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Cross-diffusion induced patterns for a single-step
enzymatic reaction

Giovanni Giunta® !, Hamid Seyed-Allaei' & Ulrich Gerland@® '

Several different enzymes display an apparent diffusion coefficient that increases with the
concentration of their substrate. Moreover, their motion becomes directed in substrate
gradients. Currently, there are several competing models for these transport dynamics. Here,
we use mathematical modeling and numerical simulations to analyze whether the enzymatic
reactions can generate a significant feedback from enzyme transport onto the substrate
profile. We find that this feedback can generate spontaneous spatial patterns in the enzyme
distribution, with just a single-step catalytic reaction. However, patterns are formed only for a
subclass of transport models. For such models, nonspecific repulsive interactions between
the enzyme and the substrate, or attractive interactions between the enzyme and the pro-
duct, cause the enzyme to accumulate in regions of low substrate concentration. Reactions
then amplify local substrate and product fluctuations, causing enzymes to further accumulate
where substrate is low. Experimental analysis of this pattern formation process could dis-
criminate between different transport models.
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least eight different enzymes display a higher diffusion coef-

ficient when the concentration of the corresponding substrate
in solution is increased!~”. These increases are in the range of
24-80% relative to the diffusion coefficients without substrate. Most
of these experiments relied on fluorescence correlation spectroscopy
(FCS) measurements. Although artifacts introduced by this tech-
nique have been pointed out®®, recent findings using other
techniques!®!! validated the phenomenon, which is often referred
to as “enhanced diffusion”. The underlying mechanism is still under
debate!?. Some experiments suggest that catalysis plays a key
role?>1314  while others indicate that enhanced diffusion persists
when the substrate is replaced by an inhibitor)1°. According to the
latest experiments performed with the enzyme urease!b13, it
appears that both the binding and the catalysis step of the reaction
scheme contribute to enhanced diftusion.

A related question is how enzymes behave in the presence of
substrate gradients. The answer to this question appears to be
complex. Some experiments suggest that enzymes drift down-
stream gradients of substrates, performing “antichemotaxis™13.
Others suggest that enzymes move upstream gradients of sub-
strates, performing “chemotaxis”®71>. Antichemotaxis can be
explained based on just the enhanced diffusion>!® (enzymes
accumulate in regions with low substrate concentration where
they have a lower diffusion coefficient), chemotaxis cannot be
generated by enhanced diffusion alone. However, cross-diffusion
is a possible cause for enzyme chemotaxis®. Cross-diffusion
describes the response of the enzyme to forces generated by
gradients of substrate. Mathematically, it corresponds to an oft-
diagonal element in the diffusion matrix describing the combined
motion of the enzyme and the substrate. It has been suggested
that cross-diffusion can be due to specific interactions (ligand
binding) between the enzyme and the substrate®!>17 or due to
nonspecific interactions (e.g., steric, electrostatic, and van der
Waals)!8. Specific interactions only lead to chemotaxis, while
nonspecific interactions can cause the enzymes to move both up-
or downstream the substrate gradient, depending on whether the
interactions are attractive or repulsive, respectively. The model
including nonspecific interactions'® can be considered as a
mathematical generalization of other existing models>%17.

While the existing models and experiments study how enzymes
move in preimposed substrate gradients, they do not consider the
feedback from the enzymatic reaction onto the substrate dis-
tribution. Here, we analyze the effects of this feedback starting
from the most general transport model!8. We show that spatial
patterns can emerge in initially homogeneous systems if non-
specific interactions contribute to the accumulation of the enzyme
in regions where concentration of substrate is low. Enzymes
accumulating in these regions further deplete the substrate,
causing the substrate gradient to become steeper, hence further
increasing the accumulation of the enzyme. We obtain a set of
conditions for the parameter range in which patterns form. We
see that patterns arising from initial homogeneous concentrations
can emerge only for nonspecific interactions driving the enzyme
away from the substrate, hence only for the model proposed by
Agudo-Canalejo et al.!8, but not for the models proposed by
Zhao et al.%, Mohajerani et al.1>, and Jee et al.?, suggesting that the
analysis of spontaneous pattern formation experiments can be
used to discriminate between the different proposed models. Our
findings imply that patterns can arise for a single-step enzymatic
reaction even in the absence of autocatalytic activity or allosteric
regulation. This is surprising given that the formation of con-
ventional Turing patterns'® with such simple reaction schemes
requires at least a reaction network of three states, where forward
and backward reactions are catalyzed by two different enzymes20.

Experiments performed during the last decade found that at

Results

Model scenario. Our starting model system is depicted in Fig. 1.
We consider a single-step enzymatic reaction in a narrow reac-
tion chamber of length L connected via a permeable membrane to
a large substrate reservoir. We assume only substrate and product
molecules can diffuse through the permeable membrane, while
enzymes are confined to the reaction chamber (since enzymes are
typically larger than their substrates and products). We indicate
with y; and y, the permeation rates of substrate and product,
respectively, i.e., the rate at which substrate and product mole-
cules diffuse through the membrane. Such rates are obtained by
dividing the substrate and product permeabilities by the reaction
chamber thickness. The reservoir has a fixed concentration of
substrate sz and no products.

For the reaction occurring in the bulk of this effectively 1D
system we assume a Michaelis—Menten scheme (Fig. 1, inset). The
substrate S binds to the enzyme & with rate k,, forming a
complex, and it can unbind with rate kg The catalytic step of the
reaction has rate constant k., and catalysis is irreversible. This
leads to a turnover rate per enzyme k, F(s) := k_s(Ky; +5) ',
where s is the substrate concentration and Ky; = (kg + koo ) Ko -
Following Agudo-Canalejo et al.'® we assume that the diffusion
coefficient of the enzyme depends on whether the enzyme is free,
Dy, or it is in its complexed form, D.. This change in diffusion
coefficient can be due to changes in either the hydrodynamic
radius or the conformational fluctuations of the enzyme upon
substrate binding®21:22, Typically, enzymes become more tightly
folded upon substrate binding, i.e., D.> Dy, consistent with the
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Fig. 1 lllustration of the system considered in this work. A single-step
enzymatic reaction takes place in a narrow reaction chamber, which is
coupled to a reservoir through a permeable membrane. The membrane
allows for the exchange of only substrates and products with permeation
rates ys, y,, respectively, but no exchange for the enzymes. Inset: Reaction
scheme. The substrate S is converted into a product P by an enzyme &.
The reaction follows a Michaelis-Menten scheme where substrate can bind
to the free enzyme with rate k., forming a complex, and unbind with rate
kofr. The catalytic step of the reaction has a rate k..t We assume that the
enzyme has diffusion constant Ds or D, depending on whether the enzyme
is free or in its complexed form. Nonspecific pairwise interactions between
enzyme and substrate ¢, ¢pos can depend on the enzyme form. How
nonspecific interactions between the enzyme and the product affect the
results is discussed further below in this article.
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experimentally observed trend. We also assume that short-range
nonspecific interactions can either cause the enzyme to move
towards or away from substrate, effectively generating a phoretic
drift velocity that can also be interpreted as cross-diffusion!s. We
denote these interactions via pairwise potentials ¢¢, ¢.s depend-
ing on whether the enzyme is free or in the complexed form,
respectively, as depicted in Fig. 1(inset).

Under the assumptions that (a) the enzyme is very dilute and
(b) the system is locally in chemical equilibrium (ie., the
timescales of diffusion and cross-diffusion are slower than the
chemical reactions), one can derive an effective transport
equation for the enzymes!$,

de(x,t) = 0[De(s)e] + 0,[Diy(s, ),s] (1)

within the quasi-1D reaction chamber (Fig. 1) oriented along the
x-axis. Here, e(x, t) denotes the local enzyme concentration
(regardless of free or complexed) and s(x, f) the substrate
concentration. The effective diffusion coefficient of the enzyme,

D(s) = D¢ + (D — Dg)E(s), (2)

is a function of substrate concentration, interpolating between the
diffusion coefficient of the free enzyme and the complex, with F(s) as
defined above. For s < Ky;, D(s) ~ Dg whereas D.(s) ~ D, for s>
K. Note that the disassembly of enzyme oligomers into monomers
can also contribute to enhanced diffusion®!1%-23, Equation (1) would
then describe the motion of the enzyme irrespective of its oligomeric
state. The cross-diffusion term Dj,(s,e) of Eq. (1) describes how
enzymes respond to gradients of substrate due to the short-range
nonspecific and hydrodynamic interactions,

Diy(s,€) = —[Ci + (C = CHF(s)]e . (3)

Here we define what we will refer to as ‘cross-diffusion strength’
Ceje = Npkg TA, /Zf;y’l, where 7 is the viscosity of the fluid, kg the
Boltzmann constant, N the Avogadro number, T the tempera-
ture and A the Derjaguin length!®2% The Derjaguin length
is a parameter capturing the effective short-range interaction
between the complex/free enzyme and the substrate. It is
typically a few angstroms?>26 and can at most be as large as
the Debye length (screening length), which in typical buffer
conditions is about 1 nm!2. It is expressed via the integral A} = =
Jo° dhh(e ~esyis (W) (ks T) !
interaction is attractive (repulsive)!8. The derivation of A /zf is
similar to that of the second Virial coefficient for a real gas?’, but
it also includes hydrodynamic effects and is computed by
assuming that the size of the enzyme is much larger than the
interaction length. The sign of A /zf determines the sign of C?

1). A7 J¢ is positive (negative) when the

and it has opposite sign as compared to D$,(s, e). For attractive
interactions Dj,(s, e)<0, ie., the enzyme drifts towards higher
concentrations of substrate (chemotaxis). The enzyme performs
antichemotaxis for repulsive interactions, for which D, (s, e)>0.
Note that the effect of nonspecific interactions can also be
written as a phoretic drift'® by swapping the 9d,s in Eq. (1) with
e in Eq. (3), with a drift velocity directly proportional to the
substrate gradient v, (s, d,s) = [C; + (C: — C})F(s)]0,s.

The enzyme dynamics as given by Eq. (1) is Vahd if short-range
nonspecific interactions between the product and the enzyme are
neglected. We first neglect such interactions, but will discuss their
effects further below. This allows us to derive simple analytical
conditions for the determination of the relevant parameter ranges
for the formation of spontaneous patterns in the enzyme, substrate
and product profiles. This approximation is valid for y,> y.. In
such a regime products very quickly permeate out of the reaction
chamber, impeding the formation of large product gradients and
causing the cross-diffusion induced by the product to be negligible.

Note that the values of y, and y, can vary by several order of
magnitudes. For a reaction chamber that is 1-10 um thick, the
permeation rates are in the range of y,, = 107-10%~128 In the
regime where the enzyme is dilute and Eq. (1) is valid, the cross-
diffusion that enzyme molecules would induce on substrate and
product molecules can be neglected. Moreover the cross-diffusions
related to the substrate—product interaction can also be neglected
as product and substrate molecules are typically much smaller than
the enzyme and they do not affect each other as much as they
affect the enzyme motion. Hence, the reaction chamber of Fig. 1 is
described by the coupled reaction-transport equations

d,e(x, 1) = 31D, (s)e] + 0,[Diy4(s, €)0,s]
9;5(x, 1) = Dy3s — keyF(s) — y[s — sz (4)
3,p(x,t) = Dydip + keyeF(s) = y,p

where p(x, t) denotes the product concentration. The dynamics of
the system of Eq. (4) is determined by the interplay of the different
physical processes described above, each associated with a different
timescale. The diffusion processes have timescales 74 = L*D SIP
The cross-diffusion process has a timescale 7,4 = L%e, (DSysz) "
and it represents the time it takes an enzyme to explore a length L,
driven by a constant gradient sgL~1, where s; is the maximal
substrate concentration allowed in the system. Equivalently, we can
say that the nonspecific interactions cause the enzyme to drift with

. . . . _ 71 _
velocity vpu(s, 0xs), with associated timescale 7, = Lv, = 7,4.
= k7

The reaction has a timescale T at

have timescales 7., ys

Having the reaction chamber coupled to a reservoir avoids
product accumulation and substrate depletion, generating a non-
zero homogeneous steady-state, with concentrations ey, s, and py,
for enzyme, substrate, and product, respectively. For simplicity,
we express e, and py, as functions of s,

react. and the permeations

=N (5)
) kcatF( )
keenF(s
Py = cat“h (h) (6)
%
Since F(s,) is a monotonic increasing function of s, it is possible
to write s, and py, in terms of ey, which can be directly tuned in
experiments via the total enzyme concentration [see Supplemen-
tary Eqs. (4) and (5) of Supplementary Note 1.1 and the
Supplementary Fig. 1].

Instability driven by substrate induced cross-diffusion. The
homogeneous solution as given by Egs. (5),(6) is stable for any
positive values of the parameters for a well-mixed system, i.e., a
system with no diffusion and no cross-diffusion (see Supple-
mentary Note 1.2). Figure 2 shows the results of two simulations
of the full system, Eq. (4), with periodic boundary conditions and
parameters as given in the Supplementary Table 1. In Fig. 2a we
see that the homogeneous solution is unstable and patterns form,

for a value of A}* = A% = —1A%. A steady-state is reached after
about 103s, corresponding to the enzyme diffusive timescale that
for the chosen parameters is the slowest timescale 744 =
I2D;! = 10%. In Fig. 2b we see that for 132 =32 = 1A” the
homogeneous solution is instead stable. Hence, depending on the
parameters, the system will spontaneously form patterns.

To characterize the instability of the homogeneous steady-state
solution, vy, = (en, Sp, pPn), we linearize Eq. (4), v — v, + 6v, and
make the exponential ansatz dv=1v, e%/?, with q the spatial
frequency of the linear perturbation and o the perturbation
growth rate. If 0> 0, the perturbation grows with a timescale as

COMMUNICATIONS PHYSICS| (2020)3:167 | https://doi.org/10.1038/s42005-020-00427-w | www.nature.com/commsphys 3


www.nature.com/commsphys
www.nature.com/commsphys

ARTICLE

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00427-w

a s(x,t) [mM]

e(x,t) [uM]

p(x,t) [mM]

x [um]

T

102

x [um]

0 103 0 103 0 103
t[s] t[s] t[s]

Fig. 2 Pattern formation as the short-range nonspecific interaction
between substrate and enzyme is varied. The concentration profiles for the
substrate s(x, t), the enzyme e(x, t) and the product p(x, t) are plotted as a
function of time and spatial coordinate for two different parameter sets. The
substrate homogeneous concentration is fixed at s, = 104uM. By varying the
square of the Derjaguin length Af, we affect the nonspecific interaction
between the substrate and the enzyme. a A2 = —1A%: the interaction is
repulsive and spatial patterns arise from initial homogeneous concentrations
with white Gaussian noise. We can see how the enzyme accumulates in
regions of low substrate concentration, as well as the product; the profiles
reach the steady-state after about ~103 seconds, the same order of
magnitude as the timescale of diffusion, which is the slowest timescale for the
parameters chosen, 74 = 103s. b Ag = 1A% the interaction is attractive, the
initial perturbation decays and the steady-state profiles are homogeneous.

given by 0~! and patterns form (see Supplementary Note 1.5 for
the determination of ¢~! for the patterns of Fig. 2a). Note that
since the system of Eq. (4) is isotropic, the results below will also
be valid for systems of higher physical dimensions. A positive o
can be found (see Supplementary Note 1.3) provided that

Di(sy) F'(sn)] , Dialsnren) _ ¥+ Diq
D) Fol T ab) kaeFs) | )
e\*h h h™e\°h cat“h h

with Di(s) = 0D,(s)/9s|, and F'(s,) = 9F(s)/0s|, . Using the
functional form of D, [Eq. (2)], the term given in square brackets
equals to —D;F'(D,F)"", which is negative. Hence for the
homogeneous solution to be unstable we must have D}, (s, ¢,) >
0, i.e., enzyme molecules drift downstream gradients of substrate,
performing antichemotaxis. We can have a positive cross-
diffusion if the nonspecific interactions between enzyme and
substrate molecules are repulsive, i.e. for negative cross-diffusion
strengths CZ ¢ <0. However, how repulsive do these interactions
need to be? By using the definitions of D.(s), F(s) and Di,(s, e) is
possible to show [see Supplementary Eqs. (20-25) in the
Supplementary Note 1.3] that Equation (7) is fulfilled if

0<q< _ BIDKy + 5, (CiKy + Cesy)] (8)
Dgs;,(Dg Ky + Desy,) ’

Df+sh(C§+I§—hMC§)<0, (9)

with f3 = ypssp. This result holds in the strong depletion regime
(sh << sr), where the effect of the reaction on the substrate
dominates over the outflow to the reservoir. In this regime, the
expressions are simpler and it is easier to pinpoint the driving

mechanism behind the instability observed in Fig. 2. We refer the
reader to the Supplementary Note 1.3 for the full analysis. The
argument of the square root in the inequality Eq. (8) is positive if
Eq. (9) is fulfilled. In the Supplementary Note 1.4 we show that
the instability is a Type II instability?’, meaning that 0 =0 at g =
0, see Supplementary Fig. 2. This is natural as the total amount of
enzymes in our system is conserved and homogeneously
increasing or decreasing perturbations, i.e., perturbations at g =
0, would correspond to changes in the total enzyme amount. By
looking at the inequalities Eq. (9), (8), we can see that negative
cross-diffusion strengths C? ¢ <0 are needed to have instabilities.
Given that C := N,k TA /an’l, this means that repulsive
interactions (A /2f<0) are necessary. Diffusion tends to homo-
genize the concentration profiles and contributes with a positive
term to the left hand side of inequality Eq. (9). In the case where
the enzyme-substrate interaction is attractive, i.e., C} >0, also the
second term on the left hand side of inequality Eq. (9) is positive.
Hence the interaction between the enzyme and the substrate
would need to change sign upon substrate binding to have an
instability (C: <0). This could happen if, upon substrate binding,
the electrostatic surface charge distribution of the enzyme
changes significantly, for instance due to a conformational
transition. There can be cases in which the change in nonspecific
interactions is less abrupt and both C; <0 and C; < 0. Even in the
case for which C! = C;=C,, ie, there is no change in
interaction upon substrate binding, it is possible to have an
unstable homogeneous solution for

M<— ! Ky
° 67R(N s, (s, + Kyy)

(10)

where we rewrote relation Eq. (9) with the use of the Stokes-
Einstein relation, kgT = 671nD¢R, and the definition of Ci.

It is interesting to note how relations Eq. (9), (10) depend on
the substrate concentration. One could ask, given certain
nonspecific interactions between the enzyme and the substrate,
at which substrate concentration s, should we begin to observe
instabilities? From relations Eq. (9)-(10), we find that

L1 4D K
S

T RN
B M 3RAIN, )

with A2 < 0. The value of s} given by Eq. (11) is similar to the value
of s, above which the phoresis generated by the nonspecific
interactions vph(s, dxs) dominates over the drift induced by the
enhanced diffusion v, := —9,D.(s)!8. They differ only by a prefactor
(D. — Dy)/Dx in the second term inside the square root of Eq. (11).
Having vp, > 1,; corresponds to D (s, e) > eDL.(s). However, s}, is
not only determined by this inequality, but also from the inequality
Eq. (7), where reaction also plays a role. By considering biologically
relevant ranges, such as Ry ~ 1-10 nm3%31, Ky ~ 1072-10° uM>3?,
|\ being smaller than the Debye length || =~ 1072-10 A, we
find that s <Ky if |CKy(4D;)™'>1, or equivalently
3/2m RJAZ|NyKy > 1. This can happen only for enzymes for
which Ky;=0.1-1M, which is only a small fraction of enzymes32,
For the vast majority of enzymes |C K (4D;) ' < 1 and
st > K, meaning that we are in the saturated regime of the
reaction, for which F(s) = 1. In such a regime, we find that s; ~

— w1

VDKl C ™ = /Ky (RN A2))
In Fig. 3 we plot the phase diagram of the system of Eq. (4)
where on the abscissa we have s;, and on the ordinate we have A?.

(11)
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Fig. 3 Phase diagram of pattern formation. \We plot the instability curve of
the full model of Eq. (4) (light blue line) and the approximated curve valid in
the strong depletion regime, where the reservoir concentration sg is much
larger than the substrate homogeneous concentration s, as given by
relation Eq. (10) (green dashed line). As a proxy to measure the presence
of patterns, we use the ratio of the maximum of the steady-state profile of
the enzyme concentration over the minimum €., /&..,. Below the curve,
the system of Eq. (4) is unstable and patterns arise, the ratio ., /énin Can
be as high as 10°. Above the curve, the homogeneous solution is stable and
the ratio €,,,,/€nin = 1. The white cross corresponds to the simulation
shown in Fig. 2a.

The green dashed line corresponds to the instability curve,
Eq. (10), in the strong depletion regime (s, < sg) and the light
blue line represents the instability curve derived for any s, [see
Supplementary Eq. (23) in the Supplementary Note 1.3]. As a
proxy for the determination of patterns we plot the ratio of the
maximum over the minimum of the enzyme profile at steady-
state. Above the instability lines the homogeneous solution is
stable. Below the line the system is unstable and patterns similar
to the one shown in Fig. 2a arise.

Positive feedback causing pattern formation. What is the
physical mechanism underlying the instability given by the Egs.
(9), (8)? We illustrate the feedback mechanism generating the
pattern in Fig. 4. We have already seen that to have instabilities
the cross-diffusion D34(s,e) must be positive, see Eq. (7). The
enzymatic current induced by the cross-diffusion is given
by J¢; = —Di4(s,e)0,s, which for a negative slope of subs-
trate concentration generates a positive current for the enzyme,
i.e., the enzyme moves away from a high substrate concentration.
The current generated by the enhanced diffusion J§, =
—0,[D,(s)e] also consists of a motion of the enzyme away from
high substrate concentrations. In Fig. 2a we can see how in a
regime where patterns form, more product is generated in loca-
tions where the substrate concentration is low and the enzyme
concentration is high. Repulsive nonspecific interactions and
enhanced diffusion cause the enzyme to accumulate in such
regions (Fig. 4 from (a) to (b)). This accumulation then generates
a higher reaction flux in these regions. Having a stronger reaction
flux where substrate is already low, as compared with regions
where substrate is abundant, causes substrate gradients to become
steeper [Fig. 4 from (b) to (c)]. A steeper substrate gradient, in
turn, causes both Ji; and J, to increase, hence generating a
further accumulation of the enzyme in substrate depleted regions
[Fig. 4 from (c) to (d)]. This positive feedback between reaction
and enzyme accumulation, leads to the formation of patterns. The
feedback cycle halts when the substrate concentration is too low
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Fig. 4 Positive feedback mechanism behind the pattern forming process.
a We start with a substrate gradient and a homogeneous enzyme profile.
b The enhanced diffusive current J§ and the cross-diffusive one J§, cause
the enzyme to accumulate where substrate is low, moving from left to right
as indicated by the orange arrow. ¢ The substrate is depleted at a rate k.,ieF
(s) and the enzyme accumulated in the region of low substrate cause the
substrate gradient to get steeper, as illustrated by the purple arrows. d This
leads to a further increase of J§ and J3; causing further accumulation of
the enzyme, as indicated by the thicker orange arrow. This process repeats
itself determining the patterns.

and the reaction is balanced by the influx of substrate from the
reservoir. Then the substrate gradient stops getting steeper and
the system approaches a steady-state.

The role of enhanced diffusion. What happens without
enhanced diffusion, with only nonspecific interactions? The dif-
fusion function D(s) in Eq. (4) becomes a constant, i.e., D, = D,
and the interval as given by Eq. (8) for the unstable wave vector q
is slightly affected. The Eq. (9) characterizing the instability is
unaffected. This result suggests that enzyme patterns for a single-
step reaction form only if driven by repulsive nonspecific inter-
actions between the substrate and the enzyme. Why cannot
patterns be generated simply by enhanced diffusion? By con-
sidering the strong depletion regime (s, < sg) and D5,(s,e) = 0,
Eq. (7) becomes

Di(sy)  F'(sy) >‘12D
D,(sy)  F(sy) B

Both D.(s) and F(s) have a Michaelis-Menten dependence on s
for all the models proposed so far for the enzyme motion. They
differ only in the prefactors and a non-zero offset for D.(s).
Equation (12) is never fulfilled for such D.(s) and F(s) and con-
sequently any initial perturbation of the concentrations is
smoothed out by diffusion (See Supplementary Note 2.1).
However, Eq. (12) will apply to any model with a spatially
dependent diffusion coefficient that is coupled to another diffusing
and reacting species that is being depleted. In case the diffusing
species is being generated, the sign of the above inequality is
flipped. Systems of this type are used to study bacterial motion.
Interestingly synthetic bacterial populations show stripe patterns
as they grow on semi solid agar plates33. These bacteria produce a
certain signaling molecule through which they sense their own

s (12)
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concentration and regulate their mobility. If we neglect bacterial
growth, we have a system of equations similar to the equations
describing the enzyme and the substrate motion in Eq. (4). The
enzyme would correspond to the bacteria and the substrate to the
signaling molecule. For this system F(s) = const. < 0 and De(s) is a
Hill function with D)(s)<0. Hence patterns can form for
D.(s)D,(s) "' <¢*D ", where now f<0. This shows that such
synthetic population of bacteria can form patterns even in the
absence of growth. The Eq. (12) specifies the minimal ingredients
for pattern formation for such systems. It implies that, if F(s) > 0,
patterns form whenever D.(s) is more sensitive than F(s) to
perturbations in the substrate concentration. Having a more
sensitive D.(s) than F(s) causes a more sensitive response in the
enzyme motion than the depletion due to the reaction. Consider a
local increase in substrate concentration and that both D.(s) and F
(s) are monotonically increasing functions of s. Having a more
sensitive D.(s) than F(s) implies a higher increase in the current J§,
due to enhanced diffusivity away from the substrate, as compared
to the depletion of substrate due to the reaction. Molecules £ then
migrate to regions with low substrate and if they do so with a high
enough rate they can cause substrate gradients to get steeper, as in
step (c) of Fig. 4. However, for the enzyme model as given by
Eq. (4), D(s) and F(s) alone cannot generate instabilities (see
Supplementary Note 2.1). The accumulation of the enzyme in low
substrate region at a high enough rate can be guaranteed only via
the cross-diffusive term D 4(s,e). This is because D,(s) and F(s)
are Michaelis—-Menten functions with the same Kj; and therefore
are equally sensitive to substrate perturbations. In the Supple-
mentary Note 2.3 we show that if the Michaelis—-Menten constant
associated to D, is much larger than the one associated to F(s),
Eq. (12) can be fulfilled, see also Supplementary Fig. 3. In this
scenario, there can be a range of s, concentrations for which
Dg(sy) is in the linear regime and sensitive to substrate
perturbations, while F(s,) is in the saturated regime and therefore
insensitive to perturbations in s. In the Supplementary Note 2.2,
we also show that if D.(s) is a Hill function and F(s) a
Michaelis-Menten reaction, we can have spontaneous pattern
formation for a Hill coefficient > 1.

Inclusion of enzyme-product interaction. Up to now we
focused on the effects that short-range nonspecific interactions
between the substrate and the enzyme have on the enzyme
motion. We neglected the product-enzyme interaction. This
approximation was helpful to derive the Eqs. (9)-(11) and check
the validity of pattern formation for biologically relevant para-
meter ranges.

Now we ask: How is pattern formation affected by the short-
range interaction between product and enzyme? The enzyme
dynamics becomes affected by gradients of products (see
Supplementary Note 3) and instead of Eq. (1) we get

de(x,1) = A[De(s)e] + 0,[Dig(s. €)0,s] + 0, [Diy(s, €)3,p,
(13)
where DP, (s, e) is the cross-diffusion due to nonspecific short-

range and hydrodynamics interactions between the product
and the enzyme. Similarly to the substrate induced cross-
diffusion, Di(s,e) = —[C} + (CE — C{)F(s)le, where CP, =
NAkBTAS/in’I is the cross-diffusive strength corresponding
to the product-enzyme interaction for the complexed and free
form, respectively. The enzyme drifts upstream (downstream)
the product gradients for an attractive (repulsive) interaction,
for which DPy(s,e)<0 (DP4(s,e)>0). Note that DPy(s,e)
depends on the substrate concentration, because the fraction
of enzymes in the complexed form is given by F(s).

It is possible to derive a condition characterizing the instability
of the homogeneous solution in the presence of product induced
cross-diffusion, similar to Eq. (7) (see Supplementary Note 3):

|:D,e(5h) _ F/(Sh):| Diq(sh €n)

D.(sy)  F(sp) enDe(sh) (14)
| 7.+ D | Dalsnien) _ y + D
Yp + quz ehDe(Sh) kcatehF(Sh) .

As compared to Eq. (7), in Eq. (14) there is an extra term that
involves the cross-diffusion D’ (s, e). The prefactor of such term
goes to zero in the limit of large y, as expected. The product
induced cross-diffusion contribute to the instability with opposite
sign as compared to D54(s, €). We have seen in Fig. 4 that patterns
form if the interaction between substrate and enzyme is repulsive
(transition from (a) to (b)) and D34(s, ) > 0. Then the reaction has
the role of steepening preformed substrate gradients (transition
from (b) to (¢)), i.e., more products are formed where substrate is
already low. This generates a gradient in the products that has a
opposite sign as the substrate gradient, see Fig. 2a. Hence we can
expect that patterns are favored by an attractive nonspecific
interaction between the product and the enzyme, for which
DP4(s, ) < 0. This favors the accumulation of enzymes in region of
low substrate, further steepening the substrate gradient. In Fig. 5a
we present the results of simulations where Af = AP = A, We vary

s(x,t) [mM] e(x,t) [uM] p(x,t) [mM]
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Fig. 5 Pattern formation process as the short-range nonspecific
interaction between product and enzyme is varied. The concentration
profiles of substrate s(x, t), enzyme e(x, t), and product p(x, t) are plotted as
a function of time and spatial coordinate. By varying the square of the
Derjaguin length A2, we affect the nonspecific interaction between the
enzyme and the product. a )Lg = 1A% the interaction is attractive and the
patterns are more pronounced as compared to the case where no
interaction is present, which is shown in Fig. 2a. b )Lé = )Lf = 1A% the
interaction is repulsive and equal in strength to the repulsive interaction
between substrate and enzyme, which strength is given by Ag; we can see
how the patterns are still present but less pronounced. ¢ Aé = —10A% the
interaction is so repulsive that the homogeneous solution is stable.
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the value of A, and fix the other parameters to be the same as the
ones considered for Fig. 2a, as given in Supplementary Table 1. For

$2 . . .
)Lf, = 1A" (Fig. 5a), ie, for an attractive interaction between

product and enzyme (Dy(s, e) <0), we see that the steady-state
pattern is more pronounced as compared to the case in which

DP, = 0 (Fig. 2a). For /lf, == 1A’ (Fig. 5b), we see how the
pattern is still present, however, less pronounced. Note that we still
get a pattern because we considered different permeation rates
ys=1s"1 and y, = 10s~!. Finally for Aé = —10A (Fig. 5¢) we see
that the repulsion between the product and enzyme is so strong
that the pattern disappears. In this case D (s, e) >0 and the cross-
diffusive term induced by the product prevails over the cross-
diffusive term induced by the substrate. Therefore Eq. (14) is not
fulfilled. Note that Eq. (14) can also be fulfilled if both cross-
diffusions are negative, i.e., both substrate and product attract the
enzyme. In this case, patterns form if the product attraction is
stronger than the substrate one. As a result, enzyme would still
antichemotax from the substrate and the intuitive mechanism
leading to patterns illustrated in Fig. 4 still holds. Note that one
could think of the intuitive mechanism leading to patterns in terms
of the feedback between product induced cross-diffusion and
product formation. Given an initial product gradient and a
uniform enzyme profile, the enzyme would chemotax to the region
of high product. Having more enzymes in this region would cause
the formation of even more product. This would cause the
steepening of the product gradient and the further accumulation of
enzymes. This feedback mechanism is the ‘time reversal’ mechan-
ism of the one illustrated in Fig. 4.

Discussion

We have seen that spontaneous patterns arising from homo-
geneous concentration profiles can form for a single-step catalytic
reaction if cross-diffusive effects are present. Patterns form given
sufficiently strong repulsive nonspecific interactions between the
enzyme and the substrate, and/or sufficiently strong nonspecific
attractive interactions between the enzyme and the product as
indicated by Eq. (14). These interactions cause the enzyme to
move away from regions of high substrate concentrations and to
accumulate in regions of low substrate, performing antic-
hemotaxis. The accumulated enzymes then deplete the substrate,
steepening substrate, and product gradients. Steeper gradients
further drive the accumulation of enzymes as illustrated in Fig. 4.
This positive feedback cycle between enzyme accumulation and
reaction is what generates the patterns.

The enzyme accumulation is driven by the antichemotaxis with
respect to substrate gradients due to nonspecific interactions. The
enzyme chemotaxis considered in some of the models®!>17 has a
stabilizing effect. Enzymes accumulate in regions of high sub-
strate concentrations. Then reactions flatten substrate gradients,
breaking the feedback that leads to patterns. Hence for such
systems spontaneous patterns cannot form. Even in the absence
of short-range nonspecific interactions, antichemotaxis exists due
to enhanced diffusivity>!3. Nevertheless, we have seen that
enhanced diffusivity alone cannot generate spontaneous patterns
for a simple enzymatic reaction. Hence, among all models pro-
posed so far for the enzyme motion, only the model given by
Eq. (1), first proposed by Agudo-Canalejo et al.!'8, can lead to
spontaneous pattern formation. The analysis of the patterns
generated can shed light onto the microscopic interactions
between enzyme and substrate. In fact, from Fig. 3, we can see
how the ratio of the maximum over the minimum of the steady-
state enzyme profile is affected by the Derjaguin length [A?| and it
does not depend on the substrate concentration s,

The patterns observed in Fig. 2 are not generated via the
common short-range activation and long-range inhibition
mechanism34, as neither the enzyme nor the substrate have
autocatalytic activity. It is also not a motility induced phase
separation (MIPS) mechanism3°, which relies on the slowing
down of active particles in regions of high particle concentrations.
Here a positive feedback mechanism between particle accumu-
lation and reaction leads to the pattern formation. Note that for
the system of Egs. (4), patterns can form even if D, ~ D, because
inequality (9) does not depend on D, whereas for classical Turing
patterns large differences in the diffusion coefficients of the dif-
ferent species are required!®. Moreover, it is surprising to see that
patterns can form for a single-step enzymatic reaction with no
autocatalytic activity nor allosteric regulation. In fact, for a system
where species have a constant diffusion coefficient and enzymatic
reactions follow a simple Michaelis-Menten scheme, patterns
form for a minimal network of three states, where forward and
backward reactions are catalyzed by two different enzymes,
respectively?0. In our system patterns form for a single-step cat-
alytic reaction because of cross-diffusion.

Our findings are consistent with recent studies analyzing the
effects of cross-diffusion in pattern formation3°. Moreover it has
been shown that phase separation, formation of static or self-
propelled aggregates can be observed in mixtures of cross-
diffusive species interacting via a fast diffusing chemical that can
be produced or consumed3”. The scenario considered here cor-
responds to the case of a single cross-diffusive species, i.e., the
enzyme, that is able to consume the fast diffusing chemical, i.e.,
the substrate. Here we considered the full nonlinear forms of
enhanced diffusion and cross-diffusion for the enzyme motion,
whereas these other studies considered constant diffusion and
constant cross-diffusion36-37. The nonlinear model permitted us
to address the question why enhanced diffusion alone is not able
to generate patterns for a simple enzymatic reaction. We found
that enhanced diffusion would need to be more sensitive to
perturbations in substrate concentrations than the reaction, see
Eq. (12). Although this is not the case for enzymes, we believe
that Eq. (12) can characterize the pattern formation of species
presenting different enhanced diffusion functions, such as syn-
thetic bacteria®3. Moreover, the cross-diffusion terms character-
izing the dynamics of € in Eq. (13) can correspond to chemotactic
responses of organisms to gradients of S and P, which can be
chemoattractants or chemorepellants3®3%, Hence Eq. (14) can be
relevant in the characterization of spontaneous pattern formation
of species performing chemotaxis. As similarly shown in Fig. 4,
patterns can form if a chemotacting organism is repelled from a
chemorepellent and such chemorepellent is also depleted from
the organism. Moreover, patterns can also form if the organism is
attracted to a chemoattractant and the chemoattractant is pro-
duced by the organism. The latter scenario corresponds to the
‘time reversed’ mechanism of the one shown in Fig. 4 and is at the
base of aggregation phenomena in chemotacting Amoebae*0.

Methods

Simulation parameters. The numerical simulations of the system of Egs. (4) have
been carried out by using COMSOL Multiphysics v5.3. We used the parameters
listed in Supplementary Table 1 for the simulations shown in Fig. 2. We used
Mr=A%=—1 A’ for the unstable homogeneous solution (Fig. 2a) and A} * =

r2=1 A’ for the stable homogeneous solution (Fig. 2b). The initial homogeneous
concentrations ey, sy, and pj, were perturbed by adding white Gaussian noise with
variance e, - 1072, s, - 1072, and py, - 1072, respectively. We considered periodic
boundary conditions and we used the “Time dependent” solver of COMSOL with a
relative tolerance of 107¢ and an element size of 0.01 um, i.e., 10* lattice points.
For the results shown in Fig. 3 we again used the “Time dependent” solver of
COMSOL. We considered a grid of 20 x 20 values for AS > = 13> = A? in the interval
[ —10, 3]A2 (evenly spaced), and s, in [10Y, 105] uM (evenly spaced on a log-scale).
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For the COMSOL specific parameters, we used a relative tolerance of 107 and a
maximum element size of 0.02 um, except when two peaks were observed as a final
result of the simulation. In these cases, we repeated the simulations with a finer grid
(element size of 0.01 pm) and again we observed a single peak for the concentrations
as the final result of the simulations. All the other parameters were the same as of
Supplementary Table 1 and the boundary conditions were periodic.

For the simulations shown in Fig. 5 we modified the dynamics of the enzyme,
following Eq. (13). We then considered the same simulation parameters as shown
in the Supplementary Table 1, the same COMSOL specific parameters used for the
simulations depicted in Fig. 2 and we considered the A, values shown in Fig. 5.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code that supports the findings of this study is available from the corresponding
author upon reasonable request.
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