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Abstract

The present thesis addresses the effect of temperature inhomogeneities on the damping charac-
teristic of acoustic quarter-wave resonators. A comprehensive investigation of heat transfer in
turbulent oscillating flows is given to derive the underlying temperature distributions. In particu-
lar, the work focuses on (i) analytical models to generate in-depth knowledge about the physical
mechanisms involved and on (ii) high-fidelity fluid dynamic simulations as a numerical design
tool and for the parametric quantification of turbulent effects.

Based on Rott’s thermoacoustic theory, analytical correlations for the acoustic wave propa-
gation in ducts and channels with non-uniform temperature are derived. The framework con-
siders viscous and thermal losses attributed to wall-interaction. At constant temperatures, the
equations closely resemble the formulation as characteristic waves, extended by a loss-induced
spatial decay. Linear temperature gradients are studied under the assumption of temperature-
independent viscosity. The analytical correlations transfer to a simple model that predicts the
acoustic impedance of a quarter-wave resonator. As a more flexible tool for arbitrary tempera-
ture profiles, the thesis proposes a numerical framework. Compressible fluid dynamic simula-
tions are conducted for the acoustic characterization. The numerical forcing is realized via the
Navier-Stokes characteristics boundary condition. The simulations are successfully validated
against semi-empirical correlations.

Longitudinal heat transfer inside the resonator tube is studied via Kurzweg’s analysis of in-
compressible flows. An in-depth comparison to Rott’s thermoacoustic theory reveals identical
results at an acoustic pressure node location. Simplified versions of the two correlations allow
a comprehensive discussion on the interplay between hydrodynamic and thermal boundary lay-
ers. The longitudinal thermal transport is maximum if the thermal boundary layer approximately
exceeds the center of the channel. Subdivided into six characteristic regimes, the thesis derives
qualitative statements for the heat transfer in each combination of hydrodynamic and thermal
boundary layer thickness.

High-fidelity Large Eddy Simulations are used to study the effect of turbulence on heat trans-
fer in pulsating flows. The study considers a fully developed turbulent incompressible flow
within an cyclic domain. At large pulsation amplitudes with pronounced flow reversal, signif-
icant wall-normal enhancement shows between a hot and cold channel wall. The numerical
results confirm qualitative experimental data and strengthen the significance of enhanced heat
transfer as an important aspect of a comprehensive design process of technical applications.
Moreover, significant turbulence-induced enhancement is found in the longitudinal direction.
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Kurzfassung

Die vorliegende Arbeit untersucht den Einfluss von lokalen Temperaturinhomogenitäten auf
das Dämpfungsverhalten von akustischen λ/4-Resonatoren. Dafür wird eine umfassende Un-
tersuchung des Wärmeübergangs in turbulent oszillierenden Strömungen durchgeführt, um die
zugrundeliegenden Temperaturverteilungen herzuleiten. Die Schwerpunkte der Arbeit liegen
auf (i) analytischen Modellen zur Gewinnung fundierte Kenntnisse der vorliegenden physika-
lischen Mechanismen, sowie auf (ii) hochauflösenden Strömungssimulationen als numerisches
Entwurfswerkzeug und zur parametrischen Quantifizierung von turbulenten Effekten.

Basierend auf der thermoakustischen Theorie von Rott werden analytische Korrelationen für
die akustische Wellenausbreitung in Rohren und Kanälen mit konstanten und linearen Tem-
peraturverteilungen abgeleitet. Die Modellierung berücksichtigt viskose und thermische Ver-
luste, die auf die Wechselwirkung mit der Wand zurückzuführen sind. Bei konstanten Tem-
peraturen ähneln die Gleichungen stark der Formulierung charakteristischer Wellen, erweitert
um ein verlustbehaftetes, räumliches Abklingen. Lineare Temperaturgradienten werden unter
der Annahme einer temperaturunabhängigen Viskosität untersucht. Die analytischen Zusam-
menhänge werden an einem einfachen Modell angewandt, das die akustische Impedanz eines
λ/4-Resonators vorhersagt. Als flexibleres Werkzeug für beliebige Temperaturprofile schlägt
die Arbeit eine numerische Implementierung vor. Für die akustische Charakterisierung wer-
den kompressible Strömungssimulationen durchgeführt. Die numerische Anregung wird über
die Navier-Stokes charakteristische Randbedingung realisiert. Die Simulationen werden erfolg-
reich gegen semi-empirische Korrelationen validiert.

Der longitudinale Wärmeübergang innerhalb des Resonatorrohrs wird mit Hilfe der analyti-
schen Modelle von Kurzweg für inkompressible Strömungen untersucht. Ein zusätzlicher Ver-
gleich mit der thermoakustischen Theorie von Rott zeigt identische Ergebnisse an einem akusti-
schen Druckknotenpunkt. Vereinfachungen der beiden Korrelationen erlauben eine umfassende
Diskussion des Zusammenspiels zwischen hydrodynamischen und thermischen Grenzschich-
ten. Der longitudinale thermische Transport ist maximal, wenn die thermische Grenzschicht
annähernd die Mitte des Kanals erreicht. Unterteilt in sechs charakteristische Regime leitet die
Arbeit qualitative Aussagen für den Wärmetransport in jeder Kombination von hydrodynami-
scher und thermischer Grenzschichtdicke ab.

Zur Untersuchung des Einflusses der Turbulenz auf den Wärmeübergang in pulsierenden Strö-
mungen werden hochauflösende Large Eddy Simulationen eingesetzt. Die Arbeit betrachtet eine
vollständig entwickelte turbulente inkompressible Strömung innerhalb eines periodischen Ka-
nalbereiches. Bei großen Pulsationsamplituden mit ausgeprägter Strömungsumkehr zeigt sich
ein signifikant erhöhter, wandnormaler Wärmetransport zwischen einer heißen und kalten Ka-
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Kurzfassung

nalwand. Die numerischen Ergebnisse bestätigen experimentelle Untersuchungen und verdeut-
lichen die Bedeutung des erhöhten Wärmeübergangs als wichtigen Aspekt eines umfassenden
Designprozesses technischer Anwendungen. Weitergehende numerische Untersuchungen zei-
gen, dass ebenso der longitudinale Wärmeübergang durch Turbulenz erhöht wird.
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1 Introduction

Thermoacoustic instabilities present a relevant challenge in designing diverse combustion ap-
plications as domestic heaters, gas turbines, or rocket engines (e.g., [1–3]). The fluctuating heat
release of the combustion causes an unsteady thermal expansion of the gaseous working fluid
and leads to spatial and temporal pressure and velocity variations: a state of disturbances that
we – more intuitively – know as acoustic sound. The sound waves propagate inside the com-
bustion chamber and are eventually reflected by the chamber walls or exit. When returning to
the flame, the reflected waves themselves now influence the combustion process. Thereby, the
thermoacoustic feedback loop may lead to very large pressure and velocity fluctuations. The
resulting structural and thermal loads may exceed the safety margins and lead to the breaking or
melting of liners or face plates (see Fig. 1.1). Prevention of such catastrophic failures requires a
thoughtful design process of many combustion applications.

One measure to ensure safe operating conditions is installing resonators to increase acoustic
dissipation and suppress the thermoacoustic feedback [4, 5]. Figure 1.2 exemplarily shows the
L-shaped quarter-wave resonator of a Vulcain 2 engine (main stage of the Ariane 5 rocket). For
efficient performance, the eigenfrequency of the resonator needs to be tuned to the potentially
unstable modes. However, a change in temperature leads to a change in the speed of sound
and thus may detune the resonator. In general, the resonator design according to the undamped
system is not sufficient. Instead, the coupled system of the chamber and the resonators has to
be taken into account [6]. The detuning is particularly critical because a coupled analysis of
combustion chamber and resonator elements shows a high sensitivity of the global stability
with regard to the damping characteristics of the resonator [7]. This underlines the importance
of precise acoustic characterization for a safe design of the engine. Numerous corresponding
studies are of analytical (e.g., [8, 9]), experimental (e.g., [8, 10]), or numerical (e.g., [11, 12])
nature.

In a rocket engine combustion chamber, the resonator may not be treated as a decoupled ele-
ment: On one hand, the damping performance of a quarter-wave resonator depends on the un-
derlying temperature distribution of the gaseous working fluid(e.g., [9, 12]). On the other hand,
the amplitude of the acoustic fluctuations influences the local heat transfer. The heat transfer –
in turn – affects the local temperature distribution and illustrates the necessity of a more sophis-
ticated and coupled analysis. Therefore, the present thesis focuses on two conceptual problems:

First, the thesis investigates the acoustic characterization of quarter-wave resonators via an-
alytical considerations and via the development of a numerical tool. The analytical study is
based on Rott’s thermoacoustic approximation [13], a framework that accounts for viscous and
thermal dissipation in one-dimensional duct acoustics. It offers a compact expression for the
acoustic reflection. Furthermore, it provides valuable insight into the physical interplay of the
hydrodynamic and thermal boundary layer that drives convective heat transfer. However, Rott’s
analytical framework is restricted to specific temperature profiles at constant viscosity. To over-
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Introduction

Figure 1.1: Damages of a combustor face plate
due to thermoacoustic instability.1

Figure 1.2: L-shaped quarter-wave resonator
in a Vulcain 2 engine.2

come these limitations, the use of a numerical framework offers a more flexible approach at the
disadvantage of computational cost. To avoid the excessive parametric investigation of each fre-
quency, the use of System Identification (SI) techniques allows a broadband evaluation during
one single simulation run.

Second, the present thesis focuses on the more fundamental investigation of heat transfer in tur-
bulent, pulsating flows. Conditions typical for the flow inside rocket engine combustion cham-
bers are commonly reported to provoke significant heat transfer enhancement (e.g., [4, 14–26]).
However, the literature offers contradictory findings for the problem at hand, and high fidelity
numerical investigations on the topic are rare. The present thesis classifies two relevant heat
transfer mechanisms inside a combustion chamber: wall-normal heat transfer (e.g., between the
hot combustion gas and the cooled chamber wall) and heat transfer longitudinal to the acous-
tic oscillation (e.g., in axial direction of a resonator tube). For both mechanisms, high-fidelity
numerical studies reveal for the first time significant turbulence-induced enhancement of more
than 100% based on Large Eddy Simulation (LES). These results are in line with previous stud-
ies of thermoacoustic instabilities that may lead to the fatal thermal destruction of rocket engine
combustion chambers.

Parts of the results reported in this thesis have already been presented at conferences or in jour-
nals, book chapters, and reports. Appendix A reproduces the major publications. The present
publication-based dissertation guides through these publications by summarizing the most im-
portant results, embedding them in the literature context, and – most importantly – showing
the interconnections between them (see Chapter 5). Furthermore, the methodology of the thesis
elucidates fundamental consideration of acoustic dissipation in duct and channels, the deriva-
tion of an analytical model for a quarter-wave resonator, and more general findings regarding
heat transfer in duct acoustics (see Chapter 2 - 4).

The first part of the thesis provides the methodology based on the existing literature and con-

1Reproduced with kind permission of Dr. Tim Lieuwen
2Reproduced with kind permission of Dr. Kilian Förner
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tributes the following novelties: Chapter 2 presents the theoretical background on fluid me-
chanics of acoustics. Based on Rott’s thermoacoustic theory [13], a dissipative duct acoustic
formulation at constant and linear temperature profiles is derived and discussed. Chapter 3 uses
the previous derivations to model an acoustic quarter-wave resonator analytically. Chapter 4 fo-
cuses on heat transfer in laminar, oscillating channel flows that mimic a quarter-wave resonator:
Two analytical approaches by Rott [13] (thermoacoustic) and Kurzweg [27] (incompressible
channel flow) are compared.

The second part of the thesis guides through the major publications connected to this disser-
tation (Chapter 5). Thereby, the individual publications stand for themselves and can also be
approached outside the framework of this dissertation. In addition, the thesis shows their in-
terconnections and their relevance within the present Ph. D. project: Section 5.1 discusses a
numerical investigation on the effect of temperature inhomogeneities inside a resonator tube.
It follows a comprehensive interpretation of the interplay between hydrodynamic and thermal
boundary layers follows (Sec. 5.2). Section 5.3 focuses on the impact of turbulence on heat
transfer. First, wall-normal heat transfer enhancement in a pulsating channel flow is investigated
via Large Eddy Simulation. In a second step, the numerical framework is adopted to study the
longitudinal enhancement in an oscillating flow.

Chapter 6 summarizes the thesis and gives the conclusions of the investigations. Furthermore,
it lists the attached papers and clearly states the authors’ contributions. Appendix A reproduces
the papers.
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2 Duct Acoustics with Viscous and
Thermal Dissipation

This chapter begins with the introduction of the compressible Navier-Stokes equations. The
set of conservation equations that uncontroversially states the fundamentals of fluid mechan-
ics. Most of the subsequent work is based on these equations: In Sec. 2.1.1, the assumption of
an isentropic flow in a one-dimension channel or duct (e.g., a quarter-wave tube) leads to the
description via two characteristic acoustic waves, known as the Riemann invariants. Likewise,
all numerical simulations (e.g., Direct Numerical Simulation (DNS) for a compressible, lam-
inar flow (Sec. 5.1) and Large Eddy Simulation (LES) for an incompressible, turbulent flow
(Sec. 5.3.1 and 5.3.2) are based on the Navier-Stokes equations. Existing frameworks that ac-
count for dissipative viscous and thermal wall interaction are outlined in Sec. 2.1.2. In the course
of this thesis, the subsequent Chapter 3 will focus in more detail on the crucial importance of
boundary layers and their dissipative effects on the overall acoustic damping performance of
a resonator tube. Rott’s thermoacoustic theory (Sec. 2.1.3) serves as the basis for the further
analytical examinations: Section 2.2 derives a characteristic solution for spatially constant tem-
peratures; Section 2.3 extends to linear temperature gradients. As an important limitation, the
presented approach is only valid if the kinematic viscosity of the fluid does not change with
temperature. Both formulations – for constant and linear temperature profiles, respectively –
are applied to a quarter-wave channel with one open and one closed end. Section 2.4 discusses
the resulting eigenfrequencies as well as the pressure and velocity profiles inside the channel.
The conclusions (Sec. 2.5) directly link to applying the presented method to the modeling ap-
proach of a quarter-wave resonator in the following Chapter 3. For completeness, Secs. 2.6
and 2.7 outline a solution method for exponential temperature profiles and display pressure and
velocity profiles for higher mode orders.

2.1 Revisiting the Literature

2.1.1 From the Navier-Stokes Equations to Isentropic Acoustic Charac-
teristic Waves

The Navier-Stokes equations present the fundamental framework of conservation equations that
model the motion of viscous Newtonian fluids. The general formulation considers compressible
fluids with no external forces and is well described in the literature (see e.g., [28–30]).

The Navier-Stokes equations contain the conservation of mass and momentum via the continuity
and the momentum equation. Formulated in the Einstein notation for the Cartesian coordinates
with space direction xi , the differential equations that couple density ρ, velocity ui , and pressure
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p read:
dρ

dt
+ρ∂ui

∂xi
= 0 (2.1)

and
ρ

dui

dt
=− ∂p

∂xi
+ ∂p

∂x j

(
2µSi j − 2

3
µ
∂uk

∂xk
δi j

)
, (2.2)

where t is the time and µ is the (dynamic) viscosity of the fluid. The material derivative
d · /dt is defined as d · /dt = ∂ · /∂t + ui∂ · /∂xi , and the strain rate tensor Si j reads Si j =
1/2

(
∂ui /∂x j +∂u j /∂xi

)
.

The energy equation completes the above set of differential equations (Eqs. (2.1) and (2.2)):

ρ
de

dt
=−p

∂ui

∂xi
+2µSi j Si j − 2

3
µSkk Si i + ∂

∂xi

(
k
∂T

∂xi

)
, (2.3)

where e denotes the internal energy, T the temperature, and k the thermal conductivity of
the fluid. This additional equation is typically required to incorporate compressibility and heat
transfer, two key effects of the present study.

The closure of the Navier-Stokes equations requires two additional equations of state: The ideal
gas relation yields:

p = ρRT , (2.4)

where R denotes the specific gas constant. The relation between the internal energy e and the
temperature reads:

e =
∫

cv dT =
∫

cp dT − p

ρ
, (2.5)

where cv and cp denote the specific heat capacity at constant specific volume and constant
pressure, respectively.

The following considerations will develop the above and more general derivations towards the
acoustic characteristics. A detailed introduction to acoustics may, for example, be found in the
textbook by Rienstra and Hirschberg [31]. The assumption of isentropic acoustic perturbations
simplifies the momentum equation (2.2) to the inviscid Euler equation

ρ
dui

dt
+ ∂p

∂xi
= 0 . (2.6)

Many acoustical applications are characterized by small disturbances q ′ compared to the tempo-
ral mean qm , decomposing a varying quantity q as q = qm+q ′. Considering only the fluctuating
parts of the continuity and the inviscid momentum equation ((2.1) and (2.6), respectively) and
neglecting higher order terms yields:

dmρ
′

dt
+ρm

∂u′
i

∂xi
= 0 (2.7)

and

ρm
dmu′

i

dt
+ ∂p ′

∂xi
= 0 , (2.8)

where dm ·/dt denotes the material derivative with respect to the mean flow um,i .

6
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In the case of isentropic compression, which is given in lossless acoustics flows, the fluctuation
in pressure p ′ and density ρ′ correlate linearly via

p ′ = ∂p

∂ρ

∣∣∣∣
s
ρ′ = c2ρ′ , (2.9)

where c =√
γRTm is the speed of sound and γ= cp /cv denotes the heat capacity ratio.

Finally, the wave equation results from Eqs. (2.7), (2.8), and (2.9) and only obtains the unknown
pressure fluctuation:

d2
m p ′

dt 2
− c2 ∂2p ′

∂xi∂xi
. (2.10)

For one-dimensional plane acoustic waves, the wave equation can be factorized:(
dm

dt
+ c

∂

∂xi

)(
dm

dt
− c

∂

∂xi

)
p ′ = 0 . (2.11)

The resulting equation reveals two independent convection equations: One wave travels down-
stream and the other upstream with a velocity of c ±um , respectively. The Riemann invariants
describe the corresponding characteristic waves ( f and g -wave):

f = p ′

ρmc
+u′ (2.12)

and

g = p ′

ρmc
−u′ . (2.13)

The reverse relation for the fluctuation in pressure p ′ and velocity u′ directly follows:

p ′

ρmc
= 1

2

(
f + g

)
(2.14)

and
u′ = 1

2

(
f − g

)
. (2.15)

2.1.2 Overview on Dissipative Acoustic Formulations

In 1868, Kirchhoff [32] formulated an exact solution to the propagation of sound in a uniform
circular tube. He considered an ideal gas and accounted for both effects of viscosity and thermal
conductivity. Stinson [33] gave a valuable overview of the method by Kirchhoff. However, the
analytical correlations are complex, and solving for the specific acoustic profiles requires the
use of numerical methods. Although the approach by Kirchhoff is generally valid, numerous
researchers introduced simplifications.

Many of these methods are based on a separate treatment of viscous and thermal effects, which
are subsequently superimposed (e.g., Zwicker and Kosten [34] or Kinsler and Frey [35]). Oth-
ers suggest mathematical simplifications for different limiting cases (e.g., for narrow or wide

7



Duct Acoustics with Viscous and Thermal Dissipation

channels, Stinson [33]). Therefore, the geometrical restriction of Kirchhoff’s original solution
may be relaxed (i.e., the circular shape of the tube).

In their textbook “Fundamentals of Acoustics”, Kinsler and Frey [35] dedicated one chapter
to the “Absorption and Attenuation of Sound”. They divided the dissipation sources into two
general categories: “(i) those intrinsic to the medium and (ii) those associated with the bound-
aries of the medium”. Losses in the medium specify viscous losses, heat conduction losses, and
further internal molecular processes that are all independent of an external influence (e.g., a
wall). For this literature review and the scope of the thesis (i.e., viscous losses generated at the
resonator walls), the focus lies on the latter category. It particularly lies on losses attributed to
the fluid-wall interaction and the associated viscous and thermal boundary layers.

For either category, Kinsler and Frey [35] formulated a spatial absorption coefficient and a
complex-valued wavenumber.1 In general, the spatial absorption coefficient depends on fre-
quency (e.g., frequency changes the boundary layer thickness). The phase speed cp describes
the velocity of a perturbation at a certain frequency. In this context, Kinsler and Frey [35] dis-
cussed the concept of a complex-valued speed of sound for mono-frequent acoustic waves. As
part of this thesis, the subsequent derivations of characteristic waves will also lead to a complex-
valued wavenumber and a complex-valued speed of sound (see Sec. 2.2).

Kinsler and Frey [35] analyzed losses at rigid walls for dissipative duct and channel flows
via boundary layer theory. As a specific example, they discussed losses in wide pipes where
boundary layers are much smaller than the tube diameter. Fluid disks with boundary layers
were used to describe the local flow properties. Viscous and thermal losses were considered
separately and recombined by superposition of the individual absorption coefficient.

Kinsler and Frey’s remarkable conclusions included that “the presence of the viscous boundary
layer also modifies the phase speed of the acoustic wave” [35]. This leads to a distortion of
a broadband signal or a (complex-valued) speed of sound for mono-frequent excitation. Fur-
thermore, the reactance (a comprehensive definition and application follows in Chapter 3) is
affected by the viscosity, such that “the apparent mass of the fluid disk is slightly larger. This is
equivalent to the fluid having a slightly greater density.”

Numerous authors presented very similar or even identical approaches and formulations to
Kinsler and Frey [35] (compare, e.g., the textbook “Acoustics - An Introduction to Its Phys-
ical Principles and Applications” by Pierce [36]).

Keefe [37] considered a smooth cylindrical duct and emphasized the exact nature of Kirch-
hoff’s derivation [32]. As a novelty, his work offered approximations that also hold with good
accuracy in the critical transition zones (boundary layers in the order of magnitude of the tube
diameter). If the acoustic frequency is sufficiently low, there is only a single plane mode that
travels over axial distances that are large compared to the tube diameter. Considering isothermal
walls, Keefe [37] related the pressure and volume flow rate oscillations via the acoustic series
impedance and the shunt admittance. In their combination, they yield the complex-valued char-
acteristic impedance and the propagation wavenumber. Again, there is a close similarity to nu-

1Both definitions will reappear during the derivations of Sec. 2.2 and are therefore not closer specified in the
present section. Also, further characteristics (e.g., of the acoustic impedance, reactance, etc.) that are only briefly
introduced in the present literature review, will be presented in more detail alongside their mathmatical definitions
throughout the later course of this work.
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merous previous definitions where the losses drive a spatial decay (mathematically described by
a complex-valued wavenumber or (alternatively) by a complex-valued phase velocity or speed
of sound, e.g., Kinsler and Frey [35]).

As a final remark on the work by Keefe [37], it is worth to mention the physical interpreta-
tion of the real- and imaginary-valued part of the series impedance and the shunt admittance:
He interpreted these four parameters in the same way as Rott and Swift [38] (introduced in
Sec. 2.1.3) as the inertance, resistance, compliance, and conductance. Thus, the selected con-
servation equations of this thesis based on Rott’s framework will also be identical to those by
Keefe [37].

The studies of Hynninen and Abom [39, 40] built on Keefe’s formulations [37] and connected
the framework of acoustic losses with transfer/scattering matrices and the idea of traveling
waves. Viscous friction and heat exchange with a solid substrate generated the losses. The sub-
strate was modeled as an aggregation of capillary tubes via a specific impedance. Similar to
Kinsler and Frey’s work [35], Hynninen and Abom [39, 40] derived a complex-valued speed of
sound and a complex-valued density.

Until today, the research on boundary layer losses in the characteristic wave framework (see
Sec. 2.1.3) is limited. Indeed, Hynninen and Abom [39, 40] only implicitly pointed in this
direction: They formulated a transfer matrix and formally gave instructions to derive the scat-
tering matrix. The scattering matrix related the upstream and downstream traveling pressure
waves, which closely compare to the characteristic f and g -waves. However, there was nei-
ther a clear statement of how these relations were used nor a physical discussion of the spatial
perturbations.

Gobin [41] gave a first review and formulation that centrally focused on characteristic waves
with losses. In line with all the previous authors, the problem at hand was tackled via the math-
ematical use of a complex-valued wavenumber. In contrast to the following derivations of the
present thesis (see Sec. 2.2), the study by Gobin allowed for a non-zero mean flow that led to
propagation velocities at cp ±um . In agreement with Kinsler and Frey [35], the speed of sound
was interpreted as a decreased (complex-valued) phase velocity.

Gobin referenced Kinsler and Frey’s formulations [35] to determine the loss-related (imaginary-
valued) component of the wavenumber. The characteristic f and g -waves corresponded to the
respective traveling pressure perturbations (compare Hynninen and Abom [39, 40]). In a final
step, Gobin formulated a transfer matrix to couple the pressure and velocity perturbations (p ′

and u′, respectively) at the in- and outlet of a duct.

However, Gobin stated a constant factor of ρc between pressure p ′ and velocity u′. This contra-
dicts prior conclusions by Kinsler and Frey [35], who found that viscous and thermal dissipation
will increase local density. Alternatively, in a more intuitive interpretation, pressure gradients
need to increase to compensate for the friction and to maintain constant velocity amplitudes.
This missing correction in the study by Gobin [41] will show in the subsequent derivation of
the present thesis (see Sec. 2.2).
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2.1.3 Rott’s Thermoacoustic Theory

In 1980, Rott introduced a (thermo-)acoustic approximation for channel flows [13, 38]. As a
first and important difference to the inviscid and isentropic derivations presented in Sec. 2.1.1,
Rott’s theory includes the viscous and thermal impact of the surrounding walls on the fluid, a
crucial aspect for the dissipating characteristics of an acoustic resonator (see Chapter 3). The
second difference lies in the more general perspective that allows axial temperature gradients,
a crucial aspect for the occurrence of heat transfer (see Chapter 4). This section outlines the
fundamentals of Rott’s approximation that are of relevance throughout the course of this thesis.

The work by Rott included the following assumption:

• an ideal gas is assumed (consistent with the isentropic derivations in Sec. 2.1.1),

• the flow is laminar and without mean-flow (i.e., in comparison to the more general for-
mulation of Sec. 2.1.1, um = 0 is assumed as an addition constraint),

• the wall temperature is spatially non-uniform but temporally constant (i.e., its heat capac-
ity is very large compared to the gaseous working fluid), and

• the acoustic wavelength is (much) larger than the displacement amplitude and the bound-
ary layer thickness.

The last assumption allows to consider the diffusive effects imposed by the geometry via two
integrated parameters fν and fκ (for hydrodynamic and thermal wall-effects, respectively).
Thereby, the longitudinal velocity oscillations are described by the cross-sectional volume flow
rate since the velocity profile varies in wall-normal direction.

Periodical and sinusoidal oscillations of a (in the acoustic framework small) quantity q are
classically defined as

q(t ) = qa cos(ωt +ϕ) , (2.16)

where ω= 2π f denotes the angular frequency and f the (ordinary) frequency. The amplitude of
the oscillation qa and the temporal phase of the oscillation ϕ are arbitrary constants that depend
on the initial conditions of the problem at hand. Oftentimes, it is more convenient to rewrite
Eq. (2.16) in the complex notation

q(t ) = Re
[

q1e iωt
]

, (2.17)

where the complex-valued amplitude q1 combines the two prior parameters qa and ϕ such that
the absolute of q1 is

∣∣q1
∣∣ = qa and its respective phase is 6 q1 = ϕ. The subscript 1 denotes the

first-order characteristic of the small parameter q1 itself (whereas e.g., “small squared” terms are
called second-order). The identity e iα = cosα+ i sinα exploits the definition of the exponential
function with imaginary-valued input arguments (i.e., i =p−1).

Rott introduced the complex-valued pressure and velocity amplitudes p1 and u1 as the respec-
tively primary acoustic variables. Furthermore, the volume flow rate U1 calculates the integral
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of the velocity u1 over the cross-sectional area A of the channel. Rott summarized all relevant
variables and parameters as follows:

p = pm + Re
[

p1(x)e iωt
]

U = Re
[
U1(x)e iωt

]
u = Re

[
u1(x, y, z)e iωt

]
T = Tm(x)+ Re

[
T1(x, y, z)e iωt

]
ρ = similar to T

ν= ν(x)

c, κ, etc. = similar to ν ,

(2.18)

where ν=µ/ρ denotes the kinematic viscosity and κ= k/(ρcp ) the thermal diffusivity.

Note the spatially uniform mean temperature Tm throughout the first derivations in Sec. 2.2.
Thus, for an ideal gas, the density ρm is also constant in space. In the later course of the thesis,
this restriction is relaxed to linear and exponential temperature profiles Tm(x) (Sec. 2.3 and 2.6,
respectively). However, these derivations are only valid for (theoretical) fluids with constant
kinematic viscosity ν 6= ν(T ).

Considering the boundary conditions at the wall surfaces and integrating the velocity u1 over
the channel cross-section to obtain the volume flow rate U1 yields the momentum equation of
Rott’s acoustic approximation:

dp1 =− iωρm dx/A

1− fν
U1 , (2.19)

with the alternative formulation:

∂(U ′/A)

∂t

ρm

a?
+ ∂p ′

∂x
= 0 , (2.20)

where the parameter a? = 1− fν is introduced for a more compact notation. The mean temper-
ature gradient dTm/dx does not affect the momentum equation.

The derivation of the continuity equation follows a similar (though slightly more complicated)
procedure and requires the mean cross-sectional temperature. For arbitrary cross sections, it
reads:

dU1 =− iωA dx

γρm

[
1+ (γ−1) fκ

]
p1 + ( fκ− fν)

(1− fν)(1−Pr)

dTm

Tm
U1 , (2.21)

with the alternative formulation:

∂p ′

∂t

b?

γpm
+ ∂(U ′/A)

∂x
− d?

Tm

dTm

dx
(U ′/A) = 0 , (2.22)

where the parameters b? = [
1+ (γ−1) fκ

]
and d? = [

( fκ− fν)
]

/
[
(1− fν)(1−Pr)

]
are introduced

for a more compact notation.
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The functions fν and fκ are known for different geometries [38]. For a channel flow (channel
width of 2rh), they read:

fν/κ = tanh[(1+ i )rh/δν/κ]

(1+ i )rh/δν/κ
. (2.23)

For a circular duct, fν/κ are defined as

fν/κ =
2J1

[
(i −1) 2rh

δν/κ

]
J0

[
(i −1) 2rh

δν/κ

]
(i −1) 2rh

δν/κ

, (2.24)

where J0 and J1 are Bessel functions (first kind) of the zeroth and first order, respectively. The
hydraulic radius is denoted by

rh ≡ A

Π
, (2.25)

where A denotes the cross-sectional area of the channel and Π its perimeter.

The hydrodynamic boundary layer thickness δν (also known as “Stokes boundary layer”) is

δν =
p

2ν/ω (2.26)

and its thermal analog δκ is
δκ =

p
2κ/ω . (2.27)

They describe the respective hydrodynamic and thermal penetration depth of wall-effects on
oscillatory flows.

The Prandtl number Pr defines the ratio of momentum diffusivity to thermal diffusivity:

Pr ≡ ν

κ
. (2.28)

Thereby it also relates the hydrodynamic and thermal boundary layer thickness of Eqs. (2.26)
and (2.27).

All further derivations in the subsequent course of this chapter will be based on the conservation
equations of Rott’s thermoacoustic theory as presented above.

2.2 Characteristic Waves with Losses at Homogeneous Tem-
perature

This section applies the derivation of the Riemann invariants (as presented by Polifke et al. [42])
to the conservation equations of Rott’s thermoacoustic theory [38]. In agreement with the work
by Rott, the velocity profile has no mean flow. This first instance of derivation considers a
spatially uniform temperature profile for a channel with a constant cross-sectional area. The
extension to linear temperature profiles follows in Sec. 2.3.

The derivation in Sec. 2.2.1 yields a general solution independent from the additional boundary
and initial conditions. Section 2.2.2 elaborates on the specific solution for a quarter-wave chan-
nel. Results for the uniform temperature are presented alongside those for linear temperature
profiles in Sec. 2.4.
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2.2.1 The General Derivation

Polifke et al. [42] presented linear partial differential equations with two variables

Aux +But = 0 , (2.29)

where the subscripts x and t denote the derivatives in space and time, respectively.

Using the perfect gas law pm = ρmRTm and the speed of sound c =√
γRTm , Rott’s conservation

equation (Eqs. (2.20) and (2.22), [38]) are rewritten and rearranged:

d
(

p ′
ρm c

)
dx

+ 1

a?c

d
(

U ′
A

)
dt

= 0 (2.30)

and
d

(
U ′
A

)
dx

+ b?

c

d
(

p ′
ρm c

)
dt

= 0 , (2.31)

where the constants a? and b? incorporate the effects of viscous and thermal boundary layers
(compare to the definition in Sec.2.1.3). Note the omission of the term that includes the local
temperature gradient in the continuity equation. This significantly simplifies the problem at
hand. Thereby, the mathematical form of Rott’s conservation equations is identical to those of
numerous researchers (e.g., Keefe [37], compare Sec. 2.1.2).

The corresponding matrices A and B and the vector u read:

A =
[

1 0
0 1

]
, (2.32)

B =
[

0 1
a?c

b?

c 0

]
, (2.33)

and

u =
[

p ′
ρm c
U ′
A

]
. (2.34)

In particular, the vector u strongly resembles the definition in the derivation by Polifke et
al. [42]: Merely the velocity u′ is replaced by the spatially averaged velocity over the cross-
sectional area U ′/A. (Since u′ locally varies in wall-normal due to boundary effects.)

The eigenvalues λ and eigenvectors s of this problem (AT s =λB T s) are:

λ± =±c

√
a?

b?
(2.35)

and

s± =
[

1

±
√

1
a?b?

]
. (2.36)
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According to Polifke et al. [42], the problem is of hyperbolic type if the eigenvalues λ± are
real-valued. This is required to reduce the system to the characteristic normal form. Although
the eigenvalues λ± are not real-valued in the present work2, the corresponding reduction yields:

d

dt

p ′

ρmc
±

√
1

a?b?
d

dt

U ′

A
= 0 (2.37)

and is valid along the characteristics propagating at

dx

dt
=±c

√
a?

b?
. (2.38)

Note at this point: Without dissipation ( fν and fκ→ 0), the acoustic disturbances would propa-
gate into the positive and negative direction at the speed of sound c. With dissipation, a complex-
valued speed of sound (e.g., cp , compare Sec. 2.1.2) reappears and it is smaller (in the absolute
and real part) than the lossless speed of sound c. The characteristic wave amplitudes (that now
vary in space) read:

f = p ′

ρmc
+

√
1

a?b?
U ′

A
(2.39)

and

g = p ′

ρmc
−

√
1

a?b?
U ′

A
. (2.40)

From the present state of understanding and the mathematical perspective, the independence of
f and g is maintained. In particular, for uniform temperature distributions, an upstream traveling
f -wave does not scatter to a downstream traveling g -wave, and vice versa.

In alignment with the procedure described in Polifke et al. [42], the Riemann invariants are
interpreted as harmonic (and now spatially decaying) waves and introduce

p ′

ρmc
= P̂e(iωt−i kx x) (2.41)

and
U ′

A
= Û e(iωt−i kx x) . (2.42)

Note that the wavenumber kx may be complex-valued to model a spatially decaying behavior at-
tributed to viscous and thermal losses. Introducing the definition of the wavenumber k =ω/c to
describe the harmonic oscillation of an inviscid and non-heat-conducting reference, Eqs. (2.30)
and (2.31) reduce to matrix notation[

kb? −kx

−kx k/a?

][
P̂
Û

]
=

[
0
0

]
, (2.43)

where P̂ and Û are constant amplitudes at a reference position x = 0.

2Despite the complex-valued eigenvalues the characteristic waves are independent. However, as it will become
apparent in the course of the present section, they exhibit a spatial decay.
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The determinant of the above matrix is zero if

kx± =±k

√
b?

a?
. (2.44)

Reinserting the expression of the complex-valued wavenumber kx± into the matrix equation
above yields the ratio of the amplitudes P̂ and Û :

Û =±
p

a?b?P̂ . (2.45)

Note: At this point, the increased density (or equivalently pressure) that was predicted by
Kinsler and Frey [35] shows in the presence of losses: Without any viscous or thermal dis-
sipation ( fν and fκ→ 0), the factor between velocity u′ and pressure p ′ is ρmc. With losses, the
square-root expression is smaller than 1, indicating the increase in the pressure-to-velocity ratio
(an increased pressure is required to compensate the losses). Gobin [41] did not consider this
factor in his thesis (compare Sec. 2.1.2).

The amplitudes of the upstream and downstream traveling waves are defined as P̂+ ≡ F̂ /2 and
P̂− ≡ Ĝ/2 to obtain the solutions

p ′

ρmc
= f

2
+ g

2

= F̂

2
e(iωt−i kx+x) + Ĝ

2
e(iωt−i kx−x)

(2.46)

and

U ′

A
=
p

a?b?
(

f

2
− g

2

)
=
p

a?b?
(

F̂

2
e(iωt−i kx+x) − Ĝ

2
e(iωt−i kx−x)

)
.

(2.47)

Along the characteristic dx
dt = ±c

p
a?/b?, the term ωt − kx±x (argument to the exponential

function) is constant. Integration of the characteristic yields:

x(t ) =±c

√
a?

b?
t +C± , (2.48)

where C± is a constant. Rewriting the (temporal and spatial dependent) exponent yields:

ωt −kx±x = k

√
b?

a?
C± = const. , (2.49)

and shows that the latter expression neither depends on the time t nor the axial location x.

The final expression for the Riemann invariants f and g for the one-dimensional system with
viscous and thermal dissipation (no mean flow, not temperature gradient, isothermal walls) for
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L

x

Tm |x=0 = T1 Tm |x=L = T2

U ′|x=0 = 0 p ′|x=L = 0

2rh

Figure 2.1: Geometry and boundary conditions of a quarter-wave channel.

the acoustic pressure and velocity (averaged over the cross-sectional area) read:

f = F̂ exp(iωt − i kx+x)

= F̂ exp

k

√
b?

a?
C+


= F̂ exp

iω

t −
√

b?

a?
x

c

 .

(2.50)

and

g = Ĝ exp(iωt − i kx−x)

= Ĝ exp

k

√
b?

a?
C−


= Ĝ exp

iω

t +
√

b?

a?
x

c

 .

(2.51)

Finally, note the perfect consistency between the “conventional” characteristic formulation
in [42] and the present equations for the inviscid and non-heat-conducting limiting case when
neither hydrodynamic nor thermal boundary layers exist and the parameters a? and b? approach
unity: a?→ 1 and b?→ 1. This implies that:

1. the complex-valued wavenumber kx± reduces to the real-valued wavenumber k =ω/c,

2. the complex-valued phase speed that defines the characteristic dx/dt reduces to the real-
valued speed of sound c =√

γRTm , and that

3. the friction-induced increase in pressure vanishes (Û =±P̂).

2.2.2 Application to a Quarter-Wave Channel

In this section, the equations derived in Sec. 2.2.1 (characteristic waves with losses) are applied
to a quarter-wave channel, depicted in Fig. 2.1. The channel of length L has a closed end at
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the location x = 0, suppressing the axial volume flow at this node (U ′|x=0 = 0). At the channel
mouth (x = L), the large area jump to the surrounding implies a pressure node (p ′|x=L = 0). The
mean temperature along the channel axis is constant with T1 = T2 = Tm . Linear temperature
profiles follow in Sec. 2.3. The parameters fν and fκ consider the cross-sectional geometry
of the channel. Thus, the following derivation is independent of further specifications in this
respect.

Equations (2.46) and (2.47) state the local pressure and volume flow fluctuation, respectively.
The boundary conditions at either side of the channel (at x = 0 and x = L, as stated above) define
the complex-valued amplitudes F̂ and Ĝ . At the closed end (x = 0, velocity node), Eq. (2.47)
reads:

U ′

A
=
p

a?b?

 F̂

2
exp

iωt − iω

√
b?

a?
x|0
c

− Ĝ

2
exp

iωt + iω

√
b?

a?
x|0
c

= 0 . (2.52)

At the open end (x = L, pressure node), Eq. (2.46) reads:

p ′

ρmc
= F̂

2
exp

iωt − iω

√
b?

a?
x|L
c

+ Ĝ

2
exp

iωt + iω

√
b?

a?
x|L
c

= 0 . (2.53)

Note that the solution of both, Eqs. (2.52) and (2.53) respectively, is independent of the time t
(the expression exp(iωt ) cancels out for the non-trivial solution at t <∞). The linear system of
equations is solvable when its determinant vanishes, which yields the following relationship for
the eigenfrequency ω:

exp

i
ω

c

√
b?

a?
2L

+1 = 0 . (2.54)

For the inviscid and non-heat-conducting case (a?→ 1 and b?→ 1), the solution for the eigen-
frequencies is real-valued and spatially repeats at multiples of the wavelength traveling at the
speed of sound c. For the case of hydrodynamic and thermal wall interaction, the expressionp

b?/a? is complex-valued. This directly indicates complex-valued eigenfrequencies with ex-
ponential decay of the oscillation amplitude in time.

Solving for the oscillation amplitudes F̂ and Ĝ , Eq. (2.52) directly implies for x = 0:

F̂ = Ĝ . (2.55)

The definition of boundary conditions fully specifies the problem at hand. For later compara-
bility with the work by Sujith et al. [43], the pressure p ′ is specified at the closed end of the
channel (x = 0) and at time t = 0:

p ′|x=0, t=0 ≡ P1 . (2.56)

Evaluating Eq. (2.46) for the initial condition finally yields the solution for the parameters F̂
and Ĝ:

F̂ = Ĝ = P1

ρmc
. (2.57)

The derivation above defines acoustic eigenvalues in a quarter-wave channel with a homoge-
neous temperature distribution in the presence of hydrodynamic and thermal boundary layers.
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A boundary condition fully defines the flow rate and pressure profiles. The following Sec. 2.3
extends the homogeneous temperature distribution to a linear profile. Numerical results of the
present, more restrictive formulation are not shown in this section, but alongside the results of
the more general derivations of the subsequent section.

2.3 Extending to Linear Temperature Profiles at Constant
Kinematic Viscosity

This section extends the derivations in the previous section to a more general set-up of linear
temperature profiles. As indicated in Fig. 2.1, the temperature varies linearly between T1 at
the closed end and T2 at the mouth of the channel. As in the previous set-up with uniform
temperature, a general solution independent of boundary and initial conditions is derived first
(Sec. 2.3.1). The subsequent Sec. 2.3.2 presents the specific solution for a quarter-wave channel.
Numerical results and discussion follow in Sec. 2.4. Section 2.6 outlines a solution strategy
for exponential temperature distributions. Solutions to other temperature profiles (quadratic,
polynomial, etc.) may exist and can be considered in future work.

Compared to the previous analysis, the linear temperature profile significantly complicates the
problem at hand. Note the additional non-zero term in the continuity equation (2.22). Further-
more, the mean local density ρm and the speed of sound c vary in space. In consequence, the
previous approach for homogeneous temperature is not applicable.

The present work assumes a temperature-independent Prandtl number Pr. Furthermore, the so-
lution is restricted to fluids with a kinematic viscosity ν that does not change with temperature.
However, for general gaseous fluids (e.g., air), empirical correlations show such temperature
dependence. E.g., Sutherland’s law suggests

ν(T ) = ν∞
(

T

T∞

)1+β
, (2.58)

where β≈ 0.7 and ν∞ and T∞ are a reference viscosity and temperate, respectively. Therefore,
the following derivations should be regarded from a more mathematical and theoretical perspec-
tive. They are not expected to give quantitatively accurate results if temperature gradients and
the influence of viscosity are significant.

2.3.1 The General Derivation

The general derivations of this section are again based on the conservation equations of Rott’s
thermoacoustic theory (Eqs. (2.20) and (2.22)) and closely follow an approach suggested by Su-
jith et al. [43]. Sujith et al. derived exact solutions for one-dimensional acoustic fields in ducts
with an axial temperature gradient: Since the wave equation has variable coefficients, exact so-
lutions for an arbitrary temperature profile cannot be obtained. Instead, the differential equation
is transformed from the physical x-space to the local temperature space of a specific presumed
temperature distribution. Sujith et al. [43] successfully provided a solution for linear and expo-
nential temperature profiles. Subsequent studies added solutions for quadratic and polynomial
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distributions [44, 45]. However, the work by Sujith and coworkers is limited to inviscid and
non-heat-conducting gases. The present approach considers to the impact of hydrodynamic and
thermal boundary layers considered by Rott’s thermoacoustic theory [38].

The analysis begins with the one-dimensional first-order momentum and continuity equations
by Rott (see Eqs. (2.20) and (2.22), rearranged):

∂(U ′/A)

∂t
+ a?

ρm

∂p ′

∂x
= 0 (2.59)

and
b?

γpm

∂p ′

∂t
+ ∂(U ′/A)

∂x
− d?

Tm

dTm

dx
(U ′/A) = 0 . (2.60)

Differentiating the momentum equation with respect to the axial location x and the continuity
equation with respect to the time t and eliminating the cross-derivative term yields a differential
equation with variable coefficients:

b?

γpm

∂2p ′

∂t 2
− a?

ρm

∂2p ′

∂x2
+ a?

ρ2
m

∂ρm

∂x

∂p ′

∂x
− d?

Tm

dTm

dx

∂(U ′/A)

∂t
= 0 . (2.61)

Note that this step requires the assumption of a constant kinematic viscosity ν: In general,
the parameter a? of the momentum equation (2.59) depends on the position x (via the local
temperature Tm , which affects the viscosity). Thus, differentiating with respect to the axial
location x would lead to an additional term that cannot be handled in the further derivation.
This term drops under the assumption of a constant viscosity ν.

Differentiating the steady equation of state (pm = ρmRTm) and recalling that the steady channel
pressure pm is constant along the direction x (no mean flow) yields a relation between the steady
temperature and density:

1

ρm

dρm

dx
+ 1

Tm

dTm

dx
= 0 . (2.62)

Simplifying Eq. (2.61) with Eq. (2.62) and substituting the derivative of the volume flow rate
via the momentum equation (Eq. (2.59)) gives:

b?

γpm

∂2p ′

∂t 2
− a?

ρm

∂2p ′

∂x2
− a?

ρm

1

Tm

dTm

dx

∂p ′

∂x
+ d?

Tm

dTm

dx

a?

ρm

∂p ′

∂x
= 0 , (2.63)

where only the pressure p ′ remains as a first-order acoustic property. Replacing the mean density
via the equation of state and further rearrangements yields:

∂2p ′

∂x2
+ (1−d?)

Tm

dTm

dx

∂p ′

∂x
− b?

a?
1

γRTm

∂2p ′

∂t 2
= 0 . (2.64)

Assuming that the solution has a periodic time dependence (i.e., p ′(x, t ) = p1(x)e iωt ), Eq. (2.64)
reduces to the following second order differential equation for the complex-valued amplitude
p1(x):

d2p1

dx2
+ (1−d?)

Tm

dTm

dx

dp1

dx
+ b?

a?
ω2

γRTm
p1 = 0 . (2.65)
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Equation (2.65) has variable coefficients. Therefore, general analytical solutions for an arbitrary
mean temperate profile Tm(x) cannot be obtained. Instead, a temperature profile is presumed
and two transformations will lead to a Sturm-Liouville equation (see Eq. 2.74). The first trans-
formation of Eq. (2.65) from the physical x-space to the temperature space Tm(x) yields:(

dTm

dx

)2 d2p1

dT 2
m

+ d2Tm

dx2

dp1

dTm
+ (1−d?)

Tm

(
dTm

dx

)2 dp1

dTm
+ b?

a?
ω2

γRTm
p1 = 0 . (2.66)

No assumptions on the mean temperate profile Tm(x) were made up to this point of the deriva-
tion. In the following, a linear temperature profile is assumed:

Tm(x) = T0 +mx , (2.67)

and thus
dTm

dx
= m and

d2Tm

dx2
= 0 . (2.68)

Section 2.6 outlines a solution strategy for an exponential temperature profile.

Using the linear properties from Eqs. (2.67) and (2.68) to simplify the transformed second order
differential equation (Eq. (2.66)) yields:

d2p1

dT 2
m

+ (1−d?)

Tm

dp1

dTm
+ b?

a?
ω2/m2

γRTm
p1 = 0 . (2.69)

For further simplification of Eq. (2.69), a new independent variable s is introduced:

s = 2

√
ω2c?

m2γR

√
Tm , (2.70)

where

c? = b?

a?
(2.71)

and the first and second derivative of s with respect to the temperature Tm read:

ds

dTm
=

√
ω2c?

m2γR

1p
Tm

(2.72)

and
d2s

dT 2
m

=−1

2

√
ω2c?

m2γR

1√
T 3

m

. (2.73)

Again, note the underlying assumption of a temperature-independent kinematic viscosity ν and
constant Prandtl number Pr, which implies that the parameter c? does not change with respect
to the temperature Tm .

Transforming Eq. (2.69) from the Tm to the s-space yields:

d2p1

ds2
+ (1−2d?)

s

dp1

ds
+p1 = 0 , (2.74)
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which is a Sturm-Liouville equation [46]. The solution of this equation is known:

p1 = sd?

[c1Jd?(s)+ c2Yd?(s)]

=
(ω

a

√
Tm

)d? [
c1Jd?

(ω
a

√
Tm

)
+ c2Yd?

(ω
a

√
Tm

)]
,

(2.75)

where c1 and c2 are complex-valued constants. Jd? and Yd? are the Bessel functions of first
and second kind, respectively. Note that both functions are of complex-valued order d?. The
constant a is defined as

a = |m|
2

√
γR

c?
. (2.76)

Finally, the momentum equation (Eq. (2.59)) yields the acoustic volume flow U1, based on the
derived pressure distribution p1 (Eq. (2.75)):

U1

A
=− a?

iωρm

dp1

dx
= i a?

ωρm

dT

dx

dp1

dT

= m

|m|
i
p

a?b?

ρm
√
γRTm

sd?

[c1Jd?−1(s)+ c2Yd?−1(s)]

= m

|m|
i
p

a?b?

ρm
√
γRTm

(ω
a

√
Tm

)d? [
c1Jd?−1

(ω
a

√
Tm

)
+ c2Yd?−1

(ω
a

√
Tm

)]
.

(2.77)

For an inviscid and non-heat-conducting gas (a?→ 1, b?→ 1, c?→ 1, and d?→ 0), the present
analysis for the acoustic pressure and volume flow rate perfectly resembles the results obtained
by Sujith et al. [43]. In this particular case, Eq. (2.74) is a zeroth order Bessel’s differential
equation. Consequently, the Bessel functions in the solution for pressure and velocity (Eq. (2.75)
and (2.77)) are of zeroth and first order, respectively.

2.3.2 Application to a quarter-wave channel

In this section, the equations for a linear temperature gradient derived in Sec. 2.3.1 are applied to
the quarter-wave channel depicted in Fig. 2.1. The general set-up corresponds to the description
given in Sec. 2.2.2, except that the temperature profile under investigation describes a linear
characteristic between T1 at the closed end and T2 at the mouth of the channel.

The pressure and velocity amplitudes need to satisfy the respective boundary conditions at either
end of the channel (i.e. U1 = 0 at x = 0 where Tm = T1 and p1 = 0 at x = L where Tm = T2,
respectively):

c1Jd?−1

(ω
a

√
T1

)
+ c2Yd?−1

(ω
a

√
T1

)
= 0 (2.78)

and
c1Jd?

(ω
a

√
T2

)
+ c2Yd?

(ω
a

√
T2

)
= 0 . (2.79)

This system of homogeneous equations is only solvable, when its determinant vanishes. Thus,
all eigenfrequencies of the channel fulfill the mathematical relation

Jd?

(ω
a

√
T2

)
Yd?−1

(ω
a

√
T1

)
− Jd?−1

(ω
a

√
T1

)
Yd?

(ω
a

√
T2

)
= 0 . (2.80)
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Finally, the acoustic pressure amplitude p ′|x=0, t=0 = p1|x=0 ≡ P1 is defined as the initial condi-
tion. The unknown constants c1 and c2 from Eqs. (2.78) and (2.79) follow:

c1 = πω
p

T1

2a
(
ω
a

p
T1

)d? P1Yd?−1

(ω
a

√
T1

)
(2.81)

and

c2 = πω
p

T1

2a
(
ω
a

p
T1

)d? P1Jd?−1

(ω
a

√
T1

)
. (2.82)

Again, for the inviscid and non-heat-conducting limiting case (c? → 1, and d? → 0), the equa-
tions of this section perfectly match those derived by Sujith et al. [43].

The equations above clearly show that the present problem at hand (including the temperature
gradient) does not allow a decoupled treatment via two independent characteristic waves that
travel in the downstream and upstream direction with their respective propagation velocities.
Instead, the acoustic perturbations are described by a (far more complicated) superposition of
Bessel functions (compare Eqns. (2.75) and (2.77)).

2.4 Results

This section presents numerical results based on the previous derivations on uniform (Sec. 2.2)
and linear (Sec. 2.3) temperature profiles. Over a wide parametric range of temperatures
(Sec. 2.4.1), this Section reports the respective eigenfrequencies (Sec. 2.4.2) as well as pres-
sure and velocity profiles (Sec. 2.4.3).

2.4.1 Parametric Set-Up

To faciliate a comparison, values selected for the channel length L = 4m, the temperature at
channel mouth T2 = 300K, and the pressure magnitude at the closed end P1 = 2000Pa agree
with the work by Sujith et al. [43]. The temperature range T1 also follows the study by Sujith
from 300K to 1100K at the closed end of the channel. Furthermore, the present study extends
the parameter range to temperatures below the mouth temperature of T2 = 300K, yielding the
range T1 = [100, 150, 200, 300, 500, 700, 900, 1100]K. Sujith and coworkers do not elaborate
on the product of heat capacity ratio γ and the specific gas constant R. However, the evaluation
of eigenfrequencies yields γR = 402.5 m2

s2K
. This motivates the selection of air-specific values γ=

1.4 and R = 287.5 m2

s2K
in the present study. The mean pressure along the channel is reconstructed

by the ratio of acoustic pressure and velocity amplitude to pm = 101325Pa.

Expanding the scope to the effect of viscous and thermal boundary layers, this work investigates
acoustics in the geometry of a (two-dimensional) channel flow between two confining parallel
plates at the (hydraulic) distance of 2rh . The geometric parameter rh controls the magnitude
of impact that the boundary layers exert on the fluid. In contrast, the kinematic viscosity ν =
1.516×10−5 m2

s and the Prandtl number Pr = 0.711 are constant.
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2.4 Results

Figure 2.2: First eigenfrequency ω for different temperatures T1 and channel widths rh .

The parameters fν and fκ from Eq. (2.23) specify the geometric shape of the channel flow.
Note that other geometries (circular/rectangular ducts, etc.) can easily be investigated by their
corresponding geometric functions [38].

2.4.2 Evaluation of Eigenfrequencies

This section presents the numerical evaluation of the first three acoustic eigenfrequencies ω0

in a quarter-wave channel. Equation (2.54) (uniform temperature distribution, T1 = T2) and
Eq. (2.80) (linear temperature distribution, T1 6= T2) are minimized with respect to the real- and
imaginary-valued part of the frequency ω. The necessity to evaluate complex-ordered Bessel
functions suggested using the software “Mathematica” [47]. The parametric set-up follows the
description of the previous Sec. 2.4.1.

Figures 2.2 to 2.4 display the development of the first three complex-valued acoustic eigenfre-
quencies ω0 (the real and imaginary values are depicted on the two axis of each plot). The solid
blue isolines ( ) represent instances of equal temperature distribution. The dashed red isolines
( ) indicate the channel width rh .
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Figure 2.3: Second eigenfrequency ω for different temperatures T1 and channel widths rh .
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Figure 2.4: Third eigenfrequency ω for different temperatures T1 and channel widths rh .
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First, investigating the limiting case of very wide channels (rh → ∞, here rh = 10m), the
complex-valued part of the eigenfrequency ω0 vanishes (see the bottom-most and unlabeled
dashed line ( ) of each plot). For this consideration, the effect of the hydrodynamic and ther-
mal wall-to-fluid impact is negligible, yielding the inviscid and non-heat-conducting limiting
case investigated by Sujith et al. [43]. Indeed, these real-valued eigenfrequencies perfectly agree
between the present study and the results reported by Sujith et al. [43]. Furthermore, the qual-
itative impact of the temperature distribution on the eigenfrequency is self-evident: Increasing
mean-temperatures increase the speed of sound and thus the eigenfrequency of the quarter-wave
channel.

Turning to narrower channel widths rh , the impact of hydrodynamic and thermal losses be-
comes apparent. Down to rh = 0.01m (second dashed line ( ) from the bottom in each plot),
the moderate gain in losses only triggers small shifts in eigenfrequency (real- and imaginary-
valued component). Narrowing the channel down to approximately rh = 0.001m (depending on
the order of the eigenfrequency), the relationship between the real- and imaginary-valued part of
the eigenfrequency ω0 continues to describe linear characteristics. A bend follows where the in-
crease in the imaginary-valued part of the eigenfrequency accelerates compared to the decrease
in the real-valued counter-part. After this bend, a circular characteristic of the complex-valued
eigenfrequency ω0 follows. The vanishing of its real part terminates the oscillatory behavior of
the system.

Before closing this section on eigenfrequencies, one unexpected observation is mentioned: For
the two lowest temperatures T1 = 100K and 150K, the first eigenfrequencies ω0 develop dif-
ferently compared to the higher temperature range. For clarity of the remaining content, these
two temperatures are excluded from Fig. 2.2. At large channel widths rh , the eigenfrequencies
at lower temperatures follow an expected path. However, particularly for T1 = 100K at medium
channel widths (and thus medium real parts of ω0), the imaginary part of ω0 strongly increases.
Finally, the real part of the eigenfrequency ω0 vanishes at a significantly raised imaginary part
of ω0 ≈ 600i 1s . This phenomenon requires further clarification, including whether boundary
conditions (physically/mathematically) are always satisfied.

2.4.3 Evaluation of Pressure and Velocity Profiles

In this section, pressure and velocity profiles (p1 ( ) and U1/A ( ), respectively) are pre-
sented for the first eigenfrequency of the quarter-wave channel. Equations (2.46) and (2.47)
describe the cases with homogeneous temperatures, Eqs. (2.75) and (2.77) the cases of linear
temperature distributions.

Figure 2.5 provides the local distribution of the absolute pressure
∣∣p1

∣∣ and velocity |U1/A| for
six distinct temperatures T1 and six channel widths rh (compare the consistency of parame-
ters with Fig. 2.2). For presentation, the velocity |U1/A| is displayed as a normalized pressure
|U1/A|ρ2c2, where ρ2 and c2 are the density and speed of sound at x = L where Tm = T2. Note
that boundary conditions are satisfied for each instance (p ′|x=0, t=0 = p1|x=0 ≡ P1 = 2000Pa,
U1|x=0 = 0 and p1|x=L = 0). The colored instances without data lie outside the parameter range
of an acoustically oscillating flow: The channel width rh falls below the threshold for which the
real-valued part of the eigenfrequency ω0 is larger zero (again, compare to Fig. 2.2).
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Figure 2.5: Absolute pressure amplitude
∣∣p1

∣∣ ( ) and velocity amplitude |U1/A| ( , factor
ρ2c2) for the first eigenfrequency at different temperatures T1 and channel widths
rh .
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Figure 2.6: Phase of pressure p1 ( ) and velocity U1/A ( ) for the first eigenfrequency at
different temperatures T1 and channel widths rh .
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A qualitative comparison reveals the clear influence of the temperature T1 on the velocity pro-
file. In the case of negligible viscous and heat-conductive effects (left column, rh = 10m), the
maximum velocity amplitude at x = L significantly increases from |U1/A| ≈ 4.5 m

s at tempera-
ture T1 = 300K to |U1/A| ≈ 7 m

s at temperature T1 = 1100K (moving down in Fig. 2.5). Turning
to smaller channel widths rh (moving right in Fig. 2.5), two temperature-dependent effects re-
veal: (i) A change in velocity amplitude: for low temperatures T1, the (low) amplitude increases,
whereas for large temperatures T1, the (large) amplitude decreases. (ii) A shift of the location of
maximum velocity: for low temperatures T1, the location of maximum velocity moves to larger
positions x (beyond the channel length L). For large temperatures T1, the maximum velocity
moves to smaller positions x, yielding the maximum velocity within the channel at 0 < x < L.

Temperature T1 and channel width rh also impact the curvature of the pressure profile
∣∣p1

∣∣.
However, for a qualitative evaluation, the differences are far less significant and not further
outlined at this point.

Figure 2.6 shows the corresponding phase profiles of the pressure p1 ( ) and velocity U1/A
( ). Again, the initial condition is fulfilled for each instance: 6 p ′|x=0, t=0 = 6 p1|x=0 ≡ 0. Next,
for the inviscid and non-heat-conducting limit (left column, rh = 10m), the temperature distri-
bution does neither affect the pressure nor the velocity phase: Both phases are constant along the
x-axis, with the pressure leading the velocity by an angle of ∆φ=π/2. Turning to smaller chan-
nel widths rh (moving right in Fig. 2.6), two effects are revealed: (i) A temperature-independent
decrease of the phase difference ∆φ: starting at ∆φ = π/2, the phase difference decreases to
∆φ = 0 when the real-part of the eigenfrequency vanishes (moving right in Fig. 2.6). Compar-
ison to Fig. 2.2 reveals that the three rows for T1 = 200K, 500K, and 900K perfectly capture
this threshold of vanishing oscillation. (ii) A temperature-dependent curvature and incline of
each phase profile: the curvature/incline initially increases before it decreases and vanishes as
∆φ approaches zero. The characteristic of the curvature (left/right, incline/decline) depends on
the temperature distribution. The homogeneous temperature profile at T1 = 300K yields the
threshold with no curvature at constant phases.

This discussion only provides pressure and velocity profiles for the first eigenfrequencyω0. This
particular eigenfrequency is consciously chosen for its primary relevance regarding the design
of quarter-wave resonators. The evaluation of profiles with higher eigenfrequencies exhibits
similar characteristics (see Sec. 2.7). The inviscid and non-heat-conducting limiting case of the
third eigenfrequency perfectly resembles the absolute pressure and velocity profiles displayed
in the work by Sujith et al. [43].

2.4.4 Validation

The inviscid and non-heat-conducting limit of the present work has been validated against the
results obtained by Sujith et al. [43]. This includes the analytical validation, the numerical vali-
dation of the first three eigenfrequencies ω0 (T1 = 300K to 1100K), and the numerical validation
of the absolute pressure and velocity profiles (T1 = 500K and 1100K).

Furthermore, all results displayed in Figs. 2.2 to 2.4 (first three eigenfrequencies, various tem-
peratures T1, and channel widths rh) were numerically validated against the underlying mo-
mentum and continuity equations (Eqns. (2.20) and (2.22)): The derived equations were used
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to calculate the pressure and velocity profiles (p ′ and U ′, respectively) and their derivatives in
respect to space and time along the finely discretized x-axis for various instances of time with
t = 2πφ/Re(ω0) with φ = (i /8)π and i = 0 to 7. Inserting these profiles into the conservation
equations, showed deviations of the order of machine precision and numerous orders of mag-
nitude below the actual amplitudes and their derivatives. Thus, the author is confident that the
derived equations satisfy Rott’s differential equations [38].

2.5 Summary and Conclusions on Duct Acoustics with Vis-
cous and Thermal Dissipation

This chapter presents two novel approaches for the analytical solution of acoustic equations
in channel flows. The underlying framework of Rott’s thermoacoustic approximation accounts
for hydrodynamic and thermal losses induced by the boundary layers at the channel walls. In
the case of spatially uniform temperature profiles, the solution is obtained in terms of char-
acteristic waves. Linear temperature profiles (at constant viscosity) require a transformation
into the temperature space to eliminate unknown coefficients. The general solution is applied
to a quarter-wave channel with an open and closed end. For this specific application, the thesis
presents quantitative results for the first three complex-valued eigenfrequencies that describe the
decaying characteristic of the acoustic oscillation. Selected examples of pressure and velocity
amplitudes and phases are presented and discussed. The calculated profiles are validated against
the underlying conservation equations. Existing literature serves as validation and discussion of
the inviscid and non-heat-conducting limit.

The present work provides insight into the impact of boundary layers on acoustic eigenfrequen-
cies and the consequent temporal decay of amplitudes: Increasing boundary effects (generated
by a decreasing channel width) lower the (real part of the) eigenfrequency subject to the de-
crease in the phase velocity. Besides, the temporal decay of the amplitudes increases. At a
certain threshold, the oscillating characteristic vanishes. The analytical nature of the derivations
allows the quick calculation of the velocity and temperature profiles. Boundary related effects
generate significant changes in oscillation amplitudes and phase shifts.

To model a process of more technical relevance (i.e., a combustion chamber operating at its
design point), the following Chapter 3 describes the adaption of the present framework to the
steady state oscillation of an acoustic quarter-wave resonator (i.e., the imaginary part of the
angular frequency is zero). Thereby, this thesis presents a novel modeling approach that spatially
resolves the resonator tube to predict its acoustic performance. The particular importance and
technical relevance of the hydrodynamic and thermal boundary layer will be highlighted and
discussed in more detail.

In future research, the present analytical and thus computationally efficient calculation method
of velocity and pressure profiles may serve to determine the axial heat flux (compare Chapter 4).
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2.6 Outlook: Considerations on Exponential Temperature
Profiles

This appendix outlines a solution strategy for exponential temperature profiles, reading:

Tm(x) = T0e−kx , (2.83)

and thus

dTm

dx
=−kT0e−kx =−kTm and

d2Tm

dx2
= k2T0e−kx = k2Tm . (2.84)

Using the linear properties from Eqs. (2.83) and (2.84) to simplify the transformed second order
differential equation (Eq. (2.66)) yields:

T 2
m

d2p1

dT 2
m

+ (2−d?)Tm
dp1

dTm
+ b?

a?
ω2/k2

γRTm
p1 = 0 , (2.85)

which, analogous to the set-up with the linear temperature profile, is a Sturm-Liouville equa-
tion [46]. The solution of this function is known:

p1 =c1b(1−d?)/2
(

1

Tm

)(1−d?)/2

Γ(d?)Jd?−1

(
ω

aexp

√
1

Tm

)

+ c2b(1−d?)/2
(

1

Tm

)(1−d?)/2

Γ(2−d?)J1−d?

(
ω

aexp

√
1

Tm

)
,

(2.86)

where c1 and c2 are complex-valued constants, J is the Bessel functions of first kind, and Γ the
gamma function. The constant aexp is defined as

aexp = |k|
2

√
γR

c?
. (2.87)

Subsequent derivations applied to linear temperature gradient (the analysis toward the volume
flow U1, the calculation of eigenfrequencies ω, and the final determination of the unknown
constants c1 and c2, see Secs. 2.3.1 and 2.3.2) also hold for the exponential case. However, the
corresponding formulas become significantly longer and are not further presented in this work.

2.7 Outlook: Pressure and Velocity Profiles for Higher Mode
Orders

For completeness, this appendix presents the additional pressure and velocity profiles for the
second and third eigenfrequency, respectively.
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Figure 2.7: Absolute pressure amplitude
∣∣p1

∣∣ ( ) and velocity amplitude |U1/A| ( , fac-
tor ρ2c2) for the second eigenfrequency at different temperatures T1 and channel
widths rh .
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Figure 2.8: Phase of pressure p1 ( ) and velocity U1/A ( ) for the second eigenfrequency
at different temperatures T1 and channel widths rh .
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Figure 2.9: Absolute pressure amplitude
∣∣p1

∣∣ ( ) and velocity amplitude |U1/A| ( , factor
ρ2c2) for the third eigenfrequency at different temperatures T1 and channel widths
rh .
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Figure 2.10: Phase of pressure p1 ( ) and velocity U1/A ( ) for the third eigenfrequency at
different temperatures T1 and channel widths rh .
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3 Modeling of an Acoustic Quarter-Wave
Resonator

The previous Chapter 2 studied acoustically oscillating channel flows at constant and linear
axial mean temperature profiles. The described model focused on the eigenfrequencies of a de-
caying oscillation in a quarter-wave channel. Building on the previous work, the present chapter
introduces an analytical model to predict the acoustic damping characteristics (e.g., the acous-
tic impedance) of quarter-wave resonators. The model focuses on the linear damping regime
and accounts for viscous and thermal losses formulated in Rott’s thermoacoustic theory. The
novelty of the present framework compared to existing models from the literature lies in the
spatially resolved evaluation of the acoustic properties along the resonator tube. Consequently,
the model does not require a fictive length parameter (i.e., for the modeling of an acoustically
compact, oscillating mass). The present approach is valid over an extended range of parameters
and accounts for thick hydrodynamic boundary layers. Furthermore, it examines more com-
plex configurations including thermal heat exchange with the surrounding walls. Thereby, the
separate treatment of hydrodynamic and thermal boundary layers allows modeling adiabatic
or isothermal resonator walls. Besides determining the overall acoustic characteristics at the
resonator mouth, the validated framework calculates the local pressure and velocity fluctuations
along the resonator tube. The present work focuses on uniform temperature within the resonator.
However, an extension to linear temperature profiles (see Sec. 2.3) shall be straight forward.

Section 3.1 outlines the fundamental background of acoustic resonators. In the following the
reference model for quarter-wave resonators by Laudien et al. [8] is presented (Sec. 3.1.1).
Section 3.2 develops the novel approach of the present study. Results of the new framework
are validated (Sec. 3.3) and discussed via the reflection coefficient and the acoustic impedance
(Sec. 3.4.2). Section 3.4.3 displays local profiles of acoustic velocity, pressure, and character-
istic waves along the resonator tube. Section 3.5 concludes the modeling method of a quarter-
wave resonator.

In rocket engine combustion chambers, strong temperature gradients affect the damping perfor-
mance of acoustic quarter-wave resonators. Therefore, an accurate prediction of the damping
characteristics is crucial for the safe operation of the engine. Section 5.1 presents a publica-
tion [12] and provides an overview of such a predictive numerical framework that quantifies the
temperature-dependent performance.

3.1 The Acoustic Resonator

Hard walls perfectly reflect an incident acoustic wave without losses. Thus, a confining wall
structure (e.g., a rocket engine combustion chamber) cannot absorb acoustic energy but only
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f

g

f

g

u1, p1

Figure 3.1: Sketch of a Helmholtz resonator (left) and a quarter-wave resonator (right).

diverts it. To prevent such potential feedback, acoustic resonators are commonly used to dissi-
pate energy at the walls. Consequently, the reflected acoustic wave returns less energy than the
incident wave.

Two widely applied types of resonators are the Helmholtz and the quarter-wave resonator (see
Fig. 3.1). The Helmholtz resonator consists of a cavity that connects to the surrounding by an
(acoustically compact) neck. In analogy to a mass-spring-damper system, the fluid within the
neck corresponds to the mass. The compressible gas in the backing cavity acts as the restoring
spring, and viscous dissipation (e.g., friction inside the neck) damps the system. This analogy
indicates the eigenfrequency as one important characteristic of acoustic resonators. It depends
on geometric properties (e.g., the neck length and the backing volume) and thermophysical
properties (e.g., via the speed of sound).

The quarter-wave resonator consists of a single tube. At its mouth, one side of the tube con-
nects to the wall surface, whereas the other end of the tube is closed. As the name of this
resonator suggests, the tube length corresponds to a quarter of the acoustic wavelength of its
eigenfrequency.

The dissipative properties of acoustic resonators result from two types of losses: First, viscous
friction along the walls generates linear losses. Second, for increased oscillation amplitudes,
the fluid flow may no longer follow the sharp, edge-shaped contours at the resonator mouth
and vortex shedding generates non-linear losses. Förner provides a comprehensive study on
the quantification of non-linear losses [30]. The present thesis focuses on linear losses at low
oscillation amplitudes.

The specific acoustic impedance describes the normalized ratio of the pressure and velocity
amplitudes (p1 and u1, respectively) at the resonator mouth:

zres = 1

ρmc

p1

u1
. (3.1)

Note that the velocity u1 directs in wall-normal direction (compare Fig. 3.1).

The reflection coefficient Rres relates the reflected acoustic g -wave to the incident f -wave:

Rres = g

f
= z −1

z +1
. (3.2)

Both the acoustic impedance and the reflection coefficient contain equivalent information. How-
ever, the reflection coefficient may appear as the more intuitive parameter: |Rres| = 1 indicates
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L

x

Tm

U ′|x=0 = 0

d = 4rh

p ′|x=Le = 0drop:

Le

δ0Lr

Figure 3.2: Geometry and boundary conditions of a quarter-wave resonator with geometrical
length L, end correction δ0, and effective length Le . Laudien et al. [8] proposed the
fictive neck length Lr as a fitting parameter.

a fully reflecting boundary without losses, while |Rres| = 0 corresponds to a perfectly absorbing
interface. In the range 0 < |Rres| < 1, a reduced reflection occurs. Due to energy conservation,
the reflection coefficient |Rres| cannot exceed unity for a passively damped system.

3.1.1 Analytical Model by Laudien et al.

In 1896, Rayleigh [48] modeled the Helmholtz resonator as a mass-spring-damper system.
Since then, many authors (see e.g., [49, 50]) have applied this analogy to describe the behavior
of acoustic resonators in a semi-analytical way. This section outlines the work by Laudien et
al. [8], who extended the former model to calculate the acoustic impedance of a quarter-wave
resonator. Consecutive analytical and numerical studies expanded on temperature inhomogene-
ity along the resonator axis [9, 12].

Laudien et al. [8] devolved an acoustic model for a quarter-wave resonator. They extended
a mass-spring-damper system, initially applied to the acoustically compact Helmholtz res-
onator [48–50], to the geometry of a quarter acoustic wavelength. The imaginary part of the
specific impedance, the reactance, reads:

Im(zres,Laud) =−cot

(
ωLe

c

)
, (3.3)

and describes the ratio of pressure and velocity fluctuations in the absence of losses. The ef-
fective length Le adjusts the geometric tube length L by an end correction δ0, a well-known
correlation for a piston radiating into half-space [51]:

Le = L+δ0 ≈ L+ 4

3π
d , (3.4)

where d = 4rh is the tube diameter.1

The real part of the specific impedance, the resistance, follows from the assumption of equal
eigenfrequencies of the quarter-wave tube and the analogy to a Helmholtz resonator modeled

1This – admittedly contra-intuitive – correlation follows from the definition of the hydraulic radius (compare
Eq. (2.25)).
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as a mass-spring-damper system:

Re(zres,Laud) = 2

(
1+εnl +

Lr

d

) p
2νω

c
, (3.5)

where εnl includes non-linear effects (see e.g., [49, 52]) and Lr is the fictive neck length used
as a fitting parameter [9] (compare Fig. 3.2).

Lr

d
≈ 0.405

L

d
−0.08 . (3.6)

The model by Laudien et al. [8] includes several limitations: It (i) only holds for cylindrical
ducts with small boundary layers δν, (ii) thermal exchange with the walls of the tube is not in-
corporated, and (iii) the resistance is calculated via a fictive neck-length based on an acoustically
compact analogy, tuned to match eigenfrequencies. Thus, there is no continuous spatial evalua-
tion over the resonator length. Despite its limitations, the model by Laudien et al. [8] serves for
validation (Sec. 3.3) and discussion (Sec. 3.4) of the proposed novel model (Sec. 3.2).

3.2 Novel and Spatially Resolved Model

The previous Chapter 2 suggests a framework to calculate the eigenfrequencies of a quarter-
wave channel depicted in Fig. 3.2: The resonator of effective length Le (geometric length
L = Le − δ0) and diameter d = 4rh (the hydraulic radius of a tube is half the actual radius)
is closed at x = 0 (implying U1|x=0 = 0) and open at x = Le (implying p1|x=Le = 0). Results
show an exponential decay of acoustic amplitudes in time. However, this set-up is of little prac-
tical relevance. In technical applications operating at (time-averaged) steady state, resonators
dissipate acoustic energy at constant (periodic) amplitudes. Obviously, the boundary conditions
outlined above cannot hold: The presence of a pressure node at the resonator mouth contradicts
a continuous flow rate of energy (which corresponds to the product of velocity and pressure).
Thus, this assumption is dropped in the present study to allow operating conditions such that
energy is conserved: The dissipated energy by the resonator equals the flow rate from the out-
side. The present thesis proposes a novel method to calculate the specific acoustic impedance
zres based on this idea. The following considerations are applied to the previous derivations
with homogeneous mean temperature dTm/dx = 0 (compare Sec. 2.2). However, an extension
to linear mean temperature (Sec. 2.3) should be straight forward.

The boundary condition U ′|x=0 = 0 at the closed end of the resonator x = 0 (compare e.g.,
Eq. 2.52) directly yields the ratio of the characteristic amplitudes F̂ and Ĝ:

F̂ = Ĝ . (3.7)

Inserting the pressure p1 (Eq. (2.46)) and velocity u1 (Eq. (2.47)) into the specific impedance
zres (Eq. (3.1)) yields at the resonator mouth x = Le :

zres = e−i kx Le +e i kx Le

−pa?b?
(
e−i kx Le −e i kx Le

) . (3.8)
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Note that the direction of velocity u1 within the resonator (according to Eq. (2.47)) opposes the
wall-normal direction pointing into the resonator (compare Fig. 3.2). Therefore, the velocity u1

is considered with the opposite sign in Eq. (3.1).

Considering the cross-sectional area jump between the resonator and the surrounding environ-
ment terminated by a hard wall (Rwall = 1, area ratio β = (Awall + Ares)/Ares, and Ares = 4πrh)
yields the overall reflection coefficient R [8]:

R = βzres −1

βzres +1
. (3.9)

This transformation incorporates the corresponding velocity jump across the area change.

The incident acoustic wave (index +) reaches the wall-resonator interface at x = L+
e with the

amplitude Ĝ+. The previous characteristic derivations for the pressure p ′ (Eq. (2.46)), velocity
u′ (Eq. (2.47)), and wavenumber kx (Eq. (2.44)) are also valid outside of the resonator tube and
significantly simplify within this inviscid and non-heat-conductive environment: a? = b? = 1.
It directly follows that at x = Le :

F̂+ = RĜ+ (3.10)

and
p ′

ρc

∣∣∣∣
x=Le

= (1+R)
Ĝ+

2
. (3.11)

Note: For the modeling of the end correction δ0, an equivalent (slightly longer) resonator
of length Le – that does not require an end correction – is considered. Thus, the front wall
(resonator-to-environment interface) lies at position x = Le . The end correction is required to
include multi-dimensional effects at the resonator mouth, whereas the underlying framework of
an (zero-dimensional) area jump neglects these effects.

The acoustic pressure p ′ does not change across the area jump at the resonator mouth. Thus,
the specific values for F̂ = Ĝ follow from the pressure coupling condition at the mouth of the
resonator (x = Le):

F̂ = Ĝ = (1+R)Ĝ+

exp
(
−iω

√
b?
a?

L
c

)
+exp

(
iω

√
b?
a?

L
c

) . (3.12)

The two loss mechanisms of the present model are attributed to hydrodynamic and thermal wall
interaction along the complete resonator axis: (i) within the hydrodynamic boundary layer, en-
ergy is reduced via viscous dissipation, and (ii) within the thermal boundary layer, energy is
reduced via a heat flux between the fluid and wall. The model does not account for non-linear
losses (i.e., generated by vortex shedding at the edges of the resonator mouth). The incorpora-
tion of such effects (e.g., via the coefficient εnl , compare Eq. (3.5)) would require modifications
of the “jump condition” at the discrete location of the resonator mouth (x = Le) and is not further
examined in the present thesis.

3.3 Validation

In this section, the present model is validated against the analytical framework by Laudien et
al. [8] (which is validated against experimental results) and against numerical results by van
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Figure 3.3: Validation of the magnitude of the reflection coefficient R vs. the frequency f .
Analytical results ( ) by Laudien et al. [8], numerical results ( ) by van Buren
et al. [12], and the present model: end correction and adiabatic walls ( ), end
correction and isothermal walls ( ), and no end correction and adiabatic walls
( ).

Buren et al. [12] (see Sec. 5.1, reproduced in the Appendix on p. 113 ff.). The validation is
restricted to thin hydrodynamic boundary layers compared to the tube diameter: δν ¿ d , a
restriction that applies to the model by Laudien et al. [8]. Nevertheless, the underlying frame-
work of characteristic acoustic waves with losses (Sec. 3.1) is validated against the conservation
equations of Rott’s thermoacoustic theorem (see Sec. 2.4.4).

The validation set-up corresponds to the study by van Buren et al. [12] (see Sec. 5.1, reproduced
in the Appendix on p. 113 ff.) at the spatially constant temperature Tm = 647K. Figure 3.3 de-
picts the magnitude of the reflection coefficient R vs. the frequency f . Applying the end correc-
tion to the present model ( ), the results show very good agreement with existing analytical
results ( , Laudien et al. [8]) and good agreement with numerical results ( , van Buren et
al. [12]). The dotted red line ( ) illustrates the influence of the small fluid portion in front of
the resonator mouth: not accounting for the end correction leads to a shift in eigenfrequency.
Note that the end correction has a predominant effect at large tube diameters d compared to the
geometric length L. For the latter results where d ¿ L, this effect is (close to) negligible.

Also, note the influence of fluid-wall heat exchange ( ) that significantly affects the reflection
amplitude. Laudien et al. [8] and van Buren et al. [12] assume adiabatic walls, which implies
δκ → 0 ( fκ → 0 and a? → 1). The present model allows to drop this restriction and, thus to
consider thermal boundary layer effects.
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3.4 Results

3.4.1 Parametric Set-Up

The effective resonator length is Le = 4m at a mean temperature of Tm = 300K. The mean
pressure along the resonator is pm = 101325Pa. Following the study of the previous Chapter 2,
air-specific values for the heat capacity ratio γ = 1.4 and the gas constant R = 287.5 m2

s2K
are

selected.

Evaluating the effect of viscous and thermal boundary layers, this work investigates acoustics in
a circular tube geometry with a hydraulic radius rh . The hydraulic radius rh controls the impact
that the boundary layers exerts on the fluid, whereas the kinematic viscosity ν= 1.516×10−5 m2

s
and the Prandtl number Pr = ν/κ = 0.711 are constant. The initial condition of the incident
acoustic wave is Ĝ+ = 1 m

s . The present study covers three different area jumps to the environ-
ment with β = 1, 10, and 100. The limit of β = 1 describes a transition from the tube (wall-
effects) to the surrounding region (no wall-effects) without an area jump (e.g, a thermoacoustic
stack). For the application of resonator rings in combustion chambers, β = 10 is selected. Fi-
nally, β= 100 characterizes a large area jump as it may be found in acoustic liners and as it was
applied in numerical studies by van Buren et al. [12] (see Validation in Sec. 3.3).

3.4.2 Evaluation of Reflection Coefficient and Impedance

First, results that include hydrodynamic and thermal boundary layers are presented. Figure 3.4
shows the magnitude of the reflection coefficient R (first row), resistance Re(z) (second row),
and reactance Im(z) (third row) vs. the angular frequency ω and the hydraulic radius rh . From
left to right, three different area ratios β = 1, 10, and 100 are selected. Minimum reflection
occurs when the specific resistance Re(z) = 1 and the specific reactance Im(z) = 0 ( in the
corresponding plots). The optimal resistance shifts to larger radii rh with an increasing area ra-
tio β. Furthermore, the gradient in reactance increases. Overall, these two dominant changes in
resistance and reactance impact the reflection coefficient as follows: (i) a shift of minimum re-
flection towards larger radii rh (i.e., due to the reduced impact of viscosity) while the frequency
ω is almost unaffected and (ii) a narrowing bandwidth in frequency ω while the bandwidth in
the hydraulic radius rh is almost unaffected. The blue dots ( ) indicate the parametric set-ups of
the latter discussion of the acoustic profiles (see Sec. 3.4.3). Furthermore, the central blue dot
( ) indicates the parametric set-up of minimum reflection in each plot (also compare Table 3.1).

Second, Figure 3.5 excludes the effects of thermal boundary layers, making the results more
comparable to the model by Laudien et al. [8]. The specific reactance is almost unaffected by
the lack of thermal exchange. However, the resistance changes, particularly at low frequencies
ω and large area ratios β. Consequently, the parametric set-up of minimum reflection shifts to
smaller hydraulic radii rh for β= 10 and 100. This observation agrees well with the validation
section, where the thermal boundary layers affects the amplitude of the reflection coefficient R,
but not the frequency ω.

For completeness, Fig. 3.6 shows the corresponding contour maps calculated with the model by

43



Modeling of an Acoustic Quarter-Wave Resonator

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50

100

150

200

ω
[1
/s
]

0.5

0.5

1

1

1.5

1.5

1.5

2

2

2

2.5

2.5

3

3

3.5

3.5

4

4

4.5
50

100

150

200

ω
[1
/s
]

-1.5

-1

-0.5

0
0.5

1

1.5

50

100

150

200

ω
[1
/s
]

10
-4

10
-3

10
-2

10
-1

r h [m]

0.1
0.2

0.3 0.4

0.5

0.6

0.7

0.8

0.9

0.5

1

1.5

2

2.5

3

3.5

4

4.5

4.5

-1.5

-1

-0.5

0
0.5

1 1.5

10
-4

10
-3

10
-2

10
-1

r h [m]

0.20.30.40.50.60.7
0.8

0.9

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-1.5

-1

-0.5

00.51

1.5

10
-4

10
-3

10
-2

10
-1

r h [m]

β= 1 β= 10 β= 100

|R|

Re(z)

Im(z)

Figure 3.4: Model of the present study: Reflection coefficient |R| (first row), specific resistance
Re(z) (second row), and specific reactance Im(z) (third row) vs. the frequency ω

and hydraulic radius rh . From left to right, three different area ratios β = 1, 10,
and 100 are shown. The blue dots ( ) indicate the parametric set-ups of the latter
discussion of the acoustic profiles (see Sec. 3.4.3). Furthermore, the central blue
dots indicate the parametric set-ups of optimal damping (|R| = 0).
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Figure 3.5: Model of the present study without thermal boundary layer: Reflection coefficient
|R| (first row), specific resistance Re(z) (second row) and specific reactance Im(z)
(third row) vs. the frequency ω and hydraulic radius rh . From left to right, three
different area ratios β= 1, 10, and 100 are shown.
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Figure 3.6: Model by Laudien et al. [8]: Reflection coefficient |R| (first row), specific resistance
Re(z) (second row) and specific reactance Im(z) (third row) vs. the frequencyω and
hydraulic radius rh . From left to right, three different area ratios β= 1, 10, and 100
are shown.
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ω
[
1
s

]
rh [m]

complete no thermal Laudien complete no thermal Laudien
1 135.00 141.58 136.46 4.629e−4 4.448e−4 1.501e−4

β 10 128.70 129.65 136.46 2.876e−3 2.134e−3 1.505e−3
100 135.60 135.61 136.46 2.744e−2 1.880e−2 1.543e−2

Table 3.1: Parametric set-up of minimum acoustic reflection for the (i) complete model
(Fig. 3.4), the (ii) adjusted model with no thermal boundary layers (Fig. 3.5), and
the (iii) model by Laudien et al. [8] (Fig. 3.6).

Laudien et al. [8]. Clear deviations exist at low radii rh , which result from the assumption of thin
hydrodynamic boundary layers (δν ¿ rh) implied by Laudien et al.: Close to eigenfrequency
ω0 = 136.46 1

s , the hydrodynamic boundary layer is δν ≈ 0.015m. In the vicinity of minimum
reflection, this obviously contradicts the assumption of relatively small boundary layers for the
two instances with area ratios of β= 1 and β= 10 where the tube diameter is d ≈ 0.0006m and
d ≈ 0.006m, respectively. Only results for β = 100 with d ≈ 0.06m approach the assumption.
Thus only for β= 100 the model by Laudien and coworkers yields potentially accurate results.

Table 3.1 summarizes the parametric set-up of minimum acoustic reflection for the three models
presented above.

3.4.3 Evaluation of Spatial Pressure and Velocity Profiles

The present section focuses on the novel model with viscous and thermal losses (i.e., compare
to the results of Fig. 3.4). Figures 3.7 to 3.14 show spatially resolved profiles for the pressure
p1 and velocity U1/A and for the characteristic acoustic f and g -waves. Each complex-valued
profile is presented via its magnitude and phase. Figures 3.7 to 3.10 correspond to the geometry
without an area jump (i.e., β = 1) and Figs. 3.11 to 3.14 to β = 10. The central plot of each
figure presents the parametric set-up of minimum acoustic reflection (i.e., |R| ≈ 0). To the left
and right, the hydraulic channel width rh varies by the factors 10−0.3 and 100.3, respectively. To
the top and bottom, the angular frequency varies by ±50 1

s (β= 1) and ±20 1
s (β= 10). The blue

dots ( ) in Fig. 3.4 mark the nine selected parametric set-ups from Fig. 3.7 through 3.14.

The physical quantities of pressure p1 and velocity U1/A (β= 1, magnitude: Fig. 3.7 and phase:
Fig 3.8) show a few characteristics worth mentioning: First, note that the pressure ( ) and the
velocity ( ) are contentiously resolved in space. Neither the magnitude nor the phase shows
discontinuities, particularly not at the front interface at x = 4m. Second, the acoustic velocity
diminishes at the backing wall of the resonator (x = 0m).

In front of the resonator (x > 4m) and for the non-reflecting interface (|R| = 0, central plot in
Fig. 3.7), the magnitude of the normalized pressure and velocity is spatially constant and equals
|p1|/(ρc) = |U1|/A = Ĝ+/2 = 0.5 m

s (there is no reflected f -wave). This corresponds to a purely
traveling acoustic g -wave. For the remaining instances with 0 < |R| < 1, pressure and velocity
show wavy characteristics without pressure and velocity nodes. The reflected f -wave is of lower
magnitude than the incident g -wave. The product of pressure p1 and velocity u1 scales with the
rate of dissipated energy within the resonator and is larger than zero at the resonator mouth.
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Figure 3.7: Magnitude of normalized pressure
∣∣p1

∣∣/(ρc) ( ) and velocity |U1|/A ( ) for
β= 1.
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Figure 3.8: Phase of pressure 6 p1 ( ) and velocity 6 U1 ( ) for β= 1.
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Figure 3.9: Magnitude of the characteristic waves
∣∣ f

∣∣ ( ) and
∣∣g ∣∣ ( ) for β= 1.
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Figure 3.10: Phase of the characteristic waves 6 f ( ) and 6 g ( ) for β= 1.
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Turning to the phase diagrams (Fig. 3.8), the central case on a non-reflecting boundary yields
a constant spatial change in the phase of pressure p1 and velocity u1 in front of the resonator.
Again, this indicates a purely traveling acoustic wave, where pressure and velocity maxima
travel with the speed of sound c.

Figures 3.9 and 3.10 show the corresponding characteristic f and g -waves. The incident g -wave
( ) travels from right-to-left and the reflected f -wave ( ) from left-to-right. Outside of the
resonator (x > 4m), the flow is isentropic. Thus the magnitude of the two characteristic waves
is spatially constant. Its ratio yields the reflection the magnitude of the reflection coefficient R.
Inside the resonator tube (x < 4m), the viscous and thermal dissipation yields an exponential
spatial decay in magnitude. Moving to the left plots of Fig. 3.9, smaller hydraulic radii ri induce
higher losses and thus a stronger decay. At the hard backing wall of the resonator (x < 0m) with
Rwall = 1, a continuous transition from g to f -wave shows.

Within each domain (resonator tube and isentropic environment) the characteristic waves travel
with constant speed (compare constant slopes in Fig. 3.10). They correspond to the phase speed
and the speed of sound, respectively. For narrow resonator tubes with small hydraulic radii rh ,
note the more significant change towards a steeper slope, indicating a more decreased phase
velocity.

Figures 3.11 to 3.14 extend to the area jump corresponding to β = 10. Most discussions agree
with those of the previews set-up (β= 1). Thus, this section highlights the relevant differences.

Inside the resonator, the area jump β = 10 leads to a strong increase of the magnitude in pres-
sure |p1| and velocity |U1|/A (Fig. 3.11, note the normalization by the area ratio β= 10 inside
the resonator). This increases the dissipation rate and balances the increased incident acoustic
energy due to the increased area of the environment. The area jump leads to a discontinuity in
the magnitude of the velocity profile. The magnitude of the pressure, as well as the phase of
pressure and velocity (Fig. 3.12), show continuous transitions over the resonator-environment
interface.

At the area ratio β = 10, the magnitude of the characteristic f and g -waves (Fig. 3.13) clearly
deviates from the results obtained at β = 1: Figure 3.4 reveals that the area jump significantly
increases the optimum hydraulic radii hr for minimum acoustic reflection. Thus, the spatial
decay of the in-traveling g -wave to the out-traveling f -wave clearly decreases. The characteris-
tics within the resonator tube approach those of a standing acoustic wave. This conclusion also
shows in Fig. 3.11, where the pressure amplitude p1 converges to a pressure node. The slopes
in the characteristic phase (Fig. 3.14) reveal the (close to) accordance between phase velocity
and the speed of sound.

The finding of overall (close to) standing wave characteristics generates important insight for
future work. E.g., the derivation of longitudinal heat transfer within the resonator may build on
the underlying pressure and velocity oscillations of a standing wave.
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3.4 Results

Figure 3.11: Magnitude of normalized pressure
∣∣p1

∣∣/(ρc) ( and ) and velocity |U1|/A
( ) for β= 10. The velocity ( ) and pressure ( ) are normalized by the area
ratio β= 10 within the resonator (x < 4m).
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Figure 3.12: Phase of pressure 6 p1 ( ) and velocity 6 U1 ( ) for β= 10.
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3.4 Results

Figure 3.13: Magnitude of the characteristic waves
∣∣ f

∣∣ ( ) and
∣∣g ∣∣ ( ) for β = 10. Within

the resonator (x < 4m) the characteristic waves are normalized by the area ratio
β= 10.
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Figure 3.14: Phase of the characteristic waves 6 f ( ) and 6 g ( ) for β= 10.
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3.5 Summary and Conclusions on the Novel Model of a Quarter-Wave Resonator

3.5 Summary and Conclusions on the Novel Model of a
Quarter-Wave Resonator

The present work develops a novel analytical model for acoustic quarter-wave resonators. The
study accounts for viscous and thermal losses formulated in Rott’s thermoacoustic theory. Un-
like existing models from the literature, the present framework continuously evaluates the spa-
tial acoustic properties along the resonator tube. The separate treatment of hydrodynamic and
thermal boundary layers allows modeling adiabatic as well as isothermal resonator walls.

The present model is validated against the analytical model by Laudien et al. [8] and numerical
results by van Buren et al. [12]. Thereby, the significant impact of wall-to-fluid heat transfer is
revealed. Furthermore, the importance of an end correction shows.

The study reports overall acoustic characteristics of the resonator (acoustic impedance z and
reflection coefficient R) over a wide parametric range. Local pressure and velocity fluctuations
are carefully discussed. The presentation as characteristic waves reveals an important insight
for future studies: At larger area jumps (e.g., β≥ 10, typical in many technical applications), the
dissipation within the resonator is primarily generated by high oscillation amplitudes rather than
a strong spatial decay. Thus, consecutive studies may also use inviscid approaches to estimate
the acoustic profiles of a standing wave.

The present model considers spatially constant temperature profiles within the resonator. Based
on previous derivations in Sec. 2.3, future work may extend the framework to linear temperature
profiles. Such temperature inhomogeneities are of particular interest in rocket engine combus-
tion chambers, where extreme temperature gradients exist between the hot combustion products
and the regeneratively cooled chamber walls. Section 5.1 presents the numerical framework of a
publication [12] that quantifies the influence of the local temperature distribution on the acoustic
damping performance of a quarter-wave resonator.
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4 Heat Transfer in Resonators

The present chapter focuses on longitudinal heat transfer inside a quarter-wave resonator. A
comprehensive understanding of the thermal mechanisms in oscillating flows is of particular
relevance for the derivation of accurate temperature distributions required for the subsequent
calculation of the acoustic performance (compare Chapter 3).

The first part of the present chapter compares analytical work by Kurzweg [27] with the ther-
moacoustic theory by Rott [38]. Kurzweg studied longitudinal heat transfer in incompressible
oscillating channel flows between parallel plates via the effective longitudinal thermal diffu-
sivity (Sec. 4.1.1). Subsequent simplifications are proposed in Sec. 4.1.2. Rott quantified the
so-called total power as an important measure for thermoacoustics (Sec. 4.1.3). This power is
not acoustic power, not heat and not mechanical power, but a more subtle quantity: Imagine
a control volume around an adiabatic stack. In a steady state and time-averaged over an inte-
gral number of acoustic cycles, the energy inside the system needs to be preserved. Thus the
rate of total power inflow must be equal to the outflow rate. In direct comparison, the formula-
tion by Kurzweg benefits from a more general wall-temperature setting that evaluates conjugate
heat transfer in the fluid and the wall. On the other hand, Rott’s theory considers pressure fluc-
tuations. The comparison of the two approaches gives insight into the individual strengths of
each approach. In particular, the respective field of application (incompressible/compressible,
transient wall temperatures, etc.) becomes apparent.

In Sec. 4.2, the present thesis shows that both studies (Kurzweg and Rott, respectively) analyt-
ically yield the same results for the total power flow rate within a shared range of applicability
(location of a pressure node and a temporally constant wall temperature). A numerical exam-
ination over a wide range of parameters reveals that both velocity- or pressure-related energy
transfer may dominate in a standing wave (e.g., in a quarter-wave resonator, Sec. 4.3).

Section 5.2 presents a publication [53] and concludes with a theoretical investigation of the
prevailing heat transfer mechanisms that define the problem at hand. The interplay of the hy-
drodynamic and thermal boundary layers is analyzed in more detail in this context.

4.1 Summary of the Analytical Approaches

The first part of the present chapter provides an overview of Kurzweg’s work (Sec. 4.1.1) and
proposes simplifications (Sec. 4.1.2). An introduction of Rott’s total power follows in Sec. 4.1.3.
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Figure 4.1: Heat transfer in oscillating channel flow as studied by Kurzweg [27].

4.1.1 Effective Thermal Diffusivity by Kurzweg

In 1985, Kurzweg analytically investigated the longitudinal heat transfer in oscillating channel
flows [27]. His motivation derived from numerous studies that reported enhanced axial dis-
persion of passive scalars – such as contaminations – induced by oscillations [54–57]. The-
oretical [58] and experimental studies [59] support Kurzweg’s work. In subsequent studies,
researchers elaborated on analyzing the so-called dream pipe, a bundle of capillary heat transfer
tubes [60–63]. The technical relevance for the industrial field is shown, e.g., by the topical work
of Bothien and Wassmer [64] (influence of the temperature on the damping characteristics of a
Helmholtz resonator) or Ćosić et al. [65] (concentration gradients in resonator tubes).

For the analytical derivation of the effective thermal diffusivity κe , Kurzweg considered oscil-
lating channel flow under the following assumption [27]:

• the oscillating channel flow is laminar and incompressible,

• the set-up is two-dimensional,

• the heat transfer in the wall and channel flow is coupled (conjugate heat transfer),

• the velocity oscillation follows the exact solution of the “Stokes problem”,

• the heat transfer mechanisms are heat conduction (axial and radial) in the wall, and

• heat conduction (axial and radial) as well as convective (axial) heat transfer in the fluid.

Figure 4.1 depicts the set-up under investigation: Two parallel solid walls confine a fluid channel
of width 2rh in the z-direction. The non-dimensional position normal to the wall reads η= z/rh

with the symmetry-line of the channel located at z = η= 0. Both walls are of thickness 2b and
periodically adjoin neighboring fluid channels, yielding the indicated symmetry condition. The
wall-to-channel ratio ε is an important geometrical parameter of the configuration:

ε≡ b + rh

rh
. (4.1)
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4.1 Summary of the Analytical Approaches

Assuming harmonically oscillating laminar flow driven by the non-dimensional pressure gradi-
ent

λ≡
∣∣∂p/∂x

∣∣r 2
h

ρu0ν
, (4.2)

the axial velocity u is given by the real part of the harmonic oscillation

u(η, t ) = u0 f (η)e iωt = u0
iλ

α2

[
1− cosh(

p
iαη)

cosh(
p

iα)

]
e iωt , (4.3)

where u0 is a representative velocity and α the Womersley number:

α≡ rh

√
ω

ν
. (4.4)

For further non-dimensional interpretation, the tidal displacement averaged over the channel
width reads [27]:

∆x = 2u0λ

ωα2

∣∣∣∣∣1− tanh(
p

iα)p
iα

∣∣∣∣∣ . (4.5)

To determine the local, time-dependent temperature T (x,η, t ), differential equations for the solid
and the fluid domain are formulated. Within the solid wall, heat conduction is the only transfer
mechanism, whereas the fluid domain also accounts for convective transport induced by the
oscillating flow. The ratio of the respective thermal conductivities k f in the fluid and ks in the
solid is denoted by

µ≡ k f

ks
. (4.6)

Having found closed expressions for velocity u(η, t ) and temperature T (x,η, t ), the effective
thermal diffusivity κe is formulated as the convective transport integrated across the channel
width over one oscillation period:

κeγT = ω

2π

∫ 2π/ω

0

∫ 1

0
Re

[
T (x,η, t )

]
Re

[
u0 f (η)e iωt

]
dη dt , (4.7)

where γT is the constant temperature gradient.

In non-dimensional presentation, Kurzweg [27] formulates the solution of Eq. (4.7) as

κe

ω∆x2
= Pr

[
(1−H)h̄ + (1− H̄)h

]+ (h̄ − j̄ H̄)+ (h − j H)

16α2(Pr2−1)
∣∣∣1− tanh(

p
iα)p

iα

∣∣∣2 , (4.8)

where
h(α) =

p
iα tanh(

p
iα) , (4.9)

j (Pr,α) =
p

i Prα tanh(
p

i Prα) , (4.10)

and

H(Pr,µ,σ,α,ε) = 1

Pr

µ
p

Prtanh(
p

iα)+p
σ tanh(

p
iσPrα(ε−1))

µ tanh(
p

i Prα)+p
σ tanh(

p
iσPrα(ε−1))

, (4.11)
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where

σ≡ κ f

κs
(4.12)

is the ratio of the thermal diffusivities κ in the fluid and the wall, respectively.

The bar-operator ·̄ denotes the complex conjugate of the functions h, j , and H . Kurzweg’s final
correlation reveals that the non-dimensional presentation in Eq. (4.8) is solely a function of
material properties (Pr, µ, and σ), geometry (ε), and Womersley number α.

4.1.2 Simplification to the Derivation of Kurzweg

To facilitate the comparison of Kurzweg’s results with Rott’s acoustic theory, the wall-
temperature is adjusted. Instead of a coupled system where conjugate heat transfer leads to
temporal temperature oscillations within the wall, van Buren and Polifke [66] (see Sec. 5.3.2,
reproduced in the Appendix on p. 155 ff.) suggested the following assumption for temporally
constant, but spatially linear wall temperatures (temperature gradient γT = dT /dx). They stud-
ied a set-up characterized by a solid of high specific heat capacity cp , density ρ, and thermal
conductivity k compared to the fluid. In particular, this holds for metallic walls, confining a
channel filled with air and allows the following assumptions:

k f ¿ ks →µ≈ 0 (4.13)

and

ρ f c f ¿ ρscs . (4.14)

For the ratio of thermal diffusivities σ, no definite limit exists due to the opposing effects of
thermal conductivity and heat capacity.

Regarding the geometry, a small channel width rh much smaller than the wall thickness b yields:

rh ¿ b → ε≈∞ . (4.15)

This set-up is typical for quarter-wave resonators in rocket engine combustion chambers.

The physical interpretation of the proposed assumptions yields a Dirichlet boundary condition
at the fluid-solid interface (z = rh). A simplified version (denoted by the star ?) of Kurzweg’s
solution (4.8) reads [66]:

κ?e
ω∆x2

= Pr Re(h)− 1
Pr Re( j )

8α2(Pr2−1)
∣∣∣1− tanh(

p
iα)p

iα

∣∣∣2 . (4.16)

This derivation exploits that H? = 1/Pr is purely real-valued. Consequently, the expansion of
the complex conjugate terms in the numerator of Eq. (4.8) simplifies such that all imaginary-
valued parts cancel out.
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4.2 Analytical Transformation: Kurzweg vs. Rott

4.1.3 Total Energy Flux by Rott

The assumptions of Rott’s fundamental thermoacoustic theory, the underlying conservation
equations for mass and momentum conservation, and the resulting differential equations for
the pressure p1 and volume flow rate U1 were previously presented in Sec. 2.1.3. Based on
this framework, Rott defines the total power flux Ḣ by the local energy flux density (whose
divergence would cause a transient change in energy per unit volume). It combines convective
transfer of specific enthalpy and kinetic energy, heat conduction, and effects attributed to vis-
cous stress. Rott approximates the total power flux Ḣ2 in the x-direction as the time average
over the cross-sectional area of the channel. The final formula for the total power Ḣ2 reads:

Ḣ2 =1

2
Re

[
p1Ū1

(
1− fκ− f̄ν

(1+Pr)
(
1− f̄ν

))]

+ ρmcp |U1|2
2Aω

(
1−Pr2

)∣∣1− fν
∣∣2 Im

(
fκ+Pr f̄ν

) dTm

dx

− (
A f k f + Asks

) dTm

dx
,

(4.17)

where the subscript 2 denotes that the term is of second-order. The expression consists of three
terms: the first describes an interplay of pressure and velocity oscillations, the second term
solely considers convective heat transfer via the velocity oscillations, and the third term accounts
for the underlying thermal diffusivity of the fluid and the solid. The following Sec. 4.2 focuses
on the second term and compare the convective transport to the formulation by Kurzweg. Sec-
tion 4.3 also discusses the influence of the two remaining first and third terms in more detail.

4.2 Analytical Transformation: Kurzweg vs. Rott

This section shows that the formulations of Kurzweg and Rott are identical at positions where
the assumptions of both derivations match. This position presents the pressure node of a stand-
ing wave, as Kurzweg does not account for any effects of compressibility. In this case, the first
term of Eq. (4.17) in Rott’s correlation equals zero. Furthermore, the formulation for the ef-
fective thermal diffusivity κe by Kurzweg does not include longitudinal heat transfer by pure
heat conduction, but only convective transport (compare Eq. (4.7)). Thus, also the third term of
Eq. (4.17) should be ignored. According to Fourier’s law, the heat flux Ḣ2 should be propor-
tional to the cross-sectional area A f and to the negative temperature gradient dTm/dx:

Ḣ2 =−k+
e A f

dTm

dx

=−κ+e ρmcp A f
dTm

dx
,

(4.18)
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where k+
e denotes the effective longitudinal thermal conductivity (derived from the set of equa-

tions by Rott). Combining Eq. (4.18) and the second term of Eq. (4.17) yields:

κ+e =− Ḣ2

ρmcp A f
dTm
dx

=− |U1|2
2A2

f ω
(
1−Pr2

)∣∣1− fν
∣∣2 Im

(
fκ+Pr f̄ν

)
.

(4.19)

The tidal displacement ∆x results directly from the volume flow rate U1 of a harmonic oscilla-
tion over a half period Tp /2:

∆x =
∫ Tp /2

0

Re(U1e iωt )

A f
dt

= 1

A f

∫ Tp /2

0
|U1|sin(ωt )dt

= 2 |U1|
A f ω

.

(4.20)

Introducing Kurzweg’s non-dimensional notation for the effective thermal diffusivity
κ?e /(∆x2ω), Eq. (4.19) converts to:

κ+e
∆x2ω

=− Im
(

fκ+Pr f̄ν
)

8
(
1−Pr2

)∣∣1− fν
∣∣2 . (4.21)

The parameter fν and fκ are reformulated to express their dependence on the Womersley and
Prandtl numbers (α and Pr, respectively). Recall the boundary layer thicknesses δν and δκ
(Eqs. (2.26 and (2.27), respectively), the definition of the Womersley number α= rh

p
ω/ν, and

the Prandtl number Pr = ν/κ f to express rh/δν and rh/δκ:

rh

δν
= αp

2
(4.22)

and
rh

δκ
= α

p
Prp
2

. (4.23)

Substituting these ratios in the expressions for fν and fκ (Eq. (2.23)) allows the expression of
Rott’s parameters fν and fκ in terms of the functions h(α) and j (Pr,α) introduced by Kurzweg
(Eqs. (4.9) and (4.10)):

fν =
tanh

[
(1+ i ) αp

2

]
(1+ i ) αp

2

= tanh(
p

iα)p
iα

=− i h(α)

α2
(4.24)

and

fκ =
tanh

[
(1+ i )α

p
Prp
2

]
(1+ i )α

p
Prp
2

= tanh(
p

i Prα)p
i Prα

=− i j (Pr,α)

Prα2
. (4.25)
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4.3 Discussion of the Formulations by Kurzweg and Rott

Next, the simplified version of Kurzweg’s results is considered (including temporally constant
wall temperature, Eq. (4.16)). Using Eq. (4.24), the expression reads (after some rearrange-
ments):

κ?e
ω∆x2

=−
− 1
α2 Pr

Re( j )+ Pr
α2 Re(h)

8(1−Pr2)
∣∣1− fν

∣∣2 . (4.26)

Finally, the real parts of the functions h(α) and j (Pr,α) are rewritten:

Pr

α2
Re(h) = Pr Re(i fν) = Pr Im(− fν) = Pr Im( f̄ν) (4.27)

and
1

α2 Pr
Re( j ) = Re(i fκ) = Im(− fκ) =−Im( fκ) . (4.28)

Inserting Eqs. (4.27) and (4.28) into Eq. (4.26) gives:

κ?e
ω∆x2

=− Im( fκ+Pr f̄ν)

8(1−Pr2)
∣∣1− fν

∣∣2 . (4.29)

Both starting points, Rott and Kurzweg, respectively, result in identical expressions for the non-
dimensional effective thermal diffusivity κe /(∆x2ω) (Eq. (4.21) and Eq. (4.29), respectively)
for conditions where both approaches are applicable.

A side note on the pressure gradient by Kurzweg: Kurzweg introduces the amplitude of
the oscillation via the non-dimensional pressure gradient λ (independent of any acoustic con-
siderations):

λ=
∣∣∣∣∂p

∂x

∣∣∣∣ r 2
h

ρu0ν
. (4.30)

In the acoustic framework and at the location of a pressure node without hydrodynamic or
thermal losses (p = ρcu0), the spatial pressure gradient ∂p/∂x is proportional to the velocity
amplitude u0:

∂p

∂x
= pω

c
= ρωu0 . (4.31)

Thus, if the pressure gradient results from a standing acoustic wave, the non-dimensional pres-
sure gradient λ equals the square of the Womersley number:

λ= ωr 2
h

ν
=α2 . (4.32)

4.3 Discussion of the Formulations by Kurzweg and Rott

This section first provides a quick summary of the effective normalized thermal diffusivity
κe /(ω∆x) used by Kurzweg (see Fig. 4.2). Van Buren and Polifke give a comprehensive discus-
sion of this three-dimensional plot [53] (see Sec. 5.2, reproduced in the Appendix on p. 121 ff.).
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Figure 4.2: Effective normalized thermal
diffusivity vs. Womersley and
Prandtl numbers.

Figure 4.3: Effective (absolute) thermal
diffusivity vs. Womersley and
Prandtl numbers.

The main advantage of the non-dimensional representation is its independence of the tidal dis-
placement/velocity and amplitude/forcing pressure gradient. To clarify this idea, Fig. 4.3 shows
the non-normalized effective thermal diffusivity κe . The difference between low and high Wom-
ersley numbers α becomes apparent at first sight, where correspondingly low or high thermal
diffusivity shows. The reason for this is the applied forcing. Kurzweg defines the oscillating
velocity profile via the representative velocity u0 and/or by the pressure gradient ∂p/∂x, which
causes the tidal displacement ∆x. For large Womersley numbers α, hydrodynamic boundary
layers are thin. Consequently, the maximum velocity of u0 is reached in most parts of the cross-
sectional area of the channel. On the other limit, low Womersley numbers α characterize a flow
dominated by viscous friction. In this limit, the velocity remains well below the representative
velocity u0. Figure 4.7 illustrates this behavior directly by the tidal displacement ∆x (see the
location of a pressure node in a quarter-wave resonator at x = L). This conclusion explains the
opposite slopes for high/low Womersley numbers α in the respective normalized and absolute
representation of the effective thermal diffusivity κe (Figs. 4.2 and 4.3).

As derived in the previous analytical transformation (Sec. 4.2), perfectly identical plots show
for the formulation by Rott at the location of a pressure node.

What happens when moving away from the pressure node to an arbitrary position of a (standing
wave) in a quarter-wave resonator? Obviously, this is the more exciting set-up, as also the first
(pressure and velocity related) term of Rott’s formulation (Eq. (4.17)) becomes non-zero. Here,
the following problem appears: For hydraulic and thermal lossless acoustic waves, the Riemann
invariant f and g hold. Thereby, the velocity and pressure profiles of a standing wave are quickly
determined. However, this acoustic wave (in conformity with its isentropic definition) would not
interact with the boundary walls in any way. Accordingly no oscillation-induced thermal net-
energy is transferred along the resonator tube (i.e., α→∞ and Pr ≈ 1). Hence, the flow needs
to show some boundary layer interaction and thus it deviates from a perfectly standing acoustic
wave. This makes the problem at hand significantly more complex.

Returning to the location of a (perfect) pressure node, Fig. 4.4 exemplarily shows two of the
three terms of Rott’s total energy flux (Eq. (4.17), expressed in terms of thermal diffusivity
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Figure 4.4: Individual components (term 2
( ) and term 3 ( )) of thermal
diffusivity according to Rott at
the pressure node (x = L).

Figure 4.5: Individual components (term 2
( ) and term 3 ( )) of thermal
diffusivity according to Rott for
increased oscillation amplitudes
at the pressure node (x = L).

Set-up 1 Set-up 2 Set-up 3
Fig. 4.4 Fig. 4.5 Fig. 4.6

u0 0.1 m
s 10 m

s 10 m
s

x L L L/2

ω 2π300 1
s

γT 0.01 K
m

T 293K
p 101300Pa

ν 1.516×10−5 m2

s

cp 1007 m2

s2K

R 296.9 m2

s2K
γ 1.4
ks 0 W

mK

Table 4.1: Parametric set-up for the investigation of the three terms that drive longitudinal heat
transfer.

κe). Table 4.1 summarizes the chosen parameters of the air-filled channel flow. The top-leveled
plane ( ) gives the pure thermal diffusivity of the underlying fluid (regardless of oscillations,
term 3). It decreases with increasing Prandtl numbers Pr (due to lower thermal conductivity).
The Womersley number α does not affect this term. The blue surface ( ) presents the convection
related thermal transport (term 2) also described by Kurzweg. Due to the absence of pressure
oscillations, the (pressure and velocity related) term 1 of Eq. (4.17) is zero at the depicted
location of a pressure node.

The magnitude of the three terms (and thus the question of which term dominates the problem

67



Heat Transfer in Resonators

10 2

 [-]

10 0

10 -2

10 -20

Pr [-]

10 0

10 -2
10 2

e
 [
m

2
/s

]

10 -10

10 0

10 2

 [-]

10 0
0

0

x/L [-]

0.5

10 -2
1

0.05

x
 [
m

m
]

0.1
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Figure 4.7: Tidal displacement vs.
Womersley number and duct
length.

at hand) can quickly change by the parametric set-up under investigation. Figure 4.5 shows the
effect of an increase in the representative velocity amplitude u0 from 0.1 m

s to 10 m
s . The increase

in velocity and thus in the tidal displacement clearly enhances the impact of the convective term
1. Thereby, its contribution to the longitudinal heat transfer exceeds the thermal diffusivity in
the parameter range α2Pr ≈π. An physical explanation of this regime follows in Sec. 5.2 based
on a study by van Buren and Polifke [53] (reproduced in the Appendix on p. 121 ff.).

In a final step, consider moving to a position of a perfect standing wave, where pressure oscil-
lations are existent, with velocity amplitudes smaller than at the pressure node. In this exam-
ple, the center between the pressure and velocity nodes of an isentropic quarter-wave channel
(i.e., x = L/2, compare to Fig. 2.5 is selected for T1 = 300K and rh = 10m. Figure. 4.7 addi-
tionally illustrates the tidal displacement ∆x over the Womersley number α along the channel
length). Figure 4.6 displays the three terms of Eq. (4.17) at an unchanged representative veloc-
ity u0 = 10 m

s : Now, the pressure-related term 1 ( , opposite sign to the other two terms) shows.
Again, it becomes apparent that this term can also dominate the problem at hand for a certain
range of parameters.
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5 Contextualization and Discussion of
Publications

The project that led to the present Ph. D. thesis was funded by the German Research Founda-
tion (DFG) in the framework of a Collaborative Research Centres (SFB-TRR40, 2008-2020).
In the respective Final Report, van Buren and Polifke [67] (reproduced in the Appendix on
p. 98 ff.) provide an overview of their results. On the whole, five universities, industrial part-
ners, numerous professors, and even more Ph. D. students contributed to the multidisciplinary
research program in different research areas on fundamental space-transportation-systems with
a close focus on dominating phenomena in the propulsion systems of liquid propellant rocket
engines. The final report [68] collects the joined results on Structural Cooling (research area of
the present author), Aft-Body Flows, Combustion Chamber, Thrust Nozzle, and Thrust-Chamber
Assembly.

The present chapter discusses and contextualizes the publications connected to the present the-
sis. The Numerical Assessment of a Resonator with Temperature Inhomogeneities (Sec. 5.1)
is thematically closely related to the analytical modeling of quarter-wave resonators (compare
Chapter 3). The Theoretical Considerations on Boundary Layer Interplay (Sec. 5.2) provides
further interpretation on longitudinal heat transfer in oscillation channel flows (compare Chap-
ter 4). Finally, the selected publications address the effect of turbulence on heat transfer: First,
the Enhancement of Wall-Normal Heat Transfer (Sec. 5.3.1) and second, the Enhancement of
Longitudinal Heat Transfer (Sec. 5.3.2).

5.1 Numerical Assessment of a Resonator with Temperature
Inhomogeneities

Chapter 3 reviewed an existing and presented a novel analytical approach for the acoustic char-
acterization of a quarter-wave resonator. However, they are restricted to constant temperature
profiles along the resonator tube. Although there are certain methods and ideas to extend the
frameworks to temperature inhomogeneities (e.g., the work by Cárdenas Miranda [9] or the
derivations of the present thesis (see Sec. 2.3)), the resulting analytical correlations are re-
stricted to selected temperature profiles (e.g., linear, exponential, polynomial, etc.). They are
subject to several modeling assumptions (e.g., compare Sec. 3.1.1).

To overcome these restrictions, van Buren and coworkers [12] (reproduced in the Appendix on
p. 113 ff.) developed a numerical framework to quantify the acoustic impedance of quarter-
wave resonators with arbitrary temperature distributions. They use a compressible CFD simu-
lation that is excited via inwards traveling acoustic waves via the Navier-Stokes Characteristic
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Boundary Condition (NSCBC) [69] of either mono-frequent or broadband characteristic. The
evaluation of the results excited by a broadband input-signal is realized by System-Identification
(CFD/SI). The identification process utilizes the output-error model and is based on the studies
by Förner and Polifke [70].

For the parameter range under investigation, the numerical results of the study by van Buren
and coworkers [12] agree well with the analytical predictions by Cárdenas Miranda [9]. The
study clearly underlines the crucial impact of the underlining temperature profile on the acoustic
damping characteristics (e.g., a shift in eigenfrequency). In a coupled analysis of combustion
chamber and resonator elements, Förner et al. [6] as well as Chemnitz et al. [7] showed a
high sensitivity of global stability in regard to the damping characteristics of the resonator.
Thus, a shift in the eigenfrequency of the resonator may result in insufficient damping of the
acoustically unstable modes. This, in turn, may lead to catastrophic structural failure of the
combustion chamber.

The previous findings illustrate the crucial importance of the temperature profile inside the res-
onator. However, the precise derivation of such temperate profiles requires a further understand-
ing of the governing heat transfer mechanisms. Therefore, the focus of the following chapters
will turn to two central challenges in this respect: Chapter 4 investigates heat transfer in oscil-
lating channel flows. Chapter 5.3 extends to the impact of turbulence.

5.2 Theoretical Considerations on Boundary Layer Inter-
play

Chapter 4 offered an overview of longitudinal heat transfer in oscillating flows and a comparison
of analytical models (Kurzweg [27] vs. Rott [38]). However, these considerations are – foremost
– of mathematical nature and provide only limited insight and explanation of the physical mech-
anisms that define the problem at hand. Besides, particular relevance may be expected from its
limiting cases and the interplay of the hydrodynamic and thermal boundary layers.

Therefore, van Buren and Polifke [53] (reproduced in the Appendix on p. 121 ff.) provide a
more in-depth discussion of the physical mechanisms of longitudinal heat transfer in oscilla-
tory channel flows. The focus lies on six limiting regimes that result from the hydrodynamic
and thermal boundary layer characteristics with either parabolic or bulk profiles, respectively.
The corresponding interplay of the boundary layers qualitatively explains the longitudinal heat
transfer. For a non-dimensionalized analysis of the problem at hand, van Buren and Polifke in-
troduce the non-dimensional Kurzweg number Ku to characterize the thermal penetration depth.
Thereby, the extend of hydrodynamic and thermal boundary layers are presented as decoupled
influence factors. Maximum effective thermal diffusivity reveals when the thermal penetration
reaches the center of the channel, or Ku2 ≈π.

All previous considerations of the present thesis are limited to laminar flows. However, the flows
in rocket engine combustion chambers are highly turbulent. The literature commonly connects
turbulent effects with a significant increase in heat transfer that may lead to fatal destruction
of the structure. Therefore, the following Chapter 5.3 extends to the impact of turbulence in
pulsating flows: First, the effect on wall-normal heat transfer is considered and, second, the

70



5.3 The Effect of Turbulence on Heat Transfer

q̇⊥

q̇∥

Acoustic

Figure 5.1: Sketch of a combustion chamber with wall-normal (q̇⊥, see Sec. 5.3.1) and longi-
tudinal (q̇∥, see Sec. 5.3.2) heat transfer.

effect on longitudinal heat transfer.

5.3 The Effect of Turbulence on Heat Transfer

Chapter 4 and the previous publication of Sec. 5.2 focused on the oscillation-induced enhance-
ment of convective heat transfer in laminar channel flows (e.g., in the tube of a quarter-wave
resonator). However, the literature foremost associates a strong heat transfer enhancement of
pulsating flows combined with turbulent effects. In extreme cases, the reported enhancement
reached levels that compromise the thermal integrity of devices suffering from thermoacoustic
instabilities. Numerous rocket engine combustion chambers suffered from this fatal mechanism:
Exceeding the designed wall heat flux obviously endangers a secure operation with possibly
catastrophic consequences. Therefore, the reliable prediction of heat transfer in turbulent pul-
sating flows is crucial for a comprehensive design process of combustion chambers.

Although numerous researchers experimentally studied the enhancement of heat transfer
(e.g., [4, 14–22]), the results are of a rather qualitative nature. The reported enhancement ranges
from only a few percent [21] up to 300% (e.g., [17–20]). Numerical investigations are limited
and also contradictory: Wang and Zhang [26] tackled the problem at hand via a RANS simu-
lation. However, Scotti and Piomelli [71, 72] found the RANS to be insufficient and confirmed
that it requires a Large Eddy Simulation (LES) to capture relevant fluid-mechanical effects.

To close these gaps, the present chapter considers two different mechanisms of turbulence-
induced enhanced heat transfer: Section 5.3.1 numerically studies wall-normal heat transfer.
This mechanism mimics the thermal exchange between the cooled chamber walls and the hot
combustion gas (compare the heat flux q̇⊥ in Fig. 5.1). Section 5.3.1 turns to the effect of tur-
bulence on the longitudinal heat transfer (the laminar case was discussed in Chapter 4). This
modeling corresponds to the prevailing mechanisms inside a resonator tube, subject to a tem-
perature gradient between the hot gases at the resonator mouth and the cooled backing of the
cavity (compare q̇∥ in Fig. 5.1).
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5.3.1 Enhancement of Wall-Normal Heat Transfer

To establish a more comprehensive picture of the wall-normal enhancement of heat transfer, van
Buren and coworkers [73] (reproduced in the Appendix on p. 140 ff.) performed a parametric
LES study. The incompressible simulation within a periodic computational domain mimics the
characteristics of a pressure node of a standing acoustic wave. Many researchers report the most
significant enhancement at this location of maximum velocity fluctuations (e.g., [9, 15, 74]). A
much wider range of oscillation parameters is studied compared to the existing literature. In par-
ticular, forcing frequencies correspond to Womersley numbers from α= 14 to 70, while forcing
amplitudes reach values that result in pronounced flow reversal, i.e., reverse flow velocities up
to five times larger than the mean flow velocity.

As a first result, van Buren et al. [73] report strong deviations of instantaneous heat transfer
rates from the temporal mean at moderate pulsation amplitudes (i.e., in the range of emerging
flow reversal). Particularly at times of flow reversal, an increase in heat transfer up to 60%
over the non-pulsatile reference is observed. However, when averaging over a complete cycle,
the overall enhancement in mean heat transfer is only marginal. Thereby, it falls far below the
enhancement up to 300% that Dec and coworkers reported in their experimental results [17–
20]. It may also not explain the severe hardware damage of rocket motors attested by Harrje
and coworkers [4, 14]. In conclusion, a rather contradictory picture of the magnitude of the
enhancement in heat transfer exists in the literature.

In a subsequent part of the study, van Buren et al. [73] expand the numerical investigation to
larger pulsations amplitudes resulting in strongly pronounced flow reversal. For the adjusted
set-up, an enhancement of mean heat transfer above of 100% well compares to the findings
of numerous experimental investigations. It also presents an increase that explains the fatal
destruction of combustion chambers due to exceedingly aggressive thermal conditions. The
study offers a physical interpretation of the results and concludes that an overall increase in
turbulent transport is responsible for the observed significant enhancement of convective heat
transfer.

5.3.2 Enhancement of Longitudinal Heat Transfer

The previous Section 5.3.1 shed insight on the turbulence-induced enhancement of wall-normal
heat transfer in combustion chambers. The significant increase may explain the structural failure
of the chamber walls or face-plate due to exceeded thermal loads. On the contrary, the transient
heat-up of a resonator underlies a different heat transfer mechanism: As already discussed in
Sec. 4, the axial temperature gradient along the resonator tube causes a heat flux in the direction
of the acoustic fluid oscillation. However, these analytical derivations were limited to laminar
flows. In his study from 1985, Kurzweg himself suggested further investigations for the turbu-
lent regime [27]. Overall, precise knowledge of the temperature distribution inside the resonator
is crucial for an accurate design of the resonator and thus for a safe design and operation of the
combustion chamber and the entire engine (compare Sec. 5.1).

To fill this gap and to establish a more comprehensive picture of the effect of turbulence on
longitudinal heat transfer, van Buren and Polifke [66] (reproduced in the Appendix on p. 155
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ff.) present a parametric investigation. The basic structure of the Large Eddy Simulation was
adapted from the previous work on wall-normal heat transfer [73] (solver, turbulence model,
mesh, etc.). Adjustments of boundary conditions and evaluation methods allowed for investi-
gating the present problem at hand.

The numerical results of laminar flows show excellent agreement with the analytical solution by
Kurzweg [27] (see Sec. 4.1.1). In the turbulent case, enhanced longitudinal heat transfer emerges
for flows characterized by the product of squared Womersley number α and Prandtl number Pr
fulfilling α2Pr > π. Transferring these characteristics to the application of rocket engine com-
bustion chambers, the highlighted regime is of technical relevance since hydrodynamic and
thermal boundary layers are typically small compared to the resonator diameter (δν ≈ δκ ¿ d ,
and thus αÀ 1 and Pr ≈ 1). Thus, future design processes should account for the effect un-
der investigation. Furthermore, the study provides a physical explanation for the enhancement:
Turbulence increases the wall-normal heat transfer (compare Sec. 5.3.1) and thus increases the
thermal penetration depth. Consequently, a wider cross-sectional area of the channel contributes
to the convective longitudinal heat transfer.
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6 Summary and Conclusions

The present thesis addresses the effect of temperature inhomogeneities on the damping charac-
teristic of acoustic quarter-wave resonators. A comprehensive investigation of heat transfer in
turbulent oscillating flows is given to derive the underlying temperature distributions. In partic-
ular, the work focuses on (i) analytical models to gather in-depth knowledge about the physical
mechanisms involved and on (ii) high-fidelity fluid dynamic simulations as a numerical design
tool and for the parametric quantification of turbulent effects.

Starting from Rott’s thermoacoustic approximation, the thesis formulates characteristic acoustic
waves ( f and g -wave) accounting for the viscous and thermal losses of a channel flow at homo-
geneous temperature. In the next step, the previous derivations are used to model the acoustic
damping properties of a quarter-wave resonator, namely its impedance or reflection coefficient,
respectively. The results compare well to an analytical analog of a mass-spring-damper system
and numerical investigations.

The thesis generalizes the correlations of lossy duct acoustics to linear temperature profiles
under the assumption of temperature-independent viscosity. The results reveal a significant ef-
fect of the temperature on the acoustic eigenfrequency of a quarter-wave channel. For the more
applied example of a temperature gradient within a quarter-wave resonator (e.g., in a rocket
engine combustion chamber), the thesis presents a predictive numerical framework. It applies
System-Identification methods to calculate the acoustic impedance for arbitrary temperature
distributions. Again, the underlying temperature significantly influences the acoustic character-
istic of the resonator (e.g., the eigenfrequency and the magnitude of acoustic reflection). The
thesis clearly shows that the spatial mean temperature is insufficient to describe the problem at
hand. Instead, the accurate acoustic characterization of the resonator requires a more sophisti-
cated knowledge of the local temperature distribution.

After the first part of the present thesis highlights the importance of the temperature distribution
inside quarter-wave resonators, its second part focuses on two heat transfer mechanisms pre-
vailing inside a rocket engine combustion chamber. The central challenges of this task are the
highly turbulent flow characteristics and the acoustical pulsations. This combination of condi-
tions often connects to significant heat transfer enhancement in the literature. Particularly during
combustion instabilities that cause strong velocity and pressure oscillations, the increased ther-
mal load may lead to severe damages or the destruction of the combustion chamber. However,
related studies are of a rather qualitative nature. The author of the present thesis provides the
first numerical evidence for significant enhancement of wall-normal heat transfer in a paramet-
ric LES campaign. The reported enhancement of more than 100% clearly states the relevance of
this phenomenon in a comprehensive design process.

Longitudinal heat transfer in oscillating channel flows (e.g., inside the tube of a quarter-wave
resonator) presents the second challenging heat transfer mechanism. The thesis comprehen-
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sively discusses the interplay of hydrodynamics and thermal boundary layers that generates an
effective enhancement over the molecular thermal conductivity. The introduced Kurzweg num-
ber accounts for the key factor of the thermal penetration depth as a non-dimensional parameter.
Subsequently, the work on analytical considerations of laminar flows is extended to turbulent
flows via high-fidelity numerical simulations. A significant turbulence-induced enhancement
also shows for the case of longitudinal heat transfer. This is well explained by the wall-normal
enhancement that increases the thermal penetration depth and thus the cross-sectional area con-
tributing to the convective transport in the longitudinal direction.

The author (separately) studied the impact of temperature on the acoustic damping characteris-
tic of a quarter-wave resonator and the effect of oscillations on the heat transfer. However, when
considering technical combustion applications (e.g., rocket engine combustion chambers), the
two elements mentioned above are closely interrelated: Large acoustic oscillation amplitudes
during combustion instabilities affect the heat transfer and thus the local temperature distribu-
tion (e.g., inside a resonator tube). In direct consequence, the resulting change in temperature
alters the damping performance of the resonator, which – in turn – changes the acoustics of
the entire chamber. At this point, the loop closes as the acoustic amplitude directly impacts
the heat transfer. One sees that a decoupled investigation of acoustic damping performance and
heat transfer may not be feasible. Instead, a comprehensive design process requires a holistic
treatment that simultaneously incorporates both effects.

However, a classical numerical investigation easily exceeds the computational resources of the
present project: On the one hand, large spatial and temporal scales are required to model the
complete combustion chamber (including the resonator elements) over the extensive, transient
heat-up period. On the other hand, very finely resolved scales are indispensable for the accurate
modeling of the enhanced heat transfer via LES. More sophisticated numerical approaches may
reduce the computational cost to a feasible amount.

Regarding the large scales, network models can reduce the complexity of the combustion cham-
ber. Linear state space systems account for parts of the geometry (e.g., the injector, flame, and
nozzle) – corresponding boundary conditions couple the CFD simulation of the resonator with
the surrounding state space systems. For the small scales, wall models may incorporate the ef-
fect of enhanced heat transfer. This approach significantly decreases the fine mesh resolution
required for an LES. The present thesis provides a parametric data basis for designing such wall
models.

The results of the author’s work have been published in several papers. The key papers with
the original abstracts and the respective contributions of the author are listed in the following
sections.
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6.1 Heat Transfer in Pulsating Flow and Its Impact on
Temperature Distribution and Damping Performance of
Acoustic Resonators

The final report of the Collaborative Research Centres SFB-TRR40 summarizes, interconnects
and concludes the individual research topics of the third funding period, see Sec. 6. The book
reflects the work of the author (representing research project A3) within the context of the
multidisciplinary research program.

Original Abstract: A numerical framework for the prediction of acoustic damping character-
istics is developed and applied to a quarter-wave resonator with non-uniform temperature. The
results demonstrate a significant impact of the temperature profile on the damping character-
istics and hence the necessity of accurate modeling of heat transfer in oscillating flow. Large
Eddy Simulations are applied to demonstrate and quantify enhancement in heat transfer induced
by pulsations. The study covers wall-normal heat transfer in pulsating flow as well as longitudi-
nal convective effects in oscillating flow. A discussion of hydrodynamic and thermal boundary
layers provides insight into the flow physics of oscillatory convective heat transfer.

Contribution: The original research topic was jointly defined by Prof. Wolfgang Polifke, Dr.
Kilian Förner, and the lead author. Throughout the development of the third funding period of
the Collaborative Research Centres SFB-TRR40, some aspects were redefined by Prof. Wolf-
gang Polifke and the lead author. Dr. Alejandro Cárdenas Miranda and Dr. Kilian Förner pro-
vided their research work from the first and second funding periods. The lead author contributed
the further numerical implementation and evaluation of the results. Furthermore, the lead au-
thor prepared the manuscript. Prof. Wolfgang Polifke gave proofreading and suggestions for
improvement.

Status: Published as a book chapter in Notes on Numerical Fluid Mechanics and Multidisci-
plinary Design (NNFM). Scopus listed.

Reference: BurenPolif20b [67], reproduced on p. 98ff.
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6.2 Acoustic Impedance of a Quarter-Wave Resonator with
Non-Uniform Temperature

A numerical tool for the aeroacoustic characterization of a quarter-wave resonator with arbitrary
temperature profiles is developed, see Sec. 5.1. This approach allows a flexible investigation of
the effect of temperature inhomogeneities (e.g. compare linear profiles in Sec. 2.3).

Original Abstract: This study proposes a semi-analytical approach to predict the acoustic
impedance of a quarter-wave resonator with non-uniform temperature. In analogy to well-
known models for Helmholtz resonators, the quarter-wave resonator is represented as a mass-
spring-damper system. The treatment is limited to polynomial temperature profiles, but does
take into account that the resonator cavity is not acoustically compact.

In order to assess the validity and accuracy of the semi-analytical results, computational fluid
dynamics (CFD) simulations are carried out for a variety of temperature profiles in a quarter-
wave resonator cavity. The acoustic reflection offered by the resonator opening to imposed
incoming acoustic waves is evaluated, either by spectral analysis of time series generated by re-
peated, monofrequent excitation, or by system identification of acoustic signals generated with
broad-band excitation. System identification – a variant of supervised machine learning – re-
quires only a single simulation run to characterize the resonator over the frequency range of
interest. The validation study shows good quantitative agreement between the mono-frequent
and broadband excitation cases, as well as qualitative consistency with the analytical predic-
tions.

The present study demonstrates that resonator eigenfrequencies as well as maximum effective-
ness and bandwidth of acoustic damping are quite sensitive to temperature inhomogeneities.
In the context of thermo-acoustic combustion instability, where resonators are frequently em-
ployed as a means of passive control. The results suggest that the acoustic characteristics of a
resonator with hot combustion products at the inlet and a cooled backing cannot be computed
simply with a representative average of the temperature distribution. These findings underline
the necessity of a comprehensive design process, which includes thermal analysis in order to
assure optimum resonator effectiveness.

Contribution: The research topic was jointly defined by Prof. Wolfgang Polifke, Dr. Kilian
Förner, and the lead author. Dr. Kilian Förner implemented the numerical framework for the
simulation of resonators at constant temperatures (e.g., [10, 70, 75]). The lead author con-
tributed the extension to arbitrary temperature profiles conducted the parametric simulation
campaign and its evaluation. Furthermore, the lead author prepared the manuscript. All co-
authors gave proofreading and suggestions for improvement.

Status: This paper was submitted to and accepted for the 27th International Congress on Sound
and Vibration (ICSV27). Due to the outbreak of the corona pandemic, the conference was post-
poned by one year to the dates from 11 to 15 July 2021. The paper will be presented in Prague
on these dates and published in the ICSV Proceedings afterward. Scopus listed.

Reference: BurenForne20 [12], reproduced on p. 113ff.
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6.3 Enhanced Longitudinal Heat Transfer in Oscillatory
Channel Flow – a Theoretical Perspective

A comprehensive, theoretical discussion on the interplay of hydrodynamic and thermal bound-
ary layers in oscillationg channel flow, which is based on the analytical work by Kurzweg [27]
(see Sec.5.2).

Original Abstract: Enhanced longitudinal heat transfer (ELHT) is a fascinating phenomenon
in oscillatory channel flow. Kurzweg (J. Heat Transf. 107, 1985) formulated a theoretical analy-
sis of conjugate heat transfer for the case of laminar, single-phase, oscillatory flow, which yields
a correlation for ELHT in terms of Prandtl and Womersley numbers. The present investigation
contributes physical interpretation to the results of Kurzweg. A simplified model with isother-
mal walls is proposed, applicable if gaseous fluid and metallic confinement exhibit sufficiently
large differences in thermal inertia. Examined over a wide range of Womersley numbers, this
model reveals six distinct regimes characterized by the Prandtl number of the fluid. The thick-
ness of hydrodynamic and thermal boundary layers relative to the channel width is relevant in
this context. Maximum ELHT is attained when the thermal boundary layer expands over the
full channel width. The trend of ELHT vs. Womersley number is discussed and explained in
terms of flow physics by the interplay of hydrodynamic and thermal flow characteristics. These
patterns reveal either quasi-steady parabolic or oscillating bulk characteristics, respectively. The
importance of the thermal boundary layer thickness motivates the introduction of a new non-
dimensional group, which makes it easier to classify the various regimes of ELHT.

Contribution: The research topic was jointly defined by Prof. Wolfgang Polifke and the lead
author. The lead author drew up the theoretical investigation and the manuscript. Prof. Wolfgang
Polifke gave proofreading and suggestions for improvement.

Status: This paper was submitted to and presented at the 18th International Symposium on
Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC18). Due to the out-
break of the corona pandemic, the conference was held online from 23 to 26 November 2020.
The paper was invited to and published in the ASME Journal of Fluids Engineering (JFE).
Scopus listed.

Reference: BurenPolif20 [53], reproduced on p. 121ff.

79



Summary and Conclusions

6.4 Large Eddy Simulation of Enhanced Heat Transfer in
Pulsatile Turbulent Channel Flow

Numerical evidence for significant enhancement of wall-normal heat transfer in pulsatile turbu-
lent channel flow is given, see Sec. 5.3.1. The parametric study of Large Eddy Simulations is
performed on an intrinsically generated turbulent flow in a periodic simulation domain.

Original Abstract: Heat transfer in pulsatile turbulent channel flow is investigated by means of
Large Eddy Simulation. Incompressible flow within a periodic computational domain is driven
by a pulsating axial pressure gradient at a turbulent Reynolds number of Reτ = 350. A localized
dynamic sub-grid scale approach is chosen to model unclosed stress terms. A layer-averaged
sub-grid model determines turbulent Prandtl numbers that depend on wall distance. Compared
to the existing literature, a much wider range of oscillation parameters is studied. In particular,
forcing frequencies correspond to Womersley numbers from Wo = 14 to 70, while forcing am-
plitudes reach values that result in strongly pronounced flow reversal, i.e. reverse flow velocities
up to five times larger than the mean flow velocity.

At moderate pulsation amplitudes, i.e. in the range of emerging flow reversal, strong deviations
of instantaneous heat transfer rates from the temporal mean are observed. Particularly at times
of flow reversal, an increase in heat transfer up to 60% above non-pulsatile values is observed.
However, when averaging over a complete cycle, any enhancement in mean heat transfer is only
minor.

On the other hand, simulations at larger pulsations amplitudes that result in strongly pronounced
flow reversal, show a enhancement of mean heat transfer in excess of 100%. Note that such
significant enhancement of heat transfer has not been reported previously in Large Eddy Sim-
ulation of turbulent pulsatile flow. The paper offers a physical interpretation of the results and
concludes that an overall increase in turbulent transport is responsible for the observed signifi-
cant enhancement of convective heat transfer.

Contribution: The original research topic was jointly defined by Prof. Wolfgang Polifke and
Dr. Alejandro Cárdenas Miranda. Dr. Alejandro Cárdenas Miranda developed a framework for a
numerical experiment. However, his simulation campaign did not reproduce the expected results
of enhanced heat transfer (see [9]). Therefore, Prof. Wolfgang Polifke and the lead author jointly
readdressed and redefined the research topic. The lead author contributed the complete redesign
of the solver and the turbulence models. After the lead author recognized the significance of
increased pulsation amplitudes, he conducted the parametric simulation campaign and prepared
the manuscript. All co-authors gave proofreading and suggestions for improvement.

Status: Published in the International Journal of Heat and Mass Transfer (IJHMT). Scopus
listed.

Reference: BurenCarde19 [73], reproduced on p. 140ff.
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6.5 Turbulence-Induced Enhancement of Longitudinal Heat
Transfer in Oscillatory Channel Flow

The effect of turbulence on the longitudinal heat transfer in oscillatory channel flow is investi-
gated, see Sec. 5.3.2. The numerical set-up is based on the previous work of wall-normal heat
transfer [73], see Sec. 5.3.1. Results are compared to the laminar reference by Kurzweg [27],
see Sec. 4.1.1.

Original Abstract: An analytical correlation for longitudinal heat transfer in oscillatory flow
was proposed by Kurzweg (1985). However, the treatment was limited to laminar flows, which
motivates the extension of the analysis to the turbulent regime. In the present paper, turbulence-
induced enhancement of longitudinal heat transfer in oscillatory channel flow is investigated
by means of Large Eddy Simulation (LES) and supplemented with analytical considerations.
Incompressible flow within a periodic computational domain is driven by an oscillating lon-
gitudinal pressure gradient, generating both laminar and turbulent flow characteristics. A wide
range of oscillation amplitudes is considered, while a constant axial temperature gradient is
maintained at the upper and lower channel walls. Kurzweg’s analytical correlation for effective
longitudinal thermal diffusivity is simplified to match the numerical setup.

The numerical results of laminar flows show excellent agreement with the analytical solution.
In the turbulent case, enhanced longitudinal heat transfer emerges for flows characterized by the
product of squared Womersley number α and Prandtl number Pr fulfilling α2Pr = π. In order
to explain this observation, the interaction of wall-confined thermal and hydrodynamics Stokes
boundary layers is scrutinized, a simple correlation for the effective thermal diffusivity in lami-
nar oscillatory flow is deduced from the analysis. This model consolidates the two phenomena
of wall-normal heat transfer and the longitudinal convective transport. Finally, the correlation is
expanded to account for the impact of turbulence intensity on heat transfer. This quantification
compares favorably against the wall-normal heat transfer, which reveals similar characteristic
features.

Contribution: The research topic was jointly defined by Prof. Wolfgang Polifke and the lead
author. First numerical set-ups of a laminar reference case were collaboratively established with
Joachim Ottinger in his bachelor thesis [76], which the lead author closely supervised. The lead
author extended the numerical implementation to turbulent flows and conducted the parametric
investigation and its evaluation. Furthermore, the lead author prepared the manuscript. Prof.
Wolfgang Polifke gave proofreading and suggestions for improvement.

Status: To be submitted to the International Journal of Heat and Fluid Flow (IJHFF).

Reference: BurenPolif21 [66], reproduced on p. 155ff.
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Heat Transfer in Pulsating Flow and Its
Impact on Temperature Distribution and
Damping Performance of Acoustic
Resonators

Simon van Buren and Wolfgang Polifke

Abstract A numerical framework for the prediction of acoustic damping character-
istics is developed and applied to a quarter-wave resonator with non-uniform temper-
ature. The results demonstrate a significant impact of the temperature profile on the
damping characteristics and hence the necessity of accuratemodeling of heat transfer
in oscillating flow. Large Eddy Simulations are applied to demonstrate and quantify
enhancement in heat transfer induced by pulsations. The study covers wall-normal
heat transfer in pulsating flow as well as longitudinal convective effects in oscillating
flow. A discussion of hydrodynamic and thermal boundary layers provides insight
into the flow physics of oscillatory convective heat transfer.

1 Introduction and Placement in SFB

Combustion instabilities jeopardize the structural integrity of rocket combustion
chambers. One measure to ensure safe operating conditions is the application of
acoustic resonators to suppress the thermo-acoustic feedback. Modern engines such
as theVulcain 2 combustion chamber include L-shaped quarter-wave resonators. Due
to regenerative cooling, large temperature differences exist between the hot com-
bustion gases and the cooled chamber walls. The transient heat-up process brings
additional uncertainty.
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During the first funding period of SFB Transregio 40, A. Cardenas developed
analytical correlations for the acoustic damping characteristics of a quarter-wave
resonator, which indicate that the impact of temperature inhomogeneities is signifi-
cant [20]. Thus accurate acoustic predictions require the detailed knowledge of the
temperature distribution within a resonator. In this context, the turbulent pulsating
nature of the flow in the resonator presents a crucial challenge for the modeling of
heat transfer. Experimental results that reported significant enhancement of average
heat transfer could not be reproduced in numerical simulations [20]. Low-order net-
work models were developed to evaluate rocket engine combustion stability under
the influence of acoustic resonators [11].

During the second funding period, K. Förner identified and quantified significant
non-linear effects resulting from large oscillation amplitudes (e.g. vortex shedding)
[12, 13]. This implies a high degree of uncertainty for the analytical correlations
derived by Cardenas. On the contrary, high-resolution numerical studies are not
prone to these inaccuracies.

In the final funding period, S. van Buren merged the two prior lines of study:
A numerical framework to predict acoustic damping characteristics was developed
and applied to quarter-wave resonators with local temperature inhomogeneities. Sub-
sequently, heat transfer in turbulent pulsation flows was revisited and the range of
investigations was extended to larger oscillation amplitudes. Indeed, significant wall-
normal enhancement of heat transfer could be confirmed at increased amplitudes. To
account for the geometry of a quarter-wave resonator tube, the investigations were
extended to convective longitudinal effects in oscillating flows.

Based on the focus on heat transfer, the present project is assigned to the research
area Structural Cooling (RAA). The integrated acoustic examination of the resonator
in the Combustion Chamber reveals additional close connection to RA C.

2 Impact of Temperature Inhomogeneities on Damping
Performance

A variety of analytical correlations to quantify the damping characteristic of acoustic
resonators have been derived in analogy to mass-spring-damper systems (e.g. [15,
16, 21]). For the case of a Helmholtz resonator, the acoustically compact fluid in the
neck section presents the oscillating mass (velocity fluctuation u′, compare Figs. 1
and 2). The compressible fluid in the cavity (volume V ) acts as the restoring spring.
Damping is induced by either viscous friction in the neck section (losses linear to
the velocity perturbation u′) or vortex shedding (non-linear losses of higher order).
In particular the latter introduces a large degree of uncertainty.

Laudien et al. [19] extended prior studies to the geometry of a quarter-wave res-
onator (Fig. 3). The difficulty connected to this geometry is the increased axial length
scale (quarter-wave length at eigenfrequency) that violates the assumption of acous-
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Fig. 1 Sketch of a
Helmholtz resonator, with
highlighted oscillating fluid
mass in the neck region.
Redrawn from [20]

Fig. 2 Mass-spring-damper
system, excited by pressure
perturbation p′, responding
in velocity fluctuation u′.
Redrawn from [20]

Fig. 3 Sketch of a
quarter-wave resonator, with
highlighted oscillating fluid
mass derived by the
representative length lr .
Redrawn from [20]

Fig. 4 Polynomial and
average temperature profile
in the neck and volume
regions in a quarter-wave
resonator

tic compactness. Laudien’s model is restricted to a homogeneous fluid temperature,
as it has a significant impact on the local density ρ and thus on the speed of sound c.

Resonators used in combustion chambers are generally exposed to significant
temperature gradients. Figure4 shows a schematic axial temperature distribution
within a quarter-wave resonator: Hot combustion gas dominates at the front opening,
whereas the backing of the cavity is exposed to regenerative cooling. During the
first funding period of SFB Transregio 40 Cardenas [20] extended an approach by
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Fig. 5 Gain of the reflection
coefficient for harmonic
excitation (squares) and
results for three randomly
generated broadband
excitations obtained by
CFD/SI (dashed lines)
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Kumar and Sujith [17] and introduced temperature inhomogeneities to the model of
Laudien et al. [19]. Based on the analytical solution by Kumar and Sujith, applicable
temperature profiles T (x) are mathematically restricted to a polynomial form:

T (x) = (ax + b)n . (1)

The analytical model of Cardenas [20] revealed that temperature inhomogeneities
have a significant impact on the damping performance, i.e. they cause a shift in eigen-
frequency, a reduction of the effective frequency range and the minimum reflection
coefficient. The frequency-dependent reflection coefficient R(ω) quantifies the ratio
of the reflected acoustic wave g to the incident wave f :

R(ω) = g

f
. (2)

Subsequently, a numerical framework based on computational fluid dynamics
(CFD) for the calculation of the reflection coefficient R(ω)was presented and applied
to quarter-wave resonators with temperature inhomogeneities by van Buren [2, 3].
The resonator is modeled by two- or three-dimensional wedge geometries with an
imposed temperature profile. Incident acoustic waves are imposed in the form of
harmonic as well as broadband forcing. The time series data generated with the
latter approach is post-processed by system identification (SI)—a form of supervised
machine learning—and only requires one single simulation to determine results for
a wide range of frequencies. Central advantages over the analytical model are the
flexibility of arbitrary temperature distributions and the incorporation of non-linear
effects. Details on the numerical framework and simulation setup are given in [2, 3].

Figure5 compares numerical results of harmonic andbroadband forcing (CFD/SI).
Overall, the qualitative and quantitative agreement is very good. This generates con-
fidence in both methods. The plot also illustrates the physical impact of tempera-
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Fig. 6 Gain of the reflection
coefficient of the analytical
model (solid lines) and
averaged results obtained by
system identification of
broadband excitation
(dashed lines)
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ture inhomogeneities: All five setups have identical mean temperatures (T = 647K)
along the resonator tube. As the gradient between cooled backing and hot front open-
ing is increased a significant shift in eigenfrequency is introduced (ω ≈ 4600Hz to
5000Hz). Furthermore, the effective frequency range of damping narrows and the
minimum reflection coefficient R decreases. Both effects reduce the effectiveness of
the resonator as a damper of thermo-acoustic instabilities.

Figure6 compares CFD/SI results with the analytical correlation. There is quali-
tative agreement but quantitative offset in both frequency and reflection coefficient.

3 Impact of Acoustic Oscillations on Heat Transfer

The accurate computation of the acoustic characteristics of the resonator requires pre-
cise knowledge of the local temperature distribution of the working fluid. Therefore,
fundamental understanding of heat transfer in the presence of strong acoustic per-
turbations is indispensable. For the problem at hand, physical boundary conditions
define two categories of heat transfer [20]: First, within the combustion chamber,
wall normal heat transfer from the hot fluid to the cooled wall occurs in turbulent
pulsating flows. The pulsations originate from the superposition of a mean-flow and
acoustic velocity perturbations. Second, within the resonator tube, axial heat transfer
from the hot front section to the cooled backing of the cavity exists. In contrast to
the first category, mean-flow is absent here, one speaks of oscillating flow.

Figure7 illustrates the modeling of an acoustically compact duct section at the
position of a pressure node: In the small domain from x = X to x = X + dx , pres-
sure perturbation p3 are not present, whereas acoustic velocity fluctuations u are
maximum. The selection of this domain of interest is consistent with numerous pre-
vious studies, which report that enhancement in heat transfer coincides with velocity
fluctuations rather than pressure oscillations [8–10, 14].
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Fig. 7 One-dimensional
mode shape of the second
harmonic in a channel. Mean
flow is driven by the pressure
gradient of P0(x)

Fig. 8 Cyclic simulation
domain of an acoustically
compact channel section at a
pressure node

Figure8 depicts the numerical domain at the location of a pressure node. The
channel is confined by two walls of distance 2h. For the investigation of wall-normal
heat transfer, these walls are constrained to homogeneous but different temperatures
(Th and Tc as shown in the figure). In the second case of longitudinal heat trans-
fer, constant axial temperature gradients are applied. Cyclic conditions apply to the
remaining four boundary patches. One central advantage of this setup is the gener-
ation of fully developed turbulent flow without the requirement of turbulent inflow
conditions. The flow is driven by a momentum source term Smom that accounts for
the acoustic oscillations via the spatial gradient of the pressure perturbation p′ and
for the mean-flow via the gradient of the overall pressure P0 (compare Fig. 7).

More detailed information of the incompressible Large Eddy Simulation is pro-
vided in [1, 4], including the selection of turbulence models, a mesh independence
study and the validation against analytical, experimental and numerical results.

3.1 Wall Normal Heat Transfer

In this section, the core findings for wall-normal heat transfer in turbulent pulsating
channel flows are presented and discussed. More detailed results are provided in [1,
4].

The figures in this section show the enhancement in heat transfer (EHT) versus
non-dimensional pulsation amplitude ε for various Stokes’ lengths l+s . The EHT is
defined as the enhancement in wall-normal heat flux of the turbulent pulsating flow
q̇w,puls over a turbulent but non-pulsation reference q̇w,re f :
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Fig. 9 Temporal averaged
EHT over amplitude ε for
various Stokes’ length l+s
corresponding to different
frequencies
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EHT = q̇w,puls − q̇w,re f

q̇w,re f
. (3)

The non-dimensional pulsation amplitude ε relates the pulsating velocity amplitude
au at the channel center-plane (index c) to the mean velocity of the corresponding
non-pulsating reference:

ε = au
ure f

∣
∣
∣
∣
c

. (4)

Lastly, the non-dimensional Stokes’ length l+s is introduced as a measure for the
pulsation frequency:

l+s = uτ

ν
δs = Reτ

h
δs, (5)

where Reτ is the the turbulent Reynolds number and δs = (2ω/ν)1/2 the classical
Stokes length.

During the first funding period, numerical simulations by Cardenas [20] could not
reproduce experimental results that report EHT of more than 100%. To resolve these
discrepancies, the present study investigates flows at increased turbulent Reynolds
number Reτ = 350 (instead of Reτ ≈ 180). Furthermore, the numerical framework
includes the dynamic calculation of locally resolved turbulent Prandtl numbers.
Figure9 depicts the temporal average of enhancement in heat transfer versus pulsa-
tion strength ε for various frequencies l+s . EHT is most pronounced at frequencies
around l+s ≈ 14 and velocity amplitudes close to flow reversal (i.e. ε ≈ 1). In the
parameter range under investigation, only minor effects of EHT confirm the results
by Cardenas [20]. A time-resolved investigation over one pulsation period reveals
significant variation in EHT, ranging from strong reduction (larger than 50%) to clear
enhancement (up to 45%, Fig. 10)

The local maximum in EHT at ε ≈ 1 led originally to the conclusion that LES
does not capture pronounced EHT [20]. However, this conclusion was premature.
Indeed, examination of the time-resolved heat transfer (Fig. 10) strongly indicates
the relevance of large flow velocities. This suggested the extension of the parame-
ter range under investigation and to increase the pulsation strength to values beyond
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Fig. 10 Phase related EHT
for various non-dimensional
Stokes’ length l+s at
exemplary ε ≈ 0.65
(depicted by circles in Fig. 9)
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Fig. 11 Time averaged
enhancement of heat transfer
over the pulsation amplitude
at l+s = 14. Including results
of Wang and Zhang [22]

0 1 2 3 4 5 6
0

0.5

1

1.5

2

ε [-]

EH
T

[-]

l+s = 14
WZ

Fig. 12 Ensemble averaged
enhancement of heat transfer
for four high pulsation
amplitudes at l+s = 14

ε = 1.25. The plateau in Fig. 11 (dashed blue line) shows that no significant enhance-
ment in heat transfer develops below velocity amplitudes corresponding to ε < 2,
but for larger amplitudes (ε > 2), a clear and significant increase in EHT develops.
Despite numerous difference in physical modelling and numerical setup, the results
qualitatively agree with the work of Wang and Zhang [22]. The significant enhance-
ment in heat transfer is well explained by Fig. 12: At pulsation amplitudes close to
flow reversal (e.g. ε = 1.4), times of flow velocities close to rest hinder an overall
(time-averaged) enhancement. In the case of significant flow reversal, these times
of flow stagnation are quickly surpassed, providing longer intervals at large flow
velocities.
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3.2 Longitudinal Heat Transfer

The computational setup for the study of wall-normal heat transfer in pulsating tur-
bulent flow is modified to account for a longitudinal convective mechanism first
studied by Kurzweg [18]. Kurzweg derived a closed analytical expression for axial
heat transfer in oscillatory laminar channel flows constrained by a constant axial
temperature gradient. The velocity oscillations enhance the molecular thermal diffu-
sivity by orders of magnitude: The fluid receives a wall heat flux at the hot reversal
point, oscillates to the cold reversal point and returns its thermal energy to the walls.
During the final funding period of SFB Transregio 40, van Buren applied LES to
extend Kurzweg’s investigations to turbulent flows. Details on the numerical setup,
results and discussions are given in [5, 7]

Kurzweg [18] proposed an effective thermal diffusivity κe. In its non-dimensional
form, this diffusivity is normalized by the angular frequency ω of the oscillation
and the square of the tidal displacement 	x2: κe/ω	x2. The red line in Fig. 13
shows Kurzweg’s analytical results for effective thermal diffusivity over the Prandtl
number Pr of the fluid. In agreement with the previous numerical study, l+s = 14 was
selected. This correlates with a Womersley number of Wo ≈ 35 and indicates thin
hydrodynamic boundary layers compared to the channel width. Numerical results are
displayed by the blue, orange, yellow and purple line,which are ordered by increasing
oscillation strength. The lower two amplitudes generate laminar flow conditions
and show overall agreement with the analytical correlation. At larger amplitudes,
deviations appear at high Prandtl numbers, exceeding the location of the peak at
Wo2 Pr ≈ π . These differences induced by the onset of turbulence are more apparent
in the semi-logarithmic presentation in Fig. 14. The turbulence-induced enhancement
of longitudinal heat transfer εturb is defined as the effective thermal diffusivity κe
in respect to its laminar reference. In the spectrum of technically relevant Prandtl
numbers (e.g. Pr ≈ 0.7 for air), an increase of 100% is expected. Future numerical
investigations will extend the range of Prandtl numbers to these values.

Fig. 13 Double-logarithmic
presentation of the
non-dimensional effective
thermal diffusivity κe
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Fig. 14 Semi-logarithmic
presentation of the
enhancement of longitudinal
heat transfer εturb
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Figure15 provides physical insight for the enhancement in effective thermal dif-
fusivity at large Prandtl numbers approaching unity. To interpret the results, recall
that the oscillating fluid is characterized by thin hydrodynamic boundary layers (i.e.
Wo ≈ 35). The left plot of Fig. 15 shows a fluid Prandtl number of Pr = 0.0025. This
indicates a thermal boundary layer clearly exceeding its hydrodynamic counterpart.
The plot reveals that the complete cross-sectional area of the channel (η = z/h)
contributes to the longitudinal heat transfer. This is because disturbances in the
temperature distribution propagate throughout the entire channel up to its center-
plane. For increasing Prandtl numbers (center: Pr = 0.025, right Pr = 0.25), this
wall-normal propagation is limited by the thermal conductivity. As a consequence,
centered sections of the channel do not contribute to the convective transport any-
more. In particular, the laminar setup is restricted to small wall-confined regions.
The enhancement induced by turbulence is explained by an increase in wall normal
heat flux, which increases the effective cross-sectional area.

van Buren and Polifke [1] also proposed a turbulence-related convective heat
transfer coefficient hturb. In the range of thin hydrodynamic boundary layers, this
one-dimensional modeling approach—based on assumptions of bulk velocities and
bulk temperatures outside of the boundary layer—predicts a scaling of εturb with the
square-root of the Prandtl number Pr. A comprehensive discussion of interactions
between hydrodynamic and thermal boundary layers is provided in [6].

Figure16 shows qualitative agreement of the numerical results (colored lines) and
the analytic prediction (black dotted lines). The turbulence-dependent coefficient
hturb is evaluated at Pr = 0.25. According to its definition (details are given in [1]),
the coefficient is zero for laminar flows and increases with oscillation amplitude or
turbulence intensity, respectively. This is denoted by the non-dimensional forcing
amplitude λ.

The trend of the turbulent coefficient hturb versus the forcing amplitude λ is
depicted in Fig. 17. Up to the laminar-to-turbulent transition, hturb is zero. At this
threshold a significant increase is attributed to the initial onset of turbulence. With
increasing amplitudes in the turbulent regime, the enhancement continuously decays.
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Fig. 15 Space-resolved effective thermal diffusivity over the channel width 2h at α2 Pr = π (left),
10π (center) and 100π (right) for λ = 100 (blue), 150 (orange), 200 (yellow) and 250 (purple),
α = 35.4

Fig. 16 Detailed parametric
study of enhancement in
longitudinal heat transfer
εturb for increasing,
equi-spaced oscillation
amplitudes (λ = 162.5 to
250, 	λ = 12.5). The black
lines denote the model of van
Buren and Polifke [1]
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Fig. 17 Comparison of EHT
(blue) [1] and the turbulence
induced convective heat
transfer coefficient hturb
(orange) plotted over the
non-dimensional amplitude
λ. Evaluated at Pr = 0.25
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Although there are numerous physical deviations between the setup of wall-
normal and longitudinal enhancement in heat transfer (e.g. pulsating vs. oscillat-
ing flow, wall-normal vs. longitudinal temperature gradient, ...), results of the wall-
normal study are also included in Fig. 17. Note that some characteristic features
compare qualitatively: For both flows, there is certain threshold in forcing amplitude
(i.e. λ ≈ 160) beyond which overall heat transfer clearly increases. For the longi-
tudinal heat transfer, this is explained by the laminar-to-turbulent transition. Due
to the mean-flow, the wall-normal setup is always turbulent. Interestingly—and in
agreement with conclusions given in [1]—significant EHT does not develop below
this threshold. Furthermore, both results show a declining growth with increasing
amplitude in the turbulent regime.

4 Summary and Conclusions

A numerical framework for the quantitative prediction of acoustic damping char-
acteristics was developed and applied to quarter-wave resonators with temperature
inhomogeneities. The results confirm the analytical finding of the first funding period,
i.e. that the temperature distribution within the resonator has a significant impact and
cannot be represented adequately by only the mean temperature. Central advantages
of the numerical approach are the flexibility of arbitrary temperature distributions
and the resolved investigation of non-linear losses (e.g. vortex shedding). It is self-
evident that accurate acoustic predictions require precise knowledge of the present
temperature distribution.

First LES-based evidence for significantly enhanced wall-normal heat transfer in
turbulent pulsating flow was given. This confirms experimental studies that report
enhancement of more than 100%. The present work provides quantitative results
that cover a wide range of forcing frequencies and pulsation amplitudes. Below
velocity amplitudes of significant flow reversals, the time-averaged enhancement of
heat transfer ismarginal. First with significant flow reversal (ε ≈ 2.5), periods of flow
stagnation quickly pass and allow for major enhancement of more than 100%. The
present study demonstrates the risk-potential to the thermal integrity of rocket engine
combustion chambers: Extreme thermal loads are opposed to restrictions in design
and material properties, resulting in little safety margins. Unforeseen enhancement
in fluid-to-wall heat transfer during the design process may result in a catastrophic
destruction of the chamber.

Within the resonator tube, longitudinal convective effects in oscillating flows are
evaluated. In the range of physically relevant Prandtl numbers (e.g. airwith Pr ≈ 0.7),
the effective thermal diffusivity enhances significantly. Based on a comprehensive
examination of hydrodynamic and thermal boundary layers, a simple model quanti-
fies the impact of turbulence.

The present study sheds light on the complexity of a comprehensive design process
of rocket combustion chambers. In particular, the close interdependence between
acoustics and heat transfer requires a holistic treatment: The acoustic amplitude
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has an impact on heat transfer and thus on the temperature distribution. The local
temperature—in turn—influences the damping characteristic of the acoustic res-
onators. One possible consequence is the shift in effective damping frequency and
thus an overall change in acoustic amplitude (closing the feedback-loop at hand).
Furthermore, non-linear damping effects present a second direct coupling mecha-
nism between acoustic amplitude and the damping characteristics of the resonator. To
conclude, these interdependences do not allow for a decoupled analysis of acoustics
and heat transfer. In regards to a numerically supported design process, this finding
comes along with major challenges in the selection of length and time scales. On
the one hand, highly resolved LES are required to capture effect of EHT and vortex
shedding. On the other hand, the length scale of the combustion chamber has to be
considered over the time scale of the transient heating process. In future studies,
sophisticated approaches that make use of reduced-order models might overcome
current restrictions imposed by computational resources. This may include an itera-
tive procedure between the different orders in time scales or an evaluation of EHT
by an imposed wall model. From an applied point of view, one is well advised to
adhere to the established practice of placing the resonator openings adjacent to cool
recirculation zones, where only minor changes in temperature are expected, in order
to avoid the complications discussed.
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This study proposes a semi-analytical approach to predict the acoustic impedance of a quarter-wave
resonator with non-uniform temperature. In analogy to well-known models for Helmholtz resonators,
the quarter-wave resonator is represented as a mass-spring-damper system. The treatment is limited to
polynomial temperature profiles, but does take into account that the resonator cavity is not acoustically
compact.

In order to assess the validity and accuracy of the semi-analytical results, computational fluid dy-
namics (CFD) simulations are carried out for a variety of temperature profiles in a quarter-wave res-
onator cavity. The acoustic reflection offered by the resonator opening to imposed incoming acoustic
waves is evaluated, either by spectral analysis of time series generated by repeated, monofrequent
excitation, or by system identification of acoustic signals generated with broad-band excitation. Sys-
tem identification – a variant of supervised machine learning – requires only a single simulation run to
characterize the resonator over the frequency range of interest. The validation study shows good quan-
titative agreement between the mono-frequent and broadband excitation cases, as well as qualitative
consistency with the analytical predictions.

The present study demonstrates that resonator eigenfrequencies as well as maximum effectiveness
and bandwidth of acoustic damping are quite sensitive to temperature inhomogeneities. In the context
of thermo-acoustic combustion instability, where resonators are frequently employed as a means of
passive control. The results suggest that the acoustic characteristics of a resonator with hot combustion
products at the inlet and a cooled backing cannot be computed simply with a representative average
of the temperature distribution. These findings underline the necessity of a comprehensive design
process, which includes thermal analysis in order to assure optimum resonator effectiveness.
Keywords: acoustic resonator, temperature inhomogeneity, CFD

1. Introduction

Combustion instabilities jeopardize the structural integrity of combustion chambers. One measure
to ensure safe operating conditions is the installation of acoustic resonators to increase overall acoustic
dissipation and to suppress the thermo-acoustic feedback. For optimal performance, resonators need to be
tuned to eigenfrequencies of instabilities. Large temperature gradients exist between the hot combustion
gases and the cooled chamber walls. Furthermore, acoustic pulsations in the turbulent flow enhance the
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heat transfer [1]. In consequence, the local variations in the speed of sound affect the frequency range of
damping. In coupled analysis of combustion chamber and resonator elements, Chemnitz et al. [2] showed
the high sensitivity of global stability toward the damping characteristics of the resonator. Already minor
changes in the damping eigenfrequency may cause fatal destruction of the chamber. Thus, a reliable
quantification of the effects of temperature inhomogeneities on the resonator eigenfrequency is crucial
for the design of safe operating.

In 1896, Rayleigh [3] modeled the Helmholtz resonator as a mass-spring-damper system. Since then,
many authors (see e. g. [4, 5, 6]) used this analogy to describe the behavior of acoustic resonators in
a semi-analytical way. Cárdenas [7] adapted the model for quarter-wave resonators and accounts also
for temperature inhomogeneities inside the resonator. This formulation is reviewed in the following and
extended to the specific needs of the present study. The semi-analytical model serves as reference for the
validation of the CFD setup presented in Section 4.

2. Acoustic Quantities

The reflection coefficient R(ω) characterizes the acoustic damping of a resonator in frequency domain
(̂.-operator):

R(ω) =
ĝ(ω)

f̂(ω)
, (1)

where ω is the angular frequency. It evaluates the ratio of the one-dimensional characteristic waves,
traveling up- and downstream (f and g-wave, compare Figs. 1 and 2)

f =
1

2

(
p′

ρ̄c̄
+ u′

)
and g =

1

2

(
p′

ρ̄c̄
− u′

)
. (2)

where p′ is the pressure fluctuation, u′ the velocity fluctuation, ρ̄ the mean density and c̄ the mean speed
of sound. The reflection coefficient R and the acoustic impedance Z ≡ p̂/û = Φ + iΨ are linked via:

R(ω) =
Z(ω)− ρ̄c̄
Z(ω) + ρ̄c̄

, (3)

where Φ is the resistance, while Ψ is the reactance.

3. Analytical Model

The presented analytical model for the acoustic impedance Z combines two independent approaches.
The mass-spring-damper analogy allows to determine the resistance. First introduced by Rayleigh [3]
in 1896, the analogy has often been applied and refined. For example, Ingard [4] as well as Keller
and Zauner [5] extended the model semi-analytically to describe the damping behavior of Helmholtz
resonators, as shown in Fig. 1. Laudien et al. [6] investigated a way of transferring the concept to quarter-
wave resonators. In the present work, this approach is extended to account for temperature inhomo-
geneities. The reactance of the resonator is modeled in accordance with Cárdenas [7].

3.1 Resistance of a Quarter-Wave Resonator with Temperature Inhomogeneities

The differential equation that describes the mass-spring-damper system consists of four fundamental
components: the inertia of the mass (fluid in the neck), the restoring force of the spring (gas in the backing
cavity of length l), the damping (viscous friction and non-linear effects) and the excitation by an external
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Figure 1: Sketch of a Helmholtz resonator, with
highlighted oscillating fluid mass in the neck re-
gion. Redrawn from [7].

lrp′
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leff = l + δo

u′ d

x

V
Tnf

g

Figure 2: Sketch of a quarter-wave resonator, with
highlighted oscillating fluid mass derived by the
representative length lr. Redrawn from [7].

force (acoustic pressure fluctuation) [5]. In order to obtain the frequency-based damping characteristics
for an excitation p′ and assumed linear response u′, the Fourier transformed (q′ = q̂eiωt) system reads:

(1 + s)(lr + δlo)ρ̄nωiû− [sρ̄n(l + d)ω) + ξρ̄nû] û+
Anρ̄vc̄

2
v

V ω
iû = p̂ . (4)

The representative neck length lr (compare Fig.2) corresponds to the length at which the eigenfre-
quency of the mass-spring-damper system corresponds to the geometric eigenfrequency of the quarter-
wave resonator [6]. This approach, accounting for temperature inhomogeneities, is presented in Sec-
tion 3.3.

An additional portion of mass located at the tube directly outside of the resonator (index o) is taken
into account by the end correction δlo. For small neck diameters (d/D � 1) a semi-analytical approx-
imation for the length δlo ≈ 4d/(3π) is given by Munjal [8]. The effective neck length leff is defined as
the length from the back of the tube to the mouth, including the correction δlo:

leff = l + δlo. (5)

In cylindrical ducts the boundary-layer parameter s, accounting for viscous effect within a small
Stokes boundary layer δs/d� 1, is defined as:

s =
1

d

(
1 +

γ − 1√
Pr

)
δs with δs =

√
2µ

ρω
, (6)

where Pr denotes the Prandtl number, µ the dynamic viscosity and γ the ratio of specific heats.
To eliminate the non-linearity in the dissipation term of Eq. (4), Keller and Zauner [5] introduced a

factor εnl: ξρ̄nû
2 ≈ εnlsρ̄ndωû. In this study, the non-linear influence is negligible (εnl = 0) [9].

The resistance of the quarter-wave resonator is obtained as the real part of the impedance, which is
derived by the rearrangement of Eq. (4):

Φ =

(
1 +

γ − 1√
Pr

)(
1 + εnl +

lr
d

)√
2ρ̄nµω . (7)

3.2 Reactance of a Quarter-Wave Resonator with Temperature Inhomogeneities

Since the backing cavity of a quarter-wave resonator cannot be assumed to be acoustically compact,
Cárdenas [7] developed a general correlation for the acoustic reactance. Based on an approach by Kumar
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and Sujith [10], the closed-form expression for the reactance of a resonator with a polynomial temperature
profile,

T (x) = (ax+ b)n, (8)

reads:

Ψ =−
[
iρ̄chω((a+ νσ)P−ν(βT

σ
1 )Pν(bT

σ
2 ) + βσP−1−ν(bT

σ)
1 )Pν(bT

σ
2 )T σ1

−P−ν(βT σ2 ) ((α− νσ)Pν(βT
σ
1 ) + βσP−1+ν(βT1s)T σ1 ))T

1/N
2

]
/

[an (((α− νσ)Pν(bT
σ
1 ) + βσP−1+ν(βT

σ
1 )T σ1 ) ((α + νσ)P−ν(βT

σ
2 ) + βσP−1−ν(βT

σ
2 )T σ2 )

− ((α + νσ)P−ν(βT
σ
1 ) + βσP−1−ν(βT

σ
1 )T σ1 ) ((α− νσ)Pν(βT

σ
2 ) + βσP−1+ν(βT

σ
2 )T σ2 ))] ,

(9)

where Pn denotes the Bessel function of first kind with order n. The parameter α β σ and ν read:

α =
1

2

(
1

n
− 1

)
, β =

ω

an
√
γRsσ

, σ =

(
1

n
− 1

2

)
and ν =

1− n
2− n . (10)

For a given resonator geometry and temperature profile, the reactance Ψ is a function of the angular
frequency ω.

3.3 Calculation of the Representative Neck Length

The temperature profile T (x) (compare Fig. 4) anchors at the cooled wall at the back of the resonator
at T = Tcool, and the temperature increases to T = Tch just outside the resonator opening. Two overlap-
ping fluid regions are defined in the resonator: the backing volume at an average temperature of Tv, and
the neck region at Tn (compare Fig. 2).

Following Laudien et al. [6], the eigenfrequency of the mass-spring-damper system selected that the
representative length lr agrees with the quarter-wave frequency of the resonator. The latter is defined by
the angular frequency ωeig for which the reactance Ψ (Eq. (9) of the quarter-wave resonator equals zero.

The undamped angular eigenfrequency of the mass-spring-damper system is given as the square-root
of the ratio of the spring-constant to the mass. Applying this to the analogy obtained in Eq. (4) yields the
eigenfrequency feig (with f = ω/(2π)):

feig =
c̄v

2π

√
An

V (1 + s)(lr + δlo)

ρ̄v

ρ̄n

. (11)

In Eq. (11), the average density for the neck and the backing volume region are calculated by utilizing
the perfect-gas equation of state to describe the correlation between the local density and the temperature
profile:

ρ̄n =

∫ leff

l−lr ρ̄(x)dx

leff − (l − lr)
=

∫ leff

l−lr
p

RsT (x)
dx

lr + δlo
,

ρ̄v =

∫ l
0
ρ̄(x)dx

l
=

∫ l
0

p
RsT (x)

dx

l
.

(12)

Using Eqs. (11) to (12), the representative neck length lr can be calculated as a function of the tem-
perature profile and serves as input parameter for the resistance, defined in Eq. (7).
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4. Numerical Implementation

In the present study, the authors present a numerical framework to quantify the damping behavior
of a quarter-wave resonator with non-uniform temperature. As an advantage over the analytical model,
this approach allows for arbitrary temperature distributions. Furthermore, the numerical method does not
require for empirical parameters (e.g. the non-linear coefficient).

This section describes the numerical case setup, including the geometrical domain, initial and bound-
ary conditions and solver settings. The evaluation via System-Identification follows.

The axis-symmetric wedge domain consists of the quarter-wave resonator (length l and neck radius
rn) attached to a flow channel (length l0 and radius r0, compare Fig. 3). At the left inlet boundary
interface, the planar inward-traveling f -wave is applied via a Navier-Stokes Characteristic Boundary
Condition (NSCBC) [11]. The reflected outward-traveling g-wave is evaluated at a reference plane,
located at a distance lref from opening of the resonator. The length lref is chosen to be sufficiently large
for reflected g-waves to develop planar characteristics. All boundary conditions, besides the inlet, are
adiabatic. At the physical walls of the resonator and the channel face plate, no-slip conditions are applied
for the fluid flow, while the circumference boundary of the channel shows slip characteristics.

Considering the axial symmetry of the geometry, a structured graded mesh is generated as a two-
dimensional grid with a wedge angle α = 4◦. The Stokes boundary layer at the walls is resolved with 9
cells, yielding a minimum cell size of dcell,min ≈ 8.0 · 10−6 m at frequencies of f ≈ 4700 Hz.

In agreement with the temperature profile of the analytical approach, the geometry is divided at the
effective resonator length (see the purple area in Fig. 3). Figure 4 shows the temperature within the
resonator from the backing wall (Tcool) to the effective length leff (Tch). Inside the channel volume, the
homogeneous temperature Tch is applied. Further initial condition is a constant pressure p of the resting
fluid (u = 0). The parameters for the numerical setup are summarized in Table 1.

An extended version of the compressible solver rhoPimpleFoam of the software OpenFOAM 2.3.1
is used [12]. For this study, both harmonic and broadband excitation are applied. The evaluation of the
CFD results excited by a broadband input-signal is realized by System-Identification (CFD/SI). Based on
the studies by Förner and Polifke [13], the identification process utilizes the output-error model:

g[k] =
B

F
f [k] + e[k] . (13)

Considering discrete-time signals, f [k] is the input (f -wave) at time-step k, g[k] is the output (g-wave)
and e[k] is Gaussian white noise. B and F denote polynomials in the time shift operator. Appropriate
orders of these polynomials are 3 for B and 2 for F [13].
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Table 1: Parameters used for the numerical simulation.
initial Tcool [K] 647 600 500 400 300
conditions Tch [K] 647 698 844 1075 1498

n [−] −1.5
Tmean [K] 647
p [Pa] 1.0 · 108

geometry l [mm] 40.75
l0 [mm] 100
lref [mm] 90
rn [mm] 3.4
r0 [mm] 34

thermo- M [g/mol] 13.7 molar mass
physical cp [J/(kg K)] 1500 specific heat capacity
properties µ [Pa s] 5.5·10−5 dynamic viscosity

Pr [−] 0.71 Prandtl number

numerical dcell,min [m] 8.0·10−6 min. cell size
properties ncell [−] 2.2 · 104 number of cells

dcell/δs [−] 9 cells in Stokes layer
∆t [s] 5.0·10−8 time step

5. Results

For the presentation of the results, five polynomial temperature profiles are selected. The mean tem-
perature is set to be constant at Tmean = 647 K, while the temperature at the cooled resonator back is
varied. Thereby, the hot channel temperature results as a dependent quantity.

5.1 Analytical Results

The results of the analytical correlation (Eq. (9)) are presented in Fig. 5. The colormap shows the
gain of the reflection coefficient vs. frequency and temperature ratio. First, an increase of the temperature
gradient leads to an increase of the eigenfrequncy up to a maximum at feig,max ≈ 4980 Hz. Afterwards, a
decline of the eigenfrequency is observed.

The evaluation of discrete temperature ratios is shown in Fig. 6. In addition to the shift of eigenfre-
quencies, this plot clearly reveals an increase of the maximum damping performance for higher temper-
ature ratios: for a constant temperature profile Tch = Tcool = Tmean = 647 K, a gain of |R| ≈ 0.58 is
predicted, while the maximum temperature ratio of Tch/Tcool = 4.99 yields a gain of |R| ≈ 0.33.

5.2 Numerical Results

Figure 7 shows the numerical results of this study. Considering harmonic excitation, simulations are
run for sinusoidal incoming f -waves with frequency intervals of 25 Hz. The resulting resonator perfor-
mance of this discrete excitation pattern is given by the colored squares. For the system-identification,
three randomly generated broadband simulations are run for each temperature ratio. The results of the
identified system are given by the dashed lines. At an identification time-length of 0.04 s, the very good
agreement of the results for the three random broadband signals indicates the expected independence of
the generated f -wave.
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Figure 6: Analytical results for gain of the reflec-
tion coefficient vs. frequency for various of tem-
perature ratios Tch/Tcool.
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domly generated broadband excitations obtained by
CFD/SI (dashed lines).
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Figure 8: Gain of the reflection coefficient of the
analytical model (solid lines) and averaged results
obtained by system identification of broadband ex-
citation (dashed lines).

The comparison of the results derived from harmonic and broadband excitation shows very good
agreement for all temperature ratios. Thus, in further studies the method of system identification may be
used to save computational costs.

Finally, analytical and numerical (broadband excitation) results are compared in Fig. 8. Both trends
driven by increasing temperature ratios - the shift of eigenfrequency and the maximum damping behavior
- correspond for the analytical and the numerical approach. However, the gain of the reflection coefficient
of the numerical results are slightly lower then those of the analytical formulation. Furthermore, the
eigenfrequencies predicted by the numerical approach is slightly higher.

6. Summary and Conclusions

In this study, the damping behavior of quarter-wave resonators is investigated analytically and numer-
ically. The focus lies on the consideration of temperature inhomogeneities, as they can be expected to
occur in combustion chambers due to high temperature gradients between hot combustion gas and cooled
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chamber walls.
For the analytical approach, the resistance is modeled based an the work by Laudien et al. [6]. The

reactance is given from a closed-form expression [7]. Overall, an extended analytical model is presented
accounting for axial temperature inhomogeneities within the resonator. A numerical framework is pre-
sented as a more flexible design tool without the requirement for semi-empirical correlations. The com-
bined CFD/SI procedure is successfully validated against simulation results form harmonically excited
simulations for several temperature profiles.

The results of the analytical and the CFD/SI approach show good agreement. Both reveal a compa-
rable increase in the maximum damping performance for rising temperature ratios as well as a shift in
eigenfrequency. The results clearly underline that the mean temperature is not a sufficient measure for the
description of the damping characteristics. Instead, a more detailed knowledge of the temperature profile
is required for an accurate prediction of the acoustic behavior. For an a-priori known temperature profile,
the presented CFD/SI tool-chain can be used to generate highly accurate models with low numerical cost.
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ABSTRACT

Enhanced longitudinal heat transfer in viscous, laminar, single-phase, oscillatory chan-

nel flow is investigated in the present paper. Kurzweg (J. Heat Transf. 107, 1985) analysed

this case theoretically and derived a correlation for a non-dimensionalized effective ther-

mal conductivity in terms of Prandtl and Womersley numbers. The present investigation

contributes analysis of limiting cases and physical interpretation to the results of Kurzweg.

A simplified model with isothermal walls is proposed, applicable if working fluid and chan-

nel wall material exhibit sufficiently large differences in thermal inertia. Examined over a

wide range of Womersley numbers, this model reveals six distinct regimes characterized

by the Prandtl number of the fluid. The respective thickness of hydrodynamic and thermal

boundary layers relative to the channel width is relevant in this context. Maximum effec-

tive thermal conductivity is attained when the thermal boundary layer expands over the full

channel width. The influence of Womersley number is discussed and explained in terms

of the interplay of hydrodynamic and thermal flow characteristics. These patterns reveal

either quasi-steady parabolic or oscillating bulk characteristics. The importance of the ther-

mal boundary layer thickness motivates the introduction of a new non-dimensional group,

making it easier to classify the various regimes of enhanced longitudinal heat transfer.
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INTRODUCTION

Several authors report enhanced axial transport of passive scalars, such as contaminants,

induced by oscillations in capillary tubes [1–4]. The reported enhanced transport exceeds purely

molecular diffusion by orders of magnitude. The enhancement is attributed to the interaction

between oscillating radial velocity profiles and local variations in concentration. Thus, an effective

axial diffusion rate is formulated.

Kurzweg and coworkers [5, 6] exploited the similarity between molecular diffusion and heat

transfer when investigating heat transfer between two water reservoirs at different temperatures,

connected by a bundle of capillary tubes. Inducing high-frequency velocity oscillations to the

fluid, heat transfer between the reservoirs increased by four orders of magnitude over the non-

oscillating reference case, where heat conduction was the only mechanism of heat transfer. In a

final step, Kurzweg [7] developed a comprehensive analytical model for the effective thermal diffu-

sivity. Choosing a non-dimensional formulation, Kurzweg [7] identified the Womersley number α,

defined as the ratio of transient inertial and viscous forces, as a key parameter and highlighted that

effective diffusivity is reduced at large as well as small Womersley numbers. Maximum longitudi-

nal heat transfer is reported to occur when the Prandtl number Pr satisfies the relation α2 Pr ≈ π.

Later studies evaluated theoretically and experimentally the so-called “dream pipe” – a capillary

heat transfer tube bundle (e.g. Kaviany [8–10] and Nishio et al. [11]). In contrast to the original

work by Kurzweg [7], circular ducts instead of two-dimensional channels were considered. Inaba

et al. [12] contributed to the understanding of the influence of the properties of the channel wall

(i.e. its thermal conductivity and thickness). Puvaneswari and Shailendhra [13] provided an ex-

tended mathematical investigation that includes viscoelastic fluids employed as the oscillating heat

carriers.

The challenging acoustic design of passive damping devices in rocket engines motivates the

present work. Commonly used quarter-wave resonators are designed as capillary tubes and pre-

vent catastrophic thermoacoustic instabilities. However, extreme thermal flow conditions inside

the combustion chamber complicate the design process. For example, turbulent pulsations trigger

enhanced heat transfer between the hot combustion gas and regeneratively cooled walls [14,15].

2
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The resulting temperature gradients within the resonator strongly influence its acoustic proper-

ties [14,16] and thus jeopardize the sensitive acoustic stability of the engine [17,18].

This theoretical investigation assumes an incompressible flow to focus only on diffusive effects

contributing to enhanced heat transfer. Heat pump effects induced by thermoacoustic density

fluctuations are neglected. Furthermore, evaporation of propellant is not considered. The reader

should keep in mind the potential relevance of latent heat and liquid-vapor two-phase flow (e.g.

Miura et al. [19,20]).

The present study contributes to the understanding of the physical mechanisms of heat transfer

enhancement in oscillating channel flow: As a starting point, the next section outlines the model

by Kurzweg [7] and simplifications proposed by van Buren and Polifke [21, 22]. Then the present

paper provides insight into three related problems:

Firstly, the (mathematical) influence of Womersley and Prandtl number. Based on the simplified

analytical model [21, 22], six distinct characteristic regimes are identified. These regimes are

connected to the limiting constellations of hydrodynamic and thermal boundary layers.

Secondly, the (physical) interplay of hydrodynamic and thermal boundary layers. Based on the

characteristics of the limiting thermal and hydrodynamic profiles (bulk vs. quasi-steady parabolic

profiles), physical explanations for the quantitative scaling of the effective thermal diffusivity are

derived for each regime. The wall-normal thermal penetration depth is revealed as a significant

key driver of the problem at hand.

Thirdly, focusing on the interplay of boundary layers and the importance of thermal penetra-

tion depth, a corresponding non-dimensional group is introduced, which is defined as the ratio

of transient thermal inertia and wall-normal conductive heat flux. This novel non-dimensional

group, which we name the “Kurzweg number” in acknowledgement of Kurzweg’s seminal analysis,

underlines the importance of the thermal boundary layer: In five out of six constellations of bound-

ary layers, the Kurzweg number suffices to quantify the effective thermal conductivity (alongside

with the Womersley number), which serves as a measure of enhanced longitudinal heat transfer

(ELHT).
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Fig. 1. Geometry of oscillating fluid flow between parallel channel walls. Left: Kurzweg [7], right: van Buren and Polifke [21,22].

REVISITING THE LITERATURE

Model by Kurzweg

In 1985, Kurzweg [7] presented a closed-form analytical expression for the effective longitudi-

nal thermal diffusivity κe in oscillatory channel flow. The two-dimensional fluid channel (width 2h) is

confined by solid walls (thickness 2b) in span-wise z-direction (see Fig. 1, left). In the wall-normal

direction, symmetry condition is applied at the center-line of the channel and at the center-line of

each wall, considering a stack of parallel channels. In non-dimensional notation η = z/h, these

symmetries are at η = 0 and η = ±ε, respectively, where the geometric wall-to-channel character-

istic is defined as ε ≡ (b+ h)/h.

In stream-wise x-direction, the harmonically oscillating fluid (e.g. forced by an oscillating pres-

sure gradient) exhibits a velocity profile U(η, t) described by:

U(η, t) = U0f(η)eiωt = U0
iλ

α2

[
1− cosh(

√
iαη)

cosh(
√
iα)

]
eiωt, (1)

where U0 is a representative velocity, λ the non-dimensional pressure gradient, t the time, and ω

the angular frequency. The Womersley number α is defined as the ratio of transient inertial and

viscous forces:

α2 ≡ ρωU

µUh2
=

ωh2

µρ−1
=
ωh2

ν
, (2)

4
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where µ denotes the dynamic viscosity, ν the kinematic viscosity, and ρ the density of the fluid.

Under the assumption of temporal and stream-wise periodicity, Eqn. (1) is an exact solution of the

Navier-Stokes equations (Stokes problem). The channel-averaged tidal replacement ∆x follows

by the integration of Eqn. (1):

∆x =
2U0λ

ωα2

∣∣∣∣∣1−
tanh(

√
iα)√

iα

∣∣∣∣∣ . (3)

Kurzweg [7] accounts for conjugate heat transfer between the channel walls and the oscillat-

ing fluid. Within the walls, heat conduction is the only transport mechanism, whereas additional

convective transport is considered within the fluid. The effective thermal diffusivity κe is then

defined such that its product with the average stream-wise temperature gradient γ equals the

time-averaged convective thermal flux across the channel cross-sectional dimension with width

η = 1 [1]:

κeγ =
ω

2π

∫ 2π/ω

0

∫ 1

0
< [T (x, η, t)]<

[
U0f(η)eiωt

]
dη dt, (4)

Kurzweg [7] provides a solution of Eqn. (4) to quantify enhanced longitudinal heat transfer

(ELHT) in non-dimensional form:

κe
ω∆x2

=
Pr
[
(1−H)h̄+ (1− H̄)h

]
+ (h̄− j̄H̄) + (h− jH)

16α2(Pr2−1)

∣∣∣∣1−
tanh(

√
iα)√

iα

∣∣∣∣
2 , (5)

where

h(α) =
√
iα tanh(

√
iα), j(Pr, α) =

√
iPrα tanh(

√
iPrα) (6)
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and

H(Pr, ξ, σ, α, ε) =
1

Pr

ξ
√

Pr tanh(
√
iα) +

√
σ tanh(

√
iσPrα(ε− 1))

ξ tanh(
√
iPrα) +

√
σ tanh(

√
iσPrα(ε− 1))

. (7)

Pr = ν/κf denotes the fluid Prandtl number and the bar ·̄ the complex conjugate of the functions

h, j, and H. Non-dimensional characteristics describing the material properties (fluid vs. solid)

are the ratio of thermal conductivities ξ = kf/ks and the ratio of thermal diffusivities σ = κf/κs,

respectively.

Simplifications by van Buren and Polifke

In a follow-up study, van Buren and Polifke [21, 22] introduced a simplification that is valid for

many technical applications: For configurations with thick walls compared to the channel width

(b� h), the geometric characteristic ε simplifies:

b� h ⇒ ε� 1. (8)

Furthermore, if the thermal conductivity of the fluid kf (e.g. air) is much smaller than the ther-

mal conductivity of the solid ks (e.g. metal), kf � ks, the thermal material characteristic ξ ap-

proaches zero:

kf � ks ⇒ ξ ≈ 0. (9)

Physically speaking, these assumptions imply time-invariant temperatures at the fluid-solid

interface. Thereby, the applied assumptions coincide with parametric set-up of maximum heat

transfer concluded by Inaba et al. [12]. As depicted in Fig. 1 (right) and shown in [21, 22], the

stream-wise temperature gradient γ is maintained spatially and temporally constant. Exploiting

6
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the simplifications which these assumptions allow (i.e. H → 1/Pr), Eqn. (5) is rewritten as:

κ?e
ω∆x2

=
2 Pr<(h)− 2

Pr<(j)

16α2(Pr2−1)

∣∣∣∣1−
tanh(

√
iα)√

iα

∣∣∣∣
2 . (10)

In the present study, this simplified expression serves as the starting point for a comprehensive

discussion of the interplay between hydrodynamic and thermal boundary layers. In this process,

findings by Kurzweg [7] are confirmed, expanded, and interpreted in a physical context.

DISCUSSION OF THE SIMPLIFIED MODEL

Influence of Womersley and Prandtl number

In this section, observations of the influence of Womersley and Prandtl number on the effec-

tive thermal diffusivity are categorized and discussed. In this context, three central findings of

Kurzweg [7] regarding the non-dimensional effective thermal diffusivity κe/(ω∆x2) are confirmed,

namely: (i) For large Womersley numbers α, thermal diffusivity is proportional to 1/α. (ii) For small

α, thermal diffusivity is proportional to α2. (iii) There is a maximum in thermal diffusivity close to

α2 Pr = π.

In the following, these findings are expanded and discussed in a physical context. First,

Eqn. (10) is rearranged and rewritten as follows:

κ?e
ω∆x2

=

Ψ︷ ︸︸ ︷
Pr

8
√

2α(Pr2−1)

∣∣∣∣1−
tanh(

√
iα)√

iα

∣∣∣∣
2




Φ︷ ︸︸ ︷
g (α)−

Θ︷ ︸︸ ︷
Pr−3/2g

(
α
√

Pr
)

 , (11)

where

g(ζ) =
e2
√

2ζ − 2e
√

2ζ sin(
√

2ζ)− 1

e2
√

2ζ + 2e
√

2ζ cos(
√

2ζ) + 1
. (12)

7

A.3 Enhanced Longitudinal Heat Transfer in Oscillatory Channel Flow ...

127



Enhanced longitudinal heat transfer in oscillatory channel flow – a theoretical perspective

10−7

100

107

10−7

100

107

10−8

10−3

102

10−8

10−3

102

10−1 100 101 102

10−7

10−4

10−1

α

1a 2a 3a

10−2 10−1 100 101

10−7

10−4

10−1

α

1b 2b 3b

Fig. 2. Separate display of individual terms of equation. Left: Pr = 0.01, right: Pr = 100. Top: |Ψ|, middle: Φ ( ), Θ
( ), |Φ−Θ| ( ), bottom: ELHT κ?e/(ω∆x2). Dotted lines: α =

√
π ( ), α =

√
π/Pr ( ).

The purely real-valued denominator is factored out and rearranged (Ψ). The difference between Φ

and Θ remains. To drop the imaginary part attributed to the functions of h(α) and j(Pr, α), rewriting

leads to a generalized function g(ζ). The argument of the function g is either the Womersley

number (see Φ) or a combination of Womersley and Prandtl number (see Θ).

Figure 2 displays the individual terms of Eqn. (11) vs. the Womersley number α for a small

(left side, Pr = 0.01) and a large Prandtl number (right side, Pr = 100), fluid characteristics that

are representative of liquid metal and viscous oils, respectively. At ambient condition, the Prandtl

numbers of fluids such as water (Pr ≈ 10) or air (Pr ≈ 0.7) lie well inside this range. The red

dotted vertical line marks the maximum of ELHT at α =
√
π/Pr, already observed by Kurzweg.

The black dotted line denotes α =
√
π. At this value of α, hydrodynamic boundary layer thickness

δ (also known as Stokes boundary layer) and channel width h are of the same order of magnitude

because:

δ =
√

2ν/ω ⇒ δ

h
=

√
2

α
. (13)
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Table 1. Distinct regimes of longitudinal heat transfer in dependence of Womersley number α and Prandtl number Pr.

Pr < 1 Pr > 1

α→ 0
√
π < α <

√
π/Pr

√
π/Pr < α <

√
π α→∞

1 2a 2b 3

|Ψ| 1/α5 1/α 1/α5 1/α

|Φ−Θ| α7 α3 α3 α0

κ?e/(ω∆x2) α2 α2 1/α2 1/α

In the range α <
√
π, indicative of capillary flow with δ > h, the double-logarithmic presentation

of Fig. 2 reveals a power-law scaling with 1/α5 for |Ψ| ( 1 and 2b ). Conversely, for α >
√
π (e.g.

acoustic quarter-wave resonators), the pre-factor |Ψ| scales with 1/α ( 2a and 3 ). Thus, these

slopes are attributed to the hydrodynamic boundary layer either extending over the full channel

width or being confined to the close vicinity of the wall (black dotted line). At α =
√
π/Pr (red

dotted line), no change in slopes occurs.

The second row of Fig. 2 shows Φ and Θ. Originating from the function g(ζ), the scaling of both

terms changes from α3 to α0 as the argument ζ approaches ζ ≈ √π. For Φ, the argument of g(ζ)

is the Womersley number α, thus being related to the hydrodynamic boundary layer thickness. On

the other hand, Θ relates ζ = α
√

Pr. In this context, the thermal boundary layer thickness δth is

the thermal analog of the Stokes boundary layer thickness and reads:

δth =
√

2κ/ω ⇒ δth
h

=

√
2

α
√

Pr
. (14)

It directly shows that Θ is connected to the spatial extent of thermal penetration (red dotted

line). In addition to the findings of Kurzweg [7], the difference between Φ and Θ reveals a third

regime 2 of Womersley numbers with constant scaling. The placement of this range depends on

the Prandtl number Pr being smaller or larger than unity. Physically speaking, this indicates that

the thermal boundary layer δth already extends over the full channel width, while the hydrodynamic

boundary layer δ is wall-confined ( 2a , Pr < 1), or vice versa ( 2b ).

9
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The bottom row of Fig. 2 shows the effective thermal diffusivity κ?e/(ω∆x2) as calculated by

the three individual terms of Eqn. (11). As reported by Kurzweg [7], the maximum lies at α ≈
√
π/Pr. Interestingly, the reported third regime 2a vanishes for Pr < 1 (i.e. it shows the same

characteristics as regime 1 ). However, for Pr > 1, this additional regime 2b persists and scales

with the inverse square of the Womersley number 1/α2. Table 1 summarizes the results.

Interplay of hydrodynamic and thermal boundary layers

In this section, the physical interplay of velocity and temperature profile is discussed and in-

terpreted in terms of the resulting effective thermal conductivity κ?e/(ω∆x2). As presented in the

previous section, each of the six possible combinations of Womersley and Prandtl number ( 1 –

3 and a – b ) are categorized in Tab. 2. In favor of a comprehensible presentation, the variation

of the Womersley number α is illustrated by adjusting the channel width. In all plots of Tab. 2, this

approach is depicted by two channel realizations of increasing width h in the z-direction, where

the vertical dashed lines denote the shifting confining wall. Meanwhile, the angular frequency ω

and the fluid viscosity ν are constant.

Firstly and referring to Tab. 2, the reader is reminded of the two distinct profile characteristics

that an oscillating channel flow exhibits in its limiting cases: At small channel width h ( 1 ), a

quasi-steady parabolic velocity profile U(z) exists across the flow channel. Thus, the magnitude

of velocity fluctuations scales with the square of the channel width h. For the opposite case of

large channel width h ( 3 ), hydrodynamic boundary layers are confined to the close vicinity of the

wall. In this case, the channel width does not affect the magnitude of velocity fluctuations. Figure 3

sketches the parabolic (blue line) and bulk limit (orange line), respectively.

In a second step, the temperature fluctuations T ′(z) are quantified. In analogy to the velocity

profile, the channel width h distinguishes between quasi-steady parabolic and bulk characteristics.

However, the thermal threshold lies at δth/h ≈
√

2/(πPr). As elaborated in the previous section,

the Prandtl number classifies constellations of only one boundary layer (hydrodynamic or thermal)

expanding into the center of the channel ( 2 ). Furthermore, the temperature profile is directly

linked to the velocity profile: the driving wall-normal temperature disturbances are induced by the

stream-wise tidal fluid displacement.

10
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Table 2. Physical interpretation of slopes in dependence of channel width h (representing the Womersley number α) and Prandtl

number Pr (Pr < 1 indicates that the thermal boundary layer (BL) is wider than the hydrodynamic BL and vice versa).

Pr < 1 Pr > 1

h
→

0

Regime 1
narrow
channel

Interval: α <
√
π

z

U

h

U ∼ h2

dU/dz ∼ h

hydr. BL 1a
δ
h
>
√

2
π

z

T ′

h

∼ h4
T ′ ∼ Udz2

ther. BL
δth
h
>
√

2
π Pr

>
√

2
π

Q ∼ UT ′dz ∼ α7

κ?e ∼ Q/h ∼ α6

κ?e/(ω∆x2) ∼ α2

Interval: α <
√

π
Pr

z

U

h

U ∼ h2

dU/dz ∼ h

hydr. BL 1b
δ
h
>
√

2Pr
π

>
√

2
π

z

T ′

h

∼ h4
T ′ ∼ Udz2

ther. BL
δth
h
>
√

2
π

Q ∼ UT ′dz ∼ α7

κ?e ∼ Q/h ∼ α6

κ?e/(ω∆x2) ∼ α2

maximum

Regime 2

Interval:
√
π < α <

√
π
Pr

z

U

h

U = const

δδ hydr. BL 2a
δ
h
<
√

2
π

z

T ′

h

∼ h2
T ′ ∼ Udz2

ther. BL
δth
h
>
√

2
π

Q ∼ UT ′dz ∼ α3

κ?e ∼ Q/h ∼ α2

κ?e/(ω∆x2) ∼ α2

Interval:
√

π
Pr < α <

√
π

z

U

h

U ∼ h2

dU/dz ∼ h

hydr. BL 2b
δ
h
>
√

2
π

z

T ′

h

δth δth

T ′ ∼ dU/dz
∼ h

ther. BL
δth
h
<
√

2
π

Q ∼ UT ′dz ∼ α3

κ?e ∼ Q/h ∼ α2

κ?e/(ω∆x2) ∼ 1/α2

maximum

Regime 3
wide
channel

h
→
∞

Interval: α >
√

π
Pr

z

U

h

U = const

δδ hydr. BL 3a
δ
h
<
√

2Pr
π

<
√

2
π

z

T ′

h

δth δth

T ′ ∼ U
∼ const

ther. BL
δth
h
<
√

2
π

Q ∼ UT ′dz + 0
∼ const

κ?e ∼ Q/h ∼ 1/α

κ?e/(ω∆x2) ∼ 1/α

Interval: α >
√
π

z

U

h

U = const

δδ hydr. BL 3b
δ
h
<
√

2
π

z

T ′

h

δth δth

T ′ ∼ U
∼ const

ther. BL
δth
h
<
√

2
π Pr

<
√

2
π

Q ∼ UT ′dz + 0
∼ const

κ?e ∼ Q/h ∼ 1/α

κ?e/(ω∆x2) ∼ 1/α
11
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Bulk
profile

δ/h� 1

δ/h� 1

Fig. 3. Characteristic limiting velocity profiles of an oscillating channel flow: parabolic ( ) and bulk profile ( ).

Alongside each temperature plot in Tab. 2, the corresponding value of thermal diffusivity is

given. The convective heat flux Q yields the integral spatial product of velocity and temperature

fluctuations over the channel cross-section. The effective thermal diffusivity κ?e corresponds to

Eqn. (4). In its non-dimensional form κ?e/(ω∆x2), the tidal displacement ∆x is incorporated.

In the present paper, the procedure is exemplarily presented for the regimes 1a and 3b :

Regime 1a is defined by α2 � π and thus develops a parabolic velocity profile. This implies

a velocity difference U between the walls and the center of the channel, scaling proportionally

with the square of the channel width h: U ∼ h2. The above velocity difference now acts as the

triggering temperature disturbance: The fluid at the wall is at rest, whereas, in the center of the

channel, the adjoining hot/cold fluid flows in at the velocity U . Furthermore, the thermal penetration

is much larger than the channel width in regime 1a (α2 Pr� π). In consequence, also a parabolic

temperature profile develops throughout the channel. The wall-induced temperature disturbance

T ′ scales with the triggering velocity disturbance over the channel width: T ′ ∼ Udz2 ∼ h4. In the

next step, the heat flux Q follows from the temperature disturbances T ′ convected by the velocity

U over the channel width: Q ∼ UT ′dz ∼ h7 ∼ α7 (with α ∼ h, only the channel width h is changed

in this set-up). The effective thermal diffusivity κ?e follows as the averaged heat flux Q over the

channel width h: κ?e ∼ Q/h ∼ α6. Finally, the tidal displacement ∆x is proportional to the square

of the channel width h2 (compare Eqn. (3)), and thus the non-dimensional scaling for the effective

thermal diffusivity κ?e/(ω∆x2) reads κ?e/(ω∆x2) ∼ α2.

12
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Regime 3b is defined by α2 � π and thus develops a bulk velocity profile. In this case, the

velocity U in the center of the channel does not depend on the channel width h but is constant.

Derivations from this velocity U are restricted to the very thin hydrodynamic boundary layer close

to the wall, and temperature disturbances are limited to the even smaller thermal boundary layer

(Pr � 1). As temperature disturbances T ′ are triggered by the constant velocity fluctuation, they

are also constant and do not change with the channel width h. Analog to the previous example,

the heat flux Q results from the convective transport of temperature disturbances over the channel

width. However, this effect is restricted to the constant boundary layer thickness in the present

regime: Q ∼ UT ′dz ∼ const. The effective thermal diffusivity κ?e follows as the averaged heat flux

Q over the channel width h: κ?e ∼ Q/h ∼ 1/α. Finally, the tidal displacement ∆x does not depend

on the channel width h2 (compare Eqn. (3)), and thus the non-dimensional scaling for the effective

thermal diffusivity κ?e/(ω∆x2) reads κ?e/(ω∆x2) ∼ α2.

For all six regimes, results match previous findings and underline the importance of interplay

between hydrodynamic and thermal boundary layers. A more comprehensible picture is provided

by the evaluation of effective thermal diffusivity vs. both Womersley and Prandtl number in Fig. 4.

The three coloured solid lines on the surface-plot (orange: α =
√
π, black: Pr = 1, and blue

α2 Pr = π) represent the three thresholds and define the six regimes. The colored bottom of

the plot further clarifies the parabolic or bulk characteristics of the hydrodynamic and thermal

profile: Blue indicates regions of parabolic profiles (i.e. large boundary layers), whereas orange

indicates bulk profiles (i.e. small boundary layers). The hatched area corresponds to Pr < 1

and describes larger thermal boundary layers compared to its hydrodynamic counterpart. The

six green lines indicate each parameter range evaluated in Fig. 2 and Tabs. 1 and 2. Again, the

maximum appears for parameter combinations that yiel α2 Pr = π (e.g. compare with the blue line

in Fig. 4). As derived above (e.g. in Eq. 14), such conditions correspond to channel flows where

the thermal penetration depth approaches the center of the channel. Thus, transient temperature

fluctuations (driven by wall-normal fluid-to-wall heat exchange) occur within the complete cross-

sectional area of the channel. In particular in the center of the channel, where velocity oscillations

are large, the interplay of thermal and hydrodynamic oscillations drives the maximum convective

13
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heat transfer in the longitudinal direction.

The next section builds on this physically explanation and motivates the introduction of the

Kurzweg number.

INTRODUCTION OF THE KURZWEG NUMBER

The Womersley number α yields the ratio of transient inertial and viscous force. The present

paper proposes an analogous definition of a non-dimensional Kurzweg number Ku as the ratio of

thermal inertia and conductive heat flux:

Ku2 ≡ ρcωT

kfTh2
=
ωh

κf
=
ωh

ν
Pr = α2 Pr, (15)

where ρ is the density and c the specific heat capacity of the fluid. This definition allows to estimate

the thermal penetration depth δth solely in terms of the Kurzweg number as:

δth
h

=

√
2

Ku
. (16)
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Rearranging Eqn. (10) with the Kurzweg instead of the Prandtl number, the thermal diffusivity

reads:

κ?e
ω∆x2

=

Ψ?︷ ︸︸ ︷
Ku2

8
√

2(Ku4

α4 − 1)

∣∣∣∣1−
tanh(

√
iα)√

iα

∣∣∣∣
2




Φ?︷ ︸︸ ︷
1

α3
g (α)−

Θ?︷ ︸︸ ︷
1

Ku3 g (Ku)


 . (17)

Notice Φ? and Θ?, which are of identical form, only depending on the profile of hydrodynamic

and thermal boundary layer thickness, respectively.

Figure 5 reveals that the presentation in terms of Womersley and Kurzweg (instead of Prandlt)

numbers simplifies the physical interpretation: In five out of six regimes, the effective thermal

diffusivity is governed solely by the Kurzweg number, which represents the thermal boundary

layer thickness. The exception is regime ( 3b ), which is characterized by bulk velocity profiles in

combination with thermal boundary layers confined to the very close vicinity of the wall (δth < δ).

In this case, the Womersley number α also has an influence on the longitudinal heat transfer.

CONCLUSIONS

The present study provides a comprehensive discussion of effective longitudinal heat transfer

in oscillatory channel flow. The analysis is based on the framework by Kurzweg [7] and simplifica-

tions proposed in [21,22]. Qualitative evaluation of limiting cases reported by Kurzweg is confirmed

and discussed in the context of hydrodynamic and thermal boundary layer characteristics. Combi-

nations of boundary layer configurations reveal six possible setups of either disturbance extending

throughout the complete channel cross-section or not.

The maximum in effective thermal diffusivity is physically attributed to the thermal boundary

layer thickness approaching the center of the channel when large temperature fluctuations prevail

over the majority of the cross-section. This empathizes the importance of the thermal penetration

depth, which is directly incorporated in the proposed definition of a Kurzweg number Ku. The

adjusted formulation expands on the physical interpretability as it provides a decoupled treatment
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of hydrodynamic and thermal boundary layers. The novel representation shows that in five out of

six regimes, the Womersley number has no impact on the effective thermal conductivity. However,

only the thermal penetration (presented by the Kurzweg number) affects the problem at hand.
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NOMENCLATURE

Symbols

∆x channel-averaged tidal replacement

δ hydrodynamic boundary layer thickness

δth thermal boundary layer thickness

κ thermal diffusivity

µ dynamic viscosity

ν kinematic viscosity

ω angular frequency

ρ density

b half wall thickness

c specific heat capacity

h half channel width

Q convective heat flux

T temperature

t time

U velocity

x, y, z spatial dimensions

Dimensionless Quantities

α Womersley number

ε geometric wall-to-channel characteristic

η spatial dimension

λ pressure gradient

Ku Kurzweg number

Pr Prandtl number

Ψ,Φ,Θ terms of simplified model

σ ratio of thermal diffusivities

ξ ratio of thermal conductivities

h, j,H, g functions

Superscripts

·̄ complex conjugate

? simplified/adjusted model

′ fluctuation

Subscripts

0 representative

e effective
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a b s t r a c t

Heat transfer in pulsatile turbulent channel flow is investigated by means of Large Eddy Simulation.
Incompressible flow within a periodic computational domain is driven by a pulsating axial pressure gra-
dient at a turbulent Reynolds number of Res ¼ 350. A localized dynamic sub-grid scale approach is cho-
sen to model unclosed stress terms. A layer-averaged sub-grid model determines turbulent Prandtl
numbers that depend on wall distance. Compared to the existing literature, a much wider range of oscil-
lation parameters is studied. In particular, forcing frequencies correspond to Womersley numbers from
Wo ¼ 14 to 70, while forcing amplitudes reach values that result in strongly pronounced flow reversal,
i.e. reverse flow velocities up to five times larger than the mean flow velocity.
At moderate pulsation amplitudes, i.e. in the range of emerging flow reversal, strong deviations of

instantaneous heat transfer rates from the temporal mean are observed. Particularly at times of flow
reversal, an increase in heat transfer up to 60% above non-pulsatile values is observed. However, when
averaging over a complete cycle, any enhancement in mean heat transfer is only minor.
On the other hand, simulations at larger pulsations amplitudes that result in strongly pronounced flow

reversal, show a enhancement of mean heat transfer in excess of 100%. Note that such significant
enhancement of heat transfer has not been reported previously in Large Eddy Simulation of turbulent
pulsatile flow. The paper offers a physical interpretation of the results and concludes that an overall
increase in turbulent transport is responsible for the observed significant enhancement of convective
heat transfer.

� 2019 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

In the literature, strong enhancement of convective heat trans-
fer in pulsating flows driven by acoustic fields has been reported
repeatedly. In extreme cases, the reported enhancement reached
levels that compromise the thermal integrity of devices suffering
from thermoacoustic instabilities. One specific example for such
devices is a rocket engine combustion chamber. Exceeding the
designed wall heat flux may obviously endanger a secure operation
with possibly catastrophic consequences. Therefore, the reliable
prediction of heat transfer in turbulent pulsating flows is crucial
for a comprehensive design process of combustion chambers.

For the case of rocket motors, Harrje et al. [1,2] give an overview
of observed incidents and report that under representative condi-
tions, unstable operation does not permit reliable measurements,
such that eventually only a severe hardware damage can be
attested. Harrje cautions that due to the aggressive conditions in

the chambers, most of the experimental information is limited
and of rather qualitative nature. Nevertheless, in a final report
[3], Harrje concludes that the heat transfer under periodic
unsteady conditions can exceed its steady state value by more than
100% and that flow reversal, prevalent in the vicinity of a velocity
anti-node, plays a decisive role.

Due to the wide range of perturbation frequencies and mean
flow Reynolds numbers used in the various investigations, appar-
ently contradictory arguments can be found in the literature, with
both enhancement and decrease of heat transfer being reported.

In a laboratory scale, Perry and Culick [4] studied the average
heat transfer in a solid propellant T-burner that exhibited combus-
tion instabilities. In the presence of combustion-driven oscillation,
enhanced heat transfer (EHT) proportional to the square root of the
oscillation amplitudes and the fourth root of the frequency was
found.

Dec and co-workers studied the phenomenon in a pulse com-
bustor, which was operated in limit cycle over a range of frequen-
cies and amplitudes that included flow reversal. In a series of
papers [5–8], local heat transfer enhancement by up to 300% was

https://doi.org/10.1016/j.ijheatmasstransfer.2019.118585
0017-9310/� 2019 Elsevier Ltd. All rights reserved.
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reported. The novelty compared to previous investigations was
that detailed measurements of velocity, temperature, and heat flux
rates were performed. The investigations put forward the hypoth-
esis that a combination of increased turbulence in the shear layer
and strong convection, driven by transverse flows at times of flow
reversal, is responsible for enhanced heat transfer. However, it was
not possible to elucidate the mechanism that leads to said trans-
verse flows.

Habib et al. [9], when studying heat transfer at various pulsa-
tion frequencies in laminar pulsating pipe flow, encountered
increased as well as reduced Nusselt numbers, and established that
the effects are primarily present in the thermally developing
region. However, the magnitude of the enhancement was far smal-
ler than in the above mentioned turbulent cases.

Hemida et al. [10] attempted to clarify these issues with a the-
oretical analysis of heat transfer in laminar pulsating flow in a tube
with constant wall heat flux. They found that the local Nusselt
number exhibits a spatial modulation along the tube with values
both higher and lower than in the stationary case. The perturba-
tions are most pronounced in the thermally developing region
and are damped out further downstream. However, the amplitudes
imposed in the studies of Hemida et al. [10] are restricted to pul-
sating flow without center-line flow reversal.

In an analytical study, Lundgren et al. [11] resolved flow and
heat transfer in laminar, pulsating flows in channel configurations,
including pipe flow. The consideration of an oscillating axial tem-
perature is the most important novelty of their study. Furthermore,
they considered large amplitudes with center-line flow reversal. A

fully developed flow field was assumed, pressure and velocity gra-
dients in the axial direction that oscillated harmonically in time
were imposed. Qualitatively, their results match the behavior of
the experiments performed by Dec et al. [5–8] well, displaying
second harmonics in the channel bulk temperature modulation.
However, the results cannot be compared quantitatively, because
of the absence of turbulent scales. Nevertheless, the study also
demonstrates the possibility of both enhanced and decreased heat
transfer, depending on the relative phase between temperature
and velocity fluctuations.

Numerical studies based on computational fluid dynamics
(CFD) give detailed insight into transient phenomena, also for the
pertinent case of turbulent pulsating flows. Thyageswaran [12]
simulated the turbulent flow in a pulse combustor tail pipe and
reproduced the high heat transfer rates reported by Dec et al.
[5–8]. In order to resolve the tail pipe domain in its entirety, Thya-
geswaran’s simulations employed unsteady Reynolds-averaged
Navier–Stokes (RANS) turbulence models and wall models. Well
established wall models failed to reproduce correctly the transient
behavior of the heat transfer, thus a modified model was proposed,
which reproduced the higher heat transfer rates at least qualita-
tively. Unfortunately, this formulation does not give insight into
the mechanisms leading to the enhancement.

Scotti and Piomelli [13,14] studied momentum transfer, in par-
ticular wall shear stress, in pulsating channel flow by means of
Direct Numerical Simulations (DNS), Large Eddy Simulation (LES)
and RANS. It was demonstrated that conventional RANSmodels fail
to properly predict the flow dynamics in this case [13]. The validity

Nomenclature

Symbols
D filter width
ds Stokes length
� pulsation strength
�dis dissipation rate
g enhancement of heat transfer
k wave number
m kinematic viscosity
x angular frequency
/ phase lag
q density
sw wall friction
sij subgrid scale stress tensor
u phase angle
S
!

mom momentum source term
A; a amplitudes
Aij Reynolds stress (amplitude)
c speed of sound
cv ; c� dynamic coefficients
E turbulent kinetic energy spectrum
f frequency
h half channel height
k kinetic energy
L acoustic wave length
Lx; Ly stream-/span-wise domain size
Nt number of cycles
p pressure
q heat flux
qj unresolved heat flux
Rij Reynolds stress (time-averaged)
T temperature
t time
u velocity

us friction velocity
x; y; z spatial dimensions

Dimensionless Quantities
He Helmholtz number
Ma Mach number
Nu Nusselt number
Pr Prandtl number
Res turbulent Reynolds number
Wo Womersley number
lþs non-dimensional Stokes length

Superscripts
�� resolved grid scale
�̂ temporal average
�h i temporal and spatial averaging
�h ip ensemble average

+ non-dimensional
0 acoustic fluctuation
00 turbulent fluctuation

Subscripts
0 constant, initial condition
b bulk
c center-plane
l lower wall
u upper wall
w wall-plane
ha higher harmonics
ref non-pulsating reference case
sgs unresolved subgrid scale
tot total
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and advantages of the LES approach (trade-off between resolution
and computational costs) to study unsteady problems such as tur-
bulent pulsating flows were confirmed for a wide range of frequen-
cies [13]. Furthermore, it was shown that dynamic sub-grid scale
models, which can be considered as state of the art in LES mod-
elling, are capable of modeling accurately the unclosed terms also
in transient cases. In this context, it is important that the near wall
region is fully resolved, making the necessity of dynamically
adapted coefficients evident. The studies of Scotti and Piomelli
were restricted to incompressible flow without heat transfer and
focused on near wall momentum transfer. It was observed that
the fluctuations in the near wall region generated by the pulsating
pressure gradient do not propagate beyond a characteristic dis-
tance. The so-called turbulent Stokes length was estimated using
the sum of the molecular and turbulent diffusivities.

Wang and Lu [15] employed LES based on the dynamic
Smagorinsky sub-grid scale model to study turbulent structures
and passive heat transfer in turbulent pulsating flow between par-
allel plates. The influence of the Prandtl number at a turbulent Rey-
nolds number of Res ¼ 350 on the thermal response of the flow
was investigated. The results confirmed that for high Prandtl num-
bers the temperature fluctuations and the mechanisms involved in
the heat transfer process are confined to a very thin region close to
the wall. Furthermore, the influence of the organized pulsations on
the time average quantities (in particular heat transfer) was found
to be marginal for the conditions investigated, which did not exhi-
bit center-line flow reversal.

Wang and Zhang [16] examined heat transfer in a two-
dimensional duct, applying unsteady RANS equations. In distinc-
tion to the prior studies, instead of cyclic boundary conditions a
long inlet region was applied. The investigation of Wang and Zhang
[16] extends to large pulsation amplitudes with strongly pro-
nounced flow reversal. Amplitudes reached up to six times the
mean flow velocity and large pulsation amplitudes greatly pro-
moted the time-averaged heat transfer. An optimum Womersley
number was connected to the enhancement. Note that this
approach conflicts with the conclusions of Scotti and Piomelli
[13,14] who argue that RANS simulations are not adequate for
the problem at hand.

Cardenas [17] performed a computational study with focus on
the effect of enhancement of heat transfer in turbulent acoustic
channel flows. Lower Reynolds numbers (Res ¼ 180) than in the
works of Scotti and Piomelli [13] andWang and Lu [15] were inves-
tigated. For pulsation amplitudes approaching flow reversal, a
slight enhancement of heat transfer was found at pressure nodes
(less than 10%). Effects of acoustic impedance, i.e. the relative
amplitude and phase of pressure and velocity fluctuations, were
investigated as possible causes for the discrepancies from experi-
mental studies. Thus, the study extends to a weakly compressible
formulation to account for positions away from the pressure node.

In summarizing the literature review on heat transfer in pulsat-
ing flows (compare Table 1), it is noted that, with the exception of

for Wang and Zhang [16], all studies that report significant
enhancement of heat transfer are of experimental nature, with pul-
sations driven by acoustic waves. The experimentally observed
magnitudes of heat transfer enhancement were not consistently
reproduced or convincingly explained by the numerical and theo-
retical studies. In other words, although strong evidence of
enhanced heat transfer in pulsating flow has been presented, a
fully satisfactory explanation of the responsible mechanisms
remains as elusive as quantitative predictions. Thus additional fun-
damental research in this area is necessary.

The present paper aims to offer physical interpretation for sig-
nificant heat transfer enhancement in pulsatile turbulent channel
flow. Note that such significant enhancement of heat transfer has
not been reported previously in Large Eddy Simulation. Compared
to the existing literature, a considerably wider range of parameters
is studied. In particular, forcing frequencies correspond to Womer-
sley numbers from 14 to 70, while forcing amplitudes reach values
that result in strongly pronounced flow reversal, i.e. reverse flow
velocities up to five times larger than the mean flow velocity. Based
on highly resolved LES, the investigation of pulsating flow fields is
carried out at Reynolds number Res ¼ 350. Fully developed intrin-
sic turbulence spectra are generated by the imposed mean axial
pressure gradient combined with cyclic boundary conditions. For
the closure of unresolved terms, dynamic localized approaches,
accounting for partly unsteady flow characteristics, are carefully
selected. Data-reduction, obtained by a variety of runtime averag-
ing operations, allows for meaningful interpretation of the results.
The turbulent kinetic energy is identified as an important charac-
teristic. In current dominated flows without flow reversal, relami-
narization and its effect on EHT are discussed. The extensive
physical interpretation of prevailing flow characteristics provides
novel insight in the interaction of turbulence and heat transfer.
Arguments are given why significant EHT was not reported in prior
numerical LES studies, but only in experimental investigations. To
close this gap, the range of pulsation amplitudes is extended to val-
ues significantly larger than those of previous numerical and theo-
retical studies. Cases of strong flow reversal with pulsation
amplitudes up to five times the mean flow velocity are
investigated.

The present study is structured as follows: Section 2.1 describes
the set-up of the cyclic simulation domain which is then linked to
the acoustically compact region of a pressure node in Section 2.2.
The governing equations of the LES are stated in Section 2.3
and closed by the turbulence model (Section 2.4). Details on the
methods of data reduction for the evaluation of the numerical
experiments (Section 2.7) are presented in Section 2.5. Non-
dimensional characteristics are introduced in Section 2.6.

The results of the numerical study are presented as follows:
First, a validation case is studied in Section 3. A more detailed
investigation of relaminarization of pulsating flows in the range
of emerging flow reversal follows (Section 4). At these moderate
pulsation amplitudes, the influences of both forcing frequency

Table 1
Summary of the literature review on heat transfer in pulsating flows.

Numerical method Significant EHT Flow regime Significant flow reversal

Harrje et al. [1–3] Experimental Turbulent
Perry et al. [4] Experimental Turbulent
Dec et al. [5–8] Experimental Turbulent
Habib et al. [9] Experimental Laminar

Hemida et al. [10] Theoretical Laminar
Lundgren et al. [11] Theoretical Laminar
Thyageswaran [12] Numerical RANS / Turbulent
Wang et al. [15] Numerical LES Turbulent
Wang et al. [16] Numerical RANS Turbulent
Cardenas [17] Numerical LES Turbulent

S. van Buren et al. / International Journal of Heat and Mass Transfer 144 (2019) 118585 3

Reproduction of Papers

142



and pulsation amplitude on heat transfer are studied (Section 5.1
and 5.2, respectively). In Section 6, the study is extended to flows
with high pulsation amplitudes, which significantly exceed flow
reversal.

Finally, Section 7 summarizes and offers conclusions of the
study. All symbols are specified in the appended nomenclature.

2. Computational setup for turbulent, pulsating channel flow
with heat transfer

2.1. Simulation domain setup

To provide a fundamental analysis of heat and momentum
transfer in turbulent, pulsating flow driven by an acoustic field, a
channel flow configuration as shown in Fig. 1 with cyclic boundary
conditions in the stream-wise and span-wise directions has been
chosen.

The flow is driven by an imposed momentum source term

S
!

mom, which overcomes viscous losses at the walls and emulates
the pulsating acoustic pressure gradients that drive the pulsations.
The major advantage of this configuration is that it affords high
resolution of the turbulent flow without the requirement of an
inflow turbulence model. Once the flow is fully developed, the tur-
bulent structures do not depend on initial or boundary conditions,
but are inherently driven by the near wall turbulence production,
resulting in a realistic turbulence spectrum. Note that the present
setup is not suitable for hydrodynamically or thermally developing
flows, cf. the studies of Habib et al. [9] and Hemida et al. [10].

The channel half height h is the characteristic geometry length
scale. Non-slip conditions are imposed at the top and bottomwalls.
In order to capture large turbulent structures, the domain extends
Lx ¼ 2ph in the stream-wise and Ly ¼ ph in the span-wise direc-
tion. Furthermore, to induce heat transfer, the top and bottom
walls are kept at different temperatures Tl and Tu, respectively.
Conjugate heat transfer is not considered in the analysis and thus,
Dirichlet boundary conditions are employed. This approach is jus-
tified by the results of Emmert et al. [18], who argued that a wall of
finite thickness does not contribute to EHT. Fluid properties are
assumed to be constant for low differences in temperature.

It is pointed out that the presented setup of the simulation
domain is well documented in the literature which thus allows
comprehensive validation (e.g. [13,15,17]). Most of the earlier
studies focus on incompressible pulsating flows and do not link
to acoustics as the driving mechanism. However, as will be shown
in the next section, regions of acoustic pressure nodes physically
coincide with such pulsating flows. In the context of EHT, the local-
ized investigation in the vicinity of pressure nodes agrees with
numerous experimental studies ([1,2,4–8]) that identify the large
velocity fluctuations as a main driving mechanism.

In the following section, the link to an acoustically driven, tur-
bulent, pulsating channel flow is given by the derivation of the

imposed momentum source term S
!

mom.

2.2. Acoustically compact properties derived from duct acoustics

Consider a one-dimensional acoustic field in an closed channel
of length L and small transverse dimensions. From linear theory,
the mode shape of the second harmonic reads [19]:

p0

q0c0
x; tð Þ ¼ 2A cos 2px=Lð Þ cos xtð Þ ¼ ap xð Þ cos xtð Þ; ð1Þ

u0 x; tð Þ ¼ �2A sin 2px=Lð Þ sin xtð Þ ¼ au xð Þ sin xtð Þ; ð2Þ
where A is a constant defining the magnitude of the sound pressure
level. Small Mach numbers Ma � 1 are assumed such that the influ-
ence of mean flow on the acoustic wave propagation can be
neglected. Fig. 2 shows schematically the amplitudes p0 and u0 of
the velocity and pressure waves along the channel. The alternation
between pressure and velocity nodes in periods of L=4 is evident. If
the location X þ ph is placed on a pressure node, the velocity fluc-
tuates with maximum amplitude, while the pressure remains
constant.

If acoustic waves are present in turbulent channel flow, one
distinguishes between several contributions to the mean and
fluctuating flow variables, which are characterized by respective
velocity and length scales of considerably different magnitudes:
acoustic perturbations u0 and p0 propagate at the speed of sound;
at low frequencies only plane waves can propagate along the
channel length L, with wave lengths much larger than the chan-
nel height h. Turbulent perturbations u00 and p00 are transported
through the domain at velocities similar to the reference flow
velocity, their length scales are a fraction of the channel half
height h. Underlying these contributions is a constant, uniform
mean pressure gradient dp0=dx ¼ const., which drives the mean
flow. A triple-decomposition can be formulated, which for pres-
sure reads

p ¼ p0 xð Þ þ p0 x; tð Þ þ p00 x!; t
� �

: ð3Þ

As indicated in Eq. (3) and Fig. 2, which shows the axial distri-
bution of mean pressure p0 and acoustic pressure p0 at an instant

time t, the oscillating acoustic component p0 x!; t
� �

is non-

uniform in space. However, if the computational domain – denoted
by the dashed box in Fig. 2 – is acoustically compact, i.e. if its length
2ph is much less than the acoustic wavelength L, the acoustic pres-
sure gradient may be treated as approximately uniform in space.
The characteristic dimensionless group in this context is the Helm-
holtz number He � x2ph=c0, based on the frequency x , speed of
sound c0 and domain length Lx ¼ 2ph [20]. A compact domain
implies that He � 1.

In the limit of acoustic compactness, the flow forcing by the
mean and acoustic pressure gradients can be represented by a
momentum source term that is uniform within the computational
domain,

Fig. 1. Cyclic simulation domain of an acoustically compact channel section at a
pressure node.

Fig. 2. Instantaneous mode shape of the second harmonic in a channel. Mean flow
is driven by the pressure gradient of p0 xð Þ.
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S
!

mom tð Þ ¼ dp0

dx
þ @p0 x; tð Þ

@x

����
x¼X

� �
e!x ¼ p0;x þ ap;x cos xtð Þ� �

e!x

¼ p0;x 1þ aþp;x cos xtð Þ
� �

e!x; ð4Þ

where the subscript x indicates derivative with respect to the inde-
pendent variable x.

2.3. LES governing equations

The Large Eddy Simulation (LES) approach has proven its capa-
bility to simulate turbulent pulsating flows in several studies [13],
especially if so-called dynamic models (see Section 2.4) are used.
The spatial filtering of the discrete mesh can be expressed as the
convolution of the primitive variable w with a grid dependent filter

function G x!
� �

. Several filter or kernel functions G in both spectral

or physical space exist [21], which depend on the grid scale filter �D.
Applying the filter function, the primitive variables are decom-
posed into a resolved or grid scale, and an unresolved or subgrid
scale (SGS) contribution, respectively:

w ¼ �wþ wsgs: ð5Þ
For low Mach numbers and small temperature differences, the

incompressible Navier–Stokes equations with constant properties
– in particular constant density q0 – are appropriate. For this case,
the filtered balance equations for mass, momentum and energy can
be written as:

@�ui

@xi
¼ 0; ð6Þ

@�ui

@t
þ @

@xj
�ui�uj
� � ¼ � 1

q0

@�p
@xi

þ m
@2�ui

@xj@xj
� @sij

@xj
þ 1
q0

S
!

mom; ð7Þ

@T
@t

þ @

@xj
�ujT
� � ¼ m

Pr
@2T

@xj@xj
� @qj

@xj
; ð8Þ

where m denotes the kinematic viscosity and Pr the Prandtl number.
The subgrid scale stress tensor sij is defined as sij ¼ uiuj � �ui�uj

[22]. The temperature is considered as a passive scalar and the fil-
tered diffusion flux is closed by a gradient diffusion model. Analo-
gously to sij, the unresolved heat flux qj of the scalar temperature T

reads qj ¼ ujT � �ujT.
Closure of the unresolved terms, which result from the sub-grid

scales, is archived with two localized methods. The momentum
equation is closed by a method proposed by Kim and Menon
[23]. For the energy equation, a gradient approach suggested by
Moin et al. [24] is applied in a layer-averaged form to increase
numerical stability. These two dynamic methods are described in
the following.

2.4. LES turbulence model

A localized one-equation model describes the unresolved
kinetic energy ksgs by the transport equation

@ksgs
@t

þ �ui
@ksgs
@xi

¼ �sij @
�ui

@xj
� �dis þ @

@xi
msgs

@ksgs
@xi

� �
; ð9Þ

where msgs denotes the turbulent eddy viscosity at sub-grid scale.
The terms that describe the change rate of the subgrid kinetic
energy ksgs are convection, production, dissipation and diffusion
[23]. The unresolved stress tensor sij is modeled via the subgrid
scale eddy viscosity msgs:

sij ¼ �2msgs þ 2
3
dijksgs; ð10Þ

where

msgs ¼ cv �D
ffiffiffiffiffiffiffi
ksgs

q
: ð11Þ

Finally, the model is closed by scaling the dissipation rate �dis:

�dis ¼ c�

ffiffiffiffiffiffiffi
ksgs

p
�D

: ð12Þ

The coefficients cv and c� are determined following a dynamic
approach supposed by Kim and Menon [23]. It is based on scale
similarity assumptions and the application of a least square
method leads to a significant reduction of computational costs
[25]. The simplefilter implementation of OpenFOAM is used
where the test filter width is twice the grid filter. For a detailed
description of the numerical implementation, please consult [23].

The unresolved heat flux qj is modeled as

qj ¼
msgs
Prsgs

@T
@xj

ð13Þ

where Prsgs denotes the turbulent Prandtl number. The dynamic
determination of the turbulent Prandtl number follows the
approach suggested by Germano et al. [26]. Subsequently, the least
square method was applied by Lilly [27]. Detailed information of
the layer-based, spatially averaged numerical implementation are
provided by Moin et al. [24], Wang and Lu [15] as well as by Morar
[25].

At this point, it is emphasized that Scotti and Piomelli [13] as
well as Wang and Lu [15] applied the dynamic Smagorinsky model,
which assumes local equilibrium at all times. In accordance with
Cardenas [17], the present study judiciously applies the kinetic
energy equation model to consider partly unsteady characteristics
induced by pulsations.

2.5. Data reduction through averaging operators

For the meaningful characterization of turbulent pulsating
flows, data reduction through averaging is required. Due to the
mesh resolution under consideration and in order to reduce stor-
age requirements, the reduction takes place during simulation
runtime.

The temporal averaging of a quantity w x!; t
� �

over a total time

ttot will be denoted by the hat operator (̂�) and is defined as:

ŵ x!
� �

¼ 1
ttot

Z ttot

0
w x!; t
� �

dt: ð14Þ

Exploiting the geometrical invariance in stream-wise and span-
wise direction of the simulation domain, an additional spatial aver-
aging of planes parallel to the top and bottom walls is introduced
for further reduction and the increase of statistical validity. This
combination of temporal and spatial averaging operations will be
denoted by angle brackets:

wh i zð Þ ¼ 1
ttotLxLy

Z Lx

0

Z Ly

0

Z ttot

0
w x!; t
� �

dt dy dx: ð15Þ

When dealing with pulsating flows driven at a single frequency
f ¼ 2px, phase or ensemble averaging can help in the identification
of coherent structures. As argued by Scotti and Piomelli [13], this
assumes that the major contribution of the system response occurs
at the forcing frequency. This kind of operation will be denoted by
subscripted angle brackets


�
p and is defined as:

wh ip z;uð Þ ¼ 1
NtLxLy

XNt

j¼1

Z Lx

0

Z Ly

0
w x!;

u
x

þ 2p j� 1ð Þ
x

� �
dy dx; ð16Þ
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where Nt denotes the number of cycles under consideration and
u 2 0;2p½ Þ is the phase angle. The phase averaged quantities can
be further decomposed into a mean, a harmonic and a non-linear
component as proposed in [13]:

wh ip z;uð Þ ¼ wh i zð Þ þ aw zð Þ cos uþ /w zð Þ� �þ wha z;uð Þ: ð17Þ
Of course, the stationary component corresponds to the tempo-

ral and spatial average of the original quantity. The harmonic com-
ponent can be seen as a real valued amplitude, and thus may
exhibit a phase lag /w towards a reference value. Note that both
amplitude and phase lag are in general functions of the wall dis-
tance. Usually, the phase lag is defined using the axial velocity pul-
sations at the channel center-line as reference. From the phase
averaging definition, the oscillating component accounts only for
the contribution of the forcing frequency. The contributions at
higher harmonics are all added up in the term wha which is of
course a function of the phase u and the wall normal location z.

For the pulsating channel flow, a triple decomposition into aver-
age, acoustic and turbulent contributions widely used in the liter-
ature can be written in terms of the average operators just
introduced as:

w x!; t
� �

¼ wh i þ aw zð Þ cos xt þ /w zð Þ� �þ w00 x!; t
� �

; ð18Þ

where w00 denotes the turbulent fluctuations and higher harmonics
wha are omitted for simplicity.

2.6. Non-dimensional characterization of turbulent pulsating flows

For steady turbulent channel flows, the stream-wise pressure
gradient p0;x is in equilibrium with the wall friction
sw ¼ m@u=@zjz¼w, where the index w denotes the wall-plane. Defin-

ing the friction velocity as us ¼
ffiffiffiffiffiffiffiffiffiffiffi
sw=q

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp0;x=q

q
and the non-

dimension wall distance zþ ¼ zus=m, the turbulent Reynolds number
yields:

Res ¼ hus
m

¼ h
m

ffiffiffiffiffiffiffiffiffiffi
hp0;x

q

s
: ð19Þ

The Womersley number Wo is a dimensionless expression of the
pulsatile flow frequency in relation to viscous effects:

Wo ¼
ffiffiffiffiffiffiffiffiffi
xh2

m

s
: ð20Þ

The Nusselt number characterizes heat transfer and can be inter-
preted as the non-dimensional temperature gradient at the wall:

Nu ¼ qw

DTb

hPr
mqcp

¼ h
DTb

@T
@z

����
w

; ð21Þ

where qw is the heat flux at the wall and DTb the temperature dif-
ference of bulk and wall temperature. Due to symmetry of the prob-
lem at hand, DTb ¼ Tl � Tuð Þ=2 holds.

To account for unsteadiness, Ramaprian and Tu [28] found the
Stokes number to be insufficient in turbulent pulsating flows:
Comparing time scales of diffusion driven penetrations, they found
that effective diffusion may be significantly enhanced by turbu-
lence. Thus, a non-dimensional frequency xþ is commonly used to
characterize turbulent pulsating flows (e.g. [29]):

xþ ¼ xm
u2
s
: ð22Þ

Using the non-dimensional frequency, Scotti and Piomelli [13]
formulated an adapted non-dimensional Stokes length lþs that can
be directly related to the classical Stokes length ds:

lþs ¼
ffiffiffiffiffiffiffi
2
xþ

r
¼ us

m
ds where ds ¼

ffiffiffiffiffiffi
2m
x

r
: ð23Þ

It directly follows that the Womersley number Wo may also be
interpreted in terms of the Stokes boundary layer thickness:

Wo � h
ds
: ð24Þ

A common method to quantify the strength of pulsations is to
relate the velocity amplitude to the mean flow velocity in the
center-plane (index c):

� ¼ au
uref


 ������
c

: ð25Þ

Thus, � < 1 describes current dominated flows, which are mainly
controlled by the forcing frequency [13,29]. Values of � > 1 (pulsa-
tion dominated flows) indicate the presence of flow reversal. In the
present study, flows in the range of emerging flow reversal �/1:2
are referred to as flows with moderate amplitudes. Large amplitudes
include strongly pronounced effects of flow reversal (�’2).

The enhancement of heat transfer g is defined as the normalized
increase of the wall heat transfer of the pulsating flow compared to
a non-pulsating reference case:

g ¼ qw � qw;ref

qw;ref
¼ Nu� Nuref

Nuref
: ð26Þ

Positive values of g indicate an enhancement in heat transfer,
while negative values quantify a reduction.

2.7. CFD solver setup

The numerical implementation is carried out with the finite vol-
ume software OpenFOAM (Version v1706+) [30]. The PISO algo-
rithm is used to iteratively solve the system of discretized partial
differential equations derived from conservation of mass, momen-
tum and energy. The flexibility of the open source code allows for
required adjustments, including source terms, LES models and
averaged outputs for post-processing.

The chosen simulation parameters with constant properties are
displayed in Table 2. The mesh applied consists of 66� 66� 102
cells on a structured grid. In periodic stream-wise and span-wise
direction, the cells are arranged in an equidistant manner. In the
direction perpendicular to the channel walls, hyperbolic spacing
is applied to properly resolve the wall interaction. For a steady tur-
bulent flow without acoustic pulsation, the first cell center lies at
zþ � 0:5. In the literature, these mesh properties are found to be
sufficient for a mesh-independent LES of the problem at hand
[13,15]. In additional to the provided references, the benchmark
case provided by Scotti and Piomelli [13] was reevaluated: Mesh
resolutions with first cell center down to zþ � 0:1 were considered.
It was found that the velocity at the wall and at the channel center
as well as wall heat flux deviate by less than 1:5%. Thus the mesh-
independence reported in the literature is confirmed [13,15].

To assure an adequate consideration of large stream-wise flow
structures [31], an extended periodic simulation domain of
Lx ¼ 6ph was studied. Only very small differences between the
two domains were observed in first-order statistics (velocity and
wall heat flux) and second order statistics (Reynolds shear stres-
ses). Thus it is concluded that the domain size of Lx ¼ 2ph is suffi-
cient to capture dominant eddy structures of the problem under
investigation.
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3. Validation

Three exemplary operation points with acoustic forcing are
described and compared to some of the data available in the liter-
ature to serve as a validation for the turbulent pulsating case. The
cases correspond to the ones studied experimentally by Tardu et al.
[29], which were subsequently also used in the numerical studies
of Scotti and Piomelli [14], Wang and Lu [15] and Cardenas [17].
Table 3 lists the key parameters of the three different computed
cases in the present study compared against the ones used by
the investigations mentioned. All cases lie in the current domi-
nated regime with a normalized velocity center-line amplitude of
approximately � � 0:7.

The different cases are simulated using the numerical setup
presented in the previous section and run for several periods to
obtain robust temporal and phase averaged statistics. Fig. 3 shows
the axial velocity components after performing the triple decom-
position given by Eq. (17) and plotted in wall units. The profiles
of the present LES simulations are compared against the results
of the investigations listed in Table 3. The first row in the figure
shows the time averaged part of the non-dimensional axial veloc-
ity uþh i with (uþ ¼ u=us), which clearly follows the classical law of
the wall. In all frequency regimes, the profiles collapse to the clas-
sical law of the wall uþh i ¼ 2:5 ln zþð Þ þ 5 and uþh i ¼ zþ, respec-
tively, denoted by the dashed lines and the agreement between
the different investigations is very good. Especially close to the
wall, velocity variations are smaller than 2%. Considering the more
central log law region, deviations to previous numerical studies
remain below 10%. In the low frequency regime, it seems that
the logarithmic region is shifted slightly to a position closer to
the wall. For the other frequencies, the average profiles lie close
to the ones of the stationary case without pulsations. The middle
row shows the ensemble averaged velocity amplitude aþu normal-
ized by its center-line value aþuc . As expected, the thickness of the
turbulent Stokes layer is inversely proportional to the square-
root of the forcing frequency ranging from 10 in the high to 500
in the low frequency regime (compare Eq. (23)). Again, the concor-
dance between the three investigations is remarkably good.

Finally, the third row in the figure gives the phase difference
D/u ¼ /u zð Þ � /u hð Þ between the wall and channel center-line
velocity fluctuations. Unfortunately, the wall normal profiles of
this quantity are not given in the publication of Scotti and Piomelli,
only the values for the skin friction phase are provided, such that
only one value per frequency case is plotted in the third row of
Fig. 3. For high frequencies, the behavior is almost identical to
the one of laminar pulsating channel flow. Due to the lower
momentum of the fluid close to the wall, it reacts faster to the pres-
sure gradient pulsations, leading to a phase advance of p=4 as pre-
dicted by Lighthill [32]. For lower frequencies this phase advance
reduces. It is interesting that in the low frequency case, the phase
of the near wall region decreases further, even takes on negative
values. The magnitude of this phase lag is of the order of p=40 in
the case studied here. Concerning the phase, the degree of confor-
mity between the three investigations is very good.

It is important that the comparison between the three investi-
gations is valid even though different turbulent Reynolds numbers
are used in each of them, ranging from Res ¼ 432 in the experi-
mental study to Res ¼ 180 in the study by Cardenas [17]. The forc-
ing frequencies are chosen such that the resulting turbulent Stokes
numbers lþs are comparable, representing the low, medium and
high frequency regimes, respectively. This preliminary comparison
confirms that, concerning the momentum transfer, the proper sim-
ilarity parameters are the non-dimensional frequencyxþ or Stokes
length lþs and the velocity amplitude ratio at the channel center-
line, as proposed by Scotti and Piomelli [13].

Concerning the thermal response of the flow to the harmonic
unsteadiness, the situation only has limited similarity with the
hydrodynamic response. This is easily explained by the different
fundamental driving mechanisms: The velocity field is driven by
the imposed pressure gradient whereas the temperature field
results from the potential of a heated upper channel wall and a
cooled lower channel wall. As already shown by Wang and Lu
[15], for the three cases investigated, the time independent part
of the non-dimensionalized temperature plotted in wall normal
direction follows also the logarithmic law of the wall with a near
wall buffer layer and a logarithmic bulk region. The Reynolds

Table 2
Simulation parameters.

Res lþs Tþ
u Tþ

l Pr Dxþ Dyþ Lx Ly Mesh

350 7 to 35 0 1 0:71 33:3 16:7 2ph ph 66� 66� 102

Table 3
Parametric setup of reviewed studies, used for the validation of the pulsating channel flow at three levels of frequency (high, medium and low) indicated by the Stokes length lþs ,
the pulsation amplitude � with the corresponding forcing pressure amplitude aþ

p;x and the turbulent Reynolds number Res .

lþs � aþp;x Res Wo

High Medium Low

BCP 7 0:67 200 70:7
(Present 14 0:66 50 350 35:4
Study) 35 0:80 8 14:1

8:1 –
TBB [29] 16 0:64 432

34 –

7 0:66 200
SP [13] 14 0:70 50 350

35 0:79 8

7 � 0:70 200
WL [15] 14 � 0:70 50 350

35 � 0:70 8

7:1 0:7
CA [17] 15:3 0:78 180

34:2 0:70
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analogy with the Prandtl number dependency still holds and the
temperature profiles can be predicted accurately by classical
steady flow correlations. Wang and Lu showed that the thermal
penetration length is strongly dependent on the fluid properties
as described by the Prandtl number. They studied the response of
a turbulent flow of Nu � 28 and a series of Prandtl numbers
Pr ¼ 0:1;1;10;50, and 100 to harmonic velocity fluctuations.
Unfortunately, Wang and Lu do not provide the data in a way that
is easy to reproduce and comparisons can only be performed qual-
itatively. The results of Cardenas [17] are obtained at a lower tur-
bulent Reynolds number and thus the range of the non-
dimensional wall distance differs. As a consequence, this also limits
the validation to qualitative conclusions.

Fig. 4 shows the triple decomposition components computed
from the present LES plotted in wall normal direction. The plot
on the left shows the time independent component for the three
frequency regimes. It is evident that this component is relatively
insensitive to the harmonic forcing of the flow, in agreement with
the results of Wang and Lu and Cardenas. Concerning the orga-
nized pulsations given by the temperature amplitude aþ

T and
marked on the right side of the figure, the penetration length of

the perturbations is also inversely proportional to the forcing fre-
quency. However, the magnitude of the temperature oscillations
strongly depends on the forcing frequency and the reference Nus-
selt number. At high frequencies, the oscillations are marginal. For
the small Prandtl and Nusselt numbers used in the present inves-
tigation, the temperature oscillations become relevant only at
lower frequencies. This is in agreement with the observations of
Wang and Lu [15] and Cardenas [17].

Beside the first-order flow statistics presented above, second-
order Reynolds shear stresses are validated against the benchmark
case (lþs ¼ 7) by Scotti and Piomelli [13] in Fig. 5. The time-

averaged Reynolds stress is defined as Rþ
ij ¼ du00

i u
00
j , where the veloc-

ity u is made dimensionless by us. The harmonic pulsation ampli-
tude is denoted by Aþ

ij . Again, the shear stresses of the LES capture
the DNS-benchmark quite well. Largest deviations show at wall-
normal direction (Rþ

33 and Aþ
33). This corresponds well to the find-

ings of Scotti and Piomelli [13].
In Fig. 6, the turbulent kinetic energy spectrum Eþ is presented

as another important second-order benchmark. The two-
dimensional spectrum is calculated as the integral over a circle in

Fig. 3. Triple decomposition of wall distance dependent dimensionless velocity ( uþh ip ¼ uþh i þ auþ cos xt þ /uð Þ): local mean velocity, amplitude and phase difference.
Results of the present study ( ) are compared to CP [17] ( ), SP [13] ( , ) and TBB [29] ( ) for high (lþs ¼ 7), medium (lþs ¼ 14) and low (lþs ¼ 35) frequency.

Fig. 4. Local temperature distribution over the channel height at high ( ), medium ( ) and low ( ) frequency. (a) Mean temperature Th iþ , (b) Temperature
amplitude aþT .
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the xy-plane such that kþs ¼ kþx þ kþy , where kþ is the non-
dimensional wave number. Results are presented at four equi-
spaced times of a cycle (u ¼ xt � 2pn, no specification of phase
lag is given in [13]) at for different heights zþ. Unfortunately, no
qualitative comparison to the results of Scotti and Piomelli [13]
is possible, as they do not specify dimensional values of the wave-
length. However, a qualitative comparison shows good agreement.
In particular, the cutoff lies outside the inertia range which justifies
the dynamic LES approach. Likewise, the wavy characteristics of
the magnitude in the energy spectrum Eþ is reproduced. This holds
especially in regions close to the wall.

Based on the good agreement with the data of previous investi-
gations, it can be stated with confidence that the test case setup
and LES solver used in the present study reproduce the hydrody-
namic and thermal behavior of turbulent pulsating flows with good
accuracy.

4. Intermediate relaminarization of current dominated flow

A closer examination of the ensemble averaged flow velocities
for three frequencies lþs ¼ 7;14 and 35 is given in Fig. 7. For the
center-plane velocity uþ

c (Fig. 7a) it is apparent that the profiles

of high and medium frequencies almost match, while the pulsating
velocity amplitude is slightly larger at the lower frequency level.
Regarding the velocity in the cell closest to the wall (zþ ¼ 0:5,
Fig. 7b) a sine pulsation is again found for high and medium fre-
quency, showing a phase lag of D/u � p=4 to the center flow. How-
ever, at low frequency lþs ¼ 7, the periodic velocity clearly deviates
from a sine wave in the wall region, with a steep velocity increase
around the assumed position of the sine oscillation maximum.

Searching for an explanation of this effect, in Fig. 8 the prevail-
ing flow regime is evaluated by the wall distance resolved ensem-
ble average of the velocity turbulent energy kþ in span-wise y-
direction. At high frequency lþs ¼ 7 (left) only marginal changes
of the flow structure are evident, as kþy remains almost constant
in all characteristic flow regions (viscous sublayer, buffer layer,
log-law region and outer layer). In the case of medium frequency
lþs ¼ 14, increasing temporal changes of kþy begin to develop within
the buffer layer at zþ ¼ 10:1 and the log-law region at zþ ¼ 35:9
and 100:4. Lastly, at low frequencies lþs ¼ 35, a strongly transient
behavior of the turbulent energy is displayed: As the flow velocity
decreases, the turbulent energy decreases to values close to kþy ¼ 0.
This behavior is indicative of a gradual relaminarization of the
flow, which is made possible by intervals of low flow velocities
due to the low frequency [14,33–37]. Once the momentum driven
flow velocity increases, a sudden increase in the span-wise kinetic
energy kþy occurs, predominately in the log-law region. This behav-
ior is interpreted as a transition from a laminar to a turbulent flow
regime.

We are aware that neither the ensemble averaged span-wise
turbulent energy hkþy ip, nor the sub-grid scale energy hkþsgsip as it

is used in Section 5, describe the turbulent flow properties in an
extensive manner [38]. However, they provide a meaningful refer-
ence for a first interpretation of flow regimes and turbulence inten-
sity as it is intended in the present study. Comparison of the two
values shows good qualitatively agreement, particularly phase
angles of characteristic points as minima am maxima match well.
For future studies, a more detailed investigation of contributing
turbulence scales is of interest.

Fig. 9 further substantiates this argument, showing instanta-
neous span-wise flow velocities at four instances of time: At the
first instance, corresponding to u ¼ 1=4p, only minor fluctuations
are present throughout the channel. Especially within the outer
layer, where wall effects are smallest, almost no span-wise flow
occurs, indicating an almost laminar flow. Within the short period
of time between u ¼ 1=4p and 1=2p a distinct flow transition

Fig. 5. Time-averaged Reynolds shear stress Rþ
ij ( ) and its harmonic amplitude Aþ

ij ( ) against DNS-data ( ) by [13], lþs ¼ 7. (a) Rþ
11 and Aþ

11, (b) R
þ
22 and Aþ

22, (c) R
þ
33 and

Aþ
33, (d) R

þ
13 and Aþ

13.

Fig. 6. Two-dimensional turbulent kinetic energy spectra during one cycle, lþs ¼ 7.
Left to right: phase angles u ¼ 0 , p=2 , p and 3p=2 with an offset by a factor of 100.
Bottom to top: xy-planes at zþ ¼ 8;13;32 and 108 with an offset by a factor of 10.
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occurs in the log-law region and the adjoining buffer layer. Mean-
while the outer layer remains mostly untouched by the transition.
At u ¼ p span-wise velocity fluctuations begin to extend into the
outer layer. With decreasing flow velocities, the dissipation of tur-
bulent fluctuations throughout the channel is initialized and
clearly visible at u ¼ 3=2p. No distinct transition from high turbu-
lence to a laminar-like flow is apparent. Instead, the relaminariza-
tion appears as a gradual process over the remaining 87:5% of the
period from u ¼ 1=2p to 1=4p.

Regarding the velocity close to the wall shown in Fig. 7b, the
effect of the sudden increase of stream-wise velocity coincides
with the flow transition observed in Fig. 8 and 9: the transition
from laminar to turbulent occurs quickly in the buffer layer and
the log-law region between u ¼ 1=4p and 1=2p. Driven by the
transition, turbulent momentum transport is enabled from higher
flow velocity regions of the inner channel. Likewise, the higher
velocity amplitude in Fig. 7a is explained by lower frictional resis-
tance during the prevalence of laminar flow characteristics [39].

Fig. 7. Ensemble average of velocity uþ for high ( ), medium ( ) and low ( ) forcing frequency at lþs ¼ 7;14 and 35 respectively. Pulsation amplitude � � 0:7.
(a) Center-plane, (b) Near-wall region at zþ ¼ 0:5.

Fig. 8. Ensemble averaged turbulent energy kþ in span-wise y-direction at high (left), medium (center) and low (right) frequency in various layers of the flow (viscous
sublayer (zþ ¼ 0:5, ( )), buffer layer (zþ ¼ 10:1, ( )), log-law region (zþ ¼ 35:9, ( ) and zþ ¼ 100:4, ( )) and outer layer (zþ ¼ 342:9, ( )).

Fig. 9. Contours of instantaneous span-wise velocity fluctuations aþu;y at phase anglesu ¼ 1=4p;1=2p;p and 3=2p for the low frequency case. Dotted lines indicate the regions
of outer layer (zþ > 200), log-law region (30 < zþ < 200) and buffer layer (zþ < 30).
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Based on the examination of changes in flow regimes, the fol-
lowing sections evaluate the influence of forcing frequency and
pulsation amplitude on EHT.

5. Enhanced heat transfer at moderate pulsation amplitudes

5.1. Influence of forcing frequency

The temporal average of the EHT ĝ, as it is defined in Eq. (26), is
depicted in Fig. 10a. For high and low frequencies lþs ¼ 7 and
lþs ¼ 35, respectively, an overall negative EHT and thus a reduction
of heat transfer in the pulsating flow occurs. Furthermore, EHT
decreases monotonously with increasing pulsation amplitudes.
Within a range of medium forcing frequencies, a slight enhance-
ment of the overall heat transfer up to ĝmax � 7:5% is observed.
For a more detailed understanding of the influence of frequency,
additional medium level frequencies besides lþs ¼ 14 are evaluated,
as proposed by Scotti and Piomelli [13]. All curves in the medium
frequency range share the characteristics of an initial increase in
EHT. A maximum is shown at pulsation amplitudes close to
center-plane flow reversal (� ¼ 1), before further increase in pulsa-
tion amplitude leads to a reduction of EHT ĝ.

The circles in Fig. 10a denote simulations with a dimensionless
momentum amplitude aþp;x ¼ 5000xþ, corresponding to the value
proposed and investigated by Scotti and Piomelli [13]. In
Fig. 10b, the EHT of these cases is evaluated as the ensemble aver-
age over several pulsation period to display phase dependent char-
acteristics: At high frequencies (lþs ¼ 7), the ensemble averaged
EHT gh ip remains almost constant over the complete period,
describing a shallow harmonic sine oscillation. With a decrease
in frequency, the amplitude of the oscillation shifts into the posi-
tive EHT domain, leading to a temporal averaged positive EHT as
shown in Fig. 10a. The moment of the local maximum moves to
an earlier phase angle, while the clear characteristics of a sine wave
slightly regresses up to a Stokes layer of lþs ¼ 14. The examination
of the timing of maximum heat transfer indicates the period of
temporal flow velocity minimums (compare Fig. 7a and b).

The observation of maximum heat transfer at periods close to
flow reversal with maximum turbulence agrees well with experi-
mental investigations: Dec and co-workers [5–8] also identified
turbulence in the shear layer to be responsible for the enhanced
heat transfer during times of flow reversal. In addition, they
emphasize the effect of strong transverse convection.The mecha-
nism that generates the convection could neither be elucidated
by Dec and co-workers (secondary flows or coherent vortex struc-
tures), nor it is observed in the numerical setup of this study. Com-
parison to studies of Habib et al. [9] and Hemida et al. [10] are
limited, as the setups under investigation differ (e.g. spatial devel-
oping laminar flow vs. transient turbulent flow).

At the lowest frequency (lþs ¼ 35), clear differences to the other
cases are apparent: A pronounced shift to negative values of EHT
gh ip is accompanied by a distortion of the sine characteristics.
Recalling the evaluation of flow regimes in Section 4, the steep pos-
itive incline in EHT corresponds to the period of flow transition
from laminar to turbulent characteristics. This conforms well with
the assumption of increased convective heat transfer in turbulent
flows. The subsequent strong decline with large negative EHT val-
ues far below those discussed at higher frequencies is reasoned by
the decreased heat transfer connected to laminar flows.

5.2. Influence of pulsation amplitude

While Section 5.1 mainly focused on the impact of frequency on
EHT, this section studies the impact of pulsation amplitudes in a
more detailed manner. Therefore, the medium forcing frequency
of lþs ¼ 14 (Wo � 35:4), which shows maximum EHT performance
among the cases considered in the present study (see Fig. 10a), is
selected. This observation coincides well with the results of Wang
and Zhang [16], who found identified an optimum Womersley
number WoWZ � 40 at which heat transfer is maximally enhanced.
Recall the importance of flow regime and turbulence intensity as
remarked in Section 4.

Five distinct velocity amplitudes (� ¼ 0:5;0:7;0:8;1:0 and 1:2)
are compared, where the case of � ¼ 0:7 corresponds to the pulsa-
tion amplitudes studied by Scotti and Piomelli [13] and which was
already presented in the validation study in Section 3. In Fig. 11a
and b the ensemble averaged velocity at the center-plane and in
the wall-closest cell (zþ ¼ 0:5) are shown. Compared to abrupt
changes as observed at low frequencies (Fig. 7),b a sine wave
behavior prevails, indicating no sudden transition from laminar
to turbulent flow characteristics. This assessment is also supported
by the turbulent kinetic sub-grid scale energy kþsgs within the buffer
layer, given in Fig. 11c: no abrupt increase of turbulent energy is
evident. However, pulsation amplitude has clear effect on sub-
grid scale energy, and thus the intensity of turbulence: After times
of above average flow velocity, the turbulent energy between the
buffer layer and the log-law region increases to its peak, while
periods of below average flow velocity coincide with a decrease
in turbulent energy. An increase in pulsation amplitude is associ-
ated with higher peaks as well as lower minima in turbulent
energy. Considering temporal average, the changes in turbulent
energy are only marginal, as it is indicated by the markers on the
right side of Fig. 11c.

Finally, the ensemble averaged EHT gh ip is illustrated in
Fig. 11d. In a qualitative evaluation, periods of high turbulence
are almost immediately followed by a positive EHT and vice versa,
indicating a slights time lag between the turbulent kinetic energy
kþsgs and the enhancement in heat transfer g The degree of turbu-

Fig. 10. Enhancement of heat transfer g for forcing frequencies corresponding to lþs ¼ 7 ( ), lþs ¼ 10 ( ), lþs ¼ 12:5 ( ), lþs ¼ 14 ( ) and lþs ¼ 35 ( ).
(a) Temporal average, (b) Phase related at � � 0:7.
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lence between the buffer layer and the log-law region shows qual-
itative accordance with the EHT.

For a more quantitative evaluation, the ratio of maximum and
minimum EHT amplitudes to the corresponding sub-grid kinetic
energy kþsgs in the log-law region at zþ ¼ 35:9 is show in Fig. 12.
The plot underlines the direct influence of turbulence on the
enhancement of convective heat transfer. Overall, a close to linear
relation is found between the unresolved turbulent energy and the
heat transfer, indicated by the approximately constant ratios. This
correlation does not only hold for the maximum andminimum val-
ues as already qualitatively reported, but is also valid for the over-
all temporal averaged heat transfer, which is the key parameter of
interest in the present study. Since the variation of time-averaged
turbulence as a consequence of increasing pulsation amplitude is
only marginal, an almost constant overall EHT ĝ presents a plausi-
ble result, recalling that enhancement in heat transfer is strongly
connected to intensity of turbulence. The absence of generation

of turbulence and its gradual dissipation during periods of low flow
velocity, that are predominately present at times close to flow
reversal, leads to almost no increase in time-averaged turbulence
for increasing pulsation amplitudes �.

As a consequence, the present study is extended to larger pulsa-
tion amplitudes to diminish the effect of slow flow velocities by
increasing negative flow velocities. In the following section, the
accompanying higher degree of turbulence and its correlation to
the EHT are presented.

6. Extension to large pulsation amplitudes

As outlined in the previous section, there are strong indications
that the effect of large EHT is connected to high pulsation ampli-
tudes with significant flow reversal: Previous studies mainly
focused on flows approaching flow reversal. However, the previous
findings of this study show that periods of low flow velocities, as
they primarily exist in flows close to flow reversal, introduce
time-spans of absence of turbulence generation. Thus, one novelty
this study has shown is that flows close to flow reversal are char-
acterized by a net dissipation of turbulent energy. It follows that
the time-averaged turbulence intensity stays almost constant for
a range of increasing pulsation amplitudes. Recalling the coupling
of turbulence and enhancement in heat transfer (see Section 5.2),
an extension of this study to higher pulsation amplitudes is pro-
posed. The presence of large reversed flow velocities shortens the
periods of low flow velocities and thus prolongates periods of tur-
bulence generation. Wang and Zhang [16] followed a similar
approach and studied comparable large pulsation amplitudes in a
tube. However, they applied a RANS approach which was judged
to be insufficient for the problem at hand [14]. In this section,
results for flows with strongly pronounced flow reversal (� > 1:2
up to � � 6) are presented at lþs ¼ 14.

Fig. 11. Phase related characteristics at medium frequency of lþs ¼ 14 for various pulsation amplitudes: � ¼ 0:5 ( , ), � ¼ 0:7 ( , ), � ¼ 0:8 ( , ), � ¼ 1:0 ( ,
) and � ¼ 1:2 ( , ). (a) Center-plane velocity, (b) Near-wall velocity at zþ ¼ 0:5, (c) Turbulent kinetic sub-grid scale energy kþsgs in the buffer layer at zþ ¼ 35:9,

(d) Enhanced heat transfer gh ip .

Fig. 12. Ratio of maximum ( ), minimum ( ) and mean ( ) EHT g
and corresponding maximum, minimum and mean sub-grid scale kinetic energy
kþsgs in the log-law region (zþ ¼ 35:9) for a range of pulsation amplitudes, lþs ¼ 14

(e.g. maxðhgipÞ=maxðhkþsgsipÞ).
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In Fig. 13 the ensemble averaged velocity at the center-plane
and close to the wall at zþ ¼ 0:5 are plotted. Four different pulsa-
tion amplitudes are selected, starting at � ¼ 1:4 (slight effects of
flow reversal) and ranging up to � ¼ 5:7 (mainly pulsation domi-
nated flows). At the center-plane, a regular sine-wave shape of
the velocity is present. On the other hand, close to the wall, the
ensemble averaged velocity fluctuations are of more irregular
shape for high pulsation amplitudes. As described in Section 4, flow
transitions and altered momentum transfer from the inner channel
to the wall region result from this behavior.

Furthermore, with increasing pulsation amplitudes the mean
flow velocity at the center-plane decreases significantly from
approximately 20 to 8 (compare temporal average markers on
the right side of Fig. 13a). This results from the periodic computa-
tional setup, where the time-averaged pressure gradient maintains
the mean flow inspite of the wall shear stress. With the specified
turbulent Reynolds number Res ¼ 350 this pressure gradient is
constant. Expressing the skin friction as the gradient of the aver-
aged wall velocity (markers on the right side of Fig. 13b), it is found
that this value meets the requirement of being constant over the
full range of pulsation amplitudes. Therefore, higher wall shear
stress induced by an increase in average turbulence causes the
decrease of mean flow velocity. The corresponding degree of turbu-
lence is indicated by the kinetic energy in y-direction as show in
Fig. 14. For the cases studied before (0 < � < 1:2), only a negligible
change of the mean center-plane flow velocity was observed, as
also the overall degree of turbulence was only marginally affected
(compare case of � ¼ 1:4 in Fig. 14 where span-wise velocity per-
turbations are still small). Note that different boundary conditions
were used by Wang and Zhang [16] where they modeled the entire
tube geometry instead of a periodic section. Thus, they applied a
fixed volume flow rate instead of the local pressure gradient.

For a frequency corresponding to lþs ¼ 14, the amplitude-
dependent enhancement in heat transfer is shown in Fig. 15. Up
to a pulsations of � � 2, only minor EHT exists. This range coincides
with the previous investigations at medium amplitudes up to
slight flow reversal. As expected previously, a local minimum

exists (at � � 2). For larger pulsation amplitudes with � > 2 a sig-
nificant increase in EHT occurs. A doubling of heat transfer com-
pared to the turbulent reference case without pulsation is
reached at � � 4:5.

The results by Wang and Zhang [16] are also included in Fig. 15.
The reader is reminded of the different scenarios under investiga-
tion: Wang and Zhang studied a spatially developing pipe flow. On
the contrary, the objective of the present study is to investigate the
enhanced heat transfer in a fully developed pulsatile turbulent
channel flow. Effects of relaminarization and subsequent transition
to turbulence may be connected to characteristics of developing
flows. Further discrepancies between the configurations are the
two-dimensional RANS approach with a fixed flow velocity at the
inlet (vs. a pressure gradient driven flow). Thus a 1:1 correspon-
dence should not be expected. Nevertheless, in terms of non-
dimensional characteristics, the two cases compare remarkably
well: Wang and Zhang apply a different definition of the Reynolds
number, yielding a value of ReWZ ¼ 25000 whereas the problem
under investigation corresponds to ReWZ ¼ 24845. The frequency
is connected to the Womersley number, which is WoWZ ¼ 40 in
the work of Wang and Zhang, while Wo ¼ 35:4 for the present case
at lþs ¼ 14. Qualitatively, the results of both studies agree: At high

Fig. 13. Ensemble averaged flow velocity uþ at lþs ¼ 14 for pulsation amplitudes: � ¼ 1:4 ( , ), � ¼ 2:8 ( , ), � ¼ 4:3 ( , ) and � ¼ 5:8 ( , ). (a) Center-Plane,
(b) Near-wall region at zþ ¼ 0:5.

Fig. 14. Ensemble averaged turbulent kinetic energy kþ in span-wise direction y at lþs ¼ 14 in buffer layer (zþ ¼ 10:1, left), log-law region (zþ ¼ 35:9, center) and outer layer
(zþ ¼ 342:9, right) for four high pulsation amplitudes: � ¼ 1:4 ( , ), � ¼ 2:8 ( , ), � ¼ 4:3 ( , ) and � ¼ 5:8 ( , ).

Fig. 15. Time averaged enhancement of heat transfer g over the pulsation
amplitude at lþs ¼ 14 ( ). For reference, results of Wang and Zhang [16] are
displayed ( ).
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pulsation amplitudes, a significant increase in convective heat
transfer is predicted, while small pulsation amplitudes only lead
to marginal enhancement up to 6%. However, the overall enhance-
ment of the present study is smaller than that reported by Wang
and Zhang [16]. In addition, between � � 1 and 2, the small local
decrease in EHT g is not found by Wang and Zhang [16]. In labora-
tory scale, Perry and Culick [4] reported EHT proportional to the
oscillation amplitude. This characteristic also shows in the results
of the present study for pulsation amplitudes � > 2:5.

A more precise view of the period at which the enhancement
occurs is provided in the ensemble averaged depiction in Fig. 16:
Over the pulsation period the enhancement is not uniform, but
there are sections of significant increase and times of minor
increase (or even decline) for the four exemplary amplitudes under
investigation. Again, a strong link between turbulence and EHT is
observed. Especially accounting for the log-law region at
zþ ¼ 35:9 (Fig. 14, center), periods of high EHT relate to periods
of high turbulence and vice versa. For lower amplitudes (� ¼ 1:4),
only one peak in EHT exists. This is explained by low turbulence
at periods close to flow reversal when velocity fluctuations recede
while the fluid is close to rest. With increasing pulsation ampli-
tudes, these periods of rest are quickly passed and instead, times
of high reverse flow velocity establish. Thus a second peak in tur-
bulent energy as well as EHT develops at times of maximum flow
reversal.

Summarizing, at high pulsation amplitudes the causes of EHT
are twofold: firstly, increased flow velocity and correlating turbu-
lence enhances the convective heat transfer and secondly, long
periods of flow velocities close to rest are replaced by times of large
(negative) flow velocities.

7. Conclusions

This study investigates by Large Eddy Simulation (LES) the
impact of standing acoustic waves on convective heat transfer
mechanisms in turbulent channel flows. In accordance with the lit-
erature, where the largest enhancement of heat transfer is reported
to occur at locations of maximum velocity fluctuations, the domain
of investigation is set at a pressure node. Assuming large acoustic
wave lengths compared to the size of the simulation domain, an
incompressible simulation approach is justified. The use of cyclic
boundary conditions and a momentum driven flow allows for a
fully developed turbulent flow profile.

The LES approach employed is validated successfully against the
DNS data of Scotti and Piomelli [13]. Compared to the work of Car-
denas [17], flows with larger turbulent Reynolds numbers are
included in the present study. Besides the dynamic determination
of the localized turbulent viscosity msgs, a layer-averaged
calculation of the turbulent Prandtl number Prsgs is applied. Simu-

lations with constant Prandtl number Prsgs ¼ 0:9, which where per-
formed for reference, show that this procedure affects the
predicted heat transfer only marginally. Thus the choice of a con-
stant turbulent Prandtl number is justified in further investiga-
tions. Overall the flow field characteristics show very good
agreement with the literature.

The maximum temporal averaged enhancement of heat transfer
(EHT) reported in the first part of the present study reaches values
of up to 7:5% and occurs at medium pulsation frequencies and
amplitudes close to flow reversal. The enhancement remains far
below the increase of more than 100% reported in experiments
(e.g. [3]). Evaluation of the phase dependent heat transfer shows
momentary enhancement of more than 60%.

A detailed investigation reveals a strong correlation between
EHT and the respective momentary flow regime, in particular its
degree of turbulence: At times of high turbulence, especially in
the log-law region of the flow, heat transfer is enhanced, while
the prolonged absence of large velocity gradients during periods
of flow stagnation close to flow reversal induces a decline in heat
transfer. This observation presents an important novelty and sug-
gests further study. It also aligns with the hypothesis of Dec and
co-workers [5–8] that increased turbulence in the shear layer is
responsible for enhanced heat transfer. The reported transverse
flows at times of flow reversal were not reproduced in the current
study.

Reassessing the problem at hand with these findings, the exam-
ination of larger pulsation amplitudes presents the logical exten-
sion and a central novelty of the present study: In the second
part, flows with forcing resulting in relative pulsation amplitudes
�	 1 are investigated to account for increased turbulence. Turbu-
lence activity is enhanced because on the one hand flow velocity
amplitudes are higher, while on the other hand periods during
which the fluid is nearly at rest are shorter. The simulations at high
amplitudes confirm the correlation between turbulence and EHT.
Starting at � � 2, a continuous and significant enhancement of heat
transfer g is found. At � � 4:5, the enhancement exceeds an
increase of 100%. Thereby, conclusions from the literature, which
report enhanced heat transfer as a highly relevant mechanism in
turbulent pulsating flows, are reproduced for the first time in an
LES based computational study.

In future studies, the contribution of the resolved turbulent
fluctuations to the enhancement of heat transfer is of great inter-
est. In particular, the impact of participating turbulence scales
and the relevance of flow regions defined by the wall normal dis-
tance zþ may contribute to a coherent understanding of the phe-
nomena. Furthermore, the non-dimensional results presented in
this study are to be transfered and evaluated under the physical
conditions of a rocket combustion chamber.

Declaration of Competing Interest

The authors declared that there is no conflict of interest.

Acknowledgments

Financial support has been provided by the German Research
Foundation (Deutsche Forschungsgemeinschaft – DFG) in the
framework of the Sonderforschungsbereich Transregio 40. Compu-
tational resources have been provided by the Leibniz Supercom-
puting Center (LRZ).

References

[1] D.T. Harrje, F.H. Reardon, Liquid Propellant Rocket Combustion Instability,
Technical Report NASA-SP-194, Scientific and Technical Information Office,
National Aeronautics and Space Administration, Washington, DC, U.S.A, 1972.

Fig. 16. Ensemble averaged enhancement of heat transfer g at high pulsation
amplitudes: � ¼ 1:4 ( , ), � ¼ 2:8 ( , ), � ¼ 4:3 ( , ) and � ¼ 5:8 ( ,
), lþs ¼ 14.

14 S. van Buren et al. / International Journal of Heat and Mass Transfer 144 (2019) 118585

A.4 Large Eddy Simulation of Enhanced Heat Transfer in Pulsatile Turbulent Channel Flow

153



[2] P.K. Tang, D.T. Harrje, W.A. Sirignano, Experimental verification of the energy
dissipation mechanism in acoustic dampers, J. Sound Vib. 26 (2) (1973) 263–
276.

[3] D.T. Harrje, Heat Transfer In Oscillating Flow, 3-g, Departement of Aerospace
and Mechanical Science, Princeton University, 1967.

[4] E.H. Perry, F.E.C. Culick, Measurements of wall heat transfer in the presence of
large-amplitude combustion-driven oscillations, Combust. Sci. Technol. 9 (1–
2) (1974) 49–53, https://doi.org/10.1080/00102207408960336.

[5] J.E. Dec, J.O. Keller, Pulse combustor tail-pipe heat-transfer dependence on
frequency, amplitude, and mean flow rate, Combust. Flame 77 (3–4) (1989)
359–374, https://doi.org/10.1016/0010-2180(89)90141-7.

[6] J.E. Dec, J.O. Keller, Time-resolved gas temperatures in the oscillating turbulent
flow of a pulse combustor tail pipe, Combust. Flame 80 (1990) 358–370.

[7] J.E. Dec, J.O. Keller, V.S. Arpaci, Heat transfer enhancement in the oscillating
turbulent flow of a pulse combustor tail pipe, Int. J. Heat Mass Transf. 35 (9)
(1992) 2311–2325, https://doi.org/10.1016/0017-9310(92)90074-3.

[8] V.S. Arpaci, J.E. Dec, J.O. Keller, Heat transfer in pulse combustor tailpipes,
Combust. Sci. Technol. 94 (1993) 131–146.

[9] M.A. Habib, A.M. Attya, A.I. Eid, A.Z. Aly, Convective heat transfer
characteristics of laminar pulsating pipe air flow, Heat Mass Transf. 38 (3)
(2002) 221–232, https://doi.org/10.1007/s002310100206.

[10] H.N. Hemida, M.N. Sabry, A. Abdel-Rahim, H. Mansour, Theoretical analysis of
heat transfer in laminar pulsating flow, Int. J. Heat Mass Transf. 45 (8) (2002)
1767–1780, https://doi.org/10.1016/S0017-9310(01)00274-5.

[11] E. Lundgren, U. Markstein, A. Holst, 2003. Enhanced heat transfer in an
oscillating pipe flow, in: 6th ASME-JSME Thermal Engineering Joint Conference
TED-AJO3-1.

[12] S. Thyageswaran, Numerical modeling of pulse combustor tail pipe heat
transfer, Int. J. Heat Mass Transf. 47 (12–13) (2004) 2637–2651.

[13] A. Scotti, U. Piomelli, Numerical simulation of pulsating turbulent channel
flow, Phys. Fluids 13 (5) (2001) 1367.

[14] A. Scotti, U. Piomelli, Turbulence models in pulsating flows, AIAA J. 40 (3)
(2002) 537–544.

[15] L. Wang, X.-Y. Lu, An investigation of turbulent oscillatory heat transfer in
channel flows by large eddy simulation, Int. J. Heat Mass Transf. 47 (10–11)
(2004) 2161–2172.

[16] X. Wang, N. Zhang, Numerical analysis of heat transfer in pulsating turbulent
flow in a pipe, Int. J. Heat Mass Transf. 48 (19–20) (2005) 3957–3970, https://
doi.org/10.1016/j.ijheatmasstransfer.2005.04.011.

[17] A. Cárdenas Miranda, Influence of Enhanced Heat Transfer in Pulsating Flow on
the Damping Characteristics of Resonator Rings PhD Thesis, TU München,
2014.

[18] T. Emmert, A. Cárdenas, W. Polifke, Low-order analysis of conjugate heat
transfer in pulsating flow with fluctuating temperature, J. Phys.: Conf. Ser. 395
(2012), https://doi.org/10.1088/1742-6596/395/1/012040.

[19] M.L. Munjal, Acoustics of Ducts and Mufflers, John Wiley & Sons, 1987.
[20] S.W. Rienstra, A. Hirschberg, An Introduction to Acoustics, Tech. Rep. IWDE 92-

06, Eindhoven University of Technology, 2018.

[21] T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, RT Edwards,
Inc., 2005.

[22] A. Leonard, Energy cascade in large eddy simulations of turbulent fluid flows,
Adv. Geophys. 18A (1974) 237–248.

[23] W.-W. Kim, S. Menon, A new dynamic one-equation subgrid-scale model for
large eddy simulations, in: 33rd Aerospace Sciences Meeting and Exhibit,
American Institute of Aeronautics and Astronautics, Reno, NV, USA, 1995, 1–9,
https://doi.org/10.2514/6.1995-356.

[24] P. Moin, K. Squires, W. Cabot, S. Lee, A dynamic subgrid-scale model for
compressible turbulence and scalar transport, Phys. Fluids A 3 (11) (1991)
2746–2757, https://doi.org/10.1063/1.858164.

[25] D. Morar, Subgrid-scale heat flux modeling for large eddy simulation of
turbulent mixed convection Ph.D. thesis, Karlsruher Institut of Technology,
Karlsruhe, Germany, 2014.

[26] M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgrid-scale eddy
viscosity model, Phys. Fluids A 3 (7) (1991) 1760, https://doi.org/10.1063/
1.857955.

[27] D.K. Lilly, A proposed modification of the Germano subgrid-scale closure
method, Phys. Fluids 3 (A 4) (1992) 633–635.

[28] B.R. Ramaprian, S.W. Tu, Fully developed periodic turbulent pipe flow. Part 2.
The detailed structure of the flow, J. Fluid Mech. 137 (-1) (1983) 59, https://
doi.org/10.1017/S0022112083002293.

[29] S.F. Tardu, G. Binder, R.F. Blackwelder, Turbulent channel flow with large-
amplitude velocity oscillations, J. Fluid Mech. 267 (1994) 109–151.

[30] OpenFoam, OpenFoam v1706+, 2017.
[31] J. Jiménez, Near-wall turbulence, Phys. Fluids 25 (10) (2013) 101302, https://

doi.org/10.1063/1.4824988.
[32] M.J. Lighthill, The response of laminar skin friction and heat transfer to

fluctuations in the stream velocity, Proc. Roy. Soc. London A 224 (1954) 1–23,
https://doi.org/10.1098/rspa.1954.0137.

[33] D.C. Winter, R.M. Nerem, Turbulence in pulsatile flows, Ann. Biomed. Eng. 12
(4) (1984) 357–369, https://doi.org/10.1007/BF02407780.

[34] L. Shemer, Laminar-turbulent transition in a slowly pulsating pipe flow, Phys.
Fluids 28 (12) (1985) 3506, https://doi.org/10.1063/1.865303.

[35] D. Greenblatt, E.A. Moss, Pipe-flow relaminarization by temporal acceleration,
Phys. Fluids 11 (11) (1999) 3478–3481, https://doi.org/10.1063/1.870205.

[36] B. Ünsal, F. Durst, Pulsating flows: experimental equipment and its application,
JSME Int. J. Ser. B 49 (4) (2006) 980–987, https://doi.org/10.1299/
jsmeb.49.980.

[37] R. Trip, D.J. Kuik, J. Westerweel, C. Poelma, An experimental study of
transitional pulsatile pipe flow, Phys. Fluids 24 (1) (2012) 014103, https://
doi.org/10.1063/1.3673611.

[38] I. Marusic, G.J. Kunkel, Streamwise turbulence intensity formulation for flat-
plate boundary layers, Phys. Fluids 15 (8) (2003) 2461–2464, https://doi.org/
10.1063/1.1589014.

[39] S. Dhawan, R. Narasimha, Some properties of boundary layer flow during the
transition from laminar to turbulent motion, J. Fluid Mech. 3 (04) (1958) 418,
https://doi.org/10.1017/S0022112058000094.

S. van Buren et al. / International Journal of Heat and Mass Transfer 144 (2019) 118585 15

Reproduction of Papers

154



Turbulence-induced enhancement of longitudinal heat
transfer in oscillatory channel flow

S. van Buren and W. Polifke∗

Technical University of Munich, Department of Mechanical Engineering
85748 Garching b. München, Germany

Abstract

An analytical correlation for longitudinal heat transfer in oscillatory flow was

proposed by Kurzweg (1985). However, the treatment was limited to laminar

flows, which motivates the extension of the analysis to the turbulent regime. In

the present paper, turbulence-induced enhancement of longitudinal heat transfer

in oscillatory channel flow is investigated by means of Large Eddy Simulation

(LES) and supplemented with analytical considerations. Incompressible flow

within a periodic computational domain is driven by an oscillating longitudinal

pressure gradient, generating both laminar and turbulent flow characteristics.

A wide range of oscillation amplitudes is considered, while a constant axial tem-

perature gradient is maintained at the upper and lower channel walls. Kurzweg’s

analytical correlation for effective longitudinal thermal diffusivity is simplified

to match the numerical setup.

The numerical results of laminar flows show excellent agreement with the

analytical solution. In the turbulent case, enhanced longitudinal heat transfer

emerges for flows characterized by the product of squared Womersley number

α and Prandtl number Pr fulfilling α2 Pr > π. In order to explain this ob-

servation, the interaction of wall-confined thermal and hydrodynamics Stokes

boundary layers is scrutinized, a simple correlation for the effective thermal dif-

fusivity in laminar oscillatory flow is deduced from the analysis. This model
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consolidates the two phenomena of wall-normal heat transfer and the longitudi-

nal convective transport. Finally, the correlation is expanded to account for the

impact of turbulence intensity on heat transfer. This quantification compares

favorably against the wall-normal heat transfer, which reveals similar charac-

teristic features.

Keywords: Enhanced longitudinal heat transfer; Turbulent channel flow;

Large eddy simulation (LES)

1. Introduction

The performance of acoustic resonators is strongly influenced by the tem-

perature of the working fluid. Large differences in temperature along the length

of quarter-wave resonators further intensify the variation in performance [1].

Such physical conditions of extreme variation in local temperature are common

attributes of rocket engine combustion chambers, where resonators are used as

passive damping devices. Regenerative cooling of the chamber walls induces low

temperatures in the backing of the cavity, opposing the hot combustion gas at

the mouth of the resonator. The risk potential is obvious: Changes in damp-

ing characteristics induced by changes in local temperature (e.g. during the

transient heating after ignition) jeopardize the acoustic stability and thus the

integrity of the system. Therefore, the prediction and reliable understanding

of heat transfer within the oscillating flow within the resonator tube is crucial

for a comprehensive design process. Topical research activities by the industrial

field of combustion dynamics illustrate the practical relevance of the problem at

hand: Bothien and Wassmer [2] discussed the key importance of the prevailing

temperature in the tube of a Helmholtz resonator to accurately predict its reso-

nance frequency. Using a seeding particle method on a resonator with a cooling

purging flow, Ćosić et al. [3] captured the time-averaged axial concentration

gradient in the tube section. The analogy between molecular diffusion and heat

transfer indicates a similar temperature gradient between the hot grazing flow

in the combustion chamber and the cooled backing of the cavity.

2
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Strong physical similarity exists between the tube section of an acoustic

resonator and oscillatory flows through capillary tubes, which have been widely

studied in the literature. In contrast to pulsating flows, oscillating flows show no

time-averaged mean-flow. Numerous authors report enhanced axial dispersion

of passive scalars – such as contaminations – induced by oscillations [4, 5, 6, 7].

The reported enhancement in transport of contaminations exceeds the pure

molecular diffusion by orders of magnitude. The enhancement is attributed to

the interaction between oscillating radial velocity profiles and local variation in

concentration. Thus, an effective axial diffusion rate is formulated. All these

studies are restricted to laminar flows.

Kurzweg [8] elaborated on the similarity between molecular diffusion and

heat transfer. The only significant difference arises from a more complex defini-

tion of thermal boundary conditions. Indeed, Kurzweg and Zhao [9] experimen-

tally confirm this hypothesis. They investigated heat transfer between two water

reservoirs at different temperatures, connected by a bundle of capillary tubes.

Inducing high frequency velocity oscillations to the fluid, heat transfer between

the reservoirs increased by four orders of magnitude over the non-oscillating

reference where conductivity was the only heat transfer mechanism. The axial

velocity is defined by the unsteady harmonic solution of the Navier-Stokes-

equations, known as Stokes problem. In a final step, Kurzweg [10] developed a

comprehensive analytical model for the effective thermal diffusivity. Conjugate

heat transfer from the oscillating fluid to the channel walls yields a general-

ized formulation with multiple input parameters. In its non-dimensional form,

Kurzweg [10] identifies the Womersley number α as a key parameter, highlight-

ing the diffusivity-reducing impact of both large and small Womersley numbers,

respectively. Maximum longitudinal heat transfer is reported in dependence of

the Prandtl number Pr at α2 Pr ≈ π. Further researchers elaborated on the the-

oretical and experimental evaluation of the so-called “dream pipe” – a capillary

heat transfer tube bundle (e.g. Kaviany [11, 12, 13] and Nishio et al. [14]).

In his concluding remarks, Kurzweg [10] emphasizes that his study is re-

stricted to laminar flows and that ”the role of turbulence in such oscillating

3
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flows with high ω (angular oscillation frequency) and ∆x (tidal displacement)

should receive special attention”.

The present study directly follows Kurzweg’s suggestion and expands on ”the

role of turbulence”. Accounting for material properties of metal (channel wall)

and air (fluid), the analytical correlation of Kurzweg [10] (Section 2.1) is simpli-

fied to match the setup under investigation (Section 2.2). This allows to impose

Dirichlet boundary conditions at the wall/fluid interface. The investigation as-

sumes an incompressible flow to focus only on diffusive effects contributing to

enhanced heat transfer. Heat pump effects induced by thermoacoustic density

fluctuations are neglected. Furthermore, evaporation of propellant is not con-

sidered. The reader is reminded of the potential relevance of latent heat and

liquid-vapor two-phase flow (e.g. Miura et al. [15, 16]).

A validated Large Eddy Simulation (LES) approach is applied on a peri-

odic channel domain [17] (Section 3.1). After additional validated against the

analytical results for the laminar case (Section 3.2), the results (Section 4) are

interpreted in the physical context of boundary layer interaction (Section 4.1).

Special attention is given to the case of thin hydrodynamic boundary layers at

high frequencies (α = 35.4). The importance of the thermal penetration depth

is elucidated. To quantify the effect of turbulence intensity on the effective ther-

mal diffusivity, a definition of enhancement of longitudinal heat transfer εturb

(ELHT) is proposed. Based on considerations of a laminar case (Section 4.3.1),

a convective heat transfer coefficient hturb is carefully defined, such that it only

depends on the oscillation amplitude (Section 4.3.2). The evaluation of this

coefficient is discussed in the context of prior studies [17]. Finally, Section 5

summarizes the findings and offers conclusions of the study. All symbols used

are specified in the appended nomenclature.

2. Analytical model definition

The numerical configuration applied in this study is designed in close anal-

ogy to the analytical approach presented by Kurzweg [10]. This choice combines

4
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Figure 1: Geometry of fluid flow in be-

tween parallel channel walls as investigated

by Kurzweg [10].
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Figure 2: Simplified geometry with im-

posed wall temperature gradient, matching

the computational setup.

two major advantages: First, the simulation results may be validated against

the analytical solution for laminar flow. Second, the use of computational fluid

dynamics (CFD) lifts the limitation of the analytical results to purely lami-

nar flow characteristics. Closing this gap already reported by Kurzweg is the

main objective of this study. Furthermore, there is close correspondence to the

previous study by van Buren et al. [17], allowing to utilize an established and

validated numerical setup.

This section summarizes the theoretical analysis by Kurzweg [10]. Based on

the problem at hand, simplifications are suggested and exploited to map the

boundary conditions of the three-dimensional simulation domain. In the last

subsection, an overview of the numeric solver and its validation is given.

2.1. Laminar model of Kurzweg with conjugate heat transfer

In his paper from 1985, Kurzweg [10] presents a closed analytical formula-

tion for the effective longitudinal thermal diffusivity κe in oscillating channel

flow. The two-dimensional setup under investigation is sketched in Fig. 1: Two

parallel solid walls confine a fluid channel of width 2h in z-direction. The non-

dimensional position normal to the wall reads η = z/h with the symmetry-line

of the channel located at z = η = 0. Both walls are of thickness 2b and pe-

5
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riodically adjoin neighboring fluid channels, yielding the indicated symmetry

condition. The wall-to-channel ratio ε is an important geometrical parameter

of the configuration:

ε ≡ b+ h

h
. (1)

The unsteady but harmonically oscillating stream-wise (x-direction) velocity

profile ux(η, t) follows from the exact solution of the Navier-Stokes-equations.

Known as ”Stokes problem”, neither initial nor axial boundary conditions are

required due to temporal and stream-wise periodicity. This limits the approach

to steady state oscillations (e.g. the system has overcome transient behavior

from initial condition) and to locations x far away from changes geometry (e.g.

from the inlet/outlet of the channel). Assuming a laminar flow, the axial velocity

ux is given by the real part of the harmonic oscillation

ux(η, t) = u0f(η)eiωt = u0
iλ

α2

[
1− cosh(

√
iαη)

cosh(
√
iα)

]
eiωt, (2)

where u0 is a representative velocity, t the time, ω the angular frequency,

α = h
√
ω/ν the Womersley number, ν the kinematic viscosity and ρ the den-

sity of the fluid. The non-dimensional pressure gradient is defined as λ =

|∂p/∂x|h2/(ρu0ν). For further non-dimensional interpretation, the tidal dis-

placement averaged over the channel width reads [10]

∆x =
2u0λ

ωα2

∣∣∣∣∣1−
tanh(

√
iα)√

iα

∣∣∣∣∣ . (3)

To determine the local, time-dependent temperature T (x, η, t), differential

equations for the solid and the fluid domain are formulated. Within the solid

wall, heat conduction is the only transfer mechanism, whereas the fluid domain

also accounts for convective transport induced by the oscillating flow. The ratio

of thermal conductivities kf in fluid and ks solid is denoted by

µ ≡ kf/ks. (4)

Effects of viscous heating are not considered, as they are typically of negligi-

ble magnitude. Adiabatic Neumann boundary conditions apply at the planes of

6
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Figure 3: Schematic of oscillation-induced convective heat transfer described by Kurzweg [10].

symmetry (z = 0 and hε) depicted in Fig. 1 and thermal coupling (continuous

temperature and heat flux) applies at the fluid-solid interface (z = h). Solutions

for the temperature profile are found in the literature and explicitly stated by

Kurzweg [10].

Having found closed expressions for velocity and temperature, an effective

thermal diffusivity κe is formulated as the convective transport averaged over

the channel width within one period of oscillation:

−κeγ =
ω

2π

∫ 2π/ω

0

∫ 1

0

< [T (x, η, t)]<
[
u0f(η)eiωt

]
dη dt. (5)

Fig. 3 illustrates the heat transfer mechanism expressed by Eq. (5): (a) Cold

fluid oscillates from a cold channel section (right side) to a hot channel section

(left side). (b) During the residence time close to the left turning point, the fluid

is heated by the hot walls, indicated by the red arrows. (c) Oscillating back to

the right section of the channel, the fluid convectively transfers sensible enthalpy,

which is then (d) transferred to the cold walls close to the right turning point,

closing the loop to state (a). In summary and time-averaged over one oscillation

period (compare to Eq. (5)), this yields a positive heat flux resulting from the

velocity oscillation. This mechanism was already described by Kurzweg [10].

Although the title of that paper speaks of “Enhanced Heat Conduction. . . ”,

it is clear that the mechanism of heat transfer enhancement is of essentially

7
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convective.

The ratio of effective longitudinal thermal diffusivity κe (convective trans-

port mechanism) and purely molecular thermal diffusivity κf defines the Péclet

number Pe of the problem at hand. Furthermore, Kurzweg [10] showed that this

characteristic scales with his definition of the Péclet number PeK = u0h/κf :

κe
κf

= Pe ∼ PeK . (6)

The correlation clearly underlines the predominant convective transport mech-

anism that drives the strong longitudinal enhancement in heat transfer, at-

tributed to large velocity amplitudes u0 and small thermal diffusivity of the

fluid κf .

In its non-dimensional presentation, Kurzweg [10] formulates the solution of

Eq. (5) as:

κe
ω∆x2

=
Pr
[
(1−H)h̄+ (1− H̄)h

]
+ (h̄− j̄H̄) + (h− jH)

16α2(Pr2−1)
∣∣∣1− tanh(

√
iα)√

iα

∣∣∣
2 , (7)

where

h(α) =
√
iα tanh(

√
iα), (8)

j(Pr, α) =
√
iPrα tanh(

√
iPrα), (9)

and

H(Pr, µ, σ, α, ε) =
1

Pr

µ
√

Pr tanh(
√
iα) +

√
σ tanh(

√
iσPrα(ε− 1))

µ tanh(
√
iPrα) +

√
σ tanh(

√
iσPrα(ε− 1))

, (10)

where Pr = ν/κf is the fluid Prandtl number,

σ ≡ κf/κs (11)

the ratio of thermal diffusivity κ = k/(ρc) and c the specific heat capacity.

The bar-operator ·̄ denotes the complex conjugate of the functions h, j and H.

Surprisingly, the non-dimensional presentation in Eq. (7) is solely a function of

material properties (Pr, µ and σ), geometry (ε) and Womersley number α. It is

independent of the representative velocity u0 and the prevailing uniform axial

temperature gradient (compare [4]).

8
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2.2. Assumption of fixed wall temperature

As outlined in Section 2.1, the analytical derivations of Kurzweg [10] con-

sider conjugate heat transfer in a coupled system of fluid and wall interaction.

However, many setups of physical interest are characterized by a solid of high

specific heat capacity c, density ρ and thermal conductivity k compared to the

fluid. In particular, this holds for metallic walls, confining a channel filled with

air. This allows for the following assumptions:

kf � ks → µ ≈ 0 (12)

and

ρfcf � ρscs. (13)

For the ratio of thermal diffusivity σ, no definite limit exists, due to the opposing

effects of thermal conductivity and heat capacity.

Regarding the geometry, the diameter of quarter-wave resonators in com-

bustion chambers is typically much smaller than the wall thickness, yielding:

h� b→ ε ≈ ∞. (14)

Physical interpretation of the proposed assumptions yields a Dirichlet bound-

ary condition at the fluid-solid interface (z = h). In agreement with the previ-

ous modeling, the local wall temperature is defined by its gradient γ = ∂T/∂x

and is depicted in Fig. 2. The simplified expression (denoted by the star ?) of

Kurzweg’s solution (7) reads:

κ?e
ω∆x2

=
2 Pr<(h)− 2

Pr<(j)

16α2(Pr2−1)
∣∣∣1− tanh(

√
iα)√

iα

∣∣∣
2 . (15)

This derivation exploits that H? = 1/Pr is purely real-valued. As a direct

consequence, the expansion of the complex conjugate terms in the numerator of

Eq. (7) simplify such that all imaginary parts cancel out.

The assumptions introduced in this section were validated by comparing

results of the original model (7) and the simplified result (15). For material

9
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Figure 4: Simplified Kurzweg model for dif-

ferent Prandtl numbers: Pr = 1000 ( ), 10

( ), 0.71 ( ), 0.01 ( ). Dotted lines

denote α2 Pr = π.
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Figure 5: Results for effective thermal dif-

fusivity vs. Prandtl number Pr for low am-

plitude oscillation at α = 35.4: Simulation

( ), simplified Kurzweg ( ).

properties of metal and air, differences between the effective thermal diffusivi-

ties κe and κ?e, respectively, are marginal over the parameter range (α = 35.4

and Pr = [2.5 × 10−5, 0.25]) under investigation. An exemplary plot at four

distinct Prandtl numbers (Pr = 0.01, 0.71, 10, 1000) is shown in Fig. 4 and per-

fectly reproduces the results of Kurzweg [10], including the maximum thermal

diffusivity close to α2Pr = π. The vanishing thermal diffusivity for both limiting

cases α→ 0 and α→∞, respectively, is also well explained by the mechanism

outlined in Fig. 3: On the one hand, low oscillation frequencies (corresponding

to α→ 0) demonstrate a quasi-steady state. Energy is no longer convected due

to the immediate thermal equilibrium. On the other hand, high frequencies (cor-

responding to α→∞) result in negligible time spans of the fluid close to either

reversal point. Thus, there is a limit on the amount of energy that is initially

induced and extracted afterward. The original model (7) and the simplified

result (15) both reproduce the expected time-invariant temperatures at the wall

surface. In conclusion, the choice of the computational domain presented in the

next section is justified.

10
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3. Definition and validation of the numerical model

In this section, the numerical framework is presented. The phenomena un-

der investigation in the present work (longitudinal heat transfer in a turbulent

oscillating channel flow) fundamentally differs from our previous study ‘Large

Eddy Simulation of Enhanced Heat Transfer in Pulsatile Turbulent Channel

Flow’ [17]. The former study focused on wall-normal heat transfer (i.e. between

a cold bottom wall and a hot top wall). The effect of turbulence, induced by in-

creasing pulsation amplitudes, revealed a significant enhancement in heat trans-

fer over the non-pulsating reference. In contrary, the present study investigates

the overall transport in stream-wise direction. Thus, the wall-normal transport

only presents one part of a more complex mechanism when the fluid inside the

channel receives or rejects energy from/to the wall (compare Phases (b) and

(d) in Fig. 3). In addition, the complete mechanism also involves convective

stream-wise transport (Phases (a) and (c)) and more hidden interdependencies

(e.g. a saturation of the ’thermal loading’ (Phase (b)): the fluid can only receive

heat until it reaches the temperature of the adjacent wall).

Despite all physical deviations between the present study and the previous

work [17], many numerical considerations can be reapplied. Section 3.1 outlines

the adapted simulation domain. This is followed by the governing equations and

solver setup (Section 3.2. The validation (Section 3.3) is based on comparison

with experimental data and a DNS benchmark [17]. In addition, laminar flows

are validated against the analytical correlation and the threshold of laminar-to-

turbulent transition is compared against experimental results.

3.1. Simulation domain setup

The computational domain (Fig. 6) is designed to study the effect of en-

hanced longitudinal heat transfer in both laminar and turbulent oscillating

channel flow. The lower and upper walls confine the channel of width 2h in

wall-normal z-direction. No-slip velocity boundary condition and a constant

temperature gradient γ in stream-wise x-direction are imposed. The span-wise
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Figure 6: Cyclic simulation domain of a chan-

nel section with an oscillating momentum

source term ~Smom and axial gradients in wall

temperature.
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Figure 7: Bulk temperature approach to

model convective heat transfer. The hydro-

dynamic BL is smaller than the thermal BL

which is smaller than the channel width.

(y-direction) and stream-wise boundary patches are cyclic, allowing the fluid

to periodically circulate though the domain of length Lx = 2πh and width

Ly = πh. A key advantage of this approach is the self-generation of turbulent

flows, independent of the need for long inlet regions or turbulence inlet models

(e.g. [17, 18, 19]).

The simulation domain models a short stream-wise section of a long chan-

nel. The upper and lower walls of this long channel are imposed with constant

stream-wise temperature gradient γ. Regarding the short simulation domain,

this yields a periodic temperature symmetry: Fluid leaving the ’cold’ (right)

side of the domain, re-enters on the ’hot’ (left) side with a temperature jump

of ∆T = γ2πh = γLx and vice versa. This approach allows to model a con-

stant temperature gradient in a cyclic domain. Based on studies by Chatwin [4],

Kurzweg [10] used the same method for analytical derivations of capillary flows

between two fluid reservoirs at different temperatures. The method is applica-

ble to wide technical field of channel flows confined by a constant time-averaged

temperature gradient (e.g. resonator tubes).

The fluid oscillation is driven by a harmonic momentum source term ~Smom

12
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Reτ λ = a+p,x l+s → α Pr ∆T/(γh) Lx/h Ly/h

350 100 to 300 14 → 35.4 2.5× 10−5 to 0.25 2π 2π π

Table 1: Physical simulation parameters.

which can be expressed in terms of a non-dimensional pressure gradient λ:

~Smom =
∂p

∂x
cos(ωt) ~ex

= λ
ρu0ν

h2
cos(ωt) ~ex

= a+p,x p0,x cos(ωt) ~ex

= a+p,x
Reτν

2ρ

h3
cos(ωt) ~ex.

(16)

In addition, Eq. (16) states the momentum source in terms of the turbulent

Reynolds number Reτ and the non-dimensional amplitude a+p,x as introduced

in [17], where pulsating flows with non-zero time-averaged mean-flow are stud-

ied. Although the present study does not include mean-flow – and thus the

definition of the turbulent Reynolds number has no physical relevance to the

problem at hand – there is good reason to define λ = a+p,x and u0 = (Reτν)/h

to facilitate comparison between the two studies. A second dimensional param-

eter of relevance is the forcing frequency: In the present study, the Womersley

number α is selected as its non-dimensional counterpart for direct correlation

with Kurzweg [10]. On the other hand van Buren et al. [17] choose the non-

dimensional Stokes length l+s = uτ
√

2/(ων), where uτ = Reτν/h is the friction

velocity. Rearrangement of (non-dimensional) Pi groups yields α =
√

2Reτ/l
+
s .

One technical application of the problem at hand is the oscillating flow in

quarter-wave resonators. Located in the cold recirculation zone close to the

injector face-plate (Hydrogen, temperature ≈ 180K, pressure ≈ 80bar), typ-

ical defining properties are angular frequencies ω = 1000 to 10000s−1, tube-

diameters of 1.5mm and a kinematic viscosity of ν ≈ 7× 10−7m2/s. This yields

Womersley numbers in an order of magnitude ranging from α = 10 to 100. Note

the direct correlation to the Stokes boundary layer thickness δs =
√

2ν/ω given

by α =
√

2h/δs. Hence, the present study is characterized by flows of small
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hydrodynamic boundary layers δs compared to the half channel width h.

To match the non-dimensional Stokes length l+s = 14 of our earlier study [17],

a Womersley number of α = 35.4 is carefully chosen to lie well inside the range

of technical interest. Table 1 summarizes the physical parameters of the present

study.

Yet another important aspect of the modeling approach is its applicability

to compact regions of acoustic pressure nodes and justifies the cross-reference

to the front section of an acoustic quarter wave resonator. For a more detailed

presentation, the reader may consult [17].

3.2. Governing equations, CFD solver setup and Evaluation

The numerical model was implemented in the finite volume software Open-

FOAM (Version v1706+) [20]. Using the PISO algorithm, the LES-filtered sys-

tem of incompressible conservation equations for mass and momentum is solved.

The temperature field is calculated as a passive scalar, neglecting effects of vis-

cous heating. A dynamic one-equation kinetic energy model is used to evaluate

fully localized subgrid-scale viscosity and wall-distance dependent subgrid-scale

Prandtl numbers. Run-time averaging of selected flow characteristics is imple-

mented for significant reduction of storage consumption. A detailed description

of the LES governing equations, the turbulence model applied and the CFD

solver setup is provided in [17].

The calculation of the effective thermal diffusivity in Eqn. 5 only holds for

the case of laminar flows described by Kurzweg [10]. For the extended numeri-

cal evaluation of the present study, the locally resolved temperature T (x, y, z, t)

and velocity ux(x, y, z, t) (in stream-wise x-direction) applies to the fluid with

turbulent fluctuations. In consequence, the spatial integration extends from the

one-dimensional channel width to the complete and three-dimensional simula-

tion/channel domain. Thereby, the two additional spatial dimensions (x and

y-direction) serve - beside the evaluation over n oscillation cycles - as an aver-
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aging operator:

−κe,turbγ =
ω

2πn

1

2hLxLy
∫ 2πn/ω

0

∫ h

−h

∫ Ly/2

−Ly/2

∫ Lx/2

−Lx/2

T (x, y, z, t) ux(x, y, z, t) dx dy dz dt.

(17)

3.3. Validation

In our prior investigation ([17]), the numerical framework for simulation of

heat transfer in turbulent pulsating channel flow was carefully validated against

experimental and DNS data. This previous study serves as the basis of valida-

tion for the turbulent oscillating flow under investigation in the present work.

Since the present work also considers laminar flows, additional analytical and

experimental validation for the laminar flow regime is provided.

The numerical set-up and the parameter range under investigation in the

present work largely coincides with [17]. In particular, the solvers, turbulence

models and meshes are identical. Furthermore, fluid properties as well as forcing

frequencies and velocity amplitudes match. Thus, we are confident that the

validation for turbulent flows given in [17], also applies to the present work. The

following paragraph summarize the scope and results of the validation study.

For further details, the reader should consult our prior publication [17].

The first-order statistics of velocity amplitude and phase across the channel

width showed good agreement to experimental data by Tardu et al. [21]. Fur-

thermore, the first-order statistics compared remarkably well to a DNS bench-

mark provided by Scotti and Piomelli [18]. The DNS data also permitted valida-

tion of second-order statistics, namely the Reynolds shear stress, the harmonic

amplitude and the turbulent kinetic energy spectra. Good agreement was found

also for these quantities. The evaluation of the turbulent kinetic energy spectra

confirmed that LES cutoff lies well outside the inertia. range. The stream-wise

domain length Lx was found to be adequate to capture large flow-structures.

The selected mesh size of 66x66x102 cells on a structured grid (equidistant

spacing in stream- and span-wise direction, hyperbolic spacing in wall-normal
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Figure 8: Validation of laminar ( ) to turbulent ( ) transition in dependence of the non-

dimensional pressure gradient λ = 100 ( , ), 150 ( , ), 200 ( , ) and 250 ( , )

at α = 35.4.

direction) showed grid-independent flow characteristics. In summary, we are

confident that the numerical setup is well capable to accurately model the tur-

bulent flow regime for the problem at hand.

For laminar flows, simulation results are compared against the simplified

Kurzweg model at the Womersley number under investigation (α = 35.4). It

is emphasized that the analytical results are based on an exact solution of con-

vective and conductive heat transfer based on an exact velocity solution of the

Navier-Stokes equations. Neither simplifying assumptions nor (semi-)empirical

(tuning-)parameters were introduced by Kurzweg, strengthening our confidence

in the validity of the analytical results. Fig. 5 shows perfect agreement between

analytical and simulation results over the entire range of Prandtl numbers in-

vestigated.

As this study aims to explore the impact of turbulence in comparison to

a laminar flow, validation of threshold for the onset of turbulence is given in

a second step. In an experimental study, Kurzweg et al. [22] classified lam-

inar and turbulent flows based on the non-dimensional oscillation amplitude

β = ∆x
√
ω/ν (compare Fig. 8a). This parameter reveals close correspondence

to the Reynolds number as the ratio of inertial forces to viscous forces. For

large Womersley numbers, as they are considered in this study, Kurzweg ob-
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served laminar-turbulent transition at β ≈ 700. In the present numerical study,

simulations were performed at four oscillation amplitudes of increasing strength,

namely at λ = 100, 150, 200 and 250, which are included in Fig. 8a and indicate

λ = 100 to be laminar, only.

Fig. 8b shows the non-dimensional turbulent kinetic energy ky as it evolves

over one period of oscillation (layer-averaged, measured in span-wise y-direction

at the center-plain z = 0). This parameter, in contrast to Kurzweg et al. [22],

suggests that the two lower oscillation amplitudes (λ = 100 and 150) result

in laminar flows, whereas the two higher oscillation amplitudes (λ = 200 and

250) trigger turbulence. In respect to the experimental prediction, a reason-

able agreement is established, with only λ = 150 deviating from the expected

characteristics. One explanation are the perfectly smooth wall-surfaces and ideal

(cyclic) inflow conditions in the CFD suppressing the laminar-to-turbulent tran-

sition, whereas natural imperfections of the experiment trigger the development

of turbulence.

4. Results: Effective heat transfer enhanced by turbulence

The present section presents numerical results on the impact of turbulence

on the longitudinal effective heat transfer. A deeper analysis and discussion

is dedicated to two questions that arise in connection with the results: First

(Section 4.1), what regions of the channel contribute to the heat transfer en-

hancement? How does turbulence affect the boundary layers and how deep

do thermal disturbances penetrate into the channel? Second (Section 4.2), how

does turbulence enhances the longitudinal advection? Or is the overall enhance-

ment of longitudinal heat transfer merely related to wall-normal effects?

Fig. 9a shows numerical results for the effective thermal diffusivity at a con-

stant Womersley number α = 35.4. Four oscillation amplitudes (two laminar,

two turbulent, compare validation in Section 3.2) are depicted vs. the Prandtl

number. In addition, Fig. 9b provides a normalized and semi-logarithmic pre-

sentation of those results, which shows the enhancement attributed to the effects

17

A.5 Turbulence-Induced Enhancement of Longitudinal Heat Transfer ...

171



10−5 10−4 10−3 10−2 10−1 100
10−3

10−2

10−1

Pr

κ
e

/
ω

∆
x
2

(a) Absolute double-logarithmic presen-

tation of the non-dimensional effective

thermal diffusivity κe.

10−5 10−4 10−3 10−2 10−1 100

1

1.5

2

Pr

ε t
u
rb

(b) Relative semi-logarithmic presenta-

tion of the enhancement of longitudinal

heat transfer εturb due to turbulence.

Figure 9: Effective thermal diffusivity for laminar and turbulent flows at λ = 100 ( ), 150

( ), 200 ( ) and 250 ( ) vs. simplified Kurzweg model ( ). The vertical dotted

line denotes α2Pr = π, the inclined dotted lines scale with 1/
√

Pr ( ), α = 35.4.

of turbulence in a more explicit manner. This plot suggests to define the tur-

bulent enhancement of longitudinal heat transfer (ELHT) as the increase in

thermal diffusivity relative to the analytical results for the reference case of

laminar oscillating flow:

εturb ≡
κe,turb
κe

. (18)

Thus, an turbulence-induced enhancement in heat transfer is characterized

by values of εturb > 1. Note our nomenclature that evaluates effective ther-

mal diffusivity as the increase in heat transfer of a laminar oscillation over a

non-oscillating case. ELHT is purely associated to the turbulence-induced con-

tribution over the laminar (but oscillating) reference.

Comparing the absolute (left) and relative (right) evaluation of heat trans-

fer in Fig. 9, physical relevance of the maximum in non-dimensional effective

thermal diffusivity κe (left) is limited. This is reasoned by the extremely small

and unrealistic values of Prandtl number (Pr ≈ 0.0025) in the vicinity of the

peak. However, when quantifying the impact of turbulence over the laminar

reference (right), ELHT develops and enhances with increasing Prandtl num-

ber. In particular in the range of physical relevance (e.g. air with Pr ≈ 0.7),
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a significant impact of turbulence is expected with a factor of about 0.5. Of

course, the (absolute) non-dimensional effective thermal diffusivity κe has al-

ready decreased by about one to two orders of magnitude for these values of

Prandtl number. Nevertheless, it still exceeds the pure thermal diffusivity at

large oscillation amplitudes and high frequencies. As a consequence, both ef-

fective thermal diffusivity and ELHT contribute to the physical application at

hand.

The findings of the numerical study are categorized as follows:

1. There is no ELHT in laminar flows. Supporting prior analytical theory,

this coincides with our definition of ELHT and the amplitude invariant

results in Fig. 9b (εturb ≈ 1 for λ = 100 and 150).

2. At low Prandtl numbers (in particular α2 Pr < π), there is also no effect

of turbulence on the effective thermal diffusivity.

3. At large Prandtl numbers (in particular α2 Pr > π), an increase in the

Prandtl number Pr results in an increase in ELHT εturb.

4. At large Prandtl numbers (in particular α2 Pr > π), an increase in oscilla-

tion amplitude (or pressure gradient λ, respectively) results in an increase

in ELHT εturb.

5. Overall, the effect of ELHT is modest for the parameter range under inves-

tigation and remains below 75%. However, the two previous statements

indicate further enhancement at larger Womersley and Prandtl numbers

(point 3.) as well as at larger oscillation amplitudes (point 4.).

These observations coincide perfectly with the suggestion of Kurzweg [10],

concluding that at high Womersley numbers α (corresponding to the right

branch of α2 Pr > π) and large tidal displacements ∆x (corresponding to large

oscillation amplitudes induced by the non-dimensional pressure gradient λ) need

further investigation.

4.1. Physical interpretation of thermal penetration depth

This section aims to physically interpret the observations on ELHT εturb

provided in the previous Section 4 (in particular at α2 Pr ≥ π, see [23] for an
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extended analysis of this non-dimensional Π-group). For this, a more meaning-

ful presentation of the boundary layers and their hydrodynamic and thermal

interactions is given.

Recall that the non-dimensional Womersley number α =
√

2h/δs can be

rewritten in terms of the Stokes boundary layer thickness (Section 3.1). It fol-

lows that – given α = 35.4 – the results of this study are confined hydrodynamic

boundary layers much smaller than the channel width:

δs
h

=

√
2

α
≈ 0.04. (19)

Thus, the channel flow under investigation is predominantly characterized by

an oscillating bulk velocity, with only relatively thin wall regions deviating from

this pattern.

Concerning the thermal boundary layer, an analogy may be developed: The

local change in temperature generates the driving potential of the development

of a boundary layer. Thus, as argued above, the small hydrodynamic boundary

layer generates a wall-normal temperature potential confined to the immediate

vicinity of the wall. The thermal boundary layer thickness δth is given by

δth =
√

2κ/ω =
√

2ν/(ωPr) = δs/
√

Pr, which can be expressed in terms of

the Prandtl number Pr. The ratio of thermal boundary layer to channel width

reads
δth
h

=

√
2

α
√

Pr
≈ 0.04√

Pr
. (20)

In the present study, Prandtl numbers Pr < 1 are considered, which cor-

respond to a thermal boundary layer thickness larger than its hydrodynamic

counterpart. The parameter range characterized by first emergence of ELHT

(α2 Pr > π) is specified by a thermal boundary layer thickness just extending

into the channel center (δth/h =
√

2/π = 0.8 ≈ 1).

Finally, the effective thermal diffusivity is interpreted as a result of the in-

teraction of hydrodynamic and thermal boundary layers: Recall Eq. (5), which

states that the effective thermal diffusivity results from the convective transport

of temperature fluctuations by an oscillating flow. As a direct consequence, two

competing mechanisms are induced by the two boundary layers: On the one
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Figure 10: Spatial profile of effective thermal diffusivity across the channel width 2h

(−1 ≤ η ≤ 1) at α2 Pr = π (left), 10π (center) and 100π (right) for λ = 100 ( ), 150

( ), 200 ( ) and 250 ( ), α = 35.4.

hand, velocities are largest outside the hydrodynamic boundary layer, thus one

might expect an increase in diffusivity towards the center of the channel. On

the other hand, temperature fluctuations diminish outside the thermal bound-

ary layer, thus near wall regions within the thermal boundary layer should con-

tribute dominantly to thermal diffusivity. Returning to the parameters under

investigation, we note first that a thin hydrodynamic boundary layer permits

large bulk velocities across the channel width. Second, the thermal boundary

layer width is varied by the Prandtl number Pr. Observing maximum thermal

diffusivity at thermal boundary layers extending just into the channel center

agrees perfectly with these considerations.

This physical interpretation if boundary layer interplay is evident in the

spatial profiles of the effective thermal diffusivity presented in Fig. 10. From

left to right, simulation results for increasing Prandtl numbers are presented,

starting at Pr = 0.0025, which corresponds to α2 Pr = π. In this configuration

the thermal boundary layer extends into the center of the channel, such that the

entire cross-section contributes to the convective heat transfer. Additional wall-

normal turbulent transport does not improve performance. In a mathematical

sense, this shows by the equal areas underneath the curves, which coincide for

the laminar and turbulent cases. A further decrease of the Prandtl number

yields corresponding findings and is not included in Fig. 10.

Turning our attention to the center and right plots of Fig. 10, the Prandtl
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numbers are increased to Pr = 0.025 and 0.25, respectively (δth/h = 0.25 and

0.08). For laminar cases, it is evident that the contribution of the channel center

declines, as it lies clearly outside the thermal boundary layer. Consequently, the

temperature in the channel center is not fluctuating. For such conditions, there

is a noticable effect of turbulence on effective longitudinal heat transfer: The

turbulence-induced increase in wall-normal convective heat transfer (compare

[17]) widens the thermal boundary layer thickness such that a larger cross-

section area contributes to the enhanced longitudinal heat transfer. As the

intensity in turbulence increases, the thermal penetration depth expands further

into the channel. This, in turn, increases the ELHT εturb.

For large Prandtl numbers Pr (center and right plot in Fig. 10) a small but

not negligible reverse in heat transfer reveals inside the channel. This phenom-

ena is explained by the time lag that occurs when the thermal disturbances

propagate from the originating walls into the center of the channel. By the

time the temperature disturbance reaches the center, the fluid motion may have

reversed and thus carry the thermal energy in the corresponding opposing direc-

tion. Similar, supposedly unexpected behaviors show for example in the velocity

over-shoot of Stokes problem.

4.2. On the longitudinal effect of turbulence

This section elaborates on the longitudinal convective effect of turbulence.

In particular, we address the question if the enhancement of longitudinal heat

transfer is attributed to an increased longitudinal transport, or rather to wall-

normal exchange in the boundary layers.

Figure 11 summarizes selected thermal characteristics for over the complete

range of parameters (top row, Section 4.1) and over the range of particular

physical interest (bottom row, Section 4.3). The plots (a) and (d) on the left

side denote the effective thermal diffusivity κe defined by Eqn. (17). They

clearly reveal the expected enhanced heat transfer around Pr = 0.0025, which

corresponds to Kurzweg’s finding: α2 Pr ≈ π. Increasing oscillation strengths

drive the enhancement.
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Figure 11: Effective thermal diffusivity κe (left), Péclet number Pe (center) and turbulent

enhancement of longitudinal convection ξturb (right) over the full parameter range (top row)

and over the range of deeper interest (bottom row, denoted by the dashed box ( ) in the

top row). Laminar/turbulent transition: .
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The centered plots (b) and (e) relate the ratio of effective longitudinal ther-

mal diffusivity to the molecular fluid diffusivity: κe/κf . This definition of the

Péclet number Pe (compare Eqn. (6)) reveals increasing values with an increase

in the oscillation amplitude λ and in the Prandtl number Pr. Thereby, the

Péclet number underlines the crucial importance of the convective transport

mechanism. However, this observation directly leads to the following question:

Does the turbulence significantly increase the longitudinal convective transport?

Or is it merely attributed to the underlying oscillatory motion?

To quantify the longitudinal turbulent transport over a laminar reference,

the laminar effective thermal diffusivity is defined as

−κe,lamγ =
ω

2πn

1

2h
∫ 2πn/ω

0

∫ h

−h

(
1

LxLy

∫ Ly/2

−Ly/2

∫ Lx/2

−Lx/2

T (x, y, z, t) dx dy

1

LxLy

∫ Ly/2

−Ly/2

∫ Lx/2

−Lx/2

ux(x, y, z, t) dx dy

)
dz dt,

(21)

where a spatial layer-wise averaging of the temperature T and velocity ux is

performed before the respective multiplication, suppressing the consideration of

turbulent fluctuations.

The plots (c) and (f) on the right side of Fig. 11 show the relative impact of

turbulent effects on the longitudinal convective transport:

ξturb =
κe,turb − κe,lam

κe,lam
. (22)

In the laminar regime below the horizontal blue line that denotes the threshold

of the limiting numerical set-up, turbulent effects do not impact the longitudinal

transport: ξturb = 0. In the turbulent regime, relevant longitudinal convection

shows for large Prandtl numbers (i.e. low molecular thermal conductivity of

the fluid). This effect slightly diminishes with increasing oscillation strength λ.

However and in comparison with the enhancement in longitudinal heat transfer

εturb (e.g. Fig. 12), the contribution of enhancement in longitudinal convection

ξturb is relatively small: At the bounding parameter range with Pr = 0.79,
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the longitudinal convection fulfills ξturb < 18% whereas overall enhancement

in longitudinal heat transfer easily exceeds 50% or even 100% (in particular at

large oscillation amplitudes). In conclusion, the additional turbulence-driven

longitudinal convection is of minor importance for the overall enhancement in

longitudinal heat transfer. Instead, the wall-normal turbulent enhancement in

heat transfer (compare also [17]) promotes the thermal ’loading’ and ’unloading’

of the oscillating fluid. Most of the convective transfer in longitudinal direction

is attributed to the regular underlying oscillation without turbulent fluctuations.

4.3. Modeling

This section provides a simple qualitative model for longitudinal heat trans-

fer. Throughout the derivation, a confined hydrodynamic boundary layer (Wom-

ersley number α = 35.4) and a thermal boundary layer smaller than the channel

width (α2 Pr > π) but wider than its hydrodynamic counterpart (Pr < 1) is as-

sumed. In a first step, the model is qualitatively validated against the laminar

flow and then extended to quantify the effect of turbulence.

4.3.1. Modeling without turbulence

The assumptions introduced in Section 4.3 suggest a bulk temperature ap-

proach, meaning that the temperature in the center is not disturbed. On the

other hand, at values of Prandtl number Pr < 1, temperature disturbances

occur mainly within the bulk velocity region (compare Fig. 7). Referring to

the calculation of the effective thermal diffusivity in Eq. (5), the majority of

the channel cross-section shows constant bulk velocity (δs/h � 1), whereas

temperature fluctuations are present throughout the thermal boundary layer.

Considering these constraints, a qualitative interpretation of effective thermal

diffusivity κe questions what wall-normal heat flux q is transferred to the fluid

at the hot reversal point and then released back to the wall at the cold rever-

sal point. In general, such heat flux q = U∆T is expressed by the product of

thermal transmittance U and the temperature potential ∆T . As depicted in

Fig. 7, the imposed temperature potential is solely induced by the local velocity
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fluctuation close to the wall. Accounting for pure wall-normal heat conduc-

tion in the laminar case, the expression for the thermal transmittance U reads

U ∼ kf/δth ∼ 1/
√

Pr. In conclusion, the qualitative evaluation of Eq. (5) yields

κe
ω∆x2

∼ q ∼ ∆TU ∼ kf
δth
∼ 1√

Pr
, (23)

suggesting inverse scaling effect of the square-root of the Prandtl number Pr.

Fig. 9a includes the predicted quality of Eq. (23) (dotted lines). Very good

agreement is obtained within the range of constraints for the laminar case. The

agreement holds best in the range of Pr = 0.025 to 0.25. Approaching the limits,

inaccuracies result from the violation of following assumptions:

• Small Prandtl numbers (e.g. Pr < 0.025) violate the assumption of bulk

temperature in the center of the channel.

• Large Prandtl numbers (e.g. Pr > 0.25) violate the assumption of constant

velocities throughout the thermal boundary layer.

4.3.2. Modeling with addition of turbulence

Building upon the laminar considerations given in Section 4.3.1, the impact

of turbulence is included in this section. The additional wall-normal convective

heat transfer induced by turbulence is denoted by the coefficient hturb. Thus,

hturb is defined to be zero for laminar flow and to increase with increasing

turbulence. Considering laminar heat conduction and turbulent convective heat

transfer to act in parallel the extended form of Eq. (23) reads:

κ?e
ω∆x2

∼ q? ∼ ∆TU? ∼ ∆T (U + hturb). (24)

Applying the definition of ELHT εturb to be the normalized effective thermal

diffusivity in respect to the laminar case (see Section 4), it follows:

εturb ∼
U?

U
∼ 1 +

hturbδth
kf

∼ 1 + Nu ∼ 1 + hturb
√

Pr. (25)

In this notation the Nusselt number Nu describes the ratio of resistance based

on laminar heat conduction and turbulent convection. Proportionality to the
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in longitudinal heat transfer εturb for increas-

ing oscillation amplitudes λ = 162.5 ( ),

175 ( ), 187.5 ( ), 212.5 ( ) and 250

( ). The black dotted lines denote the
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Figure 13: Comparison of turbulence-

induced convective heat transfer coefficient

hturb ( ) and EHT ( ) [17] plotted vs.

non-dimensional amplitude λ.

square root of the Prandtl number
√

Pr is found, weighted with the convective

heat transfer coefficient hturb.

Fig. 12 shows results of ELHT εturb in a more extensive parametric study

for the parameter range of interest (turbulent flows, α2 Pr > π). The extended

range of Prandtl numbers accounts for thermophysical properties of air (Pr ≈
0.7). Furthermore, the correlation of Eq. (25) is evaluated at Pr = 0.25 for

each oscillation amplitude (dotted lines). In a first assessment, the qualitative

prediction of a scaling proportional to the square-root of the Prandtl number

(∼
√

Pr) holds well. Nevertheless, a more detailed discussion of limitations of

validity and its physical interpretation is given at this point:

• Confirming findings of limitations for laminar flows (Section 4.3.1), small

Prandtl numbers (e.g. Pr < 0.025) violate the assumption of bulk tem-

perature in the center of the channel. This error increases with additional

heat transfer induced by turbulent convection, thus explaining the over-

prediction of ELHT when approaching α2 Pr = π. In more physical terms,

the entire channel cross-section already contributes to the effective ther-

mal diffusivity (compare Fig. 10, left plot), such that turbulence has no
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further contribution.

• Turning to large Prandtl numbers (e.g. Pr ≈ 0.25), a slightly regressive

behavior is revealed for large oscillation amplitudes. This observation has

not been clarified, yet.

The convective heat transfer coefficient hturb for each forcing amplitude is

derived by fitting Eq. (25) at Pr = 0.25. The result is given in Fig. 13 vs.

non-dimensional pressure gradient λ. In the laminar regime, i.e. for λ ≤ 162.5,

the expected behavior of hturb = 0 is obtained. At the onset of turbulence

λ > 162.5, the convective heat transfer coefficient hturb increases monotonously

with the oscillation amplitude. The initially large enhancement at laminar to

turbulent transition is followed by a continuous decline in slope, indicating a

decreasing influence of turbulence at high amplitudes.

Finally, a qualitative comparison to wall-normal enhanced heat transfer is

included in Fig. 13. Recall the differences between the two studies: van Buren et

al. [17] investigated enhancement of cross-stream heat transfer between two par-

allel plates of different temperature, whereas this study is concerned with axial

temperature variation. Furthermore van Buren et al. [17] considered a devel-

oped pulsating flow, where critical Reynolds numbers for the onset of turbulence

are already exceeded by the mean flow velocity rather than by high oscillation

amplitudes. Despite these deviations, similar characteristics exist: First, signifi-

cant increase in EHT [17] does not show before the laminar/turbulent transition

of the present study is reached. This coincides well with the conclusions given by

van Buren et al. [17], i.e. significant EHT only occurs at considerable turbulent

intensities. This, in turn, only occurs for flows with pronounced flow reversal.

Second, both studies reveal an initially large enhancement at amplitudes leading

to increased turbulence. This is followed by a notable decline for the two setups

under investigation.
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5. Conclusions

Axial heat transfer in oscillating turbulent channel flow is investigated by

means of Large Eddy Simulation (LES). Incompressible flow within a periodic

computational domain is driven by a wide range of oscillating axial pressure

gradients, generating both laminar and turbulent flows. The analytical solution

to a laminar flow given by Kurzweg [10] is simplified to consider imposed tem-

perature boundary conditions rather than investigating a problem of conjugate

heat transfer within fluid and solid domain. This conforms well with setups

of metallic walls confining an air-filled fluid channel. The applied numerical

methods were carefully validated in a prior study [17].

The present numerical study provides first qualitative proof and evaluation

of ELHT. For thin hydrodynamic boundary layers, a significant turbulence-

induced increase in heat transfer may exist over the laminar counterpart. In

particular in the range of physically meaningful Prandtl numbers (e.g. Pr ≈ 0.7

for air), an enhancement of more than 100% shows. This coincides well with the

conclusion given by Kurzweg [10], who identified the regime of α2 Pr > π to be

of interest for further studies related to the impact of turbulence. The numerical

results identify the crucial importance of turbulence-increased wall-normal heat

transfer as a drive of the enhancement. In contrast, longitudinal turbulent

convective exchange contributes little contribution on the overall mechanism.

An analytical model consolidates the turbulence-induced enhanced wall-

normal heat transfer with the oscillation-induced longitudinal convective trans-

port to qualitatively explain the influence of the Prandtl number and the oscil-

lation amplitude. Seen by themselves, neither of these mechanisms propose a

novelty (e.g. wall-normal enhancement by van Buren et al. [17] and longitudinal

enhancement by Kurzweg [10]. However in aggregation, they generate insight

to the physical boundary layer interaction for wall-confined Stokes boundary

layers (α = 35.4).

First restricted to laminar flows, high convective velocity prevails outside of

the hydrodynamic boundary layer. Thus, most effective convective heat transfer
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exists, if this region of maximum velocity overlaps with the presence of tempera-

ture disturbance. This thermal disturbance, in turn, is found within the thermal

boundary layer. In consequence, maximum effective thermal diffusivity is at-

tributed to thermal boundary layer thicknesses approaching the channel width,

or – as recognized by Kurzweg [10] – α2 Pr ≈ π. Furthermore, the presented

model gives physical interpretation for the scaling of effective thermal diffusivity

with 1/
√

Pr.

Based on the laminar model, the correlation is expanded to quantify the

impact of turbulence on heat transfer. In this process, a turbulence intensity

correlated scaling of the enhanced longitudinal heat transfer εturb ∼
√

Pr is

derived and well supported by the numerical results. In a final step, the results

are compared against a setup of sole wall-normal heat transfer that reveal similar

characteristic features. Thereby, conclusions given by van Buren et al. [17]

substantiate the physical interpretation of the present study.
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Nomenclature

Symbols
∆x averaged tidal displacement
δs Stokes boundary layer thickness
δth thermal boundary layer thickness
γ temperature gradient
κ thermal diffusivity
ν kinematic viscosity

ω angular frequency

ρ density

~Smom momentum source term

b wall thickness

c specific heat capacity

h half channel width

k thermal conductivity

ky span-wise turbulent kinetic energy

Lx, Ly stream- and span-wise domain size
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p pressure

q wall-normal heat flux

T temperature

t time

U thermal transmittance

u velocity

uτ friction velocity

x, y, z spatial coordinates

Dimensionless Quantities

α Womersley number

β oscillation amplitude

ε ratio of wall to fluid thickness

η wall-normal coordinate

λ non-dimensional pressure gradient

Pe Péclet number

Reτ turbulent Reynolds number

µ ratio of thermal conductivity

Pr Prandtl number

σ ratio of thermal diffusivity

εturb enhancement of long. heat transfer

ξturb enhancement of long. convection

hturb convective heat transfer coefficient

l+s Stokes length

n number of periods

Superscripts

·̄ complex conjugate
? adjusted

Subscripts

lam laminar

turb turbulent

e effective

f fluid

o reference condition

s solid
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