
Role-Oriented Code Generation in ExaHyPE
M. Bader, J.-M. Gallard, L. Rannabauer (Technical University of Munich)
A. Reinarz, T. Weinzierl (Durham University)

Towards an Exascale PDE Engine
ExaHyPE [1] is designed to enable medium-sized
interdisciplinary research teams to quickly realise
extreme-scale simulations of grand challenges.
The ExaHyPE Engine solves systems of first-order
hyperbolic PDEs of the form:

P
∂Q
∂t

+∇ · F(Q,∇Q) +
d∑

i=1

Bi(Q)
∂Q
∂xi

= S(Q) +
∑

δ

ExaHyPE employs higher-order ADER-DG on
tree-structured adaptive Cartesian grids using
a-posteriori subcell Finite-Volume limiting [4]:

Finite Volume Limiting

Code Generation

High Order ADER-DG

Tree Structured AMR

“What’s an Engine?”
Similar to a “game engine”, we aim for efficient core
functionality but also application flexibility:
I fixed parallel AMR framework: Peano [3]

(tree-structured adaptive Cartesian grids;
MPI+Tasking parallelism, load balancing)
→ www.peano-framework.org

I fixed numerics: high-order discontinuous
Galerkin with ADER time-stepping (ADER-DG)
with a-posteri Finite-Volume subcell limiting

I flexible w.r.t. applications: hyperbolic PDEs
stemming from conservation laws

Code generation is our means to manage software
complexity.

Role-Oriented Code Generation:
We have observed the following roles for software
development on the engine and on its applications:
I application expert(s): implements the PDE

system, problem-specific initial/boundary
conditions, etc., for a given application;
desires straightforward user API that hides
complexity of solver and optimisation

I algorithms expert(s): implements efficient
numerical schemes; shall design
architecture-oblivious algorithms via custom
macros that isolate low-level optimisation

I optimisation expert(s): performs hardware-
aware optimisation on performance-critical
components of the solver – relies on
abstractions by algorithmic templates.

Any role might be adopted by multiple users.
Any user may adopt multiple roles.

ExaHyPE’s Toolkit and Code Generator [2] thus
provide separate views for each role.
Toolkit and Code Generator are stand-alone
applications based on the Jinja2 templating engine.

How to Create Code that is Easy to Use & Extend, Flexible, Efficient, . . . ?

ExaHyPE user solver

Optimised or generic kernels

PDE terms (C/C++ or Fortran)

ExaHyPE core

Solver base classes (ADER-DG, FV, ...)

Algorithms (time stepping, AMR, ...)

Plotters for various file formats

E
x
a
H

y
P

E
 s

p
e
c
ifi

c
a
ti

o
n

 fi
le

E
x
a
H

y
P

E
 t

o
o
lk

it

li
b

x
s
m

m

Peano

Grid management and heaps

Distributed-memory parallelisation

Shared-memory parallelisation

steers

generates

written by user

toolkit/prepared by toolkit

Using the ExaHyPE Toolkit:

1 create a specification file that
defines the domain, PDE system,
required architecture,
parallelisation, etc.

2 ExaHyPE toolkit creates glue code,
application-specific template
classes and core routines (tailored
to application and architecture)

3 implement the application classes
with PDE- and scenario-specific
methods:
– flux(...), ncp(...), . . . for PDE terms

(conservative fluxes, non-conservative
products, etc.)

– eigenvalues(...) to compute
eigenvalues (for Riemann solvers)

– boundaryValues(...), etc.

Jinjia2 Templates and Model-View-Controller Design
ExaHyPE Toolkit and Code Generator follow a
Model-View-Controller Design – e.g., for the Toolkit:
I Controller: builds multiple contexts from the

specification file, such as type of PDE, choice of
numerical solver, architecture, etc.

I Model: responsible for generating a specific View –
e.g., generate the glue code for either a finite
volume solver or an ADER-DG solver

I View: Jinja2 template engine is invoked to render
templates that are tailored to Model-provided
contexts.

Jinjia2 templates allow “logic” in the code representation,
while keeping it close to the generated code and easily
readable and expandable. For example
{% if initA %}
{{ allocateArray(’A’, nDof)}}
for(int i=0; i<{{ nDof }}; ++i) {

A[i] = B[i+{{ nDof*nVar }}] * {{C}}[i];
}
{% endif %}

may generate the following code:
double A[5] __attribute__ ((aligned (32)));
for(int i=0; i<5; ++i) {

A[i] = B[i+20] * foo[i]
}

Creating an ExaHyPE Application: View for the Application Expert
Specification file: Implementation of flux function:
exahype -project Elastic

peano -kernel -path const = ./Peano
exahype -path const = ./ ExaHyPE
output -directory const = ./ Elastic

computational -domain
dimension const = 3
width = 1.0, 1.0, 1.0
offset = 0.0, 0.0, 0.0
end -time = 1.0

end computational -domain

solver ADER -DG ElasticWaveSolver
variables const = v:3,sigma :6
parameters const = rho:1,cp:1,cs:1
order const = 7
maximum -mesh -size = 2e-2
maximum -mesh -depth = 2
time -stepping = global
terms const = flux ,ncp ,
material_parameters ,point_sources

optimisation const = optimised
language const = C
basis = Lobatto

end solver
end exahype -project

void Elastic :: ElasticWaveSolver
::flux(const double* const Q,

double ** const F) {
VariableShortcuts s;
double sigma_xx=Q[s.sigma + 0];
double sigma_yy=Q[s.sigma + 1];
double sigma_zz=Q[s.sigma + 2];
double sigma_xy=Q[s.sigma + 3];
double sigma_xz=Q[s.sigma + 4];
double sigma_yz=Q[s.sigma + 5];
F[0][s.v + 0] = -sigma_xx;
F[0][s.v + 1] = -sigma_xy;
F[0][s.v + 2] = -sigma_xz;
F[1][s.v + 0] = -sigma_xy;
F[1][s.v + 1] = -sigma_yy;
F[1][s.v + 2] = -sigma_yz;
F[2][s.v + 0] = -sigma_xz;
F[2][s.v + 1] = -sigma_yz;
F[2][s.v + 2] = -sigma_zz;

}

References
[1] A. Reinarz et al.: ExaHyPE: An engine for parallel

dynamically adaptive simulations of wave problems.
Comp. Phys. Comm. 254, 2020.
http://dx.doi.org/10.1016/j.cpc.2020.107251

[2] J.-M. Gallard et al.: Role-oriented code generation in an
engine for solving hyperbolic PDE systems.
2019 Int. Workshop on Softw. Eng. for HPC-Enabled
Research (SE-HER), SC19.

[3] T. Weinzierl: The Peano software—parallel,
automaton-based, dynamically adaptive grid traversals.
ACM Trans. Math. Softw. 45(2): 14, 2019.

[4] O. Zanotti, F. Fambri, M. Dumbser, A. Hidalgo: Space-time
adaptive ADER discontinuous Galerkin finite element
schemes with a posteriori sub-cell finite volume limiting.
Computers & Fluids 118, 2015, p. 204–224.

Download the ExaHyPE engine from: www.ExaHyPE.org
ExaHyPE was developed as a joint project of:

in particular by:

Dominic Charrier, Benjamin Hazelwood, Tobias Weinzierl (University of Durham), Michael Dumbser, Francesco Fambri, Maurizio
Tavelli, Olindo Zannotti (University of Trento), Alice Gabriel, Kenneth Duru (Ludwig-Maximilians-University Munich), Luke Bovard,
Sven Köppel, Luciano Rezzolla (Frankfurt Institute for Advanced Studies), Jean-Mathieu Gallard, Leonhard Rannabauer, Anne
Reinarz, Philipp Samfaß, Angelika Schwarz and Vasco Varduhn (Technical University of Munich).
We thank the Leibniz Supercomputing Centre and the Russian Academy of Sciences for their support.

Architecture-Oblivious Templates and Architecture-Aware Optimisation Macros

Using Jinja2’s macros and variables, we can design architecture-oblivious algorithmic templates that are
rendered by Jinja2 with custom made architecture-aware optimisation macros.
This keeps the development of new numerical schemes and low-level architecture-aware optimisation
separated and the roles of algorithm and optimisation expert independent from one another.

Example: tensor contraction to compute the x-component of the gradient of state tensor Q (variable lQi):
Algorithm expert provides “loop over GEMM” implementation using macros (provided by the optimisation
expert) for matrix multiplication (matmul) and index calculation (idx) to extract matrix slices:
for (int yz=0; yz <{{ nDof*nDof3D }}; yz++) {

{{ matmul(’gradQ_x ’, ’lQi’, ’dudxT’, ’gradQ’,
idx(0,yz ,0,0), ’0’, idx(0,yz ,0 ,0))}}

}

∀z, y , k ,n : ∇Qz,y ,x ,n =
∑

k

∆x ,k ·Qz,y ,k ,n

Depending on the context – number of degrees of freedom (nDof), used architecture, etc. – the Code
Generator resolves the template variables, using hardware-specific padding in the index for the tensor
offsets and matrix dimensions (here AVX2). The architecture-aware matmul macro selects a hardware-
efficient backend for matrix multiplication, for example using the Eigen library [8].

for (int yz=0; yz <36; yz++) {
Map < Matrix <double ,12,6>, Aligned , OuterStride <12> > lQi_m(lQi+yz*72);
Map < Matrix <double ,6,6>, Aligned , OuterStride <8> > dudxT_m(dudxT);
Map < Matrix <double ,12,6>, Aligned , OuterStride <12> > gradQ_m(gradQ+yz *72);

gradQ_m.noalias () = lQi_m * dudxT_m ;
}

For an AVX-512 architecture (Intel Skylake), the template would be rendered with padding to a different
SIMD width (16 instead of 12) and calling the highly optimised GEMM function generated by LIBXSMM [9]:

for (int yz = 0; yz < 36; yz++) {
gemm_16_6_6_gradQ_x(lQi+yz*96, dudxT , gradQ+yz*96);

}

Optimised Kernels: Vectorisation and Minimisation of Memory Footprint
ExaSeis faces conflicting demands for data layout:
I DG tensor operations are turned into sequences of

matrix multiplications (“loop over GEMM”)
→ suggests quantities as leading dimension (AoS)

I evaluation of fluxes loops over integration points calling
user-functions (flux(), e.g.) → suggests integration
points as leading dimension (SoA)

I choose AoSoA as data layout:
→ single out one dimension

I In addition: provide dimensional flux() function to
reduce the memory footprint
 changes API (“View” for application expert)

Extracting matrix slices from a tensor A:

i

j
k

A(k,j,i), 3x2x3 tensor

A(1,:,:), 3x2 matrix slice

A(:,1,:), 3x3 matrix slice

offset

slice stride

Contiguous matrix

Matrix with leading

dimension padding

=

=

// scalar formulation of flux_x
void flux_x(double* Q, double* F) {

F[0] = -(Q[0]+Q[3]+Q[4]);
F[1] = -(Q[1]+Q[3]+Q[5]);
F[2] = -(Q[2]+Q[4]+Q[5]);

}

// vectorized formulation of flux_x
void flux_x_vect(double* Q, double* F) {

#pragma omp simd aligned(Q,F:ALIGNMENT)
for(int i=0; i<VLENGTH; i++) {

F[0* VSTRIDE+i] = -(Q[0* VSTRIDE+i]
+Q[3* VSTRIDE+i]+Q[4* VSTRIDE+i]);

F[1* VSTRIDE+i] = -(Q[1* VSTRIDE+i]
+Q[3* VSTRIDE+i]+Q[5* VSTRIDE+i]);

F[2* VSTRIDE+i] = -(Q[2* VSTRIDE+i]
+Q[4* VSTRIDE+i]+Q[5* VSTRIDE+i]);

}
}

Example performance of seismic wave
propagation (LOH.1 benchmark) on curvilinar
meshes [7]:

4 5 6 7 8 9 10 11
0

10

20

Av
ai

la
bl

e
Pe

rf
(%

) Generic
LoG
SplitCK
AoSoA SplitCK

4 5 6 7 8 9 10 11
Order

30

40

50

M
em

or
y

St
al

l (
%

)

I significantly reduces the L2-cache footprint
I 5.7× speedup for order 10 compared to

generic implementation.

ChEESE Pilot Demonstrator:
Towards UQ for Seismic Hazard Analysis
We link ExaSeis – the collection of seismic wave
propagation models in ExaHyPE – to the MUQ C++
toolbox for uncertainty quantification (muq.mit.edu)
and plan to experiment with novel UQ-based
approaches to seismic hazard analysis.

Curvilinear mesh aligned to topography and three planar fault
planes of the bookshelf-type South Iceland Seismic Zone.

ADER-DG on Curvilinear Meshes
To fit ExaHyPE’s Cartesian meshes to domains with
topography and multiple faults (incl. slightly curved
and/or rough faults), we developed a curvilinear
method that maps Cartesian to curvilinear elements:
I retains the tensor structure of the DG basis
I flux and source terms of the system are

transformed with the element Jacobian
I but: eigenvalues (and thus the time-step size)

highly depend on the perturbation introduced by
the topography

Allows fully automated initial mesh generation for
problems with topography and curved/rough faults!

Multi-Physics Dynamic Rupture
We simulate multi-physics spontaneous dynamic
rupture, across complex fault geometries.
The automated mesh generator allows to model fault
structures, including branches, by defining a k-d-tree.
The rupture is incorporated as boundary condition,
which we solve with a new developed physics based
Riemann solver. Our code is verified against
community benchmarks (Picture: SCEC TPV28)

TPV28 benchmark (vertical strike-slip fault with two hills):
setup (left) and rupture contours computed by ExaSeis (right).

References
[5] K. Duru et al.: A new discontinuous Galerkin method for elastic waves with physically motivated numerical fluxes.

J. Comp. Phys. 386, 2019, submitted
[6] K. Duru et al.: A stable discontinuous Galerkin method for the perfectly matched layer for elastodynamics in first order form.

Numerische Mathematik 146, p. 729–782, 2020.
[7] J.-M. Gallard, L. Rannabauer, A. Reinarz, M. Bader: Vectorization and minimization of memory footprint for linear high-order

discontinuous Galerkin schemes. In: 21st IEEE Int. Workshop on Parallel & Distributed Scientific and Engineering Computing
(PDSEC-2020), 2020.

[8] G. Guennebaud et al.: Eigen v3 http://eigen.tuxfamily.org

[9] A. Heinecke et al.: LIBXSMM: accelerating small matrix multiplications by runtime code generation. In: SC16: Int. Conf. for
HPC, Netw., Storage and Analysis, 2016, pp. 981–991.

Acknowledgements
ExaSeis is a joint development of:

This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innova-
tion programme under grant agreements No 823844
(project ChEESE, https://cheese-coe.eu/), No 828947
(project ENERXICO, https://enerxico-project.eu/) and
No 671698 (project ExaHyPE, www.exahype.eu).

