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Abstract—This paper presents a data-driven nonlinear dis-
turbance observer to reduce the reality gap caused by the
imperfect simulation of the real-world physics. The main focus
is on increasing robustness of the closed-loop control without
changing the RL algorithm or simulation model to account for
the uncertainty of the real world. For this purpose, a DNN
representing inverse dynamics of the deterministic source-domain
environment is learned by the simulation data. The proposed
approach offers a systematic way to transfer the policies trained
in simulation into the real world without decreasing sample
efficiency of the RL agent in contrast to domain randomization
or min-max robust RL methods.

Index Terms—inverse dynamics, disturbance observer, robotic
manipulation, robust reinforcement learning, sim2real transfer

I. INTRODUCTION

Directly training the RL agent on the real robots [1]–[3] has
shown only few successes for merely learning simple tasks
[4] due to the high sample complexity of the state-of-the-art
RL algorithms [4]–[6]. A common approach to overcome the
aforementioned problem is to perform learning in a simulated
environment that mimics the real world and to transfer the
trained policies to the physical robot afterwards [4], [7]–[16].
However, this is a challenging task since the conventional
RL algorithms usually assume the same environment both
for the training and the test phases [17], [18], which makes
them unable to generalize across slightly varied dynamics of
the environment [5], [18], and consequently fail to keep their
performance when transferred to the real world [19], [20] due
to the existing reality gap [8], [9], [12], [21].

Increasing simulation accuracy in terms of the simulated
physics via accurate system identification [4], [9], [22]–[24],
and the simulated perception via realistic rendering [25] is
the first step toward reducing the reality gap. Furthermore,
continuing the learning process in the real world lets the
RL agent adapt its behavior to the new uncertain situations
that it has not been previously trained for [16], [26], and
it is reflected in the contexts of transfer learning [27]–[29],
progressive neural networks [16], domain adaptation [30]–[33]
or action adaptation [15]. Finally, improving robustness of the
trained optimal policy by adding intentional uncertainties in
simulation, like randomizing the impacts of actions on the
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environment via dynamics randomization [4], [9], [34]–[36]
or randomizing the visual observations of the environment via
domain randomization [8], [26], [37], helps in finding trans-
ferable policies without any real-world data. As an implication
of adding uncertainties, generalization of the learned control
policy is enhanced as the algorithm needs to perform well
on a wider range of possible dynamics or perception of the
environment. Hence, the real-world performance is improved
without calling for continuation of the training on the physical
system [4], [15].

II. BACKGROUND

Based on the ideas of H∞ optimal control [38], previ-
ous works in [6], [9] considered the mismatch between the
source domain (e.g., the simulated environment) and the target
domain (e.g., the real world) as extra disturbances added
to the actions of the agent. For example, in the case of a
torque-controlled robotic arm, these additive disturbances are
of the type of forces or torques exerted on the joints or
links of the robot or the end effector. The effect of adding
these disturbance forces is similar to including uncertainty in
modeling the correct dynamics of the robot (e.g., links’ mass,
inertia and joints friction, damping or backlash) as well as the
correct parameters of the objects manipulated by the robot. In
order to estimate the additive disturbances (i.e., the mismatch
between the domains), a nonlinear disturbance observer is used
in this work.

The objective of a disturbance observer is to incorporate
an inner-feedback loop that uses the inverse of the nominal
model (i.e., the deterministic simulated environment in the
source domain) in order to adapt the system inputs in a way
that the overall robustness of the control loop is increased
[39]. Particularly, the controller becomes able to maintain its
nominal performance even when external disturbances exist or
the dynamics of the system are uncertain. The advantage of
this approach is on its hierarchical way to solve the problem in
a sense that the disturbance observer can be easily integrated
with any generic controller [40] or any RL algorithm for
training the agent, which is not the case for the adversarial
robust RL methods (e.g., [5], [6], [41]). Recently, [42] showed
how a disturbance observer can increase robustness of RL-
based controllers for a partially-observable uncertain system.
However, they have focused on obtaining the necessary condi-
tions that prove sub-optimality of the control performance by
assuming to know the nominal dynamics of the environment,



which limits the applicability of their approach on many of the
real-world RL problems. In this work, a data-driven nonlinear
disturbance observer is designed to increase robustness of the
closed-loop controlled system and thus effectively transfer the
trained policy from the simulation to the real world.

III. METHOD

The core idea is to reduce the reality gap by manipulating
the actions imposed on the real robot in a way that the real-
world environment behaves similarly to the simulated one from
the input-output (actions-observations) perspective [42]. By
adapting the pre-trained actions, the agent is expected to follow
the optimal policy learned in simulation without the need to
continue training in the real world. To achieve this goal, the
disturbance observer only needs the inverted dynamics of the
simulation model and not the one of the real system, which
is much simpler to be realized. This is a significant advantage
compared to the work in [15] where the inverse dynamics
model of the real-world environment needs to be identified.

The inverse simulation model can be represented by a
nonlinear dynamic system, which calculates what was the
action imposed to the simulated environment (uk−L) from the
next observations received (Y[k,L] = [yk, yk−1, . . . , yk−L]

T )
where k is the current time step and L is the inherent delay
of the system [43].

By availing the inverse dynamics model, the disturbance
observer is able to find an estimated value for the disturbance
(d̂k), which accounts for the mismatch between the source and
target domains. Fig. 1 shows how the disturbance observer
works in closed loop with the uncertain system of the real
world and alters the optimal action uk by rejecting the
underlying disturbances to increase robustness. Accordingly,
the closed-loop dynamics of the disturbance observer with
the target environment becomes approximately equal to the
dynamics of the source environment. This statement is shown
in Fig. 1 and justifies the robustness of the approach, however,
the extent of how much the approximation d̂k ≈ dk remains
valid should be investigated.

Training of the inverse dynamics model can occur at the
very moment when the RL agent is learning the optimal policy
in closed loop with the simulated environment and is shown in
Fig. 2. In order to learn the inverse dynamics of the simulated
environment, a feedforward neural network needs to be trained
in supervised fashion by the simulation data where the input-
output pairs are the simulated observations and actions.

IV. EXPERIMENTS

The efficacy of the proposed method in reducing the reality
gap can be evaluated by performing several experiments.
These experiments should investigate the robust operation of
the overall controller when it is transferred from the source
domain to the target domain. Towards this end, two kinds
of experiments will be taken, namely sim2sim and sim2real.
In both kinds, the source domain is the nominal simulation
environment where the agent has been trained. The target
domain for a sim2sim experiment is a perturbed simulation

Fig. 1: Disturbance observer employs the trained inverse
simulation model to achieve robustness in the target domain.

Fig. 2: An illustrative case of how the inverse simulation model
could be trained in the source domain.

environment while for the sim2real experiment is the real
world where finally the agent is deployed. A systematic em-
pirical validation will be conducted to assess the performance
of the proposed approach, in contrast to the related state-of-
the-art methods, in terms of the increased success rate [35],
expected return [9], [44], and gained robustness bounds on the
parameters uncertainty.

V. CONCLUSION

It should be noted that the primary focus of the work is
to reduce the reality gap that is caused by the imperfect
simulation of the real-world physics, and not the gap caused
by how the real world is perceived differently in comparison
to the simulated environment. Nonetheless, the proposed idea
is general enough to be combined with the existing methods
on reducing the gap in perception, like domain randomization
(e.g., [8]) or domain adaptation (e.g., [31]).
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