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Abstract—Service Function Chaining realized with a micro-
service based architecture results in an increased number of com-
putationally cheap Virtual Network Functions (VNFs). Pinning
cheap VNFs to dedicated CPU cores can waste resources since
not every VNF fully utilizes its core. Thus, cheap VNFs should
share CPU cores to improve resource utilization. sfc2cpu learns
efficient VNF to core assignments that increase throughput
and reduce latency compared to three baseline algorithms. To
optimize VNF assignments, sfc2cpu uses game theory com-
bined with Neural Combinatorial Optimization in a novel way.
Measurements in a real hardware testbed show that sfc2cpu
increases throughput by up to 36% and reduces latency by up
to 59% compared to Round Robin. We show that sfc2cpu
can be incrementally deployed and easily integrated into existing
infrastructures.

Index Terms—Reinforcement Learning, Network Virtualiza-
tion, Game Theory, Neural Combinatorial Optimization, Digital
Twin

I. INTRODUCTION

The Context: Micro-service based network virtualization.
Edge computing and Network Function Virtualization (NFV)
are two essential aspects of future networks. Infrastructure
for edge computing is located at varying distances to cus-
tomers [1] and can cover a campus, a city or a metropolitan
area [1], [2]. NFV is the key technology to facilitate packet
processing on top of this infrastructure. NFV is associated with
easier deployment, maintenance and better scalability. This is
achieved with Virtualized Network Functions (VNFs) running
on commodity hardware. Typical VNFs include firewalls,
intrusion detection systems and video optimizers [3], [4].
VNFs can be composed to arbitrary Service Function Chains
(SFCs) [5]. Each SFC might process only a fraction of the
overall traffic, specifically in multi-tenant environments.

While easier to deploy than dedicated hardware, today’s
VNFs are often monolithic software packages that are difficult
to scale, change and maintain [6]. A natural step from a
software-engineering point of view is the decomposition of
monolithic VNFs into smaller micro-VNFs (µVNFs), each
implementing one dedicated functionality [5], [7], [8].
The Problem: Assigning µVNFs to CPU cores. µVNFs
are usually computationally cheaper than monolithic VNFs
since they implement less functionality [5]. Implementing
SFCs based on micro-services increases the number of µVNFs
compared to monolithic VNFs. The larger number of µVNFs
collides with the current best practice of core-pinning, i.e.,
assigning each VNF to a dedicated core [7]. Core-pinning

can waste resources: A µVNF might not fully utilize a core,
specifically when processing only a fraction of traffic in multi-
tenant environments.

Contrary to VNFs, µVNFs can be co-located on the same
core. To maintain throughput and keep latency low, the de-
mand of co-located µVNFs should not lead to over-utilization
of the shared core. This can be formulated as a bin-packing
problem — an NP-complete combinatorial optimization prob-
lem [9]. Here, N objects with individual weights have to be
placed on M bins, such that no bin is overloaded. In our case,
objects correspond to µVNFs, weights to computational cost
and bins to cores, and our objective is maximizing throughput.
The Challenge: Interference between µVNFs. The problem
is further complicated through interference between SFCs and
µVNFs as well as system effects. For instance, a reduction
in throughput early in the chain reduces the demand, i.e.,
weight, of later µVNFs [8]. A bottleneck at the end of a SFC
can impact earlier µVNFs through backpressure or congestion
control [8]. Besides, µVNFs can influence each other’s com-
putational cost, e.g. by competing over the cache [10]. As a
result, in our bin packing problem, the weights (computational
cost) of the objects (µVNFs) are not static but vary based on
the actual assignment.

Formally modelling these impacts is difficult, time-
consuming and possibly has to be repeated for different hard-
ware and software stacks [11]. Besides, interferences can have
a detrimental effect on algorithms that rely on densely packing
cores. Those solutions are vulnerable to demand changes and
already small spikes can lead to poor performance. An effect
that we show in our evaluation.
The Solution: sfc2cpu. We propose sfc2cpu, a sys-
tem that uses Neural Combinatorial Optimization (NCO)
paired with Reinforcement Learning (RL) to learn how to
solve the bin-packing problem by exploiting scenario-specific
properties [12]–[14]. This approach has three advantages:
(1) sfc2cpu can learn interference between µVNFs; (2)
sfc2cpu can adapt to system effects; and (3) sfc2cpu can
tailor solutions to a concrete deployment scenario.
Contribution. We design, implement and evaluate sfc2cpu
in a real testbed. sfc2cpu improves throughput up to 36%
and reduces latency up to 59% compared to Round Robin in
our measurements. Further, sfc2cpu can be incrementally
deployed, combined with fall-backs, allows changes to indi-
vidual µVNFs without touching others, and is easy to integrate
into existing infrastructures.

The paper is organized as follows: Sec. II mathemati-978-3-903176-32-4 © 2021 IFIP
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Fig. 1: ONVM architecture.

cally derives how co-locating VNFs on one core influences
throughput and latency and gives background information
and guidelines for the operation of SFC platforms with core
sharing. Sec. III describes the design of sfc2cpu. Sec IV
describes how sfc2cpu uses game theory and NCO to
learn algorithms. Sec. V compares measurement results of
sfc2cpu and baseline algorithms.

II. BACKGROUND AND PROBLEM

This section introduces background information on the
underlying SFC platform OpenNetVM (ONVM) in Sec. II-A,
Linux schedulers in Sec. II-B, and formulates the resulting
assignment problem as well as presents guidelines in Sec. II-C.

A. OpenNetVM

Fig. 1 shows the architecture of ONVM [15], which is ex-
tended by sfc2cpu. ONVM is designed for Service Function
Chaining and focuses on the overhead reduction of copying
packets between VNFs of the same SFC, setting ONVM apart
from other systems in the line of ZygOS [16], which focus
on a single application.

The most important entities of ONVM are the RX- and
TX-Threads, the NF Manager and containerized NFs. Upon
startup, the NF Manager creates a shared memory region for
all NFs. The NF Manager spawns TX- and RX-threads. The
RX-thread fetches packets from the NIC, places the packets
in the shared memory region, and inserts pointers into the
input buffers of the first NFs in the configured SFCs. The TX-
threads copy pointers between the output and input buffers of
chained NFs. The TX-thread also transfers outbound packets to
the corresponding NICs. ONVM uses core-pinning, i.e., assigns
each VNF to a dedicated core. Core-pinning can result in
significant resource overhead if individual VNFs do not utilize
their CPU core fully. Scenarios like this can occur if micro-
service architectures are adopted for VNFs [8], or in multi-
tenant systems where individual SFCs serve only a small
fraction of the overall traffic [7].

B. Task Scheduling on NF Platform

The Completely Fair Scheduler (CFS). NF platforms usually
run on top of a Linux system [7], [8], [15], [17], [18]. The
default scheduler of Linux systems is CFS. Each CPU core has
its own CFS instance [19], [20]. CFS approximates an ideal
processor that can execute multiple tasks simultaneously. For

example, the ideal processor would grant 50% of its time to
two simultaneously running tasks [19], [20].
CFS has a target latency, during which every task gets a

turn on the processor. If the target latency is infinitely small,
then the processor would be equivalent to the ideal processor.
If the processor has N tasks, then each task gets at most a 1

N
slice of the target latency. For two tasks and a target latency
of 24ms (the default latency on our testbed server), each task
gets a slice of 12ms [19], [20].

A task gets preempted once the task reaches the end of its
time slice. Tasks can voluntarily yield the CPU. The remaining
time of the time slice is neither granted to subsequent tasks
nor added to the yielding task’s time slice in later scheduling
periods. To give a task more CPU time, CFS allows to
weight time slices. By increasing or decreasing the weight
of a task, the corresponding time slice can be increased or
decreased [19], [20]
Rate-cost proportional fairness. NFVNice shows that CFS
can cause unfair processing of traffic, and thus proposes rate-
cost proportional fairness (RC) [8]. RC weights the time slices
of the NFs proportional to the product of packet arrival rate
and processing cost, using the built-in capabilities of CFS,
resulting in fair processing of network flows and improved
system throughput. Besides, NFVNice uses backpressure (BP)
to discard packets that would get dropped on overloaded VNFs
and thus frees computational resources along an SFC [8].
sfc2cpu uses RC and BP (see Sec. III-B).

C. Placement and Scheduling Problem

Optimization opportunity. sfc2cpu exploits the observa-
tion that once the requested processing demand (load) of
µVNFs sharing one CPU core exceeds the capacity of that
core, throughput decreases and latency strongly increases.

Decreasing throughput in overload situations is obvious: If
the service rate of µVNFs cannot keep up with the arrival rate
of packets because they do not get enough CPU resources,
throughput decreases. Note that one limiting µVNF is enough
to reduce the throughput of a complete SFC. Also, packets
get buffered, resulting in queuing delays. The time-slicing of
CFS increases the latency further. In the worst case, packets
have to wait multiple scheduling periods, leading to latencies
in the order of tens of milliseconds for a single µVNF. As we
will show, effects like this are avoidable with an intelligent
assignment of µVNFs to CPU cores. Previous work advocating
the scheduling of multiple µVNFs on one CPU core misses
this optimization opportunity [7], [8].
Guidelines. The guidelines that follow are: (1) Co-locate
µVNFs that do not overload a core; (2) be conservative when
estimating processing cost and packet arrival rate, i.e., it is
better to overestimate; (3) use core-pinning for computational
expensive µVNFs.

The first guideline characterizes the underlying optimization
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Fig. 2: Overview of pipeline.

problem as a constrained satisfaction problem:∑
j∈J

l (j,m)xm,j ≤ c (m) , ∀m ∈M, (1)∑
m∈M

xm,j = 1, ∀j ∈ J , (2)

xm,j ∈ {0, 1}, ∀m, j ∈M×J , (3)

where J is the set of deployed µVNFsand M the set of CPU
cores. The binary variable xm,j indicates if µVNF j is placed
on CPU m. Function l (j,m) returns the load µVNF j induces
on CPU m, and c (m) returns the capacity of CPU m.

The above problem is an instance of the well known NP-
complete bin-packing problem [9]. Solutions can thus be time-
consuming to obtain. Also, finding an assignment that satisfies
the constraints is not guaranteed to achieve the highest possible
throughput on a real system. As we will show in our analysis,
interference that cannot be captured in a model leads to
performance degradation for assignments that satisfy the above
constraints.

We believe that this particular problem is a good fit for a
learned heuristic that can exploit the problem-specific structure
and include such system effects [12]–[14].

III. DATA-DRIVEN APPROACH

This section describes the design goals of sfc2cpu in
Sec. III-A, explains the components of sfc2cpu in Sec. III-B
and the workload generation in Sec. III-C.

A. Design Goals

sfc2cpu is a SFC platform that allows CPU sharing
between µVNFs. sfc2cpu uses an RL-based algorithm to
assign µVNFs to CPU cores. The assignments can be continu-
ously adapted during operation. For example, if new SFCs and
µVNFs should be deployed, or a change in the processing cost
or arrival rate is detected. In a cluster, a separate orchestration
tool is responsible to place µVNFs on individual sfc2cpu
instances.
sfc2cpu uses builtin tools for process management in

Linux, i.e., sfc2cpu requires no changes to the underlying
operating system. To achieve an efficient CPU assignment,
sfc2cpu has four key properties:
Distributed operation: sfc2cpu uses the data of the node it
is running on to make assignment decisions. Thus, sfc2cpu

does not require a complex distributed control plane during
operation.
Data efficient: Allocating µVNFs to CPUs is a combinato-
rial optimization problem with an exploding solution space.
sfc2cpu should facilitate the learning of general strategies
that are independent of perturbations to the problem. For ex-
ample, sfc2cpu should handle a varying number of different
µVNFs that could be deployed together in a specific scenario.
Non-preemptive operation: During operation, new SFCs or
µVNFs are expected to arrive over time. A SFC platform
should find good assignments for newly arrived instances
without necessarily changing the assignment of previously
deployed µVNFs
Incremental deployment and fallback: Incremental deploy-
ment of sfc2cpu in production systems must be possible to
ensure correct operation. In the case of performance degrada-
tion, sfc2cpu should revert to a previous working version
or a basic algorithm like Round Robin.

B. sfc2cpu Overview

Fig. 2 shows the components of sfc2cpu: NFV platform,
ORCHESTRATOR, MONITOR, ASSIGNER, NFMANAGER and
SCHOOL for ASSIGNER. The ORCHESTRATOR coordinates
the start of sfc2cpu. The ORCHESTRATOR receives a list of
NFs chained to SFCs with estimated packet processing costs
of the µVNFs and packet arrival rates of each SFC. If this in-
formation is not available before deployment, then sfc2cpu
can start with a default placement, estimate those numbers and
then re-assign the µVNFs. The ORCHESTRATOR passes this
information to the ASSIGNER. The ASSIGNER responds with
an assignment of µVNFs to CPU cores. The ORCHESTRATOR
then starts the NFMANAGER of ONVM and the containerized
NFs. The NFMANAGER uses RC and BP to dynamically adjust
the CPU usage of NFs, i.e., The NFMANAGER implements
NFVNice. The ORCHESTRATOR can query the ASSIGNER
once at startup, or during operation if changes are detected.

The MONITOR is integrated into the NFMANAGER of
ONVM and observes the deployed µVNFs, the cost of and
traffic to µVNFs, and how µVNFs are chained. Besides, the
NFMANAGER uses this information to implement RC and
BP [8]. The SCHOOL uses information from the MONITOR
to generate synthetic workloads to teach ASSIGNERs. The
simplified system model in Sec. IV provides the necessary
feedback during learning. Once an ASSIGNER graduates, it
can be deployed to NFV platforms and replace the previous
ASSIGNER, e.g., a default algorithm such as Round Robin or a
previously learned ASSIGNER. The NFV platforms can benefit
from improved assignments and revert to a basic algorithm
should the current ASSIGNER prove itself incompetent.

As we will show in our analysis, teaching ASSIGNERs with
a simple model of the underlying system is enough to learn
assignments superior to existing strategies for a specific sce-
nario. For future research, we envision a system that is trained
on data from a diverse set of µVNFs, SFCs, traffic patterns
and past assignments. Together with recent proposals in offline



Property Values

#SFCs {1, 2, . . . , 8}
#µVNFs per SFC {1, 2, . . . , 8}
Total #µVNFs {4, . . . , 16}
#CPUs {4, 8, 12, 16}
#Dummy Loops {0, 1, . . . , 130}
Arrival rate of SFCs [0.02Mpps, 2.5Mpps]

TABLE I: Properties of generated problem instances.

RL, this approach could produce ASSIGNERs that generalize
to unseen scenarios, i.e., be used for transfer learning [21].

C. Problem Workload Generation

NCO can learn algorithms that operate NFV platforms at
unmatched efficiency by exploiting patterns in the problem
instances. We do not claim that NCO can learn algorithms that
produce better assignments for every possible problem. What
we believe and show in our analysis is that NCO can improve
performance in specific scenarios, i.e., the typical workload of
one operator. This idea is in line with the current trend of data-
driven algorithm design, where algorithms are designed for
specific subsets of general problem instances that outperform
existing heuristics on that subset [12]. We design synthetic
workloads with a varying number of µVNFs, SFCs, available
CPU cores, processing costs and arrival rates. Table I shows
the dimensions of the generated data.

Since an extensive library of micro-service based VNFs
does not yet exist and implementing those is not the purpose of
this work, we follow the same approach as previous work [8],
[22] and use dummy µVNFs. The µVNFs for evaluating
sfc2cpu are based on the SimpleForward example from
ONVM. The SimpleForward looks up the next hop of the
current packet and updates corresponding metadata in ONVM.
We vary the packet processing cost of the SimpleForward
by executing a for-loop with a configurable number of itera-
tions, resulting in fine-grained control over the computational
cost of µVNFs, allowing us to generate a wide range of dif-
ferent workloads. In future work, we plan to additionally vary
the memory access patterns of µVNFs to learn interference in
the memory subsystem.

To obtain the processing costs of µVNFs, we emulate the
monitoring step from the previous section: We execute the
modified SimpleForward, vary the number of loops in
{10i | i = 0, 1, . . . , 100}, and report the average processing
cost. The cost ranges from 80 to 8 027 cycles. The µVNFs can
process between 25.5Mpps and 0.275Mpps.

The arrival rate generation for individual SFCs is based on
sampling a Multinomial distribution from a Dirichlet distri-
bution with concentration parameter α = 5, and multiply the
Multinomial with the system arrival rate. We use values up
to 2.5Mpps for the system arrival rate. We chose this value
as the limit because the TX-thread often limited throughput
in our experiments, due to effects reported in [10], [23]–[25].
We found that up to 2.5Mpps can be reliably sustained and is
enough to handle traffic on links in wide area networks [26].

We generate a problem instance by randomly sampling the
number of SFCs and their arrival rates. We construct SFCs
by selecting a SFC that has no µVNF yet. If all SFCs have
at least one µVNF, we select a SFC at random. We generate
a µVNF by sampling the number of iterations of the for-
loop. The maximum number of iterations is constrained such
that the µVNF could process the arrival rate of the SFC via
core pinning. We use the previously estimated processing costs
of our dummy µVNF for this. We next assign the µVNF to a
core that can support the demand of the µVNF. If no such core
exists, the number of iterations is reduced until the µVNF fits
on the least loaded core. If no such iteration count exists,
we stop and return the generated problem. This procedure
ensures that the underlying problems are generally feasible
but still challenging, which allows a fair comparison between
assignment algorithms, i.e., heuristics should find a solution
to the problem.

IV. LEARNING PLATFORM DESIGN

This section introduces the heart of sfc2cpu: the learning
platform. Sec. IV-A and Sec. IV-B explain the role of game
theory and RL in sfc2cpu. Sec. IV-C introduces the Neural
Network (NN) architecture, Sec. IV-D the used RL algorithm,
and Sec. IV-E the simple model of the system.

A. Game Formulation

We cast the assignment problem as a job scheduling game
and treat it as a sequential game of perfect information. The
game consists of a finite set of selfish players J , which
correspond to µVNFs. The actions or strategy space of each
player corresponds to the available cores M.

The players choose their actions one after the other, i.e., in
sequence. All chosen actions, and the players themselves (how
many, properties such as packet arrival rate or computational
cost), are common knowledge. After every player has chosen
her action, each player j receives a payoff πj corresponding
to the fraction of achieved rate divided by the requested rate
of network packets.

Since the game is finite and sequential, it has at least one
Subgame Perfect Nash Equilibrium (SPNE) in pure strate-
gies [27]. An SPNE corresponds to an action profile from
which no player can unilaterally deviate and achieve a better
payoff. Further, the Price of Stability (PS) is one [28], i.e.,
the ratio of highest social welfare1 across all SPNEs of
the game, and the maximum social welfare is one. Thus,
the assignment of µVNFs to cores with which maximum
throughput is achieved is an SPNE of the game. If the optimal
assignment would not be an SPNE of the game, then there
would exist one player that could change her strategy and
receive a higher payoff. This is possible only if the throughput
of the player is currently restricted, i.e., the core the player is
on is overloaded. Thus, the target core the player changes to
must have a smaller load than the current core the player is

1Social welfare is the sum of individual player’s payoff. In our case, the
sum of the throughput of all µVNFs [27].
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located on. This in turn would contradict the assumption that
the system is in the optimum state �.

Formulating the assignment problem as a sequential game
has two advantages: It makes sfc2cpu flexible and inter-
pretable. Players can be represented with different learned
models and can have varying objective functions. The se-
quential nature of the game allows sfc2cpu to predict
placements for arbitrary subsets of µVNFs. The game itself can
be analyzed, allowing operators to conjecture on the potential
behavior of the system.

B. The Role of RL

Since the game is sequential, the best action for each player
can be determined through Backwards Induction (BI) [27].
BI requires the evaluation of every possible strategy profile,
i.e., every possible assignment of µVNFs to CPU cores [27].
Since this number grows exponentially, BI is not feasible in
practice. Instead, we use RL to learn a function parameterized
through a NN that predicts the expected payoff for player j of
choosing action a given the previously played actions and the
players that have yet to make their decision. That is, we use
RL to learn the best responses, resulting in an SPNE of the
game [29]. RL thus learns the local optima of the underlying
optimization problem guided by the game dynamics. This
approach has been proven to result in best-responses with high
probability, even for games with imperfect information [29].
That is, this approach can learn actions resulting in an SPNE of
the underlying game. SPNEs correspond to local optima of the
actual optimization problem, i.e., assignments that maximize
throughput.

C. Neural Network Architecture

Fig. 3 shows the NN architecture used to predict the
expected payoff for all actions of one µVNF. The input to
the NN is divided into data summarizing the already played
actions shown as red rectangle in Fig. 3, and a representation
of the current µVNF and all other µVNFs depicted as two
blue rectangles. The size of the output layer corresponds to
the number of cores. This data is exactly the data that is
required for the game to have perfect information, i.e., the
players know exactly which contingency they are in and can
act correspondingly [27].

We use parameter sharing to reduce training time and sam-
ple complexity, i.e., we use the same weights for all µVNFs.

Individual µVNFs are discriminated through the Current
VNF input. Parameter sharing is common practice in deep
reinforcement learning [30].

Action sequence summary. We represent the played actions
with their effect on the CPU load. Each CPU core is rep-
resented by its relative load and the number of players that
chose the core. The relative load of a core m is calculated as:

1
c(m)

∑
j∈J xj,ml (j,m), i.e., the sum of loads of µVNFs that

chose m divided by the cycles of m. The summary is thus
represented as a vector in R|M|.
VNF representation. Each µVNF is represented with four
numbers: The packet processing cost, the packet arrival rate
in Mpps, the resulting load and a binary value that is one if the
µVNF has already chosen an action and zero otherwise. The
processing cost is normalized to a value between zero and one.
The load is divided by the clock speed, resulting in a value
between zero and one. The resulting vectors are combined
in the All VNFs input, resulting in a R|J |×4 matrix. The
Current VNF vector is one row from All VNFs and
corresponds to the µVNF that currently makes its move.

Relation between VNFs. The NN has a Multi-Head
Attention (MHA) module. This module helps the current
µVNF to set itself into relation to all other µVNFs [30], [31].
Thus, the NN can learn which of the other players constitute
important information for its action. The module consists of
multiple self-attention mechanisms using scaled-dot-product
attention and a learnable non-linearity [31]. The output vectors
of each module are concatenated to a single vector. This allows
the NN to focus on different parts of the input [31].

The attention mechanism takes as input three tensors:
Queries, Keys and Values. The Keys and Values
correspond to the All VNFs tensor, i.e., are identical, and
the Queries to the Current VNF vector. The inputs
are linearly transformed through learnable weight matrices.
The transformed Queries and Keys are used to calculate
attention scores. Those are used as weights in a convex
combination of the rows of the transformed Value tensor.
Note that the attention mechanism is independent from the
number of µVNFs, i.e., rows in the All VNFs tensor. Further,
the attention mechanism is invariant to permutations of rows
in the All VNFs tensor [31]. The NN architecture can thus
be used for a variable number of µVNFs.

Action calculation. The Action Sequence Summary in-
put and the MHA output is concatenated and passed through
a sequence of fully connected layers, which finally produce
the output, i.e., the expected payoff for the current µVNF to
choose any of the available CPU cores.

The game formulation and NN architecture allow the result-
ing network to assign a single µVNF, a subset of µVNFs, or all
µVNFs to cores given the placement of the remaining µVNFs.
In an online scenario, new µVNFs or SFCs can be integrated
without touching the assignment of already running µVNFs.
Similarly, if changes in load or cost are detected, affected
µVNFs or SFCs can be re-assigned individually.



Parameter Value

train batch size 2048
buffer size 500 000
Attention heads 3
Attention dimension 4
Attention Dense 16
Fully Connected {48, 48}
type EpsilonGreedy
initial epsilon 1.0
final epsilon 0.02
epsilon timesteps 500 000
learning rate Annealed with population-based training.

TABLE II: Hyper Parameter for model and training.

D. RL Algorithm

We use double Q-learning [32] with prioritized experience
replay and a dueling architecture [33] implemented in [34]
to train the NN. We use ASHA [35] and population-based
training [36] implemented in Tune [37] for hyperparameter
tuning. Q-learning is a temporal difference method based on
dynamic programming. In Q-learning, an agent learns action
values of states: The expected cumulative reward the agent can
obtain by taking action a in state s. In our case, the action
values correspond to the payoff of the game, i.e., the ratio of
achieved to requested packet rate.

E. Ideal System Model

Obtaining training samples on the real system is expensive.
Evaluating a single assignment takes tens of seconds. A digital
twin of the environment that allows the generation of necessary
data is thus an important contribution.

In our twin, we calculate the expected service rate of a
µVNF given its estimated computational cost and arrival rate.
The time slice tj,m granted to µVNF j on CPU m is tj,m =

T · l(j,m)∑
i∈J xi,ml(i,m) , where T is the scheduling latency. The

number of packets processed by j during this time is: sj =

γ
tj,mc(m)

c(j) , where c (j) returns the cost to process one packet
in cycles, c (m) returns the clock speed of CPU m in cycles
per second, and γ ∈ (0, 1) is a scalar factor to account for lost
time due to context switches.

The model is simple and can be evaluated very fast. As our
evaluation shows, this model suffices to guide the learning.
The model can be improved with performance models of
µVNFs that capture interference, and data gathered during
operation. This could help to fine-tune and generalize the
learned algorithms.

V. EVALUATION

This section presents the results. Sec. V-A discusses hyper-
parameters for RL and the NN. Sec. V-B discusses settings for
the SFC platform itself. Sec. V-C evaluates VNF scheduling
techniques and Sec. V-D compares the performance obtained
with sfc2cpu against heuristic assignment algorithms.

All results are obtained on a server with two AMD EPYC
7301 16-Core CPUs and two Intel 10G X550T NICs. Traf-
fic is generated on a separate server using MoonGen [38],

Parameter Value

CFS Scheduling Latency 1ms
Number of TX threads 5
Number of RX threads 1
CPU location Cores 1-8 on Socket 1, Cores 8-16

on Socket 2
Packet Size 64Byte
Arrival Rate 2Mpps

TABLE III: Parameter Settings for ONVM.
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Fig. 4: Black lines represent the median, black markers the
mean, colored lines the actual samples, the shaded area rep-
resents a density estimate. CFS achieves worst throughput.

which is also used to measure latency and throughput. The
servers are connected back-to-back. The heuristic algorithms
are Least Loaded First (LLF), Round Robin (RR), and First
Fit Decreasing (FFD).

A. RL Hyperparameters

Tbl. II lists the hyperparameters used during learning. We
use a batch size of 2 048 and a replay buffer size of 500 000
samples. For training, we use the epsilon greedy exploration
strategy. We start with ε = 1, i.e., fully random actions, and
anneal the value to ε = 0.02 over 500 000 time steps. Once ε
is annealed, two percent of the actions are random. We do not
use a fixed learning rate, but use population-based training [36]
to adjust the learning rate over the course of training. We use
a population size of ten. During evaluation, ε is set to zero.

The MHA module of the NN has three attention heads.
Input tensors are transformed into a four dimensional latent
space. The fully connected layer following the MHA module
has 16 neurons. The last two fully connected layers have 48
neurons each. We train separate models for different number
of available CPUs, but always use the same architecture.
The resulting networks have sizes from 50KBytes in case
of 4 CPUs to 160KBytes for 16 CPUs. The most expensive
operation for all networks is the calculation of the input to the
second dense layers, which requires 482 +48 operations. The
models are small, fit into a CPU cache and are computationally
cheap.
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Fig. 5: Black lines represent the median, black markers the
mean, colored lines the actual samples, the shaded area repre-
sents a density estimate. sfc2cpu achieves higher through-
put, lower latency and better load balancing.

All fixed hyper-parameters are obtained through a parameter
search using ASHA [35]. We used OpenAI’s Tune and
RLlib library to scale training [34], [37]. We chose the
architecture with best performance.

B. CPU Core, Thread, and CFS Settings

Tbl. III lists the hardware settings. We use one RX-Thread
and five TX-threads. The NF Manager runs on core C0, the
RX-Thread on C1 and the TX-threads on C2-C6. We use one
dedicated µVNF to split traffic between SFCs. This µVNF is
pinned to C7. For the placements of µVNFs, we use C8-C24.
Cores C8-C15 are on one CPU socket, C16-C24 on a the
other socket. The CFS scheduling latency is set to 1ms.

C. What is the impact of assignments on throughput?

We compare the throughput of the schedulers BP, CFS, and
RC for the heuristic algorithms RR, LLF, FFD and GEN on
20 problem instances GEN represents the placements obtained
from the generative process for the problem instances in
Sec. III-C. Note that BP corresponds to an implementation
of NFVNice. We generate 64Byte packets with a total rate
of 2.5Mpps using MoonGen.

Fig. 4 shows that the placements from the generator (GEN )
perform best with an average throughput of 2.21Mpps. Fig. 4
shows that CFS results in the worst throughput. Reduction
in throughput for GEN and FFD is 27.97% and 47.11%.
Both algorithms allocate more µVNFs to a single CPU core
than LLF and RR, and thus benefit from rate-cost proportional
fairness. BP does not result in significant performance gains.
But BP reduces the variance in the measured throughput. BP
increases performance in overload scenarios where upstream
µVNFs become a computational bottleneck [8]. Dropping
packets frees resources along the chain, which can then be
used by other µVNFs. In our evaluation, only LLF and RR
overload cores and BP can improve over RC. GEN and FFD
do not overload cores in theory, so BP can have only a limited
impact.

In summary, the evaluation in Fig. 4 shows that a care-
ful placement can improve the performance of systems like
NFVNice. Further, we restrict our evaluations to the RC
scheduling going forward.

D. sfc2cpu Performance

The RL algorithm is trained on the synthetic workload
described in Sec. III-C, and evaluated with problem instances
not seen during training. We compare sfc2cpu (abbreviated
with S2C ) to RR, LLF and FFD. All algorithms are compared
across four CPU settings (4, 8, 12, and 16 cores), with
100 problem instances per setting. For each setting, we use
MoonGen to generate 64Byte packets with a rate of 2Mpps,
which is enough to handle traffic on a back-bone link [26].
sfc2cpu provides better load balancing. Fig. 5a shows
the load of all cores over all experiments and confirms that
sfc2cpu avoids over-utilization of cores. FFD densely packs
the cores in all scenarios with a median load between 89.76%
and 95.65%. The mean and median of RR, LLF and S2C
are similar across all settings and decreases from 80.0% for
4 cores to 47.5% for 16 cores. The load induced on cores
in settings with 4 - 12 cores varies strongly for assignments
produced with LLF and RR, overloading (requesting more
cycles than available) some cores up to 150% and even more



than 200% in case of 4 cores. In contrast, sfc2cpu keeps
the load consistently below 100% for all settings.
sfc2cpu achieves higher throughput. Fig. 5b shows the
achieved throughput for all scenarios. sfc2cpu achieves the
highest throughput in scenarios with 4 - 12 cores, with a
median throughput of 1.72Mpps, 1.95Mpps and 1.99Mpps,
respectively. The result for 16 cores is different, but expected.
Here, RR and LLF result in core pinning, i.e., each µVNF
is placed on one dedicated core and achieves a median
throughput of 1.99Mpps. FFD performs worst with a median
throughput of 1.38Mpps. As Fig. 5a shows, FFD densely
packs µVNFs on cores. The densely packed µVNFs are more
vulnerable to variations in processing cost and thus achieve
lower throughput in every scenario. sfc2cpu learns this type
of interference and is thus able to mitigate it.

Our results highlight the potential of data-driven algorithms:
From Fig. 5a, FFD and sfc2cpu should always achieve
full throughput. System level effects reduce the effective
throughput. Thus, improving the system model to include
system effects is an important next step.
sfc2cpu achieves lower latency. sfc2cpu provides the
best latency values for 4 - 12 cores with 1.81ms, 0.79ms
and 0.20ms, respectively. sfc2cpu better distributes the
workload, i.e., µVNFs among the CPU cores. Thus, the risk
that µVNF j on CPU m cannot meet its arrival rate is reduced
and packets wait at most T − tj,m seconds, i.e., less than 1ms
per µVNF. In contrast, RR and LLF overload CPUs in some
cases, which results in increased latency. FFD densely packs
CPUs resulting in interference between µVNFs, which causes
buffering of packets and a median and average latency close
to 5ms for all settings. Again, when core pinning is possible,
RR and LLF benefit from their simple assignment strategy.
Fig. 5c shows that for all settings, scenarios with large tail
latencies of up to 15ms exist, i.e., packets get buffered.

VI. RELATED WORK

Placement papers. Most prior work focuses on placing VNFs
on servers [39]. Instead, our work focuses on assigning VNFs
to CPU cores. Closest to our work is [40] and [10]. Both min-
imize data transfer between VNFs in the same SFC between
NUMA nodes; both perform core pinning. In contrast, we
target systems that allow core sharing. Also, our procedure can
be applied to arbitrary NF platforms, whereas results in [40]
and [10] are limited to specific technologies.
Performance modeling. The memory subsystem, data transfer
between NUMA nodes, and interference on the NIC can
impact the throughput, latency and CPU usage of NF sys-
tems [11], [23], [41]–[43]. Interference and computational
cost can be modeled with ML [11], [44]. The focus of this
work is not on the performance or interference modeling
between VNFs. Actually, performance models can be used
with sfc2cpu to learn assignment algorithms.
Thread scheduling. Our work is closely related to thread
scheduling [24], [25], [45], [46]. Similar to OS schedulers,
those algorithms are not designed with the specific workload of
network processing in mind. Above solutions rely on frequent

migration of threads between cores to improve performance
metrics. However, frequent migration of VNFs is harmful for
the specific networking workload [10].
NCO. RL and NCO can be used to learn the admission
of jobs [47], and the assignment of jobs to compute re-
sources [48]–[51]. Our work differs from previous work wrt.
the underlying optimization problem that is solved with RL,
and the problem domain. Previous results are thus not applica-
ble. Also, we are the first to combine NCO with game theory.
NFV platforms. A range of NFV platforms and systems
exist [7], [8], [15], [17], [18], [52]–[55]. Our work extends
ONVM [15] and allows sharing of CPU cores between VNFs
as in [8]. Our work is orthogonal to the previous work in that
we focus on how to assign VNFs to CPUs to improve overall
system performance. While implemented on top of ONVM, our
modifications can be combined with any NFV platform to
improve the underlying core assignment.
Dataplane operating systems. The objective of Dataplane
operating systems [16], [22], [56]–[58] is to provide microsec-
ond tail latencies for data-center applications. They are not
designed for the SFC use-case, e.g., they do not support zero-
copying of packets between VNFs as ONVM does. Techniques
used in those systems could be combined with existing NFV
platforms, though. Further, the goal of sfc2cpu is the co-
location of VNFs such that overall system performance is
improved which none of those systems consider.

VII. CONCLUSION

This paper investigates SFC platforms that allow CPU
sharing between VNFs. We explain the impact of VNF to
CPU assignments on throughput and latency and give guide-
lines on the operation of SFC platforms that ensure high
throughput and low latency. We further propose sfc2cpu that
learns to solve the assignment problem with Reinforcement
Learning (RL). We compare sfc2cpu with three assign-
ment algorithms and show with testbed measurements that
sfc2cpu improves the throughput of SFC systems up to 36%
and reduces latency up to 59% compared to Round Robin.
sfc2cpu is incrementally deployable and easy to integrate
into existing infrastructures, achieved through a novel combi-
nation of game theory and neural combinatorial optimization.

We believe that our work opens interesting future avenues.
In particular, less predictable system behaviors or more com-
plex VNFs and SFCs might increase the challenge to achieve
efficient workload processing, which is a perfect application
for NCO. Investigating how sfc2cpu can generalize from
collected data to new scenarios is an essential next step
towards more efficient network virtualization.
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