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Abstract 

The continuous increase of traffic in urban areas is an unavoidable phenomenon which 

causes congestion, high emissions and frequent traffic accidents. Among different alter-

natives, connected and/or autonomous vehicles (C/AVs) are considered as a potential 

solution to these issues. However, a proper investigation of the impacts of C/AVs is re-

quired before introducing this technology into transportation systems. Many studies have 

underlined different aspects of C/AVs, but the impacts varied significantly in each study. 

The objective of this thesis is to investigate the impact of Connected/Autonomous Vehi-

cles in mixed traffic conditions in urban areas. In order to achieve this objective, a sen-

sitivity analysis was conducted on the driving behaviours of autonomous vehicles (AVs) 

as well as an impact study of C/AVs in a mixed traffic region for the three most frequently 

seen driving modules. The study area, Ludwigstraße and Leopoldstraße road axes, is a 

busy corridor of Munich which has different traffic flow reducing elements: lane merging 

locations, several mobility hubs and higher traffic flow feeder side streams. For this re-

search, traffic, environmental and safety aspects for every experimental scenario for this 

area have been studied and possible causes have been illustrated. Analyses took place 

examining different parameters including traffic (travel time, speed and delay time), en-

vironmental (CO2 and NOx) and road safety (number of conflicts) variables. The results 

indicate that the impact of C/AVs is generally positive up to a limit, which is directly con-

nected with the number of interacting vehicles. This study also strengthens previous 

studies by showing that CAVs are better performers in traffic than AVs. However, both 

CAVs and AVs have higher traffic performance and fewer road accidents in lower traffic 

demand cases, although the emission outputs are the same. Moreover, the sensitivity 

analysis pointed out the role of different driving parameters of C/AVs, among which three 

parameters were found to be the most influential for AVs: the number of interacting ve-

hicles, look back distance and minimum clearance (front/rear). Overall, this study reveals 

that the connectivity features of CAVs make them a better alternative than AVs for every 

possible scenario. However, to gain the greatest benefit, technical and infrastructural 

development is necessary. 

Keywords: Connected and/or autonomous vehicles, traffic performance, emission, 

safety, sensitivity analysis, driving parameters  
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1  Introduction 

In this chapter, the background and motivation behind this study are depicted and the aims of 

this thesis are presented. It also contains the research questions investigated to fulfill the aim, 

as well as the scope of work. Finally, the structure of the thesis is demonstrated for ease of 

understanding.  

1.1 Background and motivation 

The number of road traffic fatalities continues to rise steadily in the world, although the degree 

of this trend varies among countries. As per the international road safety report of 2013 from 

the World Health Organization, 1.24 million people die worldwide from road traffic accidents 

per year (World Health Organization 2013). Another report published  5 years after, shows 

this number has increased to 1.35 million worldwide deaths per year or approximately 3,700 

deaths per day, which is a matter to be concerned with (World Health Organization 2018). 200 

thousand people died in the road accident, alone in USA, in whole 20s that is more than the 

total number of American soldiers died in the First World War (Norton, P., D. 2008). Germany 

encountered a 3% increase in the number of road traffic fatalities in 2018 as compared to 

2017, amounting to 3,275 deaths in 2018 (International Transport Forum 2019). Most of the 

accidents originated from one major source: human errors. One study demonstrated the  hu-

man factors play serious roles in 90-95 percent of total accident incidents, of which about 60 

percent is directly originated from human error (Sonja Forward 2008). The human factor is 

considered as an all-time major aspect for the transportation and mobility industries for im-

proved road safety and lesser crash rates.  

In additional to safety aspects, the environmental impacts are severely influenced by trans-

portation activities (European Commission 2011, Tánczos and Török 2008). Such activities 

affect the environment by adding different pollutants and greenhouse gases in the atmos-

phere. This state accelerates the negative climate changes. It is one of the severe reasons 

behind the challenges, currently transportation and mobility industries are facing (Tánczos and 

Török 2008). European commission indicated the traffic as the only source exists in Europe, 

where the greenhouse gas emissions are still rising (European Commission 2011).  

Despite improved infrastructures, improved vehicle design, and road communications, the 

road traffic accidents and emissions cannot be successfully minimized. The different form of 

fuel usage-based taxation plans of the governments are not obtaining the sustainable trans-

portation and mobility goals (Tánczos and Török 2008, Tanczos, K., & Torok, A. 2007). The 

people and the products must be transported from one place to another place. The demand 

of transportation cannot be compromised as it is a vital element of development and human 
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existence (Tanczos, K., & Torok, A. 2007). However alternative solutions to mitigate and re-

duce the negative impacts of the transportation can be taken. 

Therefore, in this stage the necessity of vehicle automation became significantly important. 

Once, the external factors of driving reach the final level of development, the quality enhanced 

driving environment and efficient transport system rely absolutely on the road users (Bohm 

and Häger 2015, KPMG 2012). Autonomous automobile technologies are rolling over the in-

dustries to get rid of many transportation limitations, among which human error is most serious 

factor to be overcome (Alonso R. M. et al. 2017, Makridis et al. 2018). 

According to Bohm and Häger (2015), vehicles with the self-driving ability, which can be driven 

without any human interference, are known as autonomous vehicles (AVs). AV technology 

has progressed swiftly in recent years, which can currently be seen in the different automated 

features of vehicles in today’s commercial market (Morando et al. 2018). The development 

process of self-driving vehicles has gone through a historical passage.  

Although it seems building the autonomous vehicles is an ambition of inceptive stage of auto-

motive development of early part of the 20s of the 20th century (Igliński and Babiak 2017), the 

root of such technologies is not new. The automotive inventors were planning about AVs soon 

after the invention of vehicles themselves. In 1925, Houdina Radio Control, a radio instruments 

supplier founded by Francis P Houdina,  took the first attempt to control a vehicle by radio and 

was able to start the engine, shift the gears and activate the horn successfully (Dormehl and 

Edelstein 2018, Narayanan et al. 2020). With the untiring advancement of research and ma-

turity of the implementation of computers and wireless communication in the sector of trans-

portation, the development of AVs have made noteworthy accomplishments since then (Liu et 

al. 2019).  

Introduction of AVs in the transportation and mobility, is the revolutionary point in road traffic 

and the automotive sector where it plays a strong role in solving existing and potential future 

transportation and environment associated challenges. It is agreed globally that AVs replace 

the human driving to save the time which transform the everyday driving time to other activities 

i.e. last moment preparation or attending an online meeting. One can enjoy a movie in the 

motorway or can take a power nap while traveling. The hassles of safe motor movements (Liu 

et al. 2018b) and car parking after reaching the destination will be rerouted to autonomous 

technologies (KPMG 2012). Manufacturers and researchers indicate, on many occasions, that 

the AVs assure higher safety and user convenience to humans (Bohm and Häger 2015). Ac-

cording to Morando et al. (2018), AVs are predicted to decrease road crashes because most 

of them are originated from human-errors. Moreover, AVs offer congestion reduction, environ-

ment-friendly operations and increment of road capacity (Pierre-Jean Rigole 2014) by platoon 
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building ability, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications 

which enable several additional comfort in the motorway i.e. by reducing vehicle stops at in-

tersections etc (Li et al. 2015). The demand for AVs worldwide is increasing dramatically which 

indicates the future of the global AVs market. Both existing and new industries are concen-

trating development and implementation of autonomous vehicles for their coming market de-

mand. Figure 1.1 overviews how existing traditional car manufacturers of developed and de-

veloping countries are gradually moving towards AV technologies.  Tech-giant countries, like 

China and South Korea, are accelerating the development of AV by introducing many new AV 

focused companies.  

 

Figure 1.1 Leading countries of the C/AV industry (Deloitte 2016) 

The descriptive year basis forecast visualized by Motamedidehkordi et al. (2017) on the ex-

pected share of automated vehicles in the German passenger is shown in Figure 1.2 (Motame-

didehkordi et al. 2017). This illustration shows a rough idea of the duration of the transition 

period and the implementation of automated vehicle technologies. The estimation shows that 

the share of automated vehicles will start to increase considerably from 2020 onwards but 

may still be lower than 25% of the entire vehicle by 2030 in the German market. 
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Figure 1.2 Forecast of the share of automated vehicles in Germany (Motamedidehkordi et al. 2017) 

The  AV with connectivity features are called Connected and Autonomous Vehicle (CAV) 

which is considered as a key agent of the transportation of future and the Cooperative Intelli-

gent Transport System (C-ITS) (Alonso R. M. et al. 2017). According to Makridis et al. (2018), 

in upcoming decades, the transport industry will experience an immense change in preparing 

for Connected and Autonomous Vehicles (CAVs), which will be the reason of the drastic trans-

formation of today’s transportation and mobility patterns (Makridis et al. 2018). 

The worldwide market of AVs is expected to reach up to 125 million passenger cars with em-

bedded connectivity by 2022 which is a strong indication towards the upcoming connected 

transportation era (Millman 2018). The automobile industry has taken the cooperative adaptive 

cruise control (CACC) and the adaptive cruise control (ACC) as very essential technologies 

which are needed to be implemented in the primary phase of autonomous driving and con-

nected vehicle development. It has direct influences over travel experiences. ACC and CACC 

logic can be used for successful representation of the behaviour of AVs and CAVs respectively 

(Makridis et al. 2018). As a result, effective simulator for the transportation impact evaluation 

of these major changes are important (Makridis et al. 2018, Liu et al. 2018a).  

To visualize the impacts of AV and CAV in the current transportation system, before real-world 

implementation, microscopic traffic simulations can be used with some expert touches. As per 

Nilsson (1993), simulation is a widely implemented tool for studying the transportation system 

which investigates several research questions. He added that compared to other methodolo-

gies, simulation technique is more efficient and faster approach to obtain traffic data (Nilsson 

1993). Past few decades were golden era of the microscopic traffic simulation. Critical states 

where investigation became expensive, complicated, time-consuming, non-scalable and risky, 

the microscopic traffic simulation has proven itself unparallelly suitable for insight views (Park 

and Qi 2005). Worldwide microscopic traffic simulators are being utilized to predict and to 

depict the characteristics of AVs and CAVs because of ease of use, capability to implement 
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unrealistic models and multiple scenario management. Diversities in automation functions, 

sensor equipment, and driving logics can create differences in the simulation models. The 

microscopic traffic modelling techniques depend on the scope of functionalities which the ve-

hicles can offer in today’s time or in future (Sukennik 2018). PTV VISSIM is a popular micro-

scopic simulator from PTV group which can be applied as a powerful simulator to deal with 

different transportation problems (PTV 2011). Currently, thousands of engineers and re-

searchers are using PTV VISSIM to simulate the complex traffic problems worldwide.  

In any traffic simulator, the driving behaviour parameters play deciding roles to represent the 

reality in the simulation models. One great advantage of CAVs among many is that these 

vehicles travel and exchange information with other entities i.e. vehicles, infrastructure, or 

traffic systems which makes the reaction time quite shorter comparatively with the human-

driven vehicles and the safety headways can be shorter. Short spatial distances between two 

successive road agents increase the road capacity. Other advantages such as interaction with 

infrastructures result in early warning of accidents, congestion, or natural calamities, play a 

vital action in the use of travel time efficiently. These behaviours need to be reflected in the 

simulation model to perceive what will be the impact in the real world (Makridis et al. 2018).  

This thesis is organized to meet and accelerate research goals of a research project of Chair 

of Transportation Systems Engineering (TSE) of Technical University of Munich (TUM), titled 

HumAV - Human-like Autonomous Vehicles. This project has a predominated thought that 

AVs will act with human-driven vehicles as like them which is valid for this thesis as well. As 

per different driving modules i.e. aggressive, normal, and safe, the driving behaviour parame-

ters need to determine for the connected and/or autonomous vehicles (C/AVs) (Sukennik 

2018), representing three different pattern of human driving styles, makes it human-like C/AVs. 

Vehicles will choose from their allowable range of parameters to follow as per its governing 

driving modules. These driving modules can be selected directly by the users or by the exter-

nal communications i.e. Vehicle-to-Vehicle  (V2V), Vehicle-to-Infrastructure (V2I), and emer-

gency states. The road and traffic reaction of these modules varies severely. The aggressive 

driving module can have less safe distance with higher acceleration while a safe driving mod-

ule is not allowed to reduce the safe distance lower than the allowable limit (Zeidler et al. 2018, 

Atkins 2016, Sukennik 2018). 

The total process for preparing and implementing a model in microscopic simulator consists 

of several major steps what characterize the model analytically (Wunderlich et al. 2019). The 

outcomes of microscopic traffic simulator are highly influenced these steps. The number of 

required simulation runs taken in the process, has significant role in the outcomes of the sim-

ulator (Zeidler et al. 2018). Transportation and traffic researchers consider traffic as the 

https://www.nhtsa.gov/technology-innovation/vehicle-vehicle-communication
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stochastic and dynamic event which is created from activities and reaction evolved from the 

acting active traffic agents while some external factors influencing the system out of the grid. 

The traffic simulation models must include these governing behaviours because they rely on 

random variables and samples originated from random distribution to simulate the agent de-

cisions in the model i.e. lateral manoeuvres. According to traffic flow simulation experts, such 

need of multiple runs to get reliable consequences is a drawback. One needs to make the 

negotiation between reliable results and computational efforts (Antoniou and Wagner 2014). 

That’s why the least number required of simulation run is a bargaining issue in any microscopic 

traffic simulation project. Although several approaches and hypothesis are found to obtain the 

minimum number of the simulation run, a confidential interval based equation is preferred 

worldwide to identify the least number of runs required for an accepted closeness of simulation 

results with the real-world data (Antoniou and Wagner 2014, Research, Development and 

Technology, Turner-Fairbank Highway Research Center 2004). 

After deciding the required number of runs, the calibration and validation come to the light. 

They have essential role in microscopic traffic flow simulation. To obtain greater fidelity and 

credibility in the microscopic traffic model, the calibration and the validation are performed. 

Different microscopic parameters i.e. car following, lane merging, and lane changing parame-

ters can be used to perform the calibration and validation (Dadashzadeh et al. 2019b). As per 

previous studies, in past times, most calibration actions have implemented on the informal 

practices, and demonstrate a stepwise methodology and instruction for the calibration and 

validation of microscopic traffic models (Park and Qi 2005). Currently many advanced algo-

rithms are being used to calibrate the models before performing scenario simulations (Yu and 

Fan 2017b, Vasconcelos et al. 2014, Hussain et al. 2017, Dadashzadeh et al. 2019a, Qurashi 

et al. 2019b, Qurashi 2018, Dadashzadeh et al. 2019b).  

From previous studies, it is anticipated that C/AVs will demonstrate an increment in traffic 

performance and a lowering of emissions and energy consumption (Makridis et al. 2018, Mat-

tas et al. 2018). Travel time, delay time and speed, what other studies used for such traffic 

performance exploration (Atkins 2016), can be used  to traffic performance investigation for 

this study as well. Furthermore, the plug-in, EnViVer can be used for calculating the emission 

to assess the environmental impact for such studies. To perceive the safety implications of 

C/AVs, VISSIM and Surrogate Safety Assessment Model (SSAM) need to collaborate to find 

the number of potential conflictions from the simulated data and vehicle trajectories.  

The outcomes of this study will demonstrate how human-like C/AVs impact over the traffic, 

emission and safety aspects in the traffic. Furthermore, it will visualize the interactions of 
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different driving behaviour parameters of AVs in the traffic performances using sensitivity anal-

ysis platform.  

1.2 Research objective 

The first objective of this thesis is to investigate over the impact of human-like C/AVs in the 

mixed traffic in the urban corridor. To obtain this objective three different driving modules (i.e. 

aggressive, normal, and safe module) for C/AV will be examined for different HV-AV-CAV ratio 

for three different traffic flow (i.e. peak hour traffic demand, 20% below peak hour traffic de-

mand and 20% above peak hour traffic demand). The second objective is to examine over the 

interactions of the driving behaviour parameters of the AVs in the traffic performances. 

1.3 Research questions 

The following research questions are going to be explored to achieve the objectives of this 

thesis: 

-  What will be the impact in the urban network, if HVs are gradually replaced by the C/AVs, in 

terms of traffic, environment and safety concerns?  

- What driving behaviour parameters of AVs play significant roles in the traffic performances? 

1.4 Expected contributions 

This thesis contributes to the knowledge of methodological and practical level in the following 

directions: 

• It gives a platform to perceive how several driving parameters of HVs can be consid-

ered for different driving modules of C/AVs in microscopic traffic flow simulator  

• It identifies how human-like AVs impact over the traffic performance, emission and 

safety 

• It proposes the interactions of driving behaviours parameters of AVs in the traffic per-

formance 

1.5 Structure 

This report contains six main chapters.  

• Chapter 1 introduces the background and motivation of the research and study goals. 

It also indicates give an outline of the expected contributions to the future studies.  

• In Chapter 2 is a collective discussion of literature focusing microscopic simulation 

approaches and different pre-simulation activities such as calibration and validation 
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works. In latter part, it demonstrates C/AV modelling approaches along with different 

evaluation measures, used by other researchers.  

• Chapter 3 illustrates the methods and approaches followed for executing this study.  

• Chapter 4 presents the details of the experimental setup developed to meet the study 

goals. 

• Chapter 5 contains the analysis results obtained from the experiments, mentioned in 

chapter 4. The impact of human-like C/AVs in the mixed traffic and interactions of the 

driving parameters of AVs are explored to perceive the importance of presence of the 

automation in the mixed traffic.  

• Finally, chapter 6 provides a summary of the report as well as limitations and possible 

future work of the thesis. Figure 1.3 shows the flowchart of the overview of this thesis. 
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2 Literature review 
In this chapter, reviews of previous studies relevant to this thesis are discussed. The entire 

chapter is divided into three main sections. In the first section, the general procedures and 

different components of microscopic traffic simulations are evinced that are repeatedly found 

to help plan the simulation during the literature review. The second section contains a diverse 

overview of driving behaviour models, followed by an illustration of the different driver behav-

iour models found in the PTV VISSIM interface. In the last section, a summary of earlier stud-

ies on microscopic C/AV simulation and their findings are explored which are developed and 

tested using different microscopic traffic simulator i.e. SUMO (Simulation of Urban Mobility) 

developed by the Institute of Transportation Systems at the German Aerospace Center. 

2.1 Microscopic traffic simulation 

The progression of microscopic traffic simulation techniques of the last few decades is accel-

erating the computational capacity faster than ever before (Maheshwary et al. 2018). The 

modern data collection and data management have strong influences over intelligent trans-

portation system (Antoniou et al. 2011a). The researchers of different fields are getting im-

mense opportunity to gain both the micro and macro-level insight of the scientific investigations 

by the simulation models. Traffic Engineers and researchers all over the world have chosen 

microscopic flow simulation because, by nature, microscopic simulation is robust and easier 

to implement. Microscopic Traffic simulation is considered globally a pioneer tool to solve 

transportation and mobility challenges (Hussain et al. 2017). While the field tests are found to 

be restrained into the legal and financial matter, microscopic traffic flow simulation is found to 

be economical and flexible by its methodology which can analyze and evaluate transportation 

system and most importantly traffic conditions with higher precision under proper jurisdiction 

(Rakha et al. 1996). The microscopic model collects detailed information on vehicle move-

ments and interactions on a temporal basis which gives a precise representation of transpor-

tation interactions in the real world. Proper microscopic simulation demands several parame-

ters to be finalized before performing the concluding run (Federal Highway Administration 

2004). 

The calibration and validation processes are an indispensable and crucial stage in the micro-

scopic traffic simulation. To control traffic flow characteristics and behaviors, the microscopic 

flow simulation software comes with many driving behaviour parameters. These parameters 

are set to the average or a reasonable value (Park and Schneeberger 2003). Number of pa-

rameters can be nominated to perform the calibration and validation for a microscopic model. 

Sometimes these internal parameters cannot be harvested directly from the real world but can 

be selected using calibration and validation procedures only for creating special components 



Literature Review 

11 

 

in the simulation environment i.e. vehicle type from future. The process of selection of these 

inner parameters is drastically shifting from manual methodology to automatic selection pro-

cesses making the process dynamic (Maheshwary et al. 2018, Prakash et al. 2018, Zhang et 

al. 2017, Qurashi et al. 2019a, Antoniou et al. 2015b, Hale et al. 2015b, Lu et al. 2015, Anto-

niou et al. 2011b, Vaze et al. 2009, Balakrishna et al. 2007a).  

The traffic simulation models show stochasticity because these models utilize random varia-

bles and samples from the random distributions to demonstrate act produced by the simulated 

items of the microscopic models. One disadvantage of such act is that multiple time simulation 

run is needed for collecting committed results (Antoniou and Wagner 2014) which makes the 

investigation of number of required simulation, a principal step in microscopic traffic simula-

tion. The measure of effectiveness (MoE), also known as measure of performance (MoP) and 

goodness of fit (GoF), are two important topics which are involved to evaluate the calibration 

and validation quality. Proper scientific understanding and explanations are needed over 

choosing the MoE and GoF for a microscopic traffic simulation (Antoniou and Punzo 2014).  

2.1.1 Number of required simulations run 

The traffic flow is a stochastic and dynamic event by nature. It is upshot of activities of the 

many agents, along with various external occurrences (Antoniou and Wagner 2014). Accord-

ing to Antoniou and Wagner (2014), the microscopic models use the random variables and 

sample from random distribution. As a result, the models act stochastically what are repre-

sented in the simulation. The big con of this event is that several runs of the simulation are 

required to gain trustworthy outcome.  Single run is dangerous and significantly misses other 

possibilities in the simulation (Antoniou and Wagner 2014). Executing several runs and aver-

aging their outcomes move the result quality towards the expected values of the real distribu-

tions. The random number seed is used to select numbers in serial that are imposed to make 

many decisions in entire model run (Federal Highway Administration 2004, PTV 2011).  

It is unpredictable to know the number of runs needed to finalize by any statistical value to 

satisfy the statistical expectations. A few runs can help to know how many runs might be 

needed to achieve statistically valid results. One straight plan is that the total number of the 

run better be increased as the standard deviation of a set of simulation runs is higher, found 

from initial test. A proper number of recurrences are selected considering the level of signifi-

cance of the desired results and the permissible percentage error of the estimation (Antoniou 

and Wagner 2014). Table 2.1 shows different approaches to calculate number of required 

simulations run.  
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Sl. Equation Previous Studies 

1 n = (
𝑠∙𝑡∝

2⁄

𝜇×𝜀
)2 (Florida Department of Transportation 2014, Chu et al. 2003, Hollander and 

Liu 2008) 

2 n = (
𝑠∙𝑧

𝐸
)2 (Dowling et al. 2004a, Virginia Department of Transportation 2013) 

3 n = (2∙ 𝑡0.025,𝑁−1 ∙
𝑠

𝑅
)2 (Dowling et al. 2002, Dowling et al. 2004b, Oregon Department of Transpor-

tation 2011, Washington State Department of Transportation 2014, Transport 

Roads & Maritime Services 2013, Dowling et al. 2004a) 

4 n = (
𝑠∙𝑧

𝜇∙𝜀
)2 (Nevada Department of Transportation 2012) 

Table 2.1 Model Run Statistical Equations 

Where, n = minimum sample size, s = standard deviation of modeled data,   ε = acceptable 

error, E = acceptable error (same units as performance measure used), z = z – statistic from 

a normal distribution (95% use 1.96), t∝
2⁄
 =  t – statistic from student’s – distribution for 2 – 

tailed test (n-1 degrees of freedom), μ = mean of performance measure used, R = confi-

dence interval f or true mean (Transport Roads & Maritime Services 2013) considers R =

 1 2⁄  precision (%) ∙ μ 

Widely accepted standard equation of number of simulation runs proposed by US depart-

ment of transportation (Federal Highway Administration 2004):  

CI1-α% =2*t(1-α/2), N-1
𝑆

√𝑁
 

(2.1) 

Where, CI(1- α) %=(1- α)% confidence interval for the true mean, where alpha equals the proba-

bility of the true mean not lying within the confidence interval, t (1-alpha/2), N-1= Student’s statistic 

for the probability of a two-sided error summing to alpha with N-1 degrees of freedom, where 

N equals the number of repetitions and S= Standard deviation of the model results 

The simple and straightforward approach of deciding the minimum required number of simu-

lation could be taking 10 simulations run with different random of seed (Federal Highway Ad-

ministration 2004, Dowling et al. 2002, Oregon Department of Transportation 2011, Virginia 

Department of Transportation 2013, Florida Department of Transportation 2014, Nevada De-

partment of Transportation 2012). Besides that 5 runs (Truong et al. 2016, MnDOT 2008), 11 

runs (Washington State Department of Transportation 2014) and even 20 runs can be also 

seen (Transport Roads & Maritime Services 2013).  

Before determining the required number of simulations, one need to finalize the measure of 

effectiveness (MoE) for this test. The MoE plays significant role in the determination of re-

quired number of simulations. Different agencies have different choice of MoEs. Table 2.2 

shows measure of effectiveness used by several agencies to choose number of simulations.  



Literature Review 

13 

 

Sl. Measure of Effectiveness Agencies 

1 Total traffic volume (Florida Department of Transportation 2014, Washington State Depart-

ment of Transportation 2014, Nevada Department of Transportation 

2012) 

2 Total vehicle hours traveled (Transport Roads & Maritime Services 2013) 

3 Speed (Dowling et al. 2004a, Florida Department of Transportation 2014, Ne-

vada Department of Transportation 2012) 

4 Travel times along a corri-

dor 

(Florida Department of Transportation 2014, Oregon Department of 

Transportation 2011, Washington State Department of Transportation 

2014) 

5 Average vehicle delay (Oregon Department of Transportation 2011) 

Table 2.2 Measure of Effectiveness for determining required number of simulations 

Furthermore, some agencies prefer to determine the required number of simulations by two 

MoE (Nevada Department of Transportation 2012).  

2.1.2 Calibration  

2.1.2.1 Algorithms 

An effective calibration plays a vital role in microscopic traffic simulation for getting useable 

and trustworthy results from the model. Model preparation can be divided in three stage in 

model into three steps: 1. Base Model Development 2. Calibration of the Base Model and 3. 

Model Validation (Hussain et al. 2017). The base model development stage provides the in-

puts for the calibration stage. It also deals with proper selection of the size of the focus region, 

preconditions for data collection, and time interval selection. Some circumstances can be pre-

cisely avoided during building the base map by selecting the focus areas appropriately such 

as covering important locations such as intersections, bottlenecks (Hussain et al. 2017).  

The researchers of the traffic microscopic simulation field used to rely for a long time on the 

trial and error based procedures to calibrate the simulation model which used to be a tiresome 

and time-consuming phase in the traffic flow modelling study (Mehar et al. 2014). This opera-

tion consists of using default values for the unique calibration parameters by trial and error to 

match the real-world data, the measure of effectiveness (MoE) (Park and Schneeberger 

2003). Last few years, can be considered as a golden time for calibration as several pioneer 

studies have been carried out to bring more insightful methodologies to perform the calibration 

process faster, with higher reliability and efficiency to deal with great numbers of calibration 

parameters, which have drawn a guideline plan for the modern day’s researchers (Park and 

Schneeberger 2003, Park and Qi 2005, Hourdakis et al., Jobanputra and Vanderschuren 

2012). Over the year, Calibration procedures have shifted from single time-consuming manual 

calibration to efficient automated processes what ultimately make the model more realistic and 

accurate for the researchers and engineers (Manjunatha et al. 2013, Maheshwary et al. 2018).  
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The methodology of calibration and validation quite shaped differently now what was unimag-

inable before (Brackstone et al. 2012). Currently, various optimization methods have been 

implemented to reduce the difference between the real-world data and simulated outputs (Da-

dashzadeh et al. 2019b) which include Genetic Algorithm (GA) (Chiappone et al. 2016, Men-

neni et al. 2008a, Strnad I, Kim et al. Washington, D.C., 2005, Park and Qi 2005, S.M.P. 

Siddharth and Ramadurai 2013, Manjunatha et al. 2013, Dowling et al. 2004b, Liu Yu et al. 

2006 BRT Special Edition), Simultaneous Perturbation Stochastic Approximation (SPSA) 

(Spall, J., C. 1998a, 1998b) or Principal Components - Simultaneous Perturbation Stochastic 

Approximation (PC-SPSA) (Qurashi et al. 2019b) or Weighted Simultaneous Perturbation Sto-

chastic Approximation (W-SPSA) (Hale et al. 2015a, Qurashi et al. 2019b, Qurashi 2018, An-

toniou et al. 2015a), Particle Swarm Optimization (PSO) (Boittin et al. 2015), OptQuest/Mul-

tistart (OQMS) (Ciuffo et al. 2008), Evolutionary Algorithms (EA) (Menneni et al. 2008b) and 

mixture of different of optimization techniques (Ma et al. 2007, Yu and Fan 2017a). SPSA was 

introduced as a random search stochastic approximation algorithm. It is also a gradient-free 

algorithm which requires a fixed number of objective function evaluations per iteration to ap-

proximate the gradient (Spall, J., C. 1998a, 1998b). In contrast to the SPSA, the Finite Differ-

ence Stochastic Approximation (FDSA) follows the linear searching method to find the opti-

mum. It needs FDSA less iteration, but more time is required than the SPSA. Therefore, FDSA 

is not suitable for a bigger network. SPSA on the other hand, works on a random search. It 

needs less time but more iteration to find the optimum. Now the problem is FDSA’s computa-

tional effort increases exponentially with increasing problem dimensions and the SPSA will 

add inaccuracies and converges using a greater number of iterations but will perform better in 

terms of time and computational effort (Spall, J., C. 1998a, 1998b, Balakrishna et al. 2007b). 

FDSA provides more accurate gradient approximation than SPSA. SPSA will just add more 

inaccuracies and will increase the number of iterations. SPSA has some issues with its nature. 

To deal with the SPSA limitations, two other SPSA provisions have been practiced. PC-SPSA 

can be used to reduce the network size and complexity. Two major differences of PC-SPSA 

are: instead of the OD flow vector its PC scores are perturbed and instead of addition and 

subtraction the gain sequences are multiplied as a percentage change in  (Qurashi et al. 

2019b, Qurashi 2018). The W-SPSA, on the other hand, deals with the SPSA total network 

characteristics using weighted factor. When a point of location is important and it does not 

affect the total network, the interest location should be given more emphasis on the operation. 

It is found to be best in situations where the correlations body of variables is not homogeneous 

(Spall, J., C. 1998a, 1998b).  This is what W-SPSA deals with. It extends the SPSA with a 
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weight matrix which reflects the temporal and spatial network correlations (Antoniou et al. 

2015a).  

2.1.2.2 Parameters 

Several researchers encountered several different calibration parameters based on different 

optimization procedures, the number of calibration parameters, the composition of the vehi-

cles, and purposes of the simulation models i.e. alternative measures planning or road safety 

evaluation. A big number of researches from the past were conducted for human-driven vehi-

cles hence covering all the human behaviours in the street. Therefore, in most of the cases, 

simulation models were reflecting the selection of similar kinds of parameters for the calibra-

tion. Perhaps, some previous studies helped much to gain an insight of Automatic vehicle and 

Autonomous vehicle in the microscopic simulation (Atkins 2016, Bagloee et al. 2016, Calvert 

et al. 2017, Trommer et al. 2016, Davidson and Spinoulas 2016, Sukennik 2018). Table 2.3 

shows the PTV VISSIM user manual suggests several driving behaviours attributes for differ-

ent kinds of networks. 

Sl. COM VISSIM Parameters Parameter Description 

Range (Da-

dashzadeh et 

al. 2019b, PTV 

2011) 

Default (PTV 

2011) 

General Parameters 

1 LookBackDistMax Max. Look back distance [m]  50-200 150 

2 LookBackDistMin Min. Look back distance [m]  0-200 0 

3 LookAheadDistMax Max. ahead back distance [m]  100-300 250 

4 LookAheadDistMin Min. ahead back distance [m]  0-300 250 

5 NumInteractVeh Number of interaction vehicles 0-99 99 

6 StandDist Standstill distance in front of static obsta-

cles [m] 

0,00-3,00 0,50 

7 FreeDrivTm Free driving time [s] N.A 11,0 

8 IncrsAccel Increased Acceleration [m/s2] 1,0-9,99 1,0 

9 MinCollTmGain Minimum collision time gain [s] N.A 2 

10 MinFrontRearClear Minimum clearance (front/rear) [m] N.A 0,5 

11 SleepDur Temporary lack of attention - sleep dura-

tion 

N.A 0,0 

Lane-changing model parameters 

12 DecelRedDistOwn Reduction rate for Leading (own) vehicle 

[m] 

100-200 200,00 

13 AccDecelOwn  Accepted deceleration for leading (own) 

vehicle [m/s2] 

-3 to -0.5 -1,00 

14 AccDecelTrail Accepted deceleration for following (trail-

ing) vehicle [m/s2] 

N.A -0,50 



Literature Review 

16 

 

Wiedemann 99 car-following model parameters   

25 W99CCO Desired distance between lead and follow-

ing vehicle [m] 

0,60 -3,05 1,50 

26 W99CC1DISTR Headway Time [s]  

Desired time between lead and following 

vehicle  

0,50 - 1,50 0,90 

27 W99CC2 Following variation [m] 

Additional distance over safety distance 

that a vehicle requires  

1,52 - 6,10 4,00 

28 W99CC3 Threshold for entering following state [s] 

Time is second before a vehicle start to de-

celerate to reach safety  

distance (negative) 

-15,00 to -4,00 -8,00 

29 W99CC4 Negative "following Threshold"[m/s] 

Specifies variation in speed between lead 

and following vehicle 

-0,61 to -0,03 -0,35 

30 W99CC5 Positive "following Threshold"[m/s] 

Specifies variation in speed between lead 

and following vehicle 

0,03 -0,61 0,35 

31 W99CC6 Speed dependency of oscillation [1/ms] 7,00-15,00 11,44 

32 W99CC7 Oscillation Acceleration  

Acceleration during the oscillation pro-

cess[m/s2] 

0,15-0,46 0,25 

33 W99CC8 Standstill Acceleration [m/s2] 2,50-5,00 3,50 

34 W99CC9 Acceleration with 80 Km [m/s2] 0,50-2,50 1,50 

Lateral manuever parameters  

35 LatDirChgMinTm Lateral direction change - minimum time [s] N.A 0,0 

36 LatDistDrivDef Lateral minimum distance at 50 km/h (de-

fault) 

N.A 1,0 

37 MinSpeedForLat Minimum longitudinal speed for lateral 

movement 

N.A 1,0 

Table 2.3 Selected driving behaviour parameters with their default values (PTV 2011, Dadashzadeh et al. 2019b) 

 

 

15 SafDistFactLnChg Safety distance reduction factor 0,10-0,6 0,60 

16 CoopDecel Max. deceleration for cooperative lane-

change/braking [m/s2]  

-6,00 to -3,00 -3,00 

17 MaxDecelOwn Max. deceleration for leading (own) vehicle 

[m/s2]  

N.A -4,00 

18 MaxDecelTrail Max. deceleration for following (trailing) ve-

hicle [m/s2]  

N.A -3,00 

19 DecelRedDistTrail Reduction rate for following (trailing) vehi-

cle [m] 

N.A 200,00 

20 PlatoonFollowUpGapTm Platooning - follow-up gap time [s] N.A 0,60 

21 PlatoonMinClear Platooning - minimum clearance [m] N.A 2,00 

Wiedemann 74 car-following model parameters 

22 W74ax Average standstill distance  0,50 -2,50 2,000 

23 W74bxAdd Additive Factor for security distance  0,70 -4,70 2,000 

24 W74bxMult Multiplicative factor for security distance  1,00 -8,00 3,000 
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2.1.3 Validation 

Validation validate the model to investigate if it can provide reasonable results for other inputs 

for the same parameters (Aziz 2018, Park and Won 2003). As per Toledo (2014) the validation 

is the procedure of inspection, which inspect over the model to study if it can perceive the 

impact of the changes in the system and its inputs. Although the use of microscopic simulator 

is getting popularity, still validation does not get much attention in the scientific records (Anto-

niou et al. 2014). As per Antoniou et al. (2014), user should know simulation models are esti-

mation of actuality that cannot represent the real world precisely. It means perfectly valid 

model is not a real thing. Such models are created for specific tasks to satisfy specific goals, 

which are needed to be validated by representative measure of effectiveness (Antoniou et al. 

2014).     

Two types of approaches are being used for validating the models:  visual and statistical (Rao 

and Owen 2000). Visual representation use graphics to compare the real-world survey data 

with the generated data. A time-space diagram can be a good example of visual method of 

validation. Such a heuristic and subjective approach is often inspected by specialist to visually 

determine if the model is validated or not. In contrary, the statistical validation implements 

concept of goodness of fit, confidence intervals, and other statistical tests to measure the 

similitude of the real-world survey data with the generated data (Antoniou et al. 2014). 

2.1.4 Selection of Measures of Effectiveness (MoE) 

Choosing the appropriate measures of effectiveness (MoE) is a vital step in the calibration and 

validation process. Measures of effectiveness are the selected parameters for the comparison 

of simulation results and the field survey data. There are different measures of effectiveness 

that change with controllable and uncontrollable parameters of the simulation.  Travel time, 

traffic volume, delay time and speed are very common measures of effectiveness for calibra-

tion study. Calibration and validation should have different measures of effectiveness for cre-

ating a justified and reliable model for future use (Mahmud, S., M., S. et al. 2019, Fransson 

2018, Maheshwary et al. 2018, Hussain et al. 2017, Dadashzadeh et al. 2019c, 2019b).   

2.1.5 Goodness of fit (GoF) 

The goodness of fit (also known as the measure of performance - MoP) of a statistical sys-

tem specify how well it fits to the observations. The measures of goodness of fit point out the 

difference between real-world data and the simulation data.  Researchers take more than one 

goodness of fit parameters to describe the performance of the model because of the scope of 

the GoF (Toledo 2003, Yu and Fan 2017b, Toledo and Koutsopoulos 2004). Some repeatedly 

used parameters are the root-mean-square error (RMSE), the root-mean-square percent error 
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(RMSPE), the mean error (ME), and the mean percent error (MPE) (Toledo and Koutsopoulos 

2004). Table 2.4 shows that recurred used goodness of fit from previous studies.  

Sl. Name of the parameter Fitness Function Previous Studies 

1 

Normalized Root Mean 

Square Error (RMSN) RMSN=
√𝑁.∑ (𝑌𝑛

𝑜𝑏𝑠−𝑌𝑛
𝑠𝑖𝑚)2𝑁

𝑛=1 

∑ 𝑌𝑛
𝑜𝑏𝑠𝑁

𝑛=1
 , 

(Antoniou et al. 2013, Pa-

pathanasopoulou and An-

toniou 2015) 

2 

Root Mean Square 

Percentage Error (RMSPE) 
RMSPE = √

1

𝑁
.∑ (

𝑌𝑛
𝑠𝑖𝑚−𝑌𝑛

𝑜𝑏𝑠

𝑌𝑛
𝑜𝑏𝑠

)2
𝑁

𝑛=1

 
(Antoniou et al. 2013, Pa-

pathanasopoulou and An-

toniou 2015, Toledo 2003) 

3 

Root Mean Square 

Error (RMSPE) 
Minimize Z (RMSE)=√

1

𝑁
∑ (𝑆𝑜𝑏𝑠1 − 𝑆𝑠𝑖𝑚1)

2𝑁
𝑖=1  

(Dadashzadeh et al. 2019c, 

Toledo 2003, Dadashza-

deh et al. 2019b) 

4 

Mean Absolute Normalized 

Error (MANE) 
Minimize Z (MANE) =

1

𝑁
∑ (

|𝑉𝑜𝑏𝑠1−𝑉𝑠𝑖𝑚1|

𝑉𝑜𝑏𝑠1
+𝑁

𝑖=1

|𝑆𝑜𝑏𝑠1−𝑆𝑠𝑖𝑚1|

𝑆𝑜𝑏𝑠1
) 

(Dadashzadeh et al. 

2019b, Dadashzadeh et al. 

2019d) 

5 

Mean Error (ME) ME=
1

𝑁
∑ (𝑌𝑛

𝑠 − 𝑌𝑛
𝑜)𝑁

𝑛=1  (Toledo 2003) 

6 

Mean Percentage Error (MPE) MPE= 
1

𝑁
∑ [

𝑌𝑛
𝑠−𝑌𝑛

𝑜

𝑌𝑛
𝑜 ]𝑁

𝑛=1  (Toledo 2003) 

7 Theil’s 

U=
√
1

𝑁
∑ (𝑌𝑛

𝑠𝑖𝑚−𝑌𝑛
𝑜𝑏𝑠)2𝑁

𝑛=1

√1
𝑁
∑ (𝑌𝑛

𝑠𝑖𝑚)2𝑁
𝑛=1 +√1

𝑁
∑ (𝑌𝑛

𝑜𝑏𝑠)2𝑁
𝑛=1

 

UM=
(𝑌̅𝑛

𝑠𝑖𝑚−𝑌̅𝑛
𝑜𝑏𝑠

1

𝑁
∑ (𝑌̅𝑛

𝑠𝑖𝑚−𝑌̅𝑛
𝑜𝑏𝑠)2𝑁

𝑛=1

 

US =
(𝛔𝑠𝑖𝑚−𝛔𝑜𝑏𝑠)2

1

𝑁
∑ (𝑌̅𝑛

𝑠𝑖𝑚−𝑌̅𝑛
𝑜𝑏𝑠)2𝑁

𝑛=1

 

UC=
2(1−𝑝)𝛔𝒔𝒊𝒎𝛔𝒐𝒃𝒔

1

𝑁∑ (𝑌̅𝑛
𝑠𝑖𝑚−𝑌̅𝑛

𝑜𝑏𝑠)2𝑁
𝑛=1

 

(Papathanasopoulou and 

Antoniou 2015, Antoniou et 

al. 2013, Toledo 2003) 

8 Global Relative Error (GRE) GRE=
∑ |𝑄𝑟𝑒𝑎𝑙−𝑄𝑠𝑖𝑚|
𝑛
𝑖=1

∑ 𝑄𝑟𝑒𝑎𝑙
𝑛
𝑖=1

 (Ma and Abdulhai 2002, 

Park and Qi 2005) 

9 GEH statistics 
GEH=∑ √∑ (𝑉𝑖 − 𝑉𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑−𝑖)

2𝐼
𝑖=1

𝑇
𝑡=1  

(Paz et al. 2012) 

10 Percentage error (PE) 𝛿 = |
𝜐𝐴 − 𝜐𝐸
𝜐𝐸

| ∙ 100% 
(Park and Qi 2005) 

Table 2.4 Repeatedly used Goodness of fit in previous studies (Antoniou et al. 2013, Papathanasopoulou and Antoniou 2015, 

Dadashzadeh et al. 2019c, Toledo 2003, Ma and Abdulhai 2002, Paz et al. 2012, Park and Qi 2005, Dadashzadeh et al. 2019b, 

Dadashzadeh et al. 2019d) 
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Toledo and Koutsopoulos (2004) demonstrate that the percent error visualizes directly details 

of the magnitude of the errors correspond to the average measurement. On the other hand, 

RMSE and RMSPE penalize greater errors at a higher rate correspond to the small errors 

(Toledo and Koutsopoulos 2004). The mean error (ME) and the mean percent error (MPE) 

statistics show the presence of order under-prediction or over-prediction in the simulated out-

comes (Toledo 2003). As per (Toledo 2003), the mean error parameters are handy when im-

posed separately for single point measurements in the space. Moreover, it gives the percep-

tion of the spatial distribution of errors. On the other hand, percent error parameters measure 

their absolute error counterparts because it comes up with details of the magnitude of the 

errors relative to the average measurement (Toledo 2003).  

Furthermore, the relative error can be seen from Theil's inequality coefficient. U is considered 

as bounded, 0 ≤ 𝑈 ≤ 1. 𝑈 = 0 is considered a good fit between observed and simulated meas-

urements. On the contrary, for 𝑈 = 1 the fit will be taken as worst. Theil's inequality coefficient 

is decomposed to three proportions of inequality: the bias (UM), the variance (US), and the 

covariance (UC) proportions. These three proportions together become 1 i.e. Um + Us + Uc = 

1. This bias proportion shows systematic error. As per Toledo (2003), these two proportions 

need to be kept closer to zero. The covariance proportion analyses the remaining error and it 

should be close to 1  (Toledo and Koutsopoulos 2004, Toledo 2003, Theil 1978).  

2.2 Driving behaviour models 

Globally, driving behaviour are being studied with many diverse approaches. According to 

Toledo (2003) driving behaviour models illustrate drivers’ decisions concerning vehicle ma-

noeuvres under various traffic conditions. These driving behaviour models inspired by traffic 

flow models that impact the vehicle movement in the longitudinal direction, and lane merging, 

and lane changing models, which manipulate the lane selection and gap acceptance behav-

iour (Toledo 2003). In microscopic traffic simulation, driving behaviour models play a serious 

role in what can change the outcomes from the simulation severely. Therefore, researchers 

can perform both conventional and data-driven approaches to improve the competitive quality 

of insight they get from the simulation. Both approaches have their limitations i.e. conventional 

approach is mathematical formulas dependent and reflects the traffic flow theories which 

makes it quite restrictive. In contrast, data-driven approaches are found to be better in terms 

of flexibility. It facilitates bringing additional information in the model but provides lesser insight 

into traffic flow theory than conventional models (Papathanasopoulou and Antoniou 2015).  

The microscopic traffic simulation model has several sub-models that describe driving behav-

iour. Sub-models i.e. car-following model, lane-changing models, and lane-merging form the 
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driver behaviour model in the microscopic traffic simulator (Fransson 2018). As per Gao 

(2008), the outcomes from the traffic simulation model rely significantly on these sub-models. 

Furthermore, Fransson (2018) indicated that not all driving behaviour carry the same weight 

i.e. car-following and lane-changing models are two very important sub-models. However, lat-

eral movements are also significant in microscopic traffic flow simulation and typically it is 

accounted in lane changing models (Fransson 2018).  

2.2.1 Conventional driving behaviour models  

2.2.1.1 Car following models 

Several procedures are available to define the car-following model where the principal goal is 

to represent how the constrained vehicle responds to changes in relative position and speed 

of the leading vehicle in an uninterrupted flow (Fransson 2018).  

Greenshields model 

The fundamental Greenshields model considers a linear relationship between speed and den-

sity where the road traffic flow is continuous. The advanced model covers a parabolic relation-

ship between flow and density, additionally between speed and flow (Fransson 2018). Rakha 

and Crowther (2002) derived from these theories and the set connection between density and 

space headway as below (Rakha and Crowther 2002, Fransson 2018): 

h=
(
𝑢𝑓

𝑘𝑗
)

𝑢𝑓−𝑢
 

(2.2) 

Where h= space headway, 𝑢𝑓= free-flow speed and 𝑘𝑗= jam density 

According to the  Kehoe (2011), validation for this model can be challenging by field obser-

vation as the speed at capacity is equivalent to half the free flow.  

Pipes model 

Rakha and Crowther (2002) explained regarding Pipes’ model, that the follower tries to man-

age a safe distance from the vehicle in front, a distance that is proportional to the speed. The 

equation for Pipes‘model is shown below (Fransson 2018): 

 

𝑑𝑚𝑖𝑛 = [𝑥̇𝑛(𝑡) − 𝑥̇𝑛+1(𝑡)]𝑚𝑖𝑛 = 1.36[𝑥̇𝑛+1(𝑡)] + 20 (2.3) 

Where, 𝑑𝑚𝑖𝑛 = minimum distance headway, 𝑥̇𝑛(𝑡) = speed value of the leading vehicles and 

𝑥̇𝑛+1(𝑡) = speed value of following vehicles 

(Kehoe 2011) mentioned the Pipes model for ease of validation through field data. This model 

takes the speed at the capacity to equal the free-flow speed (Kehoe 2011). 
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Van Aerde model 

The Van Aerde model is a non-linear model which is a combination of Greenshields and Pipes 

models and is being used in INTEGRATION as car-following behaviour. The model formulated 

as (Fransson 2018): 

𝑠𝑛(𝑡) = 𝑐1+𝑐3𝑢𝑛(𝑡 + ∆𝑡)+
𝑐2

𝑢𝑓−𝑢𝑛(𝑡+∆𝑡)
 (2.4) 

Where, 𝑐1, 𝑐2, 𝑐3= constants, 𝑢𝑛= the speed, 𝑢𝑓= free-flow speed and 𝑠𝑛(𝑡) = front to the front 

distance between the vehicles in t time. 

Fransson (2018) mentioned in his study that Kehoe (2011) think that Van Aerde’s model re-

lationship such as speed-flow and the flow-density remain same between the respective 

curves for the Pipes andthe  Greenshields models.  

Gipps model 

As per Fransson (2018), Gipps model is the basic theory behind the car following model act 

in the AIMSUN. It surmises that the speed of the following vehicle can be taken as either 

restricted or unrestricted by the lead vehicle (Fransson 2018). The Gipps car-following model 

is also known as ‘collision avoidance’ models. It ensure the safety distance and receives the 

driving behaviour of the preceding vehicle (Vasconcelos et al. 2014). The idea behind Gipps 

model is that each vehicle drives as per following vehicle speed this is why the following vehi-

cle can safely be stopped when preceding vehicle brake immediately (Ciuffo et al. 2012). 

Gipps model formulation is given below (Busch Winter 18 / 19): 

 

𝑣(𝑡 + 𝑇) = 𝑚𝑖𝑛{𝑣𝑎, 𝑣𝑏} (2.5) 

Where, va = maximum attainable velocity and vb = maximum possible velocity. 

Wiedemann model 

VISSIM offers a psycho-physical based model for car-following behavior, which is suggested 

by Wiedemann in 1974. The Psycho-physical model indicates that the following vehicle reacts 

arbitrarily to a small change of speed of the leading vehicle. It creates a simulation very close 

to the real world. Previous studies show that the driver has a progression of points of confine-

ment for the improvements that will prompt a response (MITROI et al. 2016, Toledo 2003, 

Fransson 2018). The model developed by based on two considerations (MITROI et al. 2016) 

i.e. the driver of the follower vehicle is not affected by the size of the speed difference for long-

distance and a limited speed or distance that points a benchmark and as a result, the driver 

of the following car will not respond for a short distance. The Wiedemann model presumes 

four different driving regions: following, free driving, closing in, or braking. These regions are 
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defined by thresholds (or action-points) that explain the stage where driver changes the driving 

behaviour (Gao 2008, Higgs et al. 2011.). The thresholds of the regions for the Wiedemann 

74 model are shown in Figure 2.1. In Table 2.5, the thresholds and regions for the Wiedemann 

model are detailed explained below by the help of Figure 2.1, the work by Olstam, J. J. and 

Tapani, A. (2004), and PTV (2011). 

 
Figure 2.1 Graphical definition of Wiedemann model (Fransson 2018) 

Wiedemann Threshold Description 

AX Represents the desired distance between two standstill vehicles. 

ABX The minimum following distance between two vehicles that travels 

in approximately equivalent speed. 

SDX Represents the maximum following distance during the same 

speed conditions as ABX. 

SDV The point at which a driver realizes that he is closing in on the vehi-

cle in front. 

CLDV Defines the point at which a driver becomes aware of minor differ-

ences in speed at short, decreasing distances. 

OPDV The point when a driver realizes that he is traveling at a slower 

speed than the vehicle ahead. 

Table 2.5 Threshold definitions for the Wiedemann model (Fransson 2018) 

The details of the regions defined by the thresholds in Table 2.5 can be summarized as: 

Following 

As per Fransson (2018), a driver in this region follows the vehicle ahead and is keeping the 

safety distance relatively constant. When a vehicle accesses the following location by crossing 
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either the OPDV or SDX threshold, it gets a positive acceleration rate. Furthermore, when 

SDV or ABX is passed, the driver receive dismissive acceleration rate (Fransson 2018). 

Free driving 

Usually, the drivers are not confined by any leading vehicles in the free driving areas. As a 

consequence, the driver choose to travel with maximum acceleration rate to meet its desired 

speed (Fransson 2018). 

Closing in 

According to Fransson (2018), the closing in the region take place when the following vehicle 

choose to decelerate to stay away from a possible confliction with a slower vehicle ahead. It 

happens when the SDV threshold is passed (Fransson 2018). 

Braking 

Fransson (2018) mentioned that if the following vehicle is closer to the leading vehicle the 

driver is in the braking region for desired safety distance control. As the spatial distance be-

tween the vehicles is smaller, the driver of the following vehicle decelerates to avoid collision 

(Fransson 2018). In contrary, the Rakha and Crowther (2002)  argue that under steady-state 

conditions, the car-following model in VISSIM transform to become Pipe’s model.  

2.2.1.2 Lane changing 

As per Fransson (2018), lane changing represents the act of a vehicle moving towards an 

adjacent traverse lane from its present lane. Some researchers emphasized that lane chang-

ing plays an important role in microscopic traffic flow simulation (Mathew 2014, Moridpour et 

al. 2010).  As multiple objectives interfere with each other during performing lane change, this 

sub-model becomes difficult to model in the simulator. Fransson (2018) has shown that a 

previous study from Moridpour et al. (2010) holds that lane changing action has a notable 

impact on the traffic flow properties that might be originated from speed and traffic flow oscil-

lations. They added increasing congestion and capacity drop events are prone to generate 

from frequent lane changes (Moridpour et al. 2010, Mathew 2014, Fransson 2018). Mathew 

(2014) and Ramanujam (2007), based on the urge of the lane change, created two groups: 

Mandatory Lane Changes (MLC) and Discretionary Lane Changes (DLC). These two types 

are implemented in CORSIM, INTEGRATION, AIMSUN, and VISSIM (Mathew 2014, Rama-

nujam 2007). According to Mathew (2014), the DLC model has three steps for the stepwise 

decision-making process. The vehicle continuously needs to explore, if the desired lane 

change is worthy or not, and finally detect the gap acceptance requirement. Three steps of 

DLC are demonstrated below: 
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i. The decision to consider a lane change 

Although several factors motivate a road user to perform a lane change, there is always the 

main thought is to improve the user’s driving conditions such as increasing speed (Fransson 

2018). Mathew (2014) denotes that motivation of changing lane can be highly motivated by 

finding out if it is easy for a road user to reach his planned speed within the space gap created 

between two vehicles (Mathew 2014, Fransson 2018).  

ii. Check for the feasibility 

Lane change is considered possible if it can be achieved without any collisions between two 

consecutive vehicles in the traffic. There could be two situations to meet this objective. One 

could be if the vehicle can reach its expected speed within the time frame and space available 

without applying the maximum deceleration. Another reason could be if the lag vehicle in the 

target lane reaches the expected speed and the above deceleration criteria are met (Mathew 

2014, Fransson 2018). 

iii. Gap acceptance 

A gap can be described in time, distance, or speed difference between two platooning vehicles 

for the lane changing. Many models need two sub-gaps before the total gap i.e. lead gap and 

lag gap (Mathew 2014). The lead gap is described as the spatial distance between a vehicle 

and the leader vehicle in the desired lane. On the other hand, the lag gap can be defined as 

a spatial distance between the vehicle itself and the vehicle behind in the desired lane (Frans-

son 2018). Figure 2.2 shows the gap definition. 

 
Figure 2.2 Graphical Representation of Gap definitions (Fransson 2018) 

Mathew (2014) added two other models that are currently being widely used i.e. Forced merg-

ing models and Cooperative models. The Forced merging model represents a scenario where 

the available gap between the vehicle and the lag vehicle on the desired lane is not big enough 

to take a lane change but the vehicle chooses to change lane and forces the lag vehicle to 

decelerate until the gap size is large enough to be accepted. There are two considerations 

taken for this model (1) driver will keep checking the traffic situation in the target lane before 

making the last move (2) driver will keep trying to connect with the lag vehicle to verify if his 

right of way is informed. Once the right of way is accepted, the vehicle will merge with the 
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target lane. If not, the vehicle will repeat (1) and (2) to finalize the right of way (Fransson 2018). 

Cooperative model does not use the concept of gap acceptance. This model is specifically 

helpful for the congested traffic state where acceptable gaps cannot exist. The driver in the 

cooperative system changes the lane by cooperating with other drivers where the lagging 

vehicle in the target lane reduces the speed to cope up to the lane change of the subject 

vehicle (Fransson 2018). 

2.2.1.3 Merging behaviour models 

According to Fransson (2018), merging is a special kind of lane change, which is needed in 

case numbers of lanes are reduced. Such a situation can be seen in the on-ramp areas. Li 

and Sun (2012) depict that such forced merge leads to competitive action between the main-

line and the on-ramp drivers. This competitive driving behaviour restricts capacity in the merg-

ing area. Marczak et al. (2013) explain merging behaviour models use the gap acceptance 

theory presented. The AIMSUN and the VISSIM practice simple gap acceptance models 

(Fransson 2018). To assure and manipulate the necessity of changing the lane to the end of 

the acceleration lane additional parameters are added. VISSIM cannot provide facility for gap 

acceptance (Farrag, S., G. et al. 2020). In VISSIM interface, such merging behaviours can be 

represented by adjusting of driver‘s aggressiveness (Marczak et al. 2013, Fransson 2018). 

Hidas (2005) reported another complex merging model covering forced and cooperative 

merge properties. It does not offer cooperative merging for the subject vehicle (Hidas 2005). 

Choudhury, C., F. et al. (2007) tried to manage this problem by including cooperative merging 

behaviours of both vehicles. 

2.2.1.4 Driving behaviour models in VISSIM 

This section is an overview of the driving behaviour models found in VISSIM are discussed. 

In first place, the car following models will be shown, followed by the lane changing options 

and different parameters for modelling lateral behaviours. 

The car-following model in VISSIM 

Fransson (2018) described that VISSIM offers two car-following models: Wiedemann 74 and 

Wiedemann 99. The implemented models on the VISSIM differs from the Wiedemann model 

presented earlier. One big difference is that the models in VISSIM look for creating more di-

verse drivers (Fransson 2018). To create a model that makes such heterogeneous behaviour, 

Higgs et al. (2011.) added that a driver’s perception skill and risk behaviour in VISSIM are 

modeled by adding random values to each of the thresholds presented in Table 2.4 (Higgs et 

al. 2011., Fransson 2018). The formulation of the Wiedemann 74 model in VISSIM is shown 

below (Gao 2008): 
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𝑢𝑛(𝑡 + ∆𝑡) = min{
3.6 ∗ (

𝑠𝑛(𝑡)−𝐴𝑋

𝐵𝑋
)2

3.6 ∗ (
𝑠𝑛(𝑡)−𝐴𝑋

𝐵𝑋.𝐸𝑋
)2
, 𝑢𝑓} 

(2.6) 

Where BX and EX = Random parameters 

The Wiedemann 99 model is a changed setup from the Wiedemann 74 model with the differ-

ence that set some other standards to model the network in the simulator (Fransson 2018). 

(Gao 2008) formulated the Wiedemann 99 model used in VISSIM: 

𝑢𝑛(𝑡 + ∆𝑡) = min{
𝑢𝑛(𝑡) + 3.6 ∗ (𝐶𝐶8 +

𝐶𝐶8−𝐶𝐶9

80
𝑢𝑛(𝑡))∆𝑡

3.6 ∗
𝑠𝑛(𝑡)−𝐶𝐶0−𝐿𝑛−1

𝑢𝑛(𝑡)

, 𝑢𝑓} 

(2.7) 

Where, 𝑢𝑛(𝑡 + Δ𝑡) ≅ minimum of two speeds. The VISSIM offers several parameters to im-

plement the Wiedemann model to represent the real world in simulation as much as possible. 

Several parameters are shown in Table 2.6 (Fransson 2018, Toledo 2003, PTV 2011) 

Element Description 

General Car Following Parameters 

Look ahead distance 

Both minimum and maximum distance what a driver can see 

forward to interact with other vehicles and objects that are in 

front of or next to it on the same link.  

Look back distance 

It is equivalent to the Look ahead distance, but 

represents the spatial distance a driver can see behind his ve-

hicle. 

Temporary lack of attention 

It is a period during which a driver cannot respond to changes 

in the preceding vehicles driving behaviour. The duration and 

the probability define respectively how long and how often the 

lack of attention occurs. 

Smooth closeup behaviours 
Decides if a driver may reduce his speed more 

evenly when approaching a static obstacle. 

Standstill distance for static obstacles 
Applicable if smooth closeup behaviour is active. Determines 

at which distance from a static obstacle a driver should stop. 

Car following model It defines what car following model should be implemented.  

Number of interaction objects 

The total number of preceding vehicles and/or the number of 

network objects listed below which the vehicle perceives 

downstream or near to the same link to react to them.  

Number of interaction vehicles 
The number of preceding vehicles that the vehicle perceives down-

stream or adjacent to it on the same link to react to them. 

Increased Acceleration 
It increases the acceleration with which the vehicle follows a 

preceding vehicle that accelerates. The default value is 100 % 

Adjustable parameters for Wiedemann 74 

Average standstill distance The expected distance between two 
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stationary vehicles. 

Additive part of the safety distance 
Included in the calculation of expected safety distance which 

is concerned with time requirement adjustments. 

Multiplicative part of the safety distance 
Included in the calculation of expected safety distance which 

is concerned with time requirement adjustments.  

Adjustable parameters for Wiedemann 99 

CC0 (Standstill distance)  

 

The desired distance between two stationary 

vehicles. Correspond to AX in Table 1. 

CC1 (Headway time)  

 

Indicate the time what driver need to maintain to the preceding 

vehicle. Higher value yields a more cautious driver. 

CC2 (‘Following’ variation) 
Constrain the longitudinal oscillation of a vehicle in relation to 

the vehicle in front. 

CC3 (Threshold for entering ‘Following’) 
Represents the time of the deceleration process what begins 

in terms of seconds before reaching the safety distance. 

CC4 and CC5 (‘Following’ thresholds) 

Control the speed differences during the 

‘Following’ state. Lower values indicate more careful drivers 

e.g. vehicles will be permitted closer to each other. 

CC6 (Speed dependency of oscillation) 
Indicates the impact of spatial distance on speed 

oscillation within the following region. 

CC7 (Oscillation acceleration) 
Represents the actual acceleration during the 

oscillation process. 

CC8 (Standstill acceleration) 
Regulates the desired acceleration when starting from a sta-

tionary state. 

CC9 (Acceleration at 80 km/h) Regulates the desired acceleration at a speed of 80 km/h. 

Table 2.6 Details of car-following parameters (General and Wiedemann model) (Fransson 2018, PTV 2011, Toledo 2003) 

The desired (or expected) distance d is calculated using the following equation (Fransson 

2018): 

d = ax + bx (2.8) 

Where, bx = (b𝑥𝑎𝑑𝑑 + b𝑥𝑚𝑢𝑙𝑡 ∗ 𝑧)*√𝑣, 𝑣 = vehicle speed [m/s] and 𝑧 = value of range [0,1] which 

is normal distributed around 0.5 with a standard deviation of 0.15.   

Regarding Wiedemann 99, Fransson (2018) stated that CC0, CC1, and CC8 are the greatest 

influences over the merging behaviour during the calibration stage. This assumption is made 

based on the definitions presented in Table 2.5, from which it can be assumed that the spatial 

distance between vehicles and their aggressiveness can be manipulated. 

Lane changing Model in VISSIM 

There are two types of lane change models in the VISSIM, named as necessary lane change 

and free lane change. Both are dependent in the spatial distance between the emergency stop 

areas in the road track. The controllable parameters are connected to the desired safety 
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distance of the trailing vehicle for the Free lane change case. PTV (2011) mentioned that the 

first step when a vehicle is ready to shift from the lane in VISSIM interface is to look for an 

appropriate time gap (headway) in the destination flow (Fransson 2018, PTV 2011). The entire 

set of parameters available for lane change model in the VISSIM interface is shown in Table 

2.7 (PTV 2011, Fransson 2018)  

Element Description 

General behaviour  

Depicts the type of overtaking that will be allowed. The available options 

are either Free lane selection, where overtaking is allowed in any lane, or 

Right-Side Rule respectively Left Side Rule. 

Necessary lane change (route) 
Introduces deceleration thresholds for the own vehicle and the trailing ve-

hicle the aggressiveness of the necessary lane change can be set. 

Waiting time before diffusion  

 

Defines maximum time a vehicle will stay at the emergency stop position 

waiting to perform a necessary lane change. If the waiting time crosses 

the specified value the vehicle will be taken out. 

Min. Headway (front/rear)  

 

The minimum remaining spatial distance needed between two vehicles af-

ter a lane change. 

To slower lane if collision time 
The minimum time headway that needs to be found in the slower lane in 

order to make a faster vehicle traverse to it. 

Safety distance reduction factor  

Defines the amount of safety distance between vehicles that need to be 

reduced during the lane change phase. The value 0.6 indicates that the 

safety distance is reduced by 40% compare to the standard value. 

Maximum deceleration for coop-

erative braking 

Defines how the trailing vehicle will manage cooperative braking. 

Overtake reduced speed areas  

Defines if lane-dependent speed restrictions will be considered or not. If 

this parameter is not included, vehicles will not run lane change upstream 

in a reduced speed region. Thus, any reduced speed restrictions in the 

target lane will be ignored. 

Advanced merging  

This option permits more vehicles to transfer lane at an earlier point, and 

by decreasing the risk of vehicles stopping to wait for a merging option 

which can be done by taking the speed of the nearby vehicles into ac-

count in addition to the immediate emergency stop distance. If inactive, a 

vehicle may not break/cooperate with another vehicle. 

Consider subsequent static rout-

ing 

decisions 

Defines whether a vehicle leaving a static route will be considered for 

other routing decisions ahead when choosing lane or not. 

Cooperative lane change  

 

Represents the possibility of a vehicle to observe if a vehicle is found in a 

nearby lane. It intends to change to its own lane and hence will try to 

change lane itself to allow the lane change. 

Lateral correction of the rear end 

position  

Defines the lateral position of a vehicle in the line with the middle of the 

lane after a lane shift. 

Table 2.7 Definition of lane changing parameters in VISSIM (Fransson 2018, PTV 2011, Toledo 2003) 
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Whaley (2016) has indicated some lane-changing parameters with the greatest impact on the 

traffic merging behaviour which includes cooperative lane changing, reduction factor for 

safety, advanced merging, and low headway distance. 

Lateral behaviour Model in VISSIM 

VISSIM interface can manage both the lateral orientation in the current lane and the overtaking 

lane. According to Fransson (2018), all vehicles are planned to take the entire lane width in 

the VISSIM. Moreover, it is also possible to put a vehicle to the location itself in the middle, on 

the right side, and on the left of the lane. The set of parameters concerned with the lateral 

driving behaviour in VISSIM are listed in Table 2.8  

Element Description 

Desired position at free flow 
Describes the vehicle’s lateral position within its lane during free 

flow. 

Keep the lateral distance to vehicles on 

next lane(s) 

 

Represents vehicles‘ adaptation of their lateral positions to the 

vehicles in the nearby lane by keeping the minimum spatial dis-

tance. 

Diamond shape queue  
Agents are represented as rhombuses instead of rectangles, 

yielding a more realistic shape of a built-up queue. 

Minimum longitudinal speed  
Represents the minimum longitudinal speed required for a vehicle 

to move laterally. 

The time between direction changes  
Depicts minimum simulation time between two lateral movements 

in opposite directions.  

Collision time gain  
Defines minimum time gain to be met between a vehicle and an 

obstacle ahead in order to relate a change in lateral movement. 

The default behaviour when overtaking 

vehicles on the same lane or adjacent 

lanes 

Describes permission or prevention of vehicles in the non-lane 

bound traffic to overtake on the same lane, either to the left, right, 

or both. 

Minimum lateral distance 
The available distance between vehicles while overtaking in the 

same lane. 

Consider the next turning direction  
A vehicle will not pass a vehicle on the same lane if there is a risk 

for the crash at the subsequent turning connector. 

Exceptions for overtaking vehicles of the 

following vehicles classes 

Represents vehicle classes with a driver behaviour that varies 

from the default one can be defined. 

Table 2.8 Definition of lateral behaviour parameters in VISSIM (Fransson 2018, PTV 2011, Toledo 2003) 

2.2.2 Data-driven behaviour models 

Connected autonomous vehicles (CAV) and autonomous vehicles (AV) can be considered as 

an improved road safety measure because the human error, which is the most alarming source 

of accidents, can be avoided through the implementation of CAV and AV i.e. driving mistakes 

(Virdi et al. 2019, Campbell et al. 2010). The safety of the passengers can be assured if 
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autonomous vehicles sense its surrounding environment precisely and take safe maneuvers 

according to the sensors received data (Katrakazas et al. 2019). The decision-making capacity 

for vehicle maneuvers and risk assessment of the surrounding environment is part of planning 

modules of autonomous vehicles (Katrakazas et al. 2015, Lefèvre et al. 2014). The need for 

such sensitive planning modules is extensively required particularly for dense traffic conditions 

and regions with inconsistent traffic flow dynamics where collisions are most prone to happen 

(Mahajan et al. 2020). It is experienced from previous studies that researchers go with different 

data-driven approaches. Nevertheless, the standard methodology seems to less prone to 

change severely. 

In these cases, data-driven approaches are found to be quite useful for microscopic traffic 

simulation for autonomous vehicles (Mahajan et al. 2020). The data-driven car following be-

haviour models are flexible which allows the corporation of other additional information to the 

model. Unlike traditional models, the data-driven models do not provide much detailed concept 

of the traffic flow theory (Papathanasopoulou and Antoniou 2015, Mahajan et al. 2020) but 

they provide provision to model more complicated situations. They deal with complicated sit-

uation such as weak lane discipline situations, and incorporate additional variables, such as 

weather, fleet composition, flow levels, and road characteristics. However, using data driven 

approaches, predicting vehicle trajectories in the vicinity of AVs are computationally difficult to 

be prepared and, therefore, not appropriate for the online implementation (Lefèvre et al. 2013, 

Gindele et al. 2010). A great number of data is needed to be learn to predict the vehicle ma-

noeuvres and travel plan of the special vehicles in the real-world (Ziegler et al. 2014b, Gindele 

et al. 2015). These data can be obtained from the simulation or real-world demonstration 

(Ziegler et al. 2014a).  

2.3 Microscopic simulation of C/AVs  

The Society of Automotive Engineers (SAE International 2018)  has categorized self-driving 

cars based on the features and automation level, which propose six different levels. Level 0 

indicates no automatic control and level 5 indicates no human intervention (SAE International 

2018). Table 2.9 demonstrates different levels of automation as per SAE International (2018), 

Gasser and Westhoff (2012) and National Highway Traffic Safety Administration (2013) 
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Level 0 1 2 3 4 5 

SAE 
No automa-

tion 

Driver assis-

tance 

Partial auto-

mation 

Conditional 

automation 

High auto-

mation 

Full automa-

tion 

BASt 
Driver only assisted Partial auto-

mation 

High automa-

tion 

Full automa-

tion 

_ 

NHTSA 

No automa-

tion 

Function 

specific auto-

mation 

Combined 

function au-

tomation 

Limited self-

driving auto-

mation 

Full self-driv-

ing automa-

tion 

_ 

 
Table 2.9 Levels of driving automation as defined by the SAE (SAE International 2018), the German Federal Highway Research 

Institute (BASt) (Gasser and Westhoff 2012), and the National Highway Traffic Safety Administration (NHTSA) (National Highway 

Traffic Safety Administration 2013) 

The following section depicts each level and holds an increasing amount of automation (Ala-

wadhi et al. 2020): 

• Level 0: Vehicles of this level are totally managed by human-driver and no automation. 

• Level 1: Vehicles of this level come with atleast one aspect of automation. 

• Level 2: In this level, vehicles are capable to manipulate the steering and the speed. 

Self-parking can be possible with some assitance from human-driver. 

• Level 3: Vehicle of this level has ability to take total control of different decisions: over-

taking. 

• Level 4: Vehicle of this level are almost self-driven but not for all state. Human-drivers 

are still wait for the charge. 

• Level 5: This is the current highest level of automation, currently assumed. No driver 

is required in this level for any circumstances. At this point the vehicle is known as AV 

what becomes CAV, when connectivity features such as V2V and V2I are offered by 

the vehicle. 

Several researchers concentrated on several aspects of C/AVs. Table 2.10 demonstrates pre-

vious microscopic traffic simulation studies targeting C/AVs.  

Previous Studies 
Traffic Simu-

lator 

Car following 

model 
Focus vehicles 

Study 

area 

Investigation 

parameters 

(Fernandes and 

Nunes 2010) 

SUMO Extended Gipps-

model 

Automated Vehicle Freeway Performance 

(Lee and Park 2012) VISSIM VISSIM Default Connected Vehicle Arterial Performance 

(Li et al. 2013) VISSIM VISSIM Default Automated Vehicle Arterial Safety and Per-

formance 

(Jin et al. 2013) SUMO SUMO Default Connected Vehicle Arterial Safety and Per-

formance 
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(Qian et al. 2014) SUMO SUMO Default Connected  and Auto-

mated Vehicle 

Arterial Performance 

(Guler et al. 2014) MATLAB NA Connected Vehicle Arterial Performance 

(Bohm and Häger 

2015) 

VISSIM VISSIM Default Automated Vehicle Arterial Performance, 

Safety and Emis-

sion 

(Wu et al. 2015) VISSIM VISSIM Default Connected Vehicle Arterial Performance 

(Genders and Ra-

zavi 2015) 

PARAMICS Modified Behavior Connected Vehicle Arterial Safety 

(Atkins 2016) VISSIM VISSIM Default Connected  and Auto-

mated Vehicle 

Arterial 

and 

Freeway 

Performance 

(Talebpour and 

Mahmassani 2016) 

Own Simula-

tor 

IDM Connected  and Auto-

mated Vehicle 

Freeway Performance 

(Wan et al. 2016) PARAMICS PARAMICS De-

fault 

Connected Vehicle Arterial Performance and 

Consumption 

(Guériau et al. 2016) MovSim IDM Connected Vehicle Freeway Safety and Per-

formance 

(Letter and Elefteri-

adou 2017) 

CORSIM CORSIM Default Automated Vehicle Freeway Performance 

(Rahman et al. 

2018) 

VISSIM IDM Connected Vehicle Freeway Safety and Per-

formance 

(Mirheli et al. 2018) VISSIM VISSIM Default Connected Vehicle Arterial Safety and Per-

formance 

(Tajalli and Hajba-

baie 2018) 

VISSIM VISSIM Default Connected Vehicle Arterial Safety 

(Rahman and Abdel-

Aty 2018) 

VISSIM IDM Connected Vehicle Freeway Safety 

(Zeidler et al. 2018) VISSIM VISSIM Default Connected and Auto-

mated Vehicle 

Freeway Performance 

Table 2.10 Chronicle order of previous simulation-based studies for connected and automated vehicles 

Versatile researches have highlighted several aspects of microscopic simulation and its im-

pacts on AVs and CAVs. While some researchers have chosen to work on engineering as-

pects i.e. how should we choose driving parameters for the autonomous vehicles in the simu-

lator for different scenarios (Zeidler et al. 2018, Sukennik 2018, Toledo 2003), some research-

ers investigated over the impact on the economy, city, environment and traffic safety (Atkins 

2016, Calvert et al. 2017, Fransson 2018, Pierre-Jean Rigole 2014, Bohm and Häger 2015). 

To investigate different user cases (driving maneuvers) of C/AVs, researchers experimented 

over arterial and freeway which highlights several manoeuvres  (longitudinal, lateral and merg-

ing) and interactions (V2V, V2I, Signal) (Atkins 2016, Sukennik 2018, Toledo 2003).  

2.3.1 Features of CAVs 

The gradual progress of connectivity features in the vehicles is influenced by traffic of the 

present world and it will take immense shape in the coming future. Automation features such 

as connectivity to other vehicles and infrastructure, building the vehicle platoons, and auto-

matic driving modules play a strong role both in the urban motorway and freeway (Calvert et 

al. 2017). Furthermore, study indicated that in first implementation stage C/AVs should be self-
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driven and self-sufficient as infrastructure development will take certain time to give full func-

tionality freedom from the connectivity feature (Parmar 2018).  Table 2.11 presents several 

vehicle connectivity features that are currently available for use and under investigation for 

future C/AVs.  

Feature Category Sub-Category Functions 

Vehicle to Vehicle con-

nectivity (V2V) 

Lane Control  It enables the ability to maintain the lane safety 

Adaptive Cruise Control 

(ACC)  

It keeps a safe distance from the vehicle ahead. 

Vehicle-to-Vehicle (V2V) 

Communication 

The heart of a connected vehicle technology to enable 

vehicles interaction together to manage the safety as-

pects. 

Platoon formation 

Forming the platoon is an advancement of V2V system. 

Vehicles of same direction make formation towards 

same direction with same speed and distance. 

Vehicle to Infrastructure 

Connectivity (V2I) 

Automatic Emergency 

Braking System (AEBS) 

This feature is responsible for an automatic break of the 

vehicle to stay away from a possible collision. 

Light Detection and Rang-

ing (LIDAR) 

Technology to determine the distance and to identify 

the objects.  

Street Sign/ Signal 

Recognition 

A software interface to process the sensor data which 

identify road signs and react to the signal. 

Object or Collision Avoid-

ance System (CAS) 

This feature is responsible for multiple functions to 

avoid the collision to the objects which integrates detec-

tion or identification system. 

Table 2.11 Currently available vehicle connectivity features  (Tempo Automation 2019, Haas and Friedrich 2017) 

To implement these features of the C/AVs in the microscopic simulation, currently different 

functions (event script files) are attached in the simulator. VISSIM 11 or later version has ex-

tensive functionalities to model  C/AVs (Sukennik 2018). VISSIM 2020 comes with inclusively 

(using Graphical User Interface- GUI) and exclusively (using Component Object Model- COM) 

implementation of platoon building, signal influence, V2V and V2I connectivity (PTV 2011, 

Sukennik 2018, Atkins 2016).  

2.3.2 Driving parameters of C/AVs in VISSIM 

The standard approach to model C/AVs can be building modified version of the Wiedermann 

99 as Wiedermann 74 does not offer lots of options for customized modelling (Sukennik 2018). 

In other words, the human alike C/AVs are subset of conventional driving behaviours and can 

be obtained with proper jurisdiction to match different autonomous driving modules. Some 

extensively created simulator-integral and user-defined parameters are totally dedicate to 

match the characteristics of AV and CAV to enhance its automation features in VISSIM inter-

face (Atkins 2016, Sukennik 2018, Zeidler et al. 2018, Toledo 2003, Bohm and Häger 2015). 
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Furthermore, external script files are used to model extensive features of C/AVs. Table 2.12 

depicts special parameters required to model C/AVs in the VISSIM interface which distinguish 

it from conventional vehicles. 

Sl. 
COM VISSIM Parame-

ters 

COM VISSIM In-

terface 

Autonomous Param-

eter Description 
Range Default 

1 EnforcAbsBrakDist 

ID
ri
v
in

g
B

e
h

a
v
io

r 

Enforce absolute brak-

ing distance 

True/ False False 

2 UseImplicStoch Use implicit stochas-

tics 

True/ False True 

3 NumInteractObj Number of interaction 

objects and vehicles 

0- 10 2 

4 NumInteractVeh 0 - 99 99 

5 W99cc0 Headway based on 

leader vehicle class 

0,60 -3,05 1,50 

6 W99cc1Distr 0,50 - 1,50 0,90 

6 IncrsAccel Increased acceleration 1,00 - 9,99 1,00 

7 Platooning Platooning 2 - 9999 7 

8 AddOccupancyDistri-

bution 

IO
c
c
u
p
a
n
c
y
D

is
tr

ib
u
ti
o

n
 Occupancy distribution 

(with/out zero passen-

gers) 

 

 

 

 

1,00 – 4,00 1,00 

9 ConsVehInDynPot 

IL
in

k
 

Consider vehicles in 

dynamic potential 

True/ False False 

Table 2.12 Special parameters required to model Connected and Automated Vehicles in the VISSIM (Sukennik 2018, Atkins 

2016, Zeidler et al. 2018) 

These parameters manipulate the features of autonomous vehicles in the VISSIM interface 

inclusively and exclusively. VISSIM interface provides scope to the users to change from the 

graphical interface in addition to the available COM interface for exclusive changes.  

Enforce absolute braking distance 

This attribute assures collision-free brake, even when the leading vehicle takes a surprise 

stop. Enforce absolute braking distance also works for vehicle’s lane changes to avoid con-

fliction  on the major locations of the network (Sukennik 2018).  

Use implicit stochastics 

This attribute assures that the vehicle uses any internally set stochastic variation. Using the 

implicit stochastics significantly shows affects in the safety distance, the desired acceleration-
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deceleration and the approximate uncertainty for braking decisions. Deactivating the use of 

implicit stochastics is justified for all AVs, which avoids modelling the human-driver’s flaws in 

the simulation environment.  (Sukennik 2018). 

Number of interaction objects and vehicles 

VISSIM 10 has divided this attribute into two sub-categories. The number of interaction objects 

refers to interaction among the vehicles and infrastructures/ road objects: reduced speed ar-

eas, stop signs, priority rules and red signal head. In contrary, the number of interacting vehi-

cles indicate connection among the real vehicles (Sukennik 2018). 

Headway based on leader vehicle class 

The headway indicates the a safety distance between two vehicles, which is selected as per 

the driving modules. (Sukennik 2018). 

Increased acceleration 

The AVs, especially if they are using car to car (C2C) communication which makes it CAVs, 

can use a shorter headway. The vehicles can have higher than 100% of incresed accelera-

tion but it should respect the limit of maximum acceleration (Sukennik 2018). 

Platooning 

Through this attribute the vehicles can close the gap to a preceding vehicle to become a 

trailing vehicle of a platoon.  

Occupancy distribution with zero passengers 

This attribute defines an experimental occupancy distribution for the empty autonomous vehi-

cles (without passengers) 

Consider vehicles in dynamic potential 

According to Sukennik (2018), The action between vehicles and pedestrians is mainly mod-

elled as conflict areas, which blocks a certain region if a vehicle or pedestrian is within the 

region or approached it. In such case, other agents are not allowed to use this region. Vehicles 

holding a conflict region can be taken in the dynamic potential for conflicting pedestrians. In 

example for a pedestrian link if this function is activated, pedestrians will not stop at a blocked 

conflict region, but will try to move around it through the gaps between queued vehicles. That’s 

why the lanes of a pedestrian link must be appropriately narrow.  

Connectivity features i.e. V2V and V2I are implemented with additional scripts written by users 

as per their requirements. Interaction to the traffic signal or reacting with ahead vehicle can 
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be operated spontaneously using scripts in the COM or even in the VISSIM GUI itself (Suken-

nik 2018, PTV 2011).   

2.3.3 Impact of C/AVs   

Studies show that C/AVs will grab high attention over current travel modes at some point in 

the coming years which will have a strong influence over the transport, society, economy, 

mobility, and environment (Maunsell et al. 2014, Hörl et al. 2016, Bohm and Häger 2015, 

Pierre-Jean Rigole 2014, Fransson 2018, Lang et al. 2018). For a long time, researchers are 

using different experiment setups to seek the impacts of automation in transportation system. 

Gora et al. (2020) stated that there is no universal standard for microscopic modelling of the 

C/AVs in today’s date so different researchers’ approach, with different methodology and al-

gorithms, to the implementation phase. Same study added that as there is no unique mathe-

matical model for building such experimental models, these models can be generated from 

conventional vehicle models based on strong assumption concentrating microscopic or mac-

roscopic level of details. Furthermore, they pointed an important assumption of the C/AV mod-

elling. That is C/AVs will act more predictably than the human-driven vehicles (Gora et al. 

2020). Such versatile approaches among researchers, consequence a variation among out-

comes from different studies. These outcomes can be used to understand the cause and effect 

relationships of the inputs (assumption) and outputs (performance). Such system visualizes 

the impacts what probably will take place by these C/AVs.  

Different factors play role in C/AVs to create such variations in the outcomes than the conven-

tional vehicles (Sukennik 2018).  The basic expectations from the C/AVs are reduction of travel 

time, delay time, emission and possible confliction with higher speed. All together these factors 

affect the road capacity. According to Litman (2018), different factors need to work together 

positively behind an increment of traffic capacity in the network. 

In general C/AVs are supposed to maintain proper safe distance and follow road codes ap-

propriately. As these vehicles establish communication, it decreases the required safe dis-

tance for driving which influence the road capacity (Shi and Prevedouros 2016, Hörl et al. 

2016). The platoon formation ability of CAVs significantly increase the network efficiency and 

improve the traffic performances (Haas and Friedrich 2017). Moreover, information about 

other vehicles i.e. travel plans can be a good reason to avoid traffic jams and it will provide 

better traffic flow. A good example can be action of the intelligent vehicle in the intersections 

(Yang et al. 2016). Bertoncello and Wee (2015) indicated a reduction of traffic crashes by 90% 

possible by C/AVs. Furthermore, redeveloped infrastructure i.e. traffic system and parking 

system focusing connected automatic vehicles will have the capacity to gain more benefits 
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than simply maintaining the traffic which is slowing down the approaching vehicles near the 

intersection, directing to free parking or transmit driver the information for optimal dispatch 

according to the current demand (Hörl et al. 2016). These organizational and planning diver-

sities of C/AVs make them behave and interact differently than the HVs. 

Impact over Traffic performance  

The general idea of introducing the C/AVs in the network is that they may have proportional 

positive influence in the traffic performance.  Li and Wagner (2019) performed an experiment 

for different penetration rate of AVs for different traffic flow cases of motorway in the SUMO 

interface, shown in Figure 2.3. Their study used travel time as traffic performance indicator. 

The study has shown that the travel time reduces significantly for higher AV penetration for 

both highly and lightly congested traffic. The high reduction of the travel time take place in the 

presence of the 10-30% of AV penetration. That is an improvement of 10-12% of travel time 

from the base travel time. However, this reduction process of the travel time become stagnant 

when AV reaches 90% penetration (Li and Wagner 2019).  

Furthermore, Morando et al. (2018) stated for an increasing penetration rate of AVs, delay 

reductions will take place for the signalised intersection scenarios which eventually lead to 

efficient transportation system. 

 
 
Figure 2.3 Mean travel time over the networks for different traffic conditions: heavily congested traffic  and lightly congested 

traffic (Li and Wagner 2019) 

Makridis et al. (2018) argued Shladover, S., E. et al. (2012) that there will be negative impacts 

in the network from the low rate of the C/AV penetration. Both Makridis et al. (2018) and Mattas 

et al. (2018) pointed on such behaviours and they linked this pattern with the increase head-

ways used by the AVs. Makridis et al. (2018) used harmonic average speed to evaluate the 

network’s performance, by comparing the two harmonic speeds, average network speed and 

average desired speed, with each other. It indicates the magnitude of the congestion (Makridis 

et al. 2018). The harmonic average speed of the vehicles (km/h), presented in the network, is 

computed using the following equation:  
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𝐻𝑆𝑠𝑦𝑠 =
𝑁𝑠𝑦𝑠

∑ 𝐻𝑆𝑖
𝑁𝑠𝑦𝑠
𝑖=1

 
(2.9) 

Makridis et al. (2018) depicted three possible demands (estimated, increased, and decreased 

demand) in the study. This former study counted second-peak-hour demand and demon-

strated the scenarios in the ternary plots. Each side indicates a state of 100% presence of a 

particular vehicle in the study area, which the corner is marked with. The region inside the 

triangle represents the different participation ratios of AVs, CAVs, and HVs, in the combination 

of vehicles. A specific point in the inner region of this ternary plots, represents a specific com-

bination of formerly mentioned three vehicle types. In Figure 2.4, these three ternary plots 

depict visualization for the three different traffic demands, where the colour level indicates the 

harmonic average speeds over the network (Makridis et al. 2018, Mattas et al. 2018). This 

study demonstrated that introducing autonomous vehicles over the city network has a negative 

impact, at a lower ratio. These negative impacts originated from increasing headways, in con-

trast to the human-driven vehicles, which are implemented for safety related issues. In other 

words, the autonomous vehicles are not planned to take the risk which results in conservative 

headway thresholds on the road. Meanwhile, HVs are prone to taking risks while driving and 

they try to interact, depending on the manoeuvres of neighboring vehicles. The negative influ-

ences of the presence of an autonomous vehicle are significant in bottlenecks, where the 

merging or lane changing takes place, because the gap taken by AVs is larger, and maximum 

deceleration is lower than in the HVs. Additionally, the maximum acceleration of the AV, cur-

rently seen in the ACC system, is significantly lower than in the HVs. This feature, perform a 

significant role in the reduction to the traffic flow in the downstream of the bottleneck, which 

ultimately deteriorates the condition in the upstream of a bottleneck (Makridis et al. 2018, Mat-

tas et al. 2018). On the contrary, the network has shown a good response in the presence of 

the CAVs, and it improves for higher participation of CAVs in every individual unique scenario. 

When more CAVs are added to the network, the influence of the CAVs becomes more pro-

gressive. CAVs that follow AVs or HVs, behave as simple AVs as the connectivity and coop-

eration property will be missing. It is perceivable that, for lower CAV penetrations, the possi-

bility of connected travel will be low as well. The possibility of CAVs connectivity increases 

when there are more CAVs available in the network. Previous studies indicated that with 

higher penetration of CAVs a few positive changes will take place in the network: spatial gaps 

can be shorter, easy lane change manoeuvres, stable and steady traffic streams. As there is 

no or less traffic breakdown, the traffic flow will move without any viscosity effect in the net-

work. In consequence, the harmonic average network speed stays higher in every traffic sce-

narios (Makridis et al. 2018, Mattas et al. 2018). 
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Figure 2.4 Harmonic speed over the networks for different traffic conditions: 80% of peak demand, 100% of peak demand and 

120% of peak demand respectively (Makridis et al. 2018) 

The investigation over the CAVs performed by the Ekram and Rahman (2018) depicted that 

increasing CAV penetration found to be good in the traffic in terms of average speed and travel 

time, for higher CAV penetration. Figure 2.5 shows that over time different increasing CAV 

penetration ratio improved the traffic performance. 

            
Figure 2.5 Comparison among different CAV penetration: Speed and travel time (Ekram and Rahman 2018) 

Impact over Emission  

According to Igliński and Babiak (2017), accurate exploration of the impact of AVs in  the 

reduction of greenhouse gases is not an easy task because many variables play role in the 

transportation system. There will be more variables, which might not be present today, in fu-

ture mobility system. They indicated that there will be a reduction of 40-60% of the emission 

than today’s state, pointing the fact of changing mobility model and behavioural changes 

among the road users for their daily travel plan.  

In the other side, Bohm and Häger (2015) used EnViVer which computes the emission and 

determines emission of carbon dioxide, nitrogen oxide and particle pollution that is explained 

in later sub-section (2.4 Evaluation Measures). Bohm and Häger (2015) shows that the im-

pacts of AVs in the network are positive. Figure 2.6 denotes that the change of CO2, NOx and 

PM10 emissions for the human driven vehicles and autonomous vehicles have been changed 

for high traffic flow. These emissions have been decreased when autonomous features have 
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been introduced in the traffic. The corresponding percentage changes were 20% for CO2, 25% 

for NOx and 9 % for PM10 where all HVs are replaced by AVs. 

 
Figure 2.6 Comparison of HVs and AVs emission scenarios: CO2, NOx and PM10 (Bohm and Häger 2015) 

In contrary, a SUMO based study of Papantoniou et al. (2020) indicated that if the energy 

systems of AVs are similar to the HVs, AVs will exhibit higher emission (CO and NOx) for their 

higher participation rate in the road traffic. The summary of their study has been shown in the 

Table 2.13 and Figure 2.7. Such higher emission is generated from the behavioural changes 

of the autonomous vehicles of the network. 

AV penetration CO (mg/s) NOx (mg/s) 

0 0.22 55 

25 0.22 56.2 

50 0.23 58 

75 0.23 60.8 

100 0.22 65 

Table 2.13 Average emission of different scenarios: CO and  NOx (Papantoniou et al. 2020) 

 

 
Figure 2.7 Box plots of different AV scenarios: CO emission and NOx emission  (Papantoniou et al. 2020) 

Impact over Safety  

Morando et al. (2018) performed a simulation-based surrogate safety measure approach to 

evaluate the impacts of AVs in the signalized network in terms of conflicts. The details of 

simulation-based surrogate safety measures are described in 2.4 Evaluation Measures.  Two 

different times to collision (TTC) threshold for AVs are taken for their study. Like previously 
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noted studies, the number of conflicts between AVs overall is decreased but for higher TTC 

value the conflictions increase after 75% AVs participation. Morando et al. (2018) denotes this 

phenomenon as after reaching 75% AV penetration rate, due to shorter headways, AVs are 

prone to have conflicts with each other. Figures 2.8(a) and 2.8(b) shows the total number of 

conflicts and relevant 95% confidence intervals for different AV participation ratios for both the 

0.75-second and 1-second TTC thresholds, 

 

 

Figure 2.8 Total number of conflicts by AV penetration rate for the signalized intersection (Morando et al. 2018) 

Li and Wagner (2019) have also investigated over the safety aspect of the AV. They used TTC 

(Time to collision) as performance indicator. Their study exhibit reduction of TTC with increas-

ing AV penetrations but there is a negative impact in the initial stage, 10-30% AV penetration. 

After 30% of AV penetration, there are improvements for both traffic cases (Li and Wagner 

2019).  

  
Figure 2.9 The number of TTC<5 sec over the networks for different traffic conditions: heavily congested traffic  and lightly con-

gested traffic (Li and Wagner 2019) 

Virdi et al. (2019) experimented the safety aspect of the CAV. For the lower penetration ratio, 

according to them, CAV get more human-driven vehicles around who tend to drive in the net-

work irregularly and less cautiously. It results in more potential conflicts in the lower participa-

tion ratios. Figure 2.10 depicts how potential conflicts tend to decrease over increasing CAV 

(a) (b) 
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participation in the signalized intersection because of the proper connectivity among the vehi-

cles and infrastructures. These conflicts are categorized by the type of vehicles that partici-

pated in the simulation. The “M-M” explains a human-driven vehicle following and interacting 

with another human-driven vehicle, “A-M” represents a human-driven vehicle following a con-

nected and autonomous vehicles, and finally, the “M-A” represents a connected and autono-

mous vehicles following a human-driven vehicle. Interactions between two connected and au-

tonomous vehicles are excluded by the authors, as the connected and autonomous vehicle is 

considered as safe for their interactions with each other (Virdi et al. 2019). Similar results in 

term of reduction of accidents have been found by Xu et al. (2019) that has shown that crashes 

from CAVs are mainly originated from the weak interactivity between CAV and HV. Using 

statistical analysis, their study has demonstrated that attention need be conserved for negative 

impacts of the mixed traffic flow of HV and CAV during the transitional period when the CAVs 

cannot utilize their 100% efficency (Xu et al. 2019). 

  

Figure 2.10 Number of potential accidents for signalized intersection in the microsimulation environment (Virdi et al. 2019) 

Appendix A denoted other studies, which are used to perceive the impacts of C/AVs, initially 

listed by Narayanan et al. (2020). 

2.4 Evaluation Measures  

2.4.1 EnViVer 

The EnViVer visualizes the emissions from a simulation model. It is built based on VERSIT+ 

exhaust emissions model from TNO. The VERSIT+ emissions model can build emission mod-

els for CO2, NOx, and particle matter (PM10) for any type of vehicle. The pollutant emissions 

are obtained from vehicle trajectories and some combination of other information what can be 

generated in PTV Vissim as the output on special request. The EnViVer is supplied and dis-

tributed by the Vialis and the PTV. The stockholders and decision-makers of the projects can 

take their critical decision based on the impact scenarios from the EnViVer (www.tno.nl. 2020).  
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2.4.2 Surrogate Safety Measures 

The microscopic traffic simulation programs i.e. PTV VISSIM, are often implemented with au-

tomated conflict analysis programs, SSAM (Surrogate Safety Assessment Model). SSAM is a 

simulation-based analyst for surrogate safety measures (U.S. Department of Transportation 

2008) which uses the trajectory files (*.trj) collected from the microscopic traffic simulator. The 

main reason to use surrogate safety measures is to look into the potential confliction in the 

network. The SSAM uses some useful measures to define the conflictions of the networks, 

such as time to collision (TTC), post-encroachment time (PET), deceleration rate (DR), gap 

time(GT), and proportion of stopping distance (PSD) (Morando et al. 2018, U.S. Department 

of Transportation 2003, Young et al. 2014, Essa and Sayed 2016, Goh et al. 2014). The TTC 

can be explained as the desired temporal duration of two vehicles to conflict each other, if 

both of them remains on the same lane with same former speed. TTC is a widely accepted 

surrogate safety measure because of its major role in the confliction (Saunier 2010, Morando 

et al. 2018). The following equation can be used to calculate TTC (Saunier 2010):  

TTC = 

{
  
 

  
 
𝑑2

𝑣2
𝑖𝑓 
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𝑣1
<

𝑑2

𝑣2
<

𝑑1+𝑙1+𝑤2

𝑣1
𝑑1

𝑣1
𝑖𝑓 

𝑑2

𝑣2
<

𝑑1

𝑣1
<

𝑑2+𝑙2+𝑤1

𝑣2
(side)

𝑋1−𝑋2−𝑙1

𝑣2−𝑣1
𝑖𝑓 𝑣2 > 𝑣1(rear end)

𝑋1−𝑋2

𝑣1+𝑣2
(head on),

 (2.10) 

where V1 and V2 are speeds, 𝑙1 and 𝑙2 are lengths, 𝑤1 and 𝑤2 are widths, 𝑋1 and 𝑋2 are 

positions of the vehicles. 𝑑1 and 𝑑2 are spatial distances to conflict areas. Furthermore, the 

PET is the time difference between those vehicles who are about to conflict in common place, 

if one of them does not move on or get slower. PET, defined as the time difference between 

when the leading vehicle occupies a location and when the trailing vehicle arrives at this loca-

tion, is usually used to identify conflicts in combination with TTC (Chen et al. 2017a). Figure 

2.11 illustrates situations for TTC and PET calculations (Saunier 2010). 

 
(a) Time to collision (TTC) 
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 (b) Post-encroachment time (PET) 

Figure 2.11 Results acceptance criteria based on statistical confidence limits (Saunier 2010, Morando et al. 2018) 

Studies have shown that TTC equals to or less than 1.5 seconds make insecure circumstance 

in the road network (Morando et al. 2018, Dijkstra et al. 2010, Gettman et al. 2008, Truong et 

al. 2015). TTC = 1.5 second can be granted for all HV possible collisions i.e. HV-HV or HV-

AV or HV-CAV. Conflicts among autonomous tech-vehicles may allow lower TTC as their re-

action time is faster than human reaction time (Morando et al. 2018). 

2.4.3 Evaluation criteria 

According to Hellinga (1998), choosing the threshold for adequacy of specific model results is 

an important task. The selection of the right measure of effectiveness along with planning for 

an acceptable range of values for that measure sometimes become complex but very im-

portant as they play severe role in the ultimate decision making process (Hellinga 1998). After 

obtaining the appropriate field data, it might be conceivable to evaluate the mean and variance 

based of the measure of effectiveness. Afterward, statistical confidence limit can be imposed 

originated from mean and variance that can be used as evaluation criteria (Hellinga 1998, Aziz 

2018). Figure 2.12 depicts calibration acceptance criteria as per the statistical level of signifi-

cance. 

 
Figure 2.12 Results acceptance criteria based on statistical confidence limits (Van and Rakha 1996) 
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2.4.4 Sensitivity Analysis of Impact 

The sensitivity analysis (SA) can be a strong expression to demonstrate the influences of 

different input parameters of microscopic traffic model in the performance outcomes (Lownes 

and Machemehl 2006). A principle role of the SA is to rank the input parameters based on the 

output uncertainty, which helps to reduce the computational cost and to create good results 

(Punzo et al. 2014). In easy words, SA investigates the simulation scenarios to identify which 

input parameters are paramount in influencing the simulation outputs (Sfeir et al. 2018).  Alt-

hough, most of the time SA is being used to reduce the number of input parameters for the 

calibration, it proves to be a fine tool to visualize the interaction of the input parameters in the 

system. Other features of SA are detecting technical errors, escalating the simplification, ad-

justing the model to manage the system uncertainty (Punzo et al. 2014). 

The correlation of these parameters can be shown using multiple graphical representations 

i.e. scatter plot, heatmap (Chung et al. 2005). Researchers perform the sensitivity analysis 

with different methodology to fulfil their target outcomes of the simulations. Implementation of 

optimization algorithms is very common in the typical SA. Researchers collaborate data-min-

ing techniques i.e. the Bayesian Networks, optimization algorithms, general variance based 

(García-Herrero et al. 2020), variance-based method based on Sobol sequences (Sfeir et al. 

2018), and perform various search method i.e. grid search in the platform of the SA (Liu et al. 

2014). Punzo et al. (2014) listed several approaches, which develop sensitivity of a simulated 

model: (1) input and output scatter plots, (2) one-at-time (OAT) sensitivity analysis, (3) the 

elementary effect test, (4) the sigma-normalized derivatives, (5) the partial correlation coeffi-

cient analysis, (6) the standardized regression coefficient analysis, (7) Monte Carlo filtering, 

(8) metamodelling, (9) factorial analysis of variance (ANOVA), (10) the Fourier amplitude sen-

sitivity test, and (11) the variance-based method based on the Sobol decomposition of vari-

ance. Choosing appropriate driving parameters for sensitivity analysis depends on the nomi-

nated performance indicator: traffic, safety or emission measures (Habtemichael and Santos 

2012). A recommended SA approach could be a two steps experimental setup. Starting with 

the first stage of SA, by plotting the correlational scatter plots for all the parameters combinedly 

and demonstrate them for individual parameters. By identifying the most significant parame-

ters from several, this reduces the computational time in total (Sfeir et al. 2018, Prionisti and 

Antoniou 2012, Liu et al. 2014).  

Figure 2.13 shows the results of the first stage of SA taken by Sfeir et al. (2018) in the scatter 

plot formation. Using the scatter plot, the trend of 4 different input parameters (i.e. maximum 
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speed, normal deceleration, maximum acceleration and reaction time) were studied to find the 

influential parameters. 

 
Figure 2.13 First stage of SA, Scatter plot (Sfeir et al. 2018) 

In the second stage, more detailed and advanced analysis can be performed for few parame-

ters for the insight perception. Sfeir et al. (2018) performed a variance-based method based 

on Sobol's decomposition of variance which can calculate and measure the sensitivity for the 

finally chosen model input parameters (Sobol 1998, Sfeir et al. 2018). A search operation of 

pseudo-random and quasi-random numbers can be generated for getting faster convergence 

and smoother graphical representation of the results (Sfeir et al. 2018). Figure 2.14 shows the 

results of second stage of SA for different scenarios performed by (Sfeir et al. 2018). In the 

second stage, different scenarios are studied for only two lastly selected input parameters i.e. 

maximum acceleration and reaction time. 
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Figure 2.14 Scatter plot from quasi-random numbers for selected input parameters (i.e. Maximum acceleration, reaction time) 

for 4 scenarios (Sfeir et al. 2018) 

 

 

 

 

 

 

 

 



 

  

3  Methodology 
In this chapter, different methods and approaches are demonstrated which are used to per-

form essential tasks of this study. Calibrating and validating are very crucial part of the micro-

scopic traffic simulation. These steps play vital role in developing the base model, which are 

detailed in this chapter. In second place, development of the human-like C/AV models in the 

VISSIM are presented. Moreover, description of the processes and assumptions for HV and 

C/AV are elaborated for proper perception. Lastly, the approaches to evaluate this study are 

presented to obtain base understanding of performances evaluation process before reaching 

the impact study and sensitivity analysis.   

3.1 Modelling Human-driven Vehicles 

The HVs of this study are developed from the VISSIM default passenger car. HVs come with 

only one driving module, normal module. HVs are expected to take more risks and break 

speed limits sometimes. The expected interactions and reactions from HVs are stochastic and 

heuristic by nature. The HVs model of this study are planned in way to represent reality in 

simulation environment as much as possible. 

3.1.1 Model Calibration and Validation 

Calibration and validation process of the microscopic traffic simulation is considered crucial 

because it make the model realistic and appropriate for all inputs.  Figure 3.1 shows the se-

quence of calibration and validation what this study has followed which is highly inspired by 

Hellinga (1998). The study goals determine what data to be obtained from the real world. On 

the other hand, Study goals influences the collection of data which includes what to collect 

and how to collect. Study goals and field data together to determine appropriate measure of 

effectiveness (MoE) for the calibration and validation process. Moreover, study goals and field 

data also decide what criteria to be calibrated which is 37 parameters in total for this study. 

The results are compared with MoE if it matches or not. Result matching leads to decision of 

final simulation model and accepted criteria parameters for future use. Validation phase eval-

uates the criteria parameters responses with the MoE where the model scalability in any sce-

narios is ensured. As currently advanced level C/AVs are absent, the calibration and the vali-

dation are performed only for the human-driven vehicles for this study. 
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Figure 3.1 Process of calibration  (Hellinga 1998) 

3.1.1.1 Model Calibration  

Simultaneous Perturbation Stochastic Approximation  

Simultaneous Perturbation Stochastic Approximation (SPSA) is presented by (Spall, J., C. 

1998a) which is an iterative optimization algorithms (Spall, J., C. 1998a, Qurashi 2018). As 

per Qurashi (2018), SPSA needs two evaluations for the given objective function to calculate 

its gradient for the minimization. The SPSA's performance is determined by fundamental pa-

rameters which are manually been checked as per (Spall, J., C. 1998b).  

Sl. Parameters Significance 

1 𝜃 The decision variable 

2 𝑐, 𝛾 To specify 𝑐𝑘(where k is the iteration number) 

3 𝑎, 𝐴, 𝛼 To specify 𝑎𝑘 

4 𝑐𝑘 , 𝑎𝑘 Gain sequence 

5 ∆ Random vector based on Bernoulli distribution  

Table 3.1 SPSA Parameters  (Qurashi 2018) 

In one side, the 𝑐𝑘 defines the magnitude of perturbation in the decision variable 𝜃. On the 

other side, the 𝑎𝑘 defines the magnitude of minimization for 𝜃 in each iteration. 𝑐𝑘 and 𝑎𝑘 are 

being specified as: 

𝑐𝑘 =
𝑐

(𝑘)𝛾
 

(3.1) 

𝑎𝑘 =
𝑎

(𝑘 + 𝐴)𝛼
 (3.2) 

So that: 𝑎𝑘 > 0, 𝑐𝑘 > 0, 𝑎𝑘 → 0, 𝑐𝑘 → 0,∑ 𝑎𝑘 = ∞, ∑
𝑎𝑘

2

𝑐𝑘
2 < ∞∞

𝑘=0
∞
𝑘=0  

Where parameters 𝑐 and 𝑎 are defining the magnitude of gain sequence 𝑐𝑘 and  𝑎𝑘 and 𝛾, 𝛼 

and 𝐴 define the pattern of reduction in  𝑐𝑘 and  𝑎𝑘 with the increase in number of iterations 

(Qurashi 2018). 

 

 



Methodology 

50 

 

Major steps with SPSA 

According to Qurashi (2018), the SPSA is an iterative process which contains four major 

steps within an iteration. Table 3.2 shows the 4 major steps of SPSA.  

Sl. SPSA Step Description  

1 Perturbation 

Perturbation of the decision variable by summing and deducting the gain se-

quence for ck times a random vector resulting in two variables 𝜃+ and 𝜃−. 

From the equation, it is seen that the random vector ∆ increases half of the 

vector variables by ck and reduces the remaining half to make the  𝜃+. On the 

other hand, for  𝜃−, sign changes for the ck, so the vector variables that were 

increased before are reduced while increasing the other half. 

𝜃± = 𝜃 ± 𝑐𝑘 △ 

 

2 
Objective function evalua-
tion 

The objective function evaluation consists of two times evaluation as per 𝜃+ 

and 𝜃− from perturbation step. The objective function f() specify the difference 

between the observed and the simulated traffic data based on the goodness of 

fit. 

𝑦± = 𝑓(𝜃±) 

 

3 Gradient Approximation 

Third step means to approximate the gradient by taking the difference between 

the outputs from the objective function 𝑦+ and 𝑦− dividing it by the perturbation 

magnitude 𝑐𝑘 × ∆ 

𝑔′ =
𝑦+ − 𝑦−

2𝑐𝑘
[
 
 
 
∆1
∆2
∙
∙
∆ℎ]
 
 
 

 

 

4 Minimization 

The gradient is approximated in this step. Here the gain sequence 𝑎𝑘 is used 

to minimize the decision variable. 𝜃𝑘 is the minimized decision variable esti-

mated at iteration k.  

𝜃𝑘+1 = 𝜃𝑘 − 𝑎𝑘𝑔
′
𝑘
(𝜃𝑘) 

 

Table 3.2 Four steps of Simultaneous Perturbation Stochastic Approximation (Qurashi 2018) 

Algorithm 

The imposition of SPSA on a calibration problem where car following parameter needed to be 

set for desired level of matching needs some modifications from the basic SPSA algorithm. 

Figure 3.2 shows the flow chart of SPSA which is followed for this study that is inspired from 

Qurashi (2018). 

1. It start with calculating the gain sequence parameters 

2. In second step, the plus perturbation is made where a function is used to assign new perturb 

parameters. 

3. In third step, the minus perturbation is made where another function is used to assign new 

perturb parameters. 

4. Then the gradient is evaluated. 

5. Finally, the minimization take place and it assign new perturb parameters. 

6. The best result is stored.   
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Figure 3.2 SPSA Flow chart (Qurashi 2018) 

Constraint Parameters  

The SPSA algorithm took, total 37 driving parameters from microscopic simulation environ-

ment which are focused for the calibration of this study. Table 3.3 listed all the driving behav-

iour parameters which are used as constraint for the SPSA with their minimum and maximum 

value. Their range between the minimum and maximum values can be taken as constraints 

for the SPSA calibration. These constraints have both positive and negative ranges where the 

parameter values kept changing gradually. 
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Sl. IDriveringBehavior Parameter Description 

Minimum 

Value  

Maximum 

Value  

(Dadashzadeh et al. 2019b, 

PTV 2011) 

General Parameters 

1 LookBackDistMax Max. Look back distance [m]  50 200 

2 LookBackDistMin Min. Look back distance [m]  0 200 

3 LookAheadDistMax Max. ahead back distance [m]  100 300 

4 LookAheadDistMin Min. ahead back distance [m]  0 300 

5 NumInteractVeh Number of interaction vehicles 0 99 

6 StandDist Standstill distance in front of static obstacles [m] 0,00 3,00 

7 FreeDrivTm Free driving time [s] N.A 

8 IncrsAccel Increased Acceleration [m/s2] 1,0 9,99 

9 MinCollTmGain Minimum collision time gain [s] N.A 

10 MinFrontRearClear Minimum clearance (front/rear) [m] N.A 

11 SleepDur Temporary lack of attention - sleep duration N.A 

Lane-changing model parameters 

12 DecelRedDistOwn Reduction rate for Leading (own) vehicle [m] 100 200,00 

13 AccDecelOwn  
Accepted decelaration for leading (own) vehicle 

[m/s2] 
-3 -0.5 

14 AccDecelTrail 
Accepted decelaration for following (trailing) ve-

hicle [m/s2] 
N.A 

15 SafDistFactLnChg Safety distance reduction factor 0,10 0,60 

16 CoopDecel 
Max. decelaration for cooperative lane-

change/braking [m/s2]  
-6,00 -3,00 

17 MaxDecelOwn 
Max. decelaration for leading (own) vehicle 

[m/s2]  
N.A 

18 MaxDecelTrail 
Max. decelaration for following (trailing) vehicle 

[m/s2]  
N.A 

19 DecelRedDistTrail Reduction rate for following (trailing) vehicle [m] N.A 

20 PlatoonFollowUpGapTm Platooning - follow-up gap time [s] N.A 

21 PlatoonMinClear Platooning - minimum clearance [m] N.A 

Wiedemann 74 car-following model parameters 

22 W74ax Average standstill distance  0,50 2,50 

23 W74bxAdd Additive Factor for security distance  0,70 4,70 

24 W74bxMult Multiplicative factor for security distance  1,00 8,00 

Wiedemann 99 car-following model parameters 

25 W99CCO 
Desired distance between lead and following ve-

hicle [m] 
0,60 3,05 

26 W99CC1DISTR 
Headway Time [s]  

Desired time between lead and following vehicle  
0,50 1,50 

27 W99CC2 

Following variation [m] 

Additional distance over safety distance that a 

vehicle requires  

1,52 6,10 
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28 W99CC3 

Threshold for entering following state [s] 

Time is second before a vehicle start to deceler-

ate to reach safety  

distance (negative) 

-15,00 -4,00 

29 W99CC4 

Negative "following Threhold"[m/s] 

Specifies variation in speed between lead and 

following vehicle 

-0,61 -0,03 

30 W99CC5 

Positive "following Threhold"[m/s] 

Specifies variation in speed between lead and 

following vehicle 

0,03 0,61 

31 W99CC6 Speed dependency of oscillation [1/ms] 7,00- 15,00 

32 W99CC7 
Oscillation Accelaration  

Acceleration during the oscillation process[m/s2] 
0,15 0,46 

33 W99CC8 Standstill Acceleration [m/s2] 2,50 5,00 

34 W99CC9 Acceleration with 80 Km [m/s2] 0,50 2,50 

Lateral manuever parameters 

35 LatDirChgMinTm Lateral direction change - minimum time  [s] N.A 

36 LatDistDrivDef Lateral minimum distance at 50 km/h (default) N.A 

37 MinSpeedForLat 
Minimum longitudinal speed for lateral move-

ment 
N.A 

Table 3.3 Driving behaviour parameters used as constraints for SPSA 

Normalization 

The 𝑐𝑘 and 𝑎𝑘 coefficients responsible for the change in perturbutation and minimization are 

applied by normalizing them by an average value. Normalization approaches are taken from 

a previous study done by Qurashi et al. (2019a), which has two perturbations and one mini-

mization steps in the process as well. 

Perturbation: z± = zk ± zk × ck∆ (3.3) 

Minimization: 𝑧𝑘+1 = 𝑧𝑘 − 𝑧𝑘 × 𝑎𝑘𝑔
′ (3.4) 

3.1.1.2 Model Validation  

As mentioned in the literature section, there are different approaches to validate the model 

and all of them lead to same objective that is reusability of the model for other inputs. A visual 
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validation such as time space-diagram for validating the mixed traffic condition demonstrates 

uniqueness in the traffic (Raju et al. 2018). Unlike the homogenous traffic, the lateral behaviour 

becomes significant for mixed traffic cases highlight the cause-effect relationship transparent. 

3.2 Modelling C/AVs  

The C/AV provides a possibility to improve the travel and impact experiences in the transpor-

tation industry. To simulate such technologies in the microscopic traffic simulation, one need 

to keep eyes on several vehicle behaviours: acceleration-deceleration behaviours, longitudinal 

behaviours, lateral behaviours and gap acceptance behaviours for the lanes. The CAVs can 

travel closer together which means it creates greater capacity by allowing higher density in 

the traffic flow. The Special driving behaviours, CAV connectivity and improved infrastructures 

can significantly influence the current traffic flow (Atkins 2016).  The connected and/or auton-

omous vehicles use their own driving module in the microscopic traffic simulator. This study 

considers three major driving modules of autonomous vehicles, currently available in the in-

dustries. The driving module are titled as aggressive, safe and cautious. These can be initiated 

from Wiedemann 99 car-following model inclusively and exclusively. The driving modules 

taken for this study are inspired from  European Union’s Horizon 2020 funded project “CoExist” 

(Sukennik 2018). 

Aggressive  

This driving module of the C/AVs is considered to have cognizance, predictive and safety 

maintenance features which lead to smaller gaps for all kinds of manoeuvres in the network. 

This driving module increases the road capacity (Sukennik 2018). 

Safe 

On the other hand, the safe driving module of the C/AVs reacts like a human-driver with some 

more abilities and features. Features such as capability to measure the spatial distances and 

speeds of other vehicles up to a certain range (Sukennik 2018). 

Cautious 

Finally, cautious driving module is considered to be perfect road code follower which always 

maintain a safe behaviour towards all vehicles. According to Sukennik (2018), the cautious 

driving module always assures active brick wall stop distance.  

In microscopic traffic flow simulation, these C/AV features are imposed by an additional func-

tion. VISSIM interface implements this feature by enforce absolute braking distance. This mod-

ule also come with capability to act in the unsignalized intersections and to take the lane 

change manoeuvres. The vehicles will be tended to maintain large gaps in the road (Sukennik 
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2018). Table 3.4 shows additional setting for the C/AVs. See section 2.3.2 Driving parameters 

of C/AVs in VISSIM for more information. 

Driving logic Enforce absolute 

breaking distance 

Use implicit 

stochastics 

Number of interac-

tion vehicles 

Increased desired 

acceleration 

Aggressive OFF OFF 1 110% 

Safe OFF OFF 1 100-110% 

Cautious ON OFF >1 100% 

HVs OFF OFF 1 100% 

Table 3.4 Setting for AV features (Sukennik 2018) 

3.2.1 Functions 

The autonomous vehicles are considered to interact deterministically instead of stochastically 

like the human-driven vehicles which has significant role in the acceleration and deceleration 

behaviors. The simulator can control the extension of desired acceleration, desired decelera-

tion, maximum acceleration and maximum deceleration of individual vehicles in the network, 

if it is a requirement for the modelling (Sukennik 2018).  

3.2.2 Distributions 

Desired speed 

The desired speed shows an influential presence in the obtainable travel times and link ca-

pacity. The real speed is a product of the interactions of the vehicle with other road agents 

and infrastructures in the simulator. However, vehicle comes with its own desired speed which 

is determined by a distribution. HVs take larger spread of desired speeds what have been 

observed. Moreover, the autonomous vehicles can travel with a much lower spread because 

AVs are prone to maintain the speed limits. That lead difference of desired speed distribution 

between HVs and AVs (Sukennik 2018). 

Time 

The time is one of the essential distributions, especially for the Wiedemann 99. It influences 

the capacity. CC1 which is one of the Wiedermann 99’s parameters, is the time distribution of 

the speed-dependent part of desired safety distance. As per Sukennik (2018), the distribution 

will be empirical or normal for each time distribution, showing randomness and uniqueness.  

Such randomness feature can be closed by deselecting use implicit stochastic (Sukennik 

2018).  

3.2.3 Spatial extent  

Study area in the simulation environment can be spatially segmented where different autono-

mous driving logics are needed to be implemented. Sukennik (2018) explained that there could 

be an autonomous vehicle priotorized region in the urban location, where the vehicles could 
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be in aggressive driving logic. However, in the same time in another part of the urban area, 

the cautious driving logic may be highly recommended because of insufficient AV friendliness. 

To achieve this, the link behaviour needed to be set. The network needs to cover all the pos-

sible behaviours of the AVs and the setting up the link behaviour type to the links. It will lead 

to the same vehicle to different driving modules in  designate locations of the network (Suken-

nik 2018). 

3.2.4 Model parameters 

Different microscopic traffic simulator offers different features to model a new vehicle model 

in the simulator. The Wiedermann 99 of VISSIM offers several features and methodology to 

create the C/AVs in the interface. Table 3.5 and Table 3.6 respectively present the parameters 

what are modified to match the driving modules of C/AVs and several designated parameters 

for the C/AVs what are chosen for this study. 

Sl. IDriveringBehavior Parameter Description Aggressive Normal Cautious 

General Parameters 

1 LookBackDistMax Max. Look back distance [m] 150,00 150,00 150,00 

2 LookBackDistMin Min. Look back distance [m] 0,00 0,00 0,00 

3 LookAheadDistMax Max. ahead back distance [m] 250,00 250,00 250,00 

4 LookAheadDistMin Min. ahead back distance [m] 0,00 0,00 0,00 

5 StandDist 
Standstill distance in front of static 
obstacles [m] 

0,50 0,50 0,50 

Wiedemann 99 car-following model parameters 

6 W99CCO 
Desired distance between lead 
and following vehicle [m] 

1,00 1,50 1,50 

7 W99CC1DISTR 
Headway Time [s]  
Desired time between lead and 
following vehicle 

0,6 0,9 1,50 

8 W99CC2 
Following variation [m] 
Additional distance over safety 
distance that a vehicle requires 

0,00 0,00 0,00 

9 W99CC3 

Threshold for entering following 
state [s] 
Time is second before a vehicle 
start to decelerate to reach safety  
distance (negative) 

-6,00 -8,00 -10,00 

10 W99CC4 

Negative "following Thre-
hold"[m/s] 
Specifies variation in speed be-
tween lead and following vehicle 

-0,10 -0,10 -0,10 

11 W99CC5 
Positive "following Threhold"[m/s] 
Specifies variation in speed be-
tween lead and following vehicle 

0,10 0,10 0,10 

12 W99CC6 
Speed dependency of oscillation 
[1/ms] 

0,00 0,00 0,00 
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13 W99CC7 
Oscillation Accelaration  
Acceleration during the oscillation 
process[m/s2] 

0,10 0,10 0,10 

14 W99CC8 Standstill Acceleration [m/s2] 4,00 3,50 3,00 

15 W99CC9 Acceleration with 80 Km [m/s2] 2,00 1,50 1,20 

Lane-changing model parameters 

16 MaxDecelOwn 
Max. decelaration for leading 
(own) vehicle [m/s2] 

-4,00 -4,00 -3,50 

17 MaxDecelTrail 
Max. decelaration for following 
(trailing) vehicle [m/s2] 

-4,00 -3,00 -2,50 

18 AccDecelOwn 
Accepted decelaration for leading 

(own) vehicle [m/s2] 
-1,00 -1,00 -1,00 

19 AccDecelTrail 
Accepted decelaration for follow-
ing (trailing) vehicle [m/s2] 

-1,50 -1,00 -1,00 

20 CoopDecel 
Max. decelaration for cooperative 
lane-change/braking [m/s2] 

-6,00 -3,00 -2,50 

21 SafDistFactLnChg Safety distance reduction factor 0,75 0,60 1,00 

Lateral manuever parameters 

22 MinSpeedForLat 
Minimum longitudinal speed for 
lateral movement [km/h] 

3,60 3,60 3,60 

Table 3.5 Modification of driving behaviours to match the C/AV driving modules (Sukennik 2018, PTV 2019, Atkins 2016) 

Sl. COM VISSIM Parameters 

Autonomous  

Parameter  

Description 

Aggressive 

(Modified) 

Normal 

(Modified) 

 

Cautious 

(Modified) 

 

1 EnforcAbsBrakDist 
Enforce absolute 

braking distance 
False False True 

2 UseImplicStoch 
Use implicit stochas-

tics 
False False False 

3 NumInteractObj Number of interac-

tion objects and ve-

hicles 

10 2 2 

4 NumInteractVeh 5 3 2 

5 W99cc0 
Headway based on 

leader vehicle class 
Listed in the Table 4.14 

6 W99cc1Distr 

7 IncrsAccel 
Increased accelera-

tion 
110% 105% 100% 

8 Platooning Platooning 3 (Arbitrarily selected for the study corridor) 

9 AddOccupancyDistribution 

Occupancy distribu-

tion (with/out zero 

passengers) 

relevant to public transport 

10 ConsVehInDynPot 
Consider vehicles in 

dynamic potential 
True True True 

Table 3.6 Dedicated parameters required to model C/AV in the VISSIM (Sukennik 2018, Atkins 2016, Zeidler et al. 2018, PTV 

2019, 2011) 
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Furthermore, the V2V and V2I features of connected and autonomous vehicles are imposed 

by both COM interface and additional scripts. Table 3.7 shows the implementation techniques 

of connected features for this study. 

Feature Category Sub-Category 

Implementation 

method 

Vehicle to Vehicle connectivity (V2V) 

Lane Control  
VISSIM/ COM interface 

Adaptive Cruise Control (ACC)  

Vehicle-to-Vehicle (V2V) Communication 

VISSIM interface Platoon formation 

Vehicle to Infrastructure Connectivity 

(V2I) 

Automatic Emergency Braking System (AEBS) 

Object or Collision Avoidance System (CAS) 
Event script file 

Slowing down to intersections 

Table 3.7 Implemented automation features 

3.2.5 Assumptions 

This study considers that the C/AVs will not work from central processing system which means 

each agent will be individual and will react as per the state of the network. The vehicles will 

get feed from the observation and nearby vehicles’ reactions. There will be no influence from 

entire city network state. Furthermore, the central traffic control system is omitted in this study 

so that it can match the human driven vehicles and separate agent-based reactions. Sub-

urban and freeway may not be suitable for the zonal traffic control system because of lack of 

infrastructures (i.e. detectors, processor and transmitter) what are essential to accelerate the 

control as a zonal pattern.    

3.3 Evaluation process 

3.3.1 Traffic performance indicators 

This study used average travel time, average delay time and average speed as traffic perfor-

mance indicators. The average travel time is one of the most basic measure in transportation 

system. It represents the average time required to travel from one point to another over a 

specified route by all vehicles under on-site traffic conditions. On the other hand, the average 

delay time indicates the average time of all vehicles lost by traffic friction items and traffic 

control devices adding extra periods in the travel time. Both of them give an impression of the 

traffic conditions and indicates level of service of the road (Macababbad, R., J., R., M. and 

Regidor, J., R., F. 2011, Salter, R., J. 1989). Speed as a performance indicator is a strong 

expression towards the capacity and the queue condition (Sharma, H., K. et al. 2012, Akçelik 
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2003). If the road is congested and reached the capacity, it will demonstrate lower speed 

(Sharma, H., K. et al. 2012, Salter, R., J. 1989). 

3.3.2 Emission evaluation process 

The EnViVer used the vehicle trajectories and additional information to compute the emission 

of the focus study area of this thesis. Additional details required for this study are (Eijk et al. 

2014): 

• VehNr: Number of Vehicle  

• Type: Number of Vehicle Type  

• VehTypeName: Name of the Vehicle Type  

• ToD: Simulation Time as Time of Day [hh:mm:ss:ms] (preferred) or  

t: Simulation Time [s]  

• vMS: Speed [m/s] at the end of the simulation step  

The vehicle trajectories and other information are obtained as output from the VISSIM after 

running the microscopic simulation.   

3.2.3 Safety evaluation process 

This study used the trajectory files in Surrogate Safety Assessment Model (SSAM) to investi-

gate on number of potential conflicts. These vehicle trajectories are generated from the VIS-

SIM. SSAM has no built-in function to determine possible collisions by the vehicle type but it 

is capable to provide the vehicle IDs which are responsible for the conflicts.  Later, related 

vehicle types can be identified from the VISSIM interface seperately. Lastly, it can estimate 

possible confliction by vehicle types: HV-HV,HV-AV, and AV-AV (Morando et al. 2018). This 

study has been carried out for two sets of TTC i.e. 0.75 and 1.5 sec for constant value of PET 

(1.5 sec).  

3.2.4 Sensitivity Analysis 

The two steps sensitivity analysis (SA) has been implemented to obtain the perception of the 

influential parameters. The experiment is planned on the AV models for 8 input parameters 

which are closely related to microscopic simulation of AVs. These parameters have been se-

lected from as per viewpoints from the Co-Exist project (Sukennik 2018). Table 3.8 show the 

microscopic traffic input parameters chosen for preliminary SA.  
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Sl. Parameters COM VISSIM  

Parameters 

Range Description 

1 Accepted de-
celeration 
(own) 

AccDecelOwn -3 to -0.5 
m2/s 

This parameter demonstrates the lower bound of 
the deceleration for the own vehicle for lane change 

2 Look ahead 
distance 
(maximum) 

LookAheadDistMax 0 – 300 
meter 

Maximum spatial distance a driver can see in front 
and side to interact for other road users.  

3 Look back 
distance 
(maximum) 

LookBackDistMax 0 – 300 
meter 

Maximum spatial distance a driver can see in back-
side to interact for other road users. 

4 Minimum col-
lision time 
gain 

MinCollTmGain 0.5 – 5 sec This parameter represents the minimum value for 
collision time gain for the next vehicle or infrastruc-
ture. 

5 Minimum lon-
gitudinal 
speed for lat-
eral move-
ment 

MinFrontRearClear 0 – 2.5 me-
ter 

Minimum longitudinal speed allows for lateral move-
ments which assures vehicles’ lateral maneuver 
they come near to the stop. 

6 Number of 
interacting 
vehicles 

NumInteractVeh 0 – 99 Number of vehicles affects a particular vehicle in the 
lane 

7 Standstill dis-
tance 

W99cc0 0.6 – 3.05 
meter 

The desired spatial standstill distance between two 
vehicles.  

8 Headway 
time 

W99cc1Distr 0.5 – 1.5 
sec 

The time that a driver wants to keep constant with 
other vehicles.  

Table 3.8 Microscopic input parameters for creating preliminary SA for AVs (Sukennik 2018, PTV 2011, 2019, Essa and Sayed 

2016) 

To save the computational effort, the second step SA comes with lesser number of input pa-

rameters for studying the insight of the AV models. Two parameters such as number of inter-

acting vehicles and minimum longitudinal speed for lateral movement have shown significant 

influences in the first stage of the SA which leads to the extension of SA with these parame-

ters. The average travel time has been used as performance indicator for both steps of the 

sensitivity analysis as it reflects how the total network efficiency is affected from the continuous 

changes.  

 

 

 



 

  

4 Experimental setup 
In this chapter, details of the experimental setups for this study has been discussed. At first, a 

demonstration of choice of study area and data collection process have been described as 

this experimental set has been built up on them considering them as the base. Secondly, the 

development of study model and additional components are illustrated which are essentially 

followed and taken for this study. Figure 4.1 shows the process of the experiment setup in-

spired and evolved from the studies done by other researchers, to meet the goals of this study.  

 

 

Figure 4.1 Process of the experimental setup  

Although the initial plan was to implement parallel programming techniques in the different 

calibration algorithms: SPSA, FDSA and in the execution of the sensitivity analysis, it was not 

implemented. Hence, it provides a research provision for extension of this study. Furthermore, 

Figure 4.2 shows the organigram of the microscopic traffic simulation for this study that is 

inspired from a former study (Virdi et al. 2019). The base demand was obtained and processed 

from real traffic and the network was modelled to precise enough to detail the existing infra-

structure. The overall approach taken in this study is to proxy the impacts of CAVs in an ex-

isting traffic condition. The VISSIM, a microscopic traffic simulation software from PTV, has 

been used to perform the simulation. Moreover, EnViVer and SSAM have been used for ad-

ditional inquires such as impact over emission and accident. The car following models which 

are supplied in the VISSIM have been used to represent the human-driven vehicles for lane 

behaviours. To represent the C/AVs in the VISSIM interface, along with available car following 

behaviours, additionally the behaviours of ACC, and CACC technologies are implemented. 

(Antoniou and Wagner 2014) 

(Federal Highway Administration 2004) etc. 

(Spall, J., C. 1998a), (Spall, J., C. 1998)  

(Qurashi et al. 2019) etc.   

(Raju et al. 2018) etc. 

(Dadashzadeh et al. 2019) 

(PTV 2011) etc. 

(Makridis et al. 2018) 

(Ekram and Rahman 2018) 

(Li and Wagner 2019) etc. 

(Papantoniou et al. 2020) 

(Bohm and Häger 2015) etc. 

(Morando et al. 2018) 

(Virdi et al. 2019) etc. 

(Sfeir et al. 2018) etc. (Punzo et al. 2014)  

(Habtemichael and Santos 2012) 

(Bansal 2020) 

(Lee and Chandrasekar 2002) 

(Ni et al. 2010) 

 

(Dadashzadeh et al. 2019d) 
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The vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) connectivity assure the reflec-

tion of real world into the model which are stored as the external control algorithm. The surro-

gate safety assessment module assures proper visualization of probable accidents while the 

EnViVer check the emission of the study area. 

  
 
Figure 4.2 Organigram of the microscopic traffic simulation  

4.1 Study Area   

The area for this study was selected based on the presence of different driving manoeuvres 

i.e. lateral manoeuvres, for the human-driven vehicles (HVs) and, connected and/or autono-

mous vehicles (C/AVs). Two major urban built-up streets in Munich, Germany: Ludwigstraße 

and Leopoldstraße which is also the continuation of Ludwigstraße, are modelled for the ex-

periment. The combined length of these two nominated streets from north direction to south 

direction is 2.5 km approximately (Aziz 2018). Ludwigstraße and Leopoldstraße carry-out sev-

eral mobility hubs and commercial areas, which make it one of the busy corridors of the Mu-

nich. Moreover, this corridor is part of the bicycle focused other transportation and mobility 

projects of the Munich: RASCH and RadOnTime (Bogenberger 2020), as this corridor takes 

higher number of bicycle riders. Due to presence of several mobility hubs, intersections, merg-

ing points and public transportation stops, the road performances tend to drop in the peak 

hours. This study recognizes 10 signalized intersection of the mainstream where 6 major 

End 
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intersections are taken for this research, served to collect the data and to measure the im-

pacts. The major and minor streams from the study area are listed in Table 4.1 

 Sl. Major street (South-North Direction) Minor street (East-West Direction) 

1 

Ludwigstrasse 

Von-der-tannstrasse 

2 Theresienstrasse 

3 Schelingstrasse 

4 

Leopoldstrasse 

Fransz-josephstrasse 

5 Herzogstrasse 

6 Ungerestrasse 

Table 4.1 Details of the study area 

Figure 4.3 describes the major intersections and streams of the Ludwigstraße and Leo-

poldstraße which are chosen for this study. 

 

Figure 4.3 Geographical location of the study area: Ludwigstraße and Leopoldstraße  
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4.2 Data Collection   

Both primary and secondary data were used to prepare the simulation model to reflect the real 

world in simulation appropriately. Due to time constraint, traffic data were obtained in the form 

of video clips from a former master thesis conducted by Hossein (2018) in the chair of traffic 

engineering and control, Technical University of Munich. However, traffic control details, road 

control measures, and geometry of the network were supplied by Aziz (2018) and Hossein 

(2018) from their master theses. Furthermore, several field trips are performed, and quality of 

the data is preserved by recounting of vehicles from the video clips. 

4.2.1 Traffic Demand Data   

The traffic demand data were gathered from the real-world by setting a camera in each major 

intersection of Ludwigstraße and Leopoldstraße. As the proper location for data collection 

camera was missing so only six major intersections were chosen for performing the micro-

scopic simulation. These clips were manually counted again to match the customized time 

interval of this thesis. In total, four types of vehicles taken into the account for generating 

current state in the VISSIM which are HV, truck, normal bike and cargo bike. The Pedestrian 

and public transport like buses and tram are not included in the assessment for this study. 

AVs and CAVs are included additionally to develop the model for assessment. Each AV and 

CAV models come with three different driving modules which are planned based on literatures 

and assumptions to match their inner objectives (PTV 2011, Evanson 2017, Toledo and Kout-

sopoulos 2004, Toledo 2003). Figure 4.4 shows the vehicle inputs in the study area from dif-

ferent locations. 

The microscopic simulation model in the VISSIM interface for this study was limited to peak 

hour intervals (17:00-18:00) to match previously accumulated field data (Hossein 2018). The 

field data of traffic volumes and the vehicle turning ratio were manually acquired from the video 

clips which were recorded by a previous master student as part of his master thesis activities 

(Hossein 2018). 
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Figure 4.4 Vehicle input in the study area 

4.2.2 Traffic Signal Data   

The traffic signal control data of intersections of the study area is supplied by the chair of traffic 

engineering and control, Technical University of Munich. Furthermore, the traffic control data 

also made by Landhauptstadt München and contain present signal groups of the intersections, 
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the inter green matrix, and the different signal programs with different cycle time (the 70s, 90s, 

120s). These data were used by the former two master thesis (Aziz 2018, Hossein 2018). 

4.2.3 Traffic Infrastructure 

The network geometry data and road control measures, to prepare the microscopic simulation 

model, were supplied by two former master students Hossein (2018) and Aziz (2018) who 

conducted their master theses in the chair of traffic engineering and control, Technical Univer-

sity of Munich. These road geometry data include layout plan of every intersection, detailed 

information of each link, lane width, stop line, pavement marking as well as signal head loca-

tion. All these network geometry data were generated by Landhauptstadt München. Later on, 

several field investigations were made to match the road improvements. The speed reducer 

and priority regions are implemented to avoid congestion and possible collision in the traffic. 

Table 4.2 shows the reduced speed distribution and deceleration rate for different vehicles.  

Sl. Vehicle Class Desired speed distribution (km/h) Deceleration 

1 HV 15-25 2 

2 Truck 12-20 1.5 

Table 4.2 Reduced speed area (Aziz 2018) 

4.2.4 Measure of Effectiveness 

This thesis focused on a particular time interval of peak hour (17:00-18:00) for the microscopic 

traffic simulation. Vehicles volume and real-world vehicle trajectories (GPS position) were ac-

cumulated from a previous master thesis (Hossein 2018). Figure 4.9 demonstrates the space-

time relationship of a vehicle. Vehicles volumes were not able to represent the effect of driving 

behaviours in the microscopic simulation model as time intervals were quite coarse to detect 

the impact after taking the average of each output. At this point in the study, vehicle trajectories 

became quite useful. The travel time data were used to calibrate the model for driving behav-

iour parameters. Finally, space-time was used to demonstrate the validation phase.  

4.2.5 Vehicle Data 

The vehicle data specifically vehicle type available in the traffic, composition to be imple-

mented in the model, are manually obtained from the video clips which are mentioned in pre-

vious subsection (4.2.1 Traffic Demand Data). Table 4.3 shows the types of vehicle what are 

implemented in the simulation model.  
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Sl. Vehicle Type  Sub-Type (VISSIM interface) Desired Speed (km/h) 

1 HV HV 40 

2 Truck Truck 30 

3 Bike Normal Bike + Cargo Bike N. Bike: 15, C. Bike: 12 

Table 4.3 Type and desired speed of vehicles 

4.3 Development of study model 

Development of simulation model in the microscopic traffic model environment is done in sev-

eral stages. The development process starts with the implementation of road geometry and 

then implementation of road control. After finding and customizing appropriate car following 

behaviours, the link behaviours are taken care of which are precise method to represent dif-

ferent concerns of the reality.  In second phase, the traffic demand is issued for chosen time 

horizon. After this stage, number of simulation and calibrated model is finalized. Finally, once 

the base model undergo through the validation phase and simulation can be charged for re-

quired outputs, development of base scenario is completed. Figure 4.5 visualizes the base 

model prepared in the VISSIM interface for this study.  

 
Figure 4.5 Base model in the VISSIM interface  

 

(b) Leopoldstrasse (a) Ludwigstrasse 
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4.3.1 Components of model 

Several scenarios have been tested to perceive the impact of various mixtures of HVs, AVs 

and CAVs. Table 4.4 shows scenarios for the traffic impact study of different penetration per-

centage of C/AVs for three traffic demand cases: 20% below peak hour, peak hour, 20% above 

peak hour, and only one driving module, normal. Table 4.5 deepen the insight investigation of 

the safety and emission along with the traffic performance. Another 11 scenarios have been 

taken for three traffic demand cases and three different driving modules: aggressive, normal, 

cautious. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sl. HVs % AVs % CAVs % 

1 100 0 0 

2 0 100 0 

3 0 0 100 

4 75 13 12 

5 13 75 12 

6 13 12 75 

7 50 25 25 

8 25 50 25 

9 25 25 50 

10 25 37 38 

11 37 25 38 

12 37 38 25 

13 0 50 50 

14 50 0 50 

15 50 50 0 

Table 4.4 Combination of 3 vehicle combinations 
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Table 4.5 Combination of 2 vehicle combinations 

4.3.2 Car following behaviours 

Generally, the microscopic traffic simulation software come with its own car following tech-

niques besides customizable behaviours. VISSIM has its predefined car following behaviours 

which can represent most possible scenarios of real world. As this study covers three different 

driving modules which are different by behaviours from each other’s, and need AV and CAV 

for assessment, several self-prepared behaviours are generated which can match the AV and 

CAV functionalities. Table 4.6 shows the car following models and link behaviours to their 

corresponding vehicle types, assigned for this study. 

Sl. Name Vehicle Classes Driving Behaviors 

1 Urban (motorized) 

HV, Truck 

Wiedemann 74 

2 Right-side rule (motorized) Wiedemann 99 

3 Freeway (free lane selection) Wiedemann 99 

4 Cycle-Track (free overtaking) Normal Bike, 

Cargo Bike 

Wiedemann 74 

5 Urban motorized- Selected lanes HV, Truck Wiedemann 74 

6 Urban (biker) Normal Bike, 

Cargo Bike 

Wiedemann 74 

7,8,9 AV/CAV aggressive/ safe/ cautious AV/ CAV Modified Wiedemann 99 

Table 4.6 Generated car following models   

4.3.3 Conflict areas 

Conflict areas are indicated in the VISSIM interface for safety reasons at intersections where 

two or more links/ connectors cross each other. Figure 4.6 depicts the conflict areas of 
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Münchner freiheit intersection. Right of way is implemented in two phases. First, bicycle has 

right of way priority over the motorized vehicles and secondly major traffic stream flows i.e. N-

S and S-N, enjoy right of way over minor traffic stream flows i.e. E-W and W-E.  

 

Figure 4.6 Conflict area management in VISSIM (i.e. Ludwigstraße-Schellingstraße)  

4.3.4 Signal controllers 

There are ten signalized intersections located in the study area that indicates to ten fixed 

time signal controllers are installed in this study area. All intersections are cycle time of 90 

seconds (Hossein 2018). 

4.3.5 Data collection points 

To obtain the data from the network and to get an impression of the performance of the traffic, 

several data collection points were introduced in each lane for 6 nominated intersections in 

their both directions i.e. N-S and S-N which are 12 in total for the HV lanes (Motorway). Mo-

torway and bicycle lanes have separated data collection points installed in their own lanes 

which mean bicycle lanes have equal number of data collection points. They are responsible 

to measure the traffic volume, delay and travel time in their designated lanes. 

4.3.6 Error check 

Error checking is considered as crucial phase in the microscopic traffic simulation. The 

VISSIM has its own interface where the base model undergo through test process after 

the coding with default parameter sets or setting the model in the GUI directly. This verifi-

cation phase involves rechecking of all input data i.e. review of network connectivity, link 

parameter, vehicle input data and static routing decision, link and driving behaviour types. 
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Moreover, the 3D animation undergo through this process to review the network so that 

notable errors can be found (Hossein 2018, Aziz 2018). 

4.3.7 Number of simulations run 

As mentioned earlier (2.1.1 Number of required simulations run) the minimum required num-

ber as per confidence interval can be estimated by equation below.  

CI1-α% =2*t(1-α/2), N-1
𝑆

√𝑁
 

(4.1) 

Where, CI(1- α) %=(1- α)% confidence interval for the true mean, where alpha equals the proba-

bility of the true mean not lying within the confidence interval, t (1-alpha/2), N-1= Student’s statistic 

for the probability of a two-sided error summing to alpha with N-1 degrees of freedom, where 

N equals the number of repetitions and S= Standard deviation of the model results.  

However, for confidence interval 95% and traffic volume as measure of effectiveness for de-

termining the minimum number of required simulations, the requirement become quite high 

which makes computational effort quite high and time consuming. The required number of 

simulations found from bicycle analysis is greater than the result found from HV analysis. Both 

are time consuming for microscopic simulation, especially when volume is taken as a measure 

of effectiveness and calibration iterations are not determined. However, it is important to as-

sure the 95% confidence interval. As, this study is investigating over HVs, AVs and CAVs, 

only HVs had been approached for deciding over number of required simulations. Table 4.7 

and 4.8 show the number of required of simulation for HVs and Bicycle, respectively. 

Sl. Location Standard Deviation Mean 
Confidence 
Error (5%) 

t value N 

1 Vondertann(N) 46 858 42,9 2,306 24,4557 

2 Theresienstrasse(N) 47 838 41,9 2,306 26,7637 

3 Schellingstrasse(N) 48 835 41,75 2,306 28,1156 

4 
Franz Jo-
sephstasse(N) 43 1004 50,2 2,306 15,6066 

5 Herzogstrasse(N) 35 1169 58,45 2,306 7,6269 

6 Ungererstrasse(N) 25 749 37,45 2,306 9,4788 

7 Vondertann(S) 23 591 29,55 2,306 12,8860 

8 Theresienstrasse(S) 28 1234 61,7 2,306 4,3805 

9 Schellingstrasse(S) 27 1275 63,75 2,306 3,8154 

10 
Franz Jo-
sephstasse(S) 28 1256 62,8 2,306 4,2284 

11 Herzogstrasse(S) 34 1214 60,7 2,306 6,6736 

12 Ungererstrasse(S) 30 1281 64,05 2,306 4,6664 

 

Table 4.7 Calculated number of simulations required for 95% confidential interval of HVs   
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Sl. Location Standard Deviation Mean 
Confidence 
Error (5%) 

t value N 

1 Vondertann(N) 18 361 18,05 2,306 21,1529 

2 Theresienstrasse(N) 12 316 15,8 2,306 12,2695 

3 Schellingstrasse(N) 19 337 16,85 2,306 27,0449 

4 
Franz-Jo-
sephstasse(N) 16 343 17,15 2,306 18,5136 

5 Herzogstrasse(N) 17 290 14,5 2,306 29,2375 

6 Ungererstrasse(N) 18 288 14,4 2,306 33,2352 

7 Vondertann(S) 15 279 13,95 2,306 24,5931 

8 Theresienstrasse(S) 13 281 14,05 2,306 18,2101 

9 Schellingstrasse(S) 17 265 13,25 2,306 35,0142 

10 
Franz Jo-
sephstasse(S) 14 270 13,5 2,306 22,8753 

11 Herzogstrasse(S) 16 283 14,15 2,306 27,1960 

12 Ungererstrasse(S) 16 304 15,2 2,306 23,5685 

Table 4.8 Calculated number of simulations required for 95% confidential interval of Bicycles   

Table 4.9 demonstrates the microscopic simulation setting in the VISSIM interface taken for 

this study. 

Sl. Parameter COM VISSIM 
Parameters 

Default Value 
(PTV 2011) 

Value Description (PTV 2011) 

1 Period SimPeriod 3600 sec 4200 sec Simulation time in simulation seconds 

2 Random 

Seed 

RandSeed 42 40 This can lead to different results from 

simulation. A comparison of these sim-

ulation results allows you to compare 

the effect of stochastic variations. 

3 Number of 

Runs 

NumRuns 5 – 20, dynamic 

assignment needs 

more  

10 Number of simulations runs performed 

in a row 

4 Random 

Seed Incre-

ment 

RandSeedIncr 1 3 Indicates the difference between seeds 

for multiple simulation runs 

Table 4.9 Simulation setting in VISSIM 

4.3.8 Data Collection Interval 

Data collection parameters are used to manipulate the output to match the real-world data 

collection interval. As real-world traffic volume was collected in 15 min interval, the data col-

lection interval in the VISSIM interface should be 15 min interval as well. The VISSIM Data 

collection system also define the warm-up time of the model. Usually warm-up time is a warm-

up period of 15 to 30 minutes is enough. As the total network distance is 2.5 km and the 

desired speed for HV is taken as 25 km/hr, 10 min warm-up time will assure a total shifting of 

a vehicle from southmost intersection to the northmost intersection and vice versa. Table 4.10 

shows the data collection interval for this study. 
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Sl. Interval Time Range (second) 

1 Warm-up (10 min) 0 – 600 

2 1st interval 601- 1500 

3 2nd interval 1501-2400 

4 3rd interval 2401-3300 

5 4th interval 3301-4200 

Table 4.10 Data collection interval plan 

4.3.9 Model Calibration 

After performing successful the model becomes calibrated model. In this study, calibration has 

been performed for the traffic volume for every 15 min time interval. Figure 4.7 shows calibra-

tion performance in the traffic volume diagram which has four-time segments, dividing a peak 

hour into four quarters, matching real-world data collection procedure. Calibration has done 

for both direction both south to north and north to south direction. For both directions, after 

calibration simulation results matched real-world observed data in its +/- 95% confidential in-

terval perimeter, shown in the figure below.  

Moreover, to strengthen the outcome of the volume calibration, speed profile has been 

checked for the study model. Speed profile has been shown in the Figure 4.8. Compared 

visualization of two speed profiles, observed and after calibration, shows that a stable realistic 

speed profile is generated after performing the calibration for this study for every time segment 

and for both directions. The entire calibration study has been developed for the HVs because 

currently only HV traffic is available for the experiments.   
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(a) Direction: South to North 

 

  

 
(b) Direction: North to South 

Figure 4.7 Both direction traffic volumes for all six intersections (HVs) 
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(a) Direction: South to North 
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(b) Direction: North to South 

Figure 4.8 Both direction speed for all six intersections  

As volume and speed profiles are stable for the model, currently updated parameters can be 

used for validating the model. Table 4.11 listed the final values of the 37 criteria parameters 

from the calibration phase of this study, which are being used for further processes. 
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Sl. IDriveringBehavior Parameter Description 

Ranges (Da-

dashzadeh et al. 

2019b, PTV 

2011) 

Cali-

brated 

Values  

General Parameters 

1 LookBackDistMax Max. Look back distance [m]  50-200 150 

2 LookBackDistMin Min. Look back distance [m]  0-200 100 

3 LookAheadDistMax Max. ahead back distance [m]  100-300 300 

4 LookAheadDistMin Min. ahead back distance [m]  0-300 5 

5 NumInteractVeh Number of interaction vehicles 0-99 99 

6 StandDist Standstill distance in front of static obstacles [m] 0,00-3,00 0,50 

7 FreeDrivTm Free driving time [s] N.A 11,0 

8 IncrsAccel Increased Acceleration [m/s2] 1,0-9,99 3,00 

9 MinCollTmGain Minimum collision time gain [s] N.A 2,00 

10 MinFrontRearClear Minimum clearance (front/rear) [m] N.A 0,5 

11 SleepDur Temporary lack of attention - sleep duration N.A 0,0 

Lane-changing model parameters 

12 DecelRedDistOwn Reduction rate for Leading (own) vehicle [m] 100-200 200,00 

13 AccDecelOwn  Accepted decelaration for leading (own) vehicle [m/s2] -3 to -0.5 -1,00 

14 AccDecelTrail 
Accepted decelaration for following (trailing) vehicle 

[m/s2] 
N.A -0,50 

15 SafDistFactLnChg Safety distance reduction factor 0,10-0,6 0,60 

16 CoopDecel 
Max. decelaration for cooperative lane-change/brak-

ing [m/s2]  
-6,00 to -3,00 -3,00 

17 MaxDecelOwn Max. decelaration for leading (own) vehicle [m/s2]  N.A -4,00 

18 MaxDecelTrail Max. decelaration for following (trailing) vehicle [m/s2]  N.A -3,00 

19 DecelRedDistTrail Reduction rate for following (trailing) vehicle [m] N.A 200,00 

20 PlatoonFollowUpGapTm Platooning - follow-up gap time [s] N.A 0,60 

21 PlatoonMinClear Platooning - minimum clearance [m] N.A 2,00 

Wiedemann 74 car-following model parameters 

22 W74ax Average  standstill distance  0,50 -2,50 1,50 

23 W74bxAdd Additive Factor for security distance  0,70 -4,70 1,00 

24 W74bxMult Multiplicative factor for security distance  1,00 -8,00  2,00 

Wiedemann 99 car-following model parameters 

25 W99CCO 
Desired distance between lead and following vehicle 

[m] 
0,60 -3,05 1,50 

26 W99CC1DISTR 
Headway Time [s]  

Desired time between lead and following vehicle  
0,50 - 1,50 1,50 

27 W99CC2 

Following variation [m] 

Additional distance over safety distance that a vehicle 

requires  

1,52 - 6,10 4,00 

28 W99CC3 

Threshold for entering following state [s] 

Time is second before a vehicle start to decelerate to 

reach safety  

distance (negative) 

-15,00 to -4,00 -8,00 
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29 W99CC4 

Negative "following Threhold"[m/s] 

Specifies variation in speed between lead and follow-

ing vehicle 

-0,61 to -0,03 -0,40 

30 W99CC5 

Positive "following Threhold"[m/s] 

Specifies variation in speed between lead and follow-

ing vehicle 

0,03 -0,61 0,35 

31 W99CC6 Speed dependency of oscillation [1/ms] 7,00-15,00 11,44 

32 W99CC7 
Oscillation Accelaration  

Acceleration during the oscillation process[m/s2] 
0,15-0,46 0,25 

33 W99CC8 Standstill Acceleration [m/s2] 2,50-5,00 4,00 

34 W99CC9 Acceleration with 80 Km [m/s2] 0,50-2,50 1,50 

Lateral manuever parameters 

35 LatDirChgMinTm Lateral direction change - minimum time  [s] N.A 0,0 

36 LatDistDrivDef Lateral minimum distance at 50 km/h (default) N.A 1,0 

37 MinSpeedForLat Minimum longitudinal speed for lateral movement N.A 1,0 

Table 4.11 Calibrated values of selected driving behaviour parameters 

4.3.10 Post-Calibration Parameters 

As calibration process move further, the GoF, RMSN, RMSE, RMSPE and MPE, reduces, 

which indicate the simulated data is getting closer to the observed data. Table 4.12 shows 

GoFs used for this study.  An expectable value of goodness-of-fit (GoF) determines final step 

of calibration. Figure 4.9 shows the Theil’s coefficient before and after the calibration, which 

are changed after calibration indicating success of the calibration. After sixty-five iteration, final 

desired value of GoF have been obtained for this study. Figure 4.10 shows the calibration 

results for RMSN for both directional traffic volumes. There were sudden drops in the RMSN 

plot up to 37 number of iteration but after that progress became slower. Once the plot faced 

the convergence, it indicated enough of iteration is done for this study.  

GoF Before Calibration After Calibration 

RMSN 0,116 0,055 

RMSE 30,085 13,4 

RMSPE 0,137 0,063 

MPE -0,0011 0,0006 

Table 4.12 Goodness of fit measures 
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Figure 4.9 Theil’s coefficient  

 

 
Figure 4.10 RMSN vs No of Iteration 

4.3.11 Model Validation  

The validation process assures that the simulation model will show similar responses for any 

data for the calibrated parameters. As visual approach of validation has been used in this 

study by plotting a time-space diagram. It indicates vehicles displaced in the corridor over the 

time in reality and in the simulation. Figure 4.11 visualizes the time-space diagram for simu-

lated model and real-world collected data. Time-space diagram has been prepared for both 

direction: South-North and North-South direction. The results of the time-space diagram have 

been interpreted for 95% confidential interval., indicating accuracy of the acceptance. 
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Figure 4.11 Space-time diagrams for both direction  
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5 Results 
This chapter presents the results from experimental scenarios demonstrating aspects of the 

presence of C/AVs in mixed traffic for the future transportation system. Several parameters of 

autonomous vehicles played significant roles in the microscopic traffic simulation that repre-

sented such vehicles in the real world. The sensitivity analysis over those parameters showed 

how the traffic performances change in the realistic defined ranges. The scenarios originated 

from different traffic demand cases (i.e. the peak hour, 20% below the peak hour and 20% 

above the peak hour) for different vehicle types (i.e. HVs, AVs and CAVs) and their driving 

modules (i.e. Aggressive, Normal and Cautious). In brief, this chapter draws lines over follow-

ing occurrences:   

• Impact study of C/AVs in the mixed traffic, for same driving modules and fixed param-

eters of HV-AV-CAV 

• Sensitivity analysis of driving parameters of AV in the mixed traffic, for same driving 

module and fixed amount of AV penetration  

As stated above, all the investigation scenarios for the impact study have unchanged recom-

mended values of driving parameters to make the comparison unambiguous. The details of 

recommended values used for the HVs-AVs-CAVs are given below:  

• Table 2.3 – Recommended values of selected driving behaviour parameters for HVs  

• Table 3.5 – Recommended values of selected driving behaviour parameters for C/AVs’ 

three driving modules of C/AVs 

• Table 3.6 – Recommended values of dedicated parameters of C/AVs 

Only the normal driving module of C/AVs underwent the process to match significantly the 

HVs’ standard driving behaviours. The other two driving modules, cautious and aggressive, 

were programmed to demonstrate higher differences in performance compared to the HVs. 

To make an optimistic future scenario, the sensitivity analysis considered 60% of the AV share 

in the study area in order to obtain maximum stable responses of the traffic performance from 

the AVs’ counterpart.  

To explore the presence of C/AVs in mixed traffic and to perceive the influences of the AV 

parameters, a total of four hundred ninety-six scenarios have been tested in this study, ex-

cluding the sixty-six scenarios for calibration and validation. The performance data was col-

lected from the simulation in every fifteen min to match the observed real-world data. Data 

collection was withheld for the first ten min, as this period is considered as a warmup time. 

The basic experimental scenario consisted of peak hour traffic (16:00-17:00), with the pres-

ence of HV-AV-CAVs exchanging harmoniously for the normal driving module. Moreover, 
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three traffic demand cases represented three possible conditions of the study area. Traffic 

demand 20% below the peak hour represented the low level of traffic, peak hour represented 

the currently allowable amount of traffic and 20% above the peak hour represented the maxi-

mum capacity of vehicles in the study area. Each scenario has been executed for 10 simula-

tion runs in provision for normalizing the outcomes and to avoid the randomness of a solo 

simulation as discussed in previous section (4.1.7 Number of simulations run). The results 

show variations in the responses of different scenarios, which are induced from various inter-

nal and external factors i.e. connectivity features and edging with the capacity.   

5.1 Evaluation of Mixed Traffic 

The network performances which are influenced by the penetration of AVs and CAVs in the 

network, are derived for different traffic flows. This combinational impact of HV-AV-CAV have 

been studied for the mixed traffic in terms of travel time, speed, delay time. In addition to that 

a subset of these experiment cases, was studied to get deeper impression over the emission 

and safety aspect in the network. At the end, sensitivity analysis for the AV parameters are 

evaluated in terms of travel time and speed. Table 5.1 shows the significance of the perfor-

mance indicators taken for this study: 

Sl. Parameter Unit Significance (PTV 2011) 

Traffic Performance Indicators 

1 Travel Time Second Average travel time of the vehicles between two sections 

2 Speed km/hr Average speed at the end of the time step 

3 Delay Time Second Average difference between optimal (ideal, theoretical) driv-

ing time 

Emission Performance Indicators 

1 CO2  gm/km Average CO2 emission per gm per km of the study area 

2 NOx gm/km Average NOx emission per gm per km of the study area 

3 Total number of stops - Average number of stops (cumulative) 

Safety Indicator 

1 Number of conflicts 
- 

Possible conflicts for given Time to collision (TTC) and post-

encroachment time (PET) 

Table 5.1 Description of the performance indicators 

The average travel time of the network is an important performance indicator for this study. 

Reduction of travel time is a positive indicator for the network. The average speed relates to 

travel time. When the spatial distance of two locations is constant, higher speed can reduce 

the travel time. The delay time, on the other hand, acts as quality control for the travel time. 

Vehicle delay time is subtraction of the theoretical travel time from the actual travel time in the 

VISSIM interface. If a vehicle travels without any intrusion in the road by other vehicles or 

traffic signals, that travel time is called theoretical travel time. Lower travel time and lower 

delay time indicate higher speed in the road. All of these passively represent the road capacity.  

As per Friedrich (2016), a significant increment can be seen in the network capacity, if AVs 



Results 

83 

 

run in the network which assures efficient use of the road infrastructures. Furthermore, the 

emissions and safety aspect relate to the traffic performance indicators. A capacity reached 

road demonstrates higher emission and higher possibility of unsafety. Through this process of 

congestion increment the number of stops increases as well.   

5.1.1 HV-AV-CAV in Mixed Traffic 

The proportions of HVs, AVs, and CAVs play major roles in mixed traffic, which can be seen 

in traffic performances i.e. travel time, speed and delay time. A total of forty-five scenarios 

have been investigated for this section. Results are depicted below using ternary plots, which 

are useful for showing the impacts of three variables from the simulation model. Figure 5.1 

shows the travel time corresponding to the demand at 20% below the peak hour, at the peak 

hour, and at 20% above the peak hour. Each axis presents the proportion of penetration of a 

certain vehicle type, ranging from 0 to 1. The inner area of the ternary plot provides different 

possible HV-AV-CAV combinations. The plots indicate travel time changes for three traffic 

demand cases. The colours inside the plots depict the status of different traffic performances 

based on different combinations of HVs, AVs, and CAVs. The first impression from the ternary 

plots for the travel time is that CAVs demonstrate better performances than AVs and HVs for 

different demand cases. Increasing the proportion of CAVs by a certain amount reduces travel 

time more quickly than when increasing the proportion of AVs by the same amount. With 

higher AV-CAV penetrations, network encounter lesser travel time than any of other combina-

tions with higher penetrations of HVs.  As AVs and CAVs come with diverse types of features, 

such as connectivity, early speed reduction and, management of distance, the traffic perfor-

mance increases for higher C/AV penetrations. These additional strategies offered by C/AVs 

work better for peak hour demand and 20% below the peak hour than 20% above the peak 

hour demand case for the same study corridor. The number of interacting vehicles plays role 

in this phenomenon. With increasing traffic in the road, the interaction of the vehicles intensi-

fies as the communication continuity remain stable in the network. 

    
 

Figure 5.1 Average travel time of the network: (a) 20% below peak hour traffic flow, (b) Peak hour traffic flow and (c) 20% 

above peak hour traffic flow  

(a) (b) (c) 
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A controlled corridor with the same volume of traffic needs a higher speed to reduce the travel 

time, which was expressed in Figure 5.1 as well. For the case of speed, a similar pattern can 

be seen for all three demands: peak hour, 20% below the peak hour and 20% above the peak 

hour .  A higher AV-CAV penetration outperforms a higher HV-AV penetration in every possible 

similar combination, which can be seen in the ternary plots of Figure 5.2. The cause behind 

improved speeds remains the same. 

   

 
Figure 5.2 Average speed of the network: (a) 20% below peak hour traffic flow, (b) Peak hour traffic flow and (c) 20% above 
peak hour traffic flow  

Figure 5.3 shows the delay time for the same scenarios mentioned above. Delay times 

strengthen the statements of the other performance indicators, travel time and speed. Sce-

narios with a lower travel time and a higher speed tend to have a lower delay time and a lower 

number of stops (Aziz 2018, Hossein 2018). The delay time reduces more quickly for a higher 

AV-CAV penetration, as expected. The reasons of such anticipated improvements reinforce 

the previous two performance indicators. 

 

 

Figure 5.3 Average delay time of the network: (a) 20% below peak hour traffic flow, (b) Peak hour traffic flow and (c) 20% 

above peak hour traffic flow  

Based on the results of above, it can be said that introduction of automation in the network 

overall performs better than HVs. There are not that much of the changes for the lower amount 

of penetration of automation in the transportation system. Significant changes can be seen in 

the models, once automation participation ratio reaches certain level. The normal driving mod-

ule for this thesis interact optimistically positive for the travel time, speed and delay time. CAVs 

show better performance because additional properties CAVs conserve higher competency in 

(a) (b) (c) 

(a) (b) (c) 
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the network. The ability to make platoon, slowing down to the signal and interacting with other 

vehicles make the CAV a strong actor in the traffic.  

More automation in the network, assure higher efficiency of the automation itself because 

vehicles can communicate to each other and react with other intelligently. For higher number 

of vehicles in the network, number of interacting vehicles need to be higher but to study the 

variability, it was kept constant to 3. This result lowering of traffic performances again in the 

network for high traffic demand after reaching the yield point. 

5.1.2 HV vs. AV/CAV in Mixed Traffic 

This subsection deepens the insight of the 5.1.1 for two extreme scenarios. What if HVs are 

gradually replaced either by (i) AVs or by (ii) CAVs? What will be the impacts of different driving 

modules of C/AVs in the traffic, emission and safety? To commence this investigation, 88 

scenarios have been analysed, by varying the driving modules and traffic demands of models 

of 5.1.1.   

5.1.2.1 Traffic Performance 

Figure 5.4, the travel time scatter plots of AV and CAV reinforce the conceptual gains of the 

section 5.1.1 in addition some additional information about driving modules. As CAVs have 

additional features than HVs and AVs, here too, the CAVs use lesser travel time in contrast to 

the other vehicle types. A gradual shifting of the travel time can be seen for different traffic 

demand cases. The lowest travel time is achieved faster for the higher demand. Availability of 

required number of vehicles in the network causes earlier yielding of the travel time. The travel 

time yields into lowest value in the range of penetration between 50- 70% C/AV penetration. 

This phenomenon can be connected to the fact that number of interacting vehicles play major 

role in the performance as it is discussed in the previous section (5.1.1 HV-AV-CAV in 

Mixed Traffic). If there are lots of vehicles in a segment of the network than allowable interact-

ing vehicles, the performance ought to drop as most of them are not interacting after yielding 

point. In summary, with significant higher quantity of traffics, the interacting vehicles range 

passes the number of vehicles in the street.   

Likewise, different traffic demand cases demonstrate difference in the performances, the driv-

ing modules show differences in the traffic performances as well. The cautious and aggressive 

driving mode illustrate higher and lower travel time respectively, than the normal driving mode. 

Cautious driving modes conserve the safe measures in high level which elongate the travel 

time than normal state. In contrary, the aggressive maintain closer gaps with surroundings 

and react aggressively in the intersection so travel time reduces and capacity of the segment 

increases for same amount of traffic demand.  
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Figure 5.4 Impact of automation in average travel time 

A similar trend can be experienced from the Figure 5.5 for the speed as speed and travel time 

act together, experienced in previous section (5.1.1 HV-AV-CAV in Mixed Traffic). Here too, 

the traffic demand cases and driving modules depict similar trend but inversely. To exhibit a 

concave shaped travel time plot, the speed plot needs to be a convex shaped.  

      
 

Figure 5.5 Impact of automation in average speed 

The delay time is also affected similarly like previous two traffic performance indicators what 

can be seen in the Figure 5.6. Delay time maintain similar concave shape like travel time. 

Automation features such as early slowing down in the intersection, collision prevention 

measures and connectivity of the C/AVs deduce the delay time in general and hold similar 

trend like its ancestors. 
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Figure 5.6 Impact of automation in average delay time 

5.1.2.2 Emission 

C/AVs can come with different energy system: fossil fuel, hybrid energy (U.S. Energy Infor-

mation Administration 2018). The C/AVs can provide different emission than HVs, even though 

they might hold similar energy source like HVs because of its driving behaviours in the net-

work. As stated in previous sections (5.1.1 HV-AV-CAV in Mixed Traffic and 5.1.2.1 Traffic 

Performance), there are remarkable changes observed in the traffic performances after adding 

automation in the network. Besides the energy source, emission also relays on traffic perfor-

mances i.e. delay time and number of stops (Pandian et al. 2009, Kellner 2016). In conse-

quence, the C/AVs express differences in the emission. 

This difference of emission can be perceived from the bar charts in Figure 5.7. They demon-

strate the environmental impacts of C/AVs in terms of CO2 and NOx from different penetration 

rates and different traffic demand cases. The emission outcomes are presented by average 

value for individual scenarios. As the network has proven itself efficient for a range of 50-60% 

penetration and afterward the status deteriorates, similar patterns can be seen again for the 

emission.  After reaching this range, due to limitation of interaction between vehicles, emission 

gradually increases as vehicles start losing the interactions among them. In one side, vehicles 

lack of connections after certain penetration level but on the other side, the C/AV safety con-

cerned action assure relatively slower increment of the emission. The CAV shows promising 

responses towards the emission.   
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Figure 5.7 Impact of automation in emission (a) CO2  emission for AVs, (b) CO2  emission for CAVs, (c) NOx  emission for AVs 

and, (d) NOx  emission for CAVs  

5.1.2.3 Safety 

The safety aspect of introduction of C/AVs in the network has positive responses. Figure 5.8 

depicts the safety aspects in terms of total number of conflictions for different traffic demand 

of C/AVs. The safety can be set on for two different value of TTC, TTC = 0.75 sec and 1.5 sec 

as per the discussion in previous section (4.5.3 Safety evaluation process). Some observa-

tions have been repeated as like previous performance studies, traffic performance and emis-

sion. In first place, smaller the TTC, higher will be the number of potential conflicts in the 

network. For smaller TTC, the system defines more conflictions in the traffic manoeuvres. 

Secondly, higher the traffic demand, higher will be the total number of conflicts because vehi-

cles confrontation each other’s in higher frequency which lead to higher possible conflictions. 

Thirdly, the turning point of the performances are still in the range of 50-60% and the reason 

of such recurrence of the trends is same as previous subsections (5.1.2.1 Traffic Performance 
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and 5.1.2.2 Emission). Lastly, the CAVs encounter relatively lesser numbers of conflicts in the 

network as they come with additional connectivity features.  

      
 

      
 
 

Figure 5.8 Impact of automation in safety (a) TTC = 0.75 sec, PET = 1.5 sec and (b) TTC = 1.5 sec, PET = 1.5 sec  

5.2 Sensitivity Analysis of AV parameters 

Three hundred thirty scenarios of different combinations of AVs have been investigated for 

eight driving parameters of autonomous vehicles which significantly impact the performance 

in the road traffic. The sensitivity analysis (SA) is performed in two steps, preliminary sensitivity 

analysis and cross-correlational sensitivity analysis. In the preliminary stage, eighty-eight sce-

narios are scrutinized to find the presiding driving parameters from eight driving behaviour 

parameters. In the cross-correlational sensitivity analysis, two hundred forty two scenarios are 

investigated to create the SA for the dominating parameters found from the preliminary stage. 

An AV penetration value of 60% is considered to be on the conservatively stable side of the 

simulation. A lesser number of AVs will demonstrate a lesser impact in the scenarios origi-

nated from the presence of AVs. In opposition, a higher number of AVs might bring severe 

changes in the real world’s driving behaviours, which can be seen in the previous sections 

(5.1.1 HV-AV-CAV in Mixed Traffic and 5.1.2 HV vs. AV/CAV in Mixed Traffic). For higher 

penetration, the scenarios of mixed traffic move towards fully automation scenarios, which can 
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be studied better with different consideration (Chen et al. 2017b). The entire SA is experi-

mented for the peak hour demand to eliminate the effect of under or over presence of the 

vehicles in this controlled study corridor. 

5.2.1 Preliminary Sensitivity Analysis 

Preliminary SA has been performed for total eight driving parameters: look ahead distance, 

look back distance, number of interacting vehicles, minimum collision time gain, minimum 

clearance (front/rear), accepted deceleration, standstill distance and gap time distribution. The 

results of preliminary sensitivity analysis plotted in Figure 5.9.  

 

 

 

 

 
 

Figure 5.9 Preliminary sensitivity analysis for eight driving parameters 
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The travel time is used as performance indicator as it has shown quite distinguishable re-

sponses for this study corridor in previous sections (5.1.1 HV-AV-CAV in Mixed Traffic and 

5.1.2 HV vs. AV/CAV in Mixed Traffic). Two patterns of responses can be seen from the scatter 

plots above: proportional and inversely proportional behaviour towards the performance indi-

cator. Travel time increases proportionally in a given range with each increment of minimum 

clearance: front/ rear or standstill distance or gap time distribution. On the other side, look 

ahead distance, look back distance, number of interacting vehicles, minimum collision time 

gain, and accepted deceleration show inversely proportional responses towards the perfor-

mance indicator in a given range.  

Although all of the driving parameters show impacts in the form of differences in travel time, 

three of them show significant changes. Figure 5.10 shows the percentage of variations be-

tween the initial and final value of individual driving parameters.  

  

 

Figure 5.10 Percentage of variation 

The look back distance, number of interacting vehicles and minimum clearance (front/rear) 

show domination than any other parameters, in the travel time. At this point, further sensitivity 

analysis can be carried out for three most influential driving parameters: number of interacting 

vehicles, minimum clearance (front/rear) and look back distance.  

5.2.2 Cross-correlational Sensitivity Analysis 

The final stage of the sensitivity analysis has been planned for two sets of driving parameters: 

1. Minimum clearance (front/ rear) and number of interacting vehicles and 2. Look back dis-

tance and number of interacting vehicles. These two sets will create an experimental arrange-

ment of two cross-correlational sensitivity analyses, where the number of interacting vehicles 

is presented in both setups. Two traffic performance indicators, travel time and speed, have 

been used to strengthen the outcomes of the SA. The results of the final SA are presented in 
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Figures 5.11 and 5.12 using a heatmap.  The heatmap is a good demonstration for the impact 

study that was generated from the combination of the driving parameters. The heatmap in 

Figure 5.11 depicts how two driving parameters, one with proportional and another with in-

verse proportional behaviour, respond jointly in the scenarios. The lowest region of travel time, 

the optimum, is found in the range between 1.0 – 1.75m of minimum clearance: front/ rear and 

30 – 50 of number of interacting vehicles.  

Similarly, the performance indicator speed becomes distinguishably high in the same range of 

driving parameters. This strengthens the impression of the travel time heatmap.  

  
                                  (a)           (b) 

Figure 5.11 Cross-correlational sensitivity analysis for minimum clearance – number of interacting vehicles (a) Average travel 

time and (b) Average speed  

On the contrary, the heatmap in Figure 5.12 depicts how two inversely proportional driving 

parameters correspond to one another in the scenarios. In this category of cross-correlational 

SA, travel time significantly decreases and speed increases for a higher number of interacting 

vehicles and greater look back distance. 

   

                                  (a)           (b) 

Figure 5.12 Cross-correlational sensitivity analysis for look back distance – number of interacting vehicles (a) Average travel 
time and (b) Average speed  



 

  

6 Conclusion 
This chapter summarises this entire research work and demonstrate the limitations of this 

study along with the future recommended works. 

6.1 Summary and research findings 

The first goal of this research was to investigate in the impact of human-like C/AVs in the 

mixed traffic in the urban corridor for different driving modes and three possible traffic demand 

cases. The second goal was to examine in the interactions of the driving behaviour parameters 

of the AVs in the traffic performances. The experiment has been planned to meet the goals of 

this study in an efficient way.  The summary of this study is depicted in the Figure 6.1. 

 
Figure 6.1 Summary of the study 

The results, from goal 1: impact study, concerning C/AVs showed improvement for the traffic 

performance, emission and safety aspect of the study corridor, where CAVs slightly outper-

form AVs because of V2V and V2I features. Consistent increment of C/AVs share in the study 

corridor is found to be augmentable upto a certain limit, which displaced for different traffic 

demand cases. Optimum penetration levels are seen at the penetration of 60%, 50% and 70% 

for the peak hour demand, 20% below peak hour demand and 20% above peak hour demand, 

respectively. In general, average travel time and delay time of the study corridor have been 

decreasing, while speed and connectivity, among C/AVs, have been sharply increasing, for 

high penetration rates of C/AV, upto the optimum penetration. The bargaining between avail-

ability of sufficient C/AVs in the network and allowed number of interacting vehicles exhibits 

Decision:  

- 60% AV is turning 

point penetration 

- Normal driving mod-

ule naturally meet the 

performance drop point. 
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significant impacts in the performance. Even though the traffic demand increases, due to fixed 

number of interacting vehicles, performance deteriorates. Among three driving modules: nor-

mal, cautious and aggressive, significant change of the performance can be seen in the out-

come of this study. This change of performances is generated from driving behaviours adopted 

by these modules. The intensity of the performances is found to be analogous for all scenarios 

for every indicator: traffic performance, emission and safety. The outcomes of the first part 

initiated the second part of the experimental setup by providing a choice of penetration and a 

driving module for further processing in the implementation of goal 2.  

The results, from goal 2, concerning AVs showed significant interactions by the driving param-

eters in the traffic performance. A sensitivity analysis with two parts, which firstly chooses 

three influential driving parameters, among eight recommended driving parameters, and sec-

ondly creates cross-correlational sensitivity analysis for two pairs of combination of driving 

parameters, based on the substantiality seen in the preliminary stage. Pair 1 consists of min-

imum clearance (front/ rear) and number of interacting vehicles and pair 2 consists of look 

back distance and number of interacting vehicles. To obtain lowest region of travel time and 

highest region of speed in the performance surface of cross-correlational sensitivity heatmap, 

the pair 1 and 2 outline a range of values for minimum clearance (front/ rear), look back dis-

tance, and number of interacting vehicles for 60% AV penetration of normal driving module.  

The significance from the impact study and the sensitivity analysis, summarized that negative 

effects of the presence of the C/AVs evolved from the inability to predict the other vehicles‘ 

manoeuvres, missing sufficient connectivity with other vehicles and automatic risk avoidance. 

This scenario becomes significant while traffic demand increases in the network and partici-

pation of C/AVs is not significant in the mixed traffic. To get maximum benefits out of C/AVs, 

the penetration of C/AVs needed to be higher and, at the same time, the technology/ infra-

structure should support an increment in the number of interconnected vehicles.  

6.2 Limitations and future work 

This study tried to visualize and connect the scenarios based on today’s possible technology. 

Increment of C/AVs in the street will lead it to the properties of fully automated lane, which 

might have different car following behaviour than now. Such a road condition can utilize other 

traffic systems apart from current signal control systems i.e. centrally controlled system.  

C/AVs themselves have a number of different features, which is constantly being improved, 

which influences the traffic, emission and safety related performances. In this study, some of 

the V2V and V2I features are investigated. This create an impression of different scenarios 

that might be faced in the real-world, if other features are implemented. All these variables 
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significantly manipulate the impact of the implementation of C/AVs in the network. The influ-

ence of the self-driving associated problems, bottleneck (Van den Berg, V. A.C. and Verhoef 

2016) and deadlock (Perronnet et al. 2019) in the traffic performances are not studied, con-

sidering their cumulative effects will represent the impact study as a whole. Such decision 

making related issues (Baiba 2019) cannot be resolved only by time management because in 

reality scheduling the trips for vast amount of vehicles, especially in the peak hour, can be a 

huge challenge for the management department. 

The continuation and extension of this study will focus on modelling of other C/AV features for 

the microscopic simulation and implementation of different traffic signals and road types, to 

cover different aspects of the implementation of the C/AVs for different types of road: urban 

corridors, motorways, freeways etc. Moreover, exploration by same experimental setup for the 

networks will reveal the influence of road network in the impact studies. More intersection 

focused study will be helpful to understand the impact of driving modules into the C/AV asso-

ciated problems: bottleneck, deadlock, right of way etc. Like previous study 

Finally, to obtain detailed and comprehensive knowledge of the interactions of the driving pa-

rameters, other optimistic sensitivity analysis approach with better sampling method can be 

studied. In this case, time management is a crucial part of the implementation. Proper planning 

from beginning and implementation of parallel simulation will save time as per the need.  
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Appendix A: Impact study of C/AVs 

Variables Previous Studies Study Type General Findings 

Traffic Perfor-

mance 

(Grush et al. 2016) Review 

 

Performance is increased in the 

network. 

(ITF 2015) 

 

Simulation 

 

(Friedrich 2016) 

(Alam and Habib 2018) 

 

(Martinez and Viegas 2017) 
Gradual increment of performance 

in a peak hour interval. 

(Zhao and Kockelman 2018) 

Traffic is decreased in the overall 

network for integrated public 

transport and shared autonomous 

vehicles. 

(Fagnant and Kockelman 2014) 

Accident is reduced 

Emission is decreased 

 

(Alazzawi et al. 2018)  

Simulation 

Review 

 

Performance is decreased in the 

network. 

(Litman 2018) 

(Lang et al. 2018) 

(Salazar et al. 2018) Optimization Speed is found to be increased.  

(Simoni et al. 2019) Agent-based 

Average speed is found to be de-

creased for the combination of pri-

vate autonomous vehicles and 

shared autonomous vehicles. 

(Teoh and Kidd 2017) Analytic based 

Traffic is found to be decreased 

while implementing congestion 

pricing. 

(Arbib and Seba 2017)(Fagnant 

and Kockelman 2014) 

Framework Simula-

tion  

 

 

 

 

 

 

Accident and emission are re-

duced 
Safety 

(Greenblatt and Saxena 2015)(Ar-

bib and Seba 2017) 

Various test proce-

dures of framework 

(Fagnant and Kockelman 

2015)(Greenblatt and Saxena 

2015) 

Review of various 

test procedures 

(Fournier et al. 2017)(Fagnant and 

Kockelman 2015) 

Analytic based re-

view 

(Fulton et al. 2017)(Fournier et al. 

2017) 

Analytic based 

adapted mobility  

(Martinez and Viegas 2017)(Fulton 

et al. 2017) 

Simulation 

adapted mobility 

Emission is reduced. 
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Emission 

(Bauer et al. 2018)(Martinez and 

Viegas 2017) 

Simulation 

Optimization 

(Lokhandwala and Cai 

2018)(Bauer et al. 2018) 

 

Optimization 

Analytic based 

 

(Salazar et al. 2018)(Lokhandwala 

and Cai 2018) 

(Jones and Leibowicz 

2019)(Salazar et al. 2018) 

(Vleugel and Bal 2018)(Jones and 

Leibowicz 2019) 

(Vleugel and Bal 2018) 

 

Table A.1 Impact study of C/AVs (Narayanan et al. 2020) 
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Appendix B: Sample Scripts (COM Interface) 
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Table B.1 Implementation of SPSA 
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CAV will acquire the information about the upcoming signal and regulate its speed to 

appear at green without stopping. 
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Table B.2 V2I communication for adjusting driving speed to arrive at signals at green (PTV AG 2019) 
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Appendix C: Emission Map (EnViVer) 
 

 
Figure C.1 Emission map for CO2 (gm/km) 
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Figure C.2 Emission map for NOx (gm/km) 
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Appendix D: Confliction Map (SSAM) 
 

Confliction type Colour 

Crossing Red 

Rear end White 

Lane change Purple 

  

 
Figure D.1 Locations of different types of confliction
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