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Offline Dynamic Grid Generation for Automotive
Environment Perception Using Temporal Inference

Methods
Egon Ye∗, Gerald Würsching∗, Sascha Steyer, and Matthias Althoff

Abstract—The validation of online perception algorithms in
automotive systems requires a large amount of ground-truth data.
Since manual labeling is inefficient and error-prone, an automatic
generation of accurate and reliable reference data is desirable.
We present a post-processing approach based on a particle-
based dynamic occupancy grid representation of the environment.
In contrast to existing online dynamic grid algorithms, our
estimation additionally utilizes future measurements by applying
offline smoothing algorithms. Our proposed concept uses a two-
filter procedure for smoothing the occupancy states of the grid
cells. We further introduce two methods based on particle
reweighting and two-filter smoothing to improve the velocity
estimates. We show that our approach enhances the situational
awareness and thus provides a more precise environment model.
We demonstrate these benefits using lidar data from real-world
experiments.

Index Terms—Mapping, intelligent transportation systems,
sensor fusion

I. INTRODUCTION

GROUND-TRUTH data is required for evaluating online
perception such as object tracking. One of the methods

to generate ground-truth data is to post-process sensor data [1],
which gained attention in the last few years due to its scala-
bility in comparison to approaches including recordings from
differential global positioning systems (DGPS) [2] or manual
labeling [3]. However, previous research mainly focuses on
smoothing of state estimates at the object level, which requires
object assumptions and data association methods. Instead, our
paper proposes an offline smoothing algorithm based on a
low-level dynamic grid representation, which already improves
the accuracy of occupancies and velocities before extracting
objects (see Fig. 1).

A. Related Work

Offline Post-processing: In contrast to online methods,
offline post-processing of sensor data makes it possible to use
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(a) Filtered map. (b) Smoothed map.

Fig. 1. Our smoothing approach results in more confident estimates indicated
by a higher color intensity, which leads to better situational awareness of the
road ahead. This is particularly visible in the upper left corner of both maps,
which represents an area that has not yet been fully observed during the online
filtering algorithm.

precise methods to generate ground-truth data since no real-
time capability is required and future measurements can be
exploited for information fusion. A popular post-processing
approach on the object level is to initialize objects individually
at a well observable time step and to track them for both past
and future times. This is shown for classical fitting of L-, I-,
and U-shapes in [4] and for computer-aided design (CAD)
models in [5].

Alternative offline methods apply the same procedure as
online, but add subsequent improvements, e.g., by applying
updated shape information to past time steps to refine object
poses and by detecting objects in time steps before their online
initialization. Such an approach is pursued in [6] with classical
shape-fitting on lidar data and in [7] based on filtered dynamic
occupancy grid sequences. Likewise, the work in [8] presents
a concept using the random finite set framework with extended
object shape estimation.

A further promising post-processing approach is proposed
in [9], which fuses raw sensor data from multiple vehicles
to reduce the drawbacks of occlusions and decreasing sensor
resolution with distance when considering sensors of a single
vehicle. However, this approach mainly benefits from offline
computing and does not consider future measurements.

Occupancy Grids: Static occupancy grids [10], [11] are
widely used in robotics for mapping the environment by
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estimating occupancy probabilities of grid cells. Dynamic
occupancy grids also estimate the velocity of the cells, thus
enabling the distinction between static and dynamic occu-
pancy. Initial dynamic grid approaches [12], [13] use a four-
dimensional state (i.e., two dimensions for each, position and
velocity) per grid cell and estimate the cell velocities using
discrete velocity histograms. More efficient and robust meth-
ods apply particle filtering to estimate the velocity distribution
and occupancy probability of each cell [14].

Grid-Based Tracking and Mapping: In recent works
[15]–[17], the particle-based approach was extended towards
an evidential grid representation using the Dempster-Shafer
theory (DST). In grid-based tracking and mapping (GTAM),
an evidential mapping problem and a probabilistic tracking
problem are solved simultaneously. Therein, the evidences for
cell occupancy are estimated by a temporal filtering in the
Dempster–Shafer framework, whereas the cell velocities are
estimated by the filtering procedure of the particles. Overall,
GTAM provides a robust environment model without object
assumptions by only combining a uniform grid representation
with a low-level velocity estimation using particles and an
explicit static/dynamic occupancy classification using DST.

Based on the dynamic grid, an object-level representation
can be obtained by clustering dynamic cells for object extrac-
tion as presented in [18], [19]. Hence, given more accurate cell
velocity estimates and static/dynamic classifications, a higher
robustness of the object extraction is achieved.

B. Contributions

This paper presents a post-processing approach to increase
the accuracy and reliability of dynamic occupancy grids for
generating ground-truth data. In contrast to the online dynamic
grid estimation in [17], we do not only exploit past but also
future measurements using offline smoothing algorithms [20]
and thus obtain a more precise environment model. Our con-
cept uses a two-filter recursion for smoothing the occupancy
states of the grid cells, which benefits from an easy integration
of existing online occupancy grid algorithms. Furthermore,
we propose two methods to enhance the velocity estimation:
One uses a particle reweighting scheme for smoothing the cell
velocity estimates, the other applies a two-filter approach to
the velocity grid.

As a result, enhanced input data is provided for subse-
quent perception tasks, such as the extraction of objects from
dynamic grids. We evaluate our approach using real-world
lidar data and demonstrate the improved performance of our
concept by comparing the offline smoothing results with those
of online filtering.

This paper is structured as follows: Section II introduces the
necessary preliminaries of dynamic grid mapping and defines
the smoothing problem of this work. In section III, we describe
our two-filter recursion for smoothing the occupancy states.
Section IV explains the two variants for smoothing the velocity
estimates. We present our experimental results in section V and
give concluding remarks in section VI.

II. PRELIMINARIES & PROBLEM FORMULATION

This section briefly reviews the basic concept of the GTAM
approach proposed by [16], [17], which serves as the foun-
dation for this work. Additionally, we define the offline post-
processing problem for dynamic grids.

Grid-Based Tracking and Mapping (GTAM): In the
GTAM concept proposed in [16], [17], the environment is
represented as an evidential occupancy grid estimated using
the Dempster–Shafer Theory (DST) [21], [22]. Therein, the
so-called frame of discernment Θ is defined by the singleton
hypotheses for free space (F ), static (S), and dynamic (D)
occupancy. Thus, Θ and its powerset 2Θ, which contains all
considered hypotheses, are

Θ = {F, S,D},
2Θ = {∅, {F}, {S}, {D}, {F, S}, {F,D}, {S,D},Θ}, (1)

for which unclassified occupancy {S,D}, passable area
{F,D} and the unknown state Θ are explicitly modeled. The
set {F, S} is neglected as it is always conflicting.

In DST, hypotheses are estimated using a mass function
m : 2Θ → [0, 1], which assigns a basic belief mass m(A) to
every set A ∈ 2Θ, such that [23]∑

A⊆Θ

m(A) = 1, m(∅) = 0. (2)

To indicate cell-related variables, we use the index c ∈ C with
C denoting the set of all grid cells.

Additionally, dynamic occupancy is estimated using particle
filtering. Each particle i ∈ It in the set It of Nt particles
at time t represents a hypothesis of dynamic occupancy at
position [s

(i)
x,t, s

(i)
y,t]

T in a local world-fixed 2D coordinate
system with velocity components [v

(i)
x,t, v

(i)
y,t]

T . This results in
the particle state vector

x
(i)
t = [s

(i)
x,t, s

(i)
y,t, v

(i)
x,t, v

(i)
y,t]

T . (3)

Furthermore, a filtered occupancy value o
(i)
t ∈ [0, 1) is

assigned to every particle, which can be interpreted as the
particle weight. For each cell c ∈ C, the particle weights are
normalized to the filtered dynamic mass m(Dc

t ) of the cell and
an estimate of the cell velocity is calculated as the weighted
mean of the particle velocities in the cell [17].

Temporal filtering consists of predicting the prior map, for
which the dynamic occupancy is predicted by the particles us-
ing a dynamic motion model, and updating the predicted map
with an evidential measurement grid. For fusing independent
evidences, the DST framework provides several combination
rules [23], from which we apply the conjunctive rule ⊕c

defined as [23]

m1(A)⊕c m2(A) =
∑

B∩C=A

m1(B)m2(C), ∀A,B,C ⊆ Θ,

(4)
for two individual mass functions m1 and m2. Therein, the
conflicting combinations (i.e., B ∩ C = ∅) can be distributed
individually as presented in [17].
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Problem Formulation: The approaches for the temporal
inference problem in this work are twofold. Let Θc

t be the
frame of discernment for cell c at time step t. In the DST
framework, the estimation problem for occupancy smoothing
is to find the smoothed basic belief mass of the individual
hypotheses Xc

t ⊆ Θc
t conditioned on all measurements z0:T =

{z0, ..., zT } over a fixed time interval:

m(Xc
t |z0:T ), ∀c ∈ C, t = 0, ..., T. (5)

Particle smoothing is defined by Bayesian inference meth-
ods, which estimates the particle states by maximizing over
p(x

(i)
t |z0:T ) as the conditional probability distribution of x(i)

t

given the measurements z0:T . Thus, the smoothed states are

x
(i)∗
t = arg max

x
(i)
t

p(x
(i)
t |z0:T ), ∀i ∈ It, t = 0, ..., T. (6)

Our solution to this problem is presented in the next two
sections.

III. TWO-FILTER OCCUPANCY SMOOTHING

To estimate the smoothed grid occupancy, we use the two-
filter approach based on [24], which fuses two independent
paths, i.e., forward and backward recursions, using DST
combination rules. Fig. 2 visualizes our two-filter occupancy
smoothing concept. Therein, Mf

t = {m(Xc
t |z0:t)}c∈C is

the forward filtered map, Mb
t = {m(Xc

t |zt+1:T )}c∈C is the
backward predicted map, and Ms

t = {m(Xc
t |z0:T )}c∈C is the

smoothed map with conditioned mass functions for forward
filtering m(Xc

t |z0:t), backward prediction m(Xc
t |zt+1:T ), and

smoothing m(Xc
t |z0:T ), respectively. In the following consid-

erations, the equations are defined for all Xc
t ⊆ Θt and we

drop the cell index c for simplicity.
For the application to mass functions, we first reformulate

the recursive equations from [24] using the conjunctive rules
for conditional masses [25, p. 7]. For the forward filtering
pass, this results in

m(Xt|z0:t)

=m(Xt|z0:t−1)⊕c m(Xt|zt)

=

[ ∑
Xt−1⊆Θt−1

m(Xt−1|z0:t−1)m(Xt|Xt−1)

]
⊕c m(Xt|zt),

(7)

where m(Xt|Xt−1) and m(Xt|zt) are the beliefs conditioned
on transitions and observations, respectively. Since forward
filtering only uses past and current measurements, the imple-
mentation for (7) is equivalent to online methods (e.g., [17]).
The reformulated backward prediction recursion [24] is

m(Xt|zt+1:T )

=
∑

Xt+1⊆Θt+1

[
m(Xt+1|zt+1:T )m(Xt|Xt+1)

]
=

∑
Xt+1⊆Θt+1

[
(m(Xt+1|zt+2:T )

⊕c m(Xt+1|zt+1))m(Xt|Xt+1)
]

(8)

...Forward 
filtered maps

Backward 
predicted maps

Smoothed
maps

...

... ...

Fig. 2. Schematic overview of two-filter occupancy smoothing: Both the
forward filtered maps Mf

t and backward predicted maps Mb
t are computed

independently of each other. These uncorrelated maps are combined to obtain
the two-filter smoothed map Ms

t .

and the smoothed occupancy estimates of the combined two-
filter concept are computed by

m(Xt|z0:T ) = m(Xt|z0:t)⊕c m(Xt|zt+1:T ) (9)

for t = 0, ..., T . To compute the smoothed estimates at
the interval boundaries t = 0 and t = T , we define the
vacuous priors of the forward filtering and backward prediction
recursions by m(Θ0|z0:−1) = 1 and m(ΘT |zT+1:T ) = 1,
respectively. This choice of the vacuous priors assigns the
maximum uncertainty to the occupancy state.

The resulting conflict masses from the combination in (9)
are added to the smoothed masses by heuristics based on prior
knowledge (cf. Tab. I). Therein, all conflict masses arising
from m(Ft|z0:t) are assigned to m(Ft|z0:T ) since filtering
includes measurements at the current time step, which is
more crucial for inferring free space. Conflict masses between
m(St|∗) and m(Ft|∗) are further distributed to m(Ft|z0:T )
to reduce erroneously assigned static mass. The remaining
conflict masses involving m(Ft|∗) are added to m(FDt|z0:T )
as a result of the trade-off between filtered occupancy and pre-
dicted free space. The combinations of m(St|∗) and m(Dt|∗)
are allocated to their superset of unclassified occupancy
m(SDt|z0:T ) to preserve temporally inferred occupancies. The
conflict masses between S and FD are not listed in Tab. I since
they are not assigned explicitly and thus distributed by nor-
malization. Since every recursion only needs to be processed
once, the computational complexity of this algorithm is linear
with the number of cells.

TABLE I
CONFLICT MASS ASSIGNMENT FOR SMOOTHING

Added to Conflict masses

m(Ft|z0:T )
m(Ft|z0:t)m(St|zt+1:T ), m(Ft|z0:t)m(Dt|zt+1:T ),
m(Ft|z0:t)m(SDt|zt+1:T ), m(St|z0:t)m(Ft|zt+1:T )

m(FDt|z0:T ) m(Dt|z0:t)m(Ft|zt+1:T ), m(SDt|z0:t)m(Ft|zt+1:T )

m(SDt|z0:T ) m(St|z0:t)m(Dt|zt+1:T ), m(Dt|z0:t)m(St|zt+1:T )

IV. VELOCITY SMOOTHING

The velocity in the dynamic grid representation is estimated
using particles, which are weighted by their occupancy value
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to obtain the velocity in each cell [17]. As mentioned above,
we compare two approaches for smoothing the velocity, which
we present subsequently.

A. Velocity Smoothing by Reweighting Particles

To obtain a smoothed distribution using the particle
reweighting algorithm [26], a backward recursion is appended,
which adapts the particle weights from the forward recursion
using future measurement information. The original particle
reweighting algorithm (cf. (11)) is designed for estimating a
single state vector, for which the sum of smoothed weights
at each time step is normalized to 1 accordingly to the
particle filtering algorithm [20, pp.116–128]. Since in [17]
the particle filter estimates the states separately for each cell
and the particle weights in each cell are normalized to its
dynamic mass, we also normalize the reweighted particles
to the smoothed dynamic mass m(Dt|z0:T ) (cf. (10)) to be
consistent with [17]. For a fixed time interval between 0
and T , the backward recursion is initialized at t = T by
setting the smoothed weights equal to the filtered weights
since no future measurements exist beyond time step T , i.e.,
o

(i)
T |0:T = o

(i)
T , ∀i ∈ IT . The smoothed weights are computed

for t = T − 1, ..., 0 using

o
(i)
t|0:T =

õ
(i)
t|0:T∑

i∈It õ
(i)
t|0:T

m(Dt|z0:T ), ∀i ∈ It (10)

with the unnormalized smoothed weights from particle
reweighting

õ
(i)
t|0:T =

∑
j∈It+1

o
(j)
t+1|0:T

o
(i)
t p(x

(j)
t+1|x

(i)
t )∑

l∈It o
(l)
t p(x

(j)
t+1|x

(l)
t )

. (11)

Analogously to the filtering application [17], we obtain the
smoothed velocity vector for a cell c from particle reweighting
(PR)

vc
t|0:T,PR =

∑
i∈Ict

o
(i)
t|0:Tv

(i)
t∑

i∈Ict
o

(i)
t|0:T

, (12)

where v
(i)
t ∈ R2 are the particle velocities and Ict ⊂ It is the

set of particles in cell c. In (10) – (12), we have neglected the
exclusion of particles in It moving out of the grid bounds and
those newly sampled particles in It+1.

In our approach, the particle smoother only adjusts the
weights of the particles inside the cell, whereas the two-filter
occupancy smoother (cf. section III) provides the smoothed
dynamic mass of the cell to rate the reliability between cells.
The computational complexity of the particle reweighting
algorithm is O(N2

t ), which results from the sum over all
particle combinations in the transition step [20, p. 171].

B. Two-Filter Velocity Map Smoothing

Our second approach for velocity estimation exploits the
velocity estimations on the cell level, which are computed
using all particles in each cell. To this end, we apply a two-
filter smoother (cf. section III) on each grid cell using the inde-
pendently estimated particle velocities from both the past and

Backward predicted:

t 

Accelerating Vehicle with constant velocity dynamic model (schematically w/o resampling)

Forward filtered:

Particles are affected, thus the cells are affected the same way; dot size
represent weight; arrow length represents absolute velocity value

Forward predicted:

Two-filter smoothed:

Low velocity

inferred from past

High velocity

inferred from future

Faster convergence by

fusing past and future

𝑣𝑎𝑣𝑔 = 8𝑚/𝑠

𝑣𝑎𝑣𝑔 = 8.2 𝑚/𝑠

𝑣𝑎𝑣𝑔 = 10 𝑚/𝑠

𝑣𝑎𝑣𝑔 = 9.1 𝑚/𝑠

Fig. 3. Illustration of the particle velocity estimation using the two-filter
smoother based on an accelerating vehicle: The dot size and the arrow
length represent the weight and the absolute velocity value of the particles,
respectively. Exemplary values are chosen for the average particle velocity
vavg to highlight the effect. While the particles tend to fall behind the vehicle
(assuming constant velocity motion model [17]) in the forward prediction, the
update step reduces the influence of particles outside the vehicle contour. The
backward predicted estimates tend to get ahead the vehicle in the opposite
direction due to a higher predicted velocity. The two-filter smoother fuses
both estimates, which results in a faster convergence.

future measurements. Fig. 3 schematically depicts the principle
of the two-filter velocity estimation for an accelerating vehicle.

Since a combination of both particle velocity distributions
by multiplication would result in zero unless two samples lie
exactly at the same spot, we approximate the distributions
by the mean and the dynamic mass similar to the mean
and variance of Gaussian distributions. Therein, we use the
corresponding dynamic mass instead of the variance of the
particle velocity distribution since the variance is prone to
the sampling process of new particles. In fact, the dynamic
mass can be considered as a measure for the reliability of the
estimated velocity and was also used in [27] for weighting
cell velocity estimations for object extraction. We obtain the
smoothed velocity vector for a cell c from the two-filter (TF)
approach

vc
t|0:T,TF =

m(Dc
t |z0:t)v

c
t|0:t +m(Dc

t |zt+1:T )vc
t|t+1:T

m(Dc
t |z0:t) +m(Dc

t |zt+1:T )
(13)

for t = 0, ..., T , where vc
t|0:t ∈ R2 and vc

t|t+1:T ∈ R2 denote
the forward filtered and backward predicted cell velocities,
respectively. Since m(Dc

t |zT+1:T ) = 0 as defined by the vac-
uous prior of the backward recursion, the smoothed velocity
estimates of the last time step t = T equals the filtered
estimates such that vc

T |0:T,TF = vc
T |0:T . In contrast to the

approach presented in section IV-A, our two-filter velocity
smoother benefits from the inclusion of particle estimations
from the backward pass and a lower computational complexity,
which is linear with the number of cells Ncell, i.e., O(Ncell).

V. EXPERIMENTS

In our experiments we first compare the performance of our
occupancy smoothing approach with the filtered dynamic grid
maps. Secondly, we evaluate the velocity orientation estimates
of both proposed velocity smoothing approaches and validate
the absolute velocity estimates using the motion data of a
reference vehicle. We generate all results with a grid size of
680× 680 cells, a cell resolution of 0.15 m × 0.15 m, and a
maximum number of 100 particles per cell.
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Our experimental setup includes a Hesai Pandar lidar
mounted on the roof rack of the ego vehicle. The sensor
provides a 3D point cloud consisting of 40 vertical layers
with a resolution of 0.33◦ and 1◦ depending on the elevation
angle. A horizontal resolution of 0.2◦ is obtained with a sensor
rotation rate of 10Hz. To obtain validation data, the reference
vehicle is equipped with a DGPS system (based on Real-Time
Kinematic technology) from OxTS for velocity estimation.
We have visualized the results for a section of the evaluated
sequence including the front camera view and raw lidar data
in the video attachment of this paper.

A. Comparison of Occupancy Estimates

To highlight the enhancement of the occupancy grids
through our approach, Fig. 4 shows a qualitative comparison
between the filtered and smoothed dynamic occupancy grid
maps. As can be seen in the upper left corner of Fig. 4a,
the filtered occupancy grid suffers from high uncertainties in
newly observed areas, i.e., the corresponding grid cells have
not yet been classified correctly in the forward recursion. By
incorporating the backward recursion, our smoothed map (Fig.
4b) exhibits an improved classification of the cells in this area,
which is especially noticeable for static cells originating from
buildings or parked vehicles.

In Fig. 4a, the region ”1” marked by a dashed box cor-
responds to an oncoming vehicle entering the grid. In the
forward recursion, the associated occupied cells are unclas-
sified since several timesteps are required to infer dynamic
occupancy. The smoothed grid, however, clearly identifies the
cells as dynamic as soon as the object enters the grid. Region
”2” in Fig. 4a shows a newly appearing part of a guardrail
which is partly misclassified as dynamic occupancy. This is
a common issue for dynamic grids when only lidar data
is used, since elongated objects parallel to the ego velocity
orientation tend to get assigned the same speed as the ego
vehicle. The smoothed map identifies this part of the guardrail
correctly as static occupancy, even without remedying with
radar velocity measurements [16]. As indicated by region ”3”
in Fig. 4b, an object occluded during multiple time steps can
be recovered using the backward recursion if the object is
observed afterwards. In this way, the object existence time can
be extended and the overall situational awareness is raised.

Fig. 5 presents two more scenarios involving intersections.
Therein, the region marked with ”1” in Fig. 5a includes
vehicles which were initially standing when the ego vehicle
approaches the intersection. While forward filtering has not yet
seen the vehicles moving, the smoothed cell estimates mostly
infer a dynamic occupancy from future measurements, which
improves the estimation of dynamic states when the vehicles
start moving. Region ”2” in Fig. 5b shows a challenging situa-
tion with three vehicles successively turning right. The noise in
the wake of the objects results from the initialization of new
dynamic occupancy, which is reduced by offline smoothing
due to an improved classification of the cell occupancy.

In [17], subsequent perception tasks such as object tracking
are performed on classified scan grids. Since lidar measure-
ments do not provide dynamic information and the dynamic

(a) Filtered dynamic grid. (b) Smoothed dynamic grid.

Fig. 4. Comparison of dynamic occupancy grid map: Static occupancy is
visualized in red, free space in green, dynamic occupancy in blue, unclassified
occupancy in pink, passable area in cyan, and an unknown state in white [17].

(a) Traffic light scenario: Filtered (left) and smoothed (right).

(b) Turning vehicles scenario: Filtered (left) and smoothed (right).

(c) Camera views: Traffic light (left) and turning vehicles (right) scenario.

Fig. 5. Comparison of dynamic occupancy grid maps for two intersection-
related scenarios: The first scenario in (a) shows the ego vehicle approaching
an intersection with vehicles initially standing at the traffic light. The scenario
in (b) shows three vehicles turning right at the intersection.

grid data are correlated due to filtering over time, classified
scan grids were introduced, which consist of the unclassified



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

(a) Filtered classified scan grid. (b) Smoothed classified scan grid.

Fig. 6. Comparison of classified scan grid: Static occupancy is visualized in
red, free space in green, dynamic occupancy in blue, unclassified occupancy
in pink, and an unknown state in white [17].

occupancy from lidar measurements classified using dynamic
grids. These are used as an uncorrelated input for the extraction
and tracking of objects to prevent multi-filtering of occupied
cells. Fig. 6 shows the filtered and smoothed classified scan
grids corresponding to the situation in Fig. 4. As can be seen
in the upper left corner, cells representing the newly appearing
static environment obtain a more accurate classification. Fur-
thermore, region ”1” in Fig. 6b includes the oncoming vehicle
entering the grid area, whose cells are clearly classified as
dynamic in the smoothed case. Hence, an earlier detection
and extraction of moving objects at time of appearance can be
achieved based on the smoothed classified scan grids.

To provide a statistical evaluation of our approach, we quan-
titatively compare the map estimates with respect to occupancy
classification. Analogously to [17], we classify all cells, for
which the current measurement exceeds a minimum occupancy
evidence, binarily into static and dynamic occupancy using

Λ =

{
{S} if m(Sc

t ) ≥ ψΛ,

{D} otherwise,
(14)

with the classification threshold ψΛ. We evaluate these out-
comes of the classification using varying ψΛ with manually
labeled ground-truth data. Fig. 7 compares the classification
performance using receiver operating characteristic (ROC)
curves and the corresponding area under the curve measure
for a sequence of 700 frames. For our scenario, both the ROC
curves and the area under the curves show that our proposed
offline smoothing approach outperforms the online filtering
approach, which confirms the previous qualitative results.

B. Comparison of Velocity Orientation Estimates

To evaluate our approaches for smoothing velocity esti-
mates, we conduct a comparison using velocity orientation
grids [17], which visualize the estimated velocity orientation
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Fig. 7. Statistical comparison of the proposed smoothing approach against
the filtering approach from [17] using ROC curves, where ’positive’ denotes
the binary classification of dynamic cell occupancy.

of each cell. To this end, we adopt the HSV (hue, saturation,
and value) color coding from [17] defined by

HSVc =

(
arctan

(
vcy,t
vcx,t

)
,m(Dc

t ), 1−m(Sc
t )

)
. (15)

Fig. 8 depicts the filtered and both smoothed velocity
orientation grids for the same situation as shown in Fig. 4.
As marked by dashed boxes in Fig. 8a, regions ”1” and ”2”
contain cells of static objects estimated as dynamic. The colors
of the cells indicate a movement parallel to the longitudinal
axis of the nearby structure, which can be traced back to
the aforementioned difficulties in classifying cell occupancies
of elongated objects. Both smoothing approaches can resolve
these issues using future information and correctly infer a
static occupancy.

The region ”3” in Fig. 8b and Fig. 8c indicates an occluded
vehicle as discussed previously. This example shows that our
approach is not only able to recover the occupancy in occluded
areas but additionally provides an accurate estimate of the
velocity orientation of the corresponding grid cells.

In region ”4”, the velocity orientation estimates of the
cells corresponding to the object differ for both smooth-
ing approaches. Compared to the filtered estimates, particle
reweighting obviously provides a more intense coloring of the
object cells due to an increased amount of dynamic mass after
smoothing. However, it suffers from ambiguous velocity orien-
tation estimations, which can be explained by a low number of
good particles since filtering does not always generate particles
with reasonable velocity values in the beginning. Thus, one
also increases the importance of unsuitable particles in case
no appropriate particles exist. In contrast, two-filter smoothing
performs better by including the backward recursion which
makes it less prone to initialization errors of the forward
recursion.

Since velocity estimates are important for clustering cells
and extracting objects as well as for reasoning dynamic
occupancy, our approach enhances the performance of the
grid generation process and provides more reliable data for
subsequent perception tasks.

C. Evaluation of Velocity Estimates with DGPS Reference

In this section, we further validate the absolute velocity
estimates using DGPS data from our reference test vehicle. To
this end, we first evaluate the velocity distribution of particles
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(a) Filtered. (b) Smoothed by reweighting particles. (c) Smoothed by two-filter.

Fig. 8. Comparison of velocity orientation grid: HSV color coding given by (15) results in black for static cells and in the color corresponding to the cell
velocity orientation according to the color circle in the bottom right corner [17].
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Fig. 9. Comparison of the absolute particle velocity distribution in a single
grid cell, where the true velocity of the corresponding reference object is 14.4
m/s (marked by dashed line).

by exemplarily choosing a representative cell which we have
manually associated to our reference object. Fig. 9 shows
the weighted histograms of the absolute particle velocities
in this grid cell. For the results of filtering and particle
reweighting, the particle states are equivalent, but are assigned
with different weights. The histogram for two-filter smoothing
contains the particles from both the forward filtering and from
backward prediction.

The filtered particle distribution exhibits two apparent
modes around 14.5m/s and 16m/s with a spread between
13m/s and 18m/s. It can be observed that both smoothing
approaches increase the weights around the mode correspond-
ing to the true velocity value and reduce the influences of
the second mode as well as the weights of the outliers on the
right side. Therein, the additional particles from backward pre-
diction provide a better centered distribution of the two-filter
smoothed estimates around the true velocity value compared
to the particle reweighted estimates. This example shows that
smoothing is able to reduce the influence of erroneous particles
and to improve the intra-cell particle velocity distribution.

To demonstrate the benefits of our approach for object track-
ing [27], we evaluate the accuracies of the velocity estimations
for all cells corresponding to the reference object. To obtain
these linked cells, we use the cell-to-object association from

[19]. Therein, the particles have labels, which can be explicitly
assigned to objects. Using these labels, the cells are associated
to the object if a minimum ratio of particles in the cell is
assigned to it, while the dynamic mass of the cell exceeds a
threshold at the same time. For a sequence of approximately
70 seconds, Fig. 10 compares the absolute velocity computed
by the cells with the DGPS velocity of the reference object.
For the evaluation of both smoothing approaches, we adopted
the same cells as we have extracted for filtering.

In the presented sequence, the reference vehicle first accel-
erates, then cruises with almost constant velocity, and brakes in
the end until it stops. Therein, particle reweighting provides
slightly better velocity estimates than filtering with a lower
variance. However, both filtering and particle reweighting are
subject to a delay in the acceleration and braking phase.
While the delay for filtering is plausible, the delay for particle
reweighting might be a result of a fixed set of cells adopted
from filtering together with a fixed set of particle states, which
restricts the variability to counteract the delay. In contrast,
two-filter smoothing can almost fully compensate the delay
with backward predicted velocities, which behave contrarily
to the forward filtered estimates. The increase of the error and
variance in the end for the two-filter can be explained by a
standing reference vehicle in the first steps of the backward
recursion.

Overall, velocity smoothing with two-filter has a lower
computational complexity compared to particle reweighting
and outperforms both filtering and particle reweighting in
terms of estimation accuracy. This makes it a reasonable
approach for generating ground truth.

VI. CONCLUSIONS

This paper proposes an offline approach to generate accurate
dynamic grids for automotive perception. By using past and
future measurements, we improve the classification of static
and dynamic cell occupancy and provide a more precise cell
velocity estimation. The resulting grid representation is more
consistent ensuring a more reliable application of subsequent
perception algorithms. By using real-world sensor data, we
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Fig. 10. Performance validation of the absolute velocity computed by the
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associated cells.

demonstrated the benefits of our concept compared to the
online method and thus can justify its potential to be used
for ground truth generation. To exploit these advantages for
validating online tracking algorithms, we would like to gen-
erate ground-truth object data by extracting objects from the
offline generated dynamic grids in the future.
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