

DirichletBC(LNSE.V.sub(LNSE.get_field_id("uR")).sub(1), 0.0,
boundaries , boundary["lower_symmetry"], BCmethod),

DirichletBC(LNSE.V.sub(LNSE.get_field_id("uI")).sub(1), 0.0,
boundaries , boundary["lower_symmetry"], BCmethod),

DirichletBC(LNSE.V.sub(LNSE.get_field_id("uR")).sub(1), 0.0,
boundaries , boundary["upper_symmetry"], BCmethod),

DirichletBC(LNSE.V.sub(LNSE.get_field_id("uI")).sub(1), 0.0,
boundaries , boundary["upper_symmetry"], BCmethod),

DirichletBC(LNSE.V.sub(LNSE.get_field_id("uR")), (0.0, 0.0),
boundaries , boundary["walls"], BCmethod),

DirichletBC(LNSE.V.sub(LNSE.get_field_id("uI")), (0.0, 0.0),
boundaries , boundary["walls"], BCmethod),

DirichletBC(LNSE.V.sub(LNSE.get_field_id("pR")), 0.0,
boundaries , boundary["outflow"], BCmethod),

DirichletBC(LNSE.V.sub(LNSE.get_field_id("pI")), 0.0,
boundaries , boundary["outflow"], BCmethod)

]
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Boundary conditions the user wants to enforce in the strong form are handled via a list (called
bcs here), which is later applied to the weak form during assembling of the matrices. The
variables of the LNSE, e.g. uR as the real part of the perturbed velocity field, are chosen, as well
as the respective boundaries, for which the values should be constrained.
for sol in frequency_sweep(LNSE , bcs , freqvec):

# Post -processing loop.
# Retrieve solution.
uR = project(sol.sub(LNSE.get_field_id("uR")), V_mean)
uI = project(sol.sub(LNSE.get_field_id("uI")), V_mean)

# Write phase animation of velocity perturbation to file.
postproc.save_phase_animation_xdmf(
filename=resultFolder + f"/{freq}Hz_phi.xdmf",
mesh=mesh , u={"u": (uR, uI), n_phi =60

)

Finally, the assembling and solution of the equation system happens in the Python generator
expression frequency_sweep, which takes as input parameters the weak form, boundary con-
ditions in the strong form as well as a list of frequencies to be solved for. The solution step,
which is typically by far the computationally most expensive part of the whole procedure, can
be run in serial, threaded or in parallel on multiple machines, depending on how FEniCS was
compiled. Note that the weak form already comprises the weakly imposed boundary condi-
tions. In the loop created by the generator, the user can access the solution fields sol for post-
processing purposes. In this case, the real and imaginary parts of the velocity perturbations are
extracted and a phase animation, dividing the period into 60 steps, is saved to .xdmf file. This
functionality is provided from the postproc module of felicitaX.
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5 Modular Systems in the State-Space
Framework

Hybrid thermoacoustic models require the interconnection of several submodels to form a rep-
resentation that encompasses all physical aspects governing combustion instabilities. In general,
the connections are formulated as (usually algebraic) equations to relate a subset of the degrees
of freedom between the submodels. The state-space representation, as a unifying modeling
framework, has shown to be well suited to define the interfaces between the submodels and
offers a strongly formalized procedure to establish the connections.

5.1 State-Space Systems

The state-space framework is a formalized representation for a system of linear time-invariant
(LTI) ordinary differential equations.

E
dx(t )

dt
= Ax(t )+Bu(t ) (5.1)

y(t ) = Cx(t )+Du(t ) (5.2)

The matrices A,B and E govern the temporal evolution of the state vector x under the influence
of inputs u. The output y of the system is defined as a linear combination of the states and the
inputs via C and D. Due to their LTI nature, both the linear acoustic (ranging from network to
LNSE) as well as the flow-flame models can be represented in state-space form. This is also
possible for models emerging from the discretization of the LRF equations.

5.1.1 Solution Procedures

Equation (5.1) is formulated in the time domain and can be solved non-iteratively due to lin-
earity. However, most linear thermoacoustic studies are not carried out in the time-domain.
Applying the Laplace transformation, Eq. (2.14), to the state vector results in the state-space
formulation in the Laplace domain:

Esx̂(s) = Ax̂(s)+Bû(s) (5.3)
ŷ(s) = Cx̂(s)+Dû(s) (5.4)

In this form, the input-output transfer behavior Ĝ(s) of a state-space system can be computed
for a given frequency s.

Ĝ(s) = ŷ(s)û(s)−> = C (Es −A)−1 B+D (5.5)
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When no input signal is present, eigenvalues and -vectors of the autonomous system can be com-
puted. For small systems, where the degrees of freedom are approximately lower than 104, it is
viable to compute all the eigenvalues. However, the computational demand increases rapidly for
larger systems and higher order eigenvalues are deemed irrelevant in thermoacoustic stability
analysis, such that it is common practice to only compute a few of the eigenvalues for those sys-
tems. One of the most popular algorithms is the implicitly restarted iterative Arnoldi algorithm
[52]. In order to control, which of the eigenvalues the algorithm will converge to, a shift-invert
procedure can be applied to the eigenvalue problem. Therefore, a complex shift frequency sshift
is chosen around which the inversion is constructed. This leads to the shift-inverted eigenvalue
problem formulation,

(A− sshiftE)−1 Ev̂(s) = 1

s − sshift
v̂(s) (5.6)

The shift can be interpreted as the new origin of the complex plane, in which the eigenvalues
lie and consequently the algorithm can be set to find eigenvalues closest to the shift. Choosing
the shift correctly requires some a priori knowledge about the system, e.g. the frequency band
of interest, which can be guessed from the gain of the FTF, or a network model approximation
of the large system, which allows to have an estimate of the relevant eigenvalues.

5.1.2 Interconnection of State-Space Systems

The matrices A to E of two systems 1 and 2 are appended block-diagonally to form the basis
of the respective matrices for the connected system. The link is then established by feeding an
output signal y1 of system 1 into the input u2 of system 2 and vice versa. This is realized by a
feedback equation with the binary feedback matrix F [53].

ũ = Fỹ+u (5.7)

This feedback equation represents the intermediate input vector ũ as the sum of fed back internal
outputs ỹ and true external inputs u to the connected system, which originate from the origi-
nal systems and are not interconnected. Resolving Eq. (5.7) by applying the output equation,
Eq. (5.2) to it, yields the new, connected system matrices.

5.2 Use Cases of State-Space Interconnect Models

The most common use of the state-space interconnect approach is the connection of a flow-
flame submodel to an acoustic submodel in hybrid models. However, there are other fields of
application where this strategy is advantageous. A technique described and applied in [19] is
aimed at reducing the overall computational cost of thermoacoustic stability analysis while
accurately accounting for the interactions between perturbations and the mean flow. This is
achieved by representing the crucial parts of the combustor (in this case the swirl generator
as well as the combustion zone) with high-fidelity governing equations, e.g. the LNSE, while
other parts, such as the plenum and the combustion chamber extension, are approximated by
1D network models. This shows the generality and potential of the state-space interconnect

28



5.2 Use Cases of State-Space Interconnect Models

approach: it is possible to seamlessly combine linear submodels of different complexity, making
use of the respective advantages of all modeling approaches employed.

Beyond the connection of models emerging from discretization of governing equations, it is
also possible to represent non-trivial, frequency dependent impedances and scattering matri-
ces, e.g. from experimental measurements, in state-space form. To this end, a rational complex
polynomial in s is fitted to the discrete data points of the measured frequency response, thus
yielding a continuous transfer function. This transfer function can be converted analytically to
a state-space model, thus making it suited for interconnection.
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6 Contextualization and Discussion of
Publications

This chapter clarifies the context between individual publications and provides their relation to
literature.

The goal of the series of publications encompassed in this thesis is the development of linear
thermoacoustic models with increased prediction accuracy, while remaining in the region of
affordable computational cost. Throughout the series of papers, less and less simplifications are
made to the governing equations, thus increasingly accounting for effects that strongly simpli-
fied models do not take into account. This yields not only more accurate predictions of ther-
moacoustic instabilities, but also provides more consistency with real combustion devices. As
a result, spurious effects, which stem from simplified modeling, can be eliminated by more
comprehensive approaches. Thus, results are more reliable and the numerical models are more
robust, because there is less impact of modeling decisions on the results. However, more knowl-
edge about the numerical treatment, especially concerning boundary conditions, is required.

The first important step towards the general framework for multi-dimensional linear thermoa-
coustic models starts with the extension of the state-space interconnect approach from one-
dimensional to two/three-dimensional models. Compared to the first appearance of the state-
space interconnect approach in thermoacoustics by Schuermans et al. [54], the flow-flame in-
teraction model is also formulated in the state-space formalism, allowing for a linear instead
of a non-linear eigenvalue problem. While the state-space interconnect methodology is pre-
sented mainly in PAPER-CONNECT, the seamless inclusion of an n −τ flow-flame model in
state-space form as well as a comparison to a state-of-the-art Helmholtz solver is detailed in
PAPER-EFFICIENT. Retaining the linearity of the physical problem in the numerical repre-
sentation leads to significantly less computational cost, equaling a shorter turnaround time for
stability predictions compared to other approaches with similar accuracy [55, 56]. Beyond this,
the unifying modeling strategy provided by the state-space approach allows for interconnection
of models with different governing equations resulting from varying degrees of simplification
to the physics of fluid dynamics and combustion. This is a cornerstone of subsequent papers,
in which simple parts of the burner under investigation are modeled by one-dimensional net-
work models, while swirl generator and combustion zone are represented by highly resolved
three-dimensional models stemming from DG-FEM discretization of governing equations that
account for mean-flow and (thermo-)viscous effects. A similar approach, well known in lit-
erature, is to connect acoustic transfer-matrices to domains modeled by discretized acoustic
governing equations [57–61]. In these studies, segments of the system under investigation were
modeled by transfer matrices, which the discretized governing equations could not represent
well enough, e.g. because of strong interaction between acoustics and hydrodynamics. While
this approach typically yields a strong reduction of degrees of freedom, it requires a source for
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the transfer matrices – usually experimental measurements or costly CFD simulations. Cou-
pling of discretized models based on different governing equations, as done in the studies of
this thesis, can yield additional information: the interaction between acoustics and hydrody-
namics, which can often contribute to the growth or dampening of thermoacoustic instabilities,
is resolved and can thus be analyzed in the context of eigenmodes, rather than being hidden in
a lumped model like a transfer matrix.

A Discontinuous Galerkin Finite Element approach for solving the Linearized Navier-Stokes
Equations in conservative form, or any simplifications thereof, is presented in PAPER-DGFEM.
The paper suggests application of this numerical method in thermoacoustics. Strengths of DG-
FEM are the physically motivated stabilization via an upwind flux between elements, as well
as the straightforward extension to higher order schemes. Compared to a stabilized continuous
Finite Element Method for the LNSE that has previously been applied to thermoacoustic prob-
lems, DG-FEM proved to be more accurate and reliable for semi-analytical validation cases
[62]. Alongside the validation case, the paper shows the capability of this approach to deter-
mine thermoacoustic eigenvalues with increased accuracy compared to a network model. As a
novelty, a single state-space model comprises the combustion device under investigation that
is split into a core of the combustion chamber including the swirl generator, an upstream and
a downstream section. While the core is modeled by three-dimensional LNSE discretized with
DG-FEM, the dimensionality of other sections is reduced to only the longitudinal aspect, and
thus they can be modeled by a network approach. This divide and conquer ansatz yields accurate
predictions of the thermoacoustic instabilities, while remaining in the affordable computational
regime. A cross-comparison to a pure network representation of the complete burner shows that
the three-dimensional LNSE discretization of the burner core influences the predicted growth-
rates of thermoacoustic eigenvalues. Strong interaction between the unsteady heat-release rate
of the flame, the acoustics and the hydrodynamics can be seen during instability in the combus-
tion region as well as the flow directly downstream of the swirl generator. The resolution of this
interplay allows to reason about the role of convective time-delays between swirler and flame
in the eigenfrequency of intrinsic thermoacoustic instabilities – an advantage that is missing in
modeling approaches that represent regions of complex geometry and flow with a lumped way,
e.g. with a transfer matrix [57–61].

PAPER-SCATTERING compares the differences in acoustic scattering behavior predictions
of two swirl generators, when various approaches with varying simplifications are em-
ployed. While PAPER-DGFEM focused on numerical methodology and a comparison between
two extremes – one-dimensional network-model versus three-dimensional LNSE – PAPER-
SCATTERING demonstrates the differences on a more fine-grained scale of simplifications to
governing equations. Three approaches, namely Helmholtz, Linearized Euler Equations and
Linearized Navier-Stokes Equations are employed to discretize the swirl generators under in-
vestigation. Reference results as well as the mean-flow fields are provided by Large Eddy Sim-
ulation. Results of the linearized methods show increasingly good agreement, when more phys-
ical mechanisms, such as mean-flow (Linearized Euler Equations) and viscous effects (Lin-
earized Navier-Stokes Equations), are accounted for. The paper also confirms an effect seen by
Kierkegaard et al. [63], that Linearized Euler Equations generate unphysical amounts of vor-
ticity in the boundary layers near walls, which seems to be connected to the discrepancy in
boundary conditions between the mean-flow (no-slip) and the linearized perturbation approach
(slip). Therefore, it is concluded that accounting for viscous effects, which allows to prescribe
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no-slip boundary conditions, not only increases the accuracy but also the robustness of this
methodology.

The last major step in methodological development in the frame of this thesis is published
in PAPER-LRF. It represents the first publication of an analytically Linearized Reactive Flow
solver and is mainly concerned with validation against results from CFD. The numerical Dis-
continuous Galerkin Finite Element methodology developed in PAPER-DGFEM is successfully
employed. This paper marks the first publication, in which a thermoacoustic system was inves-
tigated by an analytically linearized fully compressible reactive flow solver. The goal was to
demonstrate quantitative accuracy without use of tunable parameters, by comparing to refer-
ence solutions computed with CFD, from which also the mean-flow was extracted. Albayrak
et al. [64] demonstrated earlier, that the behavior of a swirl flame subject to inertial wave forc-
ing could be represented by a similar approach with a continuous Finite Element Method in
the low Mach number regime. Weakly compressible Linearized Navier-Stokes Equations with
a one-step chemistry were solved, based on a mean-flow obtained by solving the non-linear set
of equations with Newton’s method. Although it is possible to reproduce and investigate the
flame response with this methodology, thermoacoustic eigenmodes can not be computed be-
cause the weakly compressible LNSE do not support the correct propagation of acoustic waves.
Blanchard et. al [65] investigated the response of a laminar premixed flame to acoustic pertur-
bations by means of a numerically linearized reactive flow solver, though without quantitative
agreement to reference data. The emphasis of this study was to reproduce the flame behavior
on a qualitative level, in order to investigate the spatially resolved perturbations in heat-release
rate as well as their feedback on the unsteady flow field. Opposed to the numerical linearization,
the analytical linearization used in the LRF approach in this thesis allows for flexible choice of
numerical scheme and spatial discretization of the computations. As no simplifications to the
governing equations (beside linearization) are made, the highest degree of consistency to the
simulation for the mean-flow is guaranteed. Computational efficiency is achieved because it is
no longer necessary to identify the flow-flame model a priori through CFD in the time-domain.
These savings can typically more than compensate for the added degrees of freedom in the lin-
earized simulations stemming from the discretized species transport equations, which are not
necessary if a flow-flame model is used. Beyond the gain in prediction accuracy, the resolu-
tion of the linearized reaction mechanism allows investigation of the physical processes in the
combustion region during a thermoacoustic instability. The results show that a perturbed flame
front is not a monopole, but rather a dipole source of acoustic waves. This dipole pattern forms
due to the movement of the flame, which is strongly influenced by convective effects. A syn-
chronization between the acoustic forcing and the convective displacement can lead to intrinsic
thermoacoustic instabilities. In a lumped framework that models the flame as a discontinuity in
the flow, rather than a spatially resolved flame front, this lock-on between flame and forcing is
expressed in the π-criterion [66–68].

PAPER-ENTROPY employs the same fundamental governing equations and numerical method-
ology as in PAPER-LRF. The only difference is that a partly reversible two-step chemical mech-
anism is used to model the lean methane-air combustion in closer agreement to experimental
data, rather than a one-step mechanism. The focus of this work is to demonstrate the spurious
results that are obtained when simplifications in the governing equations or the overall approach
are made in the context of linearized combustion dynamics. The response of a laminar flame
subject to acoustic forcing is investigated with a hybrid model, consisting of Linearized Navier-
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Stokes Equations coupled to a lumped flame transfer function, and the monolithic Linearized
Reactive Flow. While the perturbed heat-release rate due to acoustic forcing is correctly repre-
sented by both models, the ensuing response of the flow, especially generated entropy waves,
differ significantly. It is reasoned that due to the lack of flame movement in the hybrid model,
excessive amounts of spurious entropy are generated in the combustion zone, which contra-
dict first principles as well as reference results from CFD. This entropy is not only per se a
wrong representation of physical mechanisms, but can additionally deteriorate the prediction
of thermoacoustic modes due to a feedback mechanism between accelerated entropy waves
and acoustics. The LRF on the other hand is in good agreement to reference data and behaves
as expected from first principles, because the locally resolved linearized reaction mechanism
accounts for movement of the flame due to an interplay between perturbations in flow, temper-
ature and transported species. This spurious entropy production has already been derived by
Strobio Chen et al. [69] for a framework, in which the spatial extent of the flame is neglected.
Results given in a theoretical analysis by Yoon [70] also show that regarding the flame as a
fixed heat-source, rather than a moving flame front in kinematic balance with the approaching
flow, leads to spurious entropy production. PAPER-ENTROPY sheds more light on the pro-
cesses that are happening in the combustion zone itself, both when flame movement is correctly
represented, and when a fixed flame is considered. These findings continue the train of thought
found throughout the whole thesis, which is that simplifying the overall approach or the gov-
erning equations not only reduces the accuracy of results, but also gives rise to inconsistencies
between CFD (mean-flow, reference results) and the linearized models. Beyond that, the appar-
ent savings in computational effort due to simplified approaches, like the hybrid one using a
flow-flame interaction model, often turn out to be outperformed by a monolithic approach like
the LRF.
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7 Summary and Discussion of Papers

In this chapter, the core finding of individual publications is laid out. Beyond this, the respec-
tive contribution of the authors to each paper is stated. The publications are not sorted strictly
chronologically, but rather in a way that underlines the progress made in the methodology.
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7.1 Linear State-Space Interconnect Modeling of Acoustic
Systems

Label: PAPER-CONNECT

Outcome: Linear state-space models of various origin, i.e. one-dimensional acoustic network
models, three-dimensional perturbation equations, as well as flow-flame interaction models
identified from Computational Fluid Dynamics, are connected in a state-space interconnect
framework. The connected system is represented as a single state-space model. The result-
ing eigenvalue problem is linear in the Laplace variable, facilitating non-iterative, robust and
accurate solution procedures.

Relevance for the thesis: This publication provides the backbone of the interconnect frame-
work, demonstrating how sub-models of various spatial dimensionality and based on different
governing equations can be merged to form a single model of the thermoacoustic system.

Contribution: The research topic was jointly defined by Wolfgang Polifke, Thomas Emmert,
Stefan Jaensch and me. The state-space interconnect algorithm was implemented by Thomas
Emmert in the in-house thermoacoustic network tool taX, which is written in Matlab. I con-
tributed the state-space models for the full as well as the segregated three-dimensional annular
combustor. The manuscript was prepared by Thomas Emmert, proof reading and suggestions
for improvement were given by all co-authors.

Status: Published in Acta Acoustica united with Acoustica.

Review process: Peer-reviewed, Scopus listed.

Reference: Thomas Emmert, Max Meindl, Stefan Jaensch, and Wolfgang Polifke. Linear State
Space Interconnect Modeling of Acoustic Systems. Acta Acustica United with Acustica 102,
no. 5 (2016): 824–33. doi: 10.3813/AAA.918997, reproduced on p.59f.
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7.2 Efficient Calculation of Thermoacoustic Modes utilizing State-Space Models

7.2 Efficient Calculation of Thermoacoustic Modes utilizing
State-Space Models

Label: PAPER-EFFICIENT

Outcome: In this publication, the state-space interconnect approach is employed to form a
model based on a sub-model for the acoustic propagation in an annular combustor as well as
a flow-flame interaction sub-model. The acoustic perturbations are governed by the Linearized
Euler Equations, the flow-flame interaction is modeled by a simplistic n−τ ansatz. The latter is
formulated in terms of a discretized advection equation for the time delay, yielding a state-space
model linear in the Laplace variable. The comparison to a Finite Volume solver of the Helmholtz
equation based on fixed-point iteration shows good agreement for the eigenfrequencies. The
computational cost is significantly lower, which is attributed to the linear eigenvalue problem
emerging from the state-space approach with the discretized time-delay.

Relevance for the thesis: This paper uses the interconnect framework of PAPER-CONNECT
and applies it to a case including flow-flame interaction, rather than pure acoustic perturbations.
The efficiency of formulating a linear eigenvalue problem by means of discretizing the time
delay of the flow-flame model is presented.

Contribution: Conceptualization of the topic was done in collaboration with all co-authors.
Wolfgang Polifke supervised the work and gave critical feedback on both the methodology as
well as the manuscript. Thomas Emmert implemented the state-space interconnect algorithm
as well as the discretization of the n −τ flame model via an advection equation. I contributed
the Finite Element models, set up the case of the annular combustor and conducted all the
computations. The manuscript was written by me, feedback and suggestions for improvement
were made by all co-authors.

Status: Presented at the 23rd International Congress on Sound & Vibration, published in Pro-
ceedings of the 23rd International Congress on Sound & Vibration.

Review process: Peer-reviewed, Scopus listed.

Reference: Max Meindl, Thomas Emmert and Wolfgang Polifke. Efficient Calculation of Ther-
moacoustic Modes Utilizing State-Space Models. In 23nd Int. Congress on Sound and Vibration
(ICSV23). Athens, Greece, 2016. reproduced on p.69ff.
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7.3 A State-Space Formulation of a Discontinuous Galerkin
Method for Thermoacoustic Stability Analysis

Label: PAPER-DGFEM

Outcome: A Discontinuous Galerkin Finite Element Discretization for the Linearized Navier-
Stokes Equations is presented. The approach is based on a formulation for the non-linear Navier-
Stokes and Euler Equations by Baumann et al. [47]. Compared to previously published results
by a Galerkin Least Squares stabilized continuous Finite Element Method [62], the presented
approach showed improved agreement with semi-analytical results for a one-dimensional vali-
dation case first investigated by Dowling [71]. Subsequent analysis of a turbulent swirled com-
bustion test rig demonstrated that the interaction between acoustic, hydrodynamic and entropic
perturbations as well as the influence of spatial gradients in the mean-flow can impact ther-
moacoustic eigenvalues both in their oscillation frequency as well as their growth rate. It is
important to note that those mechanisms can have a stabilizing as well as a destabilizing effect
on the eigenmodes. Throughout the studies of this paper, state-space formulations as well as in-
terconnection algorithms developed in PAPER-CONNECT are employed to connect models of
varying spatial dimensionality, governing equations as well as the acoustic and the flow-flame
sub-models.

Relevance for the thesis: This publication validates the numerical approach – a Discontinuous
Galerkin Finite Element Method – for the discretization of non self-adjoint governing equations
like such as Linearized Navier-Stokes Equations. It is thus the second staple, next to the state-
space framework, on which the methodology presented in this thesis is based on.

Contribution: The research topic was defined by me. The implementation of the numerical
methods as well as the setup of the linear models was done by me. Alp Albayrak set up and ran
the Large Eddy Simulation of the turbulent swirl combustor, which is required for the provision
of the mean-flow as well as identification of the flow-flame interaction model. The manuscript
was written in major parts by me, feedback, suggestions and improvements were given by all
co-authors. Wolfgang Polifke contributed significantly in writing of the introduction, abstract
and conclusion, Alp Albayrak wrote the section on the Large Eddy Simulations.

Status: Published in Journal of Sound and Vibration.

Review process: Peer-reviewed, Scopus listed.

Reference: Max Meindl, Alp Albayrak and Wolfgang Polifke. A State-Space Formulation of a
Discontinuous Galerkin Method for Thermoacoustic Stability Analysis. Journal of Sound and
Vibration 481 (2020): 115431. doi: 10.1016/j.jsv.2020.115431, reproduced on p.104ff.
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7.4 Determination of Acoustic Scattering Matrices from Linearized Compressible Flow
Equations with Application to Thermoacoustic Stability Analysis

7.4 Determination of Acoustic Scattering Matrices from Lin-
earized Compressible Flow Equations with Application
to Thermoacoustic Stability Analysis

Label: PAPER-SCATTERING

Outcome: The acoustic scattering behavior of two swirl generators for combustion test rigs is
investigated via Large Eddy Simulation, Helmholtz Equation, Linearized Euler Equations and
Linearized Navier-Stokes Equations. The latter two governing equations are solved with the
Discontinuous Galerkin Finite Element Method introduced in PAPER-DGFEM. Results from
Large Eddy Simulation and Linearized Navier-Stokes Equations agree well. The Linearized
Euler Equations perform similar for most frequencies, but suffer from spurious unstable eigen-
modes, which spoil the scattering behavior. The Helmholtz Equation underestimates the magni-
tude of reflected waves significantly. Accounting for this acoustic scattering in a network model
of a combustor test rig is shown to impact the predicted eigenfrequencies.

Relevance for the thesis: This publications shows that simplifications that are commonly made
in aeroacoustics, e.g. non-viscous perturbations or neglect of the mean-flow velocity, should not
be employed when treating ducted flows, ubiquitous in combustors.

Contribution: The idea to investigate acoustic scattering of swirl generators was given by Wolf-
gang Polifke. The Large Eddy Simulation for the radial swirl generator was conducted by Malte
Merk. The linearized simulations were carried out by Fabian Fritz for the radial and by me for
the axial swirl generator. The network model analysis was conducted by me. The section on
the radial swirl generator was written by Fabian Fritz, except for the description of the Large
Eddy Simulation, which was written by Malte Merk. The rest of the manuscript was written
by me. Wolfgang Polifke contributed through discussion, feedback and improvements of the
manuscript.

Status: Published in Journal of Theoretical and Computational Acoustics.

Review process: Peer-reviewed, Scopus listed.

Reference: Max Meindl, Malte Merk, Fabian Fritz and Wolfgang Polifke. Determination
of Acoustic Scattering Matrices from Linearized Compressible Flow Equations. J. Theoret-
ical and Computational Acoustics 27, no. 3 (June 5, 2018): 1850027-1-1850027–27. doi:
10.1142/S2591728518500275, reproduced on p.77ff.
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7.5 Thermoacoustic Analysis of a Laminar Premixed Flame
using a Linearized Reactive Flow Solver

Label: PAPER-LRF

Outcome: This paper is mainly concerned with the validation of a Linearized Reactive Flow
Solver employing the Discontinuous Galerkin Finite Element Method introduced in PAPER-
DGFEM. The subject of investigation is a small laminar flame forced acoustically. The flame
response is compared to the flame dynamics computed from an OpenFOAM time series post-
processed with system identification. Good agreement for both adiabatic and isothermal flame
anchoring plates is observed. An eigenvalue analysis of the intrinsic thermoacoustic mode
shows differences between the Linearized Reactive Flow solver and a hybrid approach con-
sisting of Linearized Navier-Stokes Equations coupled to a Flame Transfer Function. Not only
the resonance frequency, but also the mode shape differs.

Relevance for the thesis: The publication introduces the Linearized Reactive Flow solver, fur-
thering the development of linear thermoacoustic models towards higher accuracy in the pre-
diction of instabilities.

Contribution: The idea of linearizing – beyond the Navier-Stokes Equations – also the species
transport equations and the reaction mechanism stems from Alexander Avdonin. The implemen-
tation of the governing equations was conducted by me, with Alexander Avdonin contributing
valuable ideas on discretization and formulation of the governing equations. OpenFOAM sim-
ulations were carried out by Alexander Avdonin, the linearized simulations were carried out
in parts by Alexander Avdonin and me. The manuscript was written by Alexander Avdonin,
all co-authors gave feedback and suggestions for improvement. Wolfgang Polifke supervised
the whole process, providing valuable ideas and feedback on technical as well as conceptual
aspects.

Status: Published in Proceedings of the Combustion Institute.

Review process: Peer-reviewed, Scopus listed.

Reference: Alexander Avdonin, Max Meindl and Wolfgang Polifke. Thermoacoustic Analy-
sis of a Laminar Premixed Flame Using a Linearized Reacting Flow Solver. Proceedings of
the Combustion Institute 37 (2019): 5307–14. doi: 10.1016/j.proci.2018.06.142, reproduced on
p.125ff.
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7.6 On the Spurious Entropy Generation Encountered in Hybrid Linear Thermoacoustic
Models

7.6 On the Spurious Entropy Generation Encountered in
Hybrid Linear Thermoacoustic Models

Label: PAPER-ENTROPY

Outcome: This paper shows the ramifications of employing the hybrid approach commonly
used in thermoacoustic. The split of the acoustic and flow-flame sub-model is investigated for
a one- and a two-dimensional flame with both a global and a local flow-flame model identified
from non-linear OpenFOAM simulations. To this end, Linearized Navier-Stokes equations are
employed as the acoustic sub-model. For both flames, significant generation of spurious entropy
in the combustion zone is observed if a global flow-flame model is employed. The local flow-
flame model remedies this problem. Additionally, it is shown that the Linearized Reactive Flow
does not suffer from this problem, as the combustion dynamics is inherently accounted for
locally. The spurious generation of entropy is explained by the lack of a global flow-flame model
to account for flame movement. The numerical discretization for the linear models is entirely
done with the Discontinuous Galerkin Finite Element Method described in PAPER-DGFEM.

Relevance for the thesis: This publication shows that the Linearized Reactive Flow is not
only more accurate than hybrid models, but also less error prone in terms of modeling mistakes.
Additionally, it demonstrates how flame movement – a critical property of an acoustically forced
flame – can be accounted for in a spatially resolved combustion region.

Contribution: Wolfgang Polifke conceptualized the idea that flame movement needs to be ac-
counted for in spatially resolved combustion regions. All the simulations as well as the writing
of the first version of the manuscript were done by me. Camilo Silva contributed the idea to in-
vestigate hybrid models with a locally resolved flow-flame model. Wolfgang Polifke formulated
the explanation for the spurious entropy in terms of lack of flame movement. Major contribu-
tions to the manuscript were made by Wolfgang Polifke and Camilo Silva through numerous
internal revisions, suggestions and editing.

Status: Published in Combustion and Flame.

Review process: Peer-reviewed, Scopus listed.

Reference: Max Meindl, Camilo F. Silva and Wolfgang Polifke. On the Spurious Entropy Gen-
eration Encountered in Hybrid Linear Thermoacoustic Models. Combustion and Flame 223
(January 2021): 525–40. doi: 10.1016/j.combustflame.2020.09.018, reproduced on p.133ff.
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8 Outlook

The Discontinuous Galerkin Finite Element Method described in this thesis is the basis for the
development of hybrid and monolithic thermoacoustic models governing the full spectrum of
perturbations in the linear regime. A strong foundation is set for future research to build on.

Progress can be aimed at both new numerical schemes as well as varying the formulation of
the governing equations. Chances for improvement in the numerical treatment are to be seen
in the various new flux formulations emerging rapidly in the Finite Element context. For the
pure hyperbolic parts of the flux, exact flux difference splitting by means of diagonalization
of the flux matrix is the optimum. However, when the number of equations increases, e.g. due
to several species accounted for in the Linearized Reactive Flow, this is not a trivial task. The
best choice for discretization of the diffusive terms is much more controversial, as stabilization
or penalty methods have to be employed due to the discontinuous basis functions. Due to the
prominent role of heat and species diffusion in combustion, studying the impact on accuracy
and computational effort of newly emerging schemes for thermoacoustic problems should be
aimed at.

In the field of governing equations, the main challenge lies in the modeling of linearized turbu-
lent combustion with the Linearized Reactive Flow. Due to the unsteady nature of turbulence,
there is no steady-state of the mean flow computations, and thus – strictly speaking – no valid
linearization point. However, practical cases showed that a time averaged mean field of the un-
steady flow can still yield good results in terms of a non-reacting flow stability analysis. Once
combustion is added on top of turbulence, the main complication becomes that applying the
reaction mechanism to the averaged mean fields, one does not recover the averaged mean heat
release rate, i.e. the mean flow itself is inconsistent. It is still an open question how to account
for or circumvent this fundamental problem.

Beyond the challenges that lie in modeling linearized turbulent combustion, the compute effort
will also be significantly larger than for the cases tackled in the scope of this thesis research.
While solving small cases is a matter of minutes with a direct solver on a typical desktop com-
puter, the use of iterative methods to solve the linear system of equations resulting for larger
cases is a necessity. Preliminary studies, however, showed that the structure of the resulting ma-
trix in the frequency domain, even for small cases, poses a problem for combinations of precon-
ditioners and solvers that are typically employed in the field of fluid mechanics. Convergence
towards the correct solution is either very slow, or not possible at all. Deriving a suitable pre-
conditioning matrix is therefore essential to expand the applicability of the Linearized Reactive
Flow approach towards realistic combustion configurations. As an alternative way, employing
model order reduction to large systems can significantly reduce computational cost.

A topic that seems less challenging with the current state of the method is the treatment of
acoustically non-compact flames, as they often occur in high frequency transversal thermoa-
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coustic instabilities. No essential modifications or additions to the methodology presented in
the scope of this thesis are needed to account for this phenomenon.

As a result of future implementations, and based on the currently existing method, the investi-
gation of the physics of perturbed flames could be of great use to broaden the understanding of
thermoacoustic instabilities. The Linearized Reactive Flow allows to vary the boundary condi-
tions for thermal perturbations while keeping the mean flow unchanged. This could be used to
investigate the influence of flame anchoring at a plate that behaves adiabatic or isothermal in
terms of the perturbations, thus reflecting a negligible or infinitely high thermal inertia of the
plate, respectively. First numerical experiments in this direction showed that the excess of gain
in the Flame Transfer Function could be tightly connected to the thermal boundary conditions.
Beyond this rather simplistic approach, the perturbed heat conduction in the plate itself could be
included in the linearized simulation, to closer model the actual physics. Due to the symmetric
nature of the Fourier’s equation for heat conduction, the discretization with the Finite Element
Method is straight forward and no stabilization is required.

The modular nature of the method developed in this thesis – on the one hand due to its imple-
mentation felicitaX, on the other hand due to the state-space interconnect approach – lends
itself to make additions to the functionality, while keeping flexibility and compatibility of the
sub-modules. This is an approach that has proven valuable in the past, as demonstrated by state-
space based thermoacoustic network models. Thus, the approach can be deemed future-prove
and enables further research in this area.
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This paper describes a framework for the efficient computation of thermoacoustic modes in an-
nular combustors. It is based on state-space models for coupling both the linearized acoustics
and the flame dynamics. The state space models for the acoustics are exported from COMSOL
Multiphysics. The Finite Element Method for the linearized Euler equations yields very sparse
system matrices. The acoustic and the flame models are connected by network model routines.
Due to the state-space modeling, thermoacoustic modes can be computed by solving a generalized
non-Hermitian linear eigenvalue problem instead of a nonlinear eigenvalue problem. The Arnoldi
algorithm is used to calculate selected eigenvalues in case the systems are too big to compute a
direct solution for all the eigenvalues. Validation is carried out for a plenum-burner-chamber con-
figuration with four burners. Simplistic n-τ models are chosen for the flame-acoustic interaction,
which are represented in state space form utilizing an advection equation for representing the time
delay. The results show good agreement with a full three-dimensional Finite Volume Helmholtz
solver in mode shape, frequency and growth rates. Coupling between the plenum and the chamber
is observed to be dependent on the interaction index and the characteristic time delay of the flame
models.

1. Introduction

Premixed flames in gas turbines are widely used, since they feature high efficiency paired with
low emissions. However, they are susceptible to self excited thermoacoustic instabilities, which occur
due to interactions between fluctuating heat release of the flame and acoustic waves. These waves are
reflected by the combustion chamber walls. In the design stage, analytical and numerical methods
can be used to predict the stability of a gas turbine. Compressible LES simulations are very expensive
and thus low-order models are often utilized to predict stability. So called network models have
become very popular, in which the acoustic behavior and the flame-acoustic coupling are captured
in modular blocks, which can be connected to build a complete thermoacoustic system [1]. Though
being very affordable, low-order models are mostly limited to quasi 1-D wave propagation [2], which
often assumes azimuthal compactness of annular geometries. Models for more complex geometries
are based on a modal reduction technique [3, 4]. The latter procedure requires a priori knowledge of
the system, because the modal basis strongly influences the behavior of the deduced model.

A different approach to thermoacoustic stability is the calculation of the system eigenmodes on
a perturbation equation for describing the acoustics (e.g. Helmholtz [5] or linearized Navier-Stokes
[6] equations). The flame’s response to acoustic fluctuations is typically accounted for by the fre-
quency response of a flame transfer function (FTF). Then the eigenvalue problem needs to be solved
iteratively due to the nonlinear coupling of the FTF, which again leads to high computational cost.

In this paper, a method for the efficient stability analysis of gas turbine combustion chambers is
introduced, which is based on state-space models for both the acoustic and the flame response. No
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a priori knowledge of the system acoustics is required, because the acoustic is only based on the
governing equations deduced from first principles instead of a modal reduction.

The paper is organized as follows: Section 2 shows the methods for acquiring state-space models
for the acoustic and the FTF, section 3 outlines the validation case setup. In section 4, the results for
the validation case are presented. Section 5 concludes with a discussion and provides an outlook on
the potential of this method.

2. State-Space Models

State-Space Models are a compact and efficient way to represent a set of linear coupled differential
equations. The state vector x contains the states retained to represent the system. Matrix A and E
describe the full dynamic of the system and B models the effect of the inputs u, see Eq. (1). Equation
(2) defines an output-vector y, which is a linear combination of the states and the inputs, determined
by the output-matrix C and the feedthrough-matrix D.

E
dx

dt
= Ax + Bu (1)

y = Cx + Du (2)

Time domain simulation is straight forward by discretization of the time derivative of x. From
the Laplace-transfomred system, the in-/output transfer functions as well as the eigenvalues can be
calculated.

2.1 Acoustic state-space model

In this study, the linearized Euler equations (LEE) are employed for the acoustic modeling [7].
Only the source term q̇′v for the unsteady heat release in the linearized conservation of energy, Eq. (5),
is kept.

∂ρ′

∂t
+∇ρ′ · ū + ρ′∇ · ū +∇ρ̄ · u′ + ρ̄∇ · u′ = 0 (3)

ρ̄
∂u′

∂t
+ ρ̄(ū · ∇)u′ + ρ̄(u′ · ∇)ū + ρ′(ū · ∇)ū +∇p′ = 0 (4)

∂p′

∂t
+ ū · ∇p′ + u′ · ∇p̄+ γ(p̄∇ · u′ + p′∇ · ū) = (γ − 1)q̇′v (5)

Here, (̄·) are the mean values and (·)′ are the acoustic perturbations. Equations (3) - (5) are
spatially discretized using a Finite Element Method (FEM). Together with boundary conditions, a
linear set of equations results from the FEM.

E
dx

dt
+ Kx = L (6)

Here, E is the mass matrix, K is the stiffness matrix and the load vector L contains entries which
originate from Dirichlet boundary conditions and source terms. The state-vector x contains the acous-
tic variables at all spatial discretization points, which have not been eliminated by boundary condi-
tions. The length NA of the state vector equals the degrees of freedom of the acoustic system.

Equation (6) can be transformed to state-space representation by choosing A = −K and splitting
the load vector in two factors, a matrix B with constant coefficients and a vector u which contains the
time dependent input signals, e.g. unsteady heat release. By means of the output matrix C, the user
can define output variables which are linear combinations of the states. These outputs can be chosen
arbitrarily as they do not effect the dynamics of the system.
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ξ

Φ(t = 0) Φ(t > 0)

α

Figure 1: Illustration of a signal Φ being advected along ξ.

2.2 Flame state-space model

A flame transfer function with a single time-lag, e.g. the n− τ model, represents a flame that re-
acts to an acoustic perturbation after a time-lag τ . A linear model for the time-lag, which is the crucial
part of the n− τ model, can be derived e.g. by means of a Padé-approximation ([1]). For increasing τ
however, the Padé-approximation requires an increased number of coefficients which become ill con-
ditioned. The approach taken in this paper is the utilization of the 1D advection differential equation
to model the time-lag.

∂Φ

∂t
+ α

∂Φ

∂ξ
= 0 (7)

In Eq. (7), the property Φ is transported with the constant advection speed α > 0 in positive ξ
direction (compare Fig. 1). Assume an advection along a fixed interval of length T in ξ direction.
Subsequently, the time τ it takes for a signal Φ to be transported is τ = T/α.

For the n− τ model, a signal Φ is imposed at the upstream boundary (ξ = 0). At the downstream
boundary (ξ = T ), the time-lagged signal is measured and amplified by the factor n.

To obtain the state-space form, the interval T is discretized in NF − 1 elements of size ∆T by
means of an upwind difference scheme which yields NF degrees of freedom. The input signal to
this model is the acoustic velocity perturbation u′ at a reference position, the measured output q̇′V is
the time delayed input signal, amplified by the flame-gain n. The states correspond to the advected
property at the respective discretization nodes between the elements. Equations (8) and (9) illustrate
a state-space model with NF = 4 degrees of freedom, discretized with a first order upwind scheme.
The input acts only on the first state (upstream boundary), whereas the output vector C uses the last
state only (downstream boundary). For this case, the coefficients in A and B are a = α/∆T .

dx

dt
=




−a 0 0 0
a −a 0 0
0 a −a 0
0 0 a −a




︸ ︷︷ ︸
A

x +




a
0
0
0




︸︷︷︸
B

u′ (8)

q̇′V =
[
0 0 0 n

]
︸ ︷︷ ︸

C

x (9)

By modeling the time-lag with an advection equation, a well conditioned, linear system in time-
domain results. Using higher order upwind schemes or more discretization points increases the accu-
racy of the model for higher frequencies. Figure 2 (left) shows the step responses for two models of
order NF = 100 and NF = 30, both discretized with a third order upwind scheme. Slight under- and
overshoots are observed close to the step. The higher order model has a steeper response, whereas
the overshoot amplitude remains constant. However, for harmonic excitations, which are important in
acoustics, the model performs excellent up to a certain frequency, which depends on the model order
(Figure 2 (right)). As intended, the gain remains at a constant value of 1 up to a certain frequency,
while the phase decreases linearly, which implies a constant time-lag.
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Figure 2: Step response (left) and transfer function G(ω) (right) of a n− τ state-space model, τ = 1
ms, n = 1.

The implementation of a linear FTF with multiple time-delays, which is the more accurate and
generic way to describe the flame-acoustic interaction, is also straightforward ([8]). This allows for
incorporation of FTFs which were measured from experiments or identified from CFD simulations.

2.3 Connection of state-space models

For the validation case in this paper, the outputs of the acoustic system have been chosen to be
velocity perturbations u′ at the flame reference positions upstream of the heat release zones. The
inputs to the acoustic system are the volumetric heat-release fluctuations q̇′V in these zones, which
appear as a source term in Eq. (5). The n − τ flame model provides the time-lagged volumetric
heat-release as a function of the velocity perturbations u′ at the reference positions.

The connection of the acoustic and the flame models are accomplished using a state-space con-
nection algorithm described in [9]. This is done by feeding back the output of the acoustic system u′

to the input of the flame system and vice versa with q̇′V . This way, a closed loop is created and the
connected model has no more in- or outputs. Due to the linearity of both acoustic and flame model,
the resulting thermoacoustic model is also linear, which yields efficient computations both in time-
and frequency-domain.

2.4 Calculation of eigenmodes

The connection of the acoustic and the flame model yields a state-space model, which incorporates
the complete thermoacoustic dynamics. The stability of this system can be investigated by solving
for the eigenmodes. For smaller systems (up to N ∼ 3 × 104), it is feasible to directly calculate all
the eigenmodes of the system. Due to limitations in memory and computational effort, only some
modes of interest are calculated for bigger systems. In order to solve for modes around a specific
shift-frequency σ, the generalized, non-Hermitian eigenvalue problem in Eq. (10) has to be solved,
where σ is the complex shift, λ is the complex eigenfrequency and v is the right-eigenvector [10].

(A− σE)−1Ev = νv with ν =
1

λ− σ (10)

The eigenfrequencies, which are closest to the shift, get moved close to zero. After inverting the
problem, these are the eigenfrequencies ν with largest magnitude and can be found efficiently by the
iterative Arnoldi algorithm. The eigenfrequencies λ of the original problem can then be computed
with knowledge of the shift σ (Eq. (10)).
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Figure 3: Annular combustor cut through one burner, all measures in m.

LU-factorizations of the stencil (A − σE) are computed using the multifrontal solver MUMPS
([11], version 5.0.1), because the direct inversion would be too expensive. This factorization step
takes up most of the computational time and working memory, but can be parallelized. The eigenvalue
calculation is very efficient, because the matrices obtained for the state-space models of the acoustic
and the FTF system are very sparse, which speeds up the vector matrix products significantly and
requires little working memory. The system which was used to create the results of this paper consists
of ∼ 203,000 states and requires ∼ 4 Gigabyte of RAM to solve for an eigenvalue.

3. Validation Case Setup

The capabilities of the state-space method have been validated for a well researched plenum-
burner-chamber configuration [12]. This simplified model of an annular gas turbine combustion
chamber consists of a plenum and a chamber of equal geometry, connected by four burner ducts,
see Fig. 3 for a cross-section through one burner. The acoustic-flame interaction has been taken into
account with n − τ models. Volumetric heat-release fluctuations q̇′V of the flames are assumed to be
localized at the burner-chamber interface in a volume which amounts to 5 % of the duct volume. The
configuration has zero mean-flow velocity and exhibits a temperature jump from 700 K in the plenum
and the burners to 1800 K in the chamber. Further parameters can be found in Table 1 of [12].

The numerical setup has been done in COMSOL Multiphysics. A tetrahedral spatial discretization
with refinements in proximity to the heat-release areas was employed. For this mesh with ∼ 225,000
Elements, a state-space model with NA ∼ 206,000 degrees of freedom was exported. The mesh size
is similar to the AVSP mesh used in [12]. All the boundaries were modeled as hard slip-walls and
linear testfunctions were used. Note that in three dimensions, each node will result in 5 degrees of
freedom (p′, ρ′, u′), but Dirichlet boundary conditions will eliminate some of these states.

Conversion from non-dimensional to dimensional heat-release rate fluctuations q̇′V,i for the i-th
burner (Eq. (11)) is done through incorporating a constant factor in the output-matrix C of the flame
state-space system.

q̇′V,i =
γp̄Si

γ − 1
niu

′(t− τ) (11)

Here, γ is the ratio of specific heats, p̄ is the mean pressure and Si is the burner cross-section. For the
mode calculation in this paper, the same n and τ were chosen for all four burners.

4. Results

Validation of this method is carried out against the results of the Finite-Volume Solver AVSP
reported in [12] by comparing the azimuthal eigenmodes. Azimuthal modes appear in pairs with
opposite rotational directions (clockwise and counter-clockwise), which can exhibit different eigen-
frequencies. However, if the case is perfectly rotational symmetric, both modes become standing
modes and coincide on the same frequency. Subsequently, these modes are called degenerate. The
investigated plenum-burner-chamber configuration features coupling between the azimuthal eigen-
modes of the cold plenum and the hot chamber. The strength of this coupling depends, for a given n,
on the time delay τ of the flame model.

ICSV23, Athens (Greece), 10-14 July 2016 5

A.2 PAPER-EFFICIENT

73



The 23rd International Congress of Sound and Vibration

0 0.2 0.4 0.6 0.8 1
89

90

91

92

93

94

τ / τ 1
0,C

Fr
eq

ue
nc

y
(H

z)

0 0.2 0.4 0.6 0.8 1

−2

0

2

τ / τ 1
0,C

G
ro

w
th

R
at

e
(H

z)

AVSP
LEE1
LEE2

Figure 4: Eigenfrequencies and growth rates for WCC1 of the presented state-space method compared
to AVSP results reported in [12].
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Figure 5: Eigenfrequencies and growth rates for WCC2 of the presented state-space method compared
to AVSP results reported in [12].

Figures 4 and 5 show the frequencies and the growth rates of the first (WCC1) and second (WCC2)
Weakly Coupled azimuthal Chamber modes. The indices 1 and 2 denote the first and second mode
of the azimuthal mode pair. Note that τ has been non-dimensionalized by the respective decoupled
chamber mode time period τ 10,C and τ 20,C . The period times for the m-th chamber mode is given by
Eq. (12), LC and c0 are the half-perimeter and the speed of sound in the chamber [12].

τm0,C =
2LC

mc0
(12)

The increasing time-delay of the FTF changes the relative phase between the heat release and
the acoustic velocity perturbations of the mode. For τ/τ0,C < 0.5, the interference between these
perturbations leads to a net increase in perturbation energy. As neither damping mechanisms nor
energy loss at the domain boundaries are present, the mode becomes unstable. With further increase
in τ , the shift in phase angle leads to a destructive interference between heat release and acoustic
pressure, the mode stabilizes and thus exhibits negative growth-rates. Both the WCC1 and WCC2
modes show this behavior.

Very good agreement between the results of the state-space method and AVSP can be found for
the WCC1 mode. The two modes are degenerate and have identical frequencies and growth-rates. For
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Figure 6: WCC1 (left) and WCC2 (right) eigenmodes for n = 1.57 and τ/τ0,C = 0.5.

the WCC2 mode frequencies, an almost constant off-set of ∼ 1 Hz compared to AVSP can be found
for both modes. However, the basic nature of the WCC2 modes is present in both compared models:
The first WCC2 mode exhibits pressure nodes at the burners and thus doesn’t excite any acoustic
velocity perturbations in the burner ducts. Consequently, there is no influence of the time delay τ on
this mode. The second mode (Fig. 6) right) strongly depends on the time delay of the flame due to
the pressure anti-nodes at the burners.
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Figure 7: WCC2 eigenfrequency convergence (left, n = 1.57, τ/τ 20,C = 0.25) and computation time
(right) with increasing system order N .

Computational efficiency and convergence are shown in Fig. 7. As can be seen, the eigenfre-
quency is only slightly mesh dependent for N > 2 × 105. For simplicity, only the WCC2 mode is
shown. This convergence behavior is similar for all investigated modes and growth rates.

The computation time for the eigenmodes scales linearly for small to medium systems, then takes
a superlinear trend for larger N . Notice that all the computations have been carried out on a single
core of a desktop PC. It is assumed, that a better scaling for large systems can be achieved by parallel
processing. The calculation of an eigenmode using AVSP takes 5 to 30 minutes on 14 cores for a
mesh containing ∼ 57,000 cells and depends on the thermoacoustic coupling between plenum and
chamber. For strong coupling, convergence is significantly slower. The same calculations for a state-
space model with ∼ 206,000 degrees of freedom (∼ 225,000 cells in the FEM discretized mesh) take
around 2 minutes. The presented state space eigenvalue solver has no convergence issues depending
on the mode-shape or the coupling strength and shows superior performance because, compared to
AVSP, no iterations for the flame coupling are required.

5. Conclusion

The gap in terms of computational effort and complexity between (analytical) low-order mod-
els and very costly LES can be closed based on linearized acoustic equations. Following this idea,
state-space models offer great efficiency and robustness when combined with very sparse system ma-
trices, as obtained from discretized LEE or FTFs. The ability to connect these models yields a closed
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description of thermoacoustic systems in complex geometries, while retaining the linear eigenvalue
problem. Network models, which are based on state-space descriptions, such as taX ([9]), can be
used to combine FEM models with low-order acoustic elements to increase their range of application.
As shown in this paper, state-space models can make the stability analysis in complex geometries
affordable.
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The acoustic transmissions and reflections of plane waves at duct singularities can be represented
with so-called scattering matrices. This paper shows how to extract scattering matrices utilizing
linearized compressible flow equations and provides a comparative study of different governing
equations, namely the Helmholtz, linearized Euler and linearized Navier–Stokes equations. A dis-
continuous Galerkin finite element method together with a two-source forcing is employed. With
this method, the scattering matrix for a radial swirler of a combustion test-rig is computed and vali-
dated against the results of a fully compressible Large-Eddy-Simulation. Analogously, the scattering
behavior of an axial swirler is investigated. The influence of acoustic-hydrodynamic interactions,
viscous effects as well as unsteady boundary layers on the results is investigated for both configu-
rations. A thermoacoustic stability analysis of the combustion test-rig housing the axial swirler is
carried out, utilizing the scattering matrix of the swirler. Major influence of the reflections coming
from the swirler on the thermoacoustic eigenfrequencies is found.

Keywords: Scattering matrix; discontinuous Galerkin; thermoacoustic.

1. Introduction

Under lean premixed operation conditions, required for low pollutant emissions, gas turbines

are susceptible to thermoacoustic combustion instabilities, which arise due to an interaction

of acoustic and hydrodynamic perturbations with the flame.1 When the flow field is per-

turbed by acoustic waves, which are ubiquitous in gas turbines, the heat-release of the flame

oscillates, leading to unsteady volumetric expansion. This mechanism acts as a monopole

source of sound.2 When the generated acoustic waves are reflected back to the combus-

tion zone, a feedback cycle establishes, which can become unstable, i.e. grow in amplitude.

The high sound pressure levels as well as the oscillating temperature of the burnt gas are

detrimental to stable operation and might even destroy the engine. Additionally, thermoa-

coustic instabilities limit the operability and increase noise, pollutant emission and material

wear.3
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Due to the high cost of experiments, numerical simulations are an important comple-

ment to investigate and predict instabilities. In order to achieve accurate predictions, the

scattering and dissipation of acoustic waves in complex combustor geometries has to be

captured. This is a challenging task, especially in the regions where significant interaction

between hydrodynamics and acoustics is present.4,5

Swirl generators are essential in gas turbines due to their support of stable combustion

and improvement of the fuel–air mixing process. The resulting complex rotational flow-field

featuring shear- and boundary-layers is an important zone, in which acoustic-hydrodynamic

interactions take place.6,7 Effects like acoustic-vorticity interaction similar to those at ori-

fices8,9 and trailing edges10 are expected to have a major influence on the acoustic trans-

mission and reflection as well as dissipation behavior. Due to the proximity of the swirl

generator to the combustion area, this interaction can impact thermoacoustic stability.11

The development of reduced order models that can represent the effect of such singularities

in tools for thermoacoustic stability assessment is an ongoing process.7,12–14 It was already

shown that accounting for a swirler directly in a Helmholtz solver, which neglects mean-flow

effects, is insufficient.13

Frequency dependent scattering matrices, which relate the plane acoustic waves at both

sides to each other, are often employed for characterization of duct singularities in the

plane wave region.15 Once determined, these acoustic two-ports can conveniently incorpo-

rate the complex interaction between acoustics and hydrodynamics in transmission and

reflection coefficients. Their deduction has been done experimentally,15–19 from nonlinear

CFD13,19–22 as well as by means of hybrid approaches.6,8,9,23–28 The latter is usually based on

the computation of a steady-state or time averaged mean-flow field with Reynolds-Averaged

Navier–Stokes (RANS) or Large-Eddy-Simulations (LES), respectively. Employing a linear

perturbation ansatz to the governing equations around this mean-flow yields linearized

compressible flow equations, from which the scattering matrix can be computed. Based on

assumptions about the perturbed flow, i.e. isentropic or inviscid, different levels of detail

and computational efficiency can be achieved. Due to the linearity of this hybrid approach,

the computational effort is significantly lower than employing a nonlinear CFD simulation.

While the pure CFD approach is pursued in the time domain, the hybrid methods typically

take advantage of a transformation into the frequency domain, where the perturbed flow

field can be evaluated with a single computational step for each frequency, which makes

them well suited to compute a scattering matrix.

The aim of the present study is to investigate the impact of different linearized com-

pressible governing equations within the hybrid approach on the scattering matrix of two

swirlers. Special attention is put to the quantification of viscous effects, acoustic-vortex

interaction and the augmentation of acoustic wave propagation by mean-flow velocities.

To this end, the scattering matrices of an axial and a radial swirler are computed with

the linearized Navier–Stokes equations (LNSE), linearized Euler equations (LEE) and the

Helmholtz equation (HHE). A discontinuous Galerkin finite element method (DG-FEM,29,30

derived for LNSE in Ref. 31) is applied to solve the LNSE and LEE, while a continuous

approach is pursued for the HHE. The perturbation energy norm defined by Myers32 is
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employed to investigate loss mechanisms specific to both swirler configurations. By com-

paring the scattering matrices for the different governing equations, the dominant physical

effects will be identified and the required level of modeling detail can be deduced.

To quantify the impact of the acoustic scattering and dissipation by the axial swirler

on thermoacoustic stability, the scattering matrix is implemented into a 1D thermoacoustic

network model.33 A linear stability analysis is conducted with scattering matrices obtained

from the different governing equations.

Section 2 introduces the different linearized compressible flow equations employed in this

study. The numerical method for computation of the scattering matrices based on FEM is

presented in Sec. 3. A validation case for a radial swirler is conducted in Sec. 4. In the same

manner, the acoustic scattering behavior is deduced for an axial swirl generator and the

computed matrices are utilized in linear thermoacoustic stability analysis in Sec. 5, which

is followed by a conclusion, Sec. 6.

2. Linear Acoustics

In the mathematical modeling of aeroacoustic problems, the phenomena governing the prop-

agation of acoustic waves are often assumed to be linear and the influence of small pertur-

bations on the mean-flow field is neglected. This means, that the mean-flow can influence

the perturbations, but not vice versa. Applying these simplifications, linear time-invariant

models that facilitate fast numerical computations can be derived. These models are then

restricted to linear phenomena, like the onset of instabilities, and cannot represent the

nonlinear interactions which dominate the flow-field when developed instabilities with high

amplitudes are present.

2.1. Linearized compressible flow equations

Under the assumption of small perturbations, the Navier–Stokes equations can be linearized

around a mean-flow state. Therefore, the field variables for pressure p, velocity u and density

ρ are separated into a steady-state mean flow part (denoted by ·̄ ) and time-dependent,

fluctuating quantities (denoted by ·′).
The linearized Navier–Stokes equations (LNSE) in conservative form, which are

employed in this study, read (without source terms):

∂ρ′

∂t
+

∂

∂xj
(ūjρ

′ + ρ̄u′
j) = 0, (1)

∂

∂t
(ūiρ

′ + ρ̄u′
i) +

∂

∂xj
(ρ̄ūiu

′
j + ρ̄ūju

′
i + ūiūjρ

′ − τ ′
ij) +

∂p′

∂xi
= 0, (2)

∂

∂t
((ρE)′) +

∂

∂xj
(ūj(ρE)′ + (ρE)u′

j) − ∂

∂xj

(
k̄
∂T ′

∂xj

)

+
∂

∂xj
(ūjp

′ + p̄u′
j) − ∂

∂xj
(τ̄iju

′
i + ūiτ

′
ij) = 0, (3)
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with the expressions for the internal energy,

(ρE) =
p̄

γ̄ − 1
+

ρ̄ūiūi

2
, (ρE)′ =

p′

γ̄ − 1
+

ūiūiρ
′

2
+ ρ̄ūiu

′
i, (4)

and the viscous stress tensor,

τ̄ij = µ̄

(
∂ūi

∂xj
+

∂ūj

∂xi
− 2

3

∂ūk

∂xk
δij

)
, τ ′

ij = µ̄

(
∂u′

i

∂xj
+

∂u′
j

∂xi
− 2

3

∂u′
k

∂xk
δij

)
, (5)

using the dynamic viscosity µ̄ of the mean-flow and the Kronecker–Delta δij . The fluctuating

temperature is calculated via the linearized ideal gas law,

T ′ = T̄

(
p′

p̄
− ρ′

ρ̄

)
. (6)

Note that the LNSE are the most general form of linearized compressible flow equations,

because the least assumptions and simplifications are made. The LNSE are therefore able

to capture the damping effects of acoustic and thermal boundary layers34 as well as eddy

generation and dissipation. The latter is important for acoustic characterization, because

vortical structures can act as a secondary source of sound when interacting with solid

surfaces.

Neglecting viscous effects and thermal conduction, i.e. µ̄ = 0 and k̄ = 0, the linearized

Euler equations (LEE) are obtained from the LNSE. This assumption is often employed

in aeroacoustics because for most applications, the influence of viscous damping and heat

conduction on the perturbation field is minor.

Assuming isentropic behavior, i.e. p′ = c̄2ρ′, with the speed of sound c̄, and neglecting

mean-flow velocities, i.e. ū = 0, the LEE can further be reduced to the scalar wave equation,

1

ρ̄c̄2
∂2p′

∂t2
− ∂

∂xj

(
1

ρ̄

∂p′

∂xj

)
= 0. (7)

After Fourier transformation, the wave equation is also known as Helmholtz equation

(HHE). Extending the HHE to the convected Helmholtz equation, the correct propagation

speed of the acoustic waves, which is the speed of sound augmented by the local mean-flow

velocities, can be accounted for. The LNSE/LEE formulations inherently represent this

behavior. In the scope of this work, the standard HHE without accounting for mean-flow

velocities has been employed.

While the LNSE and the LEE support the propagation of acoustic, vortical and entropy

waves, the HHE can only describe the irrotational acoustic part of the field. Therefore,

all dissipation mechanisms for perturbation energy within the computational domain are

omitted.

2.2. Perturbation energy

The quantification of different physical effects, which generate or dissipate perturbation

energy, can be a helpful procedure to understand the dominant mechanics that influence

1850027-4

J.
 T

he
or

. C
om

p.
 A

co
ut

. 2
01

9.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
E

C
H

N
IC

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

M
U

N
IC

H
 o

n 
04

/0
1/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

80



October 1, 2019 19:30 WSPC/S2591-7285 130-JTCA 1850027

Acoustic Scattering Matrices from Linearized Compressible Flow Equations

the acoustic characteristics of a system. This methodology has already been applied, e.g. for

a transonic nozzle flow.35 The conservation of energy contained in first-order perturbations

of the flow field according to Myers32 reads (for a domain Ω bounded by Γ with the normal

vector n):
∫

Ω

∂E′

∂t
dΩ+

∫

Γ
W ′

inidΓ =

∫

Ω
D′dΩ. (8)

Here, E′ is the perturbation energy, W ′
i is the flux in the ith coordinate direction and

D′ is the source term. Neglecting fluctuations in entropy, unsteady heat-release as well as

thermal diffusion, the perturbation energy is defined as

E′ =
p′2

2ρ̄c̄2
+

1

2
ρ̄u′

ju
′
j + ρ′ūju

′
j , (9)

the flux is

W ′
i = ṁ′

i

(
p′

ρ̄
+ ūju

′
j

)
− ṁ′

i

(
τij
ρ

)′
(10)

and the source term is

D′ = ρ̄ū · (Ω′ × u′) + ρ′u′ · (Ω̄ × ū)︸ ︷︷ ︸
D′

Ω

−
(

τij
ρ

)′ ∂ṁ′
i

∂xi
+ ṁ′

i

(
τij
ρ2

∂ρ

∂xi

)′

︸ ︷︷ ︸
D′

τ

, (11)

where Ω = ∇ × u is the vorticity. The first term on the right-hand side of Eq. (11) is

the source term due to vorticity perturbations, while the second term is the interaction of

perturbations with vorticity of the mean-flow. The other terms are sinks due to viscous

dissipation, both in the perturbed field and by interaction of perturbations with mean-

flow shear- and boundary-layers. The evaluation of these terms allows the quantification of

different loss mechanisms for a configuration, giving insight into the validity of assumptions

for the perturbed flow, like inviscid or irrotational flow.

Although present in the LNSE, the source terms due to thermal diffusion and entropy

waves have been neglected because these effects are orders of magnitude smaller than viscous

and vortical losses for the cases investigated in this study.

2.3. Scattering matrices for plane acoustic waves

In the frequency band below the cut-on frequency of a configuration, where plane acoustic

waves are dominant, an acoustic element can be characterized with a frequency dependent

scattering matrix S(ω),
(

fd

gu

)
=

[
Tud Rdd

Ruu Tdu

]

︸ ︷︷ ︸
S(ω)

(
fu

gd

)
. (12)
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Here, the plane acoustic waves f propagating downstream and g propagating upstream

parallel to the x1 axis are defined as

f =
1

2

(
p′

ρ̄c̄
+ u′

1

)
, g =

1

2

(
p′

ρ̄c̄
− u′

1

)
. (13)

The coefficients of S govern the transmission and reflection behavior for upstream (Tud

and Ruu) and downstream (Tdu and Rdd) plane wave forcing via complex-valued coeffi-

cients. These coefficients also include the losses present in the system, e.g. due to acoustic-

hydrodynamic interactions. This representation is not only useful to get physical insight,

but also for implementation in low-order models, which are based on a plane wave descrip-

tion of a whole system.33,36 An application to a thermoacoustic network model is discussed

in Sec. 5.3.1.

3. Numerical Method

The hybrid approach employed in this study to obtain scattering matrices is based on

a time-averaged mean-field from Large-Eddy-Simulations and subsequent solving of the

compressible flow equations presented in Sec. 2, linearized around this pseudo steady-state.

The numerical scheme employed for the LNSE and LEE is the discontinuous Galerkin

finite element method (DG-FEM) described in Ref. 31. In conjunction with the local Lax-

Friedrichs flux, a stable scheme for the convective terms is obtained, even for the nonviscous

LEE. Numerous studies have shown high accuracy for DG-FEM applied to aero-acoustics,

e.g. Refs. 29, 37–39. In the absence of convective terms, i.e. for the HHE, a standard FEM

approach with continuous test- and ansatz-functions is used.

A Fourier transformation of the linearized equations is employed which allows for direct

evaluation of the matrix coefficients in the frequency domain, significantly reducing the

computational effort. Applying a two-source-location method,23 i.e. acoustic plane wave

forcing at the upstream and downstream end of the computational domain, the scattering

matrix can be obtained from two computations at each frequency. This is done by retrieving

the plane wave amplitudes exiting the domain, which are caused by the forced wave. The

ratio of the outgoing and the forced wave amplitudes yields the scattering matrix coeffi-

cients. Compared to a time-domain simulation, this is very efficient because it requires only

two matrix inversions per computed frequency. As a downside, the evaluated transmission

and reflection coefficients are only valid for acoustic waves without growth rate. For small

growth or damping rates however, the scattering behavior can be extrapolated in the com-

plex plane, see Ref. 40. This is done by fitting a continuous function to the transfer behavior

computed at single frequencies. The derivatives of the resulting holomorph transfer func-

tion in the direction of the imaginary and the real axes are then inherently coupled via

the Cauchy–Riemann equations. This allows the extrapolation of the transfer function to

complex frequencies away from the imaginary axis, i.e. for inputs with nonzero growth-rate.

Linear stability of a system is often assessed by the computation of the eigenvalues. By

employing the Laplace transformation and assuming harmonic oscillating time dependence,
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the system variables Φ′ (e.g. pressure and velocity perturbations) can be written as

L{Φ′(x, t)} = Φ̂(x, s)est (14)

with the Laplace variable

s = sr + isim. (15)

While the imaginary part sim of an eigenvalue denotes the oscillation frequency, the real

part sr corresponds to the growth-rate. Thus, a positive real part means that the mode

is unstable. This stability analysis will be performed for the perturbed field of the radial

swirler, Sec. 4, to expand on the scattering behavior as well as for a thermoacoustic model

of the whole combustion test-rig housing the axial swirler, Sec. 5.

4. Validation Case: Scattering Matrix for a Radial Swirler

Swirl generators are an essential part of turbulent swirl combustors. The induced swirling

flow motion upstream of the turbulent flame avoids blow-off of the flame and allows thus a

controlled combustion process. However, the complex geometry and flow through swirlers

also influence the scattering of acoustic waves in a nontrivial way.

This study of the swirler is conducted with two objectives: First, to gain an understand-

ing of the (aero-)acoustic phenomena present in the swirler, which lead to the acoustic scat-

tering behavior. To this end, different linearized compressible flow equations are employed in

a comparative study. Second, to derive a low order model, represented as scattering matrix,

which can describe the transmission and reflection of plane acoustic waves at the swirler.

This model may then be employed in 1D thermoacoustic stability analysis to increase the

accuracy with which instabilities can be predicted.

Acoustic waves are partially reflected at the cross-section changes within a swirler. How-

ever, accounting for this effect only yields only a crude estimate of the overall scattering

behavior as it neglects complex parts of the geometry and the mean-flow interaction.

When a longitudinal acoustic wave propagates through a swirler, the local swirl number

is mainly modulated by two mechanisms: the acoustic wave perturbs the axial flow veloc-

ity and generates fluctuations in tangential velocity due to interactions with the boundaries

and the mean-flow.11,41–43 The tangential perturbations are convected by the mean-flow and

therefore propagate slower than the acoustic wave. The spatial separation of these pertur-

bations becomes more evident for increased distances between the swirler and the observer.

The scattering matrix, which — in this study — is limited to describe plane acoustic

waves, does not directly represent the convected tangential velocity fluctuations. The energy

transfer from the acoustics to the convected wave at the swirler however influences the

gain.

The tangential mean-velocity component leads to a rotation in the acoustic wave prop-

agation. Due to the low circumferential Mach number and the short distance between the

swirler and the outlet of the computational domain however, this effect is negligible for

the two swirlers investigated in this study. In fact, due to the circumferential averaging of
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the acoustic wave leaving the domain at the in- and outlet, the rotation of the acoustic wave

is not represented in the scattering matrix.

The isolated computation of a swirler scattering matrix and the subsequent use in a 1D

thermoacoustic network model limits the interaction between the swirler and the rest of the

modeled thermoacoustic system to plane acoustic waves. In particular, the interaction of

hydrodynamic perturbations generated by acoustic forcing in the swirler with downstream

components cannot be represented by this model. The model neglects, for example, that

swirl perturbations might be convected to the combustion chamber and influence the ther-

moacoustic oscillations due to interaction with the edges at cross-section changes. The direct

influence on the flame in terms of heat-release perturbation is however accounted for in the

flame transfer function.

Before deducing the scattering matrix for an axial swirler and investigating its impact

on the thermoacoustic stability of the combustor, see Sec. 5, the numerical methods applied

are validated for a radial swirler geometry, see Fig. 1.

The radial swirl generator bypasses the flow through off-centered swirler vanes yielding

a swirling flow motion. For this swirler design validation data from a compressible LES

is available. Consequently, the scattering matrices deduced from the linearized equations

are compared against the results from the compressible LES. The compressible LES can

be seen as a validation tool, as it directly resolves the transient, nonlinear acoustic-flow

interactions within the swirler geometry. This validation highlights the potential of the

linearized equations for the acoustic characterization of complex geometries and puts any

subsequent investigations on a solid basis.

The radial swirler investigated is part of a turbulent swirl combustor test-rig, see Fig. 1,

located at the EM2C, Paris.44 Upstream of the swirler, the cross-section area of the round

duct section has a diameter D = 0.022m, the inlet velocity here is uin = 5.4m/sec. The

combustor is operated with a perfectly premixed methane/air mixture with an equivalence

x

y
z

Plenum

Radial swirler

Combustion
Chamber

z
y

x

fd
gd

fu
gu

downstream

upstream walls

(a) (b)

Fig. 1. Model of the turbulent combustion test-rig (a) and radial swirler (b). The sector with opening angle
ϑ = 60◦ illustrates the reduced computational domain with periodic boundary conditions on the joint faces.
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ratio of φ = 0.82. In the test-rig the swirler is located upstream of the combustion zone and

the mixture is not preheated such that the temperature within the swirler flow is constantly

equal to an ambient temperature of T = 293K. This results in a density of ρ = 1.204 kg/m3

and a sound speed of c = 343m/sec.

4.1. LES

The main idea of an LES is to directly resolve the larger turbulent structures and to model

the small scaled turbulent motions. Whereas the larger turbulent structures often depend

on the geometry of the configuration studied, the small-scaled turbulence is more universal

and can be modeled. The LES numerically solves the fully compressible Navier–Stokes

equations which means that the hydrodynamics as well as the acoustics are fully described

within the LES.

The compressible LES is performed with AVBP45 developed by CERFACS & IFPEN.

Within the swirler geometry, the fully compressible Navier–Stokes equations are solved on

an unstructured grid46,47 by using the Lax–Wendroff scheme that is second-order accurate

in time and space. Consisting of approximately 2million tetrahedral cells, the unstructured

grid has a maximum cell edge length of 0.7mm and is refined toward the wall. Subgrid

stresses are modeled by the WALE model.48 Isothermal no-slip conditions with a tem-

perature of T = 293K are applied for all swirler walls. Nonreflective acoustic boundary

conditions are prescribed at the in- and outlet of the computational LES domain by making

use of the Plane-Wave-Masking technique.49

In order to deduce from LES values of the acoustic scattering matrix at discrete fre-

quencies, acoustic forcing in form of a sine-sweep signal is induced at the inlet and the

outlet of the LES domain. The sine sweep signal consists of seven mono frequent parts

f = [200, 400, 600, 800, 1000, 1200, 1400Hz] that are concatenated. Every mono frequent

part consists of eight periods. By imposing at the inlet of the LES an acoustic wave, gain

and phase values of the transmission coefficient from upstream to downstream Tud and the

upstream reflection coefficient Ruu can be computed. This is done by measuring the result-

ing acoustic signals fd and gu and relating the amplitude and the phase of the signals to the

forcing signal fu. The remaining two scattering matrix coefficients may be deduced analo-

gously by acoustically forcing the system from downstream, via gd. Note that this simple

approach only works with nonreflecting boundary conditions.

4.2. Linearized compressible flow

In this section, the acoustic scattering matrix for the radial swirler is derived from linearized

compressible flow equations with DG-FEM. Therefore, the transmission and reflection coef-

ficients are obtained by solving the governing equations in the frequency-domain with a

two-source method explained previously in Sec. 2.3.

The investigated radial swirler exhibits a geometry, which allows to be divided into

six identical ϑ = 60◦ sectors due to cyclic symmetry, see Fig. 2. Assuming periodicity of

mean and fluctuating fields leads to a significant reduction in computational cost. The mean
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(a) Axial mean velocity (b) Radial mean velocity (c) Azimuthal mean velocity

Fig. 2. Mean velocity fields in m/sec, obtained by time-averaging the transient velocity fields from LES.

fields are obtained by time-averaging the transient fields from the LES used to obtain the

reference scattering matrix. The axial, radial and azimuthal mean velocities are shown in

Fig. 2.

Inviscid and viscid linearized compressible flow equations, namely HHE, LEE and LNSE,

are employed. Boundary conditions for walls in the (aero-)acoustic computations are pre-

scribed as adiabatic slip (niu
′
i = 0) or no-slip (u′ = 0) walls. The no-slip boundary condition

is forcing velocity fluctuations to vanish at walls, which leads to the development of acoustic

boundary layers, governed by viscous effects.34 Therefore, in the (aero-)acoustic computa-

tions, no-slip boundary conditions are only employed for the LNSE. On the upstream and

downstream boundaries, the plane acoustic waves fu and gd are prescribed. Incoming vor-

ticity and entropy waves are set to zero at the inlet. No boundary conditions for these

convective waves are given at the outlet, which allows for propagation out of the domain

without interference with the acoustic field.

For the subsequent computation of LEE and LNSE with DG-FEM, three different meshes

are employed, see Table 1. The fine mesh for the periodic geometry is also shown in Fig. 1.

The shortest acoustic wavelength at 1400Hz is 0.245m, i.e. even the coarse mesh resolves

this wave with more than 120 elements, guaranteeing mesh independence for the acoustics.

The hydrodynamic boundary layer of the mean-flow has an average thickness of 5mm.

The fine mesh fully resolves this boundary layer and therefore captures its influence on the

acoustics.50,51 The unsteady boundary layer δu =
√

2ν/ω forming on no-slip walls becomes

very thin for increasing frequencies ω.52 Due to the high computational cost associated with

Table 1. Mesh statistics of the radial swirler. Degrees of
freedom (DOFs) are for LNSE/LEE.

Mesh No. of Elements No. of DOFs ∆hmax

Coarse Mesh 2 · 104 5 · 105 2.0mm

Medium Mesh 5 · 104 1 · 106 1.3mm

Fine Mesh 1 · 105 2 · 106 1.0mm
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mesh refinement in a discontinuous Galerkin method in 3D, the unsteady boundary layers

were not resolved.

4.3. Scattering matrix of the radial swirler

The acoustic scattering matrices for the radial swirler deduced from LES, linearized com-

pressible flow equations with DG-FEM and HHE with continuous FEM, respectively, are

shown in Fig. 3.

The scattering behavior of the radial swirler is expected to be largely determined by

reflection and transmission at the cross-sectional changes along the swirler. The gain in

transmission for upstream excitation yields larger amplitudes than for downstream exci-

tation, especially for HHE, where the magnitude exceeds one for low frequencies. This

behavior is expected, because the area ratio between the inlet and outlet is larger than one

and continuity equation constrains the mass turnover.

The transmission and reflection coefficients derived from LEE and LNSE yield convincing

qualitative agreement compared to LES. The HHE can predict qualitatively the trend of

the scattering coefficients. However, qualitative errors of up to 25% arise compared to the

LES results. For all coefficients and frequencies, the HHE produces higher transmission

and lower reflection coefficients than LEE, LNSE and LES — only the reflection coefficient

Rdd for downstream forcing shows different behavior. The reflection of an acoustic wave

gd coming from the downstream end of the domain is strongly influenced by the vortices

formed at the outlets of the off-centered swirler vanes. These vortices generate sound while

being convected by the swirled mean-flow,53 which partially contributes to the acoustic

wave fd leaving the domain at the outlet. The propagation of acoustic waves through the

sheared mean-flow also generates losses of perturbation energy,54 which explain the overall

significantly lower reflection coefficient obtained by the governing equations which account

for these phenomena (LES, LEE and LNSE) compared to the HHE. Figure 4 clearly shows

that the dominant loss term for the radial swirler is D′
Ω, which includes the formation

and dissipation of vortical perturbations as well as the interaction of acoustic waves with

vorticity in the mean-flow. The viscous losses D′
τ , which occur in the LNSE computations,

are of minor importance.

The augmentation of the characteristic speed of acoustic waves through convection by the

mean flow is negligible for this configuration, which shows in the fact that the phase diagrams

for the scattering coefficients are almost identical for all governing equations. The only

noticeable deviation of the HHE results is in the frequency range of 200Hz to 600Hz in the

downstream reflection coefficient. As already discussed above, vortices strongly contribute

to this mechanism, which are not described by the HHE.

For an increased mesh resolution, the scattering matrix deduced by the LEE starts to

deviate from the coefficients computed with the LES, especially in the low-frequency range.

Figure 4 shows vastly increased vortex perturbations, two orders of magnitude higher com-

pared to the LNSE simulations. In order to further examine this behavior, the linearized

compressible flow equations are solved for their complex eigenmodes. The eigenvalues closest

to the stability limit for LEE and LNSE on the mid-sized mesh are shown in Fig. 5(a). Two
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Fig. 3. Acoustic scattering matrix for the radial swirler, which was obtained by solving the linearized com-
pressible flow by LES ( ), HHE ( ), LEE on the coarse ( ) and mid-sized ( ) mesh , and LNSE
on the coarse ( ), mid-sized ( ) and fine ( ) mesh.
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Fig. 4. Acoustic energy dissipation for the radial swirler, integrated over the whole computational domain and
one period of the forcing frequency. Dissipation due to vorticity D′

Ω deduced by LEE ( ) and LNSE ( )
and viscous diffusion D′

τ for LNSE ( ).
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Fig. 5. Eigenvalue spectrum (a) and eigenmode (b) for the radial swirler on the mid-size mesh, both for LEE
and LNSE. (a) Eigenvalue spectrum for the radial swirler around the region of interest, both for LEE ( )
and LNSE ( ) and (b) eigenmode in the magnitude of the radial velocity fluctuation |u′r | for LNSE (left half
plane) and LEE (right half plane).
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unstable eigenmodes are discovered for LEE at 502.8 Hz and 624.5 Hz, which spoil the scat-

tering matrix at frequencies close to the eigenfrequencies. On the contrary, all eigenmodes

for LNSE are stable for the chosen mesh in the investigated frequency spectrum. Figure 5(b)

shows eigenmodes in terms of the absolute radial velocity field in a plane, perpendicular

to the x-axis and cutting through the off-centered swirler vanes, again both for LEE and

LNSE. For LEE the unstable eigenmode at 624.5 Hz is shown, whereas for LNSE a sta-

ble eigenmode at 607.4 Hz is depicted. Here, the unstable eigenmodes are not damped by

viscous effects or no-slip boundary conditions in the vicinity of solid surfaces and lead to

unphysical solutions. The high vorticity present in the unstable LEE eigenmodes leads to

sound emission, which is predominantly leaving the domain at the downstream end. This

explains the surplus gain of the coefficients Tud and Rdd computed with the LEE on the

medium mesh. Results of the LEE computations on the fine mesh suffer even stronger from

this instability and are therefore not shown. The coarse mesh does not show these problems,

because the vortices in this region are not resolved well, which suppresses the instability.

A similar observation was made by Kierkegaard et al. for the whistling potentiality of

an orifice, where the employment of slip boundary conditions at the orifice yielded “an

excessive amount of vorticity”.8

Carnevale et al. state, that in the nonlinear, inviscid case, a vortex dipole impinging on

a slip wall leads to a separation of the vortices, which will then slip along the wall without

decaying.55 In the linearized case, i.e. the LEE, a vortex propagates with the mean-flow

only, which is not augmented by induced velocity of other vortices. Therefore, the vortex

trajectory differs from the nonlinear case, but it may still be assumed that no major decay

mechanism for vortical perturbations is present at a slip wall. For no-slip walls in the

nonlinear case however, vorticity with opposing rotation is generated in the boundary layer,

when a vortex dipole approaches the wall.55 This behavior needs to be present in the

linear LNSE computations as well, because it is required to fulfill the no-slip boundary

condition.

The results of the computations for the radial swirler suggest that no-slip boundary

conditions are required for the correct interaction between vortices and solid surfaces in

linearized compressible flow computations. This also leads to a higher degree of consistency

between the perturbed and the mean-flow field from LES, which was also computed with

no-slip boundary conditions at the walls. If slip walls are enforced in the aeroacoustic com-

putations, unphysical instabilities can develop in regions where strong interaction between

vortices and surfaces occurs. When the LEE are employed in a thermoacoustic model of the

full combustor, these unphysical vortical perturbations and the associated sound radiation

may lead to erroneous growth-rate calculations.

5. Application Case: Axial Swirler

The scattering behavior of an axial swirler, placed in the combustion test-rig shown in Fig. 6,

is investigated in the same manner as the radial swirler of the validation case. The annular

duct housing the swirler has an inner diameter of Di = 0.016m and an outer diameter of
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Fig. 6. Model of combustion test-rig (a) and the axial swirler (b). The sector with opening angle ϑ = 45◦

illustrates the reduced computational domain with periodic boundary conditions on the joint faces. (a)
Annular duct and combustion chamber of the turbulent combustion test-rig. Upstream plenum not shown
and (b) Axial swirler.
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Fig. 7. Mean velocity fields in m/sec, obtained by time-averaging the transient velocity fields from LES.

Do = 0.04m. The axial mean-flow velocity at the swirler inlet amounts to uin = 11.3m/sec,

the temperature is almost constant at T = 293K throughout the swirler domain. The

spatially resolved mean-flow field is shown in Fig. 7.

5.1. Numerical setup

The mean-flow fields for the axial swirler were obtained from a time-averaged LES of the

whole combustor, similar to Sec. 4.1. The 45◦ periodicity of the geometry and the flow is

exploited with periodic boundary conditions. The mesh is chosen analogously to the fine

mesh of the radial swirler, with a maximum cell length of ∆h = 1mm, which amounts to

1 ·105 elements and 2 ·106 degrees of freedom, see Fig. 6. The boundary conditions as well as
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the two-source method to obtain the scattering matrix are equivalent to the radial swirler

case.

5.2. Scattering matrix of the axial swirler

Magnitude and phase of the obtained plane wave scattering matrix for the axial swirler are

shown in Fig. 8. Consistently throughout all the coefficients and frequencies, the HHE pro-

duces higher transmission and lower reflection than the LEE and LNSE. The LNSE show

lower transmission and higher reflection. The reason for this are the unsteady boundary

layers, that constrict the flow cross-section between the blades and are not represented by

LEE and HHE. The effect is similar to an increased area jump when the acoustic wave prop-

agates through the blades of the swirler. This results in increased reflection and reduced

transmission of acoustic waves.52,56,57 For very high frequencies, the unsteady boundary

layer becomes thinner.34,52 As already stated in Sec. 4.2, the mesh used could not resolve the

unsteady boundary layers, especially at higher frequencies. Therefore, the unsteady bound-

ary layer thickness is overestimated, which over predicts the effect of the flow constriction.

In the frequency range of the thermoacoustic unstable mode around 100Hz however, which

will be shown in Sec. 5.3, the scattering matrix showed only minor changes when the grid

was refined near the no-slip walls. Under this premise, the scattering coefficients of LNSE

and LEE, which over predict and neglect unsteady boundary layers respectively, can be

seen as upper and lower boundaries for the prediction of transmission and reflection of

plane acoustic waves at the swirler.

Compared to the phase of a 1D duct, computed with convected HHE, all the governing

equations yield larger phase lags for the transmission. This can partly be accounted to the

longer path for the acoustic waves through the swirler geometry (HHE) and the inertia

resulting from contractional acceleration. For the LEE and LNSE, the augmentation of the

acoustic propagation speed by the locally resolved mean-flow velocity yields a smaller phase

lag for Tud with the flow and an increased phase lag for Tdu against the flow compared to

the HHE.

In contrast to the radial swirler, where vortical losses were dominant, the dissipation

mechanisms in the axial swirler, Fig. 9, show that viscous and vortical dissipation are in the

same order of magnitude. This is in agreement with the different reflection and transmission

coefficients for LEE and LNSE, which also results from viscous boundary layer effects. It is

also apparent, that in the low frequency band below 200Hz, vortical losses are overestimated

by the LEE compared to the LNSE, which also leads to high viscous dissipation of the

vortices. Above this frequency band, the viscous losses are rather independent of the forcing

frequency and are higher for the LNSE.

Figure 10 shows the absolute value of the perturbed axial velocity field in a plane directly

after the blades normal to the x1-axis. It is clearly visible at 100Hz (a)–(c), that high non-

physical perturbation magnitudes at the outer bearing of the swirler occur, when LEE with

slip walls are employed. This relates to the strong vortical effects in the low frequency band,

Fig. 9. Opposed to this, boundary layers form for the LNSE computation. Due to the neglect

of the swirl in the mean-flow field, the HHE solution is turned slightly clockwise compared
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Fig. 8. Acoustic scattering matrix for the axial swirler, which was obtained by solving HHE ( ),
LEE ( ) and LNSE ( ). The transmission behavior of a duct ( ) is shown for comparison.
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Fig. 9. Acoustic energy dissipation for the axial swirler, integrated over the whole computational domain and
one period of the forcing frequency. Dissipation due to vorticity D′

Ω deduced by LEE ( ) and LNSE ( )
and viscous diffusion D′

τ for LNSE ( ).

to the LEE and LNSE solution. At 1000Hz (d)–(f), the velocity fields look very similar for

both LEE and LNSE, implying that the no-slip walls have major influence only in the low

frequency range.

5.3. Linear thermoacoustic stability analysis

The linear thermoacoustic stability of a 1D network model of the combustor test-rig includ-

ing the axial swirler is assessed by computing the eigenvalues. In this model, the scattering

(a) LNSE, 100Hz (b) LEE, 100Hz (c) HHE, 100Hz

Fig. 10. Magnitude of the axial velocity fluctuations |u′1| for harmonic upstream forcing with 100Hz (a)–(c)
and 1000Hz (d)–(e) at the blade ends. Normalized by the maximum amplitudes across the different governing
equations for each frequency, max(|u′1|)(100Hz) = 3.03m/sec, max(|u′1|)(1000 Hz) = 3.86m/sec.
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(d) LNSE, 1000Hz (e) LEE, 1000Hz (f) HHE, 1000Hz

Fig. 10. (Continued)

matrix of the swirler obtained with the different governing equations is included to quantify

the sensitivity of growth-rates of the thermoacoustic eigenmodes to the swirler model.

5.3.1. Thermoacoustic network models

Thermoacoustic models for linear stability analysis exist in a wide range from

(semi-)analytical approaches (e.g. Refs. 58 and 59), to hybrid methods based on

LNSE/LEE/HHE (e.g. Refs. 31, 60–63), which are applicable to complex geometries and

model different degrees of acoustic-flow-flame interaction. Thermoacoustic network models

(e.g. Refs. 33 and 64) are applicable if plane, 1D acoustic waves are a sufficient represen-

tation within the frequency range of interest, i.e. below cut-on frequencies of transversal

modes. Due to the reduction in dimensionality, the computation of all eigenmodes of a

network model takes only seconds.

Network models rely on a decomposition and abstraction of the combustion system into

simple 1D two-port and one-port elements, for which analytical solutions of the convected

HHE for propagation, transmission and reflection of the acoustic waves are known. Exam-

ples are ducts with constant cross-section, acoustically compact area jumps and reflecting

terminations. The latter is characterized by a complex-valued reflection coefficient, R, that

relates the plane wave entering the domain to the outgoing wave. This would read

Ru =
fu
gu

and Rd =
gd
fd

(16)

for an upstream and downstream termination, respectively. The reflective behavior of the

terminations is of great importance for system stability, as they can contribute major loss

mechanisms of perturbation energy due to flux over the system boundaries.

In order to account for the acoustic-flow-flame interaction, which cannot be resolved in

a 1D model, a so-called Flame Transfer Function (FTF, see e.g. Ref. 65) is often employed.

For velocity sensitive flames — as they are found in gas turbines — an appropriate ansatz

for the FTF is to relate the heat-release fluctuations Q̇′ to axial velocity perturbations u′
ref
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at a reference position upstream of the flame. By use of the linearized Rankine–Hugoniot

jump conditions,66 the unsteady heat-release is converted to acoustic plane waves, which

are fed back into the acoustic part of the network model at the flame position. In this study,

the open-source thermoacoustic network tool taX33,a is used for linear stability analysis.

5.3.2. Network model of the axial swirler test-rig

A thermoacoustic network model (Table 2) proposed in Ref. 68 and extended by a perforated

plate model for the outlet in Ref. 31 is utilized to investigate the linear stability of the

turbulent swirl burner featuring the axial swirler (see Fig. 11). It consists of duct elements

of constant cross-section for the plenum and the combustion chamber, which are connected

via area jumps to the annular duct housing the swirler. The parts of the annular duct up-

and downstream of the swirler are also modeled with duct elements (D1 and D2). Note

that in the original work of Emmert et al.,68 the swirler is replaced by a lossless duct, i.e.

the reflections and dissipation are neglected. The inlet of the plenum is a fully reflecting

sound-hard wall, i.e. u′ = 0, Ru = 1, while the downstream termination of the combustion

Plenum
Swirler element Chamber

FTF
u′
ref Q̇′

P CD1 D2

Ru

Rd

Fig. 11. (Color online) Thermoacoustic network model of the test-rig containing the axial swirler including
markers for the reference (green) and flame position (red). Representation not to scale.

Table 2. Parameters for the thermoacoustic network model.68

Parameter Variable Value

Plenum length lP 0.17m

Plenum cross-section area AP 0.0314m2

Duct lenght of D1 lD1 0.098m
Swirler element length lS 0.045m
Duct lenght of D2 lD2 0.025m

Duct cross-section area AD 0.0011m2

Chamber length lC 0.7m

Chamber cross-section area AC 0.0081m2

Upsteam reflection coefficient Ru 1
Downstream reflection coefficient Rd see Fig. 12(b)
Ratio of speed of sound across flame c̄d/c̄u 2.405
Upstream speed of sound c̄u 343.14m/sec
Upstream Mach number Mu = ūu

c̄u
0.0011

aThe code for the software package taX can be found at http://gitlab.lrz.de/tfd/tax.
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(a) FTF (b) Outlet reflection coefficient

Fig. 12. Gain and phase of the FTF (a) and the reflection coefficient of the perforated plate model65,67 (b).

chamber, a perforated plate, shows frequency dependent reflection behavior, see Fig. 12(b).

In the frequency band of interest between 50Hz and 500Hz, the reflection coefficient is

Rd � −0.4, i.e. the perforated plate behaves like a partly reflecting open end. The frequency

dependent FTF used in this study was identified from LES,65 see Fig. 12(a).

In order to obtain a continuous model of the scattering matrices, which were sampled

at discrete frequencies, a fifth-order polynomial is fitted to the scattering coefficients. This

continuous polynomial is then included in the network model in the position of the swirler

element, see Fig. 11.

The spectrum of the computed eigenvalues is shown in Fig. 13, left. A difference in

oscillation frequency and growth-rate can be seen for the two cases applying the LNSE

swirler scattering matrix versus a lossless duct. Note that the latter option is often employed

due to lack of a better model, when an acoustic characterization of the swirler has not

been conducted. The only unstable mode is at ∼ 100Hz. Investigations have shown that

this mode is not based on reflections of the acoustic waves at the domain terminations

but on a direct intrinsic feedback from the sound generated by the unsteady flame to the

velocity perturbations at the reference position.68,69 Note that the swirler has a major

influence on this mode, because it introduces reflections exactly in this feedback path.

The two modes at 1000Hz, that are close to instability, have high pressure amplitudes

in the annular duct housing the swirler. Again, strong influence of the scattering matrix

especially on the growth-rates can be seen for these modes. The rest of the (already strongly

damped) modes show only minor sensitivity for reflections from the swirler. The right part
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Fig. 13. Left: Eigenvalue spectrum of the model with a duct in the swirler position ( ) and with the LNSE
swirler scattering matrix ( ). Right: Unstable ITA eigenmode for the network model with different swirler

scattering matrices: duct ( ), HHE ( ), LEE ( ) and LNSE ( ). ITA eigenfrequency of the model used

in Ref. 31 with resolved swirler and combustion chamber ( ).

of the plot quantifies the influence of the swirler scattering matrices obtained by different

governing equations on the unstable mode. For the scattering matrix with HHE, the main

influence is the greater phase shift for transmission from downstream to upstream acoustic

waves, Tdu, compared to the duct. Therefore, the feedback mechanism is slower and the

oscillation frequency decreases. If nonnegligible reflections of upstream waves, Ruu, are

present, as it is the case for the LEE and LNSE scattering matrices, the early feedback of

reflected waves back to the reference position introduces a comparatively small time-scale

to the eigenmode and thus the frequency increases. The lower amplitude in the transmission

coefficient Tdu, compared to a duct, contributes to a weaker overall feedback which leads

to a smaller growth-rate of the mode for all swirler models. The difference between the

influence of the scattering matrices (HHE/LEE/LNSE) is significant, especially in terms

of the growth-rate. Therefore, care has to be taken regarding the validity of assumptions

for the flow through the swirler, like neglect of unsteady boundary layers and mean-flow

influence.

The result obtained for the unstable mode from the network model including the swirler

is comparable to a stability analysis conducted in Ref. 31, where a part of the combustion

chamber and the annular duct including the swirler were resolved with LNSE in 3D, see

Fig. 13, right. This shows, that the acoustic behavior of the swirler is a major influence in

linear thermoacoustic stability analysis and is in the same order of magnitude like losses at

area expansions and dissipative acoustic-flow interactions in the combustion zone.

6. Conclusion

Scattering matrices for a radial and an axial swirler have been computed by means of

the Helmholtz, linearized Euler and linearized Navier–Stokes equations, respectively with a

1850027-22

J.
 T

he
or

. C
om

p.
 A

co
ut

. 2
01

9.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
E

C
H

N
IC

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

M
U

N
IC

H
 o

n 
04

/0
1/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

98



October 1, 2019 19:30 WSPC/S2591-7285 130-JTCA 1850027

Acoustic Scattering Matrices from Linearized Compressible Flow Equations

two-source methodology in the frequency domain. The discontinuous Galerkin finite element

discretization was utilized to obtain a stable and accurate numerical scheme. Good agree-

ment to the scattering matrix retrieved with a Large-Eddy-Simulation was found for the

linearized Navier–Stokes equations. The linearized Euler equations showed similar agree-

ment for most frequencies, but featured unstable modes due to the interaction between

vortices and slip walls. For the radial swirler, vortices have been found to be the main

loss mechanism, while the scattering behavior of the axial swirler is governed by viscous

and vortical effects. The Helmholtz equation, which neglects mean-flow acoustic interac-

tion, overestimates the transmission in both cases. A linear 1D thermoacoustic stability

analysis of the combustor test-rig including the axial swirler was conducted. Taking into

account the scattering matrices from different governing equations significantly influences

the growth-rate of the unstable mode of the system, which leads to the conclusion that

reflections coming from the swirler cannot be neglected.
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a b s t r a c t

A hybrid approach for thermoacoustic stability analysis is formulated in a state-space frame-

work. The approach distinguishes between regions of the computational domain with and

without important interactions between acoustics and mean flow or unsteady heat release,

respectively. The former regions are modeled by a discontinuous Galerkin finite element

method (DG-FEM) for the linearized Navier-Stokes equations in conservative form. The latter

are represented by reduced-order models of acoustic wave propagation or dissipation, and

provide complex-valued, frequency dependent impedance boundary conditions for the DG-

FEM domain. The flow-flame coupling is modeled by a flame transfer function that governs a

volumetric source term for the fluctuating heat release rate.

The respective (sub-)models are formulated and interconnected in a state-space framework,

which facilitates the monolithic formulation of hybrid thermoacoustic models. Moreover, the

state-space interconnect framework makes it possible to formulate thermoacoustic stability

analysis as a linear eigenvalue problem – even if flame transfer function or acoustic boundary

conditions depend in a non-trivial manner on frequency.

The approach is first verified against analytical solutions for a duct with mean flow across a

thin heat source, similar to a Rijke tube. Then the thermoacoustic eigenmodes of a premixed,

swirl-stabilized combustor are computed in order to validate the method against experimen-

tal data for a configuration of applied interest. For this second validation case, a detailed com-

parison against predictions of a low-order network-model is also presented.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Thermoacoustic instabilities are a phenomenon that results from interactions between heat release (e.g. by combustion) and

acoustic waves. Many industrial configurations, such as rocket engines or aero-engines as well as stationary gas turbines are

subject to these instabilities. In particular, with the introduction of lean premixed combustion, gas turbines have become very

susceptible to combustion instabilities. Limited operational range, increased emissions and even fatal damage to an engine are

undesirable possible consequences. Due to the high costs and difficulty of measurements in experimental setups, analytical and

numerical investigations are the method of choice to assess thermoacoustic stability. High-fidelity simulation of compressible,

reactive, turbulent flow requires high spatial and temporal resolution [1–3] and demands very significant computational effort.

In this situation, reduced order models (ROM) constitute a useful alternative or complement, in particular for parameter studies.
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ROMs range from low-order network models that make use of analytical solutions for simple elements such as ducts and area

jumps [4–11], to methods for solving linearized 2D/3D compressible flow equations [12–23].

Typically, ROMs for thermoacoustic stability analysis are hybrid methods inasmuch as they do not resolve the flame dynamics.

For example, the intricacies of vortex generation by acoustic waves or perturbations of flame shape and the consequential

modulation of flame heat release rate [24–27] were not explicitly represented in the studies [4–21,28]. Instead, flow-flame

interaction was taken into account by flame transfer functions (FTF) based on analytical models, experimental or simulation

data.

Reliable prediction of thermoacoustic stability requires not only accurate representation of the flow-flame-acoustic inter-

actions that drive thermoacoustic oscillations, but also adequate models for other acoustic-hydrodynamic interactions that

contribute to the balance of perturbation energy. For example, vortex shedding may occur whenever an acoustic wave propa-

gates through a shear layer in the mean flow. In combustors, shear layers are often found between the flame and a recirculation

zone, where they support stable combustion. Viscous dissipation of vorticity then results in an overall reduction of perturbation

energy. On the other hand, secondary sources of sound may emerge when vortical structures collide with a solid surface. Fur-

thermore, non-uniformities of entropy (so-called “hot spots” or “entropy waves”) are typically generated by inhomogeneities in

the fuel/air mixture that occur when the mixing process is disturbed by acoustic waves. When accelerated (e.g. in a downstream

nozzle), these hot spots generate acoustic waves that can contribute to an unstable thermoacoustic system [7,29–32]. A major

challenge for ROMs based on the wave or Helmholtz equation lies in the reproduction of these interactions between acoustic

waves and hydrodynamic phenomena [23]. Fortunately, linear acoustic-hydrodynamic interactions are inherently taken into

account by the linearized Navier-Stokes equations (LNSE) [13–15,18–21]. This set of equations supports vorticity and entropy

waves, which are convected by the mean flow, as well as acoustic waves, which propagate with the speed of sound augmented

by the mean flow velocity [25]. Note that the change of acoustic propagation velocity and the corresponding changes in eigenfre-

quencies are comparatively small for low Mach-numbers, the important mean flow effect is the transfer of perturbation energy

between acoustic, vorticity and entropy waves that results from the interaction between perturbations and mean flow.

To conclude, it is crucial for thermoacoustic stability analysis to account for flow-flame-acoustic interactions that generate

perturbation energy. This can be achieved, for example, with an accurate flame transfer function. Moreover, it is equally impor-

tant that acoustic-hydrodynamic interactions, such as vortex shedding or dissipation, be taken into account in order to properly

balance generation against losses of perturbation energy. Provided that mean flow fields are available—typically generated by

computational fluid dynamics—the LNSE framework represents these interactions from first principles, which motivates the use

of the LNSE as the basis for the modeling approach presented in this study.

The finite element method (FEM) is often employed to discretize the aeroacoustic governing equations in non trivial geome-

tries [13–16,18–21]. Advantages over the finite volume and finite difference methods are the straightforward extensibility to

higher order schemes (pFEM) and the applicability to unstructured meshes. On the other hand, a major challenge lies with

the discretization of the convective terms of the aeroacoustic governing equations, which is numerically unstable if standard,

continuous basis functions are applied [33]. In the last decades, discontinuous Galerkin finite element methods (DG-FEM) have

become popular as a numerical approach to discretize linear and non-linear partial differential equations (e.g. Ref. [34–36]),

especially for convectively dominated problems. For this type of problems the DG method has shown to constitute a framework

in which stable numerical schemes can be derived that feature high accuracy and convergence potential due to hp convergence

[37–41].

In this paper, a DG-FEM method for the compressible LNSE is formulated following the discretization approach of Baumann

and Oden [35] for the non-linear Navier-Stokes equations. We demonstrate by means of comparison with semi-analytical solu-

tions for a simplistic model of a Rijke tube that this discretization leads to highly accurate numerical results—in contrast to a

well established method employing a streamline upwind/Petrov Galerkin ansatz [15]. Other than previous implementations in

thermoacoustics [18–21], we keep the LNSE in conservative form. This eliminates the need for an explicit evaluation of mean

flow gradients on the FEM grid and thereby avoids inconsistencies that might emerge from that procedure.

Eventually, in continuation of previous efforts in our group [10,42,43], the discretized DG-LNSE models are integrated in a

seamless manner into a “state-space interconnect” framework for thermoacoustic stability analysis. Following the established

hybrid approach for thermoacoustic problems, flow-flame interaction is accounted for by an FTF that relates a volumetric source

term, resulting from fluctuating heat release of the flame, to the upstream acoustic velocity at earlier times.

Fundamentally, thermoacoustic systems with a time-delayed heat source represent a nonlinear eigenvalue problem (NLEVP).

The non-linearity emerges from the representation of time delay terms in the Laplace domain, which results in matrix coeffi-

cients that depend on the eigenvalue, even if the governing equations per se are linear. State-of-the-art methods [12,44] employ

fixed-point iterations to compute one eigenvalue at a time. Whether a given eigenvalue is actually found depends on the initial

guess of the iterative solver, on the basin of attraction of the eigenvalue sought, and on the proximity of other eigenvalues,

as highlighted in a recent paper by Buschmann et al. [45]. The number of iterations required for convergence also depends on

these factors. In some circumstances, converging to a given eigenvalue is near impossible unless a priori knowledge of its loca-

tion in the complex plane is available. Fortunately, the state-space approach facilitates a representation of time delays in terms

of an advection equation. At the expense of a moderate increase in the number of degrees of freedom, the time delay can be

discretized with sufficient accuracy for the frequency range of interest. This leads to models that do not explicitly depend on

the frequency, such that a linear eigenvalue problem is obtained. For small to moderate problem sizes, such linear eigenvalue

problems may be solved non-iteratively for multiple eigenfrequencies and without the hazards that come with initial guesses.

Overall, significantly reduced computational effort may result.
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With the state-space interconnect framework, parts of the configuration where acoustic-flow or flow-flame-acoustic inter-

actions are not important may be represented by low order thermoacoustic network models [10,42], which provide complex-

valued, frequency-dependent impedance boundary conditions for the LNSE domain. Again, in contrast to state-of-the-art meth-

ods [12,44], any time delays in the impedance boundary conditions are discretized utilizing an advection equation, which

eliminates the explicit dependence on frequency and results in a linear eigenvalue problem. Further significant reductions in

computational effort and increased flexibility in modeling complex (thermo-)acoustic systems may be realized in this way, as

demonstrated in the second validation case presented in this paper.

In summary, the state-space formulation of a discontinuous Galerkin method (ssDG) introduced and validated in the present

study brings significant improvement in robustness, accuracy, efficiency and flexibility for thermoacoustic stability analysis. The

DG discretization of the LNSE assures robustness and accuracy. The state space interconnect framework makes possible the flex-

ible integration of a variety of sub-models into a monolithic numerical model. The concomitant reformulation of thermoacoustic

stability analysis as a linear eigenvalue problem occasions computational efficiency.

The paper is structured as follows: in the next section, the linearized Navier-Stokes equations in conservative form and

the discretization with DG-FEM are presented. State-space modeling is introduced as a unified framework for thermoacoustic

simulations in section 3, and it is demonstrated how the DG-FEM model is interconnected to impedance and flow-flame inter-

action models. Section 4 is concerned with validation of the DG-LNSE method against analytical solutions for a 1D duct case

with and without unsteady heat release by comparison of eigenvalues. In section 5, the thermoacoustic stability of a turbulent

swirl burner is assessed, employing interconnected state-space models originating from DG-LNSE, network model, FTF and a

frequency dependent impedance boundary condition at the burner outlet. The paper concludes with a summary of the results

and provides limitations as well as an outlook. Details on the vector/matrix notation of the LNSE are presented in an Appendix.

2. Discontinuous Galerkin discretization for the linearized Navier-Stokes equations

The flow perturbations considered in aeroacoustic simulations are often assumed small compared to mean flow quantities.

Based on this assumption, a linearization of the governing equations around a steady-state mean flow can be employed. The

resulting linear system of equations requires significantly less effort to solve than the full non-linear equations. In addition,

various simplifications can be imposed on the linearized equations, e.g. isentropic or non-viscous flow. In the general case,

however, the full Navier-Stokes equations are the basis for the linearization.

2.1. Linearized Navier-Stokes equations

The primitive flow field variables (pressure p, velocity ui in xi direction and Temperature T)

𝚽(xi, t) =
⎛
⎜⎜⎜⎝

p

ui

T

⎞
⎟⎟⎟⎠
, i = 1… 3, (1)

can be separated into a mean flow field 𝚽(xi) that satisfies the steady-state Navier-Stokes equations and unsteady fluctuations

𝚽′(xi, t):

𝚽(xi, t) = 𝚽(xi) +𝚽′(xi, t) (2)

Inserting this ansatz into the Navier-Stokes equations and assuming small perturbations 𝚽′, all except the linear terms in the

fluctuating variables can be omitted. This yields the linearized Navier-Stokes equations (LNSE) in conservative form. Only the

following assumptions have been made: ideal gas, Newtonian fluid and Stokes’ hypothesis for the viscous terms. Viscous heating

in the linearized energy conservation equation is neglected:

𝜕𝜌′
𝜕t

+ 𝜕
𝜕xj

(
uj𝜌′ + 𝜌u′

j

)
= 0, (3)

𝜕
𝜕t

(
ui𝜌′ + 𝜌u′

i

)
+ 𝜕
𝜕xj

(
𝜌uiu

′
j
+ 𝜌uju

′
i
+ uiuj𝜌′

)
+ 𝜕p′

𝜕xi

=
𝜕𝜏 ′

ij

𝜕xj

, (4)

𝜕
𝜕t

(𝜌e)′ + 𝜕
𝜕xj

(
uj(𝜌e)′ + (𝜌e)u′

j
+ ujp

′ + pu′
j

)
= 𝜕

𝜕xj

(
k
𝜕T′

𝜕xj

)
+ q̇′

V
, (5)

with the thermal conductivity k and the volumetric heat release perturbations q̇′
V

. This source term is of prime importance

in thermoacoustics as it constitutes the influence of the unsteady heat release on the perturbation field. A closure model that

relates q̇′
V

to the perturbation variables of the LNSE is discussed in section 3.6. The terms containing the total mass-specific

energy e are expressed in terms of the primitive variables and the ratio of specific heats 𝛾 via

(𝜌e) = p

𝛾 − 1
+ 𝜌ukuk

2
, (𝜌e)′ = p′

𝛾 − 1
+ ukuk𝜌′

2
+ 𝜌uku′

k
. (6)
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The viscous stresses are defined via Stokes’ hypothesis as

𝜏 ′
ij
= 𝜇

(
𝜕u′

i

𝜕xj

+
𝜕u′

j

𝜕xi

− 2

3

𝜕u′
k

𝜕xk

𝛿ij

)
(7)

with the dynamic viscosity 𝜇 and the Kronecker-Delta 𝛿ij:

𝛿ij ≡
{

1 for i = j,
0 else.

. (8)

This set of equations can be closed with the linearized equation of state for an ideal gas,

T′

T
= p′

p
− 𝜌′

𝜌 , (9)

which yields the five unknowns p′, T′ and u′
i

with i = 1… 3 in three dimensions. Fluctuations in entropy s′ can be derived via

s′ = cp
T′

T
− R

p′

p
, (10)

where cp is the isobaric specific heat capacity and R is the gas-constant of the medium.

Following Baumann and Oden [35], the LNSE can be formulated in vector notation similarly to the Navier-Stokes equations:

M
𝜕𝚽′

𝜕t
+
𝜕Fj(𝚽′)
𝜕xj

=
𝜕Fv

j
(𝚽′)
𝜕xj

+ S. (11)

M is a matrix containing the mean flow prefactors of the time derivative terms, Fj and Fv
j

are the non-viscous and viscous flux in

direction xj, respectively. S contains the fluctuating heat release source term for the linearized conservation of energy. Further

details on the vector notation is given in the Appendix.

2.2. Discontinuous Galerkin FEM

Assuming isentropic perturbations and neglecting the mean flow velocities as well as viscous effects, the wave equation can

be deduced from the LNSE. Many numerical schemes are well suited to solve the wave equation, e.g. the standard finite element

[46] or the finite volume method (FVM) [12]. However, when mean flow velocities are taken into account, the application of

a standard, unstabilized finite element method with continuous basis functions leads to a numerically unstable discretization

scheme in cases with high cell Péclet numbers. The reason for the instability is as follows: symmetric test functions that span

the neighboring elements of a node lead to a discretization similar to a central difference scheme of the finite difference method.

It is known that for convection dominated problems, this scheme introduces negative numerical diffusivity, which may exceed

the physical one and thus result in unstable behavior [33]. To remedy this situation, a number of stabilized finite element

methods have been developed. Two well-known approaches are the streamline upwind Petrov-Galerkin method (SUPG) [47],

which introduces additional numerical viscosity in streamline direction and the Galerkin Least Squares (GLS) [48] formulation,

which minimizes the error of the residuum in a least squares sense to produce stable solutions. Both approaches require a

stabilization parameter that controls the weighting of the correction terms in the weak form. An exact analytical expression for

this parameter is in general not known for the LNSE in three dimensions, it is thus often chosen based on the characteristic wave

speed, the cell size and a case-dependent pre-factor that is a priori unknown [15,21]. It has been shown that the growth rates of

thermoacoustic eigenmodes depend on the choice of this parameter [21,49]. The parameter has been varied over several orders

of magnitude between 𝛼𝜏 = 1.0 · 10−3 [18,19], 𝛼𝜏 = 1.00 [20,50] and 𝛼𝜏 ∈ [0, 50] [49] for different application cases.

The problem of the symmetric discretization of the convective terms can be avoided by the use of basis functions that are

discontinuous at the mesh nodes and only span one element. This makes non-symmetric discretization possible. The discon-

tinuous Galerkin method has been applied to aeroacoustic problems of sound propagation, where excellent performance was

observed [40]. This suggests the application to thermoacoustic problems, where the aeroacoustics is a crucial part of the model.

In contrast to the continuous FEM, the discontinuous nature of the discretization does not allow the integration of the govern-

ing equations over the whole domain when deriving the weak form. Instead, an element-wise derivation is pursued. A partitionh of the computational domain Ω with outer boundary ∂Ω = Γ into N(h) non overlapping elements Ωe is employed,

Ω =
N(h)⋃
Ωe∈h

Ωe. (12)

The union of all element boundaries ∂Ωe consists of the true outer boundary Γ of the domain as well as the internal boundaries

between the elements, ΓInt. The outer domain boundary is separated into Dirichlet and Neumann partitions, ΓD and ΓN . With

V(h) being a space of nodal discontinuous trial functions, the solution vector is sought from this space,

𝚽′ =
(
Φ′

1
,… ,Φ′

5

)
, Φ′

i
∈ V(h). (13)
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Due to the discontinuous nature of the trial functions, two solution values are present at internal boundaries, one within the cell

under consideration, 𝚽′− , as well as the value of the neighboring cell, 𝚽′+ . For ease of representation, the following shorthand

notations for any two quantities at opposing sides of internal boundaries are introduced as the average and jump operator,

respectively:

< ( ) >= ( )− + ( )+
2

, [( )] = ( )− − ( )+ (14)

Multiplication of Eq. (11) with a vector of discontinuous test functions from the same space V(h) as the trial functions

W =
(

w1,… ,w5

)
, wi ∈ V(h) (15)

and element-wise integration over the domain Ω =
∑

Ωe∈h
Ωe yields the variational formulation of the LNSE. Subsequent inte-

gration by parts constructs the form required for the discontinuous Galerkin finite element method. From this step, the non-

viscous flux Fn = Fjnj as well as the viscous flux Fv
n
= Fv

j
nj = Dn𝚽′ normal to the element boundary ∂Ωe with outward facing

normal vector components nj arises. The weak form of the LNSE in vector notation, again following Baumann and Oden [35],

reads:

∑
Ωe∈h

∫Ωe

WT M
𝜕𝚽′

𝜕t
dx +

∑
Ωe∈h

∫Ωe

𝜕WT

𝜕xj

(
Fv

j
− Fj

)
dx +

∑
Ωe∈h

∫𝜕Ωe

WTF⋆n ds

+∫ΓInt

(
< WT DT

n
>

[
𝚽′] − [

WT
]
< Fv

n
>
)

ds + ∫ΓD

(
WT DT

n
𝚽′ − WT Fv

n

)
ds

=
∑

Ωe∈h

∫Ωe

WTSdx + ∫ΓD

WTDT
n
𝚽′ds + ∫ΓN

WT F̃nv ds ,

(16)

where �̃�′ and F̃v
n are known values of Dirichlet and Neumann boundary conditions, respectively. The linearized Euler equations

can be retrieved from the LNSE by neglecting the viscous flux Fv
n. Details on the flux formulations and their use to impose

boundary conditions in the weak form are given in Appendix A.

By choosing an appropriate numerical non-viscous flux F⋆
n

on internal boundaries ΓInt, similar to FVM, a stable discretization

can be obtained. Thus, the DG-FEM approach is often referred to as a hybrid FEM/FVM method that combines the advantages

of both approaches [34,36]. Due to the choice to represent the solution with discontinuous trial functions, the numerical flux

between elements may depend on the solutions on both sides of the element boundary. It is highly desirable to introduce a local

flux, i.e. a flux formulation that only depends on the solution of the adjacent cells to the element boundary, in order to guarantee

a very sparse equation system after discretization. Furthermore, we seek a formulation that is inherently numerically stable,

independent of the time-stepping scheme. This second requirement arises from the need of computations in the frequency as

well as the Laplace domain. For this study, the local Lax-Friedrichs flux has been chosen, which blends between a central and an

upwind flux, based on the parameter C [40,51]:

F
⋆,LF
n =< Fn > +C

2

[
M𝚽′] . (17)

Setting C equal to the maximum characteristic wave speed normal to the boundary of two neighboring elements results in a

stable scheme [40]. For the LNSE, the characteristic propagation velocities are defined by the speed of sound c =
√
𝛾RT in the

mean flow field and the mean flow velocities. The maximum value results if an acoustic wave propagates in mean flow direction,

which implies:

C = c + ||uini
|| . (18)

This expression for the parameter C is physically motivated and known before run time, as it only depends on the mean fields.

The viscous flux on internal boundaries, compare Eq. (16), is discretized with a scheme first presented by Babuŝka et al. [52]

for pure diffusion problems. This scheme was also applied to convection-diffusion problems [53] as well as the Navier-Stokes

equations [35]. The scheme is element-wise conservative, does not require a hybrid basis function approach and leads to a block

diagonal mass matrix with uncoupled blocks [52].

A problem emerging due to the perturbation ansatz is the need for steady-state mean flow fields as a basis for the LNSE.

The interpolation of mean field variables 𝚽 from a highly resolved large eddy simulation (LES), say, to a more coarse mesh

as typically used in aeroacoustic computations gives rise to inconsistencies: Spatial derivatives of 𝚽 can be obtained either

by interpolation of the gradients computed on the LES mesh, or by evaluation on the computational aeroacoustic (CAA) grid

based on the interpolated mean field variables. The derivatives obtained by these approaches will in general differ. This effect

contributes to the mesh dependence of CAA results. The advantage of integration by parts of the conservative formulation

shows in the fact that no explicit evaluation of spatial derivatives of the mean field variables is required. This contributes to

high reliability in the prediction of thermoacoustic instabilities, especially regarding the correct representation of dissipation

mechanisms.

The described DG-LNSE method has been implemented within the commercial FEM software COMSOL Multiphysics version

5.3 [54]. Throughout this study, a numerical quadrature of the flux terms with order adapted to the highest polynomial degree

of the integrand is employed to ensure accurate integration.
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3. Thermoacoustic state-space modeling

A wide range of models for thermoacoustic stability analysis exists. The DG-FEM model based on the LNSE presented in the

previous section describes propagation and dissipation of acoustic waves in the presence of mean flow (and mean temperature

gradients), but does not resolve the response of a flame to acoustic perturbations and the ensuing fluctuations of heat release

rate, which generate sound. In other words, a closure model for flow-flame-acoustic interaction is required. Additionally, non-

trivial boundary conditions such as impedances that depend on frequency, are often required, e.g. for up- and downstream

boundaries of a combustion chamber or damping devices. In order to couple models for unsteady heat release rate and non-

trivial boundary conditions to a DG-FEM model, a unifying representation is desired. A robust and efficient framework for linear,

time-invariant systems, which also facilitates coupling of sub-models, is the state-space formalism. Indeed, a variety of state-

space models for thermoacoustic stability analysis have been proposed and employed in several prior studies [9,55–59].

The following sections focus on the representation of the various elements of a thermoacoustic model in state-space form

with the goal in mind of retaining a linear eigenvalue problem. This includes the DG-FEM model, the flame transfer function that

connects the fluctuating heat release to acoustic perturbations, as well as non-trivial acoustic boundary conditions. The connec-

tion of these models creates a monolithic state-space/DG-FEM (ssDG) model which comprises the complete thermoacoustic

dynamics.

3.1. State-space representation

State-space models are a well researched, flexible and robust representation of coupled, linear, first order ordinary differen-

tial equations in time. The generalized formulation reads

E
dx(t)

dt
= Ax(t) + Bu(t), (19)

y(t) = Cx(t) + Du(t). (20)

The time-dependent state-vector x(t) contains N unknown variables, u(t) and y(t) are vectors of in- and outputs respectively.

Due to the constant coefficient matrices A to E, state-space models are linear time-invariant (LTI). Equation (19) is called the

system equation and determines the autonomous dynamics of the system through the mass matrix E and the system matrix

A, as well as the impact of inputs u(t) on the system via B. Equation (20) defines the outputs y(t) as linear combinations of the

states x(t) and the inputs u(t) through the output matrix C and the feed-through matrix D. Note that for a single system, the

output equation does not contribute to the system dynamics and can therefore be chosen to define any outputs.

3.2. Eigenvalue computation in the Laplace domain

We assume that a quantity a(t) in the time domain behaves like a harmonically oscillating, exponentially growing or decaying

signal, i.e.

a(t) → â(s)est. (21)

Here s = sr + isim is the Laplace variable with the growth rate sr as the real part and the oscillation frequency sim as the imag-

inary part. The hat (̂ ) denotes a complex amplitude. When applied to a state-space model, a system that is linearly dependent

on s is retrieved,

Eŝx(s) = Ax̂(s) + Bû(s), (22)

ŷ(s) = Cx̂(s) + Dû(s). (23)

Based on this state-space system in the Laplace domain, the eigenvalues can be computed, which is a common approach to

linear thermoacoustic stability analysis. The system is called linearly stable if all eigenvalues have a negative real part, sr < 0,

i.e. the eigenmodes decay in amplitude. For state-space models with a moderate number of degrees of freedom, N ⪅ 104, say,

the full set of eigenvalues can be computed non-iteratively in one single computation, e.g. by means of the QR algorithm. For

larger systems, this is not feasible due to excessive memory demands. Instead, assumptions about the frequency range in which

instabilities might occur are made. Then, a number of eigenmodes are computed in the vicinity of complex shift frequencies

𝜎 = 𝜎r + i𝜎im. The implicitly restarted iterative Arnoldi algorithm may be employed to solve the shift-and-invert eigenvalue

problem for a state-space system [60], until a set number of eigenvalues and corresponding eigenvectors are converged within

a given tolerance:

(A − 𝜎E)−1Ev̂ = 𝜈v̂ with 𝜈 = 1

s − 𝜎 . (24)

The complex-valued eigenvectors v̂(s) of the state variables correspond to the shape of the eigenmode.

In order to solve Eq. (24), this study employs an LU decomposition of (A − 𝜎E) in a lower and an upper triangular matrix with

the parallel direct solver MUMPS [61], which is well suited for sparse systems as they typically result from FEM discretization.

A.4 PAPER-DGFEM
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Note that the state-space method does not necessarily rely on these algorithms, both the iterative Arnoldi as well as MUMPS

could be replaced by other suitable methods. On the other hand, if the fixed-point iteration method is employed for a NLEVP,

an outer loop is added to this procedure because the system matrices explicitly depend on the eigenvalue. For every iteration

(around 25 per eigenvalue, as reported by Buschmann et al. [45]), the matrices have to be reconstructed and newly factorized.

Conversely, if time-delays are discretized in order to obtain a linear eigenvalue problem, only one decomposition of (A − 𝜎E) –

which is the main computational effort for large systems – is required.

As an alternative to the state-space approach or fixed-point iteration, Beyn’s method [62] of computing the eigenvalues in a

given region of the complex plane can be employed. By means of a contour integration, it is ensured that all eigenvalues within

this region are indeed found, without the hazards of initial guesses. The contour integral is computed by numerical integration,

utilizing several sampling points on the chosen contour. For example, Buschmann et al. [45] report the use of 256 sampling

points for a thermoacoustic system. The completeness of eigenvalues comes at the cost of multiple solutions of linear systems

with dimensionality of the original problem on the contour. Additionally, one is advised to confirm that eigenvalues are indeed

actual solutions of the problem by employing a small number of fixed-point iterations on the results of the contour integration

[45].

3.3. Discretized DG-FEM models

The spatial discretization of the LNSE using the DG method as detailed in section 2 leads to a linear system of ordinary

differential equations:

E
d𝚽′

h
(t)

dt
+ K𝚽′

h
(t) = L(t). (25)

E is the mass matrix, K is the stiffness matrix, L is the load vector and 𝚽′
h
(t) contains the unknowns 𝚽′ at the mesh nodes.

The generation of the state-space system, Eq. (19), from (25) is straight forward: We choose x(t) =𝚽′
h(t), A = −K and the load

vector L(t) is split into a matrix with constant coefficients B and a vector containing the time-dependent input signals u(t). These

input signals emerge from the inhomogeneous terms of the LNSE, e.g. boundary conditions or source terms. As stated before,

C and D can be chosen arbitrary without changing the system dynamics. Section 3.7 will show that an appropriate choice of

outputs of the LNSE state-space model will facilitate coupling to an FTF on the one hand and to network models for non-trivial

acoustic impedance boundary conditions on the other.

3.4. Network modeling

Network-models, also called characteristic wave models, are modular, 1D tools that allow inexpensive thermoacoustic anal-

ysis. The method is based on elements for which the acoustic transmission and reflection behavior of characteristic waves is

known from analytical expressions. Some examples are ducts, area jumps or (partially) reflective terminations. By combination

and connection of multiple elements, a full thermoacoustic system can be modeled [4–11].

All elements except for ducts are treated as acoustically compact and do not need spatial discretization. The wave propa-

gation in ducts is governed by the 1D convected Helmholtz equation with constant mean flow velocity. An analytical diago-

nalization of the convected Helmholtz equation yields two advection equations for the acoustic plane waves f and g with the

characteristic velocity u + c and u − c, respectively [10],

f = 1

2

(
p′

𝜌c
+ u′

1

)
, g = 1

2

(
p′

𝜌c
− u′

1

)
, (26)

𝜕f

𝜕t
+ (u + c) 𝜕f

𝜕x
= 0, 𝜕g

𝜕t
+ (u − c)𝜕g

𝜕x
= 0. (27)

These equations are only coupled at specific locations, i.e. the “nodes” of the network model, which represent boundaries or duct

singularities such as area jumps or changes of the specific impedance of the mean flow. In ducts with constant cross-sectional

area and mean flow however, they can be treated separately. Higher order finite difference upwinding schemes are employed

for the spatial discretization of the advection equations for f and g in the thermoacoustic network tool taX [42]. Due to the

nature of the advection equation (first order in time, LTI), the semi-discrete, spatially discretized equation can be represented in

state-space form [10,42]. A connection between multiple elements is established by matching the characteristic acoustic waves

at the nodes, see also section 3.7.

For single or multiple connected network elements in the state-space framework, a transfer function G(s) between selected

in- and outputs can be computed via

G(s) = ŷ(s)
û(s)

= C(Es − A)−1B + D. (28)

By way of example, let us consider the connection of a duct to a partially reflecting termination at the downstream end of a com-

bustion chamber. For this model, the characteristic wave entering and exiting the duct at the upstream end are the respective

in- and outputs for the state-space model. The transfer function of this connected model represents a complex impedance that
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is also valid for signals with non-zero growth rate, sr ≠ 0. This fact plays an important role in thermoacoustic stability analysis,

because the growth rate of the eigenmodes is the desired result.

3.5. Discretization of single time lags and complex impedances

Time lags, e.g. between an acoustic disturbance and the fluctuating heat release of the heat source, can be represented in

pseudo-space using an advection equation,

𝜕𝛽
𝜕t

+ 𝜕𝛽
𝜕𝜉 = 0. (29)

Here, 𝛽 is the quantity transported along 𝜉 with speed 1.00. Assuming a domain [0, 𝜏] along the 𝜉 direction, a signal entering

the domain at time t = 0 will arrive at the end of the domain at time t = 𝜏 . Discretizing Eq. (29) in 𝜉 direction, again utilizing

a finite difference upwinding scheme, a linear, time-invariant system of equations is obtained that can be represented in the

state-space framework [42,43]. Note that the discretized system of equations does not depend explicitly on the time lag 𝜏 . As a

consequence, when represented in the Laplace domain, the state-space system, Eq. (19), remains linear in the Laplace variable

s. On the contrary, if the time delay is not discretized, a non-linear term e−s𝜏 emerges that leads to a NLEVP [12,45], which can

be solved e.g. by fixed-point iteration in s:

a(t − 𝜏) → â(s)este−s𝜏 . (30)

A validation for an FTF with a single time delay within the state-space framework, i.e. the so-called n-𝜏 model, was conducted

in Ref. [43] and showed reasonable agreement with results produced with the FVM Helmholtz solver AVSP [12,63], which relies

on fixed-point iteration for solution of the non-linear eigenvalue problem.

The discretization of the time lag however adds additional degrees of freedom, equal to the number of discretization points

chosen. In order to adequately represent the time delay in a given frequency band, best practice rules suggest at least 20 points

per wavelength for the highest frequency of interest. When less points are used, errors due to aliasing can be expected. As an

example, a time delay of 𝜏 = 1 ms should be discretized with at least 40 points to be accurately represented in the frequency

band of up to 2000 Hz. The increased number of degrees of freedom for thermoacoustic models due to time lag discretization is

usually small compared to those emerging from FEM models. Therefore, the savings in computational cost by avoiding multiple

factorizations of the full system matrix by far outweigh the costs due to the increased size of the system.

3.6. Representation of an FTF with distributed time lags

The interaction between the heat release of a flame and acoustic waves is a key element in thermoacoustic systems. This

mechanism is the main driver of instabilities and thus, care has to be taken to accurately include the dynamics in the thermoa-

coustic model. The most accurate description can be retrieved by locally accounting for the influence of acoustic perturbations

on the combustion mechanism [64]. This is very expensive as it adds linearized transport equations for the chemical species to

the LNSE and requires a highly refined numerical mesh in the flame area to correctly model the unsteady heat release via a lin-

earized combustion mechanism. The typical low-order models used to represent the flow-flame interaction are so called flame

transfer functions (FTF). These models often link the overall unsteady heat release Q̇ ′ to the fluctuation of the axial velocity u′
ref

at a reference position, which is the main cause for unsteady combustion of premixed flames. The FTF model in the Laplace

domain reads

̂̇Q
Q̇

=
û1,ref

u1,ref

FTF(s). (31)

In the LNSE model, ̂̇Q is represented by the integral of the spatially distributed source term, ∫Ω̂̇qV (xi)dΩ, while in the network

model, the spatial extent of acoustically compact flames is neglected and ̂̇Q is a global quantity.

Subramanian et al. [65] showed that distributed time-lag response functions (DTL) can capture the flame dynamics very

well in the context of linear stability assessment. Typically, the frequency response function of a flame can be deduced either

experimentally or numerically. A DTL can be derived from this data by fitting a rational polynomial to the frequency response

function and applying the inverse Fourier transformation to obtain the impulse response as a sum of exponential functions in

the time domain [65]. The convolution of this impulse response function with the time-lagged velocity fluctuations u′
ref

then

produces a representation in state-space form. For details on this procedure, the reader is referred to Ref. [65]. As already

discussed in section 3.2, state-space models are linear in the Laplace variable after transformation and therefore DTL FTF models

retain the linearity of the eigenvalue problem.

3.7. Interconnection of state-space models

The connection of two FEM models for acoustic governing equations via a transfer matrix, relating the plane acoustic waves

between both model interfaces, was originally proposed, implemented and validated by Camporeale and co-workers [16,28].

A.4 PAPER-DGFEM
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Fig. 1. Schematic representing the connection of the FTF to the DG-FEM state-space model with scalar in- and outputs.

The transfer matrix is usually used for elements of a (thermo-) acoustic system where the acoustic governing equations can not

represent the complex flow or are too expensive to solve for. In a follow-up study, Campa et al. [17] used a transfer matrix to

connect an annular plenum to a combustion chamber and incorporate the effects of acoustic time-delays, a variation in cross-

section and damping. Similarly, Schulze and Sattelmayer [22] coupled FEM models of the dome and the nozzle of a rocket engine

via the scattering matrix of a perforated plate, which relates the characteristic waves f and g at two interfaces, in order to reduce

the degrees of freedom and correctly account for damping. Ni et al. [23] coupled transfer matrices for a diaphragm and a swirler,

respectively, to a Helmholtz solver.

In the present study, a state-space model of the FTF is connected to the DG-FEM model to account for the flow-flame inter-

action. Furthermore, parts of the geometry in which one-dimensional acoustic waves with negligible mean flow interaction can

be assumed, are represented by complex impedances derived from the network modeling tool taX instead of three-dimensional

DG-FEM. The respective sub-models are then connected to the DG-FEM model in the same way as the FTF state-space model in

order to reduce the degrees of freedom of the whole thermoacoustic model.

The preceding sections have shown that models for the acoustic governing equations as well as the flame response can be

represented in state-space form. The interfaces of these models are the in- and outputs. Some of the inputs of one model match

the output of another, compare e.g. the output Q̇ ′ of the FTF, Eq. (31), which is the input to the acoustic LNSE model (q̇′
V

, which

is the spatially resolved global fluctuating heat release rate Q̇ ′, source term in Eq. (5)). Vice versa, the velocity fluctuation at the

reference position, u′
ref

, is an output of the LNSE and an input of the FTF, see Fig. 1.

In order to form a monolithic state-space model, these internal input-output relations need to be interconnected. To this

end, the individual matrices Ai to Ei of the models are appended in block-diagonal matrices Ã to Ẽ, following Emmert et al. [10].

In addition to the five matrices emerging from this procedure, a feedback equation is established for matching internal in- and

output relations:

ũ = Fỹ + u. (32)

The vector of inputs ũ of the connected system consists of internal outputs ỹ, which are fed back into the system via a binary

feedback matrix F, and the true external inputs u. Examples for the latter could, e.g., be external acoustic forcing at a boundary.

By applying the output Eq. (20) to ỹ, the feedback loop can be resolved and a monolithic state-space system is retrieved in the

standard form, Eqs. (19) and (20). Details on this procedure are presented in Ref. [10]. This unifying state-space interconnect

framework allows for efficient and robust algorithms to perform time and frequency domain computations as well as assessing

the system stability by eigenvalues.

4. Validation case: duct with temperature discontinuity

A first validation of the DG-LNSE method is carried out against semi-analytical solutions presented by Dowling in Ref. [4]

for a duct of length L with a discontinuity in the mean fields 𝚽(x) at the location x = b. The discontinuity is caused by an

infinitely thin heat source and is characterized by the ratio of mean stagnation temperatures T0,d∕T0,u, where the indices u and

d refer to the upstream and downstream part of the duct, respectively. This validation case might appear simplistic, but indeed

is challenging for FEM-based thermoacoustic solvers and has been exploited in previous studies [12,15].

The material properties of the gas are assumed constant throughout the domain. The inlet Mach number Mu is varied from 0

to 0.2. The full set of parameters is shown in Table 1. Two different cases regarding the unsteady heat release are considered for

validation in this paper:

Case I: No unsteady heat release of the flame, q̇′
V
= 0.

Case II: No unsteady heat input per unit mass. This yields q̇′
V
= cp(T0,d − T0,u)(𝜌uu′

u + uu𝜌′u)∕𝛿Q [4], where 𝛿Q is the finite

length of the heat release area for the numerical simulations. Note that this is required because of the volumetric source-term

q̇′
V

. The fluctuating values of u′
u

and 𝜌′
u

for the numerical approach are evaluated at the reference position xref upstream of the

discontinuity.

112



M. Meindl et al. / Journal of Sound and Vibration 481 (2020) 11543110

Table 1

Parameters for the validation case.

Parameter Variable Value

duct length L 1 m

position of temperature discontinuity b 0.5 m

thickness of numerical heat release area 𝛿Q cell width h

reference position for unsteady heat release xref b − 1 × 10−3m

heat capacity at constant pressure cp 1004.5 J∕(kgK)
ratio of specific heats 𝛾 1.4
ratio of mean stagnation temperatures T0,d∕T0,u 6

inlet Mach number Mu 0, 0.02,…, 0.2
dynamic viscosity 𝜇 0kg∕(ms)
thermal conductivity k 0 W∕(mK)

Case II corresponds to an infinitely fast combustion chemistry, i.e. heat release without time delay, which is an assumption

that will be dropped for the case of the premixed swirl stabilized burner (section 5).

Two flow-acoustic interaction mechanisms are present in this case. The first is the generation of entropy waves when an

acoustic wave crosses the temperature discontinuity. In this process, disturbance energy is transferred from the acoustic wave

to an entropy fluctuation that is then convected out of the domain. The second phenomenon contributing to the attenuation

is the convection of acoustic energy across the outlet (x = L). Due to the fact that both mechanisms scale with the mean flow

velocity, an increased net loss of perturbation energy, resulting in an increased damping rate, is expected for higher inlet Mach

numbers. Viscous effects have been neglected for the numerical studies in order to achieve comparable results to the non-

viscous semi-analytical model [4]. An important difference between the cases considered is that, while the analytical method

employs jump conditions derived from first principles at the discontinuity, a continuous domain is considered in the numerical

approach. Due to the very thin heat release area in case II, high spatial resolution of the FEM model with up to 1.0 · 10+6 cells,

corresponding to 9.0 · 10+6 degrees of freedom with quadratic basis functions, is required.

The boundary conditions are an isentropic inlet with constant mass flow,

s′ = 0 and ṁ′ = 𝜌′u + u′𝜌 = 0, (33)

as well as an acoustically open end at the outlet,

p′ = 0. (34)

The source-term for the unsteady heat release in case II is only present in the first cell of width h downstream of the discon-

tinuity. The reference position xref of u′
u and 𝜌′u has been chosen to be 1 × 10−3m upstream of the temperature discontinuity to

avoid direct feedback of the heat release.

Fig. 2 shows the computed eigenvalues of the semi-analytical and the DG-LNSE approach. The latter employed a cell width

h = 1 × 10−4 m (case I) and h = 1 × 10−6m (case II) in conjunction with quadratic basis functions. Due to the high degrees

of freedom emerging for discretizations with low cell widths, the shift-inverted eigenvalue problem is solved. The eigenvalues

predicted by the semi-analytical model are used as shifts for the DG-LNSE model. All modes were computed using the direct

solver MUMPS and the iterative Arnoldi algorithm with a relative tolerance of 1.0 · 10−7. Mode shapes similar to a quarter wave

resonator can be observed for the acoustic quantities u′ and p′ (not shown). In ascending oscillation frequency, these are the

1∕4, 3∕4 and 5∕4 modes. As expected, the growth rate sr as well as the oscillation frequency sim of the eigenmodes decrease

with an increase in inlet Mach number. Note that all of these modes are stable (sr < 0) except for Mu = 0, where neutral

stability (sr = 0) occurs. The small deviation in case II can be attributed to the required distance between the measurement

point xref for the heat release coupling as well as the finite thickness 𝛿Q of the heat release, while the semi-analytical model uses

the reference values directly at the upstream side of the discontinuity with jump conditions to model the impact of the heat

release.

Fig. 3 shows the relative error 𝜖 of the eigenfrequencies for increasing mesh refinement. For this convergence study, linear

and quadratic, nodal discontinuous basis functions have been employed. 𝜖 is the relative error of the eigenfrequencies averaged

over all three modes (Ns = 3) and all Mach numbers (NM = 11) defined in Table 1,

𝜖 = 1

NMNs

NM∑
i=1

Ns∑
j=1

‖‖‖si,j,DG − si,j,analytical
‖‖‖2‖‖‖si,j,analytical

‖‖‖2

. (35)

For case I, convergence within the iterative Arnoldi tolerance is achieved both for linear and quadratic basis functions. The

distance between the reference position as well as the finite thickness of the heat release zone limit the convergence for case

II, a mesh refinement beyond h = 1 × 10−5m does not increase the accuracy of the results. Slower convergence compared to

case I can be observed due to the decreasing size of the heat release zone (one cell).

This validation case shows that the DG-LNSE method can very accurately represent interactions between acoustics and mean

flow as well as fluctuating heat release occurring in thermoacoustic systems. A similar study that employed the LNSE imple-

mented with the GLS stabilization method showed noticeable deviations from the analytical results [15].

A.4 PAPER-DGFEM
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Fig. 2. Analytical and DG-LNSE results for the validation cases I and II.

Fig. 3. Relative errors of the eigenfrequencies for the validation cases I and II with linear and quadratic basis functions.

5. Application case: premixed, swirl-stabilized flame

In this section, the ssDG method is applied to a combustion test rig consisting of a plenum, an annular duct including an axial

swirler and a combustion chamber with quadratic cross-section. A lean methane-air mixture is burned in a swirl-stabilized, V-

shaped flame (see Fig. 4). The combustion chamber is terminated with a perforated plate to reduce reflections of acoustic waves.

The geometrical and operating parameters of the swirl combustor are summarized in Table 2.

Fig. 4. Geometry and model partitions of the swirl combustor test rig [66].
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Table 2

Geometrical and operating parameters of the swirl combustor.

Parameter Variable Value

nominal power rating P 30 kW

plenum length Lp 0.17 m

swirler duct length Ld 0.168 m

combustion chamber length Lc 0.7 m

combustion chamber length 3D domain Lc,3D 0.2 m

plenum radius rp 0.1 m

bluff-body radius rb 0.008 m

swirler duct radius rd 0.02 m

combustion chamber side length dc 0.09 m

reference position for FTF x1,ref Lp + 0.098 m

upstream speed of sound cu 349.9 m∕s

downstream speed of sound cd 850.5 m∕s

Fig. 5. Left: Frequency response of the FTF identified from LES as well as from experimental measurements [67]. Right: Frequency response of the perforated plate

model fitted to measurements in Ref. [68].

5.1. Overall ssDG model setup

Regions of the configuration where 3D effects, significant acoustic-flow interactions and fluctuating heat release are impor-

tant are modeled using the DG-LNSE approach, with mean fields provided by time averaged large eddy simulation (LES) of

turbulent, reacting flow (see section 5.2). In the present case of a premixed swirl combustor, the DG-LNSE domain comprises

the annular duct including the swirler and the upstream part of the combustion chamber, where the flame is located (see Fig. 4).

Acoustic damping effects are expected to be significant in these regions, where acoustic waves generate vortices at the swirler

and at the area expansion into the combustion chamber. Thermoacoustic driving due to unsteady heat release by the flame is

also located here. The flame dynamics is not resolved by the DG-LNSE, but instead provided in terms of a state-space represen-

tation of the FTF identified from LES data. This is detailed in sections 5.2 and 5.4.

Regions where the mean fields are nearly homogeneous and where only plane acoustic waves are expected in the frequency

band of interest are represented by 1D, reduced-order network models formulated in state-space. Acoustic impedances derived

from these models are coupled with the state-space interconnect approach to the DG-LNSE domain. In other words, the 1D

reduced order models provide complex-valued, frequency dependent acoustic impedance boundary conditions for the DG-LNSE

domain. Details are provided in section 5.5.

A state-space model deduced from experimental measurements is used to represent the acoustic reflection factor of the

perforated plate at the combustion chamber outlet, see Fig. 5b. This model was suggested by Tay-Wo-Chong et al. [67], the

experimental measurements were performed by Wanke [68]. For very low frequencies, the model behaves like a fully reflective

open end. Above 50 Hz, the reflection amplitude drops, which leads to an increased loss of acoustic energy.

A sketch of the various state-space models and their interconnections is depicted in Fig. 6.

A.4 PAPER-DGFEM
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Fig. 6. Hybrid model of the swirl combustor built by state-space interconnect of sub-models.

Fig. 7. Unstructured tetrahedral mesh used for the DG-LNSE computations.

5.2. LES and identification of the flame transfer function

Computations of the mean flow field and the FTF are based on an LES performed with the OpenFOAM toolbox [69]. A modified

version of reactingFoam is employed, which is a solver for chemically reactive flows using Navier-Stokes equations with species

transport. The low Mach number assumption is made, which omits the acoustic waves by use of the weakly compressible

Navier-Stokes equations, i.e. the density only depends on the temperature. This is useful in a transient simulation, because

possible thermoacoustic resonance structures enhanced by the acoustic reflections at the boundaries are ruled out.

The WALE model proposed by Nicoud and Ducros [70] is used for the sub-grid scale turbulence. Combustion of the methane-

air mixture is modeled by a reduced two step chemical kinetic mechanism (2S-CM2) described in Ref. [71]. The dynamically

thickened flame model proposed in Ref. [72] is employed to model the sub-grid scale turbulence-chemistry interaction.

The simulations are performed on a 90◦ sector of the geometry using periodic boundary conditions on a pure tetrahedral

mesh. Refinement in the flame area and at the walls to an average edge length of 0.75 mm ensures a maximum thickening factor

around 4. The PISO algorithm with five corrector steps is used and the time step for the integration is adjusted to the maximum

Courant number of 0.7. Temporal averaging of the filtered variables over a period of 0.3s is employed to obtain the mean flow

fields.

The FTF is computed via a system identification (SI) approach (for details see Ref. [73]) from the time series of excitation

velocity at a reference position and the heat release fluctuations. To retain the linearity of the flame response, a maximum

amplitude of 20% of the mean velocity was chosen for the broadband excitation signal [74]. The flame transfer function is

identified as an ARX model, its frequency response is shown in Fig. 5a alongside the experimental measurements of Komarek

[67].

5.3. 3D DG-LNSE element

The 3D DG-LNSE model comprises the annular duct that houses the swirler and the upstream part of the combustion chamber

(see Fig. 4). The mean fields 𝚽(x) are time-averaged LES data from the simulation that is used to identify the FTF. A 90◦ sector

with periodic boundary conditions is investigated to stay consistent with the LES and to reduce computational costs.

Linear, nodal-discontinuous basis functions are chosen for the unstructured mesh consisting of 48,000 tetrahedral elements,

cf. Fig. 7. This amounts to 932,000 degrees of freedom for the DG-LNSE model. The region including the swirler and the flame is

refined to a maximum mesh size of 3 mm and 5 mm, respectively, to capture the damping effects and the unsteady heat release

with increased resolution. The maximum mesh size in the downstream part of the combustion chamber is 8 mm.

At the boundaries of the combustion chamber, isothermal slip walls are employed,

u′
i
ni = 0 and T′ = 0. (36)
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Slip walls are chosen because the mesh for the LNSE is not fine enough to resolve the unsteady Stokes boundary layer. The other

walls (annular duct and swirler) are modeled as adiabatic slip walls,

u′
i
ni = 0 and

𝜕T′

𝜕xi

ni = 0. (37)

At the inlet (index u, upstream) and outlet (index d, downstream) of the LNSE model, boundary conditions are given for the

characteristic waves entering the domain in the following manner: the acoustic plane wave propagating downstream f3D,u is

imposed at the inlet, all convective wave amplitudes that enter the domain (vorticity and entropy), are set to zero. No boundary

condition is given for the characteristic wave exiting the domain, which is the upstream propagating acoustic plane wave g3D,u.

Following the same approach, only the upstream traveling plane wave g3D,d is imposed at the outlet, because the mean flow

velocities are facing out of the domain. The convective waves at the outlet, namely entropy and vorticity, are neglected after

they leave the 3D domain because they have no counterpart in the 1D network model. This implies the assumption that the

convective waves will not interact with the acoustic characteristics in the downstream 1D part of the model. In order to generate

the appropriate inputs for the 1D network models that represent the acoustic impedances at the boundary of the LNSE domain,

the outgoing acoustic waves are determined as outputs. Note that the 1D models require a single complex-valued amplitude at

the interfaces, whereas the inlet and the outlet of the LNSE domain are 2D surfaces. Therefore, the perturbed pressure and axial

velocity are averaged over these surfaces to compute g3D,u and f3D,d. Through this process, the perturbations in the axial velocity

at the outlet through vortices cancel and the plane acoustic wave contribution is recovered.

For the FTF coupling, the axial velocity fluctuation u′
1,ref

, averaged over the reference plane, is provided as an output of the

DG-LNSE model and the fluctuating heat release q̇′
V

is kept as a parametric source term (input) to the DG-LNSE element. This

results in a state-space model with the following in- and outputs:

u3D =
⎛⎜⎜⎜⎝

f3D,u

g3D,d

q̇′
V

⎞⎟⎟⎟⎠
, y3D =

⎛⎜⎜⎜⎝

g3D,u

f3D,d

u′
1, ref

⎞⎟⎟⎟⎠
. (38)

5.4. FTF coupling

The FTF identified from the LES was used to couple the fluctuating heat release rate q̇′
V

to the velocity fluctuations u′
1, ref

at

the reference plane at position x1, ref upstream of the swirler. In the Laplace domain, the following relation for the heat release

is established:

̂̇qV (xi, s) = q̇V (xi)
û1, ref

u1, ref

FTF(s). (39)

Equation (39) represents the spatially resolved source term ̂̇qV (xi, s). Amplitude and phase of the fluctuations are governed by

the FTF, whereas the spatial distribution is proportional to the mean heat release interpolated to the DG-LNSE grid.

5.5. Complex-valued impedances from network models

The upstream and downstream boundary conditions of the DG-LNSE computational domain (see Fig. 4) are modeled as

complex impedances with reduced order models utilizing the thermoacoustic network tool taX [10]. Therefore, constant mean

flow values are assumed and the convected 1D Helmholtz equation is solved. Connecting the state-space models resulting from

the DG-LNSE, taX, the perforated plate model and the FTF, a monolithic ssDG model is created for which the shift-inverted

eigenvalue problem, Eq. (24), can be solved.

5.6. Pure network model

A model consisting only of network elements for the whole computational domain of the burner was set up by Emmert et

al. [75]. In the presented study, this model is augmented by the perforated plate model at the combustion chamber outlet (see

Fig. 5b). The same FTF as in the ssDG approach is used. The axial swirl generator is replaced by a duct of equal length, therefore

any influence on the acoustic waves, e.g. reflection, is neglected. No loss coefficients have been introduced for the swirler or the

area jumps.

5.7. Stability analysis

The stability of the swirl burner is assessed by computing the eigenvalues with the highest growth rates in the frequency

band up to 1200 Hz. The ssDG model is compared to the full taX network model. The degrees of freedom as well as the points

per wavelength for each sub-model are shown in Table 3. A maximum frequency of 1200 Hz is used to compute the points per
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Table 3

Degrees of freedom and points per wavelength (PPW) of the various state-space models.

Model degrees of freedom PPW (sim = 1200 Hz)

pure network model without FTF 368 84

ssDG 1D ROM upstream 98 84

ssDG 1D ROM downstream 120 84

ssDG 0D ROM perforated plate 2 –

3D DG-LNSE 932000 ≥ 73 (acoustic)

FTF 69 20 (sim = 200 Hz)

Fig. 8. Spectrum comparing the eigenvalues of the pure network (M ≠ 0: , M = 0: ) and the ssDG model (M ≠ 0: , M = 0: ).

wavelength for all elements except the FTF. Because the gain of the FTF is negligible beyond 200 Hz, the resolution was chosen to

20 points per wavelength at that frequency to avoid over-fitting during the SI procedure. The computations for the ssDG model

were carried out in parallel on 8 CPUs. The iterative Arnoldi algorithm converges after approximately 30 min for 10 eigenmodes

around one shift, using 90 GB of RAM. It is expected that the growth rates for both models differ due to the convective and

viscous effects inherent to the ssDG approach, while the oscillation frequencies should be very similar due to the longitudinal

nature of the eigenmodes in the investigated frequency band. The eigenfrequencies determined with the pure network model

were therefore used as shifts for the eigenvalue computation of the ssDG model. The computation of eigenvalues was found to

be insensitive to perturbations in the initial guess for the computation. Relative changes in eigenfrequency were below 1% when

the mesh of the DG-LNSE domain was further refined to 60,000 tetrahedral cells.

Eigenvalues with both pure network and ssDG model have been computed with the mean flow velocities resulting from LES

(M ≠ 0) as well as zero Mach number (M = 0). For the ssDG model in the latter case, the mean velocities in the DG-LNSE as well

as the 1D ROM domains have been set to zero. The resulting spectrum of the eigenvalue analysis is shown in Fig. 8. All setups

predict one unstable mode, i.e. the low-frequency intrinsic thermoacoustic (ITA) mode around 100 Hz, refer to Emmert et al. [75]

and Albayrak et al. [76] for a discussion on the nature of this mode. This is in good agreement with experimental observations

[67]. This mode is based on a direct feedback mechanism between the fluctuating heat release of the flame and the velocity

fluctuations at the reference point, which does not require reflected acoustic waves at the system boundaries [77,78]. The first

longitudinal mode (1L) at 260 Hz exhibits strong damping due to the losses at the perforated plate. Two other longitudinal,

weakly damped acoustic modes at 950 Hz and 1050 Hz exhibit high pressure amplitudes only in the swirler duct. Due to the

non trivial geometry, a strict classification of the modes is difficult. The other modes shown in Fig. 8 are higher order ITA modes

which are strongly damped.

Comparing the results for both mean Mach number cases of the pure network model ( and ), it is evident that the fre-

quency shift due to mean flow velocity is negligible, as the eigenvalues almost coincide. For the ssDG approach ( and ), the

oscillation frequency sim with and without mean Mach number is also very similar, the growth rate however differs significantly

for some modes. Most of the eigenmodes are more damped when convective effects are present in the DG-LNSE domain, which

can be attributed to the transfer of perturbation energy between acoustic and convective characteristics.

Compared to the pure network model, for which the computation takes only seconds, the computational cost of the ssDG

model might seem high. However, the ssDG model inherently contains the fully resolved mean fields of flow velocity and speed

of sound, accounting for flow-acoustic interactions that do not strictly increase damping for all modes, but can also have the

adverse effect of increasing the growth rate, see e.g. the mode around 450 Hz. Some of the modes, on the other hand, are not

influenced at all by this energy transfer, e.g. the longitudinal mode at 260 Hz. Therefore this study shows that the effects of
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Fig. 9. Normalized magnitude and phase of p̂ for the unstable intrinsic mode computed with the taX network model ( ) and the hybrid ssDG approach ( ) at M ≠ 0.

The cross ( ) indicates the phase of the unsteady heat release ̂̇QV of the flame (position ) for both approaches. The markers ( and ) show the phase of the velocity

fluctuations ûref at the reference position ( ).

perturbation energy transfer between acoustic and convective scales can not easily be estimated a priori. The inherent ability of

the ssDG model to represent these mechanisms facilitates increased accuracy in the prediction of thermoacoustic eigenmodes.

Including those effects in the pure network model is usually achieved by damping factors that are neither straight forward to

determine, nor generally applicable for different geometries and mean flows. The mode shapes resulting in the LNSE part of the

ssDG domain feature not only acoustic, but also hydrodynamic phenomena and can thus give more insight into the physics of

the instability. Additionally, the DG-LNSE approach can also handle non-plane acoustics, such as transversal modes. This study,

however, is limited to validation of the ssDG approach for longitudinal modes in the low-frequency band that can be represented

well with a 1D approach.

Fig. 9 shows a comparison between the shapes (left: amplitude, right: phase) of the unstable ITA mode, computed with the

pure network model ( ) and the ssDG approach ( ) with M ≠ 0. Note that the amplitude of the eigenvectors may be scaled

arbitrarily. To facilitate a comparison, the amplitudes of both modes are normalized with the absolute value of the respective

pressure at the downstream end of the combustion chamber, x = 1.038 m. The reference value of the phase is provided by the

respective fluctuating heat release rate. It is apparent that the overall mode shapes agree well. Compared to the network model,

a strong pressure gradient in the swirler area can be seen for the ssDG approach, which also exhibits a phase shift. This effect

can be attributed to the reflections and the losses coming from the swirler, which are omitted in the network model. It is also

worth noting that the network model converts all of the fluctuating heat release to axial acoustic waves, while the volumetric

expansion due to heat release in the DG-LNSE domain also excites transversal velocity perturbations. This effect is expected to

contribute to the damping, as transversal acoustic waves are mainly present in the flame region, where vortices form in the

shear layer and dissipation occurs.

According to Rayleigh [79,80], the perturbation energy introduced into the acoustic waves is high when heat release and the

pressure fluctuations in the flame area are in phase. This phase difference is very similar for both approaches, which favors an

unstable thermoacoustic mode (∠(̂̇qV , p̂flame)network = 0.23𝜋,∠(̂̇qV , p̂flame)ssDG = 0.20𝜋). The phase between the heat release

and the axial velocity fluctuations at the reference position is governed by the FTF ( and ) and shows only a minor discrepancy

that stems from the slightly different oscillation frequencies of the modes (sim, network = 98.05 Hz, sim, ssDG = 105.16 Hz). This

difference in frequency can be attributed to the spatially resolved mean fields of speed of sound and convective velocities in

the DG-LNSE domain, which define the propagation velocity of the acoustic waves as well as the influence of hydrodynamic

fluctuations on the eigenmode. Although the Rayleigh criterion is slightly more critical in the ssDG approach, the overall growth

rate is smaller due to the damping effects by acoustic mean flow interactions that were not included in the pure network model.

The real part of the mode shape (̂p and û1) computed with the ssDG approach in the DG-LNSE domain is shown in Fig. 10, clearly

depicting the convective nature of the axial velocity perturbations that are mainly generated at the swirler and then dissipated

or convected out of the domain.

6. Summary and conclusions

A state-space based framework was used to interconnect a discontinuous Galerkin discretization of the linearized, com-

pressible Navier-Stokes equations with reduced-order representations of flame dynamics and acoustic impedance boundary

conditions. This approach is conceptually a hybrid one, nevertheless the state-space framework makes possible the formulation

of a monolithic model. At the expense of a comparatively small number of additional degrees of freedom, eigenvalue computa-
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Fig. 10. Cutplanes show the normalized real part of the pressure fluctuations p̂ of the unstable intrinsic eigenmode. Contours for the mean heat release q̇V are indicated in

red to black. 3D iso-surfaces indicate positive (red) and negative (blue) fluctuations of the real part of the axial velocity û1. Full domain reconstructed from 90◦ sector. (For

interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

tions can be kept linear, even when time delay terms or non-trivial dependence of acoustic impedance on frequency must be

taken into account.

The main advantages of the discontinuous Galerkin discretization are the high accuracy in the dispersion relation as well as

the inherently stable discretization of the convective terms by means of a physically motivated upwinding parameter. These

merits are accompanied by the drawback of the higher number of degrees of freedom compared to continuous finite element

approaches. The presented state-space interconnect framework, however, allows to resolve parts of the computational domain,

where flow-flame-acoustic or flow-acoustic interactions are not significant, with 1D reduced order network models to counter-

balance the increased computational costs of the DG-LNSE. The discretization of time delays occurring in flow-flame models,

as well as the representation of the reduced order network models as linear functions in the Laplace domain leads to a linear

eigenvalue problem for which an efficient and robust solution algorithm is employed. Not reckoning the computational effort

required to determine mean fields and FTF, the proposed state-space interconnect/discontinuous Galerkin scheme can thus yield

accurate stability predictions within minutes for thermoacoustic systems featuring non trivial geometries and mean flow fields.
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Appendix A. Vector matrix notation of the LNSE

The matrix containing the prefactors of the time derivatives in three dimensions is defined as
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M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜌
p

0 0 0 −𝜌
T

u1
𝜌
p

𝜌 0 0 −u1
𝜌
T

u2
𝜌
p

0 𝜌 0 −u2
𝜌
T

u3
𝜌
p

0 0 𝜌 −u3
𝜌
T

1

𝛾 − 1
+ ukuk

𝜌
p

𝜌u1 𝜌u2 𝜌u3 −ukuk
𝜌
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.1)

the vector of sources is

S =

⎛⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

q̇′
V

⎞⎟⎟⎟⎟⎟⎟⎠

. (A.2)

On the domain boundaryΓ, the non-viscous flux F⋆
n

is chosen to weakly impose boundary conditions. This is done by inserting

the boundary conditions into Fn. Therefore, it is useful to decompose Fn into flux contributions due to different physical causes:

Fn = F
un
n + F

u′n
n + F

p′n
n (A.3)

• Flux due to convection by the mean-flow

F
un
n = njuj

⎛⎜⎜⎜⎜⎜⎜⎝

𝜌′

𝜌u′
1
+ u1𝜌′

𝜌u′
2
+ u2𝜌′

𝜌u′
3
+ u3𝜌′

(𝜌e)′ + p′

⎞⎟⎟⎟⎟⎟⎟⎠

, (A.4)

• Flux due to normal velocity perturbation

F
u′n
n = nju

′
j

⎛⎜⎜⎜⎜⎜⎜⎝

𝜌
𝜌u1

𝜌u2

𝜌u3

(𝜌e) + p

⎞⎟⎟⎟⎟⎟⎟⎠

, (A.5)

• Flux due to normal pressure perturbation

F
p′n
n = p′

⎛⎜⎜⎜⎜⎜⎜⎝

0

n1

n2

n3

0

⎞⎟⎟⎟⎟⎟⎟⎠

. (A.6)

Examples of weakly imposed boundary conditions are acoustically hard walls (F
u′n
n = 0) or open ends (F

p′n
n = 0). The boundary

conditions of the mean flow can also be taken into account in the LNSE computation, e.g. by setting (F
un
n = 0) at hard walls

of the mean flow. This proves useful when the mean flow velocity normal to the boundary, ujnj, is not exactly zero due to

interpolation errors from the CFD to the LNSE mesh.

Similarly, the viscous flux is decomposed:

Fv
n
= F

v,𝜇
n + F

v,k
n =

(
D
𝜇
n + Dk

n

)
𝚽′ (A.7)

• Flux due to viscous stress perturbations, F
v,𝜇
n ,
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• Flux due heat conduction perturbations, F
v,k
n .

The viscous flux is also used to impose weak boundary conditions, e.g. adiabatic walls (F
v,k
n = 0). The pre-factor matrices for

the viscous flux are defined as:

D
𝜇
n = 𝜇

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0
4

3
n1

𝜕
𝜕x1

+ n2
𝜕
𝜕x2

+ n3
𝜕
𝜕x3

−2

3
n1

𝜕
𝜕x2

+ n2
𝜕
𝜕x1

−2

3
n1

𝜕
𝜕x3

+ n3
𝜕
𝜕x1

0

0 n1
𝜕
𝜕x2

− 2

3
n2

𝜕
𝜕x1

n1
𝜕
𝜕x1

+ 4

3
n2

𝜕
𝜕x2

+ n3
𝜕
𝜕x3

−2

3
n2

𝜕
𝜕x3

+ n3
𝜕
𝜕x2

0

0 n1
𝜕
𝜕x3

− 2

3
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𝜕
𝜕x1

n2
𝜕
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− 2

3
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𝜕
𝜕x2

n1
𝜕
𝜕x1

+ n2
𝜕
𝜕x2

+ 4

3
n3

𝜕
𝜕x3

0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.8)

Dk
n
= k

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 nj
𝜕
𝜕xj

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (A.9)
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Abstract 

In this paper, the dynamics and thermoacoustic stability of a laminar premixed flame are analyzed using a 
linearized reactive flow (LRF) solver. The LRF solver is based on linearized compressible Navier-Stokes and 

reacting species transport equations and thereby includes a model for the dynamic response of the flame to 

flow perturbations in an inherent manner. The equations are discretized using the discontinuous Galerkin 

finite element method. By way of example, thermoacoustic characteristics of attached and lifted laminar 
premixed flames are investigated. First, the respective flame transfer functions (FTFs) are computed in the 
frequency domain with the LRF solver. The results are in agreement with reference FTFs identified from 

CFD time-series. Secondly, the LRF solver is employed for thermoacoustic stability analysis, i.e. computation 

of shape, frequency, and growth rate of eigenmodes. Results are compared to established hybrid methods 
that couple FTFs with a low-order thermoacoustic network-model or a linearized Navier-Stokes equations 
solver. All solvers capture the dominant thermoacoustic mode, but only the LRF resolves local flow-flame 
interaction, revealing e.g. the onset of the flame movement and the propagation of distortions along the 
flame. 
© 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

Keywords: Thermoacoustics; Combustion dynamics; Discontinuous Galerkin finite element method; Linearized reacting 
flow; Linearized Arrhenius equation 

1. Introduction 

Modern, low-emission gas turbines are prone to 

thermoacoustic instabilities, which originate from a 
feedback between unsteady heat release and acous- 
tics. It is essential to study thermoacoustic coupling 

∗ Corresponding author. 
E-mail address: avdonin@tfd.mw.tum.de 

(A. Avdonin). 

mechanisms and to develop reliable tools for ther- 
moacoustic analysis. 

Prediction of thermoacoustic instabilities by 
means of high-fidelity simulations of the com- 
pressible reacting flow requires very considerable 
computational resources. Large-Eddy Simulation 

(LES) of a gas turbine combustor, say, may be 
unaffordable for industrial purposes. To reduce 
the problem size, a variety of modeling assump- 
tions may be invoked to formulate hybrid ap- 
proaches , which typically couple a model for the 

https://doi.org/10.1016/j.proci.2018.06.142 
1540-7489 © 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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propagation and dissipation of acoustic waves with 

a flame transfer function (FTF). The FTF describes 
a flow-flame interaction and relates fluctuations of 
the global heat release rate to velocity fluctuations 
at a reference point upstream of the flame. Flame 
transfer functions can be derived analytically or ob- 
tained from experiments or CFD simulations, see 
for instance [1–3] . 

Thermoacoustic network-models (TNMs) repre- 
sent a very popular, low-order hybrid approach. 
A TNM represents a combustor as a conjunc- 
tion of elements, such as ducts and area jumps. 
Acoustic waves propagate through the resulting 
network of elements. The heat release fluctuations 
are modeled using an FTF and produce acoustic 
perturbations according to the linearized Rankine–
Hugoniot jump conditions [4] . 

Due to increasing computing power and im- 
proved numerical algorithms, it has become possi- 
ble to resolve the acoustic field in a combustor in 

two or three dimensions with the Helmholtz [5] , the 
linearized Euler [6] or the linearized Navier–Stokes 
equations (LNSE) [7,8] . The spatial resolution of 
the mean and fluctuating flow field variables allows 
to investigate complex geometries and can yield an 

accurate prediction of dissipative effects. These ap- 
proaches should also be categorized as hybrid mod- 
els, as the flow-flame interaction is represented by 
an FTF. 

Despite increased efforts to scrutinize non- 
linear aspects of combustion dynamics [9] , linear 
analysis remains extremely useful and important 
for fundamental studies of flow-flame-interaction 

mechanisms, for sensitivity or uncertainty analy- 
sis, for optimization, and for industrial application. 
This motivates the quest for more efficient, more 
accurate and more widely applicable methods for 
linear thermoacoustic stability analysis. 

In this paper, we suggest an approach with an 

inherent description of the flame dynamics. Specif- 
ically, we analytically linearize the Navier-Stokes 
and reacting species transport equations to obtain 

linearized reactive flow (LRF) equations. With such 

a monolithic formulation, the linear flame dynam- 
ics is by design inherited from the governing equa- 
tions; an external FTF is not required. The LRF 

equations are discretized using the discontinuous 
Galerkin finite element method. The LRF solver 
requires a CFD simulation to obtain mean fields, 
but no additional unsteady CFD simulations are 
needed to identify the FTF. 

The works by van Kampen et al. [10] on the 
response of a premixed flame to fluctuations of 
equivalence ratio and by Blanchard et al. [11] on the 
effects of flow disturbances on the flame (and vice 
versa) may be regarded as precursors of the LRF 

approach. Those studies employ a numerical lin- 
earization of the governing equations and compute 
the flame transfer functions by simulating the step 

response in the time domain. In contrast, the LRF 

equations are derived analytically and the solver 
operates in the frequency domain, which allows to 

compute the FTF as well as thermoacoustic eigen- 
modes with high accuracy and efficiency. 

The present paper introduces the LRF solver 
and verifies results by comparison with established 

hybrid approaches. By way of example, we study 
the flame dynamics and the dominant thermoa- 
coustic eigenmodes of attached as well as lifted, 
compact, laminar, premixed flames. The full poten- 
tial of the method - e.g. for non-compact flames - 
shall be exploited in further studies. 

The paper is structured as follows: in the next 
section, we introduce the LRF and the two hy- 
brid approaches, TNM and LNSE. Afterwards, we 
compare the FTFs computed by the LRF solver 
and deduced from CFD simulations, respectively, 
for two flame configurations. Then we compute 
and compare the dominant thermoacoustic eigen- 
modes. The paper closes with conclusions and an 

outlook for further investigations. 

2. Linearized reacting flow 

2.1. Nonlinear governing equations 

Both the OpenFOAM solver , which computes 
the mean flow fields and the reference FTF, and the 
LRF solver are based on the nonlinear reactive flow 

equations: 
∂ρ

∂t 
+ 

∂ρu j 
∂x j 

= 0 , (1) 

∂ρu i 
∂t 

+ 

∂ρu i u j 
∂x j 

= − ∂ p 
∂x i 

+ 

∂τi j 

∂x j 
, (2) 

∂ 

∂t 
( ρh − p ) + 

∂ρu j h 
∂x j 

= 

∂ 

∂x j 

(
α

∂h 
∂x j 

)
+ ˙ ω T , (3) 

∂ρY k 

∂t 
+ 

∂ρu j Y k 

∂x j 
= 

∂ 

∂x j 

(
D 

∂Y k 

∂x j 

)
+ ˙ ω i . (4) 

Variables ρ, u i , and Y k denote density, velocity 
component in the i -direction, and mass fraction of 
the species k . The viscous term is neglected in the 
conservation equation (3) for the sensible enthalpy 
h . The heat flux is approximated by −α

(
∂ h/∂ x j 

)
in- 

stead of Fourier’s law 

1 , which is commonly done 
when the energy equation is written in terms of 
the sensible enthalpy. The sensible enthalpy for the 
species k is calculated from JANAF polynomials 
with coefficients a j : 

h k (T ) = 

∫ T 

T re f 

c p,k d ˜ T = R k 

5 ∑ 

j=1 

a j 
T 

j − T 

j 
ref 

j 
, (5) 

1 In this study we follow the OpenFOAM definitions of 
the thermal and mass diffusivities, α and D , with SI units 
kg/(ms). 
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with the specific gas constant R k for the species k . 
The sensible enthalpy of the mixture is computed 

using the species mass fractions: h = 

∑ 

k h k Y k . The 
viscous stress tensor τ ij reads: 

τi j = μ

(
∂u i 
∂x j 

+ 

∂u j 
∂x i 

)
− 2 

3 
μ

∂u l 
∂x l 

δi j , (6) 

where δij is the Kronecker delta. The pressure p , the 
density ρ, and the temperature T are linked by the 
ideal gas law: p = ρRT . The dynamic viscosity μ is 
given by Sutherland’s law: μ = A s T 

1 / 2 / ( 1 + T S /T ) 
with A s = 1 . 67212 · 10 −6 kg / (msK 

1 / 2 ) and T S = 

170 . 672 K . To deter mine ther mal diffusivity α a 
constant Prandtl number Pr = μ/α = 0 . 71 is as- 
sumed. Similarly, with unity Lewis number for all 
species, Schmidt number Sc and mass diffusivity D 

2 

obey Sc = μ/D = 0 . 71 . 
We model the methane-air combustion using 

a one-step Westbrook and Dryer [12] chemistry 
mechanism with a progress rate Q : 

Q = Aρa + b Y 

a 
O 2 

Y 

b 
CH 4 

W 

a 
O 2 

W 

b 
CH 4 

exp 

(
− E a 

T R univ 

)
, (7) 

with A = 6 . 7 × 10 12 cgs units, E a = 48 . 4 kcal / mol , 
R univ = 1 . 987 × 10 3 kcal / (molK) , a = 1 . 3 and b = 

0 . 2 . 
The methane consumption rate is ˙ ω CH 4 = 

−W CH 4 Q and the heat release rate is ˙ ω T = �h ◦Q , 
where W CH 4 is the molar mass of methane and �h °
is the standard enthalpy of reaction. 

2.2. Linearized governing equations 

We split field variables into time-averaged and 

fluctuating parts, indicated by the overline and the 
prime, respectively. Linearization of equations (1) –
(4) yields: 

∂ρ ′ 

∂t 
+ 

∂ 

∂x j 

(
ρu ′ j + ρ ′ u j 

) = 0 , (8) 

∂ 

∂t 

(
ρu ′ i + ρ ′ u i 

) + 

∂ 

∂x j 

(
ρu i u ′ j + ρu ′ i u j + ρ ′ u i u j 

) = 

− ∂ p ′ 

∂x i 
+ 

∂τ ′ 
i j 

∂x j 
, (9) 

∂ 

∂t 

(
ρh ′ +ρ ′ h − p ′ 

)
+ 

∂ 

∂x j 

(
ρu j h ′ + ρu ′ j h +ρ ′ u j h 

)
= 

∂ 

∂x j 

( 

α
∂h ′ 

∂x j 
+ α′ ∂ h 

∂x j 

) 

+ ˙ ω 

′ 
T , (10) 

∂ 

∂t 

(
ρY 

′ 
k +ρ ′ Y k 

)+ 

∂ 

∂x j 

(
ρu j Y 

′ 
k + ρu ′ j Y k + ρ ′ u j Y k 

)= 

∂ 

∂x j 

( 

D 

∂Y 

′ 
k 

∂x j 
+ D 

′ ∂ Y k 

∂x j 

) 

+ ˙ ω 

′ 
k . (11) 

Note that the enthalpy equation cannot be reduced 

to the pressure equation because c p is not constant, 
see Eq. (5) . Furthermore, 

τ ′ 
i j = −2 

3 
δi j 

(
μ

∂u ′ l 
∂x l 

+ μ′ ∂ u l 
∂x l 

)

+ μ

(
∂u ′ i 
∂x j 

+ 

∂u ′ j 
∂x i 

)
+ μ′ 

(
∂ u i 
∂x j 

+ 

∂ u j 
∂x i 

)
, 

μ′ = μ
T + 3 T S 

2( T + T S ) 

T 

′ 

T 

, h ′ = c p T 

′ + 

∑ 

k 

h k Y 

′ 
k , 

T 

′ 

T 

= 

p ′ 

p 
− ρ ′ 

ρ
, 

˙ ω 

′ 
k = ˙ ω k 

( 

( a + b ) 
ρ ′ 

ρ
+ 

T a T 

′ 

T 

2 + a 
Y 

′ 
O 2 

Y O 2 

+ b 
Y 

′ 
CH 4 

Y CH 4 

) 

, 

D 

′ , α′ and ˙ ω 

′ 
T are computed in an analogous man- 

ner. Fuel mass fraction Y CH 4 appears in the de- 
nominator of the equation for ˙ ω 

′ 
k , which can lead 

to numerical problems. Its value is thus limited to 

Y CH 4 ≥ max ( Y CH 4 ) × 10 −4 . 
In this study, we consider premixed flames with 

the global one-step reaction. Thus, it suffices to 

transport a single species or a single progress 
variable. We choose to transport Y 

′ 
CH 4 

; hence the 
mass-fraction of oxygen required for the compu- 
tation of the reaction progress is given by Y 

′ 
O 2 

= 

(2 W O 2 /W CH 4 ) Y 

′ 
CH 4 

. The remaining linearized field 

variables are p ′ , ρ ′ , and u ′ i . For the sake of com- 
pactness, we avoid rewriting the linearized Eqs. (8) –
(11) in terms of the selected linearized variables, it 
can be done without essential difficulty using the 
expressions provided above. 

In closing this section we point out that in or- 
der to make the linearized equations fully consis- 
tent with the original nonlinear problem, first-order 
fluctuations of flow variables as well as material 
properties are retained. Note that the latter was cru- 
cial to achieve quantitative agreement with estab- 
lished methods (see below). Somewhat surprisingly, 
no sophisticated treatment of the strongly nonlin- 
ear Arrhenius term was required. 

2.3. Discretization 

The linearized reacting flow equations are dis- 
cretized using the discontinuous Galerkin finite el- 
ement method with a local Lax-Friedrichs flux for- 
mulation [13] . This method, which has proven to be 
robust for convectively-dominated problems, is an 

established method in CFD [14] and was adopted 

only recently for a hybrid thermoacoustic solver 
[8] . The discretization with linear ansatz functions 
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Fig. 1. Computational domain (top), mean heat release 
rate of the attached flame (middle) and of the lifted flame 
(bottom). 

for all linearized variables is implemented in the 
commercial software COMSOL Multiphysics. The 
mean fields are provided by OpenFOAM simula- 
tions. The derivatives of the mean fields, such as 
∂ u i /∂ x j , ∂ Y CH 4 /∂ x j , and ∂ h /∂x j , are computed by 
the LRF solver internally. 

In this study, the LRF solver computes the flame 
response in the frequency domain: 

ˆ ˙ Q = C ( iωE − A ) −1 B ̂  u ref , (12) 

where A, B, C and E are the system, input, out- 
put and mass matrices. Alternatively, the flame re- 
sponse may be deduced from a step response or 
broadband excitation in the time domain [3,15] . We 
solve for eigenvalues with an implicitly restarted 

Arnoldi algorithm [16] . All computations are per- 
formed with the direct parallel solver MUMPS [17] . 

3. Hybrid thermoacoustic models 

The FTFs predicted by the LRF approach shall 
be verified by comparison with FTFs identified 

from CFD time-series, see Section 4.1 and [3,15] . 
Moreover, frequency and growth rate of the dom- 
inant thermoacoustic mode predicted by the LRF 

approach shall be compared to established hybrid 

approaches, which couple a model for the propa- 
gation and dissipation of acoustic waves with an 

FTF. In this section, the acoustic models are briefly 
described. 

3.1. Thermoacoustic network-model 

To represent the configurations under investiga- 
tion (see Fig. 1 ), thermoacoustic network-models 
are built from simple elements such as ducts and 

sudden changes in cross-sectional area. The flame 
is assumed to be acoustically compact, so fluctua- 
tions of the global heat release rate ˙ Q 

′ fully describe 
the flame dynamics and are related to the velocity 

fluctuations u ′ ref at a reference point upstream of the 
flame through an FTF: 

ˆ ˙ Q 

˙ Q 

= F ( ω ) 
ˆ u ref 

u ref 
, (13) 

where the circumflex denotes the complex fluc- 
tuation amplitude at frequency ω. The FTF is 
then coupled to the TNMs via linearized Rankine–
Hugoniot jump conditions [4] . The network mod- 
els are set up with the open source tool taX [18,19] , 
which is based on a state-space formulation. The 
TNMs comprise no more than one thousand de- 
grees of freedom; hence eigenvalues are computed 

within seconds. In the configuration investigated, 
the ducts are very short, so the corresponding 
viscous losses are negligible. Furthermore, loss 
coefficients at area jumps are not applied since 
semi-empirical approximations for the acoustic 
losses involve a high degree of uncertainty. There- 
fore, the reader should keep in mind that growth 

rates computed with the TNMs represent a worst- 
case result. 

3.2. Linearized Navier–Stokes coupled with FTF 

The hybrid model based on the linearized 

Navier-Stokes equations employs the same equa- 
tions and discretization as the LRF, but without the 
transport equation for the fuel mass-fraction and 

the corresponding linearized reaction rate in the en- 
thalpy equation. Instead, the unsteady heat release 
is represented by an FTF. The LNSE uses the same 
FTF as the TNM but additionally resolves the spa- 
tial extent of the flame. Thus, the fluctuating heat 
release rate results in a spatially distributed source 
term ˙ ω 

′ 
T . Following [5,8] , we assume a distribution 

proportional to the local mean heat release rate: 

ˆ ˙ ω T ( � x ) = ˙ ω T ( � x ) F ( ω ) 
ˆ u ref 

u ref 
. (14) 

Using this formulation, the local fluctuations of 
the heat release rate are synchronized throughout 
the entire domain. This should be adequate for an 

acoustically compact flame, although it ignores any 
phase lag between the flame response at the root 
and the tip, say, and the consequential possibility 
of destructive interference. 

Both the TNM and the LNSE models employed 

in this study employ a state-space formulation. The 
FTF is also converted to the state space representa- 
tion and coupled with the acoustic system matrices, 
which yields a linear eigenvalue problem [8,19] . 

Note that the LNSE solver requires roughly 
10% to 30% less computational resources than the 
LRF solver on the same mesh due to the reduced 

number of variables. 
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4. Investigation of a laminar premixed flame 

4.1. Numerical setup 

By way of example, we investigate a generic, 
laminar premixed flame that is stabilized on a slit 
as shown in Fig. 1 (top). Exploiting the symmetry 
along and across the slits reduces the simulation do- 
main to one-half of the flame in two dimensions. If 
the burner plate is adiabatic, then the flame attaches 
to it, see Fig. 1 (middle). Setting a constant sur- 
face temperature T W 

= 375 K at the burner plate 
results in a lifted flame as shown in Fig. 1 (bot- 
tom). The remaining flow parameters are identical 
for both configurations: the inlet velocity is 0.3 m/s, 
the equivalence ratio equals 0.8, the inlet tempera- 
ture is 293 K, and the outlet pressure is 101325 Pa. 

The CFD solver employs standard boundary 
conditions: isothermal inlet with fixed velocity and 

mixture, outlet with fixed static pressure, non-slip 

walls at the burner plate, symmetry at the top and 

bottom of the computational domain. A struc- 
tured mesh with 53600 square cells of size of �x = 

25 μm resolves the flame with 16 cells. 
The LRF and LNSE solvers use corresponding 

linearized boundary conditions. Two meshes are 
used: a fine mesh that is identical to the CFD mesh, 
and a coarser mesh with �x = 40 μm and 21100 
cells (10 cells across the flame). 

A flame transfer function as required for hy- 
brid models is identified as a finite impulse response 
from time-series data generated by OpenFOAM 

simulations. A broadband velocity excitation with 

an amplitude of 0 . 05 u inlet is imposed at the inlet. 
To ensure a robust simulation and reduce noise, a 
weakly compressible version of the reactive Open- 
FOAM solver is employed [20] . The CFL number 
is 0.1, and the simulation time is 0.15 s, which is suf- 
ficient for the accurate identification of the FTF in 

this study. The identification methodology is dis- 
cussed in detail by Tay-Wo-Chong et al. [3] and Po- 
lifke [15] . The computation of the FTF is quite time 
consuming, since it requires a long time series for 
the identification process – typically 0.15 s to 0.3 s, 
which entails compute times of several days. 

OpenFOAM simulations without excitation 

provide the flow parameters of the burnt and un- 
burnt gas for the TNM as well as the mean fields for 
the LNSE and LRF. In these simulations, the CFL 

number was decreased to 0.01 to better resolve the 
chemical time scale and thus obtain a better flame- 
front resolution. 

4.2. Flame transfer function 

We use the inlet velocity of the computational 
domain as the reference velocity for the flame trans- 
fer functions, see Eq. (13) . 

The FTFs of the attached (left) and lifted (right) 
flames were identified from the OpenFOAM time- 
series with more than 95% accuracy, see Fig. 2 . Due 

to a very high identification accuracy, the confi- 
dence intervals are negligibly small and therefore 
omitted. Both flames show a low-pass behavior. 
The lifted flame exhibits an excess gain at around 

65 Hz, followed by a very rapid decline, such that 
its response is close to zero for frequencies above 
200 Hz. 

Figure 2 also shows the flame frequency re- 
sponses computed by the LRF solver with two dif- 
ferent meshes. For both the attached and lifted 

flames, the LRF solver yields similar results for 
mesh sizes �x = 40 μm and 25 μm , indicating dis- 
cretization independence. Further reduction of the 
mesh size preserving the FTF quality is possible by 
coarsening the regions further away from the flame 
and the corners of the burner plate. In the follow- 
ing, we focus on results obtained on the fine mesh 

( �x = 25 μm ), which corresponds to the CFD 

mesh. 
The LRF solver predicts the phase of the fre- 

quency response well. The gain of the frequency re- 
sponse is perfectly predicted for the attached flame 
and overestimated by up to 10% for the lifted flame. 
These results are achieved at significantly lower 
computational cost than running a transient CFD 

simulation for the FTF identification: 6 CPUh and 

22 GB RAM for the computation of 16 frequency 
responses vs. 300 CPUh and 2Gb RAM for the 
CFD simulation on the same mesh. To reduce the 
RAM requirements, an iterative solver may be used 

– typically at the cost of longer computational time. 

4.3. Thermoacoustic eigenmodes 

In this section, we investigate the thermoacous- 
tic eigenmodes and eigenvalues – i.e. frequencies 
and growth rates – of the two flame configurations. 
The simulation domain is very small (14 mm), such 

that acoustic cavity-modes can be found only at 
very high frequencies in the kHz range. Thus, we set 
the inlet and outlet boundaries to be nonreflecting 
and concentrate on intrinsic thermoacoustic (ITA) 
eigenmodes, which may be unstable for nonreflect- 
ing boundaries provided that the flame response is 
sufficiently strong [21,22] . Alternatively, impedance 
boundary conditions formulated as state space sys- 
tems could be used, as suggested by Jaensch et al. 
[23] . The frequencies of ITA modes in an anechoic 
environment can be approximately determined by 
the “π criterion” [21] : ITA modes may occur when- 
ever the phase of the FTF is close to an odd multiple 
of π . Inspecting Fig. 2 , we see that ITA frequencies 
should be around 170 Hz for the attached flame and 

100 Hz for the lifted flame. 
Now, we compare predictions of the LRF 

solver with the two hybrid approaches described in 

Section 3 . The TNM ( ◦) and LNSE ( 
� 

) share the 
same FTF identified from CFD time-series as de- 
scribed in the previous subsection. All models pre- 
dict the unstable thermoacoustic modes and yield 
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Fig. 2. Frequency response of the attached flame (left) and the lifted flame (right) identified using CFD time-series ( ) 
and computed using the LRF solver with mesh sizes �x = 40 μm ( ) and 25 μm ( ). Thin black lines ( ) visualize the 
π criterion for ITA modes. 

Fig. 3. Dominant thermoacoustic eigenvalues of the at- 
tached flame ( ≈ 170 Hz) and the lifted flame ( ≈ 100 Hz) 
predicted with LRF ( + ), LNSE with FTF LRF ( � ), LNSE 

( 
� 

) and TNM ( ◦) with FTF identified from CFD time- 
series. 

eigenfrequencies similar to the ones suggested by 
the π criterion. 

The LRF solver requires most computa- 
tional resources for the eigenvalue computation 

(0.4 CPUh and 22 GB RAM). The LNSE solver 
requires slightly less computational resources 
(0.4 CPUh and 18 GB RAM). The TNM solver 
computes eigenvalues within seconds due to the 
small number of degrees of freedom. Keep in 

mind, however, that even though the hybrid solvers 
are less costly than the LRF solver, they require 
to determine or measure an external FTF with 

considerable effort. 
The LNSE as well as the LRF account for mean 

flow effects and allow for a linear energy trans- 
fer between acoustics, vorticity, and entropy waves. 

Fig. 4. Unstable eigenmode of the attached flame at 
170 Hz: positive real part of the fluctuating heat release 
rate in black and negative in white at the top, its stream- 
wise distribution at the bottom. 

That results in a more accurate prediction of acous- 
tic dissipation than using TNM and, typically, in 

smaller growth rates. The TNM ( ◦) provides higher 
growth rates than the LNSE ( 

� 

), since the TNM 

neglects acoustic losses other than those associated 

with the nonreflecting in- and outlets. 
The growth rates computed by the LRF ( + ) 

differ from those computed by the LNSE ( 
� 

). We 
offer two reasons for this discrepancy. Firstly, LRF 

slightly over-predicts the FTF gain of the lifted 

flame at its eigenfrequency, which should translate 
into an increase in growth rate [21] . 

Secondly, there are important differences in 

the modeling of flow-flame interactions by the 
LRF and LNSE. The LRF locally resolves the 
flow-flame interaction. This is demonstrated, for 
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Fig. 5. Unstable eigenmode of the attached flame at 170 Hz: magnitude (left) and phase (right) of the fluctuating stream- 
wise velocity normalized at the inlet for the LRF (top) and LNSE (bottom) models. Black lines indicate the mean flame 
position. 

instance, for the attached flame 2 in Fig. 4 . The fig- 
ure shows the unstable mode at 170 Hz in terms 
of the real part of the fluctuating heat release rate. 
Only the flame tip yields a significant contribution 

to the global fluctuation of the heat release rate, 
since the local fluctuations upstream of the flame 
tip cancel out. The local fluctuations in heat release 
rate change from negative (white color) to posi- 
tive (black) across the flame indicating the onset of 
the flame movement towards the burnt mixture (or 
vice versa). Furthermore, the LRF captures a dis- 
tortion, initiated at the flame root and propagated 

downstream along the flame, changing the direc- 
tion of the flame movement 3 

In contrast, the LNSE does not explicitly resolve 
the spatio-temporal evolution of flame movement 
and distortion along the length of the flame. In- 
stead, the heat release rate fluctuation is synchro- 
nized along the length of the flame and is propor- 
tional to the mean heat release rate. Consequently, 
the fluctuating velocity fields that result from un- 
steady heat release differ for the LRF and LNSE 

formulations (see Fig. 5 ), which should contribute 
to the differences in predicted growth rates. 

To facilitate further analysis, we introduce one 
additional model. We couple the LNSE with the 
flame transfer function that is computed using the 
linearized reactive flow solver 4 This new model is 
abbreviated as LNSE LRF . The LRF and LNSE LRF 
share the same FTF, so these two models cannot 
show any discrepancies in their growth-rate predic- 
tions related to the gain of the FTF, but only related 

to the differences in the flow-flame modeling. 
For the lifted flame, the growth rates provided by 

the LRF ( + ) and LNSE LRF ( � ) are in a much bet- 
ter agreement than those provided by the LRF ( + ) 
and LNSE ( 

� 

). Hence, the discrepancy between the 
LRF and LNSE originates mostly from the gain 

2 The detached flame shows a similar onset of move- 
ment. 

3 An animation of the propagating flame distortion is 
provided in supplementary materials. 

4 The FTF LRF is fitted as a rational polynomial to a 
sampled frequency response and is valid over the entire 
frequency range. 

of the FTF at the eigenfrequency, which was over- 
predicted by the LRF. 

For the attached flame, the gain of the FTF is 
perfectly captured by the LRF. Hence, the differ- 
ence between the growth rates computed by the 
LRF ( + ) and LNSE ( 

� 

) is attributed solely to the 
differences in the flow-flame modeling. 

5. Conclusion and outlook 

This paper introduces a linearized reactive flow 

solver to analyze the flame dynamics of attached 

and lifted laminar premixed flames as well as their 
thermoacoustic stability. The LRF captures the dy- 
namics of both flames quite well: the phase of the 
flame frequency response is accurately predicted, 
while its gain is very well predicted for the at- 
tached flame and only slightly overestimated for 
the lifted flame. The LRF solver also correctly pre- 
dicts the dominant thermoacoustic modes and re- 
solves the spatio-temporal evolution of the mode 
shapes, making explicit the local fluctuations of 
heat release, the onset of the flame movement, 
and the convective propagation of flame distor- 
tion. For the simplistic test cases considered here 
with compact, velocity-sensitive, premixed flames, 
established thermoacoustic models such as TNM 

and LNSE also capture the eigenmodes in terms of 
frequency and growth rate quite well, but they do 

not resolve local flow-flame interaction due to their 
coupling with a global FTF. 

The LRF is a very promising approach be- 
cause of its monolithic formulation with an inher- 
ent flow-flame-acoustic interaction. Admittedly, it 
is computationally more expensive than the LNSE 

approach due to one additional variable and pos- 
sibly higher resolution in the flame region. On the 
other hand, the LRF approach does not require 
an external FTF, so an unsteady CFD simula- 
tion for the identification of the FTF is not re- 
quired. The local flow-flame interaction resolved 

by the LRF is particularly important for the inves- 
tigation of non-compact flames and/or non-plane 
acoustics, i.e. at higher frequencies, where a stan- 
dard FTF that relates upstream velocity to over- 
all heat release is inadequate [24–26] . Moreover, 
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configurations where fluctuations in equivalence 
ratio, pressure or temperature perturb the heat 
release require corresponding MISO or MIMO 

(multiple-input, single/multiple-output) formula- 
tions of hybrid models. In such cases, it is strictly 
speaking necessary to identify several flame trans- 
fer functions and couple them to an acoustic model, 
which can quickly become expensive and cumber- 
some. Conversely, LRF makes possible increased 

flexibility in the analysis of such systems: any 
combination of fluctuating variables may be cho- 
sen as “input” or “output”, the respective trans- 
fer behavior or sensitivities may be studied in a 
MIMO framework with very favorable computa- 
tional costs. 

Future studies should extend the approach to 

turbulent, technically premixed flames at high fre- 
quencies and exploit advantages or identify limita- 
tions of the method. 

Acknowledgments 

The authors gratefully acknowledge funding 
provided by the German Federal Ministry for Eco- 
nomics and Energy (FKZ 03ET7021U) and GE 

Power. The investigations were conducted in the 
framework of the joint research program of AG 

Turbo (COOREFLEX-turbo 2.1.2c). The authors 
gratefully acknowledge the computational and data 
resources provided by the Leibniz Supercomputing 
Centre. We also thank Felix Schily for helping with 

the setup of network models in taX and Alp Al- 
bayrak for fruitful discussions about the LRF. 

Supplementary material 

Supplementary material associated with this ar- 
ticle can be found, in the online version, at 10.1016/ 
j.proci.2018.06.142 

References 

[1] L. Crocco , J. Am. Rock. Soc. (1951) 163–178 . 
[2] K. T. Kim, H. J. Lee, J. G. Lee, B. D. Quay, D. San- 

tavicca (2009) 799–810. doi: 10.1115/GT2009-60026 . 
[3] L. Tay-Wo-Chong, S. Bomberg, A. Ulhaq, T. Ko- 

marek, W. Polifke, J. Eng. Gas Turbines Power 134 (2) 
(2012) 021502–1–8, doi: 10.1115/1.4004183 . 

[4] B.T. Chu, in: 4th Symposium (International) on 
Combustion, volume 4, Combustion Institute, Cam- 
bridge, Massachusetts, USA, 1953, pp. 603–612, 
doi: 10.1016/S0082- 0784(53)80081- 0 . 

[5] F. Nicoud, L. Benoit, C. Sensiau, T. Poinsot, AIAA 

J. 45 (2) (2007) 426–441, doi: 10.2514/1.24933 . 
[6] M. Zahn, M. Betz, M. Schulze, C. Hirsch, T. 

Sattelmayer (2017) V04AT04A081. doi: 10.1115/ 
GT2017-64238 . 

[7] J. Gikadi , T. Sattelmayer , A. Peschiulli , in: ASME 

Turbo Expo 2012: Turbine Technical Conference and 
Exposition, American Society of Mechanical Engi- 
neers, 2012, pp. 1203–1211 . 

[8] M. Meindl , A. Albayrak , W. Polifke , submitted to J. 
Comput. Phys. (2018) . 

[9] M.P. Juniper, R.I. Sujith, Ann. Rev. Fluid 
Mech. 50 (1) (2018) 661–689, doi: 10.1146/ 
annurev- fluid- 122316- 045125 . 

[10] J.F. van Kampen, J.B.W. Kok, T.H. van der Meer, Int. 
J. Numer. Methods Fluids 54 (9) (2007) 1131–1149, 
doi: 10.1002/fld.1424 . 

[11] M. Blanchard, T. Schuller, D. Sipp, P.J. Schmid, Phys. 
Fluids 27 (4) (2015) 043602, doi: 10.1063/1.4918672 . 

[12] C.K. Westbrook, F.L. Dryer, Combust. Sci. 
Technol. 27 (1–2) (1981) 31–43, doi: 10.1080/ 
00102208108946970 . 

[13] B. Cockburn, S.-Y. Lin, C.-W. Shu, J. Comput. Phys. 
84 (1) (1989) 90–113, doi: 10.1016/0021-9991(89) 
90183-6 . 

[14] B. Cockburn, G.E. Karniadakis, C.-W. Shu, in: Lec- 
ture Notes in Computational Science and Engineer- 
ing, Springer, Berlin, Heidelberg, 2000, pp. 3–50, 
doi: 10.1007/978- 3- 642- 59721- 3 _ 1 . 

[15] W. Polifke, Ann. Nuclear Energy 67C (2014) 109–128, 
doi: 10.1016/j.anucene.2013.10.037 . 

[16] R. Lehoucq, D. Sorensen, SIAM J. Ma- 
trix Anal. Appl. 17 (4) (1996) 789–821, 
doi: 10.1137/S0895479895281484 . 

[17] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, J. 
Koster, in: T. Sørevik, F. Manne, A. H. Gebremed- 
hin, R. Moe (Eds.), Applied Parallel Computing. 
New Paradigms for HPC in Industry and Academia, 
number 1947 in Lecture Notes in Computer Sci- 
ence, Springer Berlin Heidelberg, 2000, pp. 121–130. 
doi: 10.1007/3- 540- 70734- 416 . 

[18] T. Emmert , S. Jaensch , C. Sovardi , W. Polifke , in: 7th 
Forum Acusticum, DEGA, Krakow, 2014 . 

[19] T. Emmert, M. Meindl, S. Jaensch, W. Polifke, Acta 
Acust. United Acust. 102 (5) (2016) 824–833, doi: 10. 
3813/AAA.918997 . 

[20] S. Jaensch, M. Merk, E.A. Gopalakrishnan, et al., 
Proc. Combust. Inst. 36 (3) (2017) 3827–3834, doi: 10. 
1016/j.proci.2016.08.006 . 

[21] M. Hoeijmakers, V. Kornilov, I. Lopez Arteaga, 
P. de Goey, H. Nijmeijer, Combust. Flame 161 (11) 
(2014) 2860–2867, doi: 10.1016/j.combustflame.2014. 
05.009 . 

[22] C.F. Silva, T. Emmert, S. Jaensch, W. Polifke, Com- 
bust. Flame 162 (9) (2015) 3370–3378, doi: 10.1016/j. 
combustflame.2015.06.003 . 

[23] S. Jaensch, C. Sovardi, W. Polifke, J. Comput. Phys. 
314 (2016) 145–159, doi: 10.1016/j.jcp.2016.03.010 . 

[24] M. Zellhuber, J. Schwing, B. Schuermans, T. Sat- 
telmayer, W. Polifke, Int. J. Spray Combust. Dyn. 6 
(2014) 1–34, doi: 10.1260/1756-8277.6.1.1 . 

[25] T. Hummel, F. Berger, M. Hertweck, B. Schuermans, 
T. Sattelmayer, J. Eng. Gas Turbines Power 139 (7) 
(2017) 071502–071502–10, doi: 10.1115/1.4035592 . 

[26] Y. Méry, Combust. Flame 192 (2018) 410–425, 
doi: 10.1016/j.combustflame.2018.02.007 . 

132



Combustion and Flame 223 (2021) 525–540 

Contents lists available at ScienceDirect 

Combustion and Flame 

journal homepage: www.elsevier.com/locate/combustflame 

On the spurious entropy generation encountered in hybrid linear 

thermoacoustic models 

Max Meindl ∗, Camilo F. Silva , Wolfgang Polifke 

Technical University of Munich, Garching 85747, Germany 

a r t i c l e i n f o 

Article history: 

Received 10 June 2020 

Revised 16 September 2020 

Accepted 16 September 2020 

Keywords: 

Thermoacoustic combustion instability 

Flow-flame interaction 

Entropy waves 

Flame transfer function 

Linearized Navier–Stokes 

Linearized reactive flow 

a b s t r a c t 

This work demonstrates that a hybrid approach for linear thermoacoustic stability analysis that combines 

the Linearized Navier–Stokes Equations (LNSE) with a global Flame Transfer Function (FTF), generates 

spurious entropy waves when used to model acoustically forced premixed flames. The inability of the 

global FTF to account for the effects of flame movement is identified as the root cause of this unphysi- 

cal behavior. Utilization of a local FTF, which resolves unsteady heat release on scales comparable to the 

reaction zone of the flame, suppresses the spurious entropy perturbations. This affirms that fine-grained 

resolution of the spatio-temporal distribution of heat release rate fluctuations in the combustion zone 

is required to model the movement of the flame front, even for acoustically and convectively compact 

flames. As an alternative to hybrid models, a Linearized Reactive Flow (LRF) approach is employed, which 

extends the LNSE by the linearized species transport equations as well as the reaction mechanism. Such 

a monolithic approach inherently accounts for the locally resolved flame dynamics, including the move- 

ment of the flame front, and does not require an external model for the flame-flow interaction. Thus 

the LRF eliminates the need for the cumbersome identification of a local FTF. Two configurations of lean 

premixed methane-air flames, i.e. a freely propagating 1D flame and a 2D flame anchored in a duct, are 

considered for validation. All results obtained with linearized modeling approaches and conclusions de- 

duced thereof are validated against high resolution CFD results with excellent quantitative accuracy. 

© 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

Gas turbines play an important role not only for propulsion in 

aero-engines, but also in the energy sector, where they provide 

flexible generation of electricity to complement highly fluctuating 

renewable sources of energy. During the past decades, increasing 

restrictions on pollutant emissions have been enforced, which have 

promoted the development of lean premixed combustion technol- 

ogy, featuring aerodynamically stabilized, velocity sensitive flames. 

The downside of this technology is its susceptibility to thermoa- 

coustic instabilities, a phenomenon that results from feedback in- 

teractions between unsteady combustion and acoustic velocity per- 

turbations impinging on the flame [1] . The consequences of such 

instabilities range from increased emissions up to the deteriora- 

tion and eventual destruction of the engine. Studying the physics, 

identifying the most influential parameters and predicting the res- 

onant frequencies, stability limits and margins, is thus vital for the 

design of reliable, flexible and efficient modern gas turbines. 

∗ Corresponding author. 

E-mail addresses: meindl@tum.de , meindl@tfd.mw.tum.de (M. Meindl). 

Due to the high costs and restricted diagnostic access on 

experimental test rigs, numerical simulations are employed to 

complement or replace experiments during the design process. 

A plethora of model strategies is available, ranging from linear, 

quasi-1D network models [2–4] to Computational Fluid Dynamics 

(CFD) for laminar flames [5–7] , or highly resolved and thus very 

costly Large Eddy Simulation (LES) for turbulent flames [8–10] . 

Opposed to the monolithic approach of CFD, which naturally incor- 

porates the dynamics of combustion processes, one commonality 

of most low-order models is their hybrid nature: the acoustics 

and the flame dynamics are described by dedicated sub-models, 

which are coupled to each other to construct a complete ther- 

moacoustic model. The propagation of acoustic waves is modeled, 

e.g., by quasi 1D network models or 2D/3D models based on the 

Helmholtz Equations, Linearized Euler Equations (LEE) or more 

recently the Linearized Navier-Stokes Equations (LNSE) [11–18] . In 

the given order, the complexity and computational cost, but also 

the capabilities of these formulations increase. For example, LNSE 

can incorporate so-called convective waves, i.e. the convective 

transport of perturbations of fuel concentration, entropy or vor- 

ticity by the mean flow, which may be important elements of the 

https://doi.org/10.1016/j.combustflame.2020.09.018 

0010-2180/© 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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thermoacoustic feedback loop. Furthermore, LNSE can take into 

account interactions between acoustics and mean flow as well as 

other damping mechanisms that result in loss of acoustic energy 

in a combustor. These capabilities account for the interest in 

hybrid thermoacoustic models based on the LNSE, see e.g. [15–18] . 

The sub-model for the flow-flame interaction can in general be 

chosen independent of the acoustic governing equations. For lin- 

ear stability analysis, the so-called Flame Transfer Function (FTF), 

stemming from measurements, numerical simulations or analytical 

expressions, is often employed. It relates upstream velocity pertur- 

bations to fluctuations of the global heat release rate. 

Recently, a Linearized Reactive Flow (LRF) model was intro- 

duced [19,20] . The formulation is based on an analytical lineariza- 

tion of the governing equations, unlike the numerical linearization 

approach pursued in [21,22] . The LRF differs from the other linear 

models mentioned above inasmuch as it is not hybrid 

1 in nature. 

Instead, not only the Navier-Stokes, but also the species transport 

equations alongside with the reaction kinetics are linearized. This 

leads to an inherent incorporation of the locally resolved flame dy- 

namics, without the need for a flow-flame sub-model, such as the 

FTF. In terms of complexity and cost, the LRF is found at the top 

end of the linear model spectrum. It features the most detailed 

description of the physics behind thermoacoustic instabilities and 

consequently, one may expect that it is the most accurate predic- 

tive tool – within the limits of a linearized analysis. Much like low- 

order models, the LRF ansatz can be used to carry out thermoa- 

coustic stability analysis by computing the frequencies and growth 

rates of eigenmodes [20] . Furthermore, flow-flame interaction can 

be computed with an LRF formulation e.g. in the form of an FTF, 

as shown in [19,20,22] . 

Quantitative differences in the predictions of thermoacoustic 

oscillations obtained with network, LNSE and LRF models, respec- 

tively, were discussed in [20,23] . In these studies, direct sources of 

acoustic perturbations, i.e. the unsteady heat release rate by the 

flame itself, were accounted for. The main focus of the present 

study lies, conversely, on the generation of entropy waves by 

acoustic-flow-flame interactions, which may represent an impor- 

tant source of indirect sound. Indeed, it is understood that the ac- 

celeration of entropy perturbations at the turbine inlet, say, may 

generate indirect sound with significant impact on thermoacous- 

tic stability and combustion noise, see e.g. [24–40] . It is therefore 

imperative that a comprehensive thermoacoustic model correctly 

represents not only the effect of the perturbed heat release rate on 

the acoustics, but also on the generation of entropy waves. Several 

studies investigated the dispersion of entropy waves while being 

convected towards the combustor outlet [37,38,41–43] as well as 

the conversion of entropy perturbations to acoustic waves due to 

acceleration of the flow [24,29,30,33,35,39,40,44,45] . There are also 

several studies concerned with the generation of entropy waves by 

temperature inhomogeneities in non-reacting flows [46–48] or in 

acoustically compact reaction zones, which are treated as a dis- 

continuity in the acoustic model [49–52] . To date, the ability of 

linearized thermoacoustic models to correctly predict the genera- 

tion of entropy perturbations in a spatially extended combustion 

zone has been studied only by Steinbacher et al. [43] . 

The present paper demonstrates that modeling a lean premixed 

flame by means of the LNSE combined with a global FTF, which 

1 Note that the LRF, like all low-order models, requires information about the 

mean flow in the combustor, e.g. the spatial distribution of speed of sound, tem- 

perature or mean flow velocity, and could thus be classified as “hybrid” instead of 

“monolithic”. However, such classification would not make sense in the context of 

the present study. Instead, throughout this paper, we will regard a model as ”hy- 

brid”, if it consists of dedicated sub-models for acoustics and flow-flame interaction, 

respectively, and ”monolithic” otherwise. 

represents the perturbed heat release rate in a lumped fashion, 

leads to unphysical behavior: spurious entropy waves are gener- 

ated when the flame is forced acoustically, in violation of fun- 

damental conservation laws and contradicting the recent litera- 

ture [51,52] . Given that the entropy waves encountered in this case 

are of unphysical nature, the indirectly generated sound in an ac- 

celerated flow downstream would thus falsely influence the ther- 

moacoustic oscillations and have a detrimental effect on the cor- 

rectness of stability predictions. The main objective of the present 

study is the analysis of the spurious entropy generated by the LNSE 

paired with a global FTF, and the assessment of two approaches 

that do not generate spurious entropy, i.e. LNSE combined with a 

highly resolved local FTF, or LRF. 

We supply evidence that the global FTF, which outputs a 

lumped value for the global fluctuation of the heat release rate, 

cannot properly represent the effect of flame movement, which in 

turn leads to the spurious entropy waves. Specifically, because the 

local values of the fluctuating heat release rate are unknown, an 

assumption about their spatial distribution has to be made. One 

possibility is to assume that the fluctuations follow in shape the 

mean heat release rate. This assumption, although intuitive, will be 

shown to be inadequate when investigating the generation of en- 

tropy waves. Indeed, it is a crucial modeling mistake that leads to 

significant errors in the prediction of entropy production and per- 

turbation fields in the flame region and downstream of the flame. 

The origin of these errors – as will be shown below – is the in- 

ability of the LNSE to properly account for the fact that a pre- 

mixed flame front is not a heat source at rest, but a heat source 

in kinematic balance with the approach flow [51,53,54] . The use of 

a local FTF, which resolves unsteady heat release on length scales 

comparable to the reaction zone of the flame, is shown to rem- 

edy the situation to a large extent. Likewise, the monolithic LRF 

does not exhibit spurious generation of entropy waves, as it inher- 

ently accounts for the local flame dynamics. It represents thus a 

promising alternative to hybrid models. Note that all results ob- 

tained with linearized tools and conclusions deduced thereof are 

validated against high resolution CFD results with excellent quan- 

titative accuracy. 

The paper is structured as follows: the governing equations for 

CFD, LNSE and LRF are presented in Section 2 . Section 3 is dedi- 

cated to modeling approaches for the perturbed heat release rate 

in hybrid models via an FTF. A 1D freely propagating flame is in- 

vestigated in Section 4 as a bare-bones example for the excess en- 

tropy perturbations stemming from the hybrid LNSE approach cou- 

pled to a global FTF. A locally resolved FTF is introduced in order to 

include the effects of flame movement and thereby correctly pre- 

dict the flow perturbations. This topic is expanded in Section 5 by 

the analysis of an anchored, 2D, laminar, premixed flame. The pa- 

per concludes with a summary and an outlook on the ramifications 

of the findings. A derivation of the various physical contributions 

to entropy perturbations by linearization of the entropy trans- 

port equation for a reactive flow is provided as Supplementary 

Material. 

2. Governing equations 

This section presents the set of governing equations for com- 

pressible reactive flow, which represents the basis of all variants 

of numerical analysis of flame dynamics carried out in the present 

study, i.e. CFD, LRF and LNSE. Linearization of the governing equa- 

tions yields the linearized reactive flow (LRF) model. By omitting 

the species transport equations as well as the reaction rates from 

the system of equations, the linearized Navier-Stokes equations 

(LNSE) are obtained. 
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2.1. Compressible reactive flow 

Compressible reactive flow is modeled by the fully compressible 

Navier-Stokes equations combined with transport equations for the 

species that comprise the chemical kinetics mechanism: 

∂ρ

∂t 
+ 

∂ρu j 

∂x j 
= 0 , (1) 

∂ρu i 

∂t 
+ 

∂ρu i u j 

∂x j 
= − ∂ p 

∂x i 
+ 

∂τi j 

∂x j 
, (2) 

∂ 

∂t 
( ρh − p ) + 

∂ρu j h 

∂x j 
= 

∂ 

∂x j 

(
α

∂h s 

∂x j 

)
+ 

˙ �T , (3) 

∂ρY k 
∂t 

+ 

∂ρu j Y k 
∂x j 

= 

∂ 

∂x j 

(
D k 

∂Y k 
∂x j 

)
+ 

˙ �k . (4) 

Here, ρ is the density, p is the pressure, u i is the velocity in the 

Cartesian coordinate direction x i , h is the total non-chemical en- 

thalpy, h s is the sensible non-chemical enthalpy, τ ij is the viscous 

stress tensor, Y k is the mass fraction of species k, α and D k are the 

thermal and species diffusivity, respectively. ˙ �T is the volumetric 

heat release rate due to combustion and 

˙ �k is the source of species 

k . The fluid is assumed to behave like an ideal gas, 

p = ρRT . (5) 

Stokes’ Hypothesis 

τi j = μ

(
∂u i 

∂x j 
+ 

∂u j 

∂x i 
− 2 

3 

∂u k 

∂x k 
δi j 

)
, (6) 

is combined with Sutherland’s Law 

μ = A S 
T 1 / 2 (

1 + 

T S 
T 

) , (7) 

for the viscous stress tensor, where μ is the dynamic viscosity, 

δij is the Kronecker-Delta, A S = 1 . 67212 · 10 −6 kg / ( msK 

1 / 2 ) and T S = 

170 . 672 K . The total non chemical enthalpy 

h = h s + 

1 

2 

u k u k (8) 

is defined as the sum of sensible enthalpies of the species, 

h s = 

∑ 

k 

h s,k Y k , h s,k (T ) = 

∫ T 

T ref 

c p,k ( ̃  T ) d ̃

 T , (9) 

and specific kinetic energy. The Prandtl number Pr = μ/α and 

Schmidt number Sc k = μ/D k for all species are fixed at 0.71, which 

is reasonable for a methane-air mixture [55] . Due to the low Mach 

number of the flows under consideration in this work, viscous 

heating is neglected. The global two-step chemical kinetics mech- 

anism used in the present study to evaluate the source terms ˙ �T , 
˙ �k in Eqs. (3) and (4) is described in Appendix A . The compress- 

ible reacting solver rhoReactingFoam from the OpenFOAM tool- 

box [56] , which was used to generate the CFD results presented in 

this study, is based on the above set of equations. 

2.2. Linearized governing equations 

The unknown variables �( x , t ) of the reactive flow equations 

can be split into a steady-state mean flow �̄(x ) and unsteady per- 

turbations �′ ( x , t ) by means of a perturbation ansatz, 

�(x , t) = �̄(x ) + �′ (x , t) . (10) 

Inserting this ansatz into Eqs. (1) –(4) and assuming that the per- 

turbations are small compared to suitable reference quantities in 

the mean flow, higher order perturbation terms can be neglected 

and the linearized reactive flow (LRF) equations are retrieved, 
∂ρ ′ 
∂t 

+ 

∂ 

∂x j 

(
ρ̄u 

′ 
j + ρ ′ ū j 

)
= 0 , (11) 

∂ 

∂t 

(
ρ̄u 

′ 
i + ρ ′ ū i 

)
+ 

∂ 

∂x j 

(
ρ̄ū i u 

′ 
j + ρ̄u 

′ 
i ū j + ρ ′ ū i ū j 

)
= −∂ p ′ 

∂x i 
+ 

∂τ ′ 
i j 

∂x j 
, 

(12) 

∂ 
∂t 

(
ρ̄h 

′ + ρ ′ h̄ − p ′ 
)

+ 

∂ 
∂x j 

(
ρ̄ū j h 

′ + ρ̄u 

′ 
j 
h̄ + ρ ′ ū j ̄h 

)
= 

∂ 
∂x j 

(
ᾱ ∂h ′ s 

∂x j 
+ α′ ∂ ̄h s 

∂x j 

)
+ 

˙ �′ 
T , (13) 

∂ 
∂t 

(
ρ̄Y ′ 

k 
+ ρ ′ Ȳ k 

)
+ 

∂ 
∂x j 

(
ρ̄ū j Y 

′ 
k 

+ ρ̄u 

′ 
j 
Ȳ k + ρ ′ ū j ̄Y k 

)
= 

∂ 
∂x j 

(
D̄ k 

∂Y ′ 
k 

∂x j 
+ D 

′ 
k 

∂ ̄Y k 
∂x j 

)
+ 

˙ �′ 
k 
. (14) 

The linearization of the chemical kinetics mechanism that is 

required to determine the linearized source terms ˙ �′ 
T 
, ˙ �′ 

k 
in 

Eqs. (11) –(14) is described in Appendix B . For further details, the 

reader is referred to the work of Avdonin et al. [20] . 

Full closure of this system of equations is achieved by introduc- 

ing appropriately linearized expressions for the ideal gas law, 

T ′ 

T̄ 
= 

p ′ 
p̄ 

− ρ ′ 
ρ̄

, (15) 

the sensible enthalpy, 

h 

′ 
s = c̄ p T 

′ + 

∑ 

k 

h̄ s,k Y 
′ 

k , c̄ p = 

∑ 

k 

c̄ p,k ̄Y k , (16) 

the total enthalpy, 

h 

′ = h 

′ 
s + ū k u 

′ 
k , (17) 

the viscous stress tensor 

τ ′ 
i j = μ̄

(
∂u 

′ 
i 

∂x j 
+ 

∂u 

′ 
j 

∂x i 
− 2 

3 

∂u 

′ 
k 

∂x k 
δi j 

)
+ μ′ 

(
∂ ̄u i 

∂x j 
+ 

∂ ̄u j 

∂x i 
− 2 

3 

∂ ̄u k 

∂x k 
δi j 

)
, 

(18) 

and the Sutherland law for the temperature dependence of viscos- 

ity, thermal and species diffusivity, 

μ′ = μ̄
T̄ + 3 T S 

2 

(
T̄ + T S 

) T ′ 

T̄ 
, α′ = Pr μ′ , D 

′ 
k = Sc k μ

′ . (19) 

Including perturbations of the material properties is essential to 

achieve consistency between the non-linear and the linearized 

equations [20] . The entropy perturbations, neglecting species mix- 

ing, are given by 

s ′ = c̄ p 
T ′ 

T̄ 
− R 

p ′ 
p̄ 

. (20) 

In the Supplementary Material, the full entropy perturbations for 

a reactive flow are derived. In general, entropy perturbations due 

to species mixing should be accounted for, as they can as well 

lead to the generation of acoustic waves, see Magri et al. [57] . 

Although present, this effect is expected to be negligible for the 

perfectly premixed flames without secondary air flows and unity 

Lewis number investigated in this paper. 

The LNSE are obtained as a sub-set of the LRF Eqs. (11) –(14) by 

omitting the species transport equations, Eq. (14) , and setting Y ′ 
k 

= 

0 in Eq. (16) . For thermo-acoustic stability analysis, the source term 

˙ �′ 
T 

in the linearized energy equation, Eq. (13) , is then provided by 

an FTF instead of the linearized chemical kinetic mechanism. This 

is described in more detail in Section 3 . 
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2.3. Transformation to frequency domain 

The governing equations of the LRF and LNSE can be trans- 

formed to the frequency domain by assuming purely harmonic os- 

cillations in all perturbed quantities, 

�′ (x , t) = 

ˆ �(x ) e iωt , (21) 

where ˆ � is the complex amplitude and ω the frequency of the os- 

cillation. Subjected to appropriate inhomogeneous boundary con- 

ditions, the response of a system governed by the LRF or LNSE in 

the frequency domain to (acoustic) forcing can thus be evaluated 

at discrete frequencies ω. 

Throughout this study, the linearized models will only be evalu- 

ated in the frequency domain, as this constitutes a computationally 

efficient and accurate way to deduce the system response to har- 

monic forcing, or compute eigenvectors and -values. It is, however, 

entirely possible to run simulations also in the time-domain. 

3. The flame transfer function in hybrid models 

The prevailing approach to linear thermoacoustic stability anal- 

ysis is the use of hybrid models, which combine an acoustic sub- 

model with a reduced order model for flow-flame interactions. 

The former ranges, in order of increasing complexity and accu- 

racy, from 1D network models, solvers for the 2D/3D Helmholtz 

equation to approaches employing the LEE or LNSE. Note that the 

combustion process is always excluded from these models, e.g. no 

species transport equations or reaction rates are computed. To ac- 

count for the main driving mechanism in thermoacoustic systems, 

i.e. unsteady heat release, a reduced order model for flow-flame 

interactions is deduced from experiments, CFD or first principles, 

and combined with the acoustic sub-model. For velocity sensitive 

flames, such a reduced order model is usually formulated in terms 

of a complex-valued Flame Transfer Function (FTF), which relates 

perturbations in heat release rate to velocity fluctuations upstream 

of the flame. 

If the flame is acoustically compact, i.e. if acoustic wavelengths 

at the frequencies of interest are much larger than the length of 

the flame, it is usually argued that the exact spatial distribution 

of the perturbed heat release rate ˆ ˙ �T (x ) has no significant impact 

on the acoustic waves generated by the flame, and thus on ther- 

moacoustic stability predictions. In that case a global flame trans- 

fer function F G is considered adequate to describe the relation be- 

tween velocity fluctuations ˆ u ref at a reference position upstream of 

the flame and perturbations of the spatially integrated heat release 

rate, ∫ 
�

ˆ ˙ �T (x ) d x ∫ 
�

¯̇
 �T (x ) d x 

= F G (ω) 
ˆ u ref 

ū ref 

. (22) 

Note that here fluctuating values of heat release and velocity are 

normalized with corresponding mean values 
∫ 
�

¯̇
 �T (x ) d x and ū ref . 

If a flame is not acoustically compact – e.g. at higher frequen- 

cies – it is understood that not only the overall fluctuations of heat 

release rate, but details of the spatial distribution 

ˆ ˙ �T (x ) may influ- 

ence thermoacoustic stability. In such cases a local flame transfer 

function F L (x ) should be used, where gain and phase depend on 

position x , 

ˆ ˙ �T (x ) ∫ 
�

¯̇
 �T (x ) d x 

= F L (x , ω) 
ˆ u ref 

ū ref 

. (23) 

The local FTF F L relates the spatially resolved field 

ˆ ˙ �T (x ) to the 

velocity perturbations at the reference position ˆ u ref . Speaking in 

the context of an acoustically forced CFD simulation, a scalar trans- 

fer function for the perturbed heat release rate in every cell of the 

flame area has to be identified. F L (x , ω) denotes the union of these 

transfer functions. Compared to F G , the amount of data that has to 

be stored and processed is thus orders of magnitudes larger. 

Due to the considerable difficulty and cost of determining a lo- 

cal FTF, studies that include a local FTF for thermoacoustic stability 

analysis are the exception, not the rule. Martin et al. [58] deduced 

a fully three-dimensional, local FTF in terms of an n − τ model 

with interaction index n ( x ) and time lag τ ( x ) depending on posi- 

tion from Large Eddy Simulation (LES). Subsequent use of this lo- 

cal FTF in a Helmholtz solver showed good agreement of the re- 

sulting pressure field and oscillation frequency with LES results. 

Other studies have determined quasi-1D local FTFs from experi- 

ment or CFD with spatial resolution of heat release rate in the ax- 

ial direction x and explored the impact on thermoacoustic stability 

[59–67] . 

The data to identify F G and F L may originate from the same 

source, e.g. an acoustically forced CFD simulation of the flame. Ef- 

fects of non-trivial local phenomena of acoustic-flow-flame inter- 

action – such as flame wrinkling or the transport of convective 

disturbances along and through the flame – on the heat release 

rate are thus embodied in both variants of the FTF. Nevertheless, 

the different post-processing of the raw data distinguishes the two 

formulations in important aspects. For the global FTF F G , the per- 

turbed heat release rate is integrated over the whole domain, and 

F G (ω) is then sought as the transfer function that relates the scalar 

quantities 
∫ 
�

ˆ ˙ �T (x ) d x and ˆ u ref . Due to the spatial integration, in- 

formation on the local distribution of the perturbed heat release 

rate is lost. It will be shown in the next sections that this informa- 

tion is relevant to describe important effects of flame movement. 

For thermoacoustic network models, usually an infinitely thin 

”flame sheet” is assumed and therefore the spatial extent of 

the combustion zone can be neglected altogether. Jump condi- 

tions derived from first principles under various simplifications 

[26,50,51,53,54,68] are employed to directly yield the coupling con- 

ditions for acoustic velocity and pressure stemming from unsteady 

combustion. In this kind of modeling approach, the source terms 

do not appear explicitly in the acoustic model. Thus, modeling 

the perturbed heat release rate in a lumped fashion with a global 

FTF is natural in network models. However, for acoustic models 

based on the discretization of the wave equation, LEE or LNSE 

on a continuous domain, the perturbed volumetric heat release 

rate ˙ �′ 
T (x , t) appears as a source term in the governing equations 

(compare Eq. (13) ) and requires a spatially resolved region. In most 

studies the spatial distribution of the perturbed heat release rate is 

unknown, because it requires significantly more computational ef- 

fort and data storage, or more sophisticated techniques to identify 

from CFD, and is difficult to measure in experiment. Due to lack of 

this knowledge, a global FTF is often used and the perturbed heat 

release rate is either assumed to be homogeneous within a sim- 

plified combustion zone or to follow the distribution of the mean 

heat release rate. While the first approach is obviously an over- 

simplification, studies have also shown that the perturbed heat re- 

lease rate does not follow the distribution of the mean heat release 

rate for turbulent [58,60–64,69] and even laminar premixed flames 

[20,22] (compare also Fig. B.14 in this study). While the spatial dis- 

tribution of the perturbed heat release rate is often considered of 

minor importance for the generated acoustic waves due to acoustic 

compactness, the analysis of acoustically compact laminar flames 

in Sections 4 and 5 will show that it has a major influence on the 

entropy balance in the combustion zone, which in turn may influ- 

ence thermoacoustic stability through indirect sources of sound. 

4. Freely propagating 1D flame 

The response of a freely propagating, 1D, lean premixed, 

methane-air flame to acoustic forcing is analyzed in this section 
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to exemplify that use of a global FTF for the spatially integrated 

heat release rate results in spurious generation of entropy fluctua- 

tions. The peculiarity of this seemingly simplistic 1D configuration 

is that in order to avoid such inconsistencies, it is vital to account 

precisely for local perturbations of heat release rate in the immedi- 

ate vicinity of the flame, even though the overall heat release rate 

fluctuations are negligibly small. 

Note that this archetypal setup of a passive flame (no fluc- 

tuations of overall heat release rate) has proven most useful in 

the resolution of a well-known classical thermoacoustic paradox 

[50,70] . In particular, coupling relations for acoustic quantities 

across a heat source at rest produced results that seemed to be 

at odds with fundamental conservation laws for mass and energy. 

Strobio-Chen et al. [51] showed that the paradox can be resolved 

if jump conditions across the flame are employed that account for 

flame movement. Likewise, the analysis in this chapter shows that 

resolution of the local unsteady heat release rate, as provided by 

the LRF or a local FTF, can represent the flame movement for a 

spatially resolved combustion zone in an adequate manner and 

thereby avoid the unphysical behavior from which spurious en- 

tropy waves result. 

This 1D case is well suited to elucidate the fundamental driv- 

ing mechanisms for spurious entropy generation, because 2D/3D 

phenomena like vortex formation and dissipation as well as heat 

transfer normal to the flow direction (e.g. due to cooled walls) are 

excluded. The case is computed with CFD, LRF and LNSE, respec- 

tively, with both global (LNSE + F G ) as well as local (LNSE + F L ) FTFs 

for the hybrid LNSE model. Note that the LEE would neglect essen- 

tial mechanisms like heat transfer in the pre-heating zone of the 

flame, thus the LNSE are chosen as a basis for the hybrid models. 

4.1. CFD simulations 

The setup for the CFD consists of a 1D computational domain �

of length 10 mm, discretized with 10 0 0 0 uniform cells. The com- 

pressible reacting solver rhoReactingFoam from the OpenFOAM 

toolbox [56] is used. The inlet velocity is matched closely to the 

laminar flame speed s L such that after ignition, the flame stays 

in the same location of the computational domain with very mi- 

nor drift. The aforementioned 2S-CM2 reduced chemical reaction 

mechanism is used to model the combustion. Boundary conditions 

are presented in Table 1 , the resulting steady-state fields in the 

combustion zone are shown in Fig. 1 . Note that x = 0 corresponds 

to the position of maximum mean heat release rate. 

Once the steady-state is reached (apart from the very minor 

drift mentioned before), a broadband forcing of the inlet velocity 

with a relative amplitude of 1 % (compared to the mean flow) 

is added. This low forcing amplitude is chosen to guarantee a 

linear regime of the flow perturbations. The forcing signal con- 

tains frequencies up to 1350 Hz, the simulated time is 1 s. Dur- 

ing run time, the perturbations of integrated heat release rate, ∫ 
�

˙ �′ 
T 
(x , t) d x , as well as the entropy fluctuations s ′ 

outlet 
(t) (recon- 

structed from the variables that are solved for via Eq. (20) ) at the 

outlet are tracked. By means of system identification (see [71] for 

details), F G , Eq. (22) , as well as an entropy transfer function E (ETF, 

Eq. (24) ) are identified. 

ˆ s outlet 

c̄ p 
= E(ω) 

ˆ u ref 

ū ref 

(24) 

Table 1 

Boundary conditions of the freely propagating 1D flame. 

Boundary Flow BC Thermal BC Species BC 

inlet u = 0.2452575 m/s T = 293 K Φ = 

(
Y CH4 

Y O 2 

)
/ 
(

Y CH4 

Y O 2 

)
st 

= 0 . 8 

outlet p = 1 · 10 5 Pa ∂T 
∂x j 

n j = 0 ∂Y k 
∂x j 

n j = 0 

Fig. 1. Most important mean flow fields of the 1D flame case in the combustion 

zone. 

For all transfer functions presented in this work, the inlet of the 

computational domain is chosen as the reference position. For E, 

the entropy perturbations are measured at the outlet. Note that 

the domain is very short, therefore the difference of measuring the 

entropy perturbations for the ETF at the outlet or directly down- 

stream of the flame is negligible in the frequency band up to 

500 Hz investigated in this study. Due to the uniform flow down- 

stream, no mechanisms are present to convert these entropy per- 

turbations to acoustic waves. The ETF nevertheless quantifies the 

potential to give rise to spurious indirect sources of sound and 

thereby distort stability predictions, if a similar flame were part of 

a more complex setup with a choked exit. We chose to neglect en- 

tropy perturbations due to species mixing, see Eq. (20) , to compute 

E, such that results from CFD, LRF and LNSE + FTF may be com- 

pared against each other in a straightforward manner. 

The expected outcome for F G is a negligible low gain. The rea- 

son is as follows: When forced acoustically with low frequencies, 

i.e. the flame is compact with respect to the acoustic wavelength, 

the length of the flame does not change. No deformation of the 

flame occurs because at every position within the flame, the ve- 

locity perturbations are in phase and have the same amplitude 

(compactness). The flame moves downstream when u ′ > 0 and 

upstream vice versa as there is no anchoring mechanism to hold 

the flame in place. The movement results from the kinematic im- 

balance between flow velocity ū + u ′ and laminar flame speed s L . 

Because the fuel/air ratio stays constant for both the steady and 

the forced simulation, s L is constant and the relative velocity be- 

tween flame and flow is fixed. As the consumed mass flow of fresh 

gases is directly proportional to s L and the integrated heat release 

rate, no perturbation in the overall heat release rate occurs. The 

flame movement is a consequence of the constant laminar flame 

speed and is thus always equal to u ′ . The cases discussed in this 

study have low Mach numbers and are set at ambient pressure, 

thus pressure fluctuations are expected to play a negligible role for 

the combustion dynamics. Additionally, p ′ ≈ 0 in the whole com- 

putational domain due to acoustic compactness of the investigated 

cases in combination with the p ′ = 0 outlet boundary condition. 

We can therefore observe that the location of the heat release rate 

changes, but the amount of spatially integrated heat release rate in 

the domain remains constant in time. 

Furthermore, a premixed laminar flame subject to acoustic forc- 

ing does not produce significant perturbations in downstream en- 

tropy at low Mach numbers, assuming negligible heat loss and 
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Fig. 2. Gain of the global FTF computed from CFD (system identification) and 

LRF (discrete frequency sampling). 

Fig. 3. Gain of the ETF computed from CFD (system identification), LRF and 

LNSE + F G (both with discrete frequency sampling). 

complete combustion [43,51,52] . Due to the constant fuel/air ra- 

tio, the heat released per unit mass by the flame is fixed. Together 

with the constant mass flow consumption, this yields a fixed ra- 

tio of upstream and downstream temperature. Therefore, it is also 

expected that E has negligible gain. 

Figures 2 and 3 show the gain of F G and E, respectively, com- 

puted with system identification based on the broadband CFD time 

series . The phase is not shown as it is not meaningful for 

transfer functions with almost zero gain. As expected, the gain for 

both transfer functions stemming from CFD data is so low that the 

effect of heat release rate and entropy perturbations is negligible 

for this case. 

4.2. Linearized simulations 

The numerical methodologies for the LRF as well as the 

LNSE + FTF approaches are identical, i.e. a Discontinuous Galerkin 

Finite Element Method (DG-FEM) that employs the local Lax- 

Friedrichs scheme for the inter-element flux and fourth order basis 

functions is employed. This method has been validated in previous 

studies and demonstrated impressive agreement with analytical re- 

sults [20,23] . Using the exact same numerical method for LRF and 

LNSE should eliminate any discrepancies that could possibly result 

from numerical inadequacies. 

For this 1D flame case, the domain as well as the mesh are 

identical for the LRF, LNSE and also the CFD cases. The boundary 

conditions for the LRF and LNSE simulations are given in Table 2 . 

They are consistent with the CFD boundary conditions used for the 

mean flow and impose an acoustic forcing at the inlet. 

Table 2 

Boundary conditions of the 1D flame for LRF and LNSE. 

Boundary Flow BC Thermal BC Species BC (only LRF) 

inlet ˆ u = 0.02452575 m/s ˆ T = 0 ˆ Y k = 0 

outlet ˆ p = 0 ∂ ̂ T 
∂x j 

n j = 0 ∂ ̂ Y k 
∂x j 

n j = 0 

As mentioned above, elimination of the species transport equa- 

tions as well as the linearized reaction mechanism reduces the LRF 

to the LNSE model. In order to incorporate the effects of unsteady 

heat release rate, global or local FTFs deduced from the CFD time 

series data are connected to the LNSE model to build the hybrid 

LNSE + F G or LNSE + F L models, respectively. Note that for the case 

of a passive flame investigated in this section with negligible gain 

of F G , the results without a flame model for the LNSE + F G ap- 

proach would be essentially identical. 

Figures 2 and 3 compare the transfer functions F G and E com- 

puted with LRF to the CFD counterparts. Additionally, Fig. 3 shows 

the entropy transfer function E for the LNSE + F G model. The lin- 

earized computations have been conducted in the frequency do- 

main for frequencies from 10 Hz to 500 Hz in 10 Hz steps. Note 

that F G (and F L ) can be computed from the LRF, opposed to the 

LNSE model, for which the FTF must be provided. F G from LRF and 

CFD show a discrepancy in the low frequency band below 100 Hz. 

The overall gain however is very low ( < 0.06), such that this de- 

viation does not lead to a significant difference in the flow pertur- 

bations between both simulations (shown later in Fig. 6 ). This dis- 

crepancy is likely to stem from the slight unsteadiness of the mean 

flow, which is a snapshot of the last time step of the unforced CFD 

simulation: On large time scales, 100 ms and more, say, a slight 

drift of the flame in the CFD exists, caused by a mismatch between 

the inlet velocity and the laminar flame speed. This minor un- 

steadiness violates the assumption of steady-state mean flow im- 

plied in the perturbation ansatz and thus gives rise to erroneous 

heat release in the LRF. The effect is minor and indeed only no- 

ticeable in the low frequency band, which is associated with larger 

time scales. 

The gain of the entropy transfer function E for both CFD and 

LRF stays below 0.001. In strong contrast, the LNSE + F G model fea- 

tures excessive amounts of entropy perturbations downstream of 

the flame, with a maximum gain of almost 0.8 at low frequen- 

cies. This is evidence of a significant shortcoming of F G to repli- 

cate the linearized combustion dynamics of this fundamental case. 

In the low frequency limit, the spurious entropy generation can 

be calculated from the jump conditions derived by Strobio-Chen 

et al. [51] . Simplifying Eq. (34) from [51] , assuming perfect pre- 

mixing and p ′ 1 = 0 yields 

s ′ 2 
c̄ p, 2 

= 

(
1 − T̄ 1 

T̄ 2 

)(
(F G − 1) 

u 

′ 
1 

ū 1 

+ 

u 

′ 
s 

ū 1 

)
. (25) 

Here, u ′ s is the rate of displacement of the flame and indices 1 and 

2 denote quantities up- and downstream of the flame, respectively. 

Inserting the temperature ratio T̄ 2 / ̄T 1 = 6 . 674 , F G = 0 and assum- 

ing no flame movement by setting u ′ s = 0 , we retrieve -0.85 for E
in the low frequency limit, in which the jump conditions repre- 

sent an exact solution of the governing equations. This spurious 

outcome, which results from the lack of flame movement, agrees 

reasonably well with the numerical results of the LNSE + F G model, 

compare Fig. 3 . 

In order to put the impact of the spurious entropy waves into 

perspective, the magnitude of indirect acoustic waves, generated 

by the acceleration of the entropy waves in a fictive nozzle down- 

stream of the flame, is assessed. As an example, we assume a com- 

pact supercritical nozzle, for which the generated acoustic wave 

can be calculated via 

u 

′ 
sec = c̄ 2 

M 2 

2 + ( γ2 − 1 ) M 2 

s ′ 2 
c̄ p, 2 

, (26) 

as derived by Marble and Candel [24] . Here, the index 2 again de- 

notes quantities downstream of the flame, but upstream of the fic- 

tive nozzle. M 2 = 0 . 0019 is the Mach number of the mean flow 

measured at the outlet of the computational CFD domain. For the 

1D case investigated here, the strength of spuriously generated 
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Table 3 

Comparison of ETF gain for the various models in the 1D flame case. 

Frequency |E| 
CFD LRF LNSE + F G LNSE + F L 

50 Hz 9 . 137 · 10 −6 4 . 143 · 10 −4 0.4810 4 . 148 · 10 −2 

100 Hz 1 . 741 · 10 −5 8 . 717 · 10 −5 0.2557 9 . 630 · 10 −3 

compared to the physical primary velocity perturbations down- 

stream of the flame, is 284 % in the low frequency limit. The im- 

pact of the spurious acoustics is so dominant for this case because 

there are no direct acoustic waves from the flame ( F G ≈ 0 ) and ef- 

fects like the dispersion of entropy waves or losses are not taken 

into account. 

Compared to the LNSE + F G model, the LRF features not only 

the correct spatial resolution of the heat release rate perturbations, 

but also the linearized species transport equations. Thus, the mere 

comparison of these two models does not proof in an unambigu- 

ous manner that the spurious entropy waves is this case can be at- 

tributed to the lack of flame movement alone. However, the results 

of the LNSE + F L model shown later will demonstrate that the fine- 

grained local resolution of the perturbations in heat release rate 

mitigate the spurious behavior for the most part, even without ac- 

counting for the fluctuations in species transport and sources, see 

Table 3 . 

4.3. Importance of flame movement 

In analogy to Strobio-Chen et al. [51] , we argue that the lack of 

flame movement is the cause for the spurious entropy production 

by the LNSE + F G model. However, in contrast to the framework of 

a moving flame described by jump conditions [51,53,54,68] , includ- 

ing a flame velocity is not straightforward for the LNSE. While this 

might be feasible for low frequencies in the 1D case, where the 

equations derived from jump conditions can be applied approx- 

imately due to compactness, finding an analytically closed-form 

expression for the movement of a 2D/3D flame over the whole 

frequency band represents a very significant difficulty, because in 

this case mechanisms like diffusion and convection of entropy and 

species normal to the flow play an essential role. Instead, we aim 

to resolve the paradox by accounting for the local perturbations in 

heat release rate by means of a local FTF F L , which can be esti- 

mated from CFD. 

Figure 4 exemplifies that a downstream displacement of the 

mean heat release by 0.2 mm, say, results in, and can thus be 

modeled by, local perturbations in heat release rate. These are cal- 

culated as the difference of displaced and mean heat release rate, 

˙ �′ 
T 

= 

¯̇
 �T, dis − ¯̇

 �T . By construction, 
∫ 
�

˙ �′ 
T 

d x = 0 , i.e. no global heat 

release rate perturbations are generated by a pure displacement 

of the flame, F G = 0 . This simple example showcases that spatially 

distributed heat release rate perturbations, i.e. a local FTF F L , can 

Fig. 4. Sketch of the flame displacement. Normalized mean ¯̇
 �T , displaced 

¯̇
 �T, dis and perturbed ˙ �′ 

T heat release rate. 

Fig. 5. Real part of the heat release perturbations computed with LRF at the maxi- 

mum downstream displacement, ϕ = 1 / 2 π (forcing velocity purely imaginary). ω = 

30 Hz , ω = 70 Hz , ω = 100 Hz , ω = 200 Hz . Mean heat 

release rate ¯̇
 �T for reference. All values of ˆ ˙ �T are normalized with the max- 

imum amplitude of ω = 30 Hz . 

represent flame movement . However, because the integrated heat 

release rate perturbations of this movement are zero, F G cannot 

account for this mechanism and its consequences. 

Hence, the paradox of a passive flame at rest arises in the 

LNSE + F G model, leading to unphysical flow fields and an excess 

in entropy perturbations downstream of the flame. In the CFD, the 

flame can move and thus the paradox is resolved without entropy 

production. The LRF models the spatially resolved perturbed heat 

release rate in a similar shape to ˙ �′ 
T in Fig. 4 , thus also accounting 

for flame movement. 

In order to substantiate the claim that the LRF does indeed cap- 

ture the effects of flame movement, it is helpful to compare the 

local perturbation fields to the CFD results. We start with some 

preceding thoughts about the comparability: The displacement of 

the flame in the CFD computation depends on the forcing ampli- 

tude and frequency, i.e. higher amplitudes induce non-linear be- 

havior and eventually lead to blow out or flash back of the flame, 

in particular at low frequencies, ω → 0. The perturbation fields of 

the LRF, however, are directly proportional to the forcing amplitude 

by construction (linearity). Blow out or flash back can not happen, 

as the mean fields, which dominantly impact the linearized heat 

release rate perturbations, are frozen in place. Instead of a finite 

displacement amplitude, the LRF results rather show the tendency 

or onset of the flame movement resulting from infinitesimal forc- 

ing amplitude. A low forcing amplitude in the CFD computations 

is therefore necessary to retain the linearity and allow one-to-one 

comparison with the LRF. The CFD and LRF model share the same 

dependence of the displacement amplitude on the frequency, i.e. 

the lower the frequency, the larger the displacement, see Fig. 5 . 

This is reasonable, as the displacement is the temporal integral of 

the velocity perturbations and at lower frequencies, the time to 

displace the flame within one half period is greater than at higher 

frequencies. 

The data for the CFD was computed by harmonic velocity forc- 

ing with a relative amplitude of 1 % at the inlet boundary. 20 

oscillation periods were simulated with subsequent Fourier trans- 

form of the last period. This guarantees a harmonically oscillating 

state, similar to the frequency domain simulations of the linearized 

models. The perturbations were retrieved by subtracting the steady 

state from the instantaneous fields. 

A comparison of the perturbation fields for heat release rate, 

entropy and velocity between LRF and CFD is presented in Fig. 6 . 

The plots show snapshots for the real part of the perturbed quan- 

tities over the first half of an oscillation period at ω = 100 Hz , i.e. 

with phase angle ϕ ranging from 0 to 7/8 π . Note that the second 

half of the period is equal to the first half with opposite sign for 

the amplitudes and would therefore provide no additional informa- 

tion. Excellent agreement between LRF and CFD can be observed. 

The physical mechanisms for the CFD/LRF solutions are as follows: 
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Fig. 6. Real part of heat release rate R ( ̂  ˙ �T ) , entropy R ( ̂ s ) and velocity R ( ̂ u ) perturbations of the LRF model in the combustion zone, normalized with 

the respective maximum value of the CFD simulation in this period. Normalized mean heat release rate ¯̇
 �T for reference with maximum at x = 0 . Dashed lines show 

the corresponding quantities from harmonically forced CFD. Plots show oscillation with ω = 100 Hz at various phase angles ϕ. ϕ = 0 corresponds to purely real valued forcing 

velocity at the inlet. 

• ϕ = 0 : The forcing velocity is at its maximum, thus displace- 

ment is zero. Indeed, neither entropy nor heat release rate are 

perturbed, which confirms that the flame is at the steady-state 

position. 

• ϕ = 1 / 8 π . . . 3 / 8 π : The downstream displacement of the flame 

begins. This is indicated by heat release rate perturbations, 

which are negative in the upstream and positive in the down- 

stream part of the combustion zone. The mean velocity in- 

creases across the flame, thus the displacement in the down- 

stream direction results in negative velocity perturbations in 

the combustion zone. Likewise, negative entropy perturbations 

result from the flame movement. 

• ϕ = 1 / 2 π : The forcing velocity is zero, the flame displacement 

towards the downstream end is at its maximum. This is reason- 

able because the displacement is the temporal integral of the 

velocity, i.e. phase shifted by 1/2 π . 

• ϕ = 5 / 8 π . . . 7 / 8 π : The flame returns back to its steady-state 

position. At ϕ = π, the same situation as for ϕ = 0 is observed 

(zero flame displacement), but with negative amplitude of the 

forcing velocity. 

• ϕ = π . . . 2 π : In the second half of the oscillation period, the 

flame is displaced towards the upstream end of the domain, the 

explanations given for the first half of the cycle still apply, but 

with opposite sign. 

Note that during the whole oscillation period, any entropy per- 

turbations generated in the combustion zone are also ”consumed”

by the reaction, such that no entropy waves propagate downstream 

of the flame. This agrees well with the flame physics of the pro- 

cess, and is represented in the very low gain of the ETF predicted 

by LRF and CFD. 

Figure 7 shows the corresponding comparison between the 

fluctuating fields of LNSE + F G and CFD. The reader is reminded 

here that F G has negligible gain for this case and could thus 

also be omitted without noticeable impact on the results. In fact, 

a global FTF is an ill-conceived notion in this setting, where 

the flame movement is the prominent mechanism and modu- 

lation of the overall heat release rate due to changes in the 

flame shape, speed or structure is absent. It is apparent that 

the LNSE + F G solution strongly differs from CFD results. In con- 

trast to CFD and LRF, the entropy perturbations after the flame 

are not zero for the LNSE + F G solution, indicating spurious en- 

tropy production. Quite simply, entropy perturbations s ′ down- 

stream of the flame are negative, because in the LNSE + F G model, 

the rate of heat addition per unit mass decreases as the mass 

flow rate across the flame increases. Beyond this, spurious acous- 

tic waves are generated by the LNSE + F G model, as can be seen 

in the velocity perturbations downstream of the flame. This ef- 

fect is interwoven with the spurious entropy generation and 

can additionally lead to incorrect prediction of thermoacoustic 

stability. 

This case of a passive flame at rest represents an instance of 

a classical paradox of thermoacoustics, which has been discussed 

by Dowling et al. [70] and Bauerheim et al. [50] : when deriving 

jump conditions for acoustic waves propagating across a compact 

heat source, the paradox suggests that volume conservation must 

be used for perturbations at zero Mach number, while mass con- 

servation must be used at non-zero Mach numbers. Strobio-Chen 

et al. [51] have shown that the paradox is resolved when it is 

taken into account that a premixed flame front in kinematic bal- 

ance with the approach flow will change not only its heat release 

rate, but also its position in response to velocity perturbations. A 

subsequent study demonstrate, that spurious generation of entropy 

results from the neglect of flame movement in the description of 

thermoacoustic interactions [52] . 
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Fig. 7. Same as Fig. 6 , but solid lines represent results from LNSE + F G 

For the LNSE + F G model, the non-zero Mach number case ap- 

plies, which allows for the propagation of convective waves. The 

flame is passive, because the perturbations in integrated heat re- 

lease rate are essentially zero, and it represents a heat source at 

rest, because the LNSE + F G model with the steady state mean flow 

excludes flame movement. As shown in [51,52] via jump condi- 

tions, in this case an increase in mass flow rate across the flame 

sheet due to acoustic forcing leads to a reduced hot gas tempera- 

ture, equivalent to a spurious negative entropy wave. 

For a flame with finite thickness, as in the LNSE + F G model, 

jump conditions only yield exact results for the acoustic coupling 

and the spuriously generated entropy wave, when applied at 0 Hz. 

For models that do not involve convective (e.g. entropy) waves, 

jump conditions may be regarded as a valid approximation also 

for non-zero frequencies, as long as acoustic compactness is sat- 

isfied. It would be intuitive to infer that for cases where convec- 

tive waves are present, convective rather than acoustic compact- 

ness should be required to ensure validity of the jump conditions 

for entropy, Eq. (25) . 

With a flame thickness of L F ≈ 1 mm and a spatially averaged 

mean flow velocity across the flame of < ū F > ≈ 1 m / s , compare 

Fig. 1 , we find that at ω = 10 Hz , the ratio of convective wave- 

length δC = < ū F > /ω to flame thickness, δC / L F ≈ 100, i.e. the flame 

can be regarded convectively compact for frequencies up to 10 Hz. 

For frequencies up to 100 Hz, and thus δC / L F � 10, the same or- 

der of magnitude for the spurious entropy perturbations from the 

LNSE + F G model and the jump conditions is obtained. 

4.4. Mechanism and low-pass characteristic of spurious generation of 

entropy 

This paragraph aims at shedding light onto the physical mech- 

anisms involved in the spurious generation of entropy by the 

LNSE + F G model. Although diffusive effects strongly impact the 

quantitative realization of the ETF, the qualitative low-pass nature 

can be sufficiently described by only accounting for the convec- 

tive transport. Karimi et al. [46,47] and Yoon [48] showed numeri- 

cally and analytically that the ETF of a flow described by the Euler 

equations with steady input of heat from a source at rest exhibits 

a low-pass character. In order to explain the low-pass behavior of 

the ETF for the LNSE + F G model, we must account for the convec- 

tion of temperature perturbations through the spatially resolved 

combustion zone. First, we assume convective compactness, i.e. the 

acoustic forcing period should be much longer than the convection 

time through the combustion zone, to show consistency of this ex- 

planation with the model derived from jump conditions, Eq. (25) . 

This means that during one convective flow-through of the flame, 

the acoustic state does not change. When the passive flame at rest 

is forced acoustically with u ′ > 0, the flow is convected through 

the heat release zone faster than in steady state. Thus, there is less 

time during which the flow can be heated, resulting in reduced 

heat input per unit mass and consequently T ′ < 0 after the flame. 

This leads to a phase of −π for E in the low frequency limit. 

When convective compactness is lost at higher frequencies, the 

acoustic state, and thus u ′ , changes during one flow-through time 

of the combustion zone. Recall that for the studies in this paper, 

the forcing is chosen to be purely real-valued and thus exhibits 

the maximum positive value at ϕ = 0 , as represented by a cosine 

in time domain. A fluid particle first experiences increased convec- 

tive velocity, leading to T ′ < 0. During the transport through the 

combustion zone, u ′ becomes negative ( ϕ > 1/2 π ), thus the par- 

ticle is slower than in steady state and is heated more strongly. 

The increased heating per unit mass during 1/2 π < ϕ < 3/2 π
of the acoustic period cancels the reduced heat input during 

3/2 π < ϕ < 1/2 π . This compensation effect, which appears only at 

frequencies for which the flame is not convectively compact, leads 

to a reduced amplitude of T ′ , and thus s ′ , after the flame. The mu- 

tual cancellation of entropy perturbations in the combustion zone 

becomes more pronounced for higher frequencies, asymptotically 

leading to zero gain in E . 
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The movement of the flame in the CFD/LRF counteracts this 

spurious mechanism of entropy generation. As already explained 

earlier, the flame in this 1D case moves with the forcing veloc- 

ity u ′ . Thus, the relative velocity between the convected fluid and 

the flame remains ū , as in the steady state. The convection time 

through the flame zone is not altered by the acoustic forcing and 

consequently the amount of heat addition per unit mass to a fluid 

particle remains constant, resulting in no temperature or entropy 

waves downstream of the flame. 

4.5. Locally resolved FTF 

The effect of flame movement on heat addition can be taken 

into account in a hybrid LNSE model by the usage of a local FTF 

(LNSE + F L ). F L is derived from harmonically forced CFD through 

Fourier analysis and provides the complex spatially distributed rate 

of perturbed heat release, referenced to the velocity fluctuations 

at the inlet. Due to the comparatively high computational effort 

of the harmonically forced CFD, only two frequencies, 50 Hz and 

100 Hz, are investigated. The perturbation fields for the LNSE + F L 

model, Fig. 1 in the Supplementary Material, are identical to the 

ones of CFD and LRF, which highlights that accounting for the lo- 

cally resolved heat release rate perturbations with F L is sufficient 

to get outstanding agreement even for local quantities. The results 

for the ETF in Table 3 demonstrate that the spurious generation 

of entropy waves in the LNSE + F G model is indeed connected to 

the lack of flame movement, and that the use of F L together with 

the LNSE remedies to a large extent the generation of excess en- 

tropy. The remaining discrepancy between the entropy production 

of the LRF and the LNSE + F L model can be attributed to the lack 

of species transport equations in the LNSE. Although the two main 

contributions for entropy production stemming from the species 

transport equations, which are due to species diffusion and gener- 

ation, cancel out in big parts (see Figs. 2 and 4 of the Supplemen- 

tary Material), the remainder contributes to the overall balance. 

To conclude: the LNSE + F G model does not capture the flame 

movement, which leads to the spurious generation of entropic and 

acoustic waves, possibly resulting in incorrect predictions of ther- 

moacoustic stability. To mitigate the spurious behavior, it is re- 

quired to resolve the perturbed heat release rate locally, i.e. on 

scales that are convectively and acoustically compact. This can be 

achieved by a highly resolved local FTF, which properly represents 

the heat release rate perturbations that result from flame move- 

ment, or by use of the LRF, which indeed resolves the flame move- 

ment directly. 

5. 2D anchored flame 

Further evidence that the spurious entropy perturbations of the 

LNSE + F G hybrid model are connected to the lack of flame move- 

ment is presented for the case of an anchored, 2D laminar flame, 

see Fig. 8 . The important difference to the 1D case is that F G has 

significant gain because flame shape and surface area change in 

response to acoustic forcing. On the other hand, there are no fluc- 

tuations in the mixture ratio, therefore we expect negligibly small 

entropy waves downstream of the flame. In spite of the anchoring 

at the base of the flame, movement still plays an important role to 

avoid spurious entropy generation in this case. 

Fig. 8. Slit flame mean heat release rate ¯̇
 �T and boundaries. 

Table 4 

Boundary conditions for CFD of the anchored flame. 

Boundary Flow BC Thermal BC Species BC 

inlet u = (0.6m/s, 0) T = 293 K Φ = 

(
Y CH4 

Y O 2 

)
/ 
(

Y CH4 

Y O 2 

)
st 

= 0 . 8 

outlet p = 1 · 10 5 Pa ∂T 
∂x j 

n j = 0 ∂Y k 
∂x j 

n j = 0 

cold wall u = (0, 0) T = 300 K ∂Y k 
∂x j 

n j = 0 

hot wall u = (0, 0) ∂T 
∂x j 

n j = 0 ∂Y k 
∂x j 

n j = 0 

symmetry u j n j = 0 ∂T 
∂x j 

n j = 0 ∂Y k 
∂x j 

n j = 0 

The computational domain is 20 mm long and 2 mm wide, 

the thermal boundary condition on the upper wall changes from 

isothermal (cold) to adiabatic (hot) at an axial position of 7 mm. 

This facilitates the anchoring of the flame directly downstream of 

this position. In contrast to the 1D case, the 2D flame is anchored 

at the flame base, while the tip can move freely. This kinematic 

imbalance leads to a change in the surface area of the flame when 

forced acoustically. The global heat release rate changes according 

to the perturbations in flame surface area. 

5.1. CFD simulations 

A uniform mesh of quadratic cells with edge length 40 μm is 

used to discretize the computational domain, which results in a 

total of 250 0 0 cells. This mesh guarantees proper resolution of the 

combustion with around 10 cells across the flame front. First, an 

unforced case with constant inlet velocity is computed with the 

boundary conditions as given in Table 4 . 

Due to the short domain with fully reflective boundary con- 

ditions, the acoustic cavity modes of the system are at very high 

frequencies at which the flame response is not significant. The in- 

trinsic thermoacoustic eigenmodes, typically found in the low fre- 

quency range where flame dynamics is important, are suppressed 

by the fully reflective boundary conditions of the short domain. 

Therefore, no self excited instabilities occur. The numerical ap- 

proach as well as the procedure to obtaining F G , F L and E from 

both CFD and linearized simulations is identical to the 1D case. 

5.2. Linearized simulations 

The reactive flow of the flame is linearized around the steady 

state of the CFD, boundary conditions are chosen as the respective 

linearized expressions of the CFD with purely real valued velocity 

forcing at the inlet, see Table 5 . The computations of the LRF and 

LNSE models are carried out with quadratic discontinuous basis 

functions on a uniformly resolved mesh consisting of 7668 tetra- 

hedral elements with an average cell size of 120 μm. This amounts 

to ≈ 350k degrees of freedom for LNSE and ≈ 788k for LRF. The 

computation of the flame response at one frequency takes 75 s and 

8 GB of RAM for the hybrid LNSE + FTF methods and 180 seconds 

and 21 GB of RAM for the LRF on a desktop computer (Intel i7- 

4790 quad core @ 3.60 GHz). 

Table 5 

Boundary conditions of the anchored flame for LRF and LNSE. 

Boundary Flow BC Thermal BC Species BC (only LRF) 

inlet ˆ u = (0.006 m/s, 0) ˆ T = 0 ˆ Y k = 0 

outlet ˆ p = 0 ∂ ̂ T 
∂x j 

n j = 0 ∂ ̂ Y k 
∂x j 

n j = 0 

cold wall ˆ u = (0, 0) ˆ T = 0 ∂ ̂ Y k 
∂x j 

n j = 0 

hot wall ˆ u = (0, 0) ∂ ̂ T 
∂x j 

n j = 0 ∂ ̂ Y k 
∂x j 

n j = 0 

symmetry ˆ u j n j = 0 ∂ ̂ T 
∂x j 

n j = 0 ∂ ̂ Y k 
∂x j 

n j = 0 
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Fig. 9. Global FTF from CFD (system identification) and LRF (discrete fre- 

quency sampling). 

Figure 9 shows F G computed via system identification from CFD 

as well as from discrete frequency sampling with LRF. Excellent 

agreement between both methods is observed, only minor devi- 

ations in magnitude and phase occur at frequencies beyond the 

maximum gain. Therefore, we conclude that the LRF can very well 

represent the combustion dynamics of the anchored flame subject 

to acoustic forcing. A closer investigation of the frequency response 

fields of perturbed heat release rate and entropy for CFD and LRF 

at 100 Hz, Fig. 10 , demonstrates good agreement not only in global, 

but also local quantities. 

In analogy to the 1D case, and following established prac- 

tice [20,23,72] , the perturbed heat release rate ˆ ˙ �T (x ) for the 2D 

LNSE model in conjunction with F G is chosen to be directly pro- 

portional to the mean heat release rate ¯̇
 �T (x ) . Gain and phase 

of F G are known from the CFD. Subsequently, the frequency 

domain simulations of the LNSE + F G model are performed to 

obtain E . 

The ETFs for CFD, LRF and LNSE + F G are depicted in Figs. 11 

and 12 . As expected for a premixed flame with constant equiv- 

Fig. 11. Entropy transfer function from CFD (system identification), LRF and 

LNSE + F G (both discrete frequency sampling). 

alence ratio, the LRF and CFD show negligible entropy perturba- 

tions downstream of the flame. Considering the different numeri- 

cal methods employed (Finite Volume Method with constant cell 

values and quadratic DG-FEM), the small deviation between LRF 

and CFD is reasonable and will not noticeably distort any ther- 

moacoustic stability analysis conducted with the LRF. In contrast 

to this, the LNSE + F G ETF deviates strongly from the CFD ETF, it 

is off by a factor of ~ 30 around 100 Hz. The major difference of 

these results compared to the 1D case is that the gain in the low 

frequency range around 0 Hz is close to zero, i.e. the spatial in- 

tegral of entropy perturbations at the outlet vanishes. In the low 

frequency limit, the movement of the flame is mainly connected 

to an increase in flame surface area, leading to an increased heat 

release rate. The jump conditions, Eq. (25) , suggest that with a gain 

of unity of F G , as present in this case at 0 Hz, no flame movement 

( u ′ s = 0 ) is required to mitigate spurious entropy production [51] . 

At closer inspection, however, local spurious entropy generation of 

the LNSE + F G model in the combustion zone can be observed even 

in the low frequency limit, see Fig. 13 . 

Fig. 10. Real part of heat release rate R ( ̂  ˙ �T ) (top row) and entropy R ( ̂ s ) (bottom row) perturbations for CFD (top half of each snapshot) and LRF (bottom half of each 

snapshot) on a symmetric color scale. The scale for heat release rate perturbations is normalized with the maximum value in the period of ω = 100 Hz and is identical for 

CFD and LRF. The scale for entropy perturbations is over-saturated. Red indicates positive, blue negative and green zero perturbation. 
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Fig. 12. Zoomed in plot of the entropy transfer function from CFD (system 

identification) and LRF (discrete frequency sampling). 

At phase ϕ = 0 , as shown in Fig. 13 , the LNSE + F G model gen- 

erates positive entropy perturbations over large parts of the flame 

surface starting from the base, and negative perturbations at the 

tip. The flame dynamics can be seen in the LRF model: the flame 

stretches and is displaced in the downstream direction in phase 

along its whole length, apparent from the perturbed heat release 

rate. The strongest magnitude of the heat release rate perturba- 

tions are present at the tip. F G , in contrast, uses ¯̇
 �T as the ref- 

erence, which is evenly distributed along the flame. Thus, com- 

pared to the LRF fields, there is too much perturbed heat release 

rate along the sides of the flame and too little at the tip in the 

LNSE + F G model. As a result, the entropy perturbations generated 

at the sides are over-compensated by the corresponding heat re- 

lease rate perturbations of F G , while at the tip, not enough heat 

release rate perturbations are present to compensate the entropy 

perturbations. Downstream of the flame, the entropy waves can- 

cel partially due to diffusive effects and can ultimately not be per- 

ceived in E due to the integration procedure for measurement at 

the outlet. Even though the correct global balance leads to zero en- 

tropy perturbations averaged over the outlet (as seen in the jump 

conditions), locally the flow field is unphysical and stability predic- 

tions might be adversely impacted thereby. 

The maximum gain of the LNSE + F G ETF can be seen around 

100 Hz. This behavior can again be ascribed to the lack of flame 

movement by comparing the perturbed heat release rate at ω = 

1 Hz and ω = 100 Hz , see Fig. 14 . Opposed to the in-phase behav- 

ior of the perturbed heat release rate at 1 Hz, the flame movement 

at 100 Hz is more convective in nature and therefore the heat re- 

lease rate perturbations are not in phase along the flame front: the 

displacement propagates from the base to the tip. F G can only rep- 

resent a uniform in-phase displacement (or stretch) accompanied 

Table 6 

Comparison of ETF gain for the various models in the 2D 

flame case. 

Frequency |E| 
CFD LRF LNSE + F G LNSE + F L 

50 Hz 0.0135 0.0139 0.5494 0.0197 

100 Hz 0.0110 0.0137 0.7992 0.0063 

by an increase in flame surface area, but not a convective propaga- 

tion of the displacement. With increasing frequency up to 100 Hz, 

the lack of convective propagation in the LNSE + F G model becomes 

more and more dominant, which shows in the excess gain of the 

ETF. The gain of F G for the 2D anchored flame, Fig. 9 , is further 

proof for this phenomenon of convective flame movement: the ex- 

cess of gain around 80 Hz results from an acoustic forcing that con- 

structively interferes with the convective displacement mechanism. 

For frequencies past 100 Hz, the perturbed heat release rate be- 

comes less important (gain of F G drops) and the low-pass filtering 

quality of entropy generation [46–48] dominates the LNSE + F G ETF. 

The comparison of the perturbation fields of CFD and LNSE + F G at 

100 Hz, Fig. 15 , provides insight into the spurious entropy genera- 

tion similar to the 1D flame case. The dipole character of the per- 

turbed heat release rate, and thus the flame movement, which is 

present in both CFD and LRF, is not represented by F G . As a re- 

sult, the entropy sources and sinks are not balanced and an en- 

tropy wave passes the flame surface and is convected downstream, 

leading to the high spurious gain of E . 

Quantifying the impact of the indirect acoustic waves generated 

through the acceleration of the spurious entropy waves in a fictive 

compact supercritical nozzle, Eq. (26) with M 2 = 0 . 0047 , yields a 

ratio of 45.5 % between spurious and physical acoustic velocity per- 

turbations downstream of the flame for ω = 100 Hz . Compared to 

the 1D flame case, the directly generated acoustics by the 2D flame 

lessen the relative importance of the spurious indirect acoustics. 

Nevertheless, we reckon that the detrimental influence of the un- 

physical indirect acoustic waves would still be significant even in 

the 2D case. 

Opposed to the 1D case, the velocity coupling across the 2D an- 

chored flame does not show significant discrepancy between CFD 

and LNSE + F G (not shown). This is due to the strong influence of 

the heat release rate perturbations of the flame, which dominantly 

affect the velocity. 

Pursuing the approach of coupling F L to the LNSE to include 

the flame movement, as described for the 1D flame case, again 

remedies this situation. Figure 5 of the Supplementary Material 

shows that the entropy perturbations agree very well with CFD 

data, Table 6 confirms that the spurious excess gain in E is elimi- 

nated by F L . 

However, considerable additional effort is required to compute 

F L , rather than F G , in order to avoid spurious entropy generation 

by the hybrid model. Thus, even though the time to solve for the 

Fig. 13. Real part of heat release rate R ( ̂  ˙ �T ) (left) and entropy perturbations R ( ̂ s ) (right) for LRF (top half of each snapshot) and LNSE + F G (bottom half of each snapshot) 

on a symmetric color scale at ϕ = 0 , ω = 1 Hz . The heat release rate scale for the LRF is one order of magnitude higher than for LNSE + F G , the entropy scale is identical for 

both models. Red indicates positive, blue negative and green zero perturbation. 
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Fig. 14. Real part of heat release rate R ( ̂  ˙ �T ) compute d with LRF at ω = 1 Hz (top half of each snapshot) and ω = 100 Hz (bottom half) for four phase angles. The color scale 

is over-saturated to highlight the convective features of the flame displacement at ω = 100 Hz . Red indicates positive, blue negative and green zero perturbation. 

Fig. 15. Real part of heat release rate R ( ̂  ˙ �T ) (left) and entropy R ( ̂ s ) (right) perturbations for CFD (top half of each snapshot) and LNSE + F G (bottom half of each snapshot) 

on a symmetric color scale. The scale for heat release rate perturbations is normalized with the maximum value in the period of ω = 100 Hz . CFD and LNSE have individual 

scales for the heat release perturbations, the scale of the LNSE is about one order of magnitude smaller. They share the same over-saturated scale for entropy perturbations. 

Red indicates positive, blue negative and green zero perturbation. 

frequency response of the LRF model is larger than that of the hy- 

brid LNSE + F L model, when accounting for the computational ef- 

fort to derive F L from harmonically forced CFD, the overall effort 

of the LRF approach can be significantly lower. 

6. Conclusions and outlook 

The core finding of the present study is that even for acous- 

tically and convectively compact flames, a fine-grained local res- 

olution of the perturbed heat release rate, which accounts for the 

effects of flame movement, is required to correctly predict the gen- 

eration of entropy waves by a premixed flame. In particular, it is 

demonstrated that spurious generation of entropy waves results 

when the Linearized Navier-Stokes Equations (LNSE) are combined 

with a global Flame Transfer Function (FTF), which does not pro- 

vide the spatial distribution of the perturbed heat release rate. The 

inadequate representation of flame movement that results from 

the scalar nature of the global FTF is identified as the root cause of 

this deficiency. The spurious entropy source term exhibits a low- 

pass characteristic, which is explained in terms of the perturbed 

convection time through the combustion zone. 

A fine-grained representation of the flame dynamics by means 

of a highly resolved local FTF eliminates the unphysical behavior. 

However, it is computationally very demanding to identify a local 

FTF that resolves the flame dynamics on scales as small as the pre- 

mix flame reaction zone. Thus the Linearized Reactive Flow (LRF) 

model is suggested as a viable alternative. Other than the hybrid 

LNSE + FTF approach, the LRF includes explicitly linearized species 

transport and combustion kinetics and thereby eliminates the need 

for an external model like the FTF to account for flow-flame in- 

teractions. Results confirm that such a monolithic representation 

of linearized thermoacoustic interactions and flame dynamics ac- 

counts for the effects of flame movement and does not produce 

spurious entropy waves. 

537 

A.6 PAPER-ENTROPY

145



M. Meindl, C.F. Silva and W. Polifke Combustion and Flame 223 (2021) 525–540 

Because self-excited thermoacoustic instabilities in a combus- 

tor are a highly complex phenomenon with a large number of 

influence factors, we have strived in the present paper to demon- 

strate the spurious entropy generation on premix flame configura- 

tions that are as simple as possible. The two seemingly undemand- 

ing cases of premixed methane-air combustion investigated, i.e. a 

freely propagating 1D flame and a 2D flame anchored in a duct of 

constant cross-sectional area, make the analysis clearer and more 

stringent than more complex configurations would allow. Never- 

theless, one should expect that the range of applications of the LRF 

can be expanded to acoustically non-compact flames, as present 

in thermoacoustic high-frequency instabilities. Furthermore, tech- 

nically premixed flames subject to mixture inhomogeneities in the 

approach flow can be studied without the need for a flow-flame 

model explicitly dedicated to the flame response to the mixture 

perturbations. 
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Appendix A. Chemical kinetic mechanism 

The lean premixed combustion of methane and air is modeled 

by the reduced two-step chemical kinetic mechanism 2S-CM2 as 

investigated in [73] : 

CH 4 
a + 1 . 5 O 2 

b → CO + 2 H 2 O , (A.1) 

CO + 0 . 5 O 2 
c � CO 2 , (A.2) 

with a = 0 . 9 , b = 1 . 1 and c = 0 . 5 . One of the novelties of the work 

presented in this paper is the analytical linearization of this re- 

action mechanism. Opposed to the work of Avdonin et al. [20] , 

where an irreversible one step chemistry was used, the 2S-CM2 

mechanism features reversible oxidation of CO. This leads to bet- 

ter agreement with kinetics of complex chemistry [73] , but comes 

at the cost of including more species transport equations as well 

as a more laborious analytical linearization procedure (see Section 

Appendix B ). 

As the linearization of the kinetic mechanism is at the core of 

the LRF, a detailed description of the governing equations follows. 

The source terms for energy and species are modeled as: 

˙ �k = 

2 ∑ 

n =1 

W k νkn Q n , (A.3) 

˙ �T = −
2 ∑ 

n =1 

�h 

0 
n Q n , (A.4) 

with νkn being the stoichiometric coefficient of species k in reac- 

tion n and �h 0 n the standard enthalpy of reaction n . The progress 

rate for the first, irreversible reaction is given by 

Q 1 = K f 1 ρ
(a + b) 

(
Y CH 4 

W CH 4 

)a (
Y O 2 
W O 2 

)b 

, (A.5) 

while the progress rate for the second, reversible reaction results 

as the difference between the forward and reverse contribution, 

Q 2 = K f 2 ρ
(1+ c) Y CO 

W CO 

(
Y O 2 
W O 2 

)c 

− K r2 ρ
Y CO 2 

W CO 2 

. (A.6) 

Here, K fn and K rn are the forward and reverse rates of reaction n , 

respectively. The forward rates of each reaction are given by the 

Arrhenius law, 

K f n = A f n exp 

(
−T an 

T 

)
, (A.7) 

with the rate constants given in Table A.7 . 

Table A.7 

Rate constants of the C2-SM2 mechanism [73] . 

Name Value 

A 1 2 · 10 1 5cgs units 

T a 1 17611.7 K 

A 2 2 · 10 9 cgs units 

T a 2 6038.29 K 

The reverse rate K r 2 of the second reaction is computed from 

the forward rate and an equilibrium constant K c 2 based on molar 

concentrations, 

K r2 = 

K f 2 

K c2 

. (A.8) 

K c 2 is determined via equilibrium thermodynamics from the equi- 

librium constant K p 2 based on partial pressures: 

K c2 = 

(
p a 

R univ T 

)∑ N 
k =1 νk 2 

K p2 , (A.9) 

K p2 = exp 

(
�G 

0 
2 

R univ T 

)
. (A.10) 

Here, R univ is the universal gas constant and �G 

0 
2 

is the molar- 

based standard-state Gibbs function change for the second reac- 

tion, expressed via 

�G 

0 
2 = −

N ∑ 

k =1 

νk 2 (H k − T S k ) , (A.11) 

with the molar-based enthalpy H k and entropy S k of species k and 

N ∑ 

k =1 

νk 2 = ν ′′ 
CO 2 , 2 

− ν ′ 
CO , 2 − ν ′ 

O 2 , 2 
= 0 . 5 . (A.12) 

Appendix B. Linearized chemical kinetics 

Section Appendix A showed that the analytical linearization 

of the reduced combustion mechanism results in a plethora of 

terms, especially because all the thermodynamic quantities that 

are needed to compute the equilibrium constant K c 2 depend on 

temperature and are thus perturbed when oscillations in temper- 

ature occur. We follow the systematic approach of a first order 

Taylor expansion to derive the perturbed heat release rate ˙ �′ 
T 

in 

Eq. (13) and the perturbed species source terms ˙ �′ 
k 

in Eq. (14) . 

The perturbations stem from the perturbed progress rates of the 

reactions, 

˙ �′ 
k = 

2 ∑ 

n =1 

W k νkn Q 

′ 
n , (B.1) 

˙ �′ 
T = −

2 ∑ 

n =1 

�h 

0 
n Q 

′ 
n . (B.2) 

The perturbed rates of progress can be written as functions of per- 

turbations in temperature, density and species mass fractions: 

Q 

′ 
n = 

∂ Q̄ n 

∂ ̄T 
T ′ + 

∂ Q̄ n 

∂ ρ̄
ρ ′ + 

∑ 

k 

∂ Q̄ n 

∂ ̄Y k 
Y ′ k . (B.3) 

The derivatives of the mean rates of progress with respect to mean 

temperature, density and species mass fractions can be seen as 
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sensitivities of the rates of progress to changes in these quantities 

and are derived analytically from Eqs. (A .5) –(A .11) : 

∂K f n 

∂T 
= K f n 

T an 

T 2 
(B.4) 

∂K pn 

∂T 
= − K pn 

R univ T 2 

N ∑ 

k =1 

νkn H k (B.5) 

∂K cn 

∂T 
= 

( 

∂K pn 

∂T 
− K pn 

T 

N ∑ 

k =1 

νkn 

) (
p a 

R univ T 

)∑ N 
k =1 νkn 

(B.6) 

∂K rn 

∂T 
= 

1 

K 

2 
cn 

(
∂K f n 

∂T 
K cn − ∂K cn 

∂T 
K f n 

)
(B.7) 

∂Q 1 

∂T 
= 

∂K f 1 

∂T 
ρ(a + b) 

(
Y CH 4 

W CH 4 

)a (
Y O 2 
W O 2 

)b 

(B.8) 

∂Q 1 

∂ρ
= 

a + b 

ρ
Q 1 (B.9) 

∂Q 1 

∂Y CH 4 

= K f 1 ρ
(a + b) 

aY (a −1) 
CH 4 

W 

a 
CH 4 

(
Y O 2 
W O 2 

)b 

(B.10) 

∂Q 1 

∂Y O 2 
= K f 1 ρ

(a + b) 

(
Y CH 4 

W CH 4 

)a 
bY (b−1) 

O 2 

W 

b 
O 2 

(B.11) 

∂Q 2 

∂T 
= 

∂K f 2 

∂T 
ρ(1+ c) Y CO 

W CO 

(
Y O 2 
W O 2 

)c 

− ∂K r2 

∂T 
ρ

Y CO 2 

W CO 2 

(B.12) 

∂Q 2 

∂Y CO 

= K f 2 ρ
(1+ c) 1 

W CO 

(
Y O 2 
W O 2 

)c 

(B.13) 

∂Q 2 

∂Y O 2 
= K f 2 ρ

(1+ c) Y CO 

W CO 

cY (c−1) 
O 2 

W 

c 
O 2 

(B.14) 

∂Q 2 

∂Y CO 2 

= −K r2 ρ
1 

W CO 2 

(B.15) 

Eq. (B.10) features the term Y (a −1) 
CH 4 

, where a = 0 . 9 . In regions 

where the mean mass fraction of CH4 is (close to) zero, i.e. down- 

stream of the flame, this term tends to infinity. In the final for- 

mula for the perturbed heat release, the sensitivity 
∂ ̄Q 1 

∂ ̄Y CH 4 

is multi- 

plied by the fluctuations of CH4 mass fraction, Y ′ 
CH4 

, which tends 

towards zero after the flame for all solutions investigated. To avoid 

numerical problems that come with a multiplication of infinity and 

zero, a threshold is introduced for division by Ȳ CH 4 
which is equal 

to 1 · 10 −4 times the maximum value of Ȳ CH 4 
in the whole field, 

max 
(
Ȳ CH 4 

)
= 0 . 0429 . 

Supplementary material 

Supplementary material associated with this article can be 

found, in the online version, at doi: 10.1016/j.combustflame.2020. 

09.018 
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