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Abstract 

This research presents an automated calibration framework for macroscopic transit 

assignment models, focusing on calibrating the estimates of perceived journey time 

(PJT) parameters of the headway-based assignment. The calibration framework is 

based on a stochastic approximation algorithm, named Simultaneous Perturbation 

Stochastic Approximation (SPSA). SPSA makes the calibration computationally 

feasible for large scale networks as it requires only two objective function evaluations 

for gradient approximation. A modification is proposed to the algorithm such that at a 

given iteration, it chooses an objective function that produces the highest relative error 

difference with the perturbed parameter estimates. The measurements of the selected 

objective function are then used in the gradient approximation step. Since the selection 

of the objective function is made in a ‘dynamic’ fashion, this method is called as SPSA 

with dynamic objective function (SPSA-DOF). The proposed method and the standard 

implementation of SPSA with a single objective function (SPSA-SOF) are tested in a 

synthetic transit model and in a real-world transit network of Singapore. The calibrated 

parameter estimates with SPSA-DOF provide a better model fit than SPSA-SOF. For 

the Singapore network, SPSA-DOF can reduce the error of most of the simulation 

outputs related to passenger transfers at stops and passenger trips on different transit 

line routes. The final calibrated model of the Singapore network shows a better overall 

fit with the observed values in different aggregation levels. Notably, the model 

accurately represents total passenger boardings and passenger trips with zero 

transfers for bus and rail (LRT, MRT) modes. The total number of passenger transfers 

at transit stops also shows a better fit. Different transfer movement types, attached to 

a transit stop, also shows a good fit, but the results could be improved with more 

calibration runs. The overall results for the Singapore network show that, on average, 

passengers perceive transfer walk time nearly 3.6 times more than in-vehicle time, 

resulting in the average PJT for a public transport trip in Singapore to 44 minutes. 
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 Introduction 

Transit systems play an important role in fulfilling the mobility needs of a large share 

of people, especially in dense urban areas. The implementation of a well-integrated 

transit system requires significant investments in terms of infrastructure and 

technology.  Therefore, for sensible decision making, the use of transportation models 

is highly important as one can analyze the dynamics of transportation networks before 

making large investments on infrastructure. Transit assignment is one of the essential 

elements in transit modeling. In transit assignment, the passenger demand between 

origins and destinations are assigned via transit routes. 

Passenger route choice in a transit network is a complex task because of the 

complexity of a transit network’s supply and demand (Ortúzar & Willumsen, 2011). The 

complexity increases with the scale of the network. First, the nature of the transit 

system (supply) itself is complex, and it provides many options for a passenger to 

choose from to travel to his or her destination. Second, the passenger’s decision-

making process is complicated as passengers perceive the time components of a trip 

different to the actual time spent. Therefore, macroscopic transit assignment models 

(TAM) consider that passengers make travel decisions based on the perceived journey 

time (PJT). TAMs use a set of PJT parameters to model the behavior of the 

passengers. Different assignment outputs can be obtained by changing the coefficients 

of PJT parameters.  The selection of the best parameter estimates that closely 

represent reality helps the decision-makers to make informed decisions. The process 

of selecting the best model parameters is called model calibration. 

TAM calibration is an essential and challenging task. For a real-world transit network, 

transit assignment calibration can become challenging due to two reasons. The first 

reason is the lack of availability of the observed data. Traditionally, the data was 

collected using passenger surveys. Passenger surveys are a costly method to collect 

data. Therefore, passenger surveys cover only the sample of the passengers who use 

the network, and often the survey is carried out in peak periods at selected corridors. 

Therefore, the accuracy of the calibration is questionable (Zhu, Hu, & Huang, 2014). 

The development of automated data collection (ADC) methods (e.g., automated fare 

collection) made a technological leap forward. ADC methods made it possible to keep 

a record on all the passenger flows and made the observed data used for the 

calibration more accurate.  



Introduction 

2 

 

The second question, which is relevant to this thesis, is the methods used for 

calibrating the TAMs. Due to the complex interaction between model inputs and 

outputs, the transit assignment calibration problem cannot be expressed in an 

analytically soluble form. Therefore, calibration of TAMs is considered as optimization 

problems to minimize the error between observed values and simulated values. 

Traditionally, TAM calibration was done using a simple manual procedure (trial and 

error). The reason was the unavailability of data and the high cost of manual search 

techniques (Zhu et al., 2014). However, trial and error methods are tedious and 

cumbersome, and most importantly, it does not ensure finding the optimal set of values 

for the parameters (Parveen, Shalaby, & Wahba, 2007). Therefore, the recent studies 

conducted on this domain took advantage of a systematic calibration approach that 

relies on an optimization algorithm to reduce the error between simulated and observed 

values. 

1.1 Motivation 

The motivation for this thesis aligns with the recent focus of developing a systematic 

calibration approach for transit assignment calibration. Technologically advanced 

transit networks can passively collect valuable information about passenger 

movements in the transit network that can be used to make accurate TAMs. The public 

transport network in Singapore accounts for a higher share of smart card usage, which 

provides the opportunity to collect accurate data about passenger flows and represent 

in a transport model. These models, which show the ground truth, may not have the 

ability to forecast different scenarios (Liu, Zhou, & Rau, 2019) but can use as a source 

of observed data for TAM calibration. The calibration can be done systematically with 

the use of an optimization algorithm. This will ensure that the calibration can be done 

with minimum manual input and in a computationally efficient manner. 

1.2 Goals and contributions 

This thesis aims to develop an automated procedure for transit assignment calibration. 

The proposed method should be computationally feasible and should be able to 

perform with minimum manual interaction with the simulation model. The thesis 

contribution includes: 

1. Develop an automated calibration methodology for PTV Visums’ headway-

based assignment procedure. 
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2. Apply the developed calibration framework on a real-world transit model of 

Singapore to calculate the PJT parameter estimates for the Singapore network.  

1.3 Organization 

The thesis is presented in six chapters. In chapter 2, the literature topics such as transit 

assignment, previous research work in transit assignment calibration, and stochastic 

approximation methods are discussed. Chapter 3 provides a detailed description of the 

proposed methodology to solve the transit assignment calibration problem. The 

methodology is then applied to a synthetic network and a real-world network of 

Singapore. The results of the calibration are presented in chapters 4 and 5. In chapter 

6, the results are discussed, along with possible future research work.  
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 Literature Review 

This chapter reviews the literature about areas that are related to transit assignment 

model calibration, divided into six main sections. The first two sections describe transit 

assignment models (TAM), with a focus on headway-based assignment models and 

related passenger route choice methods. The third section describes data collection 

methods emphasizing different data collection methods and their usage in TAMs. The 

fourth section describes calibration in general and formulating a transit assignment 

calibration problem, describing its objectives, constraints, and parameters used for the 

calibration. The fifth section investigates the previous TAM calibration studies. The 

sixth and final section related to literature investigates stochastic approximation 

algorithms and their suitability for TAM calibration. The chapter ends with highlighting 

research gaps identified. 

2.1 Transit assignment models 

Travel demand modeling includes models that attempt to simulate passenger trips. 

Among the different modeling approaches available, the four-step model is one of the 

approaches which has been widely used in research. The fourth step of the four-step 

model, traffic assignment, is the procedure of loading trips to the network. In TAM, this 

is called in different names such as transit assignment, public transport assignment. In 

transit assignment, the passenger traffic between origins and destinations are 

assigned to the transit routes.  

(Ortúzar & Willumsen, 2011) mentions that transit assignment, in general, is a difficult 

task than the private transport assignment as it involves more substantial 

computational requirements and simplified assumptions. Also, transit assignment is 

different from private transport assignment for many reasons. (Ortúzar & Willumsen, 

2011)  categorized the differences with six aspects: 

1. From a transport supply point of view, the network for public transport is 

different. It has public transport services running between stops and link types 

(e.g., rail, road). Link capacity is related to the capacity of the transit unit (e.g., 

bus) and its frequency.  

2. Transit route choice involves the movement of passengers. Passenger 

movement includes walking, waiting, and in-vehicle traveling. Passenger 

movement even can be further extended to shift between private transport and 

public transport (e.g., park and ride services). Therefore, passenger movement 

can get quite complex. 
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3. The fare structure of the public transport network has an impact on passenger 

route choice. Fare structure could get complicated with different types of tickets 

available for the passenger (e.g., fare vary with distance, flat fares, zonal fares, 

time-limited fares, seasonal tickets). The introduction of modern payment 

methods, such as smart cards or mobile payments, allows more complex fare 

structures. 

4. The generalized cost function of passenger route choice involves time spent on 

different components of the journey (e.g., in-vehicle time, wait times, walk times, 

access/egress times, transfer penalties) each time components has a different 

weight. For example, a passenger might not perceive the minute spent on 

waiting as same as a minute spent on walking. Therefore, in transit assignment 

modeling, these different weights must be chosen carefully in order to reflect 

passenger behavior (refer section 2.2.2 for detailed information).  

5. An interesting phenomenon called ‘common lines problem’ arises when there 

are overlapping routes that run on common segments that share the same 

transit stops. Therefore, the passenger route choice may get complex, as the 

passengers may choose a ‘set of paths’ and let the transit mode that arrives first 

decide which of the paths the passengers will use. 

6. The transit assignment method also varies with the frequency of the transit lines. 

If the transit lines in the network have relatively high frequencies, passengers 

do not tend to use or memorize the timetable. In contrast, when the frequencies 

are lower, passengers tend to check or memorize the timetable and arrive at 

the stop a few minutes before the departure. These two behaviors of the 

passengers have an impact on estimating the waiting times in transit modeling 

and require different assignment methods. 

Based on the requirements, the model formulation can be different, which allows for 

the development of different models for transit assignment. One such difference stems 

from the question of whether passengers consider timetables when making their trips. 

Based on this question, two assignment model types can be formulated: 1. Headway-

based (frequency-based) and 2. Timetable-based (schedule based). 
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2.2 Headway-based and timetable-based assignment 

When the frequency on a transit service is high (e.g., urban metro service passing 

every 5 mins), the passengers tend to perceive the service in terms of headway 

between two subsequent departures. For such networks, the headway-based 

assignment method is suitable. On the other hand, if the arrival of the transit service is 

infrequent (e.g., intercity train service passing every 1 hour), passengers tend to 

perceive the service in terms of runs (e.g., departure at 11:00 am). For these kinds of 

networks, a timetable-based assignment is more suitable.  

Each assignment procedure has its capabilities. Thus, the selection of the variant 

should be based on the actual need of the model design task and available data. 

Computational time should also be considered. Some of the advantages and 

disadvantages of each variant are summarized in Table 2-1.  

Table 2-1 Comparison of headway-based and timetable-based assignment 

Assignment variant Advantages Disadvantages 

Headway-based ▪ Ideal for urban networks with 

short headways 

▪ Can determine average 

loads on the lines 

▪ Computationally efficient 

 

▪ Lacks detailed model 

outputs (compared to 

timetable-based) 

▪ Not suitable for transit 

networks with large 

headways 

Timetable-based ▪ Can determine passenger 

loads of each run of the 

service 

▪ Ideal for networks with long 

headways 

▪ Coordination of timetable is 

possible 

▪ Requires more detailed 

inputs 

▪ Computationally 

expensive (compared 

to headway based) 

Based on the comparison in Table 2-1, the headway-based transit assignment method 

is more suitable for an urban setting with shorter headways. The details of the 

headway-based transit assignment are discussed in the next subsections. 
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2.2.1 Headway based transit assignment 

The headway-based assignment assumes that the passenger knows only the travel 

time and headway of a transit line route. The modeling principles remain the same, but 

the implementation may differ from simulator to simulator. The details described in this 

section are extracted from (PTV, 2019).  

The headway-based assignment has three operational steps: 1. Headway calculation, 

2. Route search and route choice, 3. Route loading. The first step defines the headway 

of a transit line route. PTV Visum provides three headway calculation methods. A brief 

description of each method is given below.  

• Constant from time profile attribute – This is the simplest case used when the 

departure information is not essential due to dense headways of the network or 

timetable information is not available.  

• From mean headway according to the timetable –The headway is calculated 

based on the number of departures for a given time slot. This approximation is 

acceptable if the network has shorter headways and sufficiently broad time 

intervals.  

• From mean wait time according to the timetable – Here, the headway is 

calculated as double the expected wait time for the next departure of the line 

route. 

In the second step, the possible routes between an OD pair are detected (route search) 

and allocated (route choice). The paths are assessed by their impedance, calculated 

based on passengers' perceived journey time (PJT). Moreover, the choice of boarding 

to a line and transfer between lines is based on the additional information a passenger 

has about the network. More about PJT and boarding decisions are discussed in 2.2.2 

and 2.2.3, respectively. In the final step, the routes found on the second step are 

loaded from the OD matrix. 

2.2.2 Perceived journey time 

For various reasons, passengers perceive travel time different from the actual time 

spent. Many researches were done in this area and found evidence to support this 

statement. For example, (Beirão & Sarsfield Cabral, 2007) conducted a qualitative 

study to understand how passengers perceive public transport services in Portugal. 

One finding shows that passengers perceived waiting time too long and mentioned it 

as a barrier to using public transport. Similarly, passengers perceive the time spent on 

other components of public transport travel (e.g., walking time, boarding time) 
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differently. (Meng, Rau, & Mahardhika, 2018) summarized findings of passengers’ 

travel time perception based on the studies conducted in many countries. Therefore, 

in transport assignment modeling, passengers make travel decisions based on PJT 

and not based on actual time spent on the network.  

PJT can be represented as a sum of below travel time components.  

PJT = cIVT ⋅ IVT + cAT ⋅ AT + cOWT ⋅ OWT + cWT ⋅ WT + 

cTWT ⋅ TWT + cET ⋅ ET + TP ⋅ 𝑁oT 

(2.1) 

Where: 

IVT In-vehicle time 

AT Access time 

OWT Origin wait time 

WT Walk time (transfer walk time) 

TWT Transfer wait time 

ET Egress time 

NoT Number of transfers 

TP Transfer penalty (minutes) 

c Coefficients/estimate for each travel time component 

The estimate for each travel time component describes the perceived weight. Usually, 

cIVT is set to 1 so that the perceived weight in other travel time components can be 

expressed as multiples of in-vehicle time. This representation is mainly used when 

onboard congestion is not considered in transit assignment modeling.  

2.2.3 Passenger boarding strategies 

In a transit network, we assume that a passenger behaves in a way that minimizes 

passenger’s expected travel costs. In an urban transit network, passengers have many 

choices available to travel from origin to destination. Therefore, instead of relying on a 

specific path (e.g., shortest path), a passenger should follow a strategy. For example, 

it could be better to get onboard a slower line that is arriving first, which provides a 

direct connection to a destination than get on board a line that takes multiple transfers 

to reach the destination (this connection may have longer PJT). In this context, a 

strategy is a set of rules which allows the passenger to reach the destination starting 

from any node in the network (Spiess & Florian, 1989).  

The strategy which the passenger chooses mostly depends on the information 

available to the passenger during the trip. For example, if a transit stop has dynamically 
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updated information about the arrival times, passengers can make more informed 

decisions compared to a situation where a passenger has no such information at a 

stop. 

One of the most common strategies used in transit assignment modeling is the ‘optimal 

strategies’ proposed by (Spiess & Florian, 1989). In optimal strategy, a passenger may 

choose to board the first arriving vehicle from a given line set, rather than waiting for a 

particular transit line. The journey will follow along different routes depending on the 

line which arrives first. For transit assignment modeling, the optimal strategy approach 

is suitable for networks with low headways. For a large transit network, the application 

of optimal strategy requires less computational time. 

2.3 Data collection methods for transit assignment 

Models require reliable data. Data about the transport supply and demand is essential 

for public transport modeling. The data collection methods can be divided into two main 

categories: 1. Manual-based methods, 2. Automated-based methods. 

2.3.1 Manual data collection 

Traditionally, manual data collection methods used to collect data regarding transit 

operations. (Ceder, 2007) identifies five main categories of manual transit data 

collection techniques, namely, 1. Point check, 2. Ride check, 3. Deadhead check, 4. 

Passenger survey, and 5. Population survey.  

In a passenger survey, information related to passenger’s trip (e.g., origin-destination, 

access and egress modes, trip purpose) are collected. This information, in 

aggregation, can use to estimate the share for each transit route and to estimate the 

OD matrix. However, passenger surveys do not capture the movements of all the 

passengers of the network. Therefore, modelers need to apply expansion factors to 

estimate the OD matrix.  
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2.3.2 Automated data collection 

In recent years, with the development of technology, automated data collection (ADC) 

techniques have become popular with the emergence of intelligent transport systems 

(ITS). The data generated from ITS enabled transit systems are a rich source for transit 

assignment modeling. (Gentile & Nökel, 2016) has identified four ITS systems, which 

so far has been used as a source of data collection for TAMs. A brief description of 

each method is given below:  

• Automatic Vehicle Location (AVL) – AVL systems can track vehicles’ 

positions. Therefore, this technology is used for security purposes and assess 

the real-time performance of a fleet against the schedule. For transit assignment 

modeling, data generated from AVL can be used to determine headways and 

calculate reliability indicators. 

• Automatic Passenger Counter (APC) – APC systems provide counts of 

boarding and alighting passengers. This data can be used to calibrate and 

validate TAMs. 

• Traveler Information Systems (TIS) – This technology is also known as 

Advanced Traveller Information Systems (ATIS). TIS includes journey planners 

and real-time information systems that are publicly available so that the 

passengers can make better-informed decisions to plan their trips.  

• Automated Fare Collection (AFC) – The primary usage of this technology 

manages fare calculation and collection for passenger trips in a transit network. 

AFC omits the need for purchasing tickets for the passenger. Passengers can 

use a smart card or a bank card and travel through the network by simply 

tapping in and tapping out the card. Besides this primary task, AFC systems can 

keep track of valuable information on passenger behavior (e.g., origin and 

destination of the trips, transit line used, time of the day, and duration of the 

trip), which can be used for transit assignment modeling.  
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Figure 2-1 Use of ITS for transit assignment modeling (Source: Gentile & Nökel, 2016, p. 265) 

Figure 2-1 shows how each ITS data collection system can assist in transit assignment 

modeling. The figure highlights the benefits of AFC for transit assignment modeling 

over the other data collection methods as it is capable of feeding data for trip demand 

estimation, understand user behavior and aspects related to transit supply. If the 

passengers have a higher share of usage of smart cards, the quality of the AFC data 

will be richer, and the accuracy of the TAMs will be higher. This rich data source can 

also be used in TAM calibration (Zhu, Hu, & Huang, 2014).  
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2.3.3 Comparison 

Manual data collection methods do not provide complete data sets of a transit network. 

Moreover, the data collection cost is higher, and the validity of the data is uncertain. In 

contrast, automated data collection methods passively collect large volumes of data, 

which consist of different types of data about passenger behavior. Therefore, data 

collected from automated data collection methods are a useful resource for transit 

assignment modeling and calibration.  

2.4 Calibration 

Model calibration is a process of adjusting model parameters so that the model can be 

in close representation of the real system (Olstam & Tapani, 2011). Generally, model 

calibration is an iterative process so that the agreement between simulation outputs 

and the observed data (ground truth) can be improved in each iteration by learning 

from the previous iterations. 

In relation to transportation modeling, model calibration follows the same steps 

mentioned above. However, based on the application, transport model calibration can 

take two main approaches: 1. Offline calibration, and 2. Online calibration. 

Offline calibration models attempt to calibrate traffic conditions observed over multiple 

days, which are based on large archived databases of prior observations. Offline 

calibration models do not have specific computational requirements. On the other 

hand, online calibration is used when the objective of the calibration task requires to 

replicate short term variation of the demand. Therefore, in online calibration, the offline 

calibrated parameters need to be further calibrated in an ‘on the fly’ fashion. 

TAMs are generally used for planning aspects. Therefore, TAMs require data collected 

over multiple days in order to represent the general behavior of the passengers. 

Therefore, an offline calibration approach suits the best for transit assignment 

calibration. 

2.4.1 Transit assignment calibration 

Objectives 

The objective of transit assignment calibration is to closely represent the simulation 

model to the real-world data (ground truth). Due to the complex interaction between 

model parameters and simulation outputs, TAMs cannot be expressed in an 
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analytically solvable form. Therefore, calibration of a TAM is considered as an 

optimization problem with the objective of minimizing an error between simulated and 

observed values. 

More formally, the calibration problem can be represented as follows: 

Let θ = (𝑝1,⋯ , pn) be the parameters of the transit assignment model 𝑀, which needs 

to be calibrated. Let 𝑆 be the simulated output of 𝑀 for a given set of θ and 𝑅 be the 

observed value for the equivalent simulated output. The difference between 𝑅 and 𝑆 

can be calculated as an error which is represented in 𝑓𝐸(𝑅, 𝑆). The objective of the 

transit assignment calibration is to find optimal parameter estimates θ⋆ such that: 

 θ⋆  =  𝑎𝑟𝑔 𝑚𝑖𝑛 𝑓𝐸(𝑅, 𝑆) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝜃 ∈ Θ 

(2.2) 

Where Θ is the domain of allowable values for θ. 

The calibration results should be valid in different aggregation levels of the observed 

data. For example, a more aggregated level, the calibrated model should accurately 

represent the average journey times, the total number of passenger transfers of the 

observed network. In a less aggregated level, for example, the simulated model should 

accurately represent the passenger flows on each transit line route, and total 

passenger transfers made at each stop in the network.  

As described in 2.3.2, the data collected using automated methods have more 

information on passenger trips compared to survey-based methods. Therefore, 

calibrating a TAM with smart card data provides the freedom to use different types of 

observed data in the calibration. At the same time, it demands more accuracy in the 

calibrated model such that all relevant types of observed data should be accurately 

matched. Moreover, the methodology used for calibration should be automated as 

much as possible. In this way, the calibration procedure can be applied with less 

manual work to a different network or the same network with updated data.  

Calibration parameters 

The coefficients of the PJT parameters explained in equation (2.1), including the 

transfer penalty (TP), are the dimensions used in the calibration. Based on the model 

setup, some variables may not require calibrating. For example, if the access links and 

egress links are not represented in the transit network, the parameters associated with 

those links (i.e., access time, egress time) do not need to be calibrated. 
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Constraints 

All the parameter coefficients should hold non-negative values. More specifically, the 

wait time and walk time coefficients should hold a value greater than or equal to one, 

so that the concept of PJT remain valid. The range of values allowed for each 

parameter should be based on the limits given by the simulation software. If required, 

these limits can be further reduced by adding conditions. 

2.5 Approaches to solving transit assignment calibration 

There have been several approaches used to address the transit assignment 

calibration problem. The significant difference between these approaches is the way 

that the error minimization done described in equation (2.2). Based on this difference, 

two major categories can be identified: 1) Trial and error, and 2) Algorithm-based. 

2.5.1 Trial and error 

In this approach, the error minimization is done based on the knowledge and 

experience of the modeler. Therefore, the choice of the model parameter estimates is 

not entirely random. Based on the simulation results of the initial estimate, judgment is 

used to slightly modify the parameters until a reasonable model calibration is done. 

However, this approach is tedious and hard to replicate if the calibration needs to be 

done for another TAM.  

(Farrol & Livshits, 1998), used a trial and error approach to solve the transit 

assignment calibration problem for Toronto Transit Commission, Canada. The data 

collected in 1996 from the ‘Transportation Tomorrow Survey’ provided the opportunity 

to calibrate the model parameters. The survey covered 5% of the household members 

of the greater Toronto area. Expansion factors were applied based on the census data 

to create the OD matrix for the transit assignment.  

The calibration was conducted only for the morning peak by testing different sets of 

parameter coefficients to match the ridership statistics of the model output and the 

travel survey. These statistics include 1) volumes on key subway links, 2) total ridership 

on each mode (subway, bus, streetcar), 3) average number of transit boarding per trip, 

4) ridership on each transit line. The initial parameters were taken from the 1986 model. 

The parameter coefficients were manually adjusted after each run to match the 

simulated values with the observed values.  
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(Fung, 2005) conducted a manual transit assignment calibration and validation for the 

metro network of Hong Kong. Three different models (1. headway-based assignment 

model, 2. dynamic schedule-based assignment model, and 3. Multi interval, multiclass 

schedule-based model) was used for the calibration. Passenger counts at line 

segments and passenger boarding and alighting at all station platforms were used as 

observed values, which were derived from AFC data. EMME/2 was used to run the 

simulations.  

Four parameters were used for the calibration, and each parameter was allowed to 

take values from pre-defined boundaries. In this study, wait-time and walk-time 

coefficients could vary between 1.0-1.5 and 1.0-2.0 with 0.5 increments. Boarding 

penalty value could take values between 0 min and 4 mins with an increment of 1min. 

The in-vehicle time coefficient was fixed at 1 throughout the calibration. In addition, to 

limit the search space, the possible coefficient combinations were further limited by 

introducing a rule-based on logical passenger behavior (in-vehicle coefficient ≤ wait 

time coefficient ≤ walk time coefficient). For the headway-based assignment model, all 

possible combination of coefficients which are in align with criteria as mentioned above, 

was checked. The coefficient sets which provided the least absolute error were 

analyzed further by comparing link flow errors to obtain the best set of coefficients.  

For the other two models (2 and 3), different sets of weights were checked, and the 

error between the simulated and observed values was taken from the passenger 

boarding and alighting counts. The sets of coefficients which provided the least RMSE 

(root mean square error) were checked for further analysis.  

2.5.2 Algorithm-based 

In this approach, stochastic approximation methods are used to minimize the error 

between observed and simulated values. Details about stochastic approximation 

methods are discussed in 2.6.  

(Parveen, Shalaby, & Wahba, 2007) used an automated transit assignment 

calibration for Toronto Transit Network, Ontario, Canada. This study is an extension to 

work conducted by (Farrol & Livshits, 1998). This study is the first attempt for an 

algorithm-based systematic calibration approach for transit assignment. An overview 

of the automated calibration procedure used in this study is shown in Figure 2-2 
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Transit Route Network O-D Transit Matrix Parameters generated by GA

Transit Assignment Model

Observed (on board) Counts Simulated Volumes

Comparison Misfit Evaluation

 

Figure 2-2  Automated calibration procedure for transit assignment (Source: Praveen et al., 2007) 

This study also used the data from the Transportation Tomorrow Survey conducted in 

1996. Transit assignment with ‘optimal strategies’ was done using EMME/2 as the 

simulator with an OD matrix created for morning peak hour (06:00 am – 08:59 am). 

The model had 463 zones, 241 transit routes, and 7394 stops. 

The genetic algorithm was used as the optimization algorithm. The difference between 

simulated and observed link counts was used in the objective function. This study 

conducted experiments with two different error calculation methods 1.GRE (global 

relative error) and 2. MPRE (mean point relative error). The in-vehicle time parameter 

estimate was fixed at 1, and the rest of the parameters were bounded to limit the search 

space. Judgment was used to choose the final set of parameters in case if there were 

several solutions with similar objective function value (fitness value). 

(Rydergren, 2013) also used an automated transit assignment calibration approach 

for the network of Stockholm. The network consisted of 1394 zones and 942 transit 

lines. These transit lines included bus, subway, ferry, and commuter train. The model 

did not include vehicle capacities or transit fares.  

The observed values were based on two sources of data. The first source is from the 

Swedish national travel survey, based on 27000 telephone interviews, which was the 

complete data available for the region. The trips made on weekdays between 06:00 

am, and 09:00 am were extracted (606 records). The second source was the data 

generated from transit trip planning software called OpenTripPlanner.  
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SPSA (Simultaneous Perturbation Stochastic Approximation) and Compass search 

algorithms were used as optimization algorithms. The hyperparameter values for each 

algorithm were found based on initial numerical tests. Transit assignment was done 

using PTV Visum simulator with four different model variants, where two models were 

in the class of ‘optimal strategies’, and two were in ‘random departure’ models. 

Two objective functions were used in the study. One measure is a similar measure 

used in (Parveen et al., 2007), but based on the travel time of routes, named MPR𝐸𝑇 

(T for time). The other measure is called MIR𝐸𝑇(model interval relative error).  

It was found that random departure time model variants produced a better fit to the 

observed trips compared to the model variants in the class of ‘optimal strategies’. 

Hence it was concluded in this study that more focus should be on finding the best 

model variant than finding the best set of coefficients for the parameters. It was also 

found that the performance of SPSA algorithm is efficient for  MPR𝐸𝑇 and requires very 

less objective function evaluations. In contrast, the performance of the compass search 

algorithm was better with MIR𝐸𝑇, yet required a much larger number of objective 

function evaluations. 

(Zhu et al., 2014) conducted a genetic algorithm-based approach to calibrate Urban 

Rail Transit (URT) assignment model using AFC data. A simplified test network was 

used for the study due to the computational barriers.  

The objective function used for this study is somewhat different compared to other 

studies. The difference in the travel time distribution of the observed values and 

simulated values were used as the objective function. Three parameters were 

calibrated in this study. Namely, 1) standard deviation of normal distribution, 2) relative 

threshold of travel cost difference, and 3) absolute threshold of travel cost difference. 

It was found that the results from the calibrated model matched the observed values 

more closely compared to the parameters derived from manual travel surveys. 

(Tavassoli, Mesbah, & Hickman, 2019), used the South-East Queensland network in 

Australia consists of bus, rail, and ferry modes. The trips made during am peak period 

(7:00 am – 9:00 am) used for the calibration. The simulations were done suing EMME/4 

simulator with a headway-based assignment using ‘optimal strategy’ as passenger 

boarding strategy. This network also, like previous studies, did not consider passenger 

congestion on the transit network. 

The observed values were based on AFC data (GoCard), which had around 82% of 

customer penetration during the period in which the study was conducted. This rich 
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data set was used to estimate the OD matrix. Also, it helped to formulate an objective 

function with two terms. In the first term, %RMSE (percent root mean square error) 

was used to measure the difference between observed and simulated passenger flow 

on a given segment for a given mode. The second term, MAPE (mean absolute 

percentage error), was used to measure the difference between observed and 

simulated passenger trips in a given mode. The relative weight between these two 

error terms was fixed as 1 for this study.  

In the calibrated model, higher dispersions were observed for the bus mode compared 

to rail and ferry modes. One reason for this could be the fact that bus passengers have 

more path choices compared to other modes. Also, another reason could be that the 

passengers are not necessarily choosing the optimal strategy boarding strategy 

approach. 

A summary of all the previous studies mentioned above is summarized in Table 2-2. 
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Table 2-2 Summary of previous transit assignment calibration work 

Study Calibration procedure Transit data used for the objective function Calibrated parameters 

Farrol & 
Livshits, 1998 

Trial and error ▪ Volumes on key subway links 
▪ Total ridership on transit modes 
▪ Avg. no. of transit boarding per trip 
▪ Ridership on each transit line 

▪ access time  
▪ wait time 
▪ transfer penalty 

Fung, 2005 Trial and error ▪ Link flow errors 
▪ Passenger boarding and alighting 

counts 

▪ in-vehicle time 
▪ wait time 
▪ walk time 
▪ boarding penalty 

Parveen et al., 
2007 

Automated - Genetic 
algorithm 

▪ Link counts  ▪ in-vehicle time 
▪ waiting time 

▪ auxiliary time 
▪ boarding time 

Rydergren, 
2013 

Automated - SPSA 
algorithm, compass 
search algorithm 

▪ Passenger travel time ▪ in-vehicle time 
▪ access time 
▪ egress time 
▪ transfer walk 

time 

▪ transfer wait 
time 

▪ transfer 
penalty 

Zhu et al., 2014 Automated – Genetic 
algorithm 

▪ Travel time distribution ▪ standard deviation of normal 
distribution 

▪ relative threshold of travel cost 
difference 

▪ absolute threshold of travel cost 
difference 

Tavassoli et al., 
2019 

Automated - PSO 
algorithm 

▪ Passenger flow on a given segment for 
a given node 

▪ Passenger trips on a given mode 

▪ in-vehicle time 
▪ wait time factor 
▪ spread factor 
▪ boarding time 
▪ waiting time 

▪ auxiliary 
transit time 

▪ boarding time 
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2.6 Stochastic approximation 

Stochastic approximation (SA) algorithms, also called stochastic search and 

optimization algorithms is an iterative type of optimization algorithms. Let Θ be the 

domain of allowable values for a vector θ. Here, θ represents the collection of 

adjustable values (e.g., estimates of the parameters used for calibration). SA 

algorithms aim to find the values of θ ∈ Θ which minimize a scalar-valued objective 

function 𝐿(θ). At each iteration 𝑘, the SA algorithms produce new estimates, θ̂k. As 

k → ∞, θ̂k will converge to an optimal solution θ⋆ (James C. Spall, 2003).  

The relationship between θ and 𝐿(θ) can be complex, and often it cannot be expressed 

in a mathematical form for the practical applications. For this reason, the simulation 

model considered as a black box that only allows the evaluation of the objective 

function for a given set of values in θ (Amaran, Sahinidis, Sharda, & Bury, 2016). 

In the context of SA, the problems and algorithms should have at least one of the 

following properties (James C. Spall, 2003): 

• There is random noise in the measurements of the objective function or 

gradient. 

• As the algorithm iterates towards the solution, random choices are made to 

navigate in the search domain. 

SA algorithms, in general, can be classified into four categories: 1. Direct search 

methods. 2. Gradient-based,  3. Annealing methods, and 4. Evolutionary computing. 

(Wolpert & Macready, 1997) suggests that no optimization algorithm can always be 

more efficient than other algorithms. Therefore, the researcher must consider the 

practical implications when choosing a SA algorithm. 

One such practical consideration is that a transit assignment for a larger network 

usually requires considerable computational time to execute. Therefore, if a SA 

algorithm requires a large number of objective function evaluations, the computational 

time required for the calibration task becomes untenable.  
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2.6.1 Gradient-free form of stochastic approximation 

For practical problems, it is often difficult or impossible to obtain the gradient 

information. Therefore, some SA algorithms approximate the gradient based on the 

measurements of the objective function 𝐿(θ). Therefore, these algorithms do not 

require the full knowledge of the relationship between inputs and outputs of the 

simulation.  

The oldest method for gradient approximation is called Finite Difference Stochastic 

Approximation (FDSA) proposed by (Kiefer & Wolfowitz, 1952). In FDSA, small 

changes to the elements of 𝜃 are done one at a time, and for each change, the value 

of the objective function is measured to approximate the gradient. FDSA becomes 

inefficient at higher-dimensional problems as the required number of objective function 

evaluations grows directly with the dimensions. Due to this reason, the computational 

time required for a calibration task with FDSA can become untenable, as described in 

2.6.  

Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm provides a 

solution to the above-mentioned drawback of FDSA. The main benefit of SPSA is a 

reduction in the number of objective function measurements required for the gradient 

approximation. SPSA requires only two measurements of the objective function 

irrespective of the dimensions of the optimization problem. For a p-dimensional 

problem, FDSA requires 2p objective function evaluations for gradient approximation. 

For the same problem SPSA only requires two evaluations of the objective function, 

making SPSA p-folds faster than FDSA.  

The number of iterations required for SPSA is always more than FDSA. However, 

under general conditions, SPSA and FDSA achieve the same level of statistical 

accuracy with a faster computational runtime (James C. Spall, 2003). Therefore, SPSA 

is a better choice to be used in transit assignment calibration as it provides advantages 

both in solution quality and computational time. However, the basic form of SPSA at 

higher dimensional calibration problems shows convergence issues (Kostic, Gentile, & 

Antoniou, 2017). This problem, in relation to transport modeling, has been studied 

intensely in dynamic demand calibration problems where SPSA algorithm has been 

used as the SA algorithm. Solutions, such as W-SPSA (Antoniou, Azevedo, Lu, 

Pereira, & Ben-Akiva, 2015), PC-SPSA (Qurashi, Ma, Chaniotakis, & Antoniou, 2020) 

have been proposed to overcome some shortcomings of the basic form of SPSA for 

higher-dimensional problems. For TAM model calibration, so far, only the basic form 

of SPSA has been applied (Rydergren, 2013). 
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2.7 Research gaps 

From the review of literature, the following research gaps are summarized: 

1. For TAM calibration, SPSA algorithm has been used in a study where the 

observed values were obtained from survey data. SPSA algorithm has not been 

tested for the TAMs where the observed data were collected with automatic data 

collection methods (e.g., AFC) 

2. The results of the calibrated models were mostly limited to the simulator outputs 

used in the objective function. However, TAMs have a large number of simulator 

outputs. The impact of the chosen objective function on the simulator outputs, 

which are not a part of the objective function, also needs to be checked. This 

aspect has not been fully explored in previous studies.  

2.8 Summary 

In this chapter, a brief overview of TAMs and its complexity in terms of transit supply 

and demand was explained. For urban networks with lower headways, headway-based 

TAMs are more suitable. Since passengers make decisions based on the perceived 

journey time (PJT), the PJT parameters need to be calibrated to represent the 

passenger flows in the transit assignment model accurately.  Next, the data collection 

methods for TAMs were explained. It was identified that the technological 

advancements with automated data collection methods, especially automated fare 

collection methods, help to accurately calibrate TAMs as it provides accurate data 

about observed passenger flows. The previous approaches in solving transit 

assignment calibration were then explained. Recent work is focusing more on 

automating the calibration process with the help of stochastic search and optimization 

algorithms. SPSA is one of such algorithms that requires a fixed (two) number of 

objective function evaluations regardless of the number of parameters being 

calibrated. Thus, SPSA is a more suitable algorithm to be used in calibrating large-

scale TAMs where transit assignment is computationally expensive.  

 

 

 



Methodology 

23 

 

 Methodology 

This chapter is divided into three subsections. The first subsection describes the steps 

with SPSA algorithm and the approach to implementing SPSA for a transit assignment 

calibration problem. The next subsection describes the formulation of the objective 

function with details of goodness of fit measure. Finally, the method used to evaluate 

the calibration results are explained.  

A schematic overview of the proposed methodology is illustrated in Figure 3-1. The 

inputs section describes the types of data required (i.e., models, hyperparameters) to 

implement the calibration methodology. The methodological components section 

provides an overview of the implementation of the calibration methodology. SPSA-

DOF, highlighted in gray color, is the proposed calibration algorithm of this thesis is 

described in 3.1.2. 
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Figure 3-1 Schematic overview of the proposed transit assignment calibration methodology 

This method is compared with the standard implementation of SPSA (referred to as 

SPSA-SOF in this thesis). The algorithm is restarted after a certain number of iterations 

with the aim of attaining better results. Then, the results from the calibration are 

evaluated to select the best set of PJT parameter estimates for a given network. These 
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PJT parameters and final calibrated models are the outputs of the implementation of 

the calibration algorithm.  

3.1 Simultaneous Perturbation Stochastic Approximation 

SPSA algorithm, proposed by (J. C. Spall, 1998), comes from the family of stochastic 

approximation (SA) methods. More specifically, SPSA can be used as a gradient-free 

SA, where the optimization is done only with the measurements (possibly noisy) of the 

objective function. This algorithm can provide significant efficiency gains when a 

problem has many variables to be optimized. 

There are five hyperparameters in the algorithm. These are: 

 

𝑐, γ To specify the gain sequence 𝑐𝑘, where 𝑘 is the iteration number 

 

𝑎, 𝐴, α To specify the gain sequence 𝑎𝑘 

 

𝑎𝑘 The gain sequence which governs the magnitude of minimization, 

where 𝑎𝑘 =
1

(1+𝑘+𝐴)α
 

𝑐𝑘 The gain sequence which governs the magnitude of perturbation 

where 𝑐𝑘 =
𝑐

(𝑘 + 1)γ
 

The chosen values for a,  c,  A,  α,  γ should satisfy the below criteria for the convergence 

of the algorithm: 

𝑎𝑘, 𝑐𝑘 > 0 ak, ck → 0 as k → ∞ 

∑ 𝑎𝑘

∞

𝑘=1

= ∞ ∑
ak

2

ck
2

∞

𝑘=1

 < ∞ 

 

The selection of the hyperparameters, which meet the above criteria, can be made by 

the guidelines provided in (J. C. Spall, 1998) and (James C. Spall, 2003). 
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3.1.1 Major Steps with SPSA 

There are six major steps involved in implementing the algorithm (J. C. Spall, 1998). 

Step 1 Initialization and coefficient selection: Set counter index to 0 (k = 0). 

Set the initial estimate θ̂0 (with p-dimensions). Set hyperparameters 

(a,  c,  A,  α,  γ) based on the criteria mentioned above to calculate the gain 

sequences.  

Step 2 Generation of the simultaneous perturbation vector: Generate a 

Monte Carlo p-dimensional random perturbation vector Δk. Each element 

of the Δk vector is independently generated from a zero-mean probability 

distribution (Bernoulli, segmented uniform, U-Shaped). Effective and 

theoretically valid distribution is to use a Bernoulli ±1 distribution with a 

probability of 0.5 for each outcome.  

Step 3 Objective function evaluation: Perturbate the current estimate θ̂𝑘 and 

calculate two sets of intermediate estimates (𝜃𝑘 + 𝑐𝑘𝛥𝑘), (𝜃𝑘 − 𝑐𝑘𝛥𝑘). 

Use these intermediate estimates (simply written: θ𝑘
+ , θ𝑘

−) to obtain two 

measurements of the objective function (𝑦+,  𝑦−) 

Step 4 Gradient approximation: Calculate the unknown gradient, g(θ̂𝑘) 

according to equation (3.1). 

 

ĝk(θ̂k) =
y(θ̂k + ckΔ) − y (θ̂k − ck)

2ck

[
 
 
 
 
Δk1

-1

Δk2
-1

⋮
Δkp

-1
]
 
 
 
 

 

 

(3.1) 

 

Step 5 Update θ estimate: Use 𝑔̂𝑘(𝜃𝑘) with gain sequence 𝑎𝑘 to update 𝜃𝑘 to a 

new value 𝜃𝑘+1 according to equation (3.2). In this step, constraints can 

be applied (if relevant) to keep the estimated values within a given range.  

 θ̂𝑘+1 = θ̂𝑘 − 𝑎𝑘ĝk(θ̂k) (3.2) 
 

Step 6 Iteration or termination: Return to step 2 and increment 𝑘 to 𝑘 + 1. 

Terminate the algorithm if there is a small change between several 

successive iterations or maximum allowed number of iterations has been 

reached.  
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3.1.2 Algorithm to implement SPSA for transit assignment calibration 

Implementation of SPSA on transit assignment calibration is done with some 

modifications to the basic SPSA algorithm. A standard approach to implement the 

calibration procedure is presented in Figure 3-2. The proposed method from this thesis 

is presented in  Figure 3-3, and the modifications proposed to the algorithm are 

highlighted in gray.  A step by step guideline to implement the proposed calibration 

workflow is described below. Most of the steps are common for both implementations, 

the differences, where applicable, are described separately. The implementation of the 

proposed calibration algorithm is done in Python 2.7 with Visum-COM API. 

1. Initial estimate (θ0) (with p-dimensions) can be set based on the parameter 

coefficients from a previously calibrated model. When this information is not 

available, the coefficients can be approximated by considering the rational 

behavior of the passengers and within the allowed value range in the simulator. 

Some general guidelines are summarized below: 

a. The in-vehicle time parameter coefficient can be fixed at 1 when onboard 

congestion is not considered in the transit assignment model (TAM). This 

will help to reduce the calibration problem by one dimension. The other 

parameters (wait times, walk times, access/ egress times) can have an 

initial estimate greater than 1. The transfer penalty can be set to the 

default values used in the models. The usual transfer penalties used in 

the headway-based assignment is 5 minutes or 10 minutes. 

b. The simulator provides lower and upper bounds for the parameter 

coefficients. For example, in PTV Visum, all the PJT parameters except 

the transfer penalty can vary between 0 and 9.9. The transfer penalty can 

take a maximum value of 1440 minutes (one day). 

2. SPSA hyperparameters are set based on the guidelines provides by (J. C. Spall, 

1998) and (James C. Spall, 2003). However, multiple tests are required in a 

small synthetic with low computational time to fine-tune these hyperparameters. 

3. Evaluate 𝑎𝑘 and 𝑐𝑘 based on the gain sequence calculation equations provided 

in 3.1. These gain sequences are recalculated at the beginning of each iteration 

as 𝑘 increases. 

4. Generate a Monte Carlo p-dimensional random perturbation vector Δk with 

Bernoulli ±1 distribution with a probability of 0.5 for each outcome. Perturb the 

estimate θ̂𝑘 such that it generates two intermediate estimates θ𝑘
+, θ𝑘

−. Make sure 

that the new intermediate estimates are within the allowed value range. In case 

if a perturbed estimate for a parameter goes out of the allowed value range, 
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replace the value with the respective parameter coefficient of the current 

estimate. 

5. Objective function: 

a. For standard implementation – A single objective function (OF) can be 

used. This objective function may have multiple error calculation terms. 

b. For proposed implementation - Use two objective functions (O𝐹1, 𝑂𝐹2), 

which represents conflicting passenger behaviors. For example, one 

objective function could be the error of the direct trips (zero transfers) 

made by passengers on transit lines. The conflicting passenger behavior 

to the direct trips is the error of trips made with transfers or the error of 

the transfers made at transit stop locations, which can be chosen as the 

second objective function. 

6. Evaluate objective function at iteration 𝑘: 

a. For standard implementation - Run the transit assignment with θ𝑘
+ and θ𝑘

− 

and evaluate the objective function, that will result in two objective 

function measurements (𝑦𝑂𝐹
+ , 𝑦𝑂𝐹

− ) 

b. For proposed implementation - Run the transit assignment with θ𝑘
+ and 

θ𝑘
− and evaluate both objective functions separately, that will result in four 

objective function measurements (𝑦𝑂𝐹1

+ , 𝑦𝑂𝐹1

− , 𝑦𝑂𝐹2

+ , 𝑦𝑂𝐹2

− ). 

7. Only applicable for proposed implementation: Select the objective function that 

provides the highest relative difference. Here the relative difference (RD) for a 

given objective function is defined as follows: 

 
RDOFi

=
𝑦𝑂𝐹𝑖

+ − 𝑦𝑂𝐹𝑖

−

0.5 ∙ (𝑦𝑂𝐹𝑖

+ + 𝑦𝑂𝐹𝑖

− )
 

(3.3) 

Based on the above calculation, the objective function which provides the 

highest RD is chosen as the objective function to be used in the current (kth) 

iteration 𝑂𝐹𝑘 for the gradient approximation (step 8). 

 
OFk = {

𝑂𝐹1,
𝑂𝐹2,

               𝑖𝑓 RDOF1
≥  RDOF2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(3.4) 

8. Approximate the gradient ĝk(θ̂k) based on the objective function measurements 

of 𝑂𝐹𝑘 as per equation (3.1). 
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Figure 3-2 Workflow for transit assignment model calibration: SPSA-SOF 
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Figure 3-3 Workflow for transit assignment model calibration: SPSA-DOF 
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9. Calculate new estimates θ̂𝑘+1 as per equation (3.2), subject to the allowed value 

range. If a coefficient for a particular parameter goes beyond the constraints, it 

is replaced by the coefficient of the same parameter that provided the lowest 

error (best estimate). In the first iteration, the best estimate is considered as the 

initial guess.  

10. Run the transit assignment with new estimates and calculate all the error terms 

for simulation outputs, which are in the interest of the calibration problem. A list 

of simulation outputs that can be used for the error calculation is given in 

Appendix-B. 

11. Terminate the algorithm after the maximum number of iterations reached. 

The implementation of SPSA with the proposed modifications (steps 5, 6, and 7) will 

be called SPSA with Dynamic Objective Function (SPSA-DOF). The term ‘dynamic’ is 

used to represent the behavior of the objective function selection. The pseudocode for 

SPSA-DOF implementation is given in Appendix-A. 

Both standard implementation and SPSA-DOF are implemented for a given problem, 

and their performances are compared. In this thesis, the standard implementation, for 

the purpose of comparison, is named as SPSA-SOF (single objective function).  

3.1.3 Algorithm restart 

Usually, in the first half of the iterations, SPSA is able to reduce the error with a steep 

descent. However, towards the latter parts of the iterations, the error reduction is 

almost insignificant. As a solution, the algorithm can be restarted (second run) after a 

certain number of iterations (Kostic et al., 2017). A new set of initial estimates are 

chosen to restart the algorithm. This new set of estimates is the best solution from the 

previous calibration run. The number of iterations to run in the first run and the second 

run is decided based on the error reduction pattern and computational time required 

for the calibration. 
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3.2 Objective function 

3.2.1 Introduction 

The objective function used in this study represents two different types of passenger 

movements. The first type is the passenger flows on a transit line or a transit line route. 

Here, a transit line represents a dedicated transit service. A transit line route represents 

a dedicated transit service and its direction of operation. A typical transit network can 

have lines routes with two directions. Line route with one direction is also possible 

when the line route operates in a loop, or the service operates unidirectionally. The 

second type is the passenger transfers at a transit stop. 

These two types of movements are somewhat conflicting in nature. If the selected 

objective function tries to minimize the error of the simulated and observed trips on a 

transit line, it might not reduce the error of the number of transfers passengers made 

at stops (and vice versa). Therefore, a more realistic objective function should contain 

both types of movements. 

3.2.2 Goodness of fit measure 

Goodness of fit (GoF) measures outputs a scalar value, which describes the magnitude 

of the error between the observed and simulated values. Different types of GoF 

measures quantify the error from different views (Papathanasopoulou & Antoniou, 

2015). The GoF measure, normalized root mean square error (RMSN), is used in this 

study. 

Equation (3.5) provides the mathematical representation of RMSN error. 

 
RMSN  =  

√𝑛 ∙ ∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛
𝑖=1

∑ 𝑦𝑖
𝑛
𝑖=1

 
(3.5) 

Where 𝑦𝑖 is the observed value and 𝑦̂𝑖 is the simulated value of the corresponding 

observed value 𝑦𝑖. 𝑛 presents the total number of values, and 𝑖 is from the set 

[1,2, … , 𝑛]. 
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3.2.3 General structure of the objective function 

Based on the introduction and selection of GoF measure, the objective function to be 

evaluated at each iteration can be formulated as follows: 

 
α ∙

√𝑛 ∙ ∑ (𝑦̂𝑙 − 𝑦𝑙)2𝑛
𝑖=1

∑ 𝑦𝑙
𝑛
𝑖=1

  + β ∙
√𝑚 ∙ ∑ (𝑦̂𝑠 − 𝑦𝑠)2𝑚

𝑖=1

∑ 𝑦𝑠
𝑚
𝑖=1

 
(3.6) 

Where: 

𝑦𝑙, 𝑦̂𝑙 Observed and simulated passenger flows on transit lines (𝑛 lines) 

𝑦𝑠, 𝑦̂𝑠 Observed and simulated passenger transfers at stops (𝑚 stops) 

α, β Weights with possible values of 0 and 1 

For SPSA-DOF, according to the implementation described in 3.1.2 – step 7, the 

selection of one objective function according to equation (3.3) can be represented with 

values of α and β: 

• 𝛼 = 1, 𝛽 = 0: if the first objective function is selected 

• 𝛼 = 0, 𝛽 = 1: if the second objective function is selected 

The standard implementation of SPSA (SPSA-SOF), can be explained as the case 

where α =  1 and β = 1. Values of α, β remain unchanged at each iteration. 

3.3 Evaluation of results 

As per equation (2.2), the objective of the calibration is to find the coefficients of the 

PJT parameters that produce the least possible error between the simulated and 

observed values. This can be done by taking the parameters that provide the lowest 

RMSN value for the objective function used for the calibration. However, this method 

could become biased, as the other simulator outputs relevant to the transit assignment 

is not checked. This has been identified as a gap in the literature review (see 2.7).  

At each iteration, a transit assignment is run with the new set of estimates. Therefore, 

it is possible to evaluate the RMSN error with all relevant simulator outputs without 

additional computational effort. A short description of the selected simulator outputs is 

given in Table 3-1. A detailed description of each simulator output is given in Appendix-

B.  
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Table 3-1 Selected simulator outputs for solution evaluation 

Simulator output Short name 

1. Passenger boarding for a transit line route boardings 

2. Passenger trips on transit line routes with no transfers 0 transfers 

3. Passenger trips on transit line routes with one transfer 1 transfer 

4. Passenger trips on transit line routes with two transfers 2 transfers 

5. Passenger trips on transit line routes more than two transfers > 2 transfers 

6. Passengers making a transfer at the same stop direct 

7. Passengers alight at this stop and walk to another stop to 

make a transfer 

alight walk 

8. Passengers boarding at this stop after walking from another 

stop 

walk board 

9. Total number of passengers transferring (direct + alight walk + 

walk board) at a stop 

total 

The best set of estimates is selected considering the overall reduction of RMSN error 

for the simulator outputs mentioned above. 

Once the best set of estimates is selected, the quality of the simulation can be 

evaluated using scatter plots. In principle, a ‘perfect’ calibration should align all the 

scatter points along the 45° line, but often that is not the case. Moreover, it is hard to 

visually inspect a scatter plot and evaluate the quality of the solution. The solution 

evaluation criteria for this study are established based on the theoretical conclusions 

of  (Mesplé, Troussellier, Casellas, & Legendre, 1996) and practical implementation 

for a transit assignment calibration by (Parveen et al., 2007) and (Tavassoli et al., 

2019). The steps are as follows: 

1. First, a simple linear regression is done between the observed and simulated 

values. The quality of the solution is better if the slope is closer to 1, and the 

intercept is closer to 0. 

2. Next, the r-squared (𝑟2) value is calculated between the observed and 

simulated values. The quality of the solution is better with higher 𝑟2 values, as 

a higher proportion of the variance for the dependent variable is explained by 

the independent variable.  
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3.4 Summary 

This chapter explained the different components involved in the proposed methodology 

for a systematic and automated calibration of a transit assignment model. A new 

method is proposed, named SPSA-DOF, where the selection of the objective function 

for a given iteration is made based on the relative difference of the error that an 

objective function produces by the perturbed parameter estimates. RMSN error is 

proposed as the error calculation method between the simulated and observed values. 

The proposed methodology is compared with the standard implementation of SPSA 

(SPSA-SOF), where a single objective function is evaluated throughout the iterations. 

In the next two chapters, the implementation of the proposed methodology on a 

synthetic network and a real network is presented.  
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 Implementation of Proposed Calibration on a Synthetic 

Network 

In this chapter, the methodology explained in chapter 3, is implemented in a synthetic 

transit network. First, the network setup is explained briefly with a description of 

generating the observed passenger flows. Then, the steps of implementing the 

calibration algorithms (SPSA-SOF, SPSA-DOF) are explained. Finally, the results of 

the implementation are presented, and the calibrated models are compared with each 

other. 

4.1 Introduction 

The synthetic network developed as a testbed to implement the calibration algorithm. 

The computational time required to execute a transit assignment is very low (less than 

a second). Therefore, multiple tests can be run with less computational time, which 

helps to understand the behavior of the calibration algorithm with a transit assignment 

model (TAM). 

4.1.1 Transit network 

The synthetic network is created in PTV Visum. The created network consists of 11 

zones, four bi-directional transit lines (8 transit line routes), 11 stops, and 22 stop 

points. A synthetic OD matrix is used for transit assignment. The demand is assigned 

over a one-hour time period (7:00 am – 07:59 am). The synthetic network is able to 

simulate all the travel time components mentioned in equation (2.1).  

Since this is a small network, some intentional adjustments were made to add some 

complexity to passenger movements. First, the transit lines were arranged in such a 

way that transfers are encouraged. Second, for a given stop, the walking times within 

the same stop area are increased than the walking times between two stop areas. This 

arrangement is a bit unrealistic compared to real transit networks but makes passenger 

transfers more complex by encouraging the transfers between stop areas. An overview 

of the synthetic network is given in Figure 4-1. 
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Figure 4-1 Synthetic network 

4.1.2 Observed values 

Since there are no observed values for the synthetic network, observed values were 

generated with a specific set of parameter coefficients. 

Table 4-1 PJT parameter coefficients used to generate observed values 

Parameter Coefficient 

In-vehicle time (IVT) 1.0  

Access time (AT) 2.0 

Origin wait time (OWT) 2.0 

Transfer walk time (WT) 1.5 

Transfer wait time (TWT) 3.0 

Egress time (ET) 2.0 

Transfer penalty (TP) 5 min 

The coefficients were chosen such that the wait (OWT, TWT) and walk (AT, WT, ET) 

components of PJT are greater than one. TP is set to 5 mins, which is a standard value 

used in practice. The headway calculation method was set to ‘Mean headway 

according to timetable’, and ‘Ignore path share’ was set to 0.001. The transit 

assignment was run with these parameters. The simulated values related to passenger 

transfers at stop points and passenger flows on transit line routes were exported as 

comma-separated values (CSV) files. 
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4.2 Implementation of the calibration algorithm 

4.2.1 Experimental parameters and setup 

The experimental parameters used for the synthetic network are summarized in table 

Table 4-2. All the parameters remain unchanged across all experiments. 

Table 4-2 Parameters used for the synthetic network calibration 

Type  Parameter Value / setting (remarks) 

Simulator Headway calculation Mean headway according to timetable 

Assignment time interval 1 hour 

Boarding strategy Optimal strategies 

Ignore path, if share 0.001  

Initial guess In-vehicle time (IVT) 1.0 (fixed) 

Access time (AT) 7.855 

Origin wait time (OWT) 7.479 

Transfer walk time (WT) 3.254 

Transfer wait time (TWT) 1.067 

Egress time (ET) 2.045 

Transfer penalty (TP) 6.562 minutes 

SPSA α 0.602 

γ 0.101 

𝑎 7.250 

𝑐 1.072 

𝐴 30 

Max iterations  300  

Initial estimates were chosen in a way such that it gives a higher RMSN error. IVT 

parameter was not calibrated and fixed at 1.00. Since the computational time required 

for one transit assignment is very less, the calibration algorithm was run for 300 

iterations. The algorithm was restarted with the best estimates in the first run as the 

initial estimates for the second run.  A higher 𝑎 value is chosen in the SPSA 

hyperparameters so that the new estimates are more dependent on the gradient 

information.  

The overview of the experimental setup for the synthetic network is given in Figure 4-2. 

The SPSA-SOF and SPSA-DOF is implemented for the first run with the initial guesses 

given in Table 4-2. The best estimates from the fist calibration are chosen by evaluating 

the change of the RMSN error for a selected set of simulator outputs.  
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Figure 4-2 Experimental setup - synthetic network 

The parameter estimate set that produced the lowest RMSN error was chosen as the 

best estimate. These estimates were used as the initial estimate for the second run. 

The same procedure was applied to choose the best estimates (final calibrated model 

parameter coefficients) from the second run. 

4.2.2 Objective functions 

A summary of the objective functions used for the calibration of the Synthetic network 

is given in table Table 4-3. 

Table 4-3 Objective functions used for the calibration of the synthetic network 

Objective function (OF) Description 

OF1 RMSN error of simulated and observed passenger trips 

on transit line routes with zero transfers 

OF2 RMSN error of the total passenger transfers at stop 

points 

Same objective functions were used in both SPSA-SOF and SPSA-DOF and 

implemented as described in 3.2.3. 
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4.3 Results 

The results obtained from the implementation of SPSA-SOF and SPSA-DOF 

summarized in this subsection. First, the change of RMSN error with selected simulator 

outputs are presented. The best set of parameter coefficients are chosen, and the 

transit assignment is executed with those selected parameter coefficients, resulting in 

two calibrated TAMs. The accuracy of the calibrated models is then compared with the 

model outputs for the initial guesses.  

The change of RMSN error with each iteration is presented in Figure 4-3. A comparison 

is made for each simulator output with SPSA-SOF and SPSA-DOF. The results from 

the first 300 iterations and the second 300 iterations are plotted together. The reason 

is for simplicity and in order to get a better understanding of the error reduction 

patterns.  

In general, SPSA-DOF can reduce RMSN error compared to SPSA-SOF. A significant 

reduction of RMSN error can be seen with the restart of the algorithm (from iterations 

301-600). In terms of passenger trips on transit line routes (subplots a.2 to c.2), the 

highest reduction of RMSN can be seen in passenger trips with one transfer. A similar 

reduction for passenger transfers at stop points (subplots d.2 to f.2) with a higher 

reduction in with passenger walk board transfer type. This reduction also affects error 

reduction in total passenger transfers. However, the error reduction with passenger 

transfers is wiggly. One of the possible reasons for this behavior is the limited number 

of transfer options available for the passengers. 
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Figure 4-3 Comparison SPSA-SOF and SPSA-DOF: Change of RMSN error 

  

SPSA SOF SPSA DOF



Implementation of Proposed Calibration on a Synthetic Network 

41 

 

The final set of calibrated parameters from the implementation of SPSA-SOF and 

SPSA-DOF is presented in Table 4-4. The best set of parameters was obtained with 

SPSA-DOF implementation, highlighted in the table.  

 

Table 4-4 Summary of PJT calibrated values for the synthetic network 

PJT 

parameter 

Desired 

solution  

(θobs) 

Initial 

guess 

Best estimate – 1st 300 

iterations 

Best estimate – 2nd 300 

iterations 

SPSA-SOF SPSA-DOF SPSA-SOF SPSA-DOF 

IVT 1.0 1.000 1.000 1.000 1.000 1.000 

AT 2.0 7.855 4.021 7.159 1.460 5.373 

OWT 2.0 7.479 7.678 7.175 7.521 3.178 

WT 1.5 3.254 1.031 1.258 1.036 2.051 

TWT 3.0 1.067 1.836 2.333 1.281 3.085 

ET 2.0 2.045 3.309 4.779 3.313 5.356 

TP 5.0 6.562 8.583 8.353 7.465 8.411 

Best estimate at Iteration: 144 164 268 245 

Most of the calibrated parameter coefficients are not comparable with the coefficients 

used to generate the observed data (desired solution). However, the calibrated models 

provide a better fit to the observed models. A comparison of the calibrated models with 

the initial values is provided in Figure 4-4 Figure 4-5.  

Figure 4-4 shows a comparison among the model outputs with the initial guess, SPSA-

SOF, and SPSA-DOF for passenger trips on transit line routes. In general, both 

calibrated models provide a better fit compared to the model outputs with the initial 

guess as calibrated models have a slope closer to 1, lower intercept and a higher 𝑟2 

values. A comparison between the calibrated models also reveals that the calibrated 

model outputs with SPSA-DOF provide a better fit than the calibrated model outputs 

with SPSA-SOF. For example, passenger trips with one transfer (c.3) show a near-

perfect calibration as all the points lie on the 45° line with a 𝑟2 value almost equal to 

one.  
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Figure 4-4 Comparison of the calibrated models with the initial guess: passenger trips on transit line 
routes 

Figure 4-5 shows a comparison among the model outputs with initial guess, SPSA-

SOF, and SPSA-DOF for passenger transfers at stop points. The calibrated models, 

in general, provides a better fit than the model simulated with the initial guess. A 

comparison between SPSA-SOF and SPSA-DOF shows that SPSA-DOF provides a 

better fit. However, the 𝑟2 values are lower compared to SPSA-SOF as the simulated 

and observed values between a couple of stop points show a larger difference.  
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Figure 4-5 Comparison of the calibrated models with the initial guess: passenger transfers at stop 
points 
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4.4 Summary 

This chapter focused on the implementation of the developed methodology on a 

synthetic transit network. The results achieved from the proposed method, SPSA-DOF, 

outperform the standard implementation (SPSA-SOF). Even though both algorithms 

were not able to reach the global optimum (desired solution in  Table 4-4), the 

calibrated model parameters, especially with SPSA-DOF provides an accurate fit to 

the observed values. Due to the small scale of the network, there could exist multiple 

solutions for PJT parameter estimates that produce similar types of passenger flows, 

which is in close representation to the observed data. This could be one of the reasons 

for the calibrated parameter estimates are not comparable with the desired solution. In 

the next chapter, the proposed calibration methodology is tested on a large-scale 

transit assignment model of Singapore. 
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 Implementation of Proposed Calibration on the Transit 
Network of Singapore 

The methodology explained in chapter 3, is applied to the transit network of Singapore. 

TUMCREATE has AFC data-driven, macroscopic transit models modeled in PTV 

Visum. The availability of these models helped to apply the proposed methodology for 

a real-world, large scale transit model. In this chapter, first, a brief introduction of the 

public transport network of Singapore is given with details about the transit lines and 

ticketing system. Next, the transit assignment models (TAM) used for the calibration, 

along with some methods used for data preparation, are briefly explained. After that, 

the experimental setup is described in detail, along with a method used to reduce the 

computational time required for the calibration. Finally, the results are presented along 

with a comparison with the observed data and non-calibrated models. 

5.1 Introduction 

Singapore is a small island country with a population of 5.7 million and a population 

density of 7,866 people per km2  (Department of Statistics Singapore, 2020). Singapore 

has relatively low car ownership of 101 cars per 1,000 people, which makes the transit 

system the backbone for mobility needs. Singapore is among the top-ranked cities for 

public transport with an 86% satisfaction rate for the overall situation of public transport 

(McKinsey & Company, 2018) 

The aim of Singapore is to achieve 75% of trips during morning and evening peak 

hours to be made by using public transport modes. As of 2013, 63% of all trips during 

peak hours were made by public transport (LTA, 2013). From these trips, the bus 

network accounts for an average daily ridership of 3.6 million trips, followed by the 

Mass Rapid Transit (MRT) with 2.6 million trips and Light Rail Transit (LRT) with 

132,000 trips.  
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5.1.1 Transit network 

The transit network of Singapore consists of three primary modes: 1. MRT, 2. LRT, 

and 3. Bus network. Figure 5-1 shows an overview of the transit network as of 2013. 

The network consists of four MRT lines, four LRT lines, and over 300 bus lines.  

 

Figure 5-1 Transit network of Singapore as of 2013 

There are different bus service types. Except for the basic bus service, there are 

different bus services provided based on the need of the passengers. Some of these 

different types of bus services are summarized in table Table 5-1. 

Table 5-1 Different types of bus services (Land Transport Guru, 2013) 

Bus service Description of service 

Basic ▪ Provide daily connections over a vast network of routes at 

a basic fare 

o Trunk services – connect different towns 

o Feeder services – operates around a neighborhood 

Express and City 

direct 

▪ Services more expensive than basic service 

o Full day – connects housing estates to the City 

o Limited-stop – Skip-stop operation 

o CBD – connects housing estates to Central 

Business District 

Premium Bus 

Service (PBS) 

▪ Service with a guaranteed seat on the bus 

▪ Higher fare than basic service, cater to a niche market of 

commuters 

Special service ▪ Running between residential towns and Chinatown 
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5.1.2 Ticketing system 

The fare collection for the transit rides is done with an application of AFC system. This 

system is called CEPAS (Contactless e-Purse Application), a contactless smart card 

used for transit payments combined with other payment options, introduced in 2002. 

This smart card system is one of the systems in the world which has a higher customer 

penetration rate (AECOM, 2011) 

A passenger has to tap-in the smart card at the boarding to a transit service and tap-

out when alighting the transit service. The fare is calculated based on the total distance 

traveled across different transit services. This integrated fare calculation system 

encourages passengers to complete their journeys by transferring between different 

transit services. However, this is bounded with some rules. For example, a passenger 

can make up to five transfers within a single journey, with a 45-minute time window 

between each transfer. The entire set of rules are described in (LTA, 2020) 

In addition to the fare calculation, these smart card data provide valuable information 

about the passenger journey, which can be used to develop TAMs. Some of them are 

summarized below: 

• Boarding and alighting stop locations 

• Time spend on a transfer, the number of transfers made 

• Total ride time and ride distance at each transit service 
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5.2 Transit assignment models  

Two types of Visum models were used in this study. The first model, called a Direct 

assignment (DA) model, developed based on CEPAS smart card data, which 

replicates the multi-modal transit system in Singapore. DA model used to obtain the 

observed data for this study. The second model, Transit Assignment Simulation (TAS) 

model used to run simulations and implement the calibration algorithm. 

5.2.1 Direct assignment model 

DA model was developed based on the smart card database provided by the Land 

Transport Authority (LTA) of Singapore. The data provided by LTA consists of 

information on all trips made with smart cards from 1st of August 2013 to 31st of October 

2013. To replicate the normal travel behavior of the passengers, the demand for ten 

weekdays is selected with the least fluctuations in the demand patterns. More details 

about the development of the DA model can be found in (Liu et al., 2019). In this study, 

the DA model used to obtain the observed data. 

5.2.2 Transit assignment simulation model 

Even though the DA model replicates the observed route choices and passenger flows, 

it cannot be used to run simulations. TAS model is developed with the same ten 

weekdays demand used in the DA model. Therefore, the OD matrix used in the TAS 

model represents ten days of travel data. Thus, the comparison of the DA model and 

the TAS model becomes possible. 

The TAS model of Singapore has a simplified representation of passenger movements 

compared to the conventional transit models. In a conventional model (like the 

synthetic network in chapter 4), a passenger starts the trip with an access link from a 

zone to the origin stop. Similarly, after the trip with a public transport service, the trip 

ends at a destination zone connected via an egress link. This first mile and last mile 

connection are not represented in this model. Instead, the model represents a trip such 

that a trip starts and ends at a transit stop. Thus, access time and egress time 

parameters do not have an impact on passenger route choice. Therefore, these 

parameters are not calibrated. 
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5.3 Data preparation 

There were two tasks involved in this step. The first task was to export data from the 

DA model such that it can be used as an input as observed values in the calibration 

process. The relevant observed values were exported as a comma-separated value 

(CSV) files.  

The second task involved with TAS model. There were some transit lines modeled in 

the TAS model, which had to be removed in order to implement the calibration 

algorithm properly. The types of lines removed, and reasons are summarized in table 

Table 5-2. 

Table 5-2 Summary of the removed transit lines 

Transit lines removed Reason 

Night Rider bus service Operates on Fridays, Saturdays, and Public holidays. 

Therefore, the timetables associated with these lines are 

not modeled  

Downtown MRT line Passenger demand for this line was not available in 

2013 

Punggol West LRT line No demand data available as it was opened in 2014 

Premium bus lines Faster lines operate only in the morning and evenings. 

Therefore, these lines have a lower impedance that 

could result in over assignment in passenger demand 

for premium bus lines. 
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5.4 Implementation of the calibration algorithm 

5.4.1 Experimental parameters and setup 

The experimental parameters used for the Singapore transit network are summarized 

in Table 5-3. Most of the parameter values/ settings are common for the experiments 

conducted below. However, two parameters (ignore path share, max iterations) were 

chosen considering the computational time required for the calibration.  

Table 5-3 Parameters used for Singapore transit network calibration 

Type  Parameter Value / setting (remarks) 

Simulator Headway calculation Mean headway according to timetable 

Assignment time interval 24 hours  

Boarding strategy Optimal strategies 

Ignore path, if share ▪ 1st run - 0.0475 

▪ 2nd run - 0.001  

 

Initial guess In-vehicle time (IVT) 1.0 (fixed) 

Access time (AT) (not calibrated see 5.2.2) 

Origin wait time (OWT) 2.0 

Transfer walk time (WT) 2.0 

Transfer wait time (TWT) 2.0 

Egress time (ET) (not calibrated see 5.2.2) 

Transfer penalty (TP) 5 mins 

SPSA α 0.602 

γ 0.101 

𝑎 4.833 

𝑐 1.419 

𝐴 30 

Max iterations  ▪ 1st run - 80 

▪ 2nd run - 20 

 

Though the OD matrix consists of 10 days of demand, the transit assignment is done 

for one day (24 hours). This is based on the assumption that the demand for these ten 

weekdays has minimum fluctuations in the demand patterns.   

The overview of the experimental setup for the Singapore network is given in Figure 

5-2. 
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Figure 5-2 Experimental setup - Singapore network 

• Calibration was done with both SPSA-SOF and SPSA-DOF to compare the best 

implementation. Since transit assignment in Singapore network is 

computationally expensive, the number of iterations had to be reduced. 

Moreover, a Visum parameter (‘Ignore path share’) was adjusted to reduce the 

computational time further for the 1st run. In the second run, this parameter was 

set to Visum’s default value. A detailed description of this given in 5.4.2. 

• The algorithm was implemented in a Windows Server 2012 R2. The server is 

equipped with two Intel Xeon CPUs (E5-2640 v3 @ 2.6GHz) and 128GB RAM.  

o Calibration time with the settings of 1st run took 43 hours on average. 

o Calibration with the settings of the 2nd run executed only once and it took 

78 hours. 

5.4.2 Reducing the computational time required for transit assignment 

Simulators tend to generate more route choices between an OD pair compared to the 

actual route choices made by the passengers. The reason is that a large share of 

passengers tends to choose few different alternative routes to travel between the origin 

and destination even though it is possible to choose many different route choices 

between the given OD pair. However, in a simulation, the simulator evaluates all 

feasible routes available between the OD pair and assign a percentage of trips for each 

feasible route. As a result, a small percentage of trips can be assigned to some routes. 

For bigger networks like the Singapore network, this phenomenon increases the time 

taken to complete a transit assignment as the simulator has to evaluate all the feasible 

routes and assign demand despite how small the assigned proportion is. As a result, 

the time required to calibrate a large network will increase. 
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The parameter “ignore path, if share” in PTV Visum’s headway-based assignment 

procedure, provides the ability to change the minimum share. This setting makes sure 

that the time taken for the assignment is not increased due to the evaluation of paths 

that are very unlikely to have a minimum impedance (PTV, 2019, p. 2043). The value 

cannot be applied as separate values for each OD pairs. Therefore, a reasonable value 

that is applicable to the entire network should be derived from the observed data. 

There is no one correct solution to this problem. The nature of the solution is highly 

dependent on the available form of the observed data. The basic idea is to check all 

the OD pairs and calculate the minimum route share percentages for each OD and 

decide a cutoff point based on the calculated values. The approach used to solve the 

problem in this thesis is presented in Figure 5-3. This method is implemented in the 

DA model as it contains the observed route choices of the passengers. 
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Figure 5-3 Workflow to find minimum route share 

The steps for implementing the workflow is described below: 

1. List down all the zones in the OD matrix. The calculations are done for one origin 

zone at a time to make the calculations computationally efficient as there can 

be millions of observed data records under one origin zone to all its destinations. 

2. Select the first origin zone in the list and take all the observed trips records to a 

data frame. In PTV Visum, this data can be accessed via the PuTPathList 

object. The data should be retrieved from this object in such a way that it 

includes information about each trip made by its 1. Origin zone (current zone in 

concern) 2. Destination zone, 3. The number of transfers made during a trip, 

and 4. Total distance traveled inside a transit mode. 

3. The data retrieved in step 2 can be used to understand different routes 

passengers have used to travel between the origin and destination. In order to 

do this, individual trip records need to be aggregated. It is reasonable to assume 

that the passengers have taken the same route if the origin zone, destination 

zone, number of transfers made during the trip, and the total distance traveled 

inside a transit line is the same (despite the impact of common line problem). 
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Based on this logic, the data can be aggregated, and different routes used to 

travel between the origin and destination can be identified. Once this is done, 

the percentage of trips made on each route (route share %) can be calculated, 

and the minimum route share for each OD pair can be obtained.  

4. Once step 3 is done, records which are insignificant need to be removed in order 

to get a better understanding of the distribution of the minimum route share. In 

this study, three criteria were used to identify OD pairs, which has less 

importance to calculate the minimum route share percentage. An OD pair is 

removed if: 

a. The total number of trips between the origin and destination is less than 

ten trips (one passenger trip a day).  

b. There is a dominant route which has a route share higher than 99%. Here 

it is assumed that all the passengers travel on the dominant route. 

c. The route which has the minimum share has less than ten trips.  

5. Continue steps 2 to 4 until the zone list is exhausted.  

Once the calculation is complete for all the zones in the network, the distribution of the 

minimum route share can be analyzed and calculate a value to be used in the 

simulator. The minimum route share percentage distribution for the Singapore DA 

model is shown in Figure 5-4. 

 

Figure 5-4 Minimum route share percentage distribution for the Singapore network 

The value for minimum route share to be used in the simulator was chosen as the point 

which gave the first sharpest drop (4.75%). With this setting, the time required for one 

transit assignment dropped to ~10mins, which is a significant reduction compared to 

the time required for one assignment (~50mins) with default setting (0.001). However, 

increasing ‘Ignore path share’ to 0.0475 has one drawback. This increases the number 
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of unassigned trips. This can be fixed by running the simulation with Visum’s default 

setting (0.001). Therefore, the first run of the calibration algorithm is run with the 

increased value of 0.0475. This ensures that the initial results of the calibration can 

obtain with a lesser computational time. The second run (algorithm restart) can be run 

with the default setting (0.001). This takes longer computational time, but it ensures 

that the final calibration model is not under-represent the observed values.  

5.4.3 Objective functions 

A summary of the objective functions used for the calibration of the Singapore network 

is given in Table 5-4. 

Table 5-4 Objective functions used for the calibration of Singapore Network 

Objective function (OF) Description 

OF1 (0 transfers) RMSN error of simulated and observed passenger trips 

with zero transfers 

OF2 (combined) RMSN error of the simulated and observed passenger 

transfers at stops. This includes a combined list of ‘direct’, 

‘alight walk’ and ‘walk board’ transfer types 

OF1 is similar to the objective function used in the synthetic network calibration. 

However, a small change is made for OF2. In order to capture the error of all different 

transfer types, a combined list of transfer types is considered. A description of all 

different transfer movements is given in Table 3-1. 

The same objective functions were used in both SPSA-SOF and SPSA-DOF and 

implemented as described in 3.2.3. 

5.4.4 Assumptions 

For the simplicity and based on the logical conclusions made from the available data, 

there are several assumptions behind the implementation: 

• The transit demand is considered as stop level demand. 

• Direct assignment Visum model is considered as the ground truth. 

• Traffic conditions are not considered. 

• Transit demand OD matrix is fixed. 

• Capacity of the transit mode is not considered. 
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5.5 Results 

5.5.1 Calibrated model parameter coefficients 

The result obtained from the implementation of SPSA-SOF and SPSA-DOF on the 

Singapore network is summarized in this subsection. Due to the higher computational 

time required for transit assignment, the number of experiments was limited compared 

to the synthetic network, as explained in Figure 5-2. The best set of parameter 

coefficients for the calibrated model were chosen after analyzing the reduction of 

RMSN error. The accuracy of the final calibrated model is checked against the default 

values of PTV Visum, and initial guess used to start the calibration.  

Figure 5-5 shows a comparison of the change of RMSN error for different simulator 

outputs with the first run of the implementation of SPSA-SOF and SPSA-DOF. Since 

the magnitudes of RMSN error for different simulator outputs vary, min-max normalized 

RMSN values for each simulator output is shown in the plots. In general, both SPSA-

SOF and SPSA-DOF reduce the RMSN error for all the simulator outputs, except for 

the ‘alight walk’ transfer type. When comparing the pattern of error reduction, SPSA-

DOF performs better than SPSA-SOF. This is noticeable in subplots (a.1) and (a.2). 

SPSA-DOF calibration approach has minimized all the error terms towards the latter 

parts of the iterations while the error reduction of SPSA-SOF is somewhat inconsistent. 

Thus SPSA-DOF is selected as the best calibration methodology. The best estimates 

from the first run with SPSA-DOF are chosen by evaluating the change of the RMSN 

error for a selected set of simulator outputs. The set of estimates which provided the 

lowest total RMSN are chosen as the best estimates. These estimates are used as the 

initial guess for the second run of the calibration.  

The reduction in RMSN error for the second run (algorithm restart) is shown in Figure 

5-6. The min-max normalized error of different simulator outputs is shown in this plot, 

like Figure 5 5. The algorithm is run only for 20 iterations due to the long computational 

time required.  Passenger trips on different transit line routes and passenger transfers 

at stops are shown in two subplots. In general, a reduction in the error can be seen, 

but the reduction is wiggly compared to the first run.  The final calibrated parameter 

estimates were obtained by evaluating the RMSN error from this calibration. 
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Figure 5-5 Singapore network – 1st run: RMSN change for the selected Visum outputs 
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Figure 5-6 Singapore network – 2nd run: RMSN change for the selected Visum outputs 

A summary of the calibrated coefficient for each parameter is shown in Table 5-5. The 

final set of calibrated parameter coefficients and transfer penalty value is highlighted 

in gray. 

Table 5-5 Summary of PJT calibrated values for the Singapore network 

PJT 

parameter 

Visum 

default 

Initial 

guess 

Best estimate – 1st 80 

iterations 

Best estimate – 2nd 20 

iterations 

 SPSA-SOF SPSA-DOF SPSA-SOF SPSA-DOF 

IVT 1.000 1.000 1.000 1.000 - 1.000 

OWT 1.000 2.000 1.004 1.032 - 1.071 

WT 1.000 2.000 4.483 3.971 - 3.615 

TWT 1.000 2.000 1.047 1.016 - 1.117 

TP 5.000 5.000 6.045 5.507 - 5.491 

Best estimate at Iteration: 79 76 - 20 
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5.5.2 Comparison of calibrated model outputs 

The calibrated model’s simulation outputs are compared with the results of the 

observed model (direct assignment). A similar comparison is made among two other 

simulation models; 1. a model with Visum’s default PJT values and 2. a model with the 

initial values used for the calibration. First, an aggregate level comparison made with 

Visum’s transit assignment statistics (PuT assignment statistics), provided in Table 

5-6. A detailed explanation of each assignment statistics is given in Appendix-C.  

The first subsection of the table compares the average travel distances and travel 

times. From a quick comparison, the values of non-calibrated models (Visum defaults, 

initial guess) are also in close agreement with the observed values. For example, mean 

in-vehicle time (1.2) and mean in-vehicle distance (1.5) remains more or less the same 

in all three simulation models. One of the reasons for this behavior is the structure of 

the network. Since a significant component of transit travel is made inside a transit 

mode, the travel distances and actual time spent on the network should not be changed 

significantly regardless of the PJT parameters chosen.  

The second subsection of the table compares the passenger transfers made in the 

network. The total number of passenger transfers made (2.1) in the calibrated model 

is in close agreement with the observed model, compared to non-calibrated models. 

As a result, the mean number of transfers made in the transit network (2.3), which is 

the division of total transfers (2.1), and the number of passengers assigned (2.2) is 

also in close agreement with the observed data. 

The third subsection of the table compares the direct trips and trips made with 

transfers. The direct trips made in the network (3.1) are in close agreement with the 

observed data in the calibrated model compared to non-calibrated models. A similar 

observation can be seen in passenger trips with one transfer (3.2) and two transfers 

(3.3), but simulation output in the calibrated model is not in a close representation with 

the observed values. None of the simulation outputs can accurately represent the 

passenger trips with more than two transfers (3.4). However, compared to the total 

number of trips made in the network, the passenger trips more than two transfers are 

very low (2.19%). The fourth and final subsection of the table shows a comparison 

between assigned and unassigned trips in the network. Some number of unassigned 

trips in all three simulation models can be seen, but the value is insignificant compared 

to the total number of trips assigned.  
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Table 5-6 Comparison of results with transit assignment statistics 

No. Indicator (unit) Observed Simulated Absolute percentage difference with 
observed values 

DA Visum defaults Initial guess Calibrated Visum defaults Initial guess Calibrated 

1.  Average travel times and distances    

1.1 MeanPJTPuT (min) - 34.93 63.25 43.97 - - - 

1.2 MeanInVehTimePuT (min) 21.87 19.43 20.98 21.48 11.2% 4.1% 1.8% 

1.3 MeanTrasferWaitTimePuT (min) 2.03 2.85 5.93 3.85 40.4% 192.1% 89.7% 

1.4 MeanWalkTimePuT (min) 2.48 4.37 3.22 2.12 76.2% 29.8% 14.5% 

1.5 MeanInVehDistPuT (km) 9.775 9.377 9.662 9.709 4.1% 1.2% 0.7% 

2. Aggregated trips and transfers   

2.1 TotalNumTransfersPuT 25,607,438 21,942,281 24,085,762 24,334,223 14.3% 5.9% 5.0% 

2.2 PTripsLinkedTot 41,533,332 41,834,266 41,832,622 41,832,260 0.7% 0.7% 0.7% 

2.3 MeanNumTransfersPuT 0.600 0.525 0.576 0.582 12.6% 4.0% 3.0% 

3. Trips with and without transfers    

3.1 PTripsLinked0  22,527,939 23,554,472 21,627,906 21,986,300 4.6% 4.0% 2.4% 

3.2 PTripsLinked1  13,403,972 14,214,918 16,002,017 15,314,319 6.1% 19.4% 14.3% 

3.3 PTripsLinked2  4,691,931 3,460,118 3,686,436 4,082,997 26.3% 21.4% 13.0% 

3.4 PTripsLinked>2  909,490 268,543 236,694 283,975 70.5% 74.0% 68.8% 

4. Assigned trips, unassigned trips    

4.1 PTripsLinkedWRide  41,533,332 41,498,052 41,553,052 41,667,592 0.1% 0.0% 0.3% 

4.2 PTripsLinkedWoCon - 2,760 4,404 4,766 - - - 
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In summary, the calibrated model outperforms the non-calibrated models in terms of 

the agreement of the simulated values with the observed values. Something interesting 

to notice here is that the default values used in the simulator itself provide a relatively 

satisfactory solution. This behavior could be misleading at times, especially when using 

a trial and error method as it could provide a satisfactory (but not optimum) solution 

with a couple of ‘guesses’. This proves the importance of using a systematic calibration 

approach to solve the transit assignment calibration problem.  

It is also essential to examine the agreement of simulation outputs with observed data 

at a disaggregated level, which helps to understand the level of accuracy of the 

simulation model outputs to the observed data at each line route/ transit stop. The 

results of the calibrated model are compared with the non-calibrated models. 

Figure 5-7 shows a comparison between the calibrated model and non-calibrated 

models with respect to total boardings on transit line routes and the total number of 

transfers made at stops. For line routes, the bus mode and rail-based modes (LRT, 

MRT) shown in two separate graphs considering the differences in passenger 

volumes. Higher accuracy can be seen in the calibrated model for the passenger 

boarding on bus line routes. Compared to non-calibrated models, the calibrated model 

shows a higher 𝑟2 value and lower intercept. The accuracy of passenger boardings on 

rail-based modes is more or less similar across all three models. However, a clear drop 

in the intercept value can be seen in the calibrated model. The accuracy of the total 

passenger transfers remains more or less the same across all three models, with an 

improved 𝑟2 value in the calibrated model. The total number of transfers is further 

analyzed with different transfer types.  
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Figure 5-7 Comparison of the calibrated model with non-calibrated models: total boardings and 
transfers 

 

The accuracy of the calibrated model with different transfer types is presented in Figure 

5-8. Compared to the previous plot on the total number of transfers, the scatter plots 

for different transfer types, especially for alight walk (a) and walk board (b), are 

scattered around 45° line with an underrepresentation of the simulated values. This 

underrepresentation can be explained by the lesser number of total transfers simulated 

by all the simulation models (refer Table 5-6, subsection 2). However, the calibrated 

model shows a higher 𝑟2 value compared to the non-calibrated models.  
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Figure 5-8 Comparison of the calibrated model with non-calibrated models: transfer types at stops 

The passenger trips on transit line routes by the mode and by the number of transfers 

made are presented in Figure 5-9. Once again, trips made on bus and rail modes (LRT, 

MRT) shown separately considering the difference in volumes. For simplicity, only the 

calibrated model is considered for this comparison, as it is clear from the previous plots 

that the calibrated model is in higher agreement with the observed model compared to 

the non-calibrated models.  

In i tia l  gues s  al ibrated modelVis um  de fau l t
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Figure 5-9 Calibrated model:  passenger trips on transit line routes with transfers 
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Passenger trips with no transfers, which is one of the measurements used for objective 

function calculation, is in higher agreement with the observed values for both bus and 

rail modes.  The calibrated model shows an over-assignment for passenger trips with 

one transfer for bus mode (b.1). In contrast, the calibrated model shows an under-

assignment for the passenger trips with more than two transfers for both bus and rail 

modes. This observation was already seen in the aggregated results in Table 5-6.  

5.6 Summary 

The proposed calibration methodology is implemented in a real-world transit 

assignment model of Singapore. The number of experiments had to be limited, 

especially for restarting the algorithm, considering the computation time required to run 

the calibration. The results show that SPSA-DOF performs better in terms of reducing 

the RMSN error of all the selected simulator outputs, except for passenger transfers 

alight walk. The calibrated model parameter estimates show that passengers perceive 

transfer walk time almost 3.6 times more than in-vehicle time. The other wait 

parameters (origin wait, transfer wait) remains closer to one, suggesting that 

passengers do not perceive a considerable difference in waiting. The calibrated model 

outputs were compared with the observed model, and non-calibrated models (initial 

estimates, Visum default estimates), in two different aggregation levels. In both levels, 

the calibrated model produces a better fit with the observed values. However, the 

calibrated model does not accurately represent passenger trips greater than two 

transfers. The non-calibrated models also showed some level of accuracy with the 

observed data. This shows that the calibration is hard to perform with ‘trial and error’ 

method as it is hard to keep track of whether the ‘guessed’ estimates produce a better 

fit or not. This proves the importance of using a systematic calibration approach for 

large scale transit models. 
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 Conclusion 

6.1 Summary 

This thesis presented an automated offline calibration framework for TAM calibration. 

The proposed method is based on SPSA algorithm. A modification is proposed to the 

algorithm such that at a given iteration, it chooses an objective function that produces 

the highest relative error difference with the perturbed parameter estimates. The 

measurements of the selected objective function are then used in the gradient 

approximation step. Since the selection of the objective function is made in a ‘dynamic’ 

fashion with the available information at the given iteration, this method is called SPSA 

with dynamic objective function selection (SPSA-DOF). The performance of the SPSA-

DOF is compared with the standard form of implementing SPSA algorithm with a single 

objective function (SPSA-SOF). Both algorithms were implemented in a synthetic 

network and real-world network. SPSA-DOF performed better in both case studies by 

reducing the RMSN error for most of the important simulation outputs, making the final 

calibrated model is at a higher level of agreement with the observed model. For the 

Singapore network, the final calibrated model parameter coefficients give a higher 

weight to the ‘transfer walk time’ parameter indicating that passengers perceive 

transfer walk times higher than the rest of the components of the trip. The final 

calibrated model reveals that the mean perceived journey time in the Singapore 

network is 44 minutes.  

6.2 Discussion 

One of the reasons for SPSA-DOF to perform better compared to the standard 

implementation (SPSA-SOF) can be interpreted as follows. The objective function 

usually does not capture or represent the entire relationship of the system inputs and 

outputs. Therefore, the gradient approximation is made based on incomplete 

information. The error terms used to formulate the objective function in this thesis (i.e., 

passenger transfers at stops, direct trips on transit line routes) are somewhat 

conflicting in nature. Therefore, at a given iteration, considering the impact on both 

error terms may add extra noise. One of the solutions to this problem is to rely only on 

one type of error measurement throughout the calibration. This may properly calibrate 

some simulator outputs but does not guarantee in reducing the error of all the important 

simulator outputs. SPSA-DOF has proven that it can mitigate the drawbacks 

mentioned above.  
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The proposed SPSA-DOF method is somewhat similar to the idea proposed by 

(Antoniou et al., 2015) with W-SPSA method. In W-SPSA, the idea is to exclude the 

negative influence of irrelevant measurements in the gradient approximation. A weight 

matrix is used for this process. SPSA-DOF, however, does not rely on a weight matrix. 

Instead, it selects the ‘best’ objective function that gives a better descent direction for 

the given iteration. Figure 6-1 shows how the selection of the objective function has 

varied with SPSA-DOF, for the 1st run of Singapore network calibration. The selection 

of the objective function at a given iteration is not pre-planned. Thus SPSA-DOF does 

not have an impact on the stochastic nature of SPSA algorithm. 

 

Figure 6-1 Objective function selection in SPSA-DOF 

The final set of calibrated parameter coefficients reveals some behavioral 

characteristics of the passenger movements of Singapore. For example, a higher 

estimate for the transfer walk parameter shows that the passengers perceive the time 

spent on transfers that include a walking component (alight walk, walk board) 

substantially different to in-vehicle time or waiting times. This could be partly due to the 

fact that Singapore has higher temperatures and humidity levels. This makes a transfer 

between two stops, a physically demanding task, especially at day times, where there 

are no shaded walk paths. On the other hand, origin wait times and transfer wait times 

have a coefficient closer to one. This means that the waiting times at transit stops are 

perceived almost the same as in-vehicle time. This could be due to higher frequencies 

of the service and better connectivity of the network. Different transfer movements at 

stop levels (i.e., alight walk, walk board, and direct) also represent better fit to the 

observed data, but not as accurate as the passenger trips made on transit line routes. 

This could have been improved with further calibration runs (i.e., algorithm restart, 

more iterations in a single calibration run). However, part of this issue could be because 
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of the ‘common line problem,’ and passenger movements in Singapore may not be 

fully explained by using ‘optimal strategies’ as a boarding strategy. 

6.3 Limitations 

The main requirement to calculate the minimum route share percentage for the 

Singapore network and set ‘ignore path share’ parameter accordingly was to reduce 

the computational time required for transit assignment. However, this came up with an 

unexpected drawback of an increased number of unassigned trips. One alternative 

approach to solve this issue could be to increase ‘Ignore path share’ parameter 

gradually and observe the number of unassigned trips while keeping track of the 

computational time required. The ‘Ignore path share’ could be set at the point where it 

starts to increase the number of unassigned trips sharply. Moreover, the second run 

(algorithm restart) could have been run for a higher number of iterations despite the 

extensive computational time required to see if the proposed method can further 

reduce the error between simulated and observed values, especially for different 

transfer types. 

6.4 Future work 

One of the important future work is to check the robustness of the proposed calibration 

approach. The algorithm can be restarted with different initial estimates and with 

different random seeds (to calculate random perturbation vector Δk) and check the 

convergence. In terms of the transit assignment model, a potential future work could 

be to model the congestion on board, considering the vehicle capacity. Moreover, the 

calibration procedure can be applied to different days (e.g., weekends), different times 

of the day (e.g., peak periods), and check if there is a difference in PJT parameter 

estimates. The same calibration methodology can be used with different boarding 

strategies other than ‘optimal strategies’ to see whether the selection of different 

boarding strategies would improve the calibration results. For a real-world network, this 

implementation will take more time than for a calibration done with ‘optimal strategies’. 

A better approach would be to implement it in a relatively smaller network (e.g., a part 

of the real network).  
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 Appendices 

Appendix A: Pseudocode for SPSA-DOF 

The pseudocode is written in two parts for the ease of elaboration. The first part 

provides a function to run the transit assignment with a given set of PJT estimates. The 

second part shows the pseudocode for SPSA-DOF implementation 

 

Algorithm 1: Calculate RMSN error for all simulator outputs (RunAssignmentAndCalculateAllError) 

Input Visum (Visum object), Estimates (PJT estimates), ObsStops(observed stops data), 

ObsLines(observed line data) 

RunVisumTransitAssignment (Visum, Estimates) 

SimStops = SimulatedStopVolumes (Visum) 

SimLines = SimulatedLineVolumes (Visum) 

ErrorCollection = CalculateRMSNError(ObsStops, SimStops), CalculateRMSNError(ObsStops, SimStops) 

Output = ErrorCollection(Collection of all the error terms) 
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Algorithm 2: SPSA-DOF 

Input: Visum ( Visum object ), InitialGuess ( PJT estimates ), ObsStops ( Observed stops data), ObsLines 

(Observed line data), SPSAHyperparameters (a, c, A, α, γ), MaxIterations 

Objective Function ( OF1, OF2 )                                     // Two objective functions 

CurrentEstimate = InitialGuess 

BestEstimate = InitialGuess 

StartingErrorAll = RunAssignmentAndCalculateAllError ( Visum, InitialGuess, ObsStops,  

                                                                                         ObsLines ) 

LeastError = StartingErrorAll [ OF1 ] 

For k in range (MaxIterations) : 

 ak = a / (A + k + a) ** α  

 ck = c / (k+1) ** γ 

 Deltak = GenerateRandomBernouliVector ( ) 

 IncreaseEstimate = Copy ( CurrentEstimate )         // Initializing a value for further processing 

 DecreaseEstimate = Copy ( CurrentEstimate ) 

 For i in len (IncreaseEstimate) : 

  IF MinThreshold ≤ CurrentEstimate [ i ] + ck * DeltaK [ i ] ≤ MaxThreshold : 

   IncreaseEstimate [ i ] = CurrentEstimate [ i ] + ck * Deltak [ i ] 

  Else: 

   IncreaseEstimate [ i ] = CurrentEstimate [ i ] 

  End IF 

 For j in len ( DecreaseEstimate ): 

  IF MinThreshold ≤ CurrentEstimate [ j ] – ck * Deltak [ j ] ≤ MaxThreshold : 

   DecreaseEstimate [ j ] = CurrentEstimate [ j ] – ck * Deltak [ j ] 

  End IF  

 ErrorIncreaseAll = RunAssignmentAndCalculateAllError ( Visum, IncreaseEstimate,  

       ObsStops, ObsLines ) 

 ErrorDecreaseAll = RunAssignmentAndCalculateAllError ( Visum, DecreaseEstimate,  

        ObsStops, ObsLines ) 

 CurrentObjFunc = SelectBestObjectiveFunction ( ErrorIncreaseAll, ErrorDecreaseAll,  

  ObjectiveFunctions ) 

 ErrorIncreasek = ErrorIncreaseAll [ CurrentObjFunc ] 

 ErrorDecreasek = ErrorDecreaseAll [ CurrentObjFunc ] 

 Gradient = ( ErrorIncreasek – ErrorDecreasek ) / ( 2 * ck * Deltak ) 

 PreviousEstimate = Copy ( CurrentEstimate )  

 For m in len ( PreviousEstimate ): 

  IF MinThreshold ≤ PreviousEstimate [ m ] – ak * Gradient [ m ] ≤ MaxThreshold : 

   CurrentEstimate [ m ] = PreviousEstimate [ m ] – ak * Gradient [ m ] 

  Else:  

   CurrentEstimate [ m ] = BestEstimate [ m ] 

 NewErrorAll = RunAssignmentAndCalculateAllError (Visum, CurrentEstimate, ObsStops,  

                                                                                     ObsLines) 

 IF NewErrorAll [ OF1 ] < LeastError : 

  LeastError = NewErrorAll [ OF1 ]  

  BestEstimate = Copy ( CurrentEstimate ) 

 End IF 

Output: ResultFromEachIteration ( NewErrorAll, CurrentEstimate ) 



Appendices 

73 

 

Appendix B: Transit network performance measurements – PTV Visum 

Indicator Description 

Passenger trips 

unlinked PuT 

Line trips correspond to the number of passenger 

boarding per object (line, route, operator, etc.) Counts 

each passenger using at least one line route item in the 

territory. A passenger is not counted f he has already 

used a vehicle journey of the same object on an earlier 

path leg. No passengers are counted for path legs that 

end exactly at the start or start exactly at the end of a time 

interval. 

PTrips Unlined with 

0×Tranfer 

Passenger trips with no transfers on the path from the 

origin zone to the destination zone. This attribute is only 

available for elements of the line hierarchy 

PTrips Unlinked with 

1×Tranfer 

Passenger trips with precisely one transfer on the path 

from the origin zone to the destination zone. This attribute 

is only available for elements of line hierarchy 

PTrips Unlinked with 

2×Tranfer 

Passenger trips with precisely two transfers on the path 

from the origin zone to the destination zone. This attribute 

is only available for elements of line hierarchy 

PTrips Unlinked > 

2×Tranfer 

Passenger trips with more than two transfers on the path 

from the origin zone to the destination zone. This attribute 

is only available for elements of line hierarchy 

PassTransAlightWalk Number of passengers alighting at this stop or stop point 

and walking to another stop or stop points for transfer. 

This attribute is only available for stops and stop points 

PassTransWalkBoard Number of passengers boarding at this stop or stop point 

after walking from another stop or stop point. This 

attribute is only available for stops and stop points 

PassTransDir Number of passengers transferring to another line at this 

stop or stop point. This attribute is only available for stops 

and stop points 

PassTransTotal Number of passengers transferring at this stop or stop 

point PassTranferTotal = passenger transfers directly + 

passenger transfers walk-board + passenger transfers 

alight-walk 
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Appendix C: Transit (PuT) assignment statistics – PTV Visum 

Indicator Definition 

MeanPerceivedJourneyTimePuT Mean perceived journey time of all PuT trips 

MeanInVehTimePuT Mean in-vehicle time (only path legs using PuT 
service) of all PuT trips 

MeanTrasferWaitTimePuT Mean transfer wait time (without transfer walk 
times) of all PuT trips 

MeanWalkTimePuT Mean transfer walk time of all PuT trips 

MeanInVehDistPuT Mean in-vehicle distance PuT  

TotalNumTransfersPuT Total number of transfers of all PuT paths 

PTripsLinkedTot Number of passengers assigned, consisting of the 
number of passengers with transport (on lines, 
Sharing or PuT Aux), those without transport and 
those without a connection. Each person only 
counts once 

MeanNumTransfersPuT Mean number of transfers of al PuT trips 

PTripsLinked0 Number of passengers who have boarded a 
vehicle journey/time profile of a line of vehicles of 
a Sharing or PuT Aux transport system exactly 
once, i.e., without any transfers 

PTripsLinked1 Number of passengers who have boarded a 
vehicle journey/time profile of a line of vehicles of 
a Sharing or PuT Aux transport system exactly 
twice, i.e., with one transfer. Each person counts 
only once 

PTripsLinked2 Number of passengers who have boarded a 
vehicle journey/time profile of a line of vehicles of 
a Sharing or PuT Aux transport system exactly 
three times, i.e., with two transfer. Each person 
counts only once 

PTripsLinked>2 Number of passengers who have boarded a 
vehicle journey/time profile of a line of vehicles of 
a Sharing or PuT Aux transport system more than 
three times, i.e., with more than two transfers. 
Each person counts only once 

PTripsLinkedWRide Number of passengers who have boarded vehicle 
journeys/ time profiles of a line of vehicles of a 
Sharing / PuT Aux transport system, where 
multiple boarding on the same path is counted 
only once 

PTripsLinkedWoCon Passenger trips linked without a connection: 
Number of PuT passenger for whom no 
connection was found from the origin zone to the 
destination zone 

 


