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Abstract

This thesis deals with channel estimation and equalization in frequency-selective Multiple
Input-Multiple Output (MIMO) channels with 1-bit quantization at the receiver. Most
current literature on quantized MIMO focuses on flat-fading channels, which motivates
the topic for this thesis. The study intends to be as generic as possible, and therefore
assumes no special structure of the channel. Furthermore, no joint processing or Channel
State Information (CSI) is assumed at the transmitter, making the results valid also for
multiple-access MIMO channels.

Three different communication schemes are explored: Orthogonal Frequency Division
Multiplexing (OFDM), single-carrier with cyclic prefix (SC), and single carrier without
cyclic prefix (NCP). Equivalent problem models are derived for the all the settings. A
Cramér-Rao Lower Bound (CRLB) is derived for the estimation problem, as well as for
the joint estimation of channel and data. The existing nonlinear algorithms Expectation
Maximization (EM) and Generalized Approximate Message Passing (GAMP), as well as a
linear estimator based on the Bussgang theorem, are adapted to the problems of estimation
an detection. An optimal A-Posteriori Probability (APP) Soft Input-Soft Output (SISO)
equalizer is designed, which has high complexity but is good as a performance benchmark.
A turbo approach for Joint Channel and Data Estimation (JCD) is also explored.

Through simulations, all the methods and settings are compared. The advantage of SC
over OFDM is shown. NCP turns out to be the best option at low SNR, but saturates early
at higher SNR. The nonlinear algorithms exhibit better performance than the linear ones at
the cost of higher computational complexity. An analysis of the required number of pilots
for channel estimation is carried out. Higher order modulations are also explored, and PSK
is compared to QAM for modulation orders of 8 and 16. The JCD scheme is shown to
considerably improve the results for both estimation and detection.
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Chapter 1

Introduction

The fifth generation (5G) of mobile communications is expected to increase spectral
and energy efficiency by several orders of magnitude [1]. A number of new technologies
are being considered to fulfill this requirement. One of them is the use of Multiple
Input-Multiple Output (MIMO) systems with large numbers of antennas [2], which is
expected to increase array gain without bound. Higher frequency bands [3], in the order of
6-100 GHz are also being considered. They would allow for larger bandwidth and lower
interference.

These changes place stringent requirements on the receiver-side analog-to-digital
converters (ADCs). Due to the high frequency and large bandwidth, the ADCs need to
operate at high sampling rate, which leads to high power consumption. This problem is
further increased in a Massive MIMO setting, which requires a large amount of ADCs.

The power consumption of the ADCs grows exponentially with the number of bits, as
shown in [4]. Therefore, the use of low-resolution (1 to 3 bits) ADCs has been proposed
as a way to address the power consumption problem. In this paper, we focus on the 1-bit
quantization case.

Various aspects of the 1-bit quantized MIMO channel have been analyzed in recent
work. An analysis in [5] and [6] shows that the capacity loss due to the 1-bit quantization
can be compensated for by increasing the number of receive antennas.

Different algorithms for channel estimation are discussed in [7]. They obtain good
results but are iterative and nonlinear. Furthermore, convergence is not guaranteed,
especially if the channel taps are not i.i.d. Gaussian, which is the case in practical scenarios.

A linear MMSE receiver for equalization of quantized MIMO channels is proposed
in [8], and an iterative nonlinear one in [9]. The nonlinear equalizer achieves better BER
performance at the cost of increased computational complexity.

Finally, the problem of joint channel and data estimation (JCD) is treated in [10]. The
authors show that this approach greatly improves the results, and requires fewer pilots.

One of the main shortcomings of the mentioned contributions is that all of them consider
only flat-fading channels. With unquantized systems, this assumption can be justified by
the use of multi-carrier modulations, such as Orthogonal Frequency Division Multiplexing
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Chapter 1. Introduction

(OFDM), because then the channel in each subcarrier is flat. However, in the quantized
case, the subcarriers can no longer be separated without loss. We note that OFDM is still
attractive in this case because it allows for uplink multiplexing of different users’ streams.

To the best of our knowledge, very little work has been done on quantized frequency-
selective MIMO channels or on the loss incurred by using multi-carrier modulations. A
model for channel estimation and equalization in quantized MIMO OFDM systems is
proposed in [11]. However, it relies on convex optimization algorithms, which, for the
large-dimensional problems at hand, have high computational cost.

In this thesis, we develop a model for channel estimation and for equalization of three
different kinds of 1-bit quantized MIMO frequency-selective systems: OFDM, single-
carrier without cyclic prefix, and single carrier with cyclic prefix. We derive a Cramér-Rao
lower bound for both the separate and the joint (JCD) estimation problem.

We adapt the existing nonlinear iterative algorithms Expectation Maximization (EM)
and Generalized Approximate Message Passing (GAMP) to solve these estimation problems
in the minimum mean square error (MMSE) sense. Additionally, we develop a linear
estimator based on the Bussgang theorem, which greatly reduces the computational
complexity in the OFDM case because it allows for per-subcarrier equalization.

An optimal A-posteriori Probability Soft-Input-Soft-Output (APP SISO) equalizer is
also developed in this thesis. It has prohibitive computational complexity, but is useful as a
benchmark for the equalization task. Finally, we adapt a turbo-like Joint Channel and Data
estimator [12] to our setting.

Through simulations, we then compare the performance of all the estimation methods
in different scenarios. We show that the nonlinear methods perform notably better than
the linear Bussgang estimator, and that JCD also greatly increases performance. The
single-carrier systems with cyclic prefix shown to outperform OFDM, and the systems
without cyclic prefix are best at low SNR and worst at high SNR. Finally, we show that
8-PSK is better suited to the the 1-bit quantized system than 8-QAM, but for higher order
modulations again QAM is the best option.

We note that all our analysis does not assume any joint processing or Channel State
Information (CSI) at the transmitter. Therefore, our findings are also applicable to Multi-
User MIMO uplink channels, by considering each transmit antenna (or group of them) as a
separate user.
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Chapter 2

MIMO with 1-bit Quantization at the
receiver: System Model

In this chapter, we will derive system models for channel estimation and equalization in
both multi-carrier and single-carrier 1-bit quantized MIMO schemes. We will find out that
the four problems can be expressed with the same model, and therefore the same techniques
can be applied to solve all of them.

x1

xNt

w1

wNr

Q

Q

zN1

zNr

y1

yNr

h11 ∈ CL

hNr1

h1Nt

hNrNt

Figure 2.1: MIMO system with 1-bit quantization

We consider the system depicted in Fig. 2.1. It has Nr receive antennas and Nt

transmit antennas. Each pair of transmit antenna nt ∈ {1, . . . , Nt} and receive antenna
nr ∈ {1, . . . , Nr} has an arbitrary, frequency-selective channel impulse response of L taps,
denoted by hnrnt ∈ CL.

The quantizer blocks Q apply the 1-bit quantization function separately to the real and
imaginary parts of their input:

Q (z) = sign (<{z}) + j sign (={z}) . (2.1)

The signal after each quantizer is then:

ynr [n] = Q

(
Nt∑
nt=0

hnrnt [n] ? xnt [n] + wnr [n]

)
, (2.2)
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Chapter 2. MIMO with 1-bit Quantization at the receiver: System Model

where xnt [n] is the transmitted signal at antenna nt ∈ {1, . . . , Nt}; ynr is the RX quantizer
output at antenna nr ∈ {1, . . . , Nr}, and wnr [n] is the additive Gaussian noise at receive
antenna nr. We will assume that this noise is temporally and spatially uncorrelated, but we
will allow different noise variances at each antenna:

σ2
nr = E

{
|wnr [n]|2

}
. (2.3)

2.1 Multi-Carrier Scheme (OFDM)

S/P FH Add CP P/S
Xnt xnt

Figure 2.2: Quantized MIMO OFDM system: Block diagram at each transmit antenna

Q S/P Remove
CP

RX
processing

znr ynr

Figure 2.3: Quantized MIMO OFDM system: Block diagram at each RX antenna

We consider the use of Orthogonal Frequency Division Multiplexing (OFDM) [13] in
the quantized MIMO system. Fig. 2.2 depicts the block diagram of the transmitter at each
antenna nt ∈ {1, . . . , Nt}, which has the same structure as in the unquantized case. The
data is arranged in blocks of N symbols X nt ∈ CN , where N is the number of OFDM
subcarriers. An Inverse Fast Fourier Transform (IFFT) is applied to each block, and then a
cyclic prefix (CP) of length L (equal to the length of the impulse response of the channel)
is added. This makes the equivalent channel convolution matrix Hnrnt ∈ CN×N between
each pair of antennas (nr, nt) ∈ {1, . . . Nr} × {1, . . . , Nt} circulant:

[Hnrnt ]ij = hnrnt [(i− j) mod N ] , i, j ∈ {1, . . . , N} . (2.4)

Consider the transmission of M OFDM blocks, horizontally stacked in a matrix
Xnt·· ∈ CN×M . After quantization and removal of the cyclic prefix at the receiver, the
signal Ynr·· ∈ CN×M at receive antenna nr, from (2.2), is:

Ynr·· = Q
(
HnrntF

HXnt·· + Wnr··
)
, (2.5)

where F ∈ CN×N is an N -point unitary DFT matrix (whose entries have magnitude
1/
√
N ), and Wnr·· ∈ CN×M contains i.i.d. additive complex Gaussian noise with variance

σ2
nr .
Due to the circulant property of Hnrnt , it is diagonalized by Fourier matrices:

FHnrntF
H = Λnrnt = diag {FN×Lhnrnt} . (2.6)

The matrix FN×L =
√
NF(1:N)(1:L) contains its L first columns, with their entries

normalized to magnitude 1. This allows rewriting (2.5) as:

Ynr·· = Q

(
Nt∑
nt=1

FHΛnrntXnt·· + Wnr

)
, (2.7)
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Chapter 2. MIMO with 1-bit Quantization at the receiver: System Model

2.1.1 OFDM channel estimation

Consider the channel estimation stage, in which T OFDM blocks are sent as pilots. The
matrices Xnt·· in (2.7), now have dimensions N × T . If we vectorize (see Appendix A) the
signal Ynr·· at each receive antenna, and use Λnrnt = diag {FN×Lhnrnt}, we can express
(2.7) as:

ynr = Q

(
Nt∑
nt=1

(
X T

nt·· � FH
)

FN×Lhnrnt + wnr

)
, (2.8)

where ynr , vec (Ynr··), and wnr , vec (Wnr), and � denotes the Khatri-Rao product,
which is a column-wise Kronecker product defined in Appendix A. Here, we have used the
following property of the vectorization operator:

vec (Adiag {b}C) =
(
CT �A

)
b. (2.9)

Now, we can express the summation over nt in (2.8) as a matrix-vector product. We
define the vector hnr ∈ CLNt as the vertical stacking of the channel impulse responses
corresponding to receive antenna nr for all nt:

hnr ,


hnr1
hnr2
...

hnrNt

 . (2.10)

Furthermore, we define the matrix A ∈ CNT×LNt as:

A =
[ (
XT

1·· � FH
)
FN×L

(
XT

2·· � FH
)
FN×L · · ·

(
XT

Nt·· � FH
)

FN×L
]
. (2.11)

We can now write (2.8) as:

ynr = Q (Ahnr + wnr) , nr ∈ {1, . . . , Nr} . (2.12)

2.1.2 OFDM data equalization

Starting from (2.7), we now consider the data transmission stage, where M OFDM
blocks are transmitted. The matrices Xnt·· in (2.7) have dimensions N ×M .

The conversion to a matrix-vector product is straightforward in this case. Let us define
a vector xm ∈ CM×1 that vertically stacks all the data symbols corresponding to block
m ∈ {1, . . . ,M}:

xm =

 x1m·
...

xNtm·

 , (2.13)

where xntm· ∈ CN×1 denotes the m-th column of Xnt··, with nt ∈ {1, . . . , Nt}. The
sensing matrix A ∈ CNNr×NNt is defined as:

A =

 FHΛ11 · · · FHΛ1Nt
... . . . ...

FHΛNr1 · · · FHΛNrNt

 , (2.14)
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Chapter 2. MIMO with 1-bit Quantization at the receiver: System Model

and the observation vector ym ∈ CNNr×1 vertically stacks the received symbols for block
m:

ym =

 y1m·
...

yNrm·

 , (2.15)

where ynrm· ∈ CN×1 is the m-th column of Ynr··. With these definitions, the model for
data equalization is given by:

ym = Q (Axm + wm) , m ∈ {1, . . . ,M} . (2.16)

where wm is defined in the same way as ym, and contains uncorrelated complex Gaussian
samples with variance σ2

nrnm.

2.2 Single-Carrier with Cyclic Prefix

We now consider the single-carrier (SC) case. To prevent interference between blocks
of data, we will first work with a system that also uses a cyclic prefix (CP). The block size
is assumed to be N (equal to the number of OFDM subcarriers), and the cyclic prefix has
length L. With these assumptions, the received signal at antenna nr ∈ {1, . . . , Nr} can be
written as:

Ynr·· = Q

(
Nt∑
nt=1

HnrntXnt·· + Wnr

)
, (2.17)

where Xnt·· ∈ CN×M horizontally stacksM blocks of transmitted symbols, and Hnrnt ∈
CN×N is defined in (2.4).

2.2.1 SC Channel Estimation

For channel estimation, each transmit antenna sends T blocks as pilots. We denote the
pilot vector at transmit antenna nt ∈ {1, . . . , Nt} and block t ∈ {1, . . . , T} asxntt· ∈ CN×1.
We further define the partial circulant convolution matrix Xntt ∈ CN×L in the following
way:

[Xntt]n` , xntt·[(n− `) mod N ], (2.18)

i.e. the first L columns of a circulant matrix whose first column is xntt·. With this definition,
we can express the channel estimation problem for single-carrier with the same model of
the previous problems:

ynr = Q (Ahnr + wnr) , (2.19)

where

A =

 X11 · · · XNt1

... . . . ...
X1T · · · XNtT

 ∈ CNT×LNt, (2.20)

and hnr is given by (2.10). Furthermore, ynr = vec (Ynr··).
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Chapter 2. MIMO with 1-bit Quantization at the receiver: System Model

2.2.2 SC Data Equalization

The problem formulation for data equalization in the SC case is straightforward from
(2.17):

ym = Q (Axm + wm) , (2.21)

where

A =

 H11 · · · H1Nt
... . . . ...

HNr1 · · · HNrNt

 , (2.22)

and the vectors ym, xm, and wm are defined in Section 2.1.2.

2.3 Single carrier without cyclic prefix (NCP)

The use of a cyclic prefix comes at the cost of a loss in throughput. In this thesis, we
also consider a system without cyclic prefix. This requires interference cancellation in the
equalization stage, which results in performance degradation. The trade-off between these
two effects will be evaluated through simulations in Chapter 5.

Consider the transmission of Tncp pilots without cyclic prefix from each antenna. The
symbol at antenna nt ∈ {1, . . . , Nt} and time t ∈ {1, . . . , Tncp} is denoted by xnt [t]. The
received sequence at antenna nr ∈ {1, . . . , Nr} is given by:

ynr [t] = Q

(
Nt∑
nt=1

hnrnt [t] ? xnt [t] + wnr [t]

)
. (2.23)

2.3.1 NCP channel estimation

The channel estimation problem without cyclic prefix can be expressed in a similar
way as with the cyclic prefix case. Let us stack all the channel vectors for receive antenna
nr ∈ {1, . . . , Nr} in a vector hnr ∈ CLNt , as in (2.10).

For each transmit antenna nt ∈ {1, . . . , Nt}, we arrange all the T transmitted pilots in
the convolution matrix Xnt ∈ C(Tncp+L−1)×L:

[Xnt ]n` =

{
xnt [t− `], if 0 ≤ t− ` < N

0, otherwise,
(2.24)

with ` ∈ {0, . . . , L− 1}, and t ∈ {0, . . . , Tncp + L− 2}. If we define the sensing matrix
A ∈ C(Tncp+L−1)×LNt as:

A =
(

X1 · · · XNt

)
, (2.25)

we can yet again express our problem as a quantized matrix-vector multiplication for each
receive antenna:

ynr = Q (Ahnr + wnr) , (2.26)

where the vector ynr ∈ CTncp+L−1 contains the received symbols at each receive antenna
nr. The noise vector wnr ∈ CTncp+L−1 contains the corresponding noise.

11



Chapter 2. MIMO with 1-bit Quantization at the receiver: System Model

2.3.2 NCP data equalization

Theoretically, a data equalization model with a convolution matrix for all the received
symbols could be set up. However, the solution to this problem would require the inversion
of a very large matrix, which is not practical, especially in a quantized system where the
number of receive antennas needs to be high. Therefore, we develop a model that allows
processing the received data in blocks, by removing the interference from the previous
block.

In order to have a similar computational complexity to that of the OFDM and SC
models, we will use the same block size ofN symbols. The transmitted symbols at antenna
nt and blockm ∈ {0, . . . ,M − 1} are denoted by xntm ∈ CN , such that:

xntm[n] = xnt [mN + n]. (2.27)

Similarly, the received signal at antenna nr is divided into blocks ynrm ∈ CN :

ynrm[n] = ynr [mN + n]. (2.28)

With these definitions, the received blocks ynr,m depends mostly on the corresponding
transmitted blocks xnt,m, but the first samples of ynr,m have interference from the previous
transmitted block xnt,(m−1). Consider the full channel convolution matrix Hnrnt ∈
CN×(N+L−1) for the antenna pair (nr, nt):

[Hnrnt ]n1n2
=

{
hnrnt [n2 − n1], if 0 ≤ n2 − n1 < L

0, otherwise,
(2.29)

with n1 ∈ {0, . . . , N − 1} and n2 ∈ {0, . . . , N + L− 2}. Let us split this matrix
horizontally into two parts: a square matrix Hnrnt ∈ CN×N from the left and the remaining
rectangular matrix H̃nrnt ∈ CN×(L−1):

Hnrnt =
(

Hnrnt H̃nrnt

)
. (2.30)

Them-th received block at antenna nr is then given by:

ynrm = Q

(
Nt∑
nt=1

(
Hnrntxnt,m + H̃nrntxnt,(m−1)[0 : (L− 1)]

)
+ wnrm

)
, (2.31)

where ynrm is the reversed version of ynrm, and xntm is the reversed version of xntm. Now,
assume that there is a guard period before the transmission of the first block. Then, the term
H̃nrntxnt,(m−1)[0 : (L− 1)] will be 0 form = 0. Form > 0, this term can be calculated
by using the estimated transmitted block x̂nt,(m−1) at timem− 1, which will already have
been computed. Therefore, this term is always known at the receiver.

With this information, we can write the NCP data equalization problem in a form that is
slightly different from what was obtained for the other problems, but that requires minimal
modifications to the algorithms:

ym = Q (Axm + bm + wm) , (2.32)
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where A ∈ CNNr×NNt is given by:

A =

 H11 · · · H1Nt
... . . . ...

HNr1 · · · HNrNt

 . (2.33)

The vectors ym ∈ CNNr vertically stacks the reversed signals at all receive antennas:

ym =

 y1m
...

yNrm

. (2.34)

The vector wm ∈ CNNr contains Gaussian noise and is defined in the same way as ym
Similarly, the vector xm ∈ CNNt stacks the reversed transmit signals at blockm:

xm =

 x1m

...
xNtm

. (2.35)

Finally, the known vector bm ∈ CNNr is given by:

bm =


Nt∑
nt=1

H̃1ntxnt,(m−1)[0 : (L− 1)]

...
Nt∑
nt=1

H̃Nrntxnt,(m−1)[0 : (L− 1)]

 . (2.36)
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Chapter 3

Cramér-Rao Lower Bound for the
Quantized Estimation Problem

Before going into the algorithms for quantized data estimation, in this section we
will derive the Cramér-Rao Lower Bound (CRLB) of the problems. The CRLB gives a
minimum covariance matrix of an estimation problem, in the following sense: Consider
an estimation problem in which a vector of parameters θ needs to be estimated from a
vector of observations y. If the conditional probability of the observation vector given
the parameters is py | θ (y | θ), then the covariance matrix of an unbiased estimator θ̂ of θ
verifies that:

Cθθ , E

{(
θ̂ − θ

)(
θ̂ − θ

)H}
� I−1 (θ) , (3.1)

whereA � Bmeans thatA−B is positive semidefinite, and I (θ) is the Fisher information
matrix, whose (k, p)-th entry is given by:

ikp (θ) = Ey

{
− ∂2

∂θk∂θ∗p
ln py | θ (y | θ)

}
. (3.2)

3.1 Cramér-Rao Lower Bound for Independent Estimation

All the estimation and equalization problem formulations derived in Chapter 2 (namely
(2.12), (2.16), (2.19), (2.21), (2.26), and (2.32)) have the following form:

y = Q
(
Ah + b + w

)
, (3.3)

where A is a matrix, b is a known vector (which in most of the cases is 0), h is the parameter
vector to estimate, y is the observation vector, and w contains Gaussian noise. Let us make
the problem real-valued by applying the following transformations:

h =

(
<
{
h
}

=
{
h
} ) ; Ã =

(
<{A} −={A}
= {A} < {A}

)
; (3.4)

14
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and defining b, y and w in a similar way as h. The problem then becomes:

y = Q
(
Ãh + b + w

)
. (3.5)

The Cramér-Rao Lower Bound states that the covariance matrix of any unbiased
estimator ĥ of h satisfies:

E

{(
ĥ− h

)(
ĥ− h

)H}
� (I(h))−1 , (3.6)

where I(h) is the Fisher information matrix:

I (h) = E

{
− ∂2

∂hH∂h
ln py | h (y | h)

}
, (3.7)

where the expectation is taken over y | h.
Let us denote the dimensions of Ã by K and P , so that Ã ∈ CK×P (for the channel

estimation problem, we have K = 2NT and P = 2LNt, while for data equalization in the
cyclic prefix case, the values are K = 2NNr and P = 2NNt).

Consider the case in whichQ (·) applies 1-bit quantization (2.1) and w has uncorrelated
Gaussian samples with variances σ2

k, k ∈ {1, . . . , K}. Then, each quantization process is
independent of the others, and we can write:

py | h (y | h) =
K∏
k=1

pyk | h (yk | h) . (3.8)

From (3.5), we have:

yk = Q

(
P∑
p=1

ãkphp + bk + wp

)
. (3.9)

As Q is the sign operator, we have:

pyk | h (1 | h) = Pr

[
wk ≥ −

P∑
p=1

ãkphp − bk

]
, (3.10)

pyk | h (−1 | h) = Pr

[
wk < −

P∑
p=1

ãkphp − bk

]
. (3.11)

Due to the symmetry of the Gaussian distribution, we have Pr [wk < c] = Φ (c/σk), and
Pr [wk ≥ c] = 1 − Φ (c/σk) = Φ (−c/σk), where Φ (x) ,

∫ x
−∞

1√
2π
e−v

2/2 dv denotes
the standard cumulative Gaussian distribution function. This, together with (3.8), (3.10)
and (3.11), allows us to express the conditional probability of the observation given the
parameter as:

py | h (y | h) =
K∏
k=1

Φ


yk

(
P∑
p=1

ãkphp + bk

)
σk

 =
K∏
k=1

Φ (ηk) , (3.12)
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where we define ηk as the content of the parenthesis to simplify notation.
Now we can compute the Fisher information matrix according to (3.7). The (p1, p2)-th

element is given by:

ip1p2(h) = E

{
− ∂2

∂hp2∂hp1

K∑
k=1

ln Φ (ηk)

}

= E

{
− ∂

∂hp2

K∑
k=1

yk
σk
ãkp1

φ (ηk)

Φ (ηk)

}

= E

{
K∑
k=1

1

σ2
k

ãkp1 ãkp2

(
ηkφ (ηk)

Φ (ηk)
+

(
φ (ηk)

Φ (ηk)

)2
)}

(3.13)

I (h) = E

ÃTdiag

{
1

σ2
k

(
ηkφ (ηk)

Φ (ηk)
+

(
φ (ηk)

Φ (ηk)

)2
)}K

k=1

Ã

 , (3.14)

where φ (x) , 1√
2π
e−x

2/2 is the standard Gaussian density function. Now, we take the
expectation over y | h:

I(h)

= ÃTdiag

 1

σ2
k

∑
y∈{−1,1}K

[(
ηkφ (ηk)

Φ (ηk)
+

(
φ (ηk)

Φ (ηk)

)2
)

K∏
k′=1

Φ (ηk′)

]
K

k=1

Ã. (3.15)

Note that
(
ηkφ(ηk)
Φ(ηk)

+
(
φ(ηk)
Φ(ηk)

)2
)
depends on yk (through ηk), but not on any other component

ofy. Therefore, we reorganize the summation
∑

y∈{−1,1}K ≡
∑

y1∈{−1,1}
∑

y2∈{−1,1} · · ·
∑

yK∈{−1,1}
as follows:

∑
y∈{−1,1}K

[(
ηkφ (ηk)

Φ (ηk)
+

(
φ (ηk)

Φ (ηk)

)2
)

K∏
k′=1

Φ (ηk′)

]

=
∑

yk∈{−1,1}

(
ηkφ (ηk)

Φ (ηk)
+

(
φ (ηk)

Φ (ηk)

)2
)

Φ (ηk)
∑

y1∈{−1,1}

��yk· · ·
∑

yK∈{−1,1}

∏
k′ 6=k

Φ (ηk′)

=
∑

yk∈{−1,1}

(
ηkφ (ηk)

Φ (ηk)
+

(
φ (ηk)

Φ (ηk)

)2
)

Φ (ηk)
∏
k′ 6=k

∑
yk′∈{−1,1}

Φ (ηk′)

=
(φ (µk))

2

Φ (µk) (1− Φ (µk))
. (3.16)

where

µk =
1

σk

P∑
p=1

ãkphp + bk = ηk|yk=1 , (3.17)

and ��yk· · · means that the stacked summations in the right half of the second line of
(3.16) go over all components of y except yk. In the last step, we have used the fact that
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Φ (ηk) + Φ (−ηk) = 1 (which cancels out the whole product of sums in the right side of
the third line), and that φ(ηk) = φ(−ηk) (which removes the first term in the parenthesis).

Plugging (3.16) into (3.15), we obtain the final result for the real-valued Fisher
Information Matrix for the 1-bit quantized estimation problem:

Ĩ (θ) = ÃTdiag
{

1
σ2
k

φ(µk)2

Φ(µk)(1−Φ(µk))

}K
k=1

Ã

=

 [
Ĩ (θ)

]
<<

[
Ĩ (θ)

]
<=[

Ĩ (θ)
]
=<

[
Ĩ (θ)

]
==

 ,
(3.18)

where µk is given by (3.17). Using θ< = <{θ} = (θ + θ∗)/2 and θ= = ={θ} =

(θ − θ∗)/(2j), we can derive the following identities:

∂f(θ)

∂θ
=

1

2

∂f(θ)

∂θ<
− j

2

∂f(θ)

∂θ=
, (3.19)

∂f(θ)

∂θ∗
=

1

2

∂f(θ)

∂θ<
+
j

2

∂f(θ)

∂θ=
, (3.20)

fθ1θ∗2 =
1

4

(
fθ1,<θ2,< + fθ1,=θ2,=

)
+
j

4

(
fθ1,<θ2,= − fθ1,=θ2,<

)
. (3.21)

In (3.21), the subscripts denote derivatives with respect to the corresponding variable.
Using this identity, we can transform the real-valued Fisher Information Matrix to the
complex-valued one:

I (θ) =
1

4

([
Ĩ (θ)

]
<<

+
[
Ĩ (θ)

]
==

)
+
j

4

([
Ĩ (θ)

]
<=
−
[
Ĩ (θ)

]
=<

)
. (3.22)

The Cramér-Rao Lower Bound is then simply the inverse of the Fisher Information Matrix:

C
ĥĥ
� (I (θ))−1 . (3.23)

As a final note, the ratio φ(µk)2

Φ(µk)(1−Φ(µk))
is numerically unstable if |µk| is large. This

can be overcome by using the following approximation, which follows from the fact that
φ(x)/ (−xΦ(x))→ 1 when x→ −∞:

(φ (µk))
2

Φ (µk) (1− Φ (µk))
∼

|µk|→∞
|µk|φ (µk) . (3.24)

3.2 Cramér-Rao Lower Bound for Joint Channel and Data (JCD) Estimation

In this thesis, we also consider the joint estimation of channel and data, which can
considerably improve performance with respect to independent estimation. In this section,
we derive the Cramér-Rao bound for the joint problem, which will turn out to be lower
than that of the separate problem.
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3.2.1 JCD CRLB for Single-Carrier with Cyclic Prefix (SC)

Let us first consider a system with single carrier and cyclic prefix, in whichMp known
blocks of size N are transmitted as pilots, and Md blocks are transmitted as data. We
will denote by xnt,m,n the symbol transmitted by antenna nt ∈ {1, . . . , Nt}, at blockm ∈
{0, . . . ,Mp +Md − 1}, at position n ∈ {0, . . . , N − 1} within the block. We assume that
m ∈ {0, . . . ,Mp − 1} corresponds to the pilot blocks, andm ∈ {Mp, . . . ,Mp +Md − 1}
corresponds to the data blocks.

Likewise, we denote by hnr,nt,`, ` ∈ {0, . . . , L− 1} the `-th channel tap of the channel
vector hnrnt from transmit antenna nt to receive antenna nr. We write ynr,m,n for the
received symbol at antenna nr, block m and position n, and wnr,n,m for the noise at the
same location. With these definitions, we can write the following equation for the system:

ynr,m,n = Q

(
Nt∑
nt=1

L−1∑
`=0

hnr,nt`xnr,m,(n−l)modN + wnr,m,n

)
. (3.25)

Now, we can apply the same reasoning as we did to derive (3.12) from (3.5). Due to
independence of the noise samples, the conditional probability of the observations Y given
the parametersH and X d can be expressed as the product of the marginals:

pY |H,X d
(Y |H,X d) =

Nr∏
nr=1

M−1∏
m=0

N−1∏
n=0

pynr,m,n |H,X d
(ynr,m,n |H,X d) , (3.26)

whereM = Mp +Md. Here, the calligraphic letters Y given the parametersH and X d

denote respectively the lists of all received samples, all channel taps and all transmitted
data symbols. By applying the same idea as in (3.10)-(3.12), we arrive at the following
expression:

pY |H,X d
(Y |H,X d) =

Nr∏
nr=1

M−1∏
m=0

N−1∏
n=0

Φ

(
y<,nr,m,nz<,nr,m,n

σnr/
√

2

)
Φ

(
y=,nr,m,nz=,nr,m,n

σnr/
√

2

)
, (3.27)

where

z<,nr,m,n =

Nt∑
nt=1

L−1∑
`=0

(
h<,nr,nt,`x<,nt,m,(n−`)modN − h=,nr,nt,`x=,nt,m,(n−`)modN

)
(3.28)

and

z=,nr,m,n =

Nt∑
nt=1

L−1∑
`=0

(
h<,nr,nt,`x=,nt,m,(n−`)modN + h=,nr,nt,`x<,nt,m,(n−`)modN

)
. (3.29)
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The subscripts < and = denote, respectively, the real and imaginary part (for example,
y<,nr,m,n , <{ynr,m,n}).

Let us define the parameter vector θ as:

θ =


<{h}
< {xd}
= {h}
= {xd}

 ∈ R2NrNtL+2NtMdN , (3.30)

where h ∈ CLNtNr contains all channel taps hnrnt` in ascending order of the indices
` ∈ {0, . . . , L− 1}, nt ∈ {1, . . . , Nt}, nr ∈ {1, . . . , Nr}, where the ` varies fastest
and nr varies slowest. Likewise, xd ∈ CNNtM contains all the data symbols xnt,m,n
for index n ∈ {0, . . . , N − 1} varying fastest, followed by nt ∈ {1, . . . , Nt}, and with
m ∈ {Mp, . . . ,Mp +Md − 1} changing slowest.

The Fisher Information Matrix is then defined as:

I (θ) = E

{
− ∂2

∂θ∂θT
ln pY | θ (Y | θ)

}
, (3.31)

where pY | θ (Y | θ) is obtained from (3.27).
A detailed derivation of the solution to (3.31) can be found in Appendix B. The

resulting values for all the entries of I(θ) are given in closed form in the following, where
P (Y | θ) = ln pY | θ (Y | θ). In these expressions, the subscripts P and T can take the
value < or =, making the formulas valid for both the real and imaginary parts of the taps.
The expression P denotes the opposite of P (i.e., P = = if P = <, and P = < if P = =).
The same applies for T and T . Furthermore, we define the following variables:

sP =

{
−1, if P = =
+1, if P = <,

(3.32)

µP,nr,m,n =

√
2

σnr
zP,nr,m,n, (3.33)

(where z<,nr,m,n and z=,nr,m,n are defined in (3.28) and (3.29)),

ΨP,nr,m,n =
(φ (µP,nr,n,m))2

Φ (µP,nr,n,m) (1− Φ (µP,nr,n,m))
. (3.34)

With all these definitions, the entries of the Fisher information matrix are given by:

E

{
− ∂2P (Y | θ)

∂hPnr,nt,`∂hT n′r,n′t,`′

}
= δ [nr − n′r]

2

σnr

M−1∑
m=0

N−1∑
n=0[

sPsT xP,nt,m,(n−`)modNxT ,n′t,m,(n−`′)modNΨ<,nr,m,n

+xP,nt,m,(n−`)modNxT ,n′t,m,(n−`′)modNΨ=,nr,m,n

]
, (3.35)
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E

{
− ∂2P (Y | θ)

∂xPnt,m,n∂xT n′t,m′,n′

}

= δ [m−m′]
Nr∑
nr=1

2

σnr

(min{n+L−1,n′+L−1})modN∑
n′′=max{n,n′}[

sPsT hP,nr,nt,(n′′−n)modNhT ,nr,n′t,(n′′−n′)modNΨ<,nr,m,n′′

+hP,nr,nt,(n′′−n)modNhT ,nr,n′t,(n′′−n′)modNΨ=,nr,m,n′′
]
, (3.36)

E

{
− ∂2P (Y | θ)

∂hPnr,nt,`∂xT n′t,m,n

}

=
2

σnr

(n+L−1)modN∑
n′′=n[

sPsT xP,nt,m,(n′′−`)modNhT ,nr,n′t,(n′′−n)modNΨ<,nr,m,n′′

+xP,nt,m,(n′′−`)modNhT ,nr,n′t,(n′′−n)modNΨ=,nr,m,n′′
]
, (3.37)

where δ[n] is the Kronecker delta, which is 1 if its argument is 0, and 0 otherwise.
Equations (3.35) to (3.37) give the complete Fisher information matrix I (θ). The

CRLB is then obtained, as before, by applying (3.22) to write it in the complex-valued
form and then inverting the result.

3.2.2 JCD CRLB for OFDM

The CRLB for joint channel and data estimation in the OFDM case can be easily
calculated by computing the IFFT of the pilot and data blocks, and applying the formulas
for the Single-Carrier with Cyclic Prefix case. Therefore, we do not include an additional
derivation for this problem.

3.2.3 JCD CRLB for Single Carrier Without Cyclic Prefix (NCP)

The Fisher Information Matrix for the NCP case has a slightly different form than
for the other problems, as here there are no transmission blocks. Consider a scenario
in whichMnp pilot symbols andMnd data symbols are sent from each transmit antenna.
We denote by xp,nt,mnp the pilot symbol at antenna nt ∈ {i, . . . , Nt} and time instant
mnp ∈ {0, . . . ,Mnp − 1}, while the data symbol at antenna nt and time instant mnd ∈
{0, . . . ,Mnd − 1}. We make the following two important assumptions in our model:

• There is a long enough guard interval between the pilots and the data, so that they do
not interfere with each other.

• Only the firstMnp samples of the channel output are considered for channel estimation,
while the trailing L− 1 samples are discarded (otherwise, the channel estimation
matrix becomes ill-conditioned).
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With these assumptions, the entries for the Fisher Information Matrix in the NCP case can
be obtained by setting N = 1 in the SC case (3.35)-(3.37), and applying some changes in
the indices of the summations to account for the lack of a cyclic prefix. We now define:

µp,<,nr,m =
√

2

σnr

Nt∑
nt=1

L−1∑
`=0

(h<,nr,nt,`xp,<,nt,m−` − h=,nr,nt,`xp,=,nt,m−`) (3.38)

and

µp,=,nr,m =
√

2

σnr

Nt∑
nt=1

L−1∑
`=0

(h<,nr,nt,`xp,=,nt,m−` + h=,nr,nt,`xp,<,nt,m−`) , (3.39)

form ∈ {0, . . . ,Mnp − 1}. Similarly, we define

µd,<,nr,m =
√

2

σnr

Nt∑
nt=1

L−1∑
`=0

(h<,nr,nt,`xd,<,nt,m−` − h=,nr,nt,`xd,=,nt,m−`) (3.40)

and

µd,=,nr,m =
√

2

σnr

Nt∑
nt=1

L−1∑
`=0

(h<,nr,nt,`xd,=,nt,m−` + h=,nr,nt,`xd,<,nt,m−`) , (3.41)

form ∈ {0, . . . ,Mnd + L− 1}. We further define:

Ψp,T ,nr,m =
(φ (µp,T ,nr,m))2

Φ (µp,T ,nr,m) (1− Φ (µp,T ,nr,m))
, (3.42)

and

Ψd,T ,nr,m =
(φ (µd,T ,nr,m))2

Φ (µd,T ,nr,m) (1− Φ (µd,T ,nr,m))
. (3.43)

With these definitions, the entries of the Fisher Information Matrix for the NCP case
are given by (note that, in the derivatives with respect to two channel taps, two summations
are needed to take into account the dependence on the pilots and the data):
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E

{
− ∂2P (Y | θ)

∂hPnr,nt,`∂hT n′r,n′t,`′

}

= δ [nr − n′r]
2

σnr

{
Mp−1∑
m=0[

sPsT xp,P,nt,(m−`)xp,T ,n′t,(m−`′)Ψp,<,nr,m

+xp,P,nt,(m−`)xp,T ,n′t,(m−`′)Ψp,=,nr,m

]
+

Md+L−1∑
m=0[

sPsT xd,P,nt,(m−`)xd,T ,n′t,(m−`′)Ψd,<,nr,m

+xd,P,nt,(m−`)xd,T ,n′t,(m−`′)Ψd,=,nr,m

]}
, (3.44)

E

{
− ∂2P (Y | θ)

∂xd,Pnt,m∂xd,T n′t,m′

}

=
Nr∑
nr=1

2

σnr

(min{m+L−1,m′+L−1})∑
m′′=max{m,m′}[

sPsT hP,nr,nt,(m′′−m)hT ,nr,n′t,(m′′−m′)Ψd,<,nr,m′′

+hP,nr,nt,(m′′−m)hT ,nr,n′t,(m′′−m′)Ψd,=,nr,m′′
]
, (3.45)

E

{
− ∂2P (Y | θ)

∂hPnr,nt,`∂xd,T n′t,m

}

=
2

σnr

(m+L−1)∑
m′′=m[

sPsT xd,P,nt,(m′′−`)hT ,nr,n′t,(m′′−m)Ψd,<,nr,m′′

+xd,P,nt,(m′′−`)hT ,nr,n′t,(m′′−m)Ψd,=,nr,m′′
]
. (3.46)

The Cramér-Rao Lower Bound for the NCP case can then be calculated by inverting
the Fisher Information Matrix I (θ) ∈ R2NrNtL+2NtMd×2NrNtL+2NtMd , whose entries are
given by (3.44)-(3.46), arranged in any convenient order (as long as each row contains all
the entries where the first derivative is with respect to the same parameter, each column
contains all the terms with second derivative w.r.t. the same parameter, and the ordering of
the parameters along rows and columns is the same).
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Chapter 4

Algorithms for Parameter Estimation with
Quantized Observations

In this chapter, we will present algorithms that solve the quantized estimation problems
(2.12), (2.16), (2.19), (2.21), (2.26), and (2.32), which can all be expressed with the
following model:

y = Q (Ah + b + w) , (4.1)

where A ∈ CK×P is a known coupling matrix, b ∈ CK is a known offset vector, h ∈ CP is
the unknown parameter vector that is to be estimated, and w ∈ CK is a vector of circularly
symmetric independent Gaussian noise, with variances σ2

k, k ∈ {1, . . . , K}.
In this chapter, we focus on independent channel and data estimation, i.e. the channel

is estimated first, and then the data is equalized using the obtained channel estimate. In the
next chapter, we will deal with joint estimation of both parameters, which will turn out to
give better results at an increased computational complexity.

There are two types of estimation algorithms for the model in (4.1): nonlinear methods
and linear methods:

• Nonlinear methods take into account the inherent nonlinearity of the problem to and
estimate h. As it is not possible to drive a closed-form expression for this case, the
nonlinear methods are iterative. They achieve better (more accurate) performance
than the linear approaches, but suffer from higher computational complexity and are
also not guaranteed to converge. In this thesis, we consider two nonlinear algorithms:
Expectation Maximization (EM) and Generalized Approximate Message Passing
(GAMP).

• Linear methods approximate the problem (4.1) with a linear model, and solve it
using algorithms designed for this type of models. These methods are faster and
more robust, but have lower accuracy due to the model mismatch. The linear method
considered in this thesis is the Bussgang linearization.
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Additionally, we derived a soft-input soft-output (SISO) a-posteriori probability (APP)
equalizer. This equalizer is optimal when it converges, but its computational complexity
is prohibitive. We will use it in the simulations in a scenario with reduced complexity to
evaluate the performance gap between the practical algorithms and optimal equalization.

4.1 Expectation Maximization (EM) Algorithm

y,A
E
(
z | y, ĥ

)
arg max

h
p (h | ẑ)

stop? yesno

ẑ

ĥ
ĥ

ĥ

Figure 4.1: Expectation Maximization-MMSE (EM-MMSE) algorithm

The Expectation Maximization (EM) approach [14] is a nonlinear iterative method that
alternately applies two steps at each iteration i:

• Expectation step: this step obtains the expected value of the unquantized observations
z = Ah + w, given the quantized output y and the current estimate ĥ(i−1):

ẑ(i) = E
(
z | y, ĥ(i−1)

)
. (4.2)

• Maximization step: once the expectation step obtained the expected unquantized
observation ẑ(i), the maximization step applies a linear Maximum Likelihood (ML)
or Maximum A-Posteriori Probability (MAP) criterion to obtain the corresponding
estimated input ĥ(i):

ĥ(i) = arg max
h

ph | z
(
h | ẑ(i)

)
(4.3)

After the two steps, the new estimate h(i) is used as input for the Expectation Step in the
next iteration, as depicted in Figure 4.1.

The two steps are treated in more detail in the following.

4.1.1 Expectation step:

The expectation step obtains the expected unquantized observation ẑ(i) given the
previous estimate of the parameter ĥ(i−1) and the quantized observation y. In the following,
we drop the iteration index i for clarity. Using Bayes rule, we obtain the distribution of
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z | y, ĥ as:

pz | y,ĥ

(
z | y, ĥ

)
=
pz | ĥ(z | ĥ)py | z,ĥ(y | z, ĥ)

py | ĥ(y | ĥ)

=
pw

(
z−Aĥ− b

)
1 {z ∈ Q−1 (y)}∫

w∈Q−1(y)−Aĥ−b
pw(w)dw

, (4.4)

where 1 {s} is an indicator function with value 1 if s is true, and 0 otherwise. The set
Q−1 (y) is defined as:

Q−1 (y) ,
{
z ∈ CK : Q (z) = y

}
, (4.5)

and Q−1 (y)−Aĥ− b is the translation of Q−1 (y) by −Aĥ− b.
Now, we apply the expectation operator to (4.4):

E
(
z | y, ĥ

)
=

∫
z∈Q−1(y)

z pw

(
z−Aĥ− b

)
dz∫

w∈Q−1(y)−Aĥ−b
pw(w)dw

= Aĥ +

∫
w∈Q−1(y)−Aĥ−b

wpw (w) dw∫
w∈Q−1(y)−Aĥ−b

pw(w)dw
= Aĥ + ŵ. (4.6)

Assuming that the noisew is Gaussian and uncorrelated with variances σ2
k, k ∈ {1, . . . , K},

we have:

pw (w) =
K∏
k=1

(
1

σk
√
π
e
−<{wk}

2

σ2
k

1

σk
√
π
e
−={wk}

2

σ2
k

)
, (4.7)

where wk denotes the k-th element of w.
The integral in the numerator of (4.6) is vector-valued. Note that pw (w) is separable.

Therefore, for the k-th component of the numerator, all dimensions will cancel out except
for the k-th one. The k-th component where the components of ŵ are given by:

ŵk =

u<,k∫
l<,k

w
σk
√
π
e
−−w

2

σ2
k dw

u<,k∫
l<,k

1
σk
√
π
e
−−w2

σ2
k dw

+ j

u=,k∫
l=,k

w
σk
√
π
e
−−w

2

σ2
k dw

u=,k∫
l=,k

1
σk
√
π
e
−−w2

σ2
k dw

, (4.8)

where the bounds of the integrals are given by:

l<,k =

−∞, if <{yk} = −1

−<
{
bk +

∑P
p=1 akphp

}
, if <{yk} = 1,

(4.9)

u<,k =

−<
{
bk +

∑P
p=1 akphp

}
, if <{yk} = −1

∞, if <{yk} = 1,
(4.10)
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and the bounds in the imaginary part l=,k and u=,k have the same expressions with all <{·}
operators replaced by ={·}. The denominators in (4.8) are integrals of even functions,
which have the property that

∫∞
−c e(x) dx =

∫ c
−∞ e(x) dx. On the other hand, the integrands

in the numerators are odd functions, for which
∫∞
−c o(x) dx = −

∫ c
−∞ o(x) dx. This allows

us to rewrite (4.8) as:

ŵk =

<{yk}
d<,k∫
−∞

w
σk
√
π
e
−−w

2

σ2
k dw

d<,k∫
−∞

1
σk
√
π
e
−−w2

σ2
k dw

+ j

={yk}
d=,k∫
−∞

w
σk
√
π
e
−−w

2

σ2
k dw

d=,k∫
−∞

1
σk
√
π
e
−−w2

σ2
k dw

, (4.11)

where

d<,k = <{yk}<

{
bk +

P∑
p=1

akphp

}
; d=,k = ={yk}=

{
bk +

P∑
p=1

akphp

}
. (4.12)

By solving the integrals in (4.11), we obtain the final expression for the Expectation
Step of the EM algorithm, which in full can be described as:

ẑ(i) = Aĥ(i−1) + b + ŵ, (4.13)

where the components of ŵ are given by:

ŵk =
σk√

2

(
<{yk}φ (η<,k)

Φ (η<,k)
+ j
={yk}φ (η=,k)

Φ (η=,k)

)
, (4.14)

where

η<,k =
<{yk}<

{
bk +

∑P
p=1 akphp

}
σk/
√

2
; η=,k =

={yk}=
{
bk +

∑P
p=1 akphp

}
σk/
√

2
. (4.15)

4.1.1.1 Covariance matrix of the Expectation Step

For completeness, in this section we will also derive the covariance matrix Cẑẑ ,

E
{

(z− ẑ) (z− ẑ)H | y, ĥ
}

of the Expectation Step estimator in (4.13). Recall that

ẑ = Aĥ + b + ŵ. Then, we have z− ẑ =
(
Aĥ + b + w

)
−
(
Aĥ + b + ŵ

)
= w− ŵ,

and therefore:
Cẑẑ = E

{
wwH | y, ĥ

}
− ŵŵH . (4.16)

Using the same reasoning as for ŵ (4.6), the first term is computed as follows:

Rŵŵ , E
{

wwH | y, ĥ
}

=

∫
w∈Q−1(y)−Aĥ

wwHpw (w) dw∫
w∈Q−1(y)−Aĥ

pw(w)dw
. (4.17)
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Equations (4.16), (4.17) and (4.6) already give a general expression for Cẑẑ, valid for any
function Q (·). For the 1-bit quantization case, let us compute Rŵŵ element-wise:

[Rŵŵ]k1k2 =

∫
w∈Q−1(y)−Aĥ−b

wk1w
∗
k2
pw (w) dw∫

w∈Q−1(y)−Aĥ−b
pw(w)dw

=

∫∫
wk1

∫∫
wk2

wk1w
∗
k2
pwk1 (wk1) pwk2 (wk2) dwk2 dwk1∫∫

wk1

∫∫
wk2

pwk1 (wk1) pwk2 (wk2) dwk2 dwk1
(4.18)

where the integrals span the values of wk1 and wk2 that belong to Q−1(y)−Aĥ− b. We
can distinguish two cases here:

• k1 6= k2: in this case, the integrals over wk1 and wk2 are separable and the result
simplifies to:

[Rŵŵ]k1k2 =

∫∫
wk1

wk1pwk1 (wk1) dwk1∫∫
wk1

pwk1 (wk1) dwk1


∫∫
wk2

wk2pwk2 (wk2) dwk2∫∫
wk2

pwk2 (wk2) dwk2


∗

= ŵk1ŵ
∗
k2
, (4.19)

where ŵm is given by (4.14). Note that, from (4.16), this result means that the
off-diagonal terms of Cẑẑ will cancel out, which means that the estimator covariance
is a diagonal matrix.

• k1 = k2 = k: in this case, (4.17) reduces to:

[Rŵŵ]kk =

∫∫
wk

|wk|2 pwk (wk) dwk∫∫
wk

pwk (wk) dwk

=

d<,k∫
−∞

w2
<

σk
√
π
e
−w<
σ2
k dw<

Φ (η<,k)
+

d=,k∫
−∞

w2
=

σk
√
π
e
−w=
σ2
k dw=

Φ (η=,k)
,

= σ2
k

(
1− 1

2

η<,kφ (η<,k)

Φ (η<,k)
− 1

2

η=,kφ (η=,k)

Φ (η=,k)

)
, (4.20)

where d<,k and d=,k are given by (4.12), and η<,k and η=,k are defined in (4.15).
Finally, plugging (4.19) and (4.20) into (4.16), we obtain the final result for the estimator

covariance matrix:

Cẑẑ = diag

{
σ2
k

(
1− 1

2

η<,kφ (η<,k)

Φ (η<,k)
− 1

2

η=,kφ (η=,k)

Φ (η=,k)
− 1

2

(
φ (η<,k)

Φ (η<,k)

)2

− 1

2

(
φ (η=,k)

Φ (η=,k)

)2
)}M

k=1

,

(4.21)
with η<,k and η=,k given by (4.15).
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The ratio φ (η) /Φ (η) is numerically unstable when η is very negative. To prevent this
problem in both (4.14) and (4.21), the following approximation can be used:

φ (η)

Φ (η)
∼

η→−∞
−η. (4.22)

4.1.2 Maximization Step

In the maximization step, the obtained ẑ(i) , E
{

z | y, ĥ
(i−1)

}
(4.14) is used as

observation vector in an unquantized problem:

ẑ(i) = Ah + b + w. (4.23)

In the literature [7], a maximum likelihood (ML) estimator is used to solve this problem:

ĥ(i) =
(
AHR−1

wwA
)−1

AHR−1
ww

(
ẑ(i) − b

)
. (4.24)

We propose an alternative to this approach, which consists of using an MMSE estimator:

ĥ(i) =
(
AHR−1

wwA + R−1
hh

)−1
AHR−1

ww

(
ẑ(i) − b

)
; (4.25)

This solution (EM-MMSE) gives better performance, as it takes into account prior
information. The program flow of the full EM-MMSE method is graphically depicted in
Fig. 4.1, and an implementation in pseudo-code is given in Algorithm 4.1.

Algorithm 4.1 Expectation Maximization (EM)
Input: A, b, y

Initialize:
ẑ(0) = y

ĥ(0) from (4.24) (ML) or (4.25) (MMSE)
i = 1

while i ≤ imax and
∥∥∥ĥ(i) − ĥ(i−1)

∥∥∥2

F
≥ ε

∥∥h(i)
∥∥2

F
do

ẑ = E
(
z | y, ĥ(i−1)

)
from (4.13)

ĥ(i) from (4.24) (ML) or (4.25) (MMSE)
i = i+ 1

end while
Output: ĥ(i)

4.2 Generalized Approximate Message Passing (GAMP)

The Generalized Approximate Message Passing method, developed in [15], can also be
applied to the quantized estimation problem. This is a very general method that estimates
intermediate signals on a coupled channel given the input and the output. As depicted
in Figure 4.2, an input x ∈ CP with a known prior px goes successively through a linear
transformation z = Ax ∈ CK and through the output channel py | z, giving the observed
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px A py | z
x z y

Figure 4.2: Problem formulation of GAMP: the unknown signals to estimate are shaded in
gray

output y. The GAMP method estimates the input signal x and the intermediate signal z

from the knowledge of A ∈ CK×P , y, px | q, and py | z by using a loopy belief propagation
approach. GAMP can only be used if the priors px (x) and py | z (y | z) are separable (i.e.
independent across samples of the vectors), which is the case in our problem. The details
of the algorithm are developed in [15], and a listing is provided in Algorithm 4.2 (where �
denotes elementwise product).

Algorithm 4.2 Generalized Approximate Message Passing (GAMP)
Input: A, b, y, px, and py | z

Compute: A2 = |A|2 (elementwise)
Initialize: i = 0, s = 0P×1, x, τ x

while i < imax and ‖x− x(i− 1)‖2
2 ≥ ε ‖x‖2

2 do
xold = x

Output linear step:
τ p = A2τ

x

p = Ax− 1
2
τ p � s

z = Ax

Output nonlinear step:
for ` = 1 : K do
s` = gout (i, p`, y`, τ

p
` )

τ s` = − ∂
∂p
gout (i, p`, y`, τ

p
` )

end for
Input linear step:
τ r = 4/

(
AH

2 τ
s
)
(elementwise inverse)

r = x + 1
2
τ r �

(
AHs

)
Input nonlinear step:
for ` = 1 : P do
x` = gin (i, r`, τ

r
` )

τx` = τ r ∂
∂r
gin (i, r`, τ

r
` )

end for
Increment loop index: i = i+ 1

end while
Output: x, z

The scalar input estimation function gin is defined as:

gin (i, r, τ p) = E {x | r} , (4.26)
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where the corresponding known prior px(x) is used, and r is defined as:

r = x+ v; v ∼ N (0, τ r) . (4.27)

The output estimation function gout is defined as:

gout (i, p, y, τ p) =
1

τ p
(E {z | p, y} − p) =

1

τ p
E {u | p, y} , (4.28)

where the corresponding known py | z is used, and u is defined such that:

z = p+ u; u ∼ N (0, τ p) . (4.29)

4.2.1 Scalar estimation functions for GAMP

The nonlinear steps of GAMP are elementwise independent, and therefore we will
derive them for an individual sample xi (input) or yj (output). We drop the sample index
for clarity.

4.2.1.1 Gaussian Input Step

For channel estimation, the input is assumed to be Gaussian uncorrelated with variance
σ2
x (possibly different for each sample): x ∼ NC (0, σ2

x). Using Bayes’ Rule, we obtain:

px | r (x | r) =
px (x) pr | x (r | x)

pr (r)
(4.30)

=

1
σ2
xπ
e
− |x|

2

σ2x
1
πτr
e−
|r−x|2
τr

1
π(σ2

x+τr)
e
− |r|2

(σ2x+τr)

=
1

πσ2
x | r

e
−
|x−µx | r|2

σ2
x | r , (4.31)

where
µx | r =

σ2
xr

σ2
x + τ r

, (4.32)

σ2
x | r ==

σ2
xτr

σ2
x + τ r

. (4.33)

The PDF in (4.31) is Gaussian with mean µx | r and variance σ2
x | r. From (4.26), gin is

equal to µx | r, which results in the input nonlinear functions:

gin (i, r, τ r) =
σ2
x

σ2
x + τ r

r, (4.34)

τ r
∂

∂r
gin (i, r, τ r) =

σ2
xτ

r

σ2
x + τ r

, (4.35)
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4.2.1.2 Constellation Input Step

In the equalization problems, the constellation of the input x is known. Let us denote
the constellation points by xa, a ∈ {1, . . . , A}, where A is the constellation order. The
probability of xa is denoted by Pa. By applying (4.27) and (4.30), we obtain:

px | q,r (xa | q, r) =
Pa

1
τrπ
e−
|r−xa|2
τr

A∑
a=1

Pa
1
τrπ
e−
|r−xa|2
τr

, (4.36)

The expectation E {x | q, r} is computed by averaging over x, yielding:

gin (i, r, q, τ r) =

A∑
a=1

Paxae
− |r−xa|

2

τr

A∑
a=1

Pae
− |r−xa|

2

τr

, (4.37)

τ r
∂

∂r
gin (i, r, q, τ r)

=

A∑
a=1

Pa |xa|2 e−
|r−xa|2
τr

A∑
a=1

Pae
− |r−xa|

2

τr

− |gin (i, r, q, τ r)|2 , (4.38)

where xa, a ∈ {1, . . . , A} are the constellation symbols, and Pa are their corresponding
probabilities.

4.2.1.3 Quantized Output Step

In our 1-bit quantized case, the real and imaginary parts of the problem are independent.
Therefore, the expectation can be taken separately for the two components, and we only
derive the result for the real part. Recall the definition of p and u from (4.29). We can
write:

y = Q (z + b+ w) = Q (p+ u+ b+ w) , (4.39)

where b is known, and w ∼ N (0, σ2
w) is uncorrelated with p and u. Now, we can use

Bayes’ rule again to obtain the joint PDF of u,w | p, y

pu,w | p,y (u,w | p, y) =
pu,w | p (u,w | p) py | u,w,p (y | u,w, p)

py | p (y | p)

=

1
2πσw

√
τp
e
− u2

2τp
− w2

2σ2w 1 {(p+ b+ u+ w) y ≥ 0}

Φ

(
yp√
τp+σ2

w

) . (4.40)

Now, we marginalize over w and average over u:

E {u | p, y} =

∫ ∞
−∞

∫ ∞
−∞

upu,w | p,y (u,w | p, y) du dw. (4.41)
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By reversing the order of the integrals and appropriately expressing the indicator function,
(4.41) can be written as:

E {u | p, y}

=
1

Φ (η)

∫ ∞
−∞

1

σw
√

2π
e
− w2

2σ2w y

∫ ∞
−p−b−w

u√
2πτ p

e−
u2

2τp du dw, (4.42)

where η = yp/
√
τ p + σ2

w. The integral along u has the limits corresponding to y = 1 (see
the indicator function 1 {. . .} in (4.40)). For the case y = −1, we have used the property
that the integrand f(u) is an odd function, and therefore

∫∞
−p−w f(u)du =

∫ −∞
−p−w f(u)du =

−
∫ −p−w
−∞ f(u) du, which accounts for the pre-multiplying term y. The solution to (4.42) is:

E {u | p, y} =
1

Φ (η)

∫ ∞
−∞

1

σw
√

2π
e
− w2

2σ2w y

√
τ p√
2π
e−

(p+b+w)2

2τp dw

=
yτ p√
σ2
w + τ p

φ (η)

Φ (η)
, (4.43)

which, plugged into (4.28), gives the output nonlinear step functions:

gout (i, p, y, τ p) =
y√

σ2
w + τ p

φ (η)

Φ (η)
(4.44)

− ∂

∂p
gout (i, p, y, τ p) =

1

σ2
w + τ p

(
η
φ (η)

Φ (η)
+

(
φ (η)

Φ (η)

)2
)
, (4.45)

where
η =

y (p+ b)√
σ2
w + τ p

. (4.46)

The scalar estimation function gout gives a conditional expectation of z, while its
negative derivative −g′out is its conditional variance. Furthermore, the real and imaginary
priors py | z (y | z) are independent. Hence, the expressions to go back to the complex
domain are:

gout (i, p, y, τ p) = gout

(
i,<{p} ,<{y} , τ

p

2

)
+ j · gout

(
i,={p} ,={y} , τ

p

2

)
, (4.47)

− ∂

∂p
gout (i, p, y, τ p)

= − ∂

∂<{p}
gout

(
i,<{p} ,<{y} , τ

p

2

)
− ∂

∂={p}
gout

(
i,={p} ,={y} , τ

p

2

)
. (4.48)

4.3 Subcarrier-Wise Estimation with Bussgang Theorem

Both EM and GAMP have very high complexity, and are not practical for Massive
MIMO scenarios, or for high numbers of subcarriers. In this section, a linear estimator
based on the Bussgang theorem is proposed. This theorem [16] states that a nonlinear
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distortion of a Gaussian signal can be expressed as a linear transformation plus uncorrelated
noise. Mathematically, (4.1) can be modeled as:

y − b = Kz + e, (4.49)

and K ∈ CK×K can be chosen such that:

E
{
zeH

}
= 0. (4.50)

Using e = y−b−Kz, it is easy to derive K and the covariance matrix of the quantization
noise, Ree:

K = RyzR
−1
zz ; (4.51)

Ree = Ryy −RyzR
−1
zz Rzy. (4.52)

For our problem, we have:

Rzz = ARhhAH + Rww. (4.53)

The Bussgang gain and noise covariance are easily adapted from the results in [17] (note
the additional factors of

√
2 or 2 with respect to the reference due to the signals being

complex-valued):
K =

2√
π

diag {Rzz}−1/2 ; (4.54)

Ree = Ryy −
4

π
diag {Rzz}−1/2 Rzzdiag {Rzz}−1/2 , (4.55)

where
Ryy =

4

π
arcsin

(
diag {Rzz}−1/2 Rzzdiag {Rzz}−1/2

)
. (4.56)

Using (4.49), we can now model our quantized system (4.1) as an unquantized one:

y − b = Bh + η, (4.57)

where B = KA, and Rηη = KRwwKH + Ree. Note that the quantization noise e is not
Gaussian, and therefore this approach is suboptimal. If Rzz is assumed to be diagonal
(which holds if Rhh is diagonal, the pilots are orthogonal and the number of transmit
antennas is large), the problem can be decoupled and Rηη reduces to:

Rηη =
4

π
diag {Rzz}−1 diag {Rww}+ 2

(
1− 2

π

)
IM . (4.58)

If, additionally, Rzz and Rww are scaled identities (which, if diagonality is already
assumed, only requires that the noise and pilots do not change their variance over time),
then the problem simplifies even further. In this case, the Bussgang decomposition reduces
to a scalar factor and i.i.d. noise, and from (2.7), we have:

Ynr·· = Q

(
Nt∑
nt=1

FHΛnrntXnt·· + Wnr

)
, (4.59)
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Ynr·· = k
Nt∑
nt=1

FHΛnrntXnt·· + W̃nr , (4.60)

with k = 2
σz
√
π
, and σ2

w̃ = 4
π
σ2
w

σ2
z

+2
(
1− 2

π

)
. This allows to use standard OFDM techniques:

apply an FFT to Y, and then estimate H subcarrier-wise:

Ynr·· = FYnr·· = k
Nt∑
nt=1

diag {Hnrnt·}Xnt·· + W̃nr··, (4.61)

Y ··n = kH··nX··n + W̃ ··n, (4.62)

where Y ··n ∈ CNr×T , H··n ∈ CNr×Nt , X··n ∈ CNt×T , and W̃ ··n ∈ CNr×T are respectively
the frequency-domain observations, channel, pilots and noise at subcarrier n. Then, the
frequency-domain channel estimation at each subcarrier can be done, as usual, with BLUE
(recall that the noise is assumed to be i.i.d. for this case):

Ĥ··n =
1

k
Y ··nXH

··n
(
X··nX

H
··n
)−1

, (4.63)

or MMSE:

Ĥ··n =
1

k
Y ··nXH

··n

(
X··nX

H
··n +

σ2
w̃

σ2
h

INt

)−1

. (4.64)

4.4 A-Posteriori-Probability Soft-Input-Soft-Output equalizer

In this section, we present an A-Posteriori-Probability (APP) Soft-Input-Soft-Output
(SISO) equalizer, based on the Message Passing (MP) algorithm introduced in [18].

Consider a modulation scheme with B bits per symbol, and Q = 2B constellation
points. Let us denote the sequence of transmitted bits in one block by m ∈ ZBP×1

2 , where
Z2 , {0, 1}. Note that m denotes the input to the modulator, with channel coding already
applied. We further define the modulation functionM (·) as the function that transforms
the input bits to the transmitted constellation symbols:

M : ZBP2 → CP

m → M (m) =


M (m1:B)

M
(
m(B+1):(2B)

)
...

M
(
m((P−1)B+1):(PB)

)
 . (4.65)

With this definition, and using the appropriate section of Chapter 2, we can write the
following problem model:

y = Q (AM (m) + b + w) , (4.66)

with A ∈ CK×P .
We define the log-likelihood function ` (m) of a bitm as:

` (m) = log
Pr [m = 0]

Pr [m = 1]
. (4.67)
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We denote D = BP , and define the vector `in ∈ RD×1 of a-priori log-likelihood ratios
of the encoded message bits m:

`in
d = ` (md) , d ∈ {1, . . . , D} . (4.68)

The vector `out of output log-likelihood ratios is an updated version of `in, which
includes the information in y given by (4.66):

`out
d = ` (md | y) , d ∈ {1, . . . , D} . (4.69)

APP
SISO

Equalizer

y

`in
`out

Figure 4.3: A-posteriori Probability Soft-Input-Soft-Output equalizer

The proposed SISO APP equalizer is depicted in Figure 4.3. From the observation
vector y and the log-likelihood ratios of the input bits, `in, the equalizer obtains the updated
log-likelihood ratios of the input bits, `out. These log-likelihood ratios can then be used in
the channel decoder to construct a fully soft scheme.

4.4.1 Message Passing algorithm

The proposed APP SISO block is based on the Message Passing algorithm [18]. This
algorithm is useful for marginalizing high-dimensional probability density functions (PDFs)
without incurring exponential complexity. To apply the method, first we need to factorize
the PDF into several factor functions which depend on few variables. From Bayes’ Rule
we know that:

pm | y (m | y) =
pm (m) py |m (y |m)

py (y)
. (4.70)

As py (y) does not depend on m, we can factorize pm | y (m | y) as:

pm | y (m | y) =
1

py (y)

D∏
d=1

pmd (md)
K∏
k=1

pyk |m (yk |m) , (4.71)

where
pyk |m (yk |m) = Φ

(
<{yk}<{zk}

σk/
√

2

)
Φ

(
={yk}={zk}

σk/
√

2

)
, (4.72)

and

zk = bk +
P∑
p=1

akpM
(
m((p−1)B+1):(pB)

)
. (4.73)

The use of Message Passing only makes sense if each one of the pyk |m (yk |m) depend
only on a fewmd. From (4.73), we see that this happens only when each one of the rows of
the matrix A has only a few nonzero elements. In the SC (2.21) and NCP (2.32) cases, this
is fulfilled when L� N , because A is defined in terms of convolution matrices.
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` (m1)

` (m2)

` (m3)

` (mD)

m1

m2

m3

mD

py1 |m

py2 |m

pyD |m

Figure 4.4: Factor graph for the Message Passing algorithm

The factor graph for (4.71) is depicted in Figure 4.4. The Message Passing algorithm
uses a strategy called Belief Propagation (BP), in which both the variable nodes (circles in
the figure) and the factor nodes (squares in the figure) iteratively send messages to their
neighbors.

The variable-to-factor messages at iteration i are denoted by µ(i)
d→k, where d is the

source variable node and k is the destination factor node. The content of the message is the
LLR of the corresponding bitmd, given the information received from all the other factors
in the previous iteration:

µ
(i)
d→k = `

(
md

∣∣ {µ(i−1)
d←k′

}
k′∈Kd\k

)
, (4.74)

where µ(i)
d←k denotes the message sent by factor k to variable d at iteration i. The set Kd is

the set of neighbors of variable node d. In our problem, the variable-to-factor messages
(4.74) become:

µ
(i)
d→k = `in

d +
∑

k′∈Kd\k

µ
(i−1)
d→k′ . (4.75)

The factor-to-variable messages µ(i)
d←k ae defined as the LLR of the corresponding bit

md, given the messages received from all other variables and the information contained in
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the observation yk:

µ
(i)
d←k = `

(
md

∣∣ yk,{µ(i)
d′→k

}
d′∈Dk\d

)

= log

p
md | yk,

{
µ
(i)

d′→k

}
d′∈Dk\d

(
0 | yk,

{
µ

(i)
d′→k

}
d′∈Dk\d

)
p
md | yk,

{
µ
(i)

d′→k

}
d′∈Dk\d

(
1 | yk,

{
µ

(i)
d′→k

}
d′∈Dk\d

) , (4.76)

where Dk is the set of neighbors of factor node k. To compute µ(i)
d←k, we first transform the

received variable-to-node messages to probabilities. From (4.67), we obtain:

p
(i)
d→k (1) , p

md | µ
(i)
d→k

(
1 | µ(i)

d→k

)
=

1

1 + eµ
(i)
d→k

, (4.77)

p
(i)
d→k (0) , p

md | µ
(i)
d→k

(
0 | µ(i)

d→k

)
=

eµ
(i)
d→k

1 + eµ
(i)
d→k

. (4.78)

This allows us to express (4.76) as:

µ
(i)
d←k =

log

∑
· · ·

{md′}d′∈Dk\d∈Z
|Dk|−1

2

∑ ∏
d′∈Dk\d

p
(i)
d→k (md′) pyk |md,{md′}d∈Dk\d

(
yk | 0, {md′}d∈Dk\d

)
∑

· · ·
{md′}d′∈Dk\d∈Z

|Dk|−1

2

∑ ∏
d′∈Dk\d

p
(i)
d→k (md′) pyk |md,{md′}d∈Dk\d

(
yk | 1, {md′}d∈Dk\d

) ,
(4.79)

where, due to the zeros in A, we have pyk |md,{md′}d∈Dk\d
(
yk |md, {md′}d∈Dk\d

)
=

pyk |m (yk |m), which can be computed from (4.72) and (4.73) by appropriately changing
the range of the summation that calculates zk. The notation

∑
· · ·

{md′}d′∈Dk\d∈Z
|Dk|−1

2

∑
represents the sum over all 2|Dk|−1 possible combinations of values of {md′}d′∈Dk\d, where
eachmd′ can take the value 0 or 1.

The Message Passing algorithm applies (4.74) and (4.79) in each iteration, until the
change in µ(i)

d←k is small enough. The output marginal LLRs of the bits, `out, are then
computed as:

`out
d = `in

d +
∑
k∈Kd

µ
(i)
d←k. (4.80)

A full listing of the algorithm is given in Algorithm 4.3.

4.5 Computational complexity of the presented algorithms

In this section, we compare the computational complexity of the presented algorithms,
measured as the number of complex multiplications. We define dimensions K, P , R such
that A ∈ CK×P , and (4.1) is solved R times (R = Nr for estimation and R = M for
equalization).
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Algorithm 4.3 APP SISO equalizer
Input: `in,y,A,b

Initialize: i = 0, µ(−1)
d←k = 0

while i < imax and
∑
d,k

(
µ

(i)
d←k − µ

(i−1)
d←k

)2

< ε
∑
d,k

(
µ

(i)
d←k

)2

do

for d = 1 to D do
for k = 1 to K do
µ

(i)
d→k from (4.74)

end for
end for
for k = 1 to K do

for d = 1 to D do
µ

(i)
d←k from (4.79)

end for
end for
i = i+ 1

end while
for d = 1 to D do
`out
d = `in

d + µ
(i−1)
d←k

end for
Output: `out

4.5.1 Computational Complexity of EM

• Expectation step:

The expectation step computes E
{

z | y, ĥ(i)
}
. This amounts to R computations

of (4.13), each one having a complexity dominated by the product Aĥ, yielding
O (KPR).

• Maximization step:
This is an MMSE solution that multiplies B =

(
AHRwwA + Rhh

)−1
ARww ∈

CP×K by the expectation ẑ ∈ CK×1. Note that B only varies when the channel
changes, and thus it only needs to be recalculated once in each channel coherence
period. The maximization step amounts only to a matrix-vector multiplication By,
which is done R times. The complexity of this step is: O (KPR).

These two steps are done for I iterations, until the algorithm converges. This results in an
overall complexity of EM of:

TEM = O (2IKPR) . (4.81)

4.5.2 Computational Complexity of GAMP

The scalar activation functions gin and gout and their derivatives (4.34)-(4.45) all have
linear complexity in either the size of the input (P ) or that of the output (K). Therefore,
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the most computationally expensive step of each iteration of GAMP are the matrix-vector
multiplications involving A and A2. Specifically, two multiplications with A and two with
A2 are applied, each one with complexityKP . The algorithm needs to be applied R times.
Assuming it runs for I iterations, the overall complexity of GAMP-MMSE is:

TGAMP−MMSE = O (4IKPR) . (4.82)

4.5.3 Computational Complexity of the Bussgang estimator

In the single-carrier case, the linear estimator needs to compute an MMSE so-
lution with the whole matrix KA ∈ CK×P and observation Y ∈ CK×P . Again,
note that the computation of the matrices KA and Rηη only needs to be performed
once every channel realization, and the same applies to the MMSE multiplier matrix
G =

(
AHKHR−1

ηηKA + Rhh

)−1
AHKH The complexity of the Bussgang estimator then

reduces to a matrix-vector multiplication of G ∈ CP×K with y, which is done R times

TBuss.−SC = O (KPR) . (4.83)

In an OFDM system, the Bussgang estimator allows subcarrier-wise equalization, which
amounts to N MMSE calculations of (4.64), where again the matrix inversion only needs
to be performed once per channel realization. This gives a complexity of:

TBuss.−MC,CE = O (NrNtNT ) (4.84)

for channel estimation, and

TBuss.−MC,EQ = O (NrNtNM) (4.85)

for equalization.

4.5.4 Computational complexity of the APP SISO equalizer

The dominant step in the complexity of the APP SISO equalizer is the computation of
the factor-to-variable messages µ(i)

d←k in (4.79). In the single-carrier case (recall that the
APP equalizer is not useful for OFDM systems), the rows of A have LNt nonzero elements.
Thus, all factor nodes have |Dk| = BLNt neighbors, whre B is the number of bits per
constellation symbol. The summation in the numerator of (4.79) has then 2BLNt−1 terms.
For each term, BLNt multiplications are performed to compute

∏
d′∈Dk\d

p
(i)
d→k (md′), and

another LNt multiplications are needed to calculate pyk |md,{md′}d∈Dk\d from (4.72). This
is done twice (once for the numerator and once for the denominator), which means that
each factor-to-variable message has complexity:

T
APP,µ

(i)
d←k

= O
(
BLNt2

BLNt−1
)
. (4.86)

The priors
∏

d′∈Dk\d
p

(i)
d→k (md′) depend weakly on d. Only one of the p(i)

d→k (md′) is

missing in the product each time, which allows computation by calculating the full product
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and dividing by the missing p(i)
d→k (md)). This lets us compute all the priors with only

double complexity compared to that of calculating the full product once. Additionally,
pyk |md,{md′}d∈Dk\d

has the same values in different positions for every d. which means it
only needs to be calculated for one value of d. Therefore, the calculation of µ(i)

d←k for one k
and all d has double complexity compared to that for only one d:

T
APP,

{
µ
(i)
d←k

}
d∈Dk

= O
(
BLNt2

BLNt
)
. (4.87)

The messages still have to be computed for all k ∈ {1, . . . , NNr}, at each one of the I
iterations, and for each one of theM symbol blocks. The overall complexity is, as expected,
prohibitive:

TAPP = O
(
INrNtNLMB2BLNt

)
. (4.88)

However, as mentioned before, the APP SISO equalizer is an optimal detector when it
converges, and is useful as a benchmark for the performance of the practical algorithms in
simulations.

All the complexity results for channel estimation and equalization are summarized in
Table 4.1, where MC stands for multi-carrier (OFDM), and B is the number of bits per
symbol.

Table 4.1: Computational complexity of the presented algorithms

Algorithm Estimation Equalization
EM 2INrNtNLT 2INrNtN

2M

GAMP 4INrNtNLT 4INrNtN
2M

Bussgang (SC) NrNtNLT NrNtN
2M

Bussgang (MC) NrNtNT NrNtNM

APP SISO − INrNtNLMB2BLNt
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Chapter 5

Algorithms for Joint Channel and Data
Estimation (JCD)

In the previous chapter, we introduced several linear and nonlinear algorithms that can
be used for both channel estimation and data equalization in the quantized MIMO problem.
A receiver can use one of the algorithms for channel estimation, and then use the obtained
channel estimate to equalize the data using the same algorithm or another one. However
this approach can be improved if channel estimation and equalization are performed jointly.
In this chapter, an iterative, turbo-like technique introduced in [19] for this purpose is
discussed. Additionally, we derive closed-form expressions for the intermediate estimation
variances of the algorithm for our frequency-selective system in the OFDM, SC and NCP
settings

5.1 Iterative turbo-based JCD estimator

Consider a quantized MIMO system of either one of the OFDM, SC or NCP types. For
the Joint Channel and Data (JCD) estimation problem, we denote the number of known
pilot blocks by T and the number of data blocks byM . The pilots corresponding to antenna
nt ∈ {1, . . . , Nt} are denoted by Xnt,{1,...,T} ∈ CN×T , while Xnt,{T+1,...,T+M} ∈ CN×M

represents the data blocks transmitted by the same antenna (during this section and for the
NCP case, set N = 1).

The program flow of the turbo-based JCD estimator is depicted in Figure 5.1. At each
iteration i, two steps are applied alternately: channel estimation and equalization. This
procedure repeats until the algorithm converges. It will be seen in the simulation results
that this gives better accuracy than successive estimation of channel and data.

5.1.1 Channel estimation stage

The channel estimation step of the JCD turbo-based approach uses as input the
quantized observations {Ynr··}

Nr
nr=1, the known pilots

{
Xnt,{1,...,T},·

}Nt
nt=1

, estimated data
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{Ynr··}
Nr
nr=1{

Xnt,{1,...,T},·
}Nt
nt=1

Channel
estimation

Data
equalization

{
ĥ

(i)
nrnt

}
(nr,nt)∈{1,...,Nr}×{1,...,Nt}{

τ
h,(i)
nrnt

}
(nr,nt)∈{1,...,Nr}×{1,...,Nt}{

X̂
(i)
nt,{T+1,...,T+M},·

}Nt
nt=1{

τ
X,(i)
nt,{T+1,...,T+M},·

}Nt
nt=1

{Ynr··}
Nr
nr=1{

Xnt,{1,...,T},·
}Nt
nt=1{

X̂
(i−1)
nt,{T+1,...,T+M},·

}Nt
nt=1{

τ
X,(i−1)
nt,{T+1,...,T+M},·

}Nt
nt=1

{
ĥ

(i)
nrnt

}
(nr,nt)∈{1,...,Nr}×{1,...,Nt}{

τ
h,(i)
nrnt

}
(nr,nt)∈{1,...,Nr}×{1,...,Nt}

{Ynr··}
Nr
nr=1{

ĥ
(i)
nrnt

}
(nr,nt)∈{1,...,Nr}×{1,...,Nt}{

τ
h,(i)
nrnt

}
(nr,nt)∈{1,...,Nr}×{1,...,Nt}

{
X̂

(i)
nt,{T+1,...,T+M},·

}Nt
nt=1{

τ
X,(i)
nt,{T+1,...,T+M},·

}Nt
nt=1

i = i+ 1

Figure 5.1: Turbo-based JCD estimator
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symbols from the previous iteration,
{

X̂
(i−1)
nt,{T+1,...,T+M},·

}Nt
nt=1

, and their estimated vari-

ances
{
τ
X,(i−1)
nt,{T+1,...,T+M},·

}Nt
nt=1

.
This block performs channel estimation using both the known pilots and the estimated

data symbols. For this purpose, a large pilot block is constructed by concatenating the
actual pilots and the data estimates:

X(i)
nt·· =

[
Xnt,{1,...,T},· X̂nt,{T+1,...,T+M},·

]
∈ CN×(T+M). (5.1)

Then, depending on the system type (OFDM, SC or NCP), the matrices X
(i)
nt·· and the

observations X
(i)
nt·· are used to construct the quantized matrix-vector channel estimation

model:
ynr = Q (Ahnr + wnr) . (5.2)

The procedure to construct the model for all systems is explained in Chapter 2. The
matrix A ∈ CN(T+M)×LNt is not known exactly, due to the variance in the estimation of{

X̂
(i−1)
nt,{T+1,...,T+M},·

}Nt
nt=1

. To improve the estimation performance, this variance is also

taken into account. Let us denote the estimated value ofA by Â, and define the perturbation
Ã such that:

A = Â + Ã. (5.3)

We can now rewrite (5.2) as:

ynr = Q
(
Âhnr +

(
Ãhnr + wnr

))
= Q

(
Âhnr + η

)
. (5.4)

The noise term is now η = Ãhnr + wnr . We defineK = N(T +M), P = LNt, and
denote the variance of the p-th component of hnr by σ2

hp
. As the quantized estimation

algorithms in Chapter 4 assume uncorrelated noise, we will neglect the cross-correlations of
the noise terms and compute only the diagonal terms. The variance of the k-th component
of η is given by:

σ2
ηk

=


σ2
wk
, if k ≤ NT,

σ2
wk

+ E

{
P∑
p=1

|ãkp|2 σ2
hp

}
, if k > NT

=


σ2
wk
, if k ≤ NT,

σ2
wk

+
P∑
p=1

σ2
akp
σ2
hp
, if k > NT,

(5.5)

where the case distinction is done because, when k ≤ NT , the sample corresponds to
a pilot symbol and hence there is no error in akp. Additionally, independence between
akp and hp was assumed. This variance is used in the estimation algorithms of Chapter
4 instead of the noise variance σ2

w. The value of σ2
akp

is obtained from the respective
definition of the matrix A. In the following, we give expressions for σ2

nk
for the OFDM,

SC and NCP cases:
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5.1.1.1 Perturbation in the OFDM case

In the OFDM case, the matrix A is defined as (2.11):

A =
[ (

XT
1·· � FH

)
FN×L

(
XT

2·· � FH
)

FN×L · · ·
(
XT
Nt·· � FH

)
FN×L

]
. (5.6)

Let us denote the entry of A corresponding to subcarrier n, symbolm channel tap `, and
transmit antenna nt by an,m;`,nt , such that an,m;`,nt = an+(m−1)N,`+(nt−1)L. From (5.6), we
have:

an,m;`,nt =
1√
N

N−1∑
n′=0

xnt,m,n′e
j 2π
N
nn′e−j

2π
N
n′`. (5.7)

Plugging this into (5.5) yields:

σ2
ηnr,m,n

= σ2
wnr,m,n

+ 1
N

E

{
Nt∑
nt=1

L−1∑̀
=0

|ãn,m;`,nt |
2 σ2

hnr,nt,`

}

=



σ2
wnr,m,n

, if m ≤ T

σ2
wnr,m,n

+
1

N

Nt∑
nt=1

L−1∑
`=0

N−1∑
n′=0

N−1∑
n′′=0

E
{
x̃nt,m−T,n′x̃

∗
nt,m−T,n′′

}
ej

2π
N

(n−`)(n′−n′′)σ2
hnr,nt,`

, if m > T

(5.8)

where x̃nt,m,n = xnt,m,n − x̂
(i)
nt,m,n is the estimation error in xnt,m,n We neglect any cross-

correlation of the samples in Xnt··. Therefore, the only terms in the summation in (5.8) that
are nonzero correspond to n′ = n′′. The equivalent noise variance for channel estimation
is then:

σ2
ηnr,m,n

=


σ2
wnr,m,n

, if m ≤ T,

σ2
wnr,m,n

+ 1
N

Nt∑
nt=1

L−1∑̀
=0

N−1∑
n′=0

τxnt,m,n′σ
2
hnr,nt,`

, if m > T.
(5.9)

If the channel variance is equal for all taps, (5.9) reduces to:

σ2
ηnr,m,n

=


σ2
wnr,m,n

, if m ≤ T,

σ2
wnr,m,n

+ σ2
h
L
N

Nt∑
nt=1

N−1∑
n′=0

τxnt,m,n′ , if m > T.
(5.10)

5.1.1.2 Perturbation in the SC and NCP cases

In the SC case, the entries of the matrix A are given by (see (2.20)):

an,m;`,nt = xnt,m,(n−`)modN . (5.11)

Substituting this in (5.5) gives:

σ2
ηnr,m,n

=


σ2
wnr,m,n

, if m ≤ T,

σ2
wnr,m,n

+
L−1∑̀
=0

Nt∑
nt=1

τxnt,m,(n−`)modNσ
2
hnr,nt,`

, if m > T,
(5.12)
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which, if the variance of the channel taps is constant, simplifies to:

σ2
ηnr,m,n

=


σ2
wnr,m,n

, if m ≤ T,

σ2
wnr,m,n

+ σ2
hL

Nt∑
nt=1

τxnt,m,(n−`)modN , if m > T.
(5.13)

For the NCP case, the expressions are obtained in the same way and turn out to be:

σ2
ηnr,m

=


σ2
wnr,m

, if m ≤ T,

σ2
wnr,m

+
L−1∑̀
=0

Nt∑
nt=1

τxnt,(m−`)σ
2
hnr,nt,`

, if m > T,
(5.14)

for the different variance case, and

σ2
ηnr,m

=


σ2
wnr,m

, if m ≤ T,

σ2
wnr,m

+ σ2
hL

Nt∑
nt=1

τxnt,(m−`), if m > T.
(5.15)

for the equal variance case.

5.1.2 Data equalization stage

The second step in each iteration is the data equalization stage. Here, the previously
estimated channel

{
ĥ

(i)
nrnt

}
(nr,nt)∈{1,...,Nr}×{1,...,Nt}

, the estimation variance {Ynr··}
Nr
nr=1,

and the quantized observations
{
τ
h,(i)
nrnt

}
(nr,nt)∈{1,...,Nr}×{1,...,Nt}

are used to obtain a new

estimate of the data symbols
{

X̂
(i)
nt,{T+1,...,T+M},·

}Nt
nt=1

, and their estimation variance{
τ
X,(i)
nt,{T+1,...,T+M},·

}Nt
nt=1

. For this purpose, the appropriate matrix-vector model from
Chapter 2 and one of the algorithms from Chapter 5 are used.

Similarly to the channel estimation case, the perturbation of the matrix A ∈ CNNr×NNt

can be included in the noise term as follows:

ym = Q
(
Âxm + bm + Ãxm + wm

)
= Q

(
Âxm + bm + η

)
, (5.16)

where the noise term is η = Ãxm + wm. Again the matrix A = Â + Ã is split into the
estimated value Â and the error Ã.

The variance of the noise term is now:

σ2
ηnr,m,n

= σ2
wnr,m,n

+
N−1∑
n′=0

Nt∑
nt=1

σ2
an,nr ;n′,nt

σ2
xnt,m,n′

, (5.17)

where σ2
an,nr ;n′,nt

is the variance of an,nr;n′,nt = an+(nr−1)N,n′+(nt−1)N .
In the following, we give expressions for the equivalent noise variance (5.17) for the

OFDM, SC and NCP cases.

45



Chapter 5. Algorithms for Joint Channel and Data Estimation (JCD)

5.1.2.1 Perturbation in the OFDM case

From (2.16), we can write an,nr;n′,nt in the OFDM case as:

an,nr;n′,nt =
1√
N
ej

2π
N
nn′

L−1∑
`=0

e−j
2π
N
n′`hnr,nt,`, (5.18)

which, plugged into (5.17), yields:

σ2
ηnr,m,m

= σ2
wnr,m,n

+
1

N

N−1∑
n′=0

Nt∑
nt=1

L−1∑
`=0

L−1∑
`′=0

ej
2π
N
n′(`′−`)E

{
hnr,nt,`h

∗
nr,nt,`′

}
σ2
xnt,m,n′

.

(5.19)
Again, we neglect the cross-correlations among the channel taps, which reduces (5.19) to:

σ2
ηnr,m,m

= σ2
wnr,m,n

+
1

N

N−1∑
n′=0

Nt∑
nt=1

L−1∑
`=0

τhnr,nt,`σ
2
xnt,m,n′

. (5.20)

Finally, if all symbols have the same variance σ2
x, the result is:

σ2
ηnr,m,m

= σ2
wnr,m,n

+ σ2
x

Nt∑
nt=1

L−1∑
`=0

τhnr,nt,`. (5.21)

5.1.2.2 Perturbation in the SC and NCP cases

In the SC case, from (2.21), we have:

an,nr;n′,nt = hnr,nt,(n−n′)modN . (5.22)

With the help of (5.17), we obtain:

σ2
ηnr,m,n

= σ2
wnr,m,n

+
n∑

n′=n−`+1

Nt∑
nt=1

τhnr,nt,(n−n′)modNσ
2
xnt,m,n′

, (5.23)

and, if all symbols have the same variance,

σ2
ηnr,m,n

= σ2
wnr,m,n

+ σ2
x

n∑
n′=n−`+1

Nt∑
nt=1

τhnr,nt,(n−n′)modN . (5.24)

The variances in the NCP case have the same expressions as (5.23) and (5.24), but
removing the modN operations.
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Chapter 6

Simulation Results

In this chapter, simulation results will be given to compare the algorithms presented in
this thesis. The performance gap between linear and nonlinear techniques will be evaluated
in different settings. The advantages of Joint Channel and Data Estimation (JCD) will be
shown. The performance with higher order modulations and with non-Gaussian channel
models will also be evaluated.

Except for the APP estimator test, all the simulations use a channel impulse response
length of L = 4 taps. The block size is N = 32 for OFDM and SC with cyclic prefix. In
the NCP case, the additional data slots available due to the lack of a cyclic prefix are also
included, giving a block size of NNCP = 36.

In order to have a realistic comparison, all the simulations in this chapter use a punctured
convolutional channel code. The rate of the code is Rcc,cp = 3/4 for systems with cyclic
prefix. To compare systems with the same throughput, the code rate in the scheme without
cyclic prefix is Rcc,ncp = Rcc,cpN/Nncp = 2/3.

Two figures of merit have been used to evaluate the performance of the algorithms. In
the channel estimation problem, the Normalized Mean Square Error (NMSE) is defined as:

NMSEH =
1

NsimNrNtLσ2
h

Nsim∑
nsim=1

Nr∑
nr=1

Nt∑
nt=1

L∑
`=1

∣∣∣ĥ(nsim)
nr,nt,`

− h(nsim)
nr,nt,`

∣∣∣2 . (6.1)

In the equalization problems, the coded Bit Error Rate (BER), is defined as the bit error
rate of the uncoded message in a coded system:

BER =
1

NsimNbits

Nsim∑
nsim=1

Nbits∑
nbits=1

∣∣m̂(nsim)
nbits

−m(nsim)
nbits

∣∣ , (6.2)

where Nbits = NtMN ∗ Rcc,cp is the number of bits sent in each channel coherence
period, andm(nsim)

nbits is the bit sent in position nbits ∈ {1, . . . , Nbits} and channel realization
nsim ∈ {1, . . . , Nsim}. The estimate of this bit at the receiver is m̂(nsim)

nbits .
The bit energy to noise spectral density Eb/N0 throughout this chapter is defined at the

transmitter:
Eb
N0

=
Pt

Ntσ2
w

1

BRcc,ncp

, (6.3)
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whereB is the number of bits per constellation symbol, and σ2
w is the average noise variance.

Note that the channel variance σ2
h is always set to 1, in order to make the comparisons fair.

Most of the simulations share a similar setting, to make comparisons easier. The
default parameters are given in Table 6.1. All experiments use these parameters unless
otherwise stated. Note that, with the default setting, the number of data bits sent is
Nbits = NsimBNtMNRcc,cp ≈ 2.5 · 107.

Table 6.1: Common system parameters

Parameter Symbol Value
Number of TX antennas Nt 2

Number of RX antennas Nr 10

Modulation 4-QAM
Channel variance σ2

h 1

Noise variance σ2
w 1

Number of pilot blocks T 4

Block size (CP) N 32

Block size (NCP) Nncp 36

CC rate (CP) Rcc,cp 3/4

CC rate (NCP) Rcc,cp 2/3

Number of pilot blocks T 4

Channel coherence time M 64

Number of channel realizations Nsim 4096

The simulations compare the following methods: Expectation Maximization (EM,
Section 4.1), Generalized Approximate Message Passing (GAMP, Section 4.2), and the
linear Bussgang estimator (Section 4.3), and the result obtained if quantization is completely
ignored, and a standard MMSE estimator is applied (denoted as Ignoring) in the plot
legends.

6.1 Channel Estimation Performance

The first experiment aimed at comparing the performance of the individual quantized
estimation methods when applied to the channel estimation problem. For this purpose, a
system with the parameters given in Table 6.1 was simulated, and the channel estimation
NMSE (6.1) was plotted against Eb/N0 for the different methods. The Cramér-Rao Lower
Bound from Section 3.1 was also plotted as a benchmark.

Figure 6.1 compares a multi-carrier (OFDM, blue solid curves) system with a cyclic
prefix single-carrier (SC, green dashed curves) one. We observe that, in NMSE terms,
both OFDM and SC exhibit a similar performance. A typical characteristic of quantized
systems is the performance saturation at a certain finite SNR, which can be seen in the
graph. The nonlinear methods (EM and GAMP, represented by square and inverted triangle
markers respectively) saturate at a considerable lower value of NMSE, and therefore have
an unavoidable benefit with respect to the linear approach. The use of Bussgang Theorem
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CRLB(OFDM) CRLB(SC)

Figure 6.1: Comparison of channel estimation NMSE for OFDM and SC schemes
(simulation parameters in Table 6.1)

for linear estimation (round markers) as opposed to the naive “Ignoring” method (triangle
markers), is more beneficial in the OFDM case than in SC. This is because the transmitted
OFDM block is closer to a Gaussian distribution, as required by the theorem.

Note also that, at low SNR, the Cramér-Rao Lower Bound (CRLB, derived in Section 3.1,
represented by black curves without markers) is achieved by the nonlinear methods.
However, no method reaches it at high SNR, which might mean that there is room for
improvement in this region.

In Figure 6.2, the same SC system is compared to a single-carrier system without cyclic
prefix (NCP, solid red curves). Recall that the comparison is done with equal throughput,
by adding more channel code redundancy to the NCP case. The same observations as with
the previous curve can be made, and additionally we can see that NCP achieves better
performance than SC in the low SNR regime, but becomes worse at high SNR. This is a
behavior that will be present in all NCP simulations.

6.2 Equalization Performance

In this section, experiments to compare the performance of the presented methods for
equalization were carried out. For this purpose, perfect Channel State Information (CSI)
was assumed, and the equalization methods were compared in terms of BER.
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Figure 6.2: Comparison of channel estimation NMSE for SC and NCP schemes (simulation
parameters in Table 6.1)

Table 6.2: System parameters for the APP SISO comparison (Figure 6.3)

Parameter Symbol Value
Number of TX antennas Nt 2

Number of RX antennas Nr 10

Modulation 4-QAM
Channel variance σ2

h 1

Noise variance σ2
w 1

Block size (CP) N 32

CC rate (CP) Rcc,cp 3/4

Number of pilot blocks T 2

Channel coherence time M 32

Number of channel realizations Nsim 4096
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Figure 6.3: Comparison of equalization methods to optimal APP decoding for SC schemes
and perfect CSI. Simulation parameters given in Table 6.2

6.2.1 Comparison to optimal APP decoding

First, the performance gap between the practical methods and the optimal A-posteriori
Probability Soft-Input-Soft-Output (APP SISO) decoder from Section 4.4 was evaluated.
Due to the prohibitive complexity of APP SISO, the simulations were carried out in a
simplified setting, given in Table 6.2. Only the Single-Carrier (SC) case was tested, as
the algorithm is not useful for OFDM. The channel length was reduced to L = 2, and
the channel coherence time toM = 32. This makes BLNt = 4, which keeps runtime at
acceptable levels.

Figure 4.3 shows the coded BER results. In our simplified scenario, we observe that the
performance of linear and nonlinear methods is similar, and the use on nonlinear algorithms
would not be justified (this will not be the case in the standard scenarios). A gap of 0.5 dB

is observed between the practical methods and the APP SISO block (black curve without
markers). The practical methods are therefore close enough to optimal performance, at
least in this simplified setting.

6.2.2 Comparison of practical algorithms

Once we have established that the practical equalization methods are good enough,
we present now a rigorous comparison of their performance in coded BER terms, as was
done for channel estimation. Again, we assume perfect CSI and use the parameters of our
standard scenario (Table 6.1).

The results for SC vs OFDM are plotted in Figure 6.4. Some observations here are
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Figure 6.4: Comparison of equalization techniques with perfect CSI (OFDM vs SC).
Simulation parameters given in Table 6.1

common to what we could see in the channel estimation test. The nonlinear algorithms
EM (square markers) and GAMP (inverted triangle makers) obtain considerably better
performance than the linear methods at a higher computational complexity.

Within the nonlinear methods, EM and GAMP have similar performance. In general,
GAMP can obtain a slightly better performance due to the fact that it takes the prior into
account. However, GAMP also has divergence issues more frequently, which forces the
use of strong damping. For this reason, many more iterations are required for convergence
than in the EM case, making GAMP the slowest method.

Within the linear methods, again the Bussgang theorem (round markers) brings a higher
benefit in the OFDM case than in the SC case, because the input to the quantizer has a
distribution closer to Gaussian.

However, in this equalization stage we can observe that the single-carrier system (green
dashed curves) performs considerably better than the OFDM one (blue solid lines). The
gap is about 2 dB at BER = 10−4). This might be because the matrix A is sparse in
the single-carrier case, and therefore each symbol suffers interference only from LNt

other symbols, instead of NNt. For the linear estimators, the reduced complexity due to
subcarrier-wise equalization and the possibility to multiplex channels in the frequency
domain might still make OFDM schemes attractive.

The comparison between single-carrier schemes with and without cyclic prefix is given
in Figure 6.5. Here, we observe that, again, the system without cyclic prefix (NCP, red solid
curves) outperforms the one with cyclic prefix (SC, green dashed curves) only in the low
SNR regime. For high SNR, NCP saturates faster and SC has a better performance. In the
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Figure 6.5: Comparison of equalization techniques with perfect CSI (SC vs NCP).
Simulation parameters given in Table 6.1

equalization problem, this can be explained with the following argument. The NCP system
has lower BER at low SNR due to the additional coding redundancy allowed by the lack of
cyclic prefix. When the SNR increases, the system becomes limited by interference, and
the interference from previous blocks saturates the NCP system earlier than the SC one.

Note that, for this scenario, the crossing point of the SC and NCP curves is at a very
low SNR and high BER, making the NCP system unattractive. However, the position of
the crossing point depends on the scenario parameters, so the NCP system might still be
attractive in a different simulation setting.

Another effect that can be appreciated in Figure 6.5 is that the difference between linear
and nonlinear methods becomes very small in the NCP system. For this kind of scheme,
the increased complexity of the nonlinear methods is not worth the marginal improvement
in performance. Again, the interference might be an explanation for this. In the NCP
case, the symbols of one block are estimated by the corresponding algorithm, and then
their estimates are input to the algorithms as “known” interference in the next block. The
error incurred by doing this will translate linearly to the output if a linear method is used.
However, the same error will degrade performance in an unpredictable and probably more
harmful way if the method is not linear.

6.3 Full system with sequential estimation

In the next experiment a full system with sequential estimation was simulated. This
means that the receiver uses one of the algorithms for channel estimation, and then the same
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Figure 6.6: Full system with sequential estimation (same method for channel estimation
and equalization). Simulation parameters given in Table 6.1

algorithm for equalization with the obtained channel estimate. The simulation parameters
are once again those from Table 6.1.

The results in Figure 6.6 show the same trend as usual. Single carrier with cyclic prefix
(SC, green dashed curves) outperforms OFDM (blue solid curves), and the system without
cyclic prefix (NCP, red solid curve) has the best performance at low SNR but saturates
earlier and is the worst option at high SNR. Again, the difference between the linear and
nonlinear methods is smaller in the NCP case, due to the inter-block interference.

6.4 Number of pilots

The next experiment aimed at evaluating the required number of pilot blocks (a pilot
block hasN pilot symbols) to obtain an accurate channel estimate. In the single-carrier with
cyclic prefix (SC) setting, the Eb/N0 was fixed at −3 dB. A system with EM equalization
and perfect CSI was compared to a system which uses EM in both channel estimation and
equalization. The same was done for a system that uses Bussgang instead of EM.

The curves for BER vs number of pilot blocks T of these four settings are plotted in
Figure 6.7. Of course, in the perfect CSI case (lines without markers), there are no pilots
and the performance is just a horizontal line. The imperfect CSI cases (lines with markers)
tend to their corresponding perfect CSI lines as the number of pilot blocks increases. It
is seen in the graph that the imperfect CSI performance saturates with about 6 to 8 pilot
blocks. The advantage of the nonlinear method EM (square marker, dashed green line)
with respect to the linear Bussgang is clear, as it allows to reduce the number of pilots by
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Figure 6.7: BER vs number of pilot blocks of size N required (SC system). The Eb/N0 is
set to −3 dB, the other simulation parameters are given in Table 6.1

25− 50% for the same performance.

6.5 Higher order modulation

6.5.1 Constellation shape

In this experiment, a system with higher order modulation was tested. In order to use
high order modulation in a 1-bit quantized system, it is not enough to have very high SNR.
This is because the performance saturates at a certain finite SNR, as seen in the previous
experiments. For high order modulation, the number of receive antennas Nr needs to be
increased. This provides more measurements at the receiver, each of which narrows down
the probable location of the transmitted data symbols.

The aim of this experiment was to decide on a constellation design for higher order
modulation. For this purpose, PSK and QAM constellations were compared. The graphs
in Figure 6.8 correspond to 3 bits per symbol (8-PSK vs 8-QAM). The simulation setting
is the one given in Table 6.1, except now the number of receive antennas is Nr = 24.

Channel estimation and equalization are done with the same method (EM for the solid
green curves and Bussgang for the dashed blue curves). The round markers correspond to
PSK, and the square markers to QAM. For the case with 3 bits per symbol, it is seen that
8-PSK outperforms 8-QAM, especially in the linear case (about 5 dB performance gap at
BER = 10−4 in the linear case, and only 1 dB in the nonlinear case). This is because 1-bit
quantization is more harmful to the information contained in the amplitude than to that
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Figure 6.8: Comparison between 8-PSK and 8-QAM for full EM and Bussgang SC systems.
The number of receive antennas is Nr = 24; all other simulation parameters are given by
Table 6.1.
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Figure 6.9: Comparison between 16-PSK and 16-QAM for full EM and Bussgang SC
systems. The number of receive antennas is Nr = 36; all other simulation parameters are
given by Table 6.1.
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contained in the phase. Only the dithering effect can be used to distinguish between two
amplitudes.

However, if the number of bits per symbol increases to 4 (and the number of receive
antennas to Nr = 36, we can see in Figure 6.9 that the positions are reversed. The symbols
in 16-PSK are too close to each other, and 16-QAM now has better performance. For even
higher modulation orders, QAM is still the best option.

Another important conclusion from these simulations is that the difference between the
linear and nonlinear methods increases considerably for higher order modulations. For
16-QAM, for example, the BER at the saturation point of EM is about 100 times lower
than that of Bussgang. For 8-QAM, it is only 50 times lower, and for 4-QAM, only 2 (see
Figure 6.6). The effect of model mismatch is more severe when the detection requirements
become stricter.

6.5.2 Required number of antennas
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Figure 6.10: Required number of receive antennas Nr to achieve BER = 10−4 in an SC
system with 8-PSK modulation. Simulation parameters given in Table 6.1

In this experiment, the gain in number of antennas obtained by using nonlinear
algorithms was evaluated. A system using single carrier with cyclic prefix was simulated
(except for Nr, all the other simulation parameters are given in Table 6.1). For different
values of Eb/N0, the number of receive antennasNr required to achieve BER = 10−4 with
Nt = 2 was obtained through simulations. The results are plotted in Figure 6.10 for 8-PSK
modulation, and in Figure 6.11 for 16-QAM. It is seen that the nonlinear method (EM)
allows a reduction of the number of receive antennas of about 15% in the 8-PSK case,
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Figure 6.11: Required number of receive antennas Nr to achieve BER = 10−4 in an SC
system with 16-QAM modulation. Simulation parameters given in Table 6.1

and a of as much as 50% for 16-QAM. with respect to the linear Bussgang method. This
reduction results in less power consumption and space constraints, and might be worth the
additional complexity, especially when the modulation order is 16 or more.

6.6 Joint Channel and Data Estimation (JCD)

The last experiment evaluates the benefit of the turbo-like Joint Channel and Data
Estimation (JCD) scheme explained in Chapter 5. A system with the parameters given in
Table 6.1 is simulated, and sequential estimation and equalization is compared to the joint
scheme.

Figure 6.12 gives the channel estimation NMSE result for OFDM and SC, and
Figure 6.13 gives the data BER result. The solid curves, which correspond to sequential
estimation, are the same as those in Figure 6.6. The dashed curves correspond to the
turbo-like JCD scheme. In the NMSE curves, we see that JCD greatly improves the channel
estimation accuracy, by a factor of about 4.

It can be observed in Figure 6.13 that the JCD systems consistently achieve a 3 times
lower BER than the equivalent sequential ones. Furthermore, the turbo-like approach in
JCD converges usually in about 3 iterations, which makes it attractive given the important
gain it brings. The results for the JCD system without cyclic prefix (NCP), given in the red
curves with unfilled markers of Figure 6.14, also exhibit a similar gain.
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Figure 6.12: NMSE comparison of sequential estimation vs JCD, in the OFDM and SC
cases. Simulation parameters given in Table 6.1
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Figure 6.13: BER comparison of sequential estimation vs JCD, in the OFDM and SC cases.
Simulation parameters given in Table 6.1
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Figure 6.14: BER comparison of sequential estimation vs JCD, in the SC and NCP cases.
Simulation parameters given in Table 6.1
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Chapter 7

Conclusion

In this thesis, the problem of channel estimation and equalization in 1-bit quantized
Multiple Input-Multiple Output (MIMO) frequency-selective channels was addressed. The
topic was chosen because most of the literature on quantized MIMO focuses on flat-fading
channels, and very few works are available that deal with multi-carrier systems.

Quantized matrix-vector system models were derived for both the channel estimation
and equalization problems in three different kinds of systems: Orthogonal Frequency
Division Multiplexing (OFDM), single-carrier with cyclic prefix (SC), and single-carrier
without cyclic prefix (NCP).

A Cramér-Rao Lower Bound (CRLB) was derived for the estimation problems. Two non-
linear quantized estimation algorithms: Expectation Maximization (EM) and Generalized
Approximate Message Passing (GAMP), as well as a linear method based on the Bussgang
theorem, were adapted to the derived system model. The nonlinear methods are iterative
and have higher computational complexity, but perform considerably better. An optimal A-
posteriori Probability Soft-Input-Soft-Output equalizer was also derived. It has prohibitive
complexity but is good as a performance benchmark.

A turbo-like Joint Channel and Data estimation scheme (JCD) was also adapted to the
problem and tested.

The simulation results show that single-carrier systems with cyclic prefix always
outperform OFDM ones. The systems without cyclic prefix have a worse saturation point
at high SNR, but are the best ones at low SNR. The nonlinear algorithms turn out to give
considerable gains with respect to the linear estimator, and allow reduction of the number
of pilot blocks or of receive antennas.

The results show that 8-PSK is more suited to 1-bit quantized systems than 8-QAM, but
for modulation orders of 16 and above, QAM is again the best constellation type. Finally,
the turbo-like approach (JCD) was shown to greatly improve the estimation and detection
accuracy, at the cost of about 3 to 5 times slower execution.

Many topics are open for future work in this area. The application of a Bayesian
JCD estimator, the use of Filter Bank Multi-Carrier (FBMC) schemes, and the design of
transmission and coding strategies are just a few of them.
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Appendix A

Matrix Operators

In this Appendix, we define some of the less common matrix operators that have been
used throughout the thesis.

A.1 Vectorization

The vectorization operator, vec (·), trasforms a matrix into a vector by stacking its
columns vertically. Given a matrix A ∈ CM×N :

vec (A) =


a1

a2

...
aN

 ∈ CMN , (A.1)

where an, n ∈ {1, . . . , N} denotes the n-th column of A.

A.2 Khatri-Rao product

The Khatri-Rao product of two matrices with the same number of columns, A ∈ CM×N

and B ∈ CP×N is a new matrix A �B ∈ CMP×N , with a definition that can be interpreted
as a column-wise Kronecker product:

A �B =


a11b1 a12b2 · · · a1NbN
a21b1 a22b2 · · · a2NbN

... ... . . . ...
aM1b2 aM2b2 · · · aMNbN

 , (A.2)

where bn denotes the n-th column of B.

62



Appendix B

Derivation of the Fisher Information Matrix
for Joint Channel and Data Estimation

In this appendix, the entries if the Fisher information matrix for Joint Channel and Data
Estimation (JCD), given in (3.35)-(3.37) are derived in more detail. We start with the log
likelihood P (Y | θ) = ln pY |H,X d

(Y |H,X d), obtainable from (3.27):

P (Y |H,X d) =

Nr∑
nr=1

M−1∑
m=0

N−1∑
n=0

[
ln Φ

(
y<,nr,m,nz<,nr,m,n

σnr/
√

2

)
+ ln Φ

(
y=,nr,m,nz=,nr,m,n

σnr/
√

2

)]
, (B.1)

where

z<,nr,m,n =

Nt∑
nt=1

L−1∑
`=0

(
h<,nr,nt,`x<,nt,m,(n−`)modN − h=,nr,nt,`x=,nt,m,(n−`)modN

)
(B.2)

and

z=,nr,m,n =

Nt∑
nt=1

L−1∑
`=0

(
h<,nr,nt,`x=,nt,m,(n−`)modN + h=,nr,nt,`x<,nt,m,(n−`)modN

)
. (B.3)

Using the identities:

dΦ (x)

dx
= φ (x) ;

dφ (x)

dx
= −xφ (x) , (B.4)

we can obtain the first derivatives of P (Y |H,X d) with respect to each channel tap and
each data symbol. Let us define:

ηP,nr,m,n =

√
2

σnr
yP,nr,m,nzP,nr,m,n, (B.5)
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Appendix B. Derivation of the Fisher Information Matrix for Joint Channel and Data Estimation

where P can mean either < or =. Then,the first derivatives of (B.1) yield:

∂P (Y |H,X d)

∂hP,nr,nt,`
=

√
2

σnr

M−1∑
m=0

N−1∑
n=0[

φ (η<,nr,m,n)

Φ (η<,nr,m,n)
y<,nr,m,nsPxP,nt,m,(n−`)modN

+
φ (η=,nr,m,n)

Φ (η=,nr,m,n)
y=,nr,m,nxP,nt,m,(n−`)modN

]
, (B.6)

∂P (Y |H,X d)

∂xP,nt,m,n
=

Nr∑
nr=1

√
2

σnr

(n+L−1)modN∑
n′′=n[

φ (η<,nr,m,n′′)

Φ (η<,nr,m,n′′)
y<,nr,m,n′′sPhP,nr,nt,(n′′−n)modN

+
φ (η=,nr,m,n′′)

Φ (η=,nr,m,n′′)
y=,nr,m,n′′hP,nr,nt,(n′′−n)modN

]
. (B.7)

Now, let us define:

ψ (η) = − ∂

∂η

φ (η)

Φ (η)
=
ηφ (η)

Φ (η)
+

(
φ (η)

Φ (η)

)2

(B.8)

Then, we have the following identities:

− ∂

∂x

φ (η)

Φ (η)
= ψ(η)

∂η

∂x
, (B.9)

− ∂

∂x

φ (η)

Φ (η)
x = ψ(η)

∂η

∂x
− φ (η)

Φ (η)
. (B.10)

The negative second derivatives, from (B.6) and (B.7), are then given by:

− ∂2

∂hP,nr,nt,`∂hT ,n′r,n′t,`′
= δ[nr − n′r]

2

σ2
nr

M−1∑
m=0

N−1∑
n=0[

ψ (η<,nr,m,n) sPsT xP,nt,m,(n−`)modNxT ,n′t,m,(n−`′)modN

+ψ (η=,nr,m,n)xP,nt,m,(n−`)modNxT ,n′t,m,(n−`′)modN

]
, (B.11)

− ∂2P (Y |H,X d)

∂xP,nt,m,n∂xT ,n′t,m′,n′
= δ[m−m′]

Nr∑
nr=1

2

σ2
nr

min{n+L−1,n′+L−1}modN∑
n′′=max{n,n′}[

ψ (η<,nr,m,n′′) sPsT hP,nr,nt,(n′′−n)modNhT ,nr,n′t,(n′′−n′)modN

+ψ (η=,nr,m,n′′)hP,nr,nt,(n′′−n)modNhT ,nr,n′t,(n′′−n′)modN

]
. (B.12)
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− ∂2P (Y |H,X d)

∂hP,nr,nt,`∂xT ,n′t,m,n
=

{
2

σ2
nr

n+L−1modN∑
n′′=n[

ψ (η<,nr,m,n′′) sPsT xP,nt,m,(n′′−`)modNhT ,nr,n′t,(n′′−n)modN

+ψ (η=,nr,m,n′′)xP,nt,m,(n′′−`)modNhT ,nr,n′t,(n′′−n)modN

]}
− δ[nt − n′t]sP

√
2

σnr

φ
(
η(P·T ),nr,m,(n+`)modN

)
Φ
(
η(P·T ),nr,m,(n+`)modN

)y(P·T ),nr,m,(n+`)modN . (B.13)

In (B.13), the operation P · T is defined as:

P · T =

{
<, if P = T ,
=, if P 6= T .

(B.14)

The last summand in (B.13) accounts for the case in which xT ,n′t,m,n = xP,nt,m,(n′′−`)modN .
When this happens, the derivative of (B.6) with respect to xT ,n′t,m,n involves (B.10),
whose last term corresponds to the last summand in (B.13). All the other summands in
(B.11)-(B.13) are obtained by using (B.9).

Now only one step remains, which consists of taking the expectation of (B.11)-(B.13)
with respect to Y . Note that (B.11) and (B.12) only depend on Y through the terms
ψ (η<,nr,m,n) and ψ (η=,nr,m,n). Each summand in the summation depends only on one
entry ofY , and therefore the expectation can be taken only over the corresponding marginal
distribution, derived in Chapter 3 (3.27):

pyP,nr,m,n |H,X d
(yP,nr,m,n |H,X d) = Φ (ηP,nr,m,n) . (B.15)

The expectation of ψ (η<,nr,m,n) over yP,nr,m,n |H,X d then yields:

E {ψ (η<,nr,m,n)} =
∑

y∈{−1,1}

Φ (ηP,nr,m,n)ψ (η<,nr,m,n)

= −µP,nr,m,nφ (−µP,nr,m,n) +
(φ (−µP,nr,m,n))2

Φ (−µP,nr,m,n)

+ µP,nr,m,nφ (µP,nr,m,n) +
(φ (µP,nr,m,n))2

Φ (µP,nr,m,n)

=
(φ (µP,nr,m,n))2

Φ (µP,nr,m,n) (1− Φ (µP,nr,m,n))

= ΨP,nr,m,n, (B.16)

where

µP,nr,m,n =

√
2

σnr
zP,nr,m,n = ηP,nr,m,n|yP,nr,m,n=1 . (B.17)

The definition of ΨP,nr,m,n in (B.16) is the same as in Chapter 3 (3.34). To arrive at the final
results, the identities φ(−x) = φ(x) and Φ(−x) = 1−Φ(x) were used. Note furthermore
that:

E

{
φ
(
η(P),nr,m,n

)
Φ
(
η(P),nr,m,n

)y(P),nr,m,n

}
= −φ

(
−µ(P),nr,m,n

)
+ φ

(
µ(P),nr,m,n

)
= 0, (B.18)
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which cancels out the last summand in (B.13). Plugging in (B.16) and (B.18) into
(B.11)-(B.13) gives the final result for the entries of the Fisher Information Matrix:

E

{
− ∂2P (Y | θ)

∂hPnr,nt,`∂hT n′r,n′t,`′

}
= δ [nr − n′r]

2

σnr

M−1∑
m=0

N−1∑
n=0[

sPsT xP,nt,m,(n−`)modNxT ,n′t,m,(n−`′)modNΨ<,nr,m,n

+xP,nt,m,(n−`)modNxT ,n′t,m,(n−`′)modNΨ=,nr,m,n

]
, (B.19)

E

{
− ∂2P (Y | θ)

∂xPnt,m,n∂xT n′t,m′,n′

}

= δ [m−m′]
Nr∑
nr=1

2

σnr

(min{n+L−1,n′+L−1})modN∑
n′′=max{n,n′}[

sPsT hP,nr,nt,(n′′−n)modNhT ,nr,n′t,(n′′−n′)modNΨ<,nr,m,n′′

+hP,nr,nt,(n′′−n)modNhT ,nr,n′t,(n′′−n′)modNΨ=,nr,m,n′′
]
, (B.20)

E

{
− ∂2P (Y | θ)

∂hPnr,nt,`∂xT n′t,m,n

}

=
2

σnr

(n+L−1)modN∑
n′′=n[

sPsT xP,nt,m,(n′′−`)modNhT ,nr,n′t,(n′′−n)modNΨ<,nr,m,n′′

+xP,nt,m,(n′′−`)modNhT ,nr,n′t,(n′′−n)modNΨ=,nr,m,n′′
]
. (B.21)
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