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Towards an Exascale PDE Engine
ExaHyPE [1] is designed to enable medium-sized
interdisciplinary research teams to quickly realise
extreme-scale simulations of grand challenges.
The ExaHyPE Engine solves systems of first-order
hyperbolic PDEs of the form:
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ExaHyPE employs higher-order ADER-DG on
tree-structured adaptive Cartesian grids using
a-posteriori subcell Finite-Volume limiting [4]:

  

Finite Volume Limiting
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Tree Structured AMR

“What’s an Engine?”
Similar to a “game engine”, we aim for efficient core
functionality but also application flexibility:
I fixed parallel AMR framework: Peano [3]

(tree-structured adaptive Cartesian grids;
MPI+Tasking parallelism, load balancing)
→ www.peano-framework.org

I fixed numerics: high-order discontinuous
Galerkin with ADER time-stepping (ADER-DG)
with a-posteri Finite-Volume subcell limiting

I flexible w.r.t. applications: hyperbolic PDEs
stemming from conservation laws

Code generation is our means to manage software
complexity.

Role-Oriented Code Generation:
We have observed the following roles for software
development on the engine and on its applications:
I application expert(s): implements the PDE

system, problem-specific initial/boundary
conditions, etc., for a given application;
desires straightforward user API that hides
complexity of solver and optimisation

I algorithms expert(s): implements efficient
numerical schemes; shall design
architecture-oblivious algorithms via custom
macros that isolate low-level optimisation

I optimisation expert(s): performs hardware-
aware optimisation on performance-critical
components of the solver – relies on
abstractions by algorithmic templates.

Any role might be adopted by multiple users.
Any user may adopt multiple roles.

ExaHyPE’s Toolkit and Code Generator [2] thus
provide separate views for each role.
Toolkit and Code Generator are stand-alone
applications based on the Jinja2 templating engine.

How to Create Code that is Easy to Use & Extend, Flexible, Efficient, . . . ?

ExaHyPE user solver

Optimised or generic kernels

PDE terms (C/C++ or Fortran) 

ExaHyPE core

Solver base classes (ADER-DG, FV, ...)

Algorithms (time stepping, AMR, ...)

Plotters for various file formats
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Grid management and heaps

Distributed-memory parallelisation

Shared-memory parallelisation

steers

generates

written by user

toolkit/prepared by toolkit

Using the ExaHyPE Toolkit:

1 create a specification file that
defines the domain, PDE system,
required architecture,
parallelisation, etc.

2 ExaHyPE toolkit creates glue code,
application-specific template
classes and core routines (tailored
to application and architecture)

3 implement the application classes
with PDE- and scenario-specific
methods:
– flux(...), ncp(...), . . . for PDE terms

(conservative fluxes, non-conservative
products, etc.)

– eigenvalues(...) to compute
eigenvalues (for Riemann solvers)

– boundaryValues(...), etc.

Jinjia2 Templates and Model-View-Controller Design
ExaHyPE Toolkit and Code Generator follow a
Model-View-Controller Design – e.g., for the Toolkit:
I Controller: builds multiple contexts from the

specification file, such as type of PDE, choice of
numerical solver, architecture, etc.

I Model: responsible for generating a specific View –
e.g., generate the glue code for either a finite
volume solver or an ADER-DG solver

I View: Jinja2 template engine is invoked to render
templates that are tailored to Model-provided
contexts.

Jinjia2 templates allow “logic” in the code representation,
while keeping it close to the generated code and easily
readable and expandable. For example
{% if initA %}
{{ allocateArray(’A’, nDof )}}
for(int i=0; i<{{ nDof }}; ++i) {

A[i] = B[i+{{ nDof*nVar }}] * {{C}}[i];
}
{% endif %}

may generate the following code:
double A[5] __attribute__ (( aligned (32)));
for(int i=0; i<5; ++i) {

A[i] = B[i+20] * foo[i]
}

Creating an ExaHyPE Application: View for the Application Expert
Specification file: Implementation of flux function:
exahype -project Elastic

peano -kernel -path const = ./Peano
exahype -path const = ./ ExaHyPE
output -directory const = ./ Elastic

computational -domain
dimension const = 3
width = 1.0, 1.0, 1.0
offset = 0.0, 0.0, 0.0
end -time = 1.0

end computational -domain

solver ADER -DG ElasticWaveSolver
variables const = v:3,sigma :6
parameters const = rho:1,cp:1,cs:1
order const = 7
maximum -mesh -size = 2e-2
maximum -mesh -depth = 2
time -stepping = global
terms const = flux ,ncp ,
material_parameters ,point_sources

optimisation const = optimised
language const = C
basis = Lobatto

end solver
end exahype -project

void Elastic :: ElasticWaveSolver
::flux(const double* const Q,

double ** const F) {
VariableShortcuts s;
double sigma_xx=Q[s.sigma + 0];
double sigma_yy=Q[s.sigma + 1];
double sigma_zz=Q[s.sigma + 2];
double sigma_xy=Q[s.sigma + 3];
double sigma_xz=Q[s.sigma + 4];
double sigma_yz=Q[s.sigma + 5];
F[0][ s.v + 0] = -sigma_xx;
F[0][ s.v + 1] = -sigma_xy;
F[0][ s.v + 2] = -sigma_xz;
F[1][ s.v + 0] = -sigma_xy;
F[1][ s.v + 1] = -sigma_yy;
F[1][ s.v + 2] = -sigma_yz;
F[2][ s.v + 0] = -sigma_xz;
F[2][ s.v + 1] = -sigma_yz;
F[2][ s.v + 2] = -sigma_zz;

}
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Architecture-Oblivious Templates and Architecture-Aware Optimisation Macros

Using Jinja2’s macros and variables, we can design architecture-oblivious algorithmic templates that are
rendered by Jinja2 with custom made architecture-aware optimisation macros.
This keeps the development of new numerical schemes and low-level architecture-aware optimisation
separated and the roles of algorithm and optimisation expert independent from one another.

Example: tensor contraction to compute the x-component of the gradient of state tensor Q (variable lQi):
Algorithm expert provides “loop over GEMM” implementation using macros (provided by the optimisation
expert) for matrix multiplication (matmul) and index calculation (idx) to extract matrix slices:
for (int yz=0; yz <{{ nDof*nDof3D }}; yz++) {

{{ matmul(’gradQ_x ’, ’lQi’, ’dudxT’, ’gradQ’,
idx(0,yz ,0,0), ’0’, idx(0,yz ,0 ,0))}}

}

∀z, y , k ,n : ∇Qz,y ,x ,n =
∑

k

∆x ,k ·Qz,y ,k ,n

Depending on the context – number of degrees of freedom (nDof), used architecture, etc. – the Code
Generator resolves the template variables, using hardware-specific padding in the index for the tensor
offsets and matrix dimensions (here AVX2). The architecture-aware matmul macro selects a hardware-
efficient backend for matrix multiplication, for example using the Eigen library [8].

for (int yz=0; yz <36; yz++) {
Map < Matrix <double ,12,6>, Aligned , OuterStride <12> > lQi_m(lQi+yz*72);
Map < Matrix <double ,6,6>, Aligned , OuterStride <8> > dudxT_m(dudxT);
Map < Matrix <double ,12,6>, Aligned , OuterStride <12> > gradQ_m(gradQ+yz *72);

gradQ_m.noalias () = lQi_m * dudxT_m ;
}

For an AVX-512 architecture (Intel Skylake), the template would be rendered with padding to a different
SIMD width (16 instead of 12) and calling the highly optimised GEMM function generated by LIBXSMM [9]:

for (int yz = 0; yz < 36; yz++) {
gemm_16_6_6_gradQ_x(lQi+yz*96, dudxT , gradQ+yz*96);

}

Optimised Kernels: Vectorisation and Minimisation of Memory Footprint
ExaSeis faces conflicting demands for data layout:
I DG tensor operations are turned into sequences of

matrix multiplications (“loop over GEMM”)
→ suggests quantities as leading dimension (AoS)

I evaluation of fluxes loops over integration points calling
user-functions (flux(), e.g.) → suggests integration
points as leading dimension (SoA)

I choose AoSoA as data layout:
→ single out one dimension

I In addition: provide dimensional flux() function to
reduce the memory footprint
 changes API (“View” for application expert)

Extracting matrix slices from a tensor A:

i

j
k

A(k,j,i), 3x2x3 tensor

A(1,:,:), 3x2 matrix slice

A(:,1,:), 3x3 matrix slice

offset 

slice stride

Contiguous matrix

Matrix with leading 

dimension padding

=

=

// scalar formulation of flux_x
void flux_x(double* Q, double* F) {

F[0] = -(Q[0]+Q[3]+Q[4]);
F[1] = -(Q[1]+Q[3]+Q[5]);
F[2] = -(Q[2]+Q[4]+Q[5]);

}

// vectorized formulation of flux_x
void flux_x_vect(double* Q, double* F) {

#pragma omp simd aligned(Q,F:ALIGNMENT)
for(int i=0; i<VLENGTH; i++) {

F[0* VSTRIDE+i] = -(Q[0* VSTRIDE+i]
+Q[3* VSTRIDE+i]+Q[4* VSTRIDE+i]);

F[1* VSTRIDE+i] = -(Q[1* VSTRIDE+i]
+Q[3* VSTRIDE+i]+Q[5* VSTRIDE+i]);

F[2* VSTRIDE+i] = -(Q[2* VSTRIDE+i]
+Q[4* VSTRIDE+i]+Q[5* VSTRIDE+i]);

}
}

Example performance of seismic wave
propagation (LOH.1 benchmark) on curvilinar
meshes [7]:
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I significantly reduces the L2-cache footprint
I 5.7× speedup for order 10 compared to

generic implementation.

ChEESE Pilot Demonstrator:
Towards UQ for Seismic Hazard Analysis
We link ExaSeis – the collection of seismic wave
propagation models in ExaHyPE – to the MUQ C++
toolbox for uncertainty quantification (muq.mit.edu)
and plan to experiment with novel UQ-based
approaches to seismic hazard analysis.

Curvilinear mesh aligned to topography and three planar fault
planes of the bookshelf-type South Iceland Seismic Zone.

ADER-DG on Curvilinear Meshes
To fit ExaHyPE’s Cartesian meshes to domains with
topography and multiple faults (incl. slightly curved
and/or rough faults), we developed a curvilinear
method that maps Cartesian to curvilinear elements:
I retains the tensor structure of the DG basis
I flux and source terms of the system are

transformed with the element Jacobian
I but: eigenvalues (and thus the time-step size)

highly depend on the perturbation introduced by
the topography

Allows fully automated initial mesh generation for
problems with topography and curved/rough faults!

Multi-Physics Dynamic Rupture
We simulate multi-physics spontaneous dynamic
rupture, across complex fault geometries.
The automated mesh generator allows to model fault
structures, including branches, by defining a k-d-tree.
The rupture is incorporated as boundary condition,
which we solve with a new developed physics based
Riemann solver. Our code is verified against
community benchmarks (Picture: SCEC TPV28)

TPV28 benchmark (vertical strike-slip fault with two hills):
setup (left) and rupture contours computed by ExaSeis (right).
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