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Abstract

Domain decomposition(DD) methods of both overlapping and non over-
lapping types are pivotal at enabling numerical simulation of elaborate engi-
neering models and complex multiphysics phenomenas. Depending on the
nature of the decomposition and the problem, different DD methods are used
which will result in different coupling boundary conditions on the individual
sub-domains. All these methods can be realized using either a monolithic or
a partitioned solution strategy. A partitioned DD strategy is well established
in multiphysics simulations. This approach allows (re)use of well-established
and specialized simulation tools for individual physics, thus, resulting in a
modular simulation setup. Although, this approach can be computationally
expensive and pose stability and accuracy challenges, it circumvents possible
difficulties with the poor numerical properties of the system of equations
resulting from a monolithic approach. A domain decomposition problem
involving single physics, though can be solved in a partitioned approach, yet,
a computationally less expensive monolithic approach is preferred as this
seldom produces an ill conditioned system of equations.

The method of master-slave elimination is studied in the context of mono-
lithic approach for solving domain decomposition problems with single physics.
Novel modifications to monolithic approach, to apply Dirichlet-Dirichlet cou-
pling condition on sub-domains are discussed. Effect of these modifications
to minimize the changes required for the software infrastructure are also
highlighted. The sliding interface method and Chimera techniques for sim-
ulating rotating and moving bodies in computational fluid dynamics(CFD)
together with respective benchmarks are used to demonstrate the effective-
ness of master-slave elimination and the introduced novel modification. A
distributed memory parallelization algorithm for dealing with the developed
sliding interface and Chimera approaches is also discussed in detail.

The partitioned simulation of domain decomposition problem with both
single and multiphysics problems can be interpreted as co-simulation. In this
context, the current work proposes a novel detached-interface approach for
realizing a generic co-simulation framework. This versatile approach provides
the possibility to realize both client-server and peer-to-peer communication
architectures. In addition, a hybrid approach of client-server and peer-to-peer
communication which is only possible with the detached-interface approach
is also presented.
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1
Introduction

1.1 Domain decomposition and coupled problems :
A review

Domain decomposition(DD) is a powerful approach in solving partial
differential equations and is indispensable in enabling key technologies in
various disciplines. Originally, Domain decomposition methods(DDMs)
were introduced by Schwarz [92] to deal with complex simulation do-
mains by splitting them into small, simple, and manageable subdomains.
The partial differential equation is then iteratively solved on each sub-
domain individually by exchanging boundary conditions, in other words
coupling the domains on the interface boundaries between the subdo-
mains. The accuracy, stability and existence of a global solution depends
on the applied iterative solution techniques and the type of boundary
conditions on the subdomains. Different methods to couple the so-
lution on the subdomains for both overlapping and non-overlapping
domain decomposition scenarios are available. Though in the litera-
ture, these methods are usually developed for a given type of partial
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1 Introduction

differential equations, the principles are equally extendable to other
types of partial differential equations. In this context, Schwarz [92]
first presents an iterative method by applying Dirichlet conditions on
the subdomain interfaces, in a later work Dryja et al. [33] extended
this to apply Neumann conditions on the subdomains. In a further
improvement, Houzeaux et al. [58] present a mixed Dirichlet-Robin
type of coupling boundary conditions to achieve better stability. Other
variants of domain decomposition methods and an analysis of their
numerical properties are found in Quarteroni et al. [88] and Toselli et al.
[104].

However, with an exponential increase in computational resources
and complexities in the numerical simulation models, the DDMs quickly
gained usage in the fields like multiphysics simulations and large scale
parallel computations. Consequently, in the context of parallel comput-
ing, where each distributed compute resource solves a partition(subdo-
main) of the whole domain, the above-mentioned domain decomposition
methods can be employed to obtain a global solution across all the
subdomains. Haghoo et al. [49] present one of the initial attempts
to solve a large system of equations resulting from decomposition on
distributed memory architecture. A Dirichlet-Neumann preconditioner,
which applies Dirichlet and Neumann conditions on the interfaces of
the subdomains is discussed. In further improved attempts, Bjørstad
et al. [7], Chen et al. [15], Cowsar et al. [19], Gropp [44], Gropp et al.
[45], Resiga et al. [89], and Sengupta et al. [93] discuss different method-
ologies and coupling boundary conditions along-with their properties
useful in distributed parallel computing. These contributions show that
DDMs are vital in the area of parallel computing.

Numerical simulations are vital in understanding complex multi-
physics phenomena and designing engineering systems where such phe-
nomena occur. Fundamentally, multiphysics by definition includes
interaction between two or more systems from different disciplines.
Therefore, numerical simulation of various disciplines requires a coupled
simulation. Thus it is essential to use the coupling methods discussed
in Quarteroni et al. [88] and Toselli et al. [104]. Deparis et al. [26] and
Nobile et al. [83] show extension and application of coupling methods
to the multiphysics problem of fluid-structure interaction (FSI). In an
extension Jung et al. [65] and Wang et al. [110] couple FSI phenomenon

2



1.1 Domain decomposition and coupled problems : A review

with the energy harvest systems. Winterstein et al. [115] simulate an
FSI phenomenon coupled with a control device to reduce flow-induced
vibrations. The above mentioned are only a handful of examples for mul-
tiphysics simulations. Other disciplines where multiphysics simulations
are valuable include electro-statics, magneto-statics, thermo-mechanics,
the interaction between chemical and mechanical systems.

The domain decomposition methods are also used to deal with ill-
conditioned linear systems. Gosselet et al. [43] applies a non-overlapping
domain decomposition to solve ill-conditioned linear systems in struc-
tural mechanics simulations. Computational fluid dynamics(CFD) uses
DDMs to enable critical technologies to simulate moving bodies. In the
context of finite volume discretization, Blades et al. [8] and Ehrl et al.
[36] discuss a non-overlapping domain decomposition and Dirichlet-
Neumann type boundary conditions on the subdomains to simulate
rotating bodies. Similarly, Chesshire et al. [16], Hadzic [48], Houzeaux
et al. [56], and Tang et al. [100] discuss an overlapping domain decom-
position method usually termed as overset-grid or Chimera method.

Two approaches for the simulation of coupled problems are monolithic
and partitioned. In a monolithic approach, the numerical models of all
the subsystems are solved simultaneously to obtain a solution to the
coupled problem. Contrary to this, in a partitioned solution approach,
the subsystems involved are solved independently of each other by
exchanging only the necessary coupling boundary conditions or data
between them. The exchanged boundary conditions or data ensure that
the solutions and the phenomena on the subsystems are coupled. In
addition to the exchange of boundary conditions between the subsystems,
this approach also requires that a coupling scheme together with possible
acceleration techniques (Degroote et al. [24], Dettmer et al. [27], Küttler
et al. [70], and Matthies et al. [76]) be employed. The coupling scheme
dictates the order in which the subsystems are solved and which data is
exchanged when. If the interaction between the subsystems is strong,
that is the phenomena strongly affect each other, a strong coupling
scheme is necessary. In a strong coupling scheme, the subsystems, in each
time step, are solved iteratively in a fixed-point iteration manner until
convergence criteria are met. On the other hand, when the interaction
of the phenomena in the subsystems is weak, a weak coupling where
the subsystems are solved only once per time step.

3



1 Introduction

The two approaches above have their respective advantages and
shortcomings. For example, the monolithic approach is computationally
less expensive but can have high memory requirements and the special
treatment of the resulting linear system of equations might be necessary
depending on the coupled problem which is solved. This approach many-
a-times requires specific solvers to be developed for a given combination
of subsystems. A partitioned approach, often also referred to as co-
simulation, is highly modular and thus allows (re-)usage of solvers
specialized for each discipline. Though in comparison to the monolithic
approach it has a big advantage, a partitioned simulation of a strongly
coupled problem is computationally expensive as the subsystems need
to be solved iteratively and often by employing acceleration techniques.
A partitioned simulation is usually realized using coupling tools that
orchestrate the subsystems and transfer the boundary conditions and
data between them. Bungartz et al. [13], Joppich et al. [64], König
[69], and Wang et al. [111] are examples of such coupling tools which
offer a variety of functionalities like surface mapping, acceleration and
extrapolation techniques and distributed memory parallelization to
successfully conduct a partitioned simulation of a coupled problem.

Although usage of coupling tools reduces software development
and setup time of a coupled problem, it can impose restrictions on
the software used to simulate individual subsystems. This is because
a special interface solver is to be developed which implements the
functions provided by the coupling tools. This special solver which
acts as an interface with the coupling tool usually also depends on the
libraries(*.so, *.a, *.dll) of the coupling tools. This brings additional
complications during the deployment of the coupling tool.

This thesis develops methodologies and technologies which have the
potential to overcome the aforementioned shortcomings of both the
monolithic and partitioned solution approaches for coupled problems
in their usage. To address the issues with monolithic formulation,
modifications to the master-slave elimination approach are used to
impose the necessary boundary conditions with minimal changes to the
software framework, thus expanding possible application cases. In this
process, the development of a sliding interface and Chimera techniques
to simulate moving bodies in CFD simulations is presented together
with the methodologies for their distributed memory parallelization. For

4



1.2 Outline of the thesis

the partitioned simulations, an innovative software concept and design
are introduced. This is aimed to mitigate the problems with developing
the interface solvers with the coupling tools and at the same time reduce
the software development effort and increase the interoperability with
the above mentioned or similar coupling tools.

1.2 Outline of the thesis

CHAPTER 2 reviews the existing coupling methods and the solution
techniques useful for solving a coupled problem using coupling methods.
This chapter also discusses the applicability of the master-slave elimina-
tion method to apply the Dirichlet-Neumann coupling method. Further-
more, a novel modification to the master-slave elimination method to
apply Dirichlet-Dirichlet coupling in overlapping domain decomposition
is presented. In a further step, these two approaches are used together
to formulate a monolithic system for the fluid-structure interaction prob-
lem. A Neumann-Neumann coupling method that uses the sensitivity
field is presented. This approach though is computationally expensive
and is restrictive to only specific cases, is presented for a comprehensive
view of possible coupling methods and scenarios which are required to
be addressed in Chapter 4. The mentioned methods are illustrated by
the coupled problem of fluid-structure interaction.

CHAPTER 3 presents the development and implementation details
of domain decomposition methods in computational fluid dynamics.
Initially, a sliding-interface method - a non-overlapping domain de-
composition method, which enables simulation of rotating bodies is
presented. This is followed by the overlapping domain decomposition
method Chimera. The novel developments presented in Chapter 2 to
apply Dirichlet-Dirichlet coupling in overlapping domain decomposition
is used here to realize the Chimera method. An in-depth description of
various steps in the Chimera technique is also presented. This method-
ology is benchmarked with well established CFD simulation benchmark
cases. Steps necessary to extend the Chimera and sliding-interface meth-
ods to multi-step solution strategies for Navier-Stokes equations are
also presented together with the benchmark cases. Description of neces-
sary steps to include turbulence models is also given. For both these

5



1 Introduction

techniques, a detailed parallelization technique on distributed memory
parallel architectures is discussed and scaling plots are presented.

CHAPTER 4 describes a generic software framework that enables
partitioned simulation of coupled problems as co-simulation. This
chapter presents an innovative ”Detached Interface” approach to address
complications in developing interfaces to simulation tools that are to
be orchestrated in a co-simulation. In addition, it is also shown that
various communication approaches are possible owing to the versatile
nature of the presented approach. Numerical examples are presented to
highlight the mentioned features.

CHAPTER 5 shows different simulation cases and their results. These
cases are setup to showcase capabilities of the techniques, methodolo-
gies, and co-simulation framework discussed in Chapters 2, 3, and 4,
respectively.

CHAPTER 6 concludes the work and discusses possible improvements
to the techniques and methodologies presented in the previous chapters.

6
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2
Domain decomposition
problems

As described in Section 1.1 many applications decompose the com-
putational domain into several subdomains to overcome a variety of
limitations. Once decomposed, Domain Decomposition Methods(DDMs)
are used to compute a consistent solution across all the subdomains.
Generally stating, Domain Decomposition Methods are techniques to
divide the computational domain into smaller subdomains where the
same or a different PDE is solved for. These subdomains are coupled
together via coupling conditions and using a coupling strategy. One can
also extend these coupling techniques to include the solution of different
physics (PDEs) on different sub-domains into the above definition. In
this chapter, we discuss different Domain Decomposition procedures
and different strategies for solving the coupled problem arising in the
process. This chapter also presents a sufficiently detailed discussion
on the applicability of strategies to different domain decomposition
problems.

7



2 Domain decomposition problems

2.1 Problem dcefinition

Let us consider the numerical solution of Equation 2.1 on the domain
Ω, with boundary conditions defined in Equations 2.2 and 2.3. Here
L(u ) is any partial differential operator and u is the solution field. In
a domain decomposition problem, the domain Ω is split into multiple
subdomains which can be either disjoint or overlapping. Here we discuss
the different aspects of coupling strategies and schemes assuming the
domain Ω is decomposed into two subdomains Ω1 and Ω2 as shown
in Figure 2.2. Extension of the discussed theory to more than two
subdomains is straight forward and when not, such cases are explicitly
discussed. Figure 2.2(b) shows the overlapping decomposition and Fig-
ure 2.2(a) shows the disjoint decomposition. In the case of overlapping
decomposition, two boundaries Γ12 and Γ21 are formed and in case of the
disjoint decomposition, Γ12 and Γ21 coincide(in a continuous sense). To
compute the numerical solution on the entire domain, Ω =Ω1

⋃

Ω2, cou-
pling boundary conditions are exchanged between the two subdomains
at the boundaries Γ12 and Γ21. These boundary conditions essentially
enforce continuity of both dynamic and kinematic conditions across the
domains.

Figure 2.1: Domain Ω with
corresponding Dirichlet and

Neumann boundary conditions.

L(u ) = 0 on Ω (2.1)
u = ud on ΓD (2.2)
∂ u

∂ n̂
= g on ΓN (2.3)

8



2.1 Problem dcefinition

When a domain decomposition, either a overlapping or disjoint, is
employed, the subproblems on the respective subdomains together with
their boundary conditions can then be written as

(a) Disjoint domain decomposition
(b) Overlapping domain decomposi-
tion

Figure 2.2: Types of decomposition of domain Ω into Ω1 and Ω2

L1(u1) = 0 on Ω1 (2.4)
u1 = u1D on Γ1D (2.5)
∂ u1

∂ n̂ 1
= g1 on Γ1N (2.6)

α1u1+β1
∂ u1

∂ n̂ 1
=α1u2+β1

∂ u2

∂ n̂ 2
on Γ12 (2.7)

on subdomain Ω1 and on subdomain Ω2 as

L2(u2) = 0 on Ω2 (2.8)
u2 = u2D on Γ2D (2.9)
∂ u2

∂ n̂ 2
= g2 on Γ2N (2.10)

α2u2+β2
∂ u2

∂ n̂ 2
=α2u1+β2

∂ u1

∂ n̂ 1
on Γ21 (2.11)

Here L1 and L2 are same as L. u1 and u2 represent the field u on
subdomains Ω1 and Ω2 respectively. To obtain the solution on Ω1

and Ω2 which corresponds to solution on unified domain Ω, a coupled

9



2 Domain decomposition problems

solution strategy is employed to solve L1 and L2 on their respective
domains by exchanging the coupling boundary conditions given by
Equations 2.7 and 2.11. The coupling strategy employed and the
coupling boundary conditions are the deciding factors in obtaining the
same solution given by Equation 2.1, subjected to respective boundary
conditions. The nature of the coupling boundary conditions depend on
the values of α1,β1,α2,β2. Table 2.1 shows a set of possible types of
coupling conditions and the corresponding values of the constants.

There are two distinctive formulations for solving the described de-
composition problem. The first is a Partitioned approach and the second
one is a Monolithic approach. These coupling conditions in combination
with the monolithic and partitioned formulations are discussed in detail
in the following sections.

Transmisson Conditions α1 β1 α2 β2

Dirichlet - Dirichlet 1 0 1 0

Dirichlet - Neumann 1 0 0 1

Neumann - Neumann 0 1 0 1

Table 2.1: Coupling conditions and corresponding constant values

2.2 Dirichlet-Neumann coupling

The Dirichlet-Neumann conditions naturally result from the enforcement
of dynamic and kinematic continuity across the interfaces Γ12 and Γ21 (see
Figure 2.2). The sub-problems with Dirichlet-Neumann transmission
conditions can be written as

L1(u1) = 0 on Ω1 (2.12)
u1 = u1D on Γ1D (2.13)
∂ u1

∂ n̂ 1
= g1 on Γ1N (2.14)

u1 = u2 on Γ12 (2.15)

10



2.2 Dirichlet-Neumann coupling

on subdomain Ω1 and on subdomain Ω2 as

L2(u2) = 0 on Ω2 (2.16)
u2 = u2D on Γ2D (2.17)
∂ u2

∂ n̂ 2
= g2 on Γ2N (2.18)

∂ u2

∂ n̂ 2
=
∂ u1

∂ n̂ 1
on Γ21 (2.19)

This type of transmission conditions can be used for coupling do-
mains with both overlapping and disjoint decompositions. An extensive
discussion of the mathematical properties like, convergence and appli-
cability of these coupling conditions are discussed in Quarteroni et al.
[88] Chapter 4. Application of this coupling method in disjoint domain
decomposition cases such as in fluid-structure interaction is extensively
studied in Degroote et al. [23], Wüchner [117], Degroote [22], Dettmer
et al. [28]. Houzeaux et al. [57] discusses the application of this method
for chimera like overlapping domain decomposition.

Once the respective boundary conditions are chosen on the subdo-
mains, Ω1 and Ω2, one can solve the coupled problem defined by the
Equations 2.12 - 2.19 either in a Monolithic or Partitioned approach.

In the following we take fluid-structure interaction as an example for
the disjoint domain decomposition problem where Ω1 is a structure/solid
domain and Ω2 is a fluid domain. The governing equations of fluid and
structure together with the initial and boundary conditions are given
by Equations 2.20, 2.21 and 2.22, 2.23 respectively.

∂t u
�

�

x 0
+ (u −u m ) ·∇u −

1

ρ f
∇·σ f = f f inΩ f

t × (0, T )

∇·u = 0 inΩ f
t × (0, T )

(2.20)

11



2 Domain decomposition problems

where u is the fluid velocity, p is the pressure, f f is the source term,
ρ f is fluid density, σ f is the stress tensor, u m is the fluid mesh velocity.
The above equations are subjected to initial and boundary conditions

u (x , 0) = u 0 onΩ f × (0, T )

p (x , 0) = p 0 onΩ f × (0, T )

u = u f
D onΓ f

D × (0, T )

p −
∂ u

∂ n̂
· n̂ = g f onΓ f

N × (0, T )

(2.21)

and for the structural domain Ωs the governing equation is

∂ 2
t d −

1

ρs
∇·σs = f s inΩs

t × (0, T ) (2.22)

where d is the structural displacement, ρs is structural density, f s is
the force on structure, σs is the stress in the structure. The initial and
boundary conditions are given by

d (x , 0) = d 0 onΩs × (0, T )

d = d s
D onΓ s

D × (0, T )

n̂ ·σs = g s onΓ s
N × (0, T )

(2.23)

The Dirichlet and Neumann coupling boundary conditions on the bound-
ary Γ f s shared between the fluid and structural domain can be written
as

u = ∂t d onΓ f s × (0, T )

σs ·n s +σ f ·n f = 0 onΓ s f × (0, T )
(2.24)

In the following we represent the solution of the time-space dis-
cretization of the fluid problem together with the operator F and the
structure problem with S.

2.2.1 Monolithic formulation
In monolithic formulation, the partial differential equations 2.20 and
2.22 are discretized, both in space and time, to form a unified system
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2.2 Dirichlet-Neumann coupling

of equations which contains the boundary and coupling conditions 2.21,
2.23 and 2.24.

This method results in numerically accurate simulations for the
problems where the physics on the individual subdomains are similar.
On the other hand when the physics are very diverse it can result in
an ill-conditioned system of equations. A detailed discussion about
the resulting system of equations and performance of this approach is
presented in Heil et al. [51], Küttler et al. [70] and Mayr et al. [78].
Different types of pre-conditioners are developed to solve these system
of equations for example, Heil [50] and Muddle et al. [82] discuss a
block triangular Jacobian estimation, Gee et al. [39] presents algebraic
multi-grid based techniques.

A finite element based spatial decomposition for Equations 2.20 and
2.22 with any choice of time integration scheme results in linear systems
of equations given by Equation 2.25, one for each of them. For ease
of understanding and further derivations, separation of the degree of
freedoms into the internal and interface is presented in Equation 2.26.
The systems, together with the fluid mesh update method, are integrated
into a monolithic system of equations using the coupling conditions 2.15
and 2.19. Applying the coupling conditions can be done in multiple ways,
for example, Lagrange multiplier method. Though other techniques like
Penalty and Nitsche (Burman et al. [14]) methods exist, these are more
complex to implement and are not widely used. Considering that the
fluid mesh is updated with a pseudo structural approach described in
Muddle et al. [82] and Stein et al. [97], the corresponding linear(ized)
system of equations resulting from the subdomains can be written as in
Equations 2.26

K l u l = F l for l = s , f , m (2.25)




K l
i i K l

iΓ

K l
Γ i K l

ΓΓ









u l
i

u l
Γ



=





F l
i

F l
Γ



 for l = s , f , m (2.26)

The following sections describe a simple and novel method of applying
these coupling conditions on the resulting monolithic system using multi-
point constraints. The master-slave elimination approach is used which
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avoids the extra effort needed in the Lagrange multiplier approach
presented in Mayr et al. [78].

Master-Slave elimination approach

Literature provides multiple methods to enforce with multi-point con-
straints. Of these, Lagrange multiplier adjunction, penalty augmenta-
tion and master-slave elimination methods are the most used. In this
work we use the master-slave elimination method to apply the continuity
described by Equation 2.28. To recall the general procedure of applying
multi-point constraints by master-slave elimination method, consider
a general linear system of equations resulting from a finite-element
formulation

K q = f (2.27)

where q comprises of internal (q i ), master (q m) and slave degrees of
freedom (q s ) and can be written as q =

�

q i ,q m ,q s

�T . The system
of Equations (2.27) are subjected to a set of multi-point constraints
represented by

q = T q r +b (2.28)

where q r is the reduced vector containing only the internal (q i )
and master (q m) degrees of freedom. T is the transformation matrix.
Following the master-slave elimination method to apply the constraints
defined by Equation 2.28 onto Equation 2.27, the system is modified as
follows

[T T K T ]q r = T T [ f −K b ] (2.29)

Before proceeding to apply this method to derive the monolithic
formulation of the fluid-structure interaction problem, we apply this
method to couple two system of equations resulting from a time-space
discretization of the 2.12 and 2.16 demonstrating the equivalence of this
approach to Dirichlet-Neumann coupling.
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2.2 Dirichlet-Neumann coupling

Equivalence with Dirichlet-Neumann coupling

The linear system of equations resulting from the discretization of 2.12
and 2.16 (similar to Equation 2.26), can be written in a monolithic
system as

















K 1
i i K 1

iΓ 0 0

K 1
Γ i K 1

ΓΓ 0 0

0 0 K 2
i i K 2

iΓ

0 0 K 2
Γ i K 2

ΓΓ

































q 1
i

q 1
Γ

q 2
i

q 2
Γ

















=

















f 1
i

f 1
Γ

f 2
i

f 2
Γ

















(2.30)

Now applying the interface coupling condition u 2
Γ = u 1

Γ by selecting
the u 2

Γ as slaves and u 1
Γ as masters, and using the master slave elimina-

tion method will result in the following monolithic system which now
includes the coupling conditions.

















K 1
i i K 1

iΓ 0 0

K 1
Γ i K 1

ΓΓ K 2
Γ i K 2

ΓΓ

0 K 2
iΓ K 2

i i 0

0 K 2
ΓΓ 0 −K 2

ΓΓ

































q 1
i

q 1
Γ

q 2
i

q 2
Γ

















=

















f 1
i

f 1
Γ + f 2

Γ

f 2
i

0

















(2.31)

To observe the nature of boundary conditions applied on the each
of the subdomains, we separate the system 2.31 into the corresponding
subdomains as follows





K 1
i i K 1

iΓ

K 1
Γ i K 1

ΓΓ









q 1
i

q 1
Γ



=





f 1
i

f 1
Γ + r



 (2.32)

for domain Ω1 where

r = f 2
Γ −K 2

Γ i q 2
i −K 2

ΓΓq 2
Γ (2.33)
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can be interpreted as the Neumann condition applied on the interface
Γ and is the reaction on the interface from the domain Ω2 with a given
solution q 2. The system of equations on domain Ω2 reduces to Equation
2.34.

K 2
i i q 2

i = f 2
i −K 2

iΓq 1
Γ (2.34)

On Ω2 the Dirichlet boundary condition on the interface is applied using
K 2

iΓq 1
Γ where the value of q 1

Γ is taken from the solution of set the of
equations 2.32.

Equations 2.32 and 2.34 show that the master-slave elimination
approach applies a Dirichlet boundary condition on the slave degrees of
freedom and a Neumann coupling condition on the master degrees of
freedom. As can be seen, this method of master-slave elimination results
in boundary conditions on both the slave and master degrees of freedom.
In some applications it is useful not to have boundary conditions applied
on both the domains. This can be achieved by modifying the Equation
2.29 as

[L T K T ]q r = L T [ f −K b ] (2.35)

where

L T =

q i q m q s












I 0 0 q i

0 I 0 q m

0 0 0 q s

(2.36)

Applying the modification given by 2.35 to the linear system of equations
2.30 will result in the following linear system of equations
















K 1
i i K 1

iΓ 0 0

K 1
Γ i K 1

ΓΓ 0 0

0 K 2
iΓ K 2

i i 0

0 0 0 0

































q 1
i

q 1
Γ

q 2
i

q 2
Γ

















=

















f 1
i

f 1
Γ

f 2
i

0

















(2.37)
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This modified system equations 2.37 show that a Dirichlet condition
is applied on the slaves but no Neumann condition on the master degrees
of freedom.

Both the methods described above, the bidirectional or strong and
unidirectional or the weak forms of applying constraints are used in
formulating the fluid-structure interaction in a monolithic system. The
assembly of individual system of equations resulting from the time-space
discretization of fluid, structure and mesh adaption problems into a
monolithic system, without applying the coupling boundary conditions
can be written as




























K f
i i K f

iΓ K f m
i i K f m

iΓ 0 0

K f
Γ i K f

ΓΓ K f m
Γ i K f m

ΓΓ 0 0

0 0 K m
i i K m

iΓ 0 0

0 0 K m
Γ i K m

ΓΓ 0 0

0 0 0 0 K s
i i K s

iΓ

0 0 0 0 K s
Γ i K s

ΓΓ

























































u f
i

u f
Γ

d m
i

d m
Γ

d s
i

d s
Γ





























=





























r f
i

r f
Γ

r m
i

r m
Γ

r s
i

r s
Γ





























(2.38)

The coupling or the FSI boundary conditions on the equation system
2.38 are applied using the master slave elimination approaches described
above. To this extent, the following are the master-slave constraints
that are applied on the system above

u f
Γ =H f s A d s

Γ (2.39)
d m
Γ =H f s d s

Γ (2.40)

here, H f s is the mapping matrix between the fluid and structural
discretizations, A is the operator for calculating the structural velocities
from displacements and depends up on the time integration scheme used.
Different surface mapping techniques and their analysis is presented in
Tianyang [103]. Equation 2.39 is the discrete version of the coupling
condition given in 2.24 and Equation 2.40 is used to enforce continuity
between the fluid mesh displacement and the structural displacement.
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Of these, the constraint given by Equation 2.39 is applied in the strong or
bidirectional form. But application of the condition given by Equation
2.40 should be done in a unidirectional form, as the structural solver
should not get effected by the mesh update method. Applying these
conditions in the sequence described, the linear(ized) system of equations
2.38 are transformed into




























K f
i i 0 K f m

i i 0 0 K f m
iΓ + A H f s K f

iΓ

0 0 0 0 0 0

0 0 K m
i i 0 0 K m

iΓ

0 0 0 0 0 0

0 0 0 0 K s
i i K s

iΓ

K f
Γ i AT H f s

T 0 K f m
Γ i AT H f s

T 0 K s
Γ i K s

ΓΓ +K f m
ΓΓ AT H f s

T + A H f s K f
ΓΓ AT H f s

T

























































u f
i

u f
Γ

d m
i

d m
Γ

d s
i

d s
Γ





























=





























r f
i

0

r m
i

0

r s
i

r s
g + r f

g AT H f s
T





























(2.41)
which can be solved to obtain the solutions on the fluid and structural
domains simultaneously.

Numerical example

As a working example for above described algorithm, we solve the FSI3
benchmark problem presented in Turek et al. [106]. The geometry
of benchmark is shown in the Figure 2.4 together with the boundary
conditions used. The discretized domain is shown in the Figure 2.3.
Implementation of the above procedure is done in MATLAB® and
the solution of the monolithic system is performed using the direct
solver available in MATLAB®. Figure 2.5 shows the comparison of the
obtained results with the benchmark results1. The small difference in
the amplitude can be attributed to the differences in mesh and the time
stepping schemes used for simulations.

1 http://www.featflow.de/en/benchmarks/cfdbenchmarking/fsi_
benchmark/fsi_reference.html
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2.2 Dirichlet-Neumann coupling

Figure 2.3: Fluid and structural mesh used for Turek FSI3 benchmark.

Figure 2.4: Fluid and structural setup used for Turek FSI3 benchmark.
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Figure 2.5: Tip displacement of the flap : Monolithic formulation vs
Benchmark

From the above methodology, it can be observed that the monolithic
formulation of a coupled problem requires in-depth knowledge and access
to the solvers and their data structure used to solve the subproblems,
here, for example, fluid and structure sub-problems. This limits the
applicability of this formulation and is usually preferred only for those
problems where other approaches fail to produce a solution.

2.2.2 Partitioned formulation
Unlike the monolith formulation, in partitioned formulation, the single
solution fields u1 and u2 are solved separately by exchanging the coupling
(Dirichlet and Neumann) conditions between the individual solvers for
the partial differential equations 2.12 and 2.16. A partition scheme,
usually together with an acceleration method, is employed to ensure
stability and accuracy of the solution procedure, especially in multi-
physics problems where L1 6=L2.

There are two types of solution schemes that can be used here, an
explicit or weak coupling scheme and an implicit or strong coupling
scheme. The applicability of each of these schemes depend on the

20



2.2 Dirichlet-Neumann coupling

interaction between the two subdomains and the corresponding physical
phenomena.

The fluid-structure interaction problem given by Equations 2.20, 2.22
together with boundary conditions given by Equations 2.21, 2.23 and
coupling conditions from Equations 2.39 can be written in the residual
interface problem to formulate a fixed point iteration algorithm. The
interface residual problem, with a given displacement of the interface
d s
Γ can be written as

σ
f
Γ =F
�

d s
Γ

�

d̄ s
Γ = S
�

−σ f
Γ

�

r =−
�

d̄
s
Γ −d s

Γ

�

d s
Γ = d s

Γ +ωr

(2.42)

The fluid-structure interaction can also be formulated as a Stecklov-
Poincaré operator on the interface, Quarteroni et al. [88] discusses this
formulation for a generic coupled problem, this is used in the Section
2.3. Irrespective of the formulation, in an implicit or strong coupling
strategy, the residual equations given by set of Equations 2.42 are solved
iteratively, in a fixed point manner until the residual norm is below
a certain tolerance. A block Gauss-Seidel method of strong coupling
iterations is discussed in Küttler et al. [71] and Degroote et al. [23]
and illustrated in Figure 2.6. In this method, the two subsystems
are solved sequentially. Though this method is widely used in many
applications as shown in Winterstein et al. [115], Matthies et al. [76],
Bak et al. [5], Mendez et al. [80], Sicklinger et al. [95] and many more,
the sequential execution of the subsystems present a limitation on
distributed memory parallel architectures. To overcome this, Mehl et al.
[79] propose a Jacobi iteration method which allows a parallel execution
of the subsystems, illustrated in Figure 2.7. In a different approach,
Crosetto et al. [20] shows usage of Newton-Krylov solvers as parallel
methods. These iterative schemes are usually used in combination with
acceleration methods to decrease the computational cost. Also, in many
cases, the acceleration technique are required to ensure convergence of
the fixed point iterations. An algorithmic representation of the implicit
block Gauss-Seidel coupling is given in Algorithm 1
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An acceleration scheme based on Aitken dynamic relaxation is dis-
cussed in Küttler et al. [71] and Degroote et al. [24] presents a quasi-
Newton technique. Other schemes like interface Jacobian based accel-
eration discussed in Sicklinger et al. [94] have also been successfully
used for reducing the number of iterations in an iterative scheme and
to ensure convergence.

In a explicit or loose coupling strategy the residual equation is solved
only once per time step. A detailed discussion of the numerical properties
of the algorithm is presented in Dettmer et al. [27]. An extrapolation
scheme to conduct stable loose coupling in fluid-structure interaction
simulations is also discussed in Dettmer et al. [27]. The algorithmic
representation of the loose coupling is presented in Algorithm 2.

Figure 2.6: Gauss-Seidel iteration
pattern for strong coupling of two

solvers

Figure 2.7: Jacobi iteration pattern
for strong coupling of two solvers
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2.2 Dirichlet-Neumann coupling

Algorithm 1: Implicit or strong coupling scheme
1 initialization;
2 for Each time step n do
3 Initialize time step;

/* Fixed point iterations with d s
Γ f s

*/
4 while ‖r ‖>ε do
5 σ

f
Γ f s
=F
�

d s
Γ f s

�

;

6 d̄
s
Γ f s
= S
�

σ
f
Γ f s

�

;
7 r = d̄

s
Γ f s
−d s

Γ f s
;

8 d s
Γ f s
= d s

Γ f s
+ f (r ) ;

9 k = k +1;
10 end
11 end

Algorithm 2: Explicit or loose coupling scheme
1 Initialization;
2 for Each time step n do
3 Initialize time step;
4 σ

f
Γ f s

= F
�

d s
Γ f s

�

;

5 d̄
s
Γ f s

= S
�

σs
Γ f s

�

;
6 r = d̄

s
Γ f s
−d s

Γ f s
;

7 d s
Γ f s
= d s

Γ f s
+ f (r ) ;

8 end

In this partitioned approach, the solution fields are solved by individ-
ual and independent solvers, this allows usage of specialized solvers for
each of the domains which are advantageous for solving multi-physics
problems where L1 6=L2. This possibility of independent solvers makes
the partitioned approach particularly suitable for multi-physics applica-
tions. Such specialized solvers can also be from independent software
packages or tools. Realizing a partitioned simulation with different
software packages requires robust, intuitive and easy-to-use coupling
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tools to orchestrate a partitioned simulation and exchange the neces-
sary boundary conditions between the tools. Section 4 outlines the
requirements and development of a coupling tool.

2.3 Neumann-Neumann coupling

The Neumann-Neumann coupling of the two domains enforces kinematic
continuity across the interfaces Γ12 and Γ21 on both the sub-problems.
(see Figure 2.2). The sub-problems with Neumann-Neumann transmis-
sion conditions on the domains Ω1 and Ω2, respectively, can be written
as

L1(u1) = 0 on Ω1 (2.43)
u1 = u1D on Γ1D (2.44)
∂ u1

∂ n̂ 1
= g1 on Γ1N (2.45)

∂ u1

∂ n̂ 1
=
∂ u2

∂ n̂ 2
on Γ12 (2.46)

on subdomain Ω1 and on subdomain Ω2 as

L2(u2) = 0 on Ω2 (2.47)
u2 = u2D on Γ2D (2.48)
∂ u2

∂ n̂ 2
= g2 on Γ2N (2.49)

∂ u2

∂ n̂ 2
=
∂ u1

∂ n̂ 1
on Γ21 (2.50)

This coupling method requires that both the sub-problems are well
defined with their respective Dirichlet boundary conditions limiting the
usage of this coupling method. Different aspects of this method, like
convergence analysis, are discussed for a general problem in Quarteroni
et al. [88]. A notable and important difference, when compared to
the Dirichlet-Neumann coupling, is the solution of additional set of
problems required to generate the Neumann boundary conditions. The
motivation for this type of coupling method comes from the fact that
the established coupling algorithms mentioned in the previous sections
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• Use Gauss-Seidel iteration pattern to solve the fixed point root-
finding problem. This results in a serial execution of the involved
subsystems and thus resulting in performance bottlenecks on
highly parallel computational environments because of serial exe-
cution of the subsystems.

• Tend to be computationally expensive when there are more than
two subsystems which are coupled together, as the Gauss-Seidel
approach requires that a nested iteration strategy be employed.
Figure 2.8 illustrates a nested iterative algorithm where three
different domains are coupled. Winterstein et al. [115] discusses
the nested iterations necessary when more than two systems are
coupled.

Figure 2.8: Gauss-Seidel coupling of three solvers with inner loop for two
solvers.

Fluid-structure interaction problem, given by Equations 2.20, 2.22,
2.21, and 2.23, is used further to study this coupling approach. For
this problem, the coupling boundary conditions for Neumann-Neumann
coupling can be written as

σ f ·n f =σs ·n s on Γ f s × (0, T )

σs ·n s =−σ f ·n f on Γ s f × (0, T )
(2.51)

This coupling approach is especially useful when the incompressibility
condition on the fluid domain cannot be satisfied because of the interface
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coupling conditions. A known example where this is encountered is of
an inflating balloon Küttler et al. [68].

To demonstrate this method, we formulate the fluid-structure inter-
action problem as a Stecklov-Poincaré operator on the interface which
can be written as

o f
Γ f s
=F
�

i Γ f s

�

o s
Γ f s
= S
�

−i Γ f s

�

r =P
�

o s
Γ f s
−o f

Γ f s

�

(2.52)

wherein the above, o f ,s
Γ f s

are the outputs, i Γ f s
is the input boundary

condition to the fluid and structural solvers respectively. Stecklov-
Poincaré operator is represented by r and P is the preconditioner
operator. The nature of the coupling boundary conditions to be applied
on the fluid and the structure domains define i Γ f s

. The Equations 2.52
in the form given above can be used to formulate different coupling
methods based on the preconditioner used, A discussion of different
preconditioners and their interpretation as coupling methods can be
found in Deparis et al. [26] and Quarteroni et al. [88].

The Neumann-Neumann coupling for the fluid-structure interaction
problem is less popular as a Neumann condition on a fluid solver is hard
to interpret and requires special and specific implementations. Badia et
al. [3] presents a Robin based domain decomposition and corresponding
monolithic formulation, which can be extended to a Neumann-Neumann
coupling but the work does not present explicit results for the same. In
a different work, Nobile et al. [83] also discuss a monolithic approach
for fluid-structure interaction problems. In the following, we extend
and focus on applying a Neumann coupling condition on the fluid and
structure domains, by setting i Γ f s

= g Γ f s
which is a Neumann condition

on the fluid-structure interface and formulate a partitioned approach as
demonstrated for Dirichlet-Neumann approach, see Algorithm 1.

2.3.1 Partitioned formulation
The details and algorithms for the solution of the coupled problem
in a partitioned formulation are discussed in Section 2.2.2. Though
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formulating a Gauss-Seidel iteration pattern is possible, in this section
we focus on the Jacobi iteration pattern shown in Figure 2.7, which
has perks on parallel computing environments. The set of Equations
2.52, with as the Neumann condition, g Γ f s

, applied on the fluid and
structure domains can be written as

u f
Γ f s
=F
�

g Γ f s

�

ḋ
s
Γ f s
= S
�

−g Γ f s

�

r =P
�

ḋ
s
Γ f s
−u f

Γ f s

�

(2.53)

where F and S represent the fluid and structure operators, u f
Γ f s

and ḋ
s
Γ f s

are the velocity of the structure and fluid domains on the interface. Fol-
lowing the approach in Quarteroni et al. [88] for the Neumann-Neumann
coupling, we choose the precondition operator P as

�

F−1+S−1
�

, which
will require the solution of each domain twice, this makes the Neumann-
Neumann coupling different from the other methods discussed. The
following presents a modification by choosing the operator P to be
identity and formulate an exact Newton algorithm to solve the coupled
problem defined in 2.53. This method requires that the co-simulation
software environment used for realizing this coupling method be able to
communicate matrices in addition to vectors. Chapter 4 also discusses
the necessary modifications to the generic co-simulation environment to
address these requirements. In the following, we describe a method to
solve the problem given by Equations 2.53 and examine its numerical
behaviour of it in different scenarios.

Newton-Raphson iterations

The Newton-Raphson iterative process can be used to find the roots of
residual equation r defined in Equations 2.53, with the operator P as
identity. The necessary set of equations can be written as follows

∆g Γ =

�

−
d r

d g Γ

�−1

r (2.54)
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where

−
d r

d g Γ
=





d u f
Γ f s

d g Γ
−

d ḋ
s
Γs f

d g Γ



 (2.55)

considering the general linearized system of equations on fluid and

structure domains, as given in Equation 2.26 the derivatives
d u f

Γ f s

d g Γ
and

d ḋ
s
Γs f

d g Γ
can be computed as

d u Γ
d g Γ

=





K l
i i K l

iΓ

K l
Γ i K l

ΓΓ





−1



0 0

0 I



 for l = f , s
(2.56)

which can be efficiently computed using an LU decomposition of the
matrix K . Once the derivatives are obtained, the update of the Neumann
condition is calculated using the Equation 2.54 iteratively till norm
‖r ‖ is below a given tolerance. An algorithm used for solving the FSI
problem with Neumann-Neumann coupling is given in Algorithm 3.

Optimization problem

The coupled problem defined by the Equations 2.53 can also be formu-
lated as an optimization problem which can be defined as

min
g Γ

J (u , d , g ) =




u
f
Γ f s
− ḋ

s
Γs f







2

such that F (g Γ , u m
Γs f
)−u f

Γ f s
= 0

S(−g Γ )− ḋ
s
Γ f s
= 0

(2.57)

Here g Γ , the Neumann condition on the interface, is the design pa-
rameter for the optimization problem represented by Equations 2.57.
u m
Γs f

is the fluid mesh displacement. This optimization problem can be
solved using any gradient-based optimization algorithms. In this, the
key quantity is the derivative of the objective function J with respect to
the design variables g Γ , the Neumann condition (force) applied on the
interface dJ

d g Γ
termed as sensitivities. Gunzburger et al. [47] and Kuberry
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Algorithm 3: Implicit or strong coupling scheme with
Neumann-Neumann boundary conditions

1 Initialization;
2 for Each time step n do
3 Initialize time step;

/* Fixed point iterations with gΓ */
4 while ‖r ‖>ε do

5
u f
Γ f s
=F
�

g Γ f s
, d s ,k
Γ f s

�

and
d u f

Γ f s

d g Γ

ḋ
s

Γ f s
= S
�

−g Γ f s

�

and
d ḋ

s
Γs f

d g Γ















Can be computed in parallel !

6 r =
�

ḋ
s
Γ f s
−u f

Γ f s

�

;

7 g k+1
Γ = g k

Γ +
�

− d r
d g Γ

�−1
r ;

8 k = k +1;
9 end

10 end

et al. [67] discuss the formulation of fluid-structure interaction problem
and Navier-Stokes equations in terms of an optimization problem and
analyze the existence and stability of this formulation.

Literature provides different ways to obtain surface sensitivities.
Mathur [75] and Iott et al. [60] present a finite difference based method
to obtain sensitivities. Othmer [84] discusses a continuous adjoint-based
formulation for calculating the surface sensitivities and Bletzinger et al.
[11] presents a semi-analytical approach. Bletzinger [10] provides an
extended overview of advances of different available methods. All of
these methods can be extended to obtain sensitivities with respect to a
given set of design variables.

The design variables g Γ can be iteratively updated using a set of
optimization algorithms like Newton, sequential quadratic programming
(SQP), sequential unconstrained minimization techniques (SUMT). In
general, methods based on descent direction are robust and are simple
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to realize. In the following, we use the steepest descent algorithm to
generate the update for g Γ using the following equation

g k+1
Γ = g k

Γ −h
dJ
d g Γ

(2.58)

The equation for derivative dJ
d g Γ

can be formulated as

dJ
d g Γ

=
1




u
f
Γ f s
− ḋ

s
Γs f







2





d u f
Γ f s

d g Γ
−

d ḋ
s
Γs f

d g Γ



 (2.59)

In the above, the values of
d u f

Γ f s

d g Γ
and

d ḋ
s
Γs f

d g Γ
can be computed using the

Equation 2.56. Though this approach is interesting, initial investigations
showed that the steepest descent algorithm for updating the design
variables either converges very slowly or is unstable. Thus a further
discussion is not presented here.

Numerical examples

To demonstrate the above Neumann-Neumann coupling method de-
scribed, fluid-structure interaction example FSI3 from Turek et al. [106]
with the setup shown in Figure 2.4 is simulated using this coupling
method. The result of the simulation, that is tip displacement of the
flap at point A in comparison to the benchmark results in the Figure 2.9
shows good agreement between them.

The difference in the amplitude and the phase shift can be attributed
to the differences in the mesh and the time-stepping schemes used
for benchmark simulations. Nevertheless, the scheme shows stable
behaviour in the coupled simulations.
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Figure 2.9: Tip displacement of the flap : Neumann-Neumann coupling vs
Benchmark.

2.4 Dirichlet -Dirichlet coupling

Considering the domain decomposition illustrated in Figure 2.2, for a
Dirichlet-Dirichlet coupling, a Dirichlet boundary condition is applied
on both the subdomains Ω1 and Ω2 on the interfaces Γ12 and Γ21. The
sub-problems on the sub-domains with Dirichlet-Dirichlet transmission
conditions on the domains Ω1 and Ω2, respectively, can be written as

L1(u1) = 0 on Ω1 (2.60)
u1 = u1D on Γ1D (2.61)
∂ u1

∂ x1
= g1 on Γ1N (2.62)

u1 = u2 on Γ12 (2.63)

on subdomain Ω1 and on subdomain Ω2 as

L2(u2) = 0 on Ω2 (2.64)
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2 Domain decomposition problems

u2 = u2D on Γ2D (2.65)
∂ u2

∂ x2
= g2 on Γ2N (2.66)

u2 = u1 on Γ21 (2.67)

A partitioned solution of the above coupled problem reduces the
algorithm to an alternating Schwarz method of domain decomposition
described in Schwarz [92]. The resulting partitioned system of sub-
domains can be solved by employing any of the acceleration techniques
mentioned and referred to in Section 2.2.2. This technique is studied
with great detail in the literature, for example, Chapter 2 of Mathew
[74] discusses an additive and multiplicative version of this algorithm
in non-overlapping decomposition. This method and its derivatives
are extensively used in the context of numerical solution of a linear
system of equations and parallel computing, some of the methods are
discussed in Gropp et al. [46] and Tang [101] to obtain numerical
solutions to partial differential equations. In the context of overlapping
domain decomposition, Section 4.6 of Quarteroni et al. [88] defines the
necessary conditions, which depend on the dimension of the overlapping
region, for convergence of this method. A detailed derivation of the
convergence properties of this coupling method is presented in Section
4.6 of Quarteroni et al. [88].

2.4.1 Monolithic formulation
This thesis work concentrates on the monolithic formulation of the
coupled problem with Dirichlet-Dirichlet coupling conditions and its
applications. In a multi-physics simulation, which also is a coupled
problem, one of the key shortcomings of a monolithic formulation is
the high condition number of the resulting linear system of equations.
Though this can be addressed (Mayr et al. [78], Gee et al. [39]) to
some extent, this restricts the applicability of monolithic formulation in
multi-physics simulation. On the other hand, domain decomposition
problems with the same physics on all the sub-domains do not result
in a badly conditioned system and will require no special numerical
treatment to obtain a solution. This, in the combination with the
fact that the Schwarz method is suitable only for overlapping domain
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2.4 Dirichlet -Dirichlet coupling

decomposition, this thesis work applies it to simulate the Chimera
technique for simulating moving bodies in fluid domains. The Chapter
3 explains this in detail.

In the following of this thesis work, for a monolithic formulation
with Dirichlet-Dirichlet coupling conditions, we use the weak constraint
developed in the Section 2.2.1. Equations 2.35 through 2.37 show the
necessary changes to apply a Dirichlet condition on any boundary using
the weak constraint. In a overlapping domain decomposition problem,
the same approach is used to apply a Dirichlet condition on both the
interfaces Γ12 and Γ21 which will lead to a monolithic formulation of the
coupled problem defined by Equations 2.60 − 2.67.
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Fluid-Fluid coupling

The different coupling techniques described and developed in Chapter 2
can be applied to any coupled problem. An example of fluid-structure
interaction, which is a multi-physics coupled problem, is also presented
to establish these coupling techniques. Another important applica-
tion of these coupling methods can also be found in computational
fluid dynamics(CFD) involving simulation of moving bodies. Different
methodologies are developed to address these problems. Of these meth-
ods, mesh adaption or update techniques are well established. Different
methods for mesh update techniques can be found in Jendoubi et al.
[62], Johnson et al. [63], Mini et al. [81], Stein et al. [97], and Wick
[114]. These techniques are well suited for fluid-structure interaction
simulations and others where the displacement of the body is small to
moderately large and periodic. For large displacements of the body,
these methods tend to affect the mesh quality adversely. Among other
methods is the method of re-meshing, which, though is the most reliable
in terms of mesh quality maintenance, is computationally expensive
and is usually treated as the last option when other methods fail. On
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the other hand, the mentioned methods either fail or are irrationally
computationally expensive when there is a rotational motion of the
body in the fluid domain. These class of problems are addressed with
the embedded(Zorrilla et al. [118, 119]), sliding-mesh (Blades et al. [8]
and Ehrl et al. [36]) and Chimera (Chesshire et al. [16], Eguzkitza et al.
[35], Hadzic [48], and Houzeaux et al. [56]) approaches. Embedded
methods put the boundary of the moving body on background domain
mesh and refine the discretization of the background domain to rep-
resent the moving body accurately. This technique involves either a
special treatment of the background elements which intersect with the
moving body or explicit local adaption of background discretization
to accurately represent the embedded body. Though these methods
are easy to formulate, inaccuracies in the prediction of quantities like
drag and lift make these methods less suitable. The sliding-mesh and
the Chimera methods decompose the computational domain into dif-
ferent sub-domains, which can move independently, and couple them
with necessary boundary conditions. Thus these can be classified as
domain decomposition methods with non-overlapping and overlapping
domain decomposition being used respectively. Implementation of these
methods usually requires elaborate modifications and additions to the
existing software infrastructure. For example, Eguzkitza et al. [35] and
Houzeaux et al. [56] describe methods which employ extension elements
between the sub-domains. Such modifications have the potential to
hinder further development and modular usage of the existing and
newly developed methodologies to solve Navier-Stokes equations or
other governing partial differential equations.

This chapter first discusses the Navier-Stokes equations which are the
governing equations for the fluid flow and proceeds with formulating the
sliding-mesh and Chimera methods as domain decomposition methods
before applying the methodologies derived in Chapter 2 to solve them.
In the rest of the chapter, firs,t the sliding mesh approach formulated
and solved using a monolithic formulation using the Dirichlet-Neumann
coupling is described. This is followed by the description of a Chimera
problem, which is an overlapping domain decomposition problem, using
a Dirichlet-Dirichlet coupling. Each of these approaches is validated
with relevant benchmark examples.
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3.1 Governing equations and discretization

3.1 Governing equations and discretization

The strong form of viscous incompressible Navier-Stokes equations
formulated in arbitrary Lagrangian-Eulerian framework is written as

ρ∂t u +ρa ·∇u −∇·σ = f b in Ω× [0, T ) (3.1)
∇·u = 0 in Ω× [0, T ) (3.2)

subjected to initial and boundary conditions

u =u 0 in Ω, t = 0 (3.3)
u =u D in ΓD × [0, T ) (3.4)

σ ·n = t in ΓN × [0, T ) (3.5)

where u is the fluid velocity, a is convective velocity, ρ is density, σ
represents the stress tensor, f b are the body force acting on the domain
Ω. ∂ Ω = ΓN ∪ΓD , and n is the outward unit normal to ∂ Ω. The stress
tensor σ is given by

σ =−p I +2µ∇s u (3.6)
where p is the pressure and the operator ∇s is the symmetric gradient
operator defined as

∇s =
1

2

�

∇+∇T
�

(3.7)

The weak form of the incompressible Navier-Stokes Eqs. (3.1) and (3.2)
together with Eq. (3.6) for σ can be written as
∫

Ω

v ·
�

ρ∂t u +ρa ·∇u
�

dΩ

+

∫

Ω

∇s v : 2µ∇s u dΩ−
∫

Ω

∇·v p dΩ

=

∫

Ω

v · f dΩ+

∫

ΓN

v · t dΓ

(3.8)

∫

Ω

q (∇·u )dΩ = 0 (3.9)

where v and q are the test functions for velocity and pressure, re-
spectively, and are defined as V =

�

v ∈H1(Ω)|v = 0 on ΓD

	

and P =
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�

q ∈L2(Ω)
	

. To stabilize this formulation, we use the variational multi-
scale(VMS) method Hughes et al. [59]. This approach additively de-
composes the solution [u , p ] into a coarse-scale component [ū , p̄ ] which
can be resolved by the finite element mesh and a fine-scale component
[u ′, p ′] which cannot be resolved. The component u ′ is analytically
obtained as a function of ū and is used in obtaining the solution of
ū . This method provides stability and modifies the equation to satisfy
Ladyzhenskaya-Babuska-Brezzi (LBB) conditions. For a more in-depth
discussion and theory, the readers are encouraged to refer to Donea
et al. [31] and Hughes et al. [59]. Spatial discretization of the weak form
together with the VMS stabilization terms, using equal-order P1P1
(continuous linear velocity and pressure) velocity-pressure elements
yields the following linear system of equations

M





ˆ̇u

0



+ (C (û )+ L +D )





û

0



+G





0

p̂



= f (3.10)

where, M is the mass matrix, C (û ) is the non-linear convection matrix,
L is the diffusion matrix. G and D are the gradient divergence ma-
trices. For simplicity, the stabilization terms resulting from the VMS
formulation are considered to be included in the above matrices. û
and p̂ are the discrete velocity and pressure fields. These equations
resulting from spatial discretization can be discretized in time using
any of the established time integration schemes. For a discussion on
available schemes and their properties, the readers can refer to Donea
et al. [32]. Unless otherwise specified, in the following of this work,
Bossak time integration scheme Jansen et al. [61] and Wood et al. [116]
is considered.
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Applying Bossak time integration and writing the (3.10) in their
residual form results in

r
�

û n+1, p̂n+1

�

=

f −
1−αB

γN∆t
M





û n

0





+

¨

�

1−αB

�

�

1

γN
−1

�

+αB

«

M





ˆ̇u n

0





−
�

1−αB

γN∆t
M +C (û n+1)+G +D

�





û n+1

p̂n+1





(3.11)

with αB =−0.3,γN = 1/2−αB and

ˆ̇u n =
1

γN∆t

�

û n − û n−1

�

−
�

1

γN
−1

�

ˆ̇u n−1 (3.12)

To linearize the system of (3.11) we use Picard iterations to solve the
residual form of the system iteratively till convergence. More details
of this linearization procedure can be found in Cotela Dalmau [18].
Following this, the set of the linear system of equations (3.13) is solved
repeatedly every time step until convergence of the solution is achieved.

G̃





δû n+1

δp̂n+1



= r̃ (3.13)

where G̃ is the linearization of
�

1−αB
γN∆t M +C (û n+1)+G +D

�

and

r̃ = r −
1−αB

γN∆t
M





û n

0



+

¨

�

1−αB

�

�

1

γN
−1

�

+αB

«

M





û n+1

0





(3.14)
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This method, in the literature, is termed as the monolithic formula-
tion in velocity and pressure where both of them are solved together
in the same system of equations. Several other methods of solving the
set of (3.10), for example, multi-step methods are also widely used. In
such multi-step methods, velocity and pressure are solved separately.
These methods tend to be computationally less expensive, but have
other accompanying complications. A discussion of these methods is
out of the scope of this paper and readers are encouraged to refer to
Donea et al. [30] and Quarteroni et al. [87] for a detailed discussion
about these methods.

3.1.1 Software framework
KRATOS Multiphysics (”Kratos”)(Dadvand et al. [21], KratosMulti-
physics [66]) is a finite element based framework for building parallel,
multi-disciplinary simulation software, aiming at modularity, exten-
sibility, and high performance. Kratos is written in C++ and has
an extensive Python interface. The discretization and solution proce-
dure for the incompressible Navier-Stokes equations described above
and the procedures for Chimera methodology and their parallelization,
are explained in the subsequent sections, are implemented within this
framework.

3.2 Sliding interfaces (non-overlapping
decomposition)

For a large class of moving body problems in computational fluid
dynamics the relative motion of the components is known apriori. For
example, most rotating machinery simulations, including axial and
centrifugal turbomachinery, mixing tanks, ship and aircraft propellers,
etc. fall into this class of problems. For this approach, the grid motion of
the body and the surrounding mesh can be accomplished by decomposing
the domain into non-overlapping subdomains which move relative to
each other along chosen boundaries or interfaces.

Figure 3.1 illustrates an example of decomposition of domain Ω into
a stationary sub-domain Ω1 and moving sub-domain Ω2 which has a
rotatory motion with a constant angular velocity of ω. In the following,
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3.2 Sliding interfaces (non-overlapping decomposition)

we consider this example for explaining the procedure for coupling the
domains Ω1 and Ω2 across the interface Γ12/21, this procedure can be
easily extended to the case where there are more than two sub-domains.

3.2.1 Interface conditions and monolithic formulation
A non-overlapping domain decomposition problem can be solved us-
ing any one of the Dirichlet-Neumann or Neumann-Neumann type of
coupling methods described in Chapter 2. This thesis work uses a
Dirichlet-Neumann coupling method to solve the coupled problem. The

Figure 3.1: Domain
decomposition with sliding interface

Γ12/21

discussion in Section 2.2.1 proves the equivalence of applying multi-point
constraints with the master-slave elimination approach to the Dirichlet-
Neumann coupling method. Considering this, we couple the domains
Ω1 and Ω2 by formulating a set of multi-point constraints between the
nodes of discretizations of Ω1 and Ω2 which are on the interface Γ12/21.
A finite element discretization of the illustrative geometry from Figure
3.1 is presented in Figure 3.2. In this discretization, the multi-point
constraints are formulated by projecting the nodes belonging to Γ21 on
to Γ12. The nodes of interface Γ21 are projected on the discretization
of Γ12 using a k-d tree search structure formulated on the interface Γ12.
This defines the nodes on Γ21 as slave nodes and the nodes on Γ12 as
masters. An illustration of this location is presented in Figure 3.3. Once
located, the velocity and pressure at these nodes is interpolated from
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Figure 3.2: Non matching
discritization on sliding interface

Γ12/21

Figure 3.3: Illustration of the
multi-point constraints between the

nodes of two domains Γ12/21

the host nodes as illustrated using a simple Lagrangian interpolation.
This process results in the multi-point relations with can be written in
the matrix form as





u Γ21

pΓ21



= T





u Γ12

pΓ12



 (3.15)

where T is the transformation matrix containing weights of interpolation
ζ. These relations are then applied on the linear system of equations
resulting from the regular finite element formulation of both the domains
as given by Equations 3.13. Here it is noteworthy that this form of
interpolation can cause a mass conservation-related problem, especially
when there is a large difference in the characteristic mesh size of the
two domains. In such a case, an L 2 projection can be used to perform
a conservative interpolation, thus avoiding problems related to mass
conservation. An conservative interpolation approach is presented in
Houzeaux et al. [55]. In the presented numerical examples, the same
characteristic mesh size is chosen to avoid the L 2 projection which
requires the solution of a linear system of equations.
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3.2 Sliding interfaces (non-overlapping decomposition)

3.2.2 Distributed memory paralleization
To numerically simulate complicated engineering cases requiring a very
fine domain discretization, it is imperative to use high performance dis-
tributed memory parallel systems. Such a parallel simulation involving
sliding interfaces requires a unified treatment of interfaces distributed
across the compute ranks. In this thesis work, a simple yet novel ap-
proach is employed to formulate the necessary constraints for the sliding
interface problem.

As mentioned, a k-d tree is used to locate the nodes of Γ21 on
Γ12 and formulate the master-slave constraints. To facilitate this, the
surface discretization of Γ12 is gathered on all the compute ranks and
a search structure is setup on all the ranks to formulate the master-
slave constraints. Once the constraints are formulated, the domains are
coupled using the above-described procedure.

3.2.3 Benchmarks and numerical results
To illustrate this method, two benchmark problems are presented. First
is the well-known Taylor-Couette flow instability which is characterized
by fluid between two concentric cylinders and is driven by rotation of
the inner cylinder and the second is the 2D flow over a rotating plate
described in Hadzic [48]. In the following, we use the former example
to study the effect of mesh size differences on the sliding interface.

2D Laminar flow over a cylinder(time periodic)

Here we present and compare the results for the benchmark case of the
2D laminar flow around a cylinder from Turek et al. [105]. Figure 3.4
shows the geometry, physical parameters and the boundary conditions
used for the benchmark. Here the sliding interface is represented by the
dotted line. For the benchmark, the mesh on the sliding interface has
the same characteristic element size on both domains. This example
will be used to study the effect of the mesh sizes on the master and
slave sides of the sliding interface on the solution. For this study, we
define rh as the ratio of hs which is the characteristic mesh size on the
slave side and hm is the characteristic mesh side on the master side.
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Figure 3.4: Flow around a cylinder with R e = 100. Dimensions in m

The Figure 3.5 presents the time evolution of coefficient of lift CL

and the corresponding frequency domain plot for different characteristic
element size ratios rh on the sliding interface. Figure 3.6 show the mesh
on the interface for different values of rh . Here, the mesh on the internal
(master) domain is in red and the outer domain (slave) is shown in black.
As can be seen, as the ratio rh increases the phase difference and the
error in the Strouhal number increases. This can be attributed to the
loss of mass conservative property of the Lagrangian in the simulation.
Figure 3.7 shows the loss of mass when using different element sizes
on the sliding interface. This clearly shows that the mean mass loss
increases with rh and this is reflected in the result shown in Figure 3.5.
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Figure 3.5: Evolution of lift coefficient CL over time and frequency domain plot.

(a) Mesh for rh = 1.0 (b) Mesh for rh = 1.25

(c) Mesh for rh = 1.50 (d) Mesh for rh = 1.75

Figure 3.6: Mesh on the interface for different values of rh .
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Figure 3.7: Mass difference between inlet and outlet as % of inflow.

2D Flow over rotating plate

In this example, we consider an unsteady flow around a rotating plate
originally presented in Hadzic [48]. As a study, we compare the solution
at different values for rh between 1.0 and 2.0. The simulation setup and
the physical parameters used for the numerical simulation are shown
in Figure 3.8. A parabolic velocity profile is applied at the inlet and
a fixed pressure condition at the outlet. All the other boundaries of
the domain including the surface of the plate are assigned a no-slip
boundary condition.
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Figure 3.8: Geometry and simulation setup used for simulating rotating
plate

Figure 3.9: Simulation results of rotating plate example.
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Figure 3.10 shows a good agreement of x-velocity profile along a
vertical line at 0.5m behind the centre of the plate in comparison with
the reference results from Hadzic [48]. Figure 3.11 shows the effect of the
different mesh discretizations on the master and slave sides of the sliding
interface. As can be observed, the oscillations in the solution increase
as the difference in the mesh sizes increase. This is mainly because
of violation of the continuity equation which results in oscillations in
pressure, which in turn will produce oscillation in the force on the plate.
Considering this it is recommended to keep the discretization across the
sliding interface uniform. A conservative interpolation of the solution
variable, velocity, can help achieve better results.

0 1 2
ux m/s

0.0

0.2

0.4

0.6

0.8

1.0

Y 
Co

or
di
na

te

45∘

0 1 2
ux m/s

90∘

0 1 2
ux m/s

1∘5∘

0 1 2
ux m/s

180∘
Calculated Reference

Figure 3.10: Comparison of X - velocity profiles along a vertical line at 0.5
behind the center of the plate.

Taylor-Couette flow instability

Taylor-Couette instability in the pressure-driven axial flow between two
concentric rotating cylinders describes the formation of toroidal vortices
when the Taylor number (Ta ) is above the critical value of ≈1708 (
Taylor [102] and Weisberg et al. [112] ). The simulation setup is shown
in Figure 3.12, this setup together with the physical parameters given
will result in a Taylor number(Ta ) of ≈10000 which is higher than the
critical value and will result in axisymmetric toroidal Taylor vortices.
A slip boundary condition is applied on the ends of the domain and a
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Figure 3.11: Effect of different discritizations on the solution.

no-slip on the walls of the cylinders. A computational mesh of about
2.5 Million degrees of freedom is used for the numerical simulation on
24 MPI compute cores. The decomposition of the domain is presented
in the Figure 3.13. For estimating the properties of the formed vortices,
we refer to the definitions of Tac , λd given in Wereley et al. [113]. With
a taken set of physical and geometrical parameters considered in the
current simulation setup, Tac can be calculated to be 175. From the
plot in Figure 11 of Wereley et al. [113] we can estimate a λ value
of 0.75, from which 3.25 pairs of vortices can be estimated in a unit
length of the cylinder. From the figure 3.14 which is the iso contour plot
of Q-Criterion of velocity field which shows the formation of vortices,
it can be seen that the simulation produces approximately 3.5 pairs
of vortices which is in good agreement with the studies presented in
Wereley et al. [113]. Figures 3.16 shows the cross-section of the flow
clearly showing the formation of Taylor vortices.
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Figure 3.12: Geometry and simulation setup used for simulating
Taylor - Couette instability.

3.3 Chimera formulation (overlapping
decomposition)

A more general method to simulate moving bodies is an overlapping
domain decomposition method Chimera technology. This method allows
complete arbitrary movement of the bodies in the fluid domain and
thus overcomes the shortcoming of the sliding mesh approach.

In the Chimera approach, several independent subdomains Ωi , called
patch(es), are placed on and coupled to the background domain Ω.
The patch, contains a region of interest for the simulation, usually a
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Figure 3.13: Decomposition of the computational domain with 24 compute
cores.

moving body or a region of the domain with features requiring special
mesh requirements. This approach in essence is an overlapping domain
decomposition problem in which the patch domains are coupled to
the background domain. A number of decomposition methods can be
used to solve this coupled problem and are well documented in the
literature. A detailed discussion of the possible methods and their
properties is presented in Quarteroni et al. [88]. Of these methods
discussed, Dirichlet-Robin Houzeaux et al. [56] and Houzeaux et al. [57]
and Dirichlet-Neumann and Dirichlet-Dirichlet type Hadzic [48] methods
are used in the literature. These are employed in both monolithic and
partitioned approaches for solving the domain decomposition problem
in Chimera. In this work, we employ a monolithic approach with
the Dirichlet-Dirichlet domain decomposition method. This choice is
motivated by the following

Dirichlet-Dirichlet coupling: Solution of a coupled problem in
Chimera method with different decomposition methods require
specific changes to the solution procedure. For example, Houzeaux
et al. [56] employs an extension element method where a new
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Figure 3.14: Iso-surface contours of the Q-Criterion in the volume of fluid.

element is added to the discretization to enforce the coupling
conditions. An ideal procedure will minimize such necessary
changes to the solution procedure or will minimally affect the
solution procedure. Considering this, and to take advantage of the
existing methodologies, in this work, the choice of the Dirichlet-
Dirichlet method is motivated by the fact that it requires minimal
changes to the standard workflow of finite element methodology.
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3.3 Chimera formulation (overlapping decomposition)

Figure 3.15: Velocity profile in the
cross-section of the volume.

Figure 3.16: Velocity
vectors on the longitudinal cross

section of the flow.

To this extent, the weak or unidirectional method discussed in
section Section 2.2.1 is used to realize the Chimera method.

Monolithic formulation: Classically a domain decomposition prob-
lem is solved either in a partitioned approach or a monolithic. In
a partitioned approach, each subdomain, including background,
is solved iteratively in a fixed point iteration till equilibrium is
reached between them. Though this approach offers high modu-
larity in terms of software and implementation detail, it is compu-
tationally expensive and suffers from instabilities. This approach
is usually employed in multiphysics simulations Küttler et al.
[70] where often the solvers for individual physics are treated as
black-box. Another motivation for the partitioned approach for
multiphysics simulations is the ill-conditioned matrix generated
in the monolithic approach Gee et al. [39] which arises primarily
because of the multiphysics nature of the problem. Since the
Chimera problem is the coupling of the same physics, it does not
suffer from this drawback. Also, the adapted methodology in this
work to enforce the coupling boundary conditions between the
subdomains is minimally intrusive to the finite element solution
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procedure and also circumvents the problems with the partitioned
approach.

To simplify the explanation of different steps involved in the Chimera
methodology, in the following we consider a 2-dimensional example
where one subdomain Ωp is placed on the background domain Ω, as
shown in Figure 3.17. All the discussion based on this example is
extendable to 3 dimensions and the generalization to multiple patches
is presented at a later stage in Section 3.3.4. Furthermore, in the
following, we consider that the involved (sub)domains are discretized
with equal-order P1P1 elements which employ VMS stabilization.

Figure 3.17: Illustration of a patch
Ωp placed on a background domain Ω

Figure 3.18: Background with
hole and Γp , Γh

The Dirichlet-Dirichlet decomposition method used here requires
overlap between the domains which are coupled using this approach. The
quality and rate of convergence of the solution depends on the dimension
of this overlap region, here represented in Figure 3.18 this by d . A
detailed theoretical discussion about the requirement of overlap and
the effect of the overlap length on the solution is presented in Sections
1.5 and 4.6 of Quarteroni et al. [88]. Based on this, the convergence
rate and stability are directly proportional to the overlap dimension d .
Considering the example presented in Figure 3.17, to generate the two
subdomains with an overlap distance of d , a region on the background
which is overlapping with the patch is removed from the simulation
domain. This process is termed hole cutting. The background and
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3.3 Chimera formulation (overlapping decomposition)

patch domains are then coupled to each other at the hole and patch
boundaries to obtain a continuous solution of velocity û and pressure
p̂ fields. This coupled problem with two fluid domains (same physics)
is then solved by formulating a monolithic approach. This monolithic
treatment of coupling conditions makes it possible to reuse the existing
algorithms and thus preserving the parallelization capabilities.

3.3.1 Hole cutting
As mentioned, the process of hole cutting involves removing a region
of background mesh, from a overlap distance d , in the overlapping
region between the patch and the background. Thereby creating a
”hole” on the background mesh. Figure 3.18 shows the hole created and
the respective boundaries of hole Γh and patch Γp . On the discretized
background domain, this process involves identifying all the elements
which overlap with the patch at a certain distance d from the patch
boundary Γp and removing them from the computational domain. This
works in the case of non-moving patches. When the patch moves, as is
considered in this work, we only disable the elements so that they do
not participate and contribute to the system matrices and vectors that
form the Eqs.3.13. We identify the overlapping elements in two steps:

1. Find all the elements which cut the patch boundary Γp

2. Calculate a signed level set distance function on the background
nodes from the boundary of the patch.

• The inside of the patch is assigned negative and outside a
positive sign.

A detailed description of the distance calculation procedure and the
formulation can be found in Baumgärtner et al. [6]. The advantages of
this procedure are two-fold: One is that the overlap and hole regions are
identified based on the level-set distance. With the above definition of
positive and negative distances, an element is considered a hole element
if all of its nodes have a distance less than ’−d ’. The second advantage
is that as long as the boundary of the patch Γp is well defined, which is
always the case, the hole is bound to be a well-defined manifold mesh.
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Figure 3.19: Meshes of the
patch and background for the

geometry in Figure 3.17

Figure 3.20: Distance calculated
on background from the patch

boundary Γp

Figure 3.21: Elements marked
as hole (blue) on the background

Figure 3.22: Patch and hole
boundaries Γp and Γh , on which the

constraint equations 3.16 are
formulated.

Figure 3.20 shows the level set distance calculated on the discretization
shown in Figure 3.19. Figure 3.21 shows the elements marked as hole
in blue, together with the patch boundary Γp and Figure 3.22 shows
the hole and patch boundaries. Figure 3.25 shows the overlap region
together with patch and hole boundaries on a discrete mesh.
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3.3 Chimera formulation (overlapping decomposition)

3.3.2 Coupling conditions and enforcement
After the hole cutting operation, coupling the background and patch
domains takes place at the boundaries of the patch (Γp ) and the hole (Γh ).
With a discretized domain, extraction of these is done by counting how
many elements a given edge(faces in 3D) belongs to. An illustration of
such a count for an example mesh is shown in the Figure 3.23. Once such
a count is established for each edge, the boundary of the discretization
is extracted as all the edges with a count of 1. This procedure is used to
extract the boundary of the hole Γh using the elements which are marked
’hole’. Figure 3.22 shows the extracted hole and patch boundaries using
this approach.

Figure 3.23: Illustration edge counting to extract
the boundary of the hole and patch.

After this step, the coupling of the background and patch domains
is carried out at the Γh and Γp by exchanging boundary conditions
between the background and patch domains. As mentioned a Dirichlet-
Dirichlet coupling is used in this work, this implies that the velocity(û )
and pressure(p̂ ) are applied as Dirichlet boundary conditions on these
boundaries. The Dirichlet values for the patch boundary are interpolated
from the background domain and the values for hole boundary are
interpolated from the patch domain, thus coupling the background and
patch domains. Imposing of these boundary conditions, in this work,
is achieved by a set of multipoint constraints and a novel modification
to the master-slave elimination approach. For this, we reformulate the
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boundary conditions in terms of multipoint constraints with the nodes
on Γp and Γh as slaves and the nodes from whom their velocity(û ) and
pressure(p̂ ) are interpolated from on background and patch domains as
their masters. This formulation in terms of master and slaves enables
the usage of the existing software infrastructure for applying multi-point
constraints in KratosMultiphysics framework and applying the coupling
conditions in a monolithic way.

3.3.3 Multi-Point relations
To formulate the mentioned multipoint constraints, a host element
for each slave node on Γp and Γh is found on the background and
patch domains respectively. For this, we use a k-d tree-based search
to locate the boundary nodes on the respective master domains. The
search locates the nodes on Γp and Γh inside the elements as shown in
the Fig.3.24 and the host elements’ shape-functions ζ1,2,3 are used to
interpolate the values of velocity and pressure of the slave node S . This
makes the nodes M1,2,3 as the master nodes for S and resulting in a
constraint equation for each node on the patch and hole boundary. The
same process is carried out for the nodes on the patch boundary, in this
case, the host elements are searched for on the background domain.

The set of multi-point constraint equations resulting from the above
process can be written as

û = T û r

p̂ = T p̂r
(3.16)

where û r and p̂r are the velocity and pressure vectors containing all
except the slave velocities and pressures, that is the velocities and
pressure at the nodes on Γp and Γh . T is a rectangular matrix, that
contains the weights ζ from the respective interpolation described
above. Applying (3.16) on the set of linear system of equations (3.13)
will enforce the boundary conditions on velocity and pressure at Γp and
Γh . This approach can be extended to include elements of higher-order
also as usage of higher-order elements will only result in a modified
multipoint relation and thus, a different T matrix in the (3.16) without
affecting any of the procedures mentioned above. The extension of

58



3.3 Chimera formulation (overlapping decomposition)

Figure 3.24: Illustration of host
elements on patch for nodes on hole

boundary.

Figure 3.25: Visualization of
patch, overlap and background

domains after hole cutting together
with patch and hole boundaries where

coupling conditions are applied.

the above procedures to 3 dimensions and higher-order elements in 3
dimensions is straightforward.

3.3.4 Treatment of multiple patches
Section 3.3.1 together with Section 3.3.2 show the procedure used when
only one patch and the background is used in the simulation. In practice,
multiple patches are likely used. Figure 3.26 shows different possible
scenarios, in increasing order of their complexity, when using multiple
patches in a simulation. The simplest of these is the case where the
patches used are completely disjoint. Figure 3.26(a) shows an example of
such a case. In this case, one can simply repeat the described procedure
in the above sections for all the patches Ωp 1 and Ωp 2 and successfully
perform a simulation. Further complications arise when the patches have
relative motion with each other. Figure 3.26(c) shows a scenario where
two patches overlap with each other and Figure 3.26(b) show the most
complex scenario where the patches also overlap with the moving bodies
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in the other patches. Unlike the case presented in Figure 3.26(a), these
are more complex and require special treatment for proper coupling
between each other and background.

(a) (b)

(c)

Figure 3.26: Possible situations when using multiple patches.

To be more general and include all the above shown cases, the
following series of steps are performed before formulating the multipoint
constraints and applying the coupling conditions.

1. A Hole is created on the background using each of the patches.
For the case shown in Fig.3.26(b), after this operation, the hole
(inactive elements) on the background is shown in Fig.3.27(a).
The hole boundary Γh of this hole is used to enforce continuity
between the background and the corresponding patch as described
in the previous sections.

2. As shown in Fig.3.26(b), a patch can overlap with another and
with the body inside it. In this illustrated case, patch Ωp 2 is
overlapping with patch Ωp 1 and the body inside it. In such case,
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3.3 Chimera formulation (overlapping decomposition)

(a) Hole on background from
patches Ωp 1 and patch Ωp 2.

(b) Modified patch
Ωp 2.

(c) Hole on Ωp 1 because
of overlapping Ωp 2

Figure 3.27: Hole regions on background and patches

patch Ωp 2 must be modified to exclude the overlap with body
from computational domain. Such a modification to patch Ωp 2 is
shown in Fig.3.27(b).

3. Since two patches overlap, just like background and a patch, a
hole is to be cut on one of the patches to remove the overlapping
part. This is also required to couple the two patches. To decide on
which patch the hole is to be created, a patch hierarchy is defined
to divide the patches into different levels. In a pair of patches
considered, the patch on the higher level is used for solution and
the hole is made on the lower level patch. At this stage, the
definition of hierarchy is taken as input from the user. There
exists also other methods to automatically decide on the hierarchy,
for example, Liu et al. [73] discusses a method based on element
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quality. In the case shown in Fig.3.26(c), assuming patch Ωp 2 is at
higher level, the hole is cut on patch Ωp 1 as shown in Fig.3.27(c)

To perform the above set of operations in a consistent way, we use
the Algorithm 4 to iterate over a predefined hierarchy of patches Ω0···N
including background.

Algorithm 4: Formulation and applying coupling conditions
for each background patch combination with N hierarchy levels.

1 for B a c k g r o und L e v e l (b l )← 0 to N do
2 Ωb ←Ωb l

3 for P a t c h L e v e l (p l )← b l +1 to N do
4 Ωp ←Ωp l

5 Calculate level-set distance on Ωp from the background
boundary.

6 Remove part of Ωp which is outside the background
boundary.

7 Extract the boundary Γp of the modified patch.
8 Create hole on the Ωb using modified patch.
9 Extract hole boundary Γh

10 Couple patch boundary Γp and hole boundary Γh to
respective domains.

11 end
12 end

This will ensure that all the used patch domains are connected to
either background or to other patches. The hierarchy of the patch
meshes is initially specified by the users in the input. The approach in
Liu et al. [72] has not been investigated in the current framework but is
possible to be incorporated without disturbing the other aspects of the
methodology described in this contribution.

3.3.5 Distributed memory parallelization
In practice, problems of interest in engineering are computationally
expensive and many times not possible to be calculated on a traditional
workstation. To compute such problems it is essential to use distributed
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memory parallelism. Currently used computational framework Kratos-
Multiphysics provides a robust and scalable solver for Navier-Stokes
equations with the formulation discussed in Section 3.1. The framework
uses METIS for partitioning the domain and relies on Trilinos library
Heroux et al. [52] for distributed data structures. The framework inter-
faces with linear solvers provided by the Trilinos library, which includes
both, Krylov solvers in its Aztec package and Multilevel algorithms
through the ML libraryGee et al. [40]. An AMGCL solver Demidov
[25] can also be used as a linear solver in distributed memory setup. A
detailed discussion on the methodologies used for parallelization can be
found in Cotela Dalmau [18]. The integration of the proposed formu-
lation of Chimera problem into the existing framework without losing
parallel scaling and efficiency is challenging. The respective steps for
the solution of this are detailed in the following.

Partitioning

In order to enable continued use of METIS library for a given Chimera
problem setup, the background Ωb and patches Ωpi

are partitioned
independently. This implies that each working processor contains a
part of the background and patch meshes. This approach is chosen
to equally balance the computational load on all the processors, espe-
cially during the processes of hole cutting and coupling. Figure 3.28
shows the distribution of domain shown in Figure 3.17 on 8 processors.
This partitioning of the domains remains unchanged throughout the
simulation.

Figure 3.28: Partitioning of background and patch using 8 processors
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Level-set distance calculation

In any parallelization technique, it is of prime importance to keep the
communication between the participating processors to a minimum.
Keeping this in focus, the level-set distance calculation, hole cutting
and boundary extraction are also done locally on every processor. To
do this, the patch boundary Γp is computed locally on every processor
and gathered on all processors. When the patch boundary is gathered,
the artificial boundaries created by the domain decomposition can be
eliminated robustly by counting the number of times an edge is present
in the gathered boundary. Figure 3.29 shows the example of the artificial
internal processor boundaries resulting from partitioning. Any edge (face
in 3D) which is counted more than once is an artificial boundary because
of domain partitioning. The same procedure is applied when extracting
the hole boundary. With the whole boundary on each processor, the
distance can be calculated locally.

Hole cutting

The hole cutting or deactivation of the parts of the domain, which do not
contribute to the solution, can also be done locally using the calculated
distance. This operation can result in processors on the background
domain without any hole(or deactivated) regions. But since there are
no computations performed on the hole region, this is acceptable. Once
the hole region is extracted, the boundary of hole is gathered on each
process using the technique mentioned above.

After these operations are done, all the processes will have the
gathered boundaries of hole and patch. The hole region and the ex-
tracted hole and patch boundaries are shown in Figure 3.30. Applying
continuity by formulating the multipoint relations and applying the cou-
pling boundary conditions using the modified master-slave elimination
approach is a straightforward operation from this point

3.3.6 Benchmark examples
The developed methodology and algorithm are employed on various
two and three-dimensional cases. Different levels of complexity involved
in the cases presented below showcase the versatility and robustness
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Figure 3.29: Illustration of the processor boundaries (artificial) with count of 2
and the final boundary after elimination of the processor boundaries with a count of

1.

(a) Hole elements on the partitions
3 and 4 only.

(b) Boundaries of patch and hole
with corresponding domains.

Figure 3.30: Hole, patch and hole boundaries on multiple ranks.

of the presented methodology. We present benchmark cases in the
beginning before moving on to cases involving moving patches and
multi-dimensional examples.
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Lid driven cavity

The example of the lid-driven cavity has been studied and well doc-
umented by many authors for example in Ghia et al. [41]. We use
this benchmark as the basis to discuss the effect of various parameters
involved in the Chimera problem setup. The computational domain
consists of a two-dimensional square cavity of unit side length. This
cavity is filled with fluid of density ρ = 1k g /m 3 and kinematic viscosity
ν= 0.001P a .s . A no-slip condition is applied at the walls and the flow is
driven by the lid moving with a horizontal velocity U = 1 m/s . This re-
sults in a laminar flow with a Reynolds number of 1000. The simulation
geometry and boundary conditions are shown in Figure 3.31(a). Figure
3.32 shows the background and patch meshes used for the Chimera
problem setup. The mesh used for the following simulation consists of
100K degrees of freedom.

(a) Geometry and boundary condi-
tions

(b) Background(lite Grey) and
patch(dark Grey) setup for
Chimera Simulation

Figure 3.31: Benchmark meshes for flow over a cylinder benchmark

Furthermore, we investigate the robustness of Chimera formula-
tion by rotating the patch to angles of 0◦,15◦,30◦ and 45◦ degrees and
comparing the solutions. Figure 3.32 shows the hole formed on the
background mesh when the patch is at different positions. Figure 3.33
and Figure 3.34 show the plot of velocity along horizontal and vertical
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centerline of the cavity. As can be observed, the solution obtained is in
good agreement with the benchmark results from Ghia et al. [41].

(a) Hole at 0◦ (b) Hole at 15◦

(c) Hole at 30◦ (d) Hole at 45◦

Figure 3.32: Position of hole at different angles of placement of the patch

Effect of overlap distance

As a Dirichlet-Dirichlet based coupling between the background and
patch is used, the overlap distance mentioned in Section 3.3.1 influences
the solution. Figure 3.35 and Figure 3.36 show the plot of X and Y
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Figure 3.33: X-velocity along a vertical line at the center of cavity for different
angles
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Figure 3.34: Y-velocity along a horizontal line at the center of cavity for
different angles

velocities along vertical and horizontal lines at the center of the cavity
for overlapping distances of 0.05m , 0.04m , 0.03m , 0.02m , 0.0075m .
These examples have 9, 8, 7, 4 and 2 elements in the overlap region
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respectively. A clear improvement in the solution can be observed as the
overlap distance increases. For obtaining a stable solution a minimum
number of layers of elements in the overlap zone are important rather
than the distance itself. On the other hand, the accuracy of the solution
is directly proportional to the number of elements in the overlap region.

Figure 3.35: X-velocity along a vertical line at the center of cavity for different
overlap distances

2D Laminar flow over a cylinder(time periodic)

The following presents and compare the results for the benchmark
case of the 2D laminar flow around a cylinder from Turek et al. [105].
Figure 3.37 shows the geometry, physical parameters and boundary
conditions used for the benchmark. Figure 3.38 shows the closeup of
Chimera setup together with background and patch meshes. The mesh
of the background and the patch have the same characteristic element
size in the vicinity of the patch boundary. For the Chimera setup, an
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Figure 3.36: Y-velocity along a horizontal line at the center of cavity for
different overlap distances

overlap distance of 0.015m is used which results in about 8 layers of
elements in the overlap region as shown in Figure 3.39. This example
also serves to examine the mass conservation when using the Chimera
formulation, Figure 3.42 shows the difference in the inlet and outlet
mass flow rates as a percentage of inlet flow. As can be observed, the
mass conservation in the Chimera simulation is below an acceptable
level of 0.1% which is expected because of differences in mesh on the
inlet and outlet boundaries.

The mesh in both single and Chimera setup(including patch) con-
tained approximately 800K degrees of freedom which corresponds to
the refinement level 6 in the reference results from Turek et al. [105].
Figure 3.40 shows the pressure and velocity contours on the combined
background and patch at time t = 20s . The plots for drag and lift
coefficients in Figure 3.41 show a good agreement with the reference
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Figure 3.37: Geometry used for flow around a cylinder. Dimensions in m

Figure 3.38: Benchmark Mesh for
Chimera setup for flow over a cylinder

benchmark.

Figure 3.39: Background and
patch (white) with inactive regions on

background (in Blue).

values. Figure 3.40 shows the Pressure and Velocity contours on the
combined background and patch.
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(a) Pressure (b) Velocity

Figure 3.40: Pressure and Velocity fields at Time t = 20s

(a) Coefficient of Lift (b) Coefficient of drag

Figure 3.41: Coefficient of Lift and Drag comparison

Moving and multiple patches

Here we showcase the capabilities to deal with moving patches and
multiple overlapping patches. The algorithm 4 discussed in Section
3.3.4 is used in formulating the coupling between patches and the
background domains. For demonstrating this we select the example
of two oscillating equilateral triangles in a channel. This case is an
adaption from Sumner [99] and Placzek et al. [85]. In the current setup,
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Figure 3.42: Mass loss as a percentage of inlet mass flow.

an oscillatory motion is applied on the triangles instead of flow-induced
oscillation. Triangle T1 oscillates in Y-direction with s i n (0.3 ∗ t ) and
triangle T2 with s i n (1.0 ∗ t ). Since a different period of oscillation is
used for the two triangles, the overlap changes dynamically and thus
the sequence steps given in the Algorithm 4 are performed every time
step. The geometry and the setup of patches used in the simulation are
shown in Fig. 3.43. An inlet velocity of 5m/s is applied at the inlet and
a fixed pressure of 0 is applied at the outlet. These boundary conditions
with the fluid properties of ρ = 1.0 and µ= 1×10−3 results in a Reynolds
number of 2500. For the Chimera formulation, an overlapping distance
of 0.15 m is used for each of the patches with the background and
between the patches.

This setup is chosen to test all the aspects of the Algorithm 4
and the robustness of distance calculation and hole cutting procedures.
Following this, Fig. 3.44(a) shows the active and inactive regions on the
background and the patches with triangles at two different time steps.
As expected, active and inactive regions change in every time step of
the simulation as the relative position of the patches change because of
different periods of oscillation of the patches.
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(a) Geometry used for simulating two os-
cillating triangles. Dimensions in m

(b) Definition of patch domains
around the triangles.

Figure 3.43: Geometry and Simulation setup.

(a) Hole regions (in Red) on back-
ground and the patches at simulation
time of 0.0s

(b) Hole regions (in Red) on back-
ground and the patches at simulation
time of 0.57s

Figure 3.44: Patch location and corresponding holes

(a) Force Fx on the triangles T1 and T2 (b) Force Fy on the triangles T1 and T2

Figure 3.45: Force history on the triangle surfaces
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Figure 3.46 shows the velocity field around the triangles at different
time steps. It can be observed that at time t = 5.7 seconds, the two
triangles do not influence each other producing an independent vortex
shedding. This can also be observed in the drag and lift plots, as
the two triangles have a similar lift and drag values as shown in the
Figures 3.45(a) and 3.45(b). Following the same reasoning, when the
two triangles influence each other at time t = 1.7, 9.0 and 19.35 seconds,
the triangle T2 which is behind triangle T1 has lower lift and drag values.

(a) t = 1.7s (b) t = 5.7s

(c) t = 9s (d) t = 19.35s

Figure 3.46: Velocity field at different points of time
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3.4 Extension to fractional-step methods

In the methodology described in Section 3.1, the equations 3.10 are
solved to obtain the velocity û and pressure p̂ fields. In this approach,
the momentum and continuity equations are coupled which leads to
the system of equations 3.10 which are elliptic and have to be solved
implicitly. Another issue when solving the Navier-Stokes equations in
this approach is computational efficiency as the system of equations
will require considerable memory resources.

To overcome these issues, Chorin [17] introduced a time splitting or
fractional step approach, in which the continuity equation was decoupled
from the momentum equations. The momentum equations can usually
also be decoupled from each other. The fractional step approach was
later adopted in the finite element area by Donea et al. [29]. The
fractional step like methods are generally computationally efficient
and can be conveniently combined with sliding mesh and Chimera
approaches discussed above.

3.4.1 Overview of fractional step method
The finite element formulation and variational multiscale stabiliza-
tion(VMS) of the Navier-Stokes equations presented in 3.1 results in
the linear system of equations 3.10 which form the monolithic system
for velocity and pressure. This set of equations can be separated for
momentum and continuity equations. This system of equations can be
written as

M
h

ˆ̇u
i

+ (C (û )+ L +D )
h

û
i

= f (3.17)

G
h

p̂
i

= f (3.18)

For every time step, in the first step of the algorithm, the Equation
3.17 is solved, with a time integration scheme of choice, to obtain an
intermediate velocity field û ∗. This velocity field will not satisfy the
continuity equation as the terms related to pressure are omitted from
Equation 3.17.
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In the second step, the velocity field in the next time step û n+1

is obtained by correcting the intermediate velocity field û ∗ with the
pressure terms. This operation is given by the Equation 3.19.

û n+1 = û ∗−Q4p̂ n+1 (3.19)

where the matrix Q results from the time integration scheme and p̂ n+1 is
the pressure in the new time step. The pressure p̂ n+1 is in turn calculated
by solving the Poisson equation resulting from the requirement that
û n+1 satisfies the incompressibility condition. This Poisson equation
can be written as

4û n+1 =4û ∗−Q∇p̂ n+1 = 0 (3.20)

These steps are performed iteratively till the divergence in the velocity
field û n+1 is below a given tolerance.

Sliding-interface

To include the sliding interface conditions in the fractional step al-
gorithm, the velocity constraints from the set of Equations 3.15 are
applied to the linear system of equations resulting from Equation 3.17
and during the correction operation defined in the Equation 3.19. The
pressure constraints from Equation 3.15 are used when solving the linear
system of equations for solving the Poisson Equation 3.20. In addition
to this, the gradient 4û ∗, which forms the right-hand side of the pres-
sure Poisson Equation 3.20 is also interpolated using the constraint
equations to ensure the two domains are completely coupled. These
steps will ensure that the inner and outer domains are coupled and thus
producing a continuous solution field across the sliding interface.

Chimera technique

Extension of Chimera technique described in Section 3.3 to CFD solvers
with fractional step methodology requires that the constraints for veloc-
ity and pressure given in the Equations 3.16 be applied to the linear
system of equations resulting from Equations 3.17 and 3.20 respectively.
This ensures that the patch and background are coupled at every step
along with Γh and Γp . In the case where the body, along with patch
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Ωp has a movement in time, the above procedure of hole cutting and
coupling of the patch with background is done at every time step at the
new position of the patch.
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Figure 3.47: Coefficient of Lift CL computed with fractional-step fluid solver.

As a verification of this procedure, we use the benchmark of 2D
laminar flow around the cylinder at R e = 100. The geometry used
for the sliding-interface and Chimera techniques are shown in Figures
3.4 and 3.37 respectively. The Figure 3.47 shows the comparison of
coefficient of lift computed with the fractional step solver with the
modifications described above. These results show a good agreement
with the benchmark results.

3.5 Inclusion of turbulence models

Turbulence in fluid flows is common in numerous situations and resolv-
ing turbulence is important to produce credible numerical simulation
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results. Classically, turbulent flows in CFD simulations have been simu-
lated either by resolving the turbulence spectrum or by modelling the
statistical turbulence properties of the flow. In the latter approach,
different turbulence models like Spalart–Allmaras (S-A) which is a sin-
gle equation model, and in Reynolds-averaged Navier-Stokes(RANS)
equations, two-equation models like k -ε, k -ω and k -ω SST are devel-
oped and successfully used. Other approaches like Direct Numerical
Simulation(DNS) and Large Eddy Simulations(LES) are also popularly
used. More recently, hybrid methods of LES and RANS (Fröhlich et al.
[37], Acton et al. [1]) are also developed for specific applications.

Usage of sliding-interface and Chimera techniques in turbulent flow
simulations requires that in addition to the primary variables velocity u
and p , the auxiliary variables, turbulent viscosity ν̃, turbulent kinetic
energy k , turbulent dissipation ε and dissipation rate ω, which are used
in the respective turbulence models be interpolated and coupled using
the methodologies described in Sections 3.2 and 3.3.

In this thesis work, the examples presented do not employ any of the
turbulence models mentioned and thus do not require special treatment.
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Successful software always
gets changed.
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Co-simulation and software
framework

In the context of domain decomposition problems, Chapter 2 describes
different types of coupling techniques possible for numerical simulation.
From the discussion, it can also be seen that each of those coupling
techniques are suitable for a specific class of problems and there is no
one technique for all. Realizing each of those techniques in a simulation
framework will impose a unique set of requirements which will quickly
escalate in complexity as the number of subdomains and their respective
solvers increase. This is especially true in multiphysics simulations where
subdomains with different physics are involved. A classical example of
such multiphysics simulation is that of fluid-structure interaction which
is already discussed in previous chapters. A general concept of simulating
different subsystems together, which also encompasses multiphysics
simulations, is termed co-simulation. Here the term subsystem is very
general and can include a variety of disciplines like control systems,
multi-body dynamics, hardware emulators and others. Since the solution

81



4 Co-simulation and software framework

of each of the mentioned disciplines requires specialized simulation tools
or frameworks, different software tools are used to solve them and are
brought together in a co-simulation. This method of co-simulation
requires that each of the simulation tools be treated as a black-box
as the respective tools can be proprietary or commercial and will not
provide access to internal functionality. In the following of this chapter,
we consider all of the solvers are treated as black-box and describe and
develop the concepts further. Examples of co-simulation can be found
in the literature Scheifele et al. [91], Gomes et al. [42], Stoermer et al.
[98] and Sicklinger et al. [95].

Co-simulation with any combination of the above-mentioned disci-
plines requires an exchange of information(communication) between
the solvers of the respective subsystems. The nature and frequency
of this information exchanged depends highly on the simulation and
the subsystems involved. Classically, co-simulation has been achieved
by orchestrating different simulation frameworks together by treating
them as black-box tools. using a coupling tool to exchange information
between them. Two widely used concepts used in designing the coupling
tools are

Model Exchange In this approach the simulation models of different
subsystems, as a whole, are created to be imported and exchanged
between different numerical simulation frameworks. Thereafter,
the imported models can be executed in importing framework
through a predefined set of functions defined in the imported
model. The necessary information from this model can also be
accessed by a predefined set of functions in the model, thus creating
a co-simulation. In this approach, all the simulation software
frameworks involved in the co-simulation should implement the
set of predefined functions so they are compatible with each
other. Functional mockup interface (FMI) [Functional Mockup
Interface [38]] follows this approach is has found increasing usage,
especially in applications involving control systems, electronics,
safety systems, multibody dynamics and related fields. However,
the FMI is not completely mature in dealing with surface coupled
multiphysics simulations and has been found limited to no usage.
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Data Exchange The coupling tool which follows this approach, unlike
the Model Exchange, transfer only data from and to the indi-
vidual simulation tools and keeps their execution independent,
though, the control is done via the coupling framework. Similar to
Model Exchange approach, here also, the simulation tools need
to implement a predefined set of functions that export, import
data and synchronize different steps in the simulation process.
Therefore, in this approach, modularity and customization of data
transfer and synchronization operations characterize the coupling
framework. Owing to this, over the years, this approach has
gained popularity with surface coupled multiphysics simulations.
Several tools following this approach have been developed and
are used successfully. Noted examples for such coupling tools for
solving coupled multiphysics problems are EMPIRE from Wang
et al. [111], preCICE from Bungartz et al. [13], comana from
König [69] and the Physics Integration KErnels (PIKE) based on
the Data Transfer Kit(DTK) described in Trilinos Slattery et al.
[96].

Considering that domain decomposition problems defined in Chap-
ters 2 and 3 are dominantly surface coupled problems, the following of
this chapter presents a novel design of a coupling framework based on
Data Exchange approach. As the chapter progresses it is also shown
that the framework can also be extended very easily to non-surface-based
coupled problems. Co-simulation examples presented with different
physics establish the concepts and advantages of the design proposed.

The work resented in this chapter is the result of collaborative work
with Mr. Philipp Bucher (MSc, Hons). Implementations of the concepts
presented and improvements are implemented in the CoSimulationAp-
plication of KratosMultiphysics framework (KratosMultiphysics [66]).
The examples presented within this chapter are part of research work
by colleagues at the Chair of Structural Analysis, Technical University
of Munich.
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4.1 Motivation and the concept

The coupling tools following the Data Exchange approach broadly follow
two different communication models, a client-server approach or a peer-
to-peer approach. Both have their advantages and disadvantages, here
we briefly motivate the necessity of an approach that is different from
them both.

In a client-server model, all the communication between the partici-
pating subsystems is routed through a central server, which acts as a
moderator between them. This gives the server ability to control the co-
simulation. In this approach typically, the coupling algorithms and the
mapping/extrapolation technologies are implemented and are executed
by the server. The clients (solvers) for individual subsystems, which
communicate with the server, are created by extending or implementing
the interface that is predefined by the coupling tool. EMPIRE described
in Wang et al. [111] and comana presented in König [69] follow this
approach.

In the peer-to-peer approach, the participating solvers directly com-
municate with each other with the help of the coupling tool which
must be integrated into the respective solvers by implementing a set of
predefined functions. This coupling tool may also implement different
mapping/extrapolation technologies along with coupling algorithms.
Coupling tool preCICE described in Bungartz et al. [13] implements
this approach.

For co-simulation, in either variant described above, the client or
participating numerical simulation frameworks which solve the subsys-
tems should include the necessary header files and libraries from the
coupling tool in their build and setup process. This leads to, among
other complications, a hard dependency on the requirements of the
coupling tool and thus in extreme cases can make it difficult to set up
a co-simulation. In addition to this, these tools might require a set of
additional interface functions to transfer/communicate each different
type of data or mesh between participating solvers.

A majority of coupling tools available lack a common interface re-
stricting a simple and modular usage of these tools. This lack of a
common interface also hinders the rapid development of solvers for
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co-simulation and technology reuse. This chapter describes a different
approach for co-simulation tool and its interface, which has the po-
tential to overcome above-mentioned drawbacks. Some of the aspects
considered for the design of the concept are :

1. General interface functions which abstracts the type of data being
transferred.

2. Short and crisp interface for simplicity, maintenance and easy
understanding of the functionality.

3. Strong abstraction of data type and mesh type that are being
communicated from the interface.

4. Ease of interchangeability between different tools and re-usability
of the co-simulation solvers with other coupling tools.

5. When a participating solver provides sufficient functions, interface
should be able to control the solver to the full extent.

6. Possibility to define custom communication methods and data /
mesh types to be communicated between the solvers.

7. Possibility of steering of co-simulation externally even though
participating solvers are in peer-to-peer communication mode.

Apart from the general functions like initialization and finalization of
the co-simulation solvers, following the Point 2 of the above, general
interface functions for communicating, i.e., Input/Output (IO) functions,
for data and meshes can we written as in Listing 4.1

1 ## Basic functions of Initialize and Finalize
2 InitializeCoSimulationSolver(SolverName)
3 FinalizeCoSimulationSolver(SolverName)
4 SetInputOutputFormat(IOTypeName)
5 ## Interface functions to communicate data
6 ImportData(Data, FromSolverName)
7 ExportData(Data, ToSolverName)
8 ImportMesh(Mesh, FromSolverName)
9 ExportMesh(Mesh, ToSolverName)

Listing 4.1: Basic and interface functions for data exchange
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This separation of interface functions from the type of data being
transferred will avoid the hard dependency of a participating solver
on a given method for data exchange, for example, MPI. This will
also provide a modular and optional way to implement user-defined
IO methods which can be interchangeably used. Classically, in the
tools like preCICE (Bungartz et al. [13]) and EMPIRE (Wang et al.
[111]), the functions in Listing 4.1 are also used for synchronizing the
participating solvers. Though this approach is widely used, it has a
shortcoming that the solvers are forced to synchronize and thus wait
for each other at the Import* and Export* functions which in some
situations is expensive. This is illustrated in Figure 4.1.

This also means when more than two solvers, with their own work
flows, are involved in the co-simulation, the synchronization can take
longer time. This is because each importing solver need not necessarily
post a Import* function call at the same time. To overcome this and
to further advantages, this thesis work proposes to split the Export*
function into two following independent functions

ExportMesh/ExportData In this function first a ”config” file for
each Data and Mesh which is being communicated is exported.
After this, the actual Data or Mesh are output in any specified
format. The ”config” contains the information about the type of
data/mesh, the format in which it is communicated, the physical
location and other details as required by the solver.

MakeAvailable In this function the exported ”config” is made avail-
able to the importing solver.

Here the technical detail of how the ”config” file is exported and how
it is made available to the importing solver are excluded as they are
specific for each coupling tool. The split in the Export* routine has the
following advantages when compared to other types of communication
mechanism

• It makes the interface data exchange functions independent of
type of Data and Mesh types.

86



4.1 Motivation and the concept

• An export operation can be done in a non-blocking way without
waiting for the corresponding solver to post a import operation.

• Once the raw Data and Mesh is exported, it can be made avail-
able for multiple solvers by making just the ”config” file, which
has relevant data for importing, visible to them. This avoids
redundant read/write operations or communication operations
and duplication of potentially huge amount of data.

• It will be possible even to exchange matrices between participating
solver through the same interface.

• Since the communication is abstracted, it is expected that the
parallelization of the communication between the solvers is rela-
tively easy and can be implemented through a InputOutput with
out effecting the interface functions.

Control flow of three solvers exchanging data with the above ex-
plained split in Export* is illustrated in the Figure 4.2. The format
and content of ”config” for Data and Mesh can be specific for an imple-
mentation/tool or even type of solver. An example of ”config” for Data
and Mesh are shown in Listings 4.2 and 4.3 respectively. For creating
the Data and Mesh types and their corresponding implementations in
C++ or Python existing and emerging exchange protocols like Google
Protocol-Buffers [86] can be considered.

1 Data{
2 Name : Df1,
3 DataType : INT,
4 MeshName : Mesh1,
5 DataLocationOnMesh : ON_NODES,
6 DataFile : /path/to/file
7 }

Listing 4.2: Example of a ”Conf” for a Data field on a mesh

1 Mesh{
2 Name : Mesh1,
3 Type : SURFACE_FEM,
4 NumberOfNodes : 10,
5 NumberOfElems : 11,
6 MeshFile : /path/to/file
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Figure 4.1: Communication and synchronization between SolverA and SolverB
using the functions in Listing 4.1

7 }

Listing 4.3: Example of a ”Conf” for a Mesh
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4 Co-simulation and software framework

When fully implemented by a solver, these interface functions can
be used to control the solver itself from one of the other participating
solvers which acts as a controller for the co-simulation.

Figure 4.3: Controlling SolverB from SolverA via a plugin

4.1.1 Detached-interface approach
As mentioned above, the co-simulation solvers are developed by im-
plementing a predefined set of functions defined by the coupling tool.
This will impose additional requirements from the coupling tool on the
simulation solver and respective framework. These requirements are
critical as they can hinder the development of solvers suitable for co-
simulation. To overcome this difficulty and to facilitate the development
of reusable co-simulation solvers, a novel detached-interface approach
enabling modularity with minimal and coupling framework independent
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changes to the co-simulation solver is developed in this work. This
approach has the following advantages

• The interaction between the coupling framework and the external
”black-box” solver(s) is carried out through a solver-wrapper devel-
oped to adhere to the interface of the base solver in the framework.
This allows uniform treatment of different solvers-wrappers and
easy switch between them. Together with functions for exchanging
data, this interface also contains functions to control the solver.
A solver-wrapper will only implement the necessary functions
depending on the degree of control the ”black-box” solver allows.
This wrapper can also contain specific routines for the commu-
nication of data with the actual solver. Listing 4.4 shows the
important functions in the interface.

1 Initialize()
2 Finalize()
3 InitializeSolutionStep()
4 FinalizeSolutionStep()
5 SolveSolutionStep()
6 ImportMesh()
7 ExportMesh()
8 ImportDataField()
9 ExportDataField()

10 SetIO()
11

Listing 4.4: List of functions in the solver-wrapper interface

• The actual data communication between the coupling framework
and the solver is done via the Input/Output (IO) class object. The
functions from Listing 4.4, ImportDataField, ExportDataField,
ImportModel, ExportModel are responsible for the data exchange
in the solver-wrapper. These functions are then delegated to the
IO class object. This delegation of data exchange to an interfaced
IO class enables decoupling the IO operations from the solver-
wrapper and thus enable reuse of existing IO methodologies and
implementations between different solver-wrappers.

• The external ”black-box” solver is completely independent from
the developed framework. This implies that the solver can choose
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and implement any routines to export the data fields and the
meshes. This will enable reuse of already existing routines devel-
oped for other tools. Thus encouraging interchangeability between
different tools.

This is termed ”Detached-interface” approach as the implementations
or extensions for co-simulation in the external solvers is completely
independent and hence detached from the the coupling tool or framework
and yet communicates with the co-simulation framework.

4.2 Base classes and software architecture

This section details the software architecture of the proposed concept
in Section 4.1. As a part of the definition, a series of base classes are
defined to serve as interface between different solvers participating in
co-simulation. The structure of the proposed class is shown in Figure
4.4

CoSimulationBaseSolverWrapper
This interface class is defined to act as a base class for solver wrappers
which is participating in co-simulation. The interface functions in the
Lists 4.4 and 4.1 are defined in this class. This interface is realized by
OpenFOAMSolverWrapper, FlowerSolverWrapper and KratosSolver-
Wrapper classes which act as proxy solvers participating in co-simulation
inside the framework. The proxy solvers together with IO objects com-
municate necessary data and control signals. The interface is made
available in all programming language interfaces, to facilitate the devel-
opment of co-simulation solver wrappers on all the platforms and more
importantly proxy solvers for co-simulation.

CoSimulationBaseIO
This interface class defines the necessary methods to communicate
between the participating solvers or between solver(s) and the co-
simulation framework. The SolverWrapper objects have an object
of this class that is compatible and is used to communicate with the
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Figure 4.4: UML diagram of the base classes

corresponding solver. Realizations of this class can be used interchange-
ably in combination with the proxy solver wrappers as long as the
communication format is compatible with the actual solver.

CoSimulationBaseCoupledSolver
This class inherits and extends the interface of CoSimulationBase-
SolverWrapper to include coupling specific functions like Synchro-
nizeInputs and SynchronizeOutputs. This interface class is used
to realize coupling strategies like Gauss-Seidel and Jacobi patterns
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both in strong and week formulation. The SolveSolutionStep routine
in the coupled solver orchestrates the participating solvers using their
proxy solvers in the co-simulation framework. The classes GaussSeidel-
StrongCoupling, GaussSeidelLooseCoupling implement the strong
and loose coupling represented in Algorithms 1 and 2 respectively.

Since the coupled solver inherits from the co-simulation solver itself,
a coupled solver can be used in a nested coupling of more than two
sub-systems presented in Figure 2.8.

CoSimulationBaseData and CoSimulationBaseMesh
These classes are auxiliary class which assists in co-simulation by cre-
ating generic interface to the data which is communicated between
co-simulation solvers and the co-simulation framework. CoSimulation-
BaseIO together with CoSimulationBaseMesh and CoSimulationBase-
Data form the data structure management of the co-simulation. Though
the solver’s are not required to use these, it is recommended to mimic
the functionalities of these two classes to improve re usability across
the solvers.

4.3 Realizing co-simulation

The approach described, together with the interface functions in Section
4.1 and data exchange with the detached interface approach described in
4.1.1 one can realize both the client-server and peer-to-peer approaches
employed in the currently existing co-simulation tools. The Figures 4.2
and 4.3 illustrate different configurations possible with the defined inter-
face. The following sections explain and illustrate these configurations
and thus establishing the versatility of the proposed approach.

4.3.1 Client-Server approach
The client-server approach is one of the popular and favoured approaches
for co-simulation as it enables a good and unified definition/view of the
flow of control among the participating solvers through the instructions
emanating from the server. Though this is a clear advantage, this
approach has several bottlenecks as the data is channelled through the
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server for any exchange to take place. Figure 4.5 shows the setup for
a client-server approach using the interface described in the sections
above. Server gives instructions to the solvers SolverA and SolverB
using theirs respective proxies. This set of instructions is reciprocated
by the solvers and the co-simulation moves forward.

With this approach, since the base class is exposed to Python [see
Section 4.2] it will be possible to build the proxy of a given set of solvers
in Python and set up a Co-Simulation workflow using a python script.
This means the Server in Figure 4.5 will be a simple Python script. A
pseudo-code of which is presented in Listing 4.5. Here data is channelled
through ServerAB and so it is duplicated.

1 from CoSimulaitonApplicaiton import *
2 import numpy as np
3 import SolverAProxy
4 import SolverBProxy
5 import Mapper
6
7 ServerAB = Server()
8 SolverA = SolverAProxy()
9 SolverB = SolverBProxy()

10
11 SolverA.Initialize()
12 SolverB.Initialize()
13
14 ServerAB.Import(DfA)
15 ServerAB.Import(DfB)
16
17 MapperAB = Mapper(DfA, DfB)
18
19 for i in range(0,10):
20 ServerAB.Import(DfA)
21 ServerAB.Import(DfB)
22 # Computations using external packages
23 MapperAB.Map(DfB, DfA)
24 np.norm(DfA)
25 ServerAB.Export(DfA, SolverA)
26 ServerAB.Import(DfB)
27
28 ServerAB.Finalize()
29 SolverA.Finalize()
30 SolverB.Finalize()

Listing 4.5: Example of python script acting as Server using Proxies of solvers
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4.3.2 Peer-to-Peer approach
The Peer-to-Peer approach for co-simulation overcomes the necessity of
channelling the data transfer through the server by directly transferring
the data between the participating solvers. This makes this approach
attractive for large data and frequent transfer between the participating
solvers on high performance distributed memory architectures. Though
this is a notable advantage this approach requires the solvers to know
the sequence of operations to be able to synchronize the data exchange,
thus lacking a unified view of the control flow. This also means that
a specific co-simulation solver is developed for each application. A
performance analysis of preCICE coupling tool using this approach
is presented in Uekermann [107] and Bungartz et al. [13]. Figure 4.2
illustrates three solvers SolverA, SolverB and SolverC in co-simulation
using this approach.

4.3.3 Hybrid approach
Client-server and peer-to-peer approaches described above have their
respective advantages and disadvantages. One can retain the features of
these two approaches by combining them in a hybrid approach. In this
approach, the server reduces its influence by not channelling the data
through it but allowing the participating solvers to communicate with
each other and thus perform only control operations. This is illustrated
in Figure 4.6. Here the Server only instructs the SolverA to export
and import data to and from SolverB. This allows the solvers SolverA
and SolverB to bypass the Server in the data communication and thus
avoiding a bottleneck. This provides a unified location to define the
co-simulation data exchange pattern, like in the client-server approach,
but still, have the advantage of peer-to-peer communication. Listing 4.6
shows a python script which controls the SolverA and SolverB while
allowing data to be transferred directly between them.

1 from CoSimulaitonApplicaiton import *
2 import SolverAProxy
3 import SolverBProxy
4
5 SolverA = SolverAProxy()
6 SolverB = SolverBProxy()
7
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8 SolverA.Initialize()
9 SolverB.Initialize()

10
11 for i in range(0,10):
12
13 # Here the Data mapping is assumed to be handled by SolverA

and SolverB
14 SolverA.SolveTimeStep()
15 SolverB.SolveTimeStep()
16
17 SolverA.Export(DfA, SolverB)
18 SolverB.Export(DfB, SolverA)
19
20 SolverA.Import(DfB,SolverB)
21 SolverB.Import(DfA,SolverA)
22
23
24 SolverA.Finalize()
25 SolverB.Finalize()

Listing 4.6: Example of python script acting as a coupling solver using Proxies
of solvers A and B
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4.4 Numerical examples

The discussed concept of co-simulation environment is implemented
in the CoSimulationApplication of KratosMultiphysics framework in
extensive collaboration with Mr Phillip Bucher. The following sections
present different multiphysics simulation results which show different
capabilities of the co-simulation environment.

4.4.1 Singly-coupled systems
A coupled problem with only two sub systems interacting via a single
interface can be termed as singly-coupled system. To realize these
problems, usually a single solution field is exchanged between the sub-
systems. These coupled problems when computed in a strongly coupled
partitioned approach, will result in a single Gauss-Seidel fixed point
iteration loop, Figure 2.6 and Figure 2.7.

Turek FSI3

The Turek FS3 benchmark from Turek et al. [106] has been used
before in Sections 2.2.1, 2.2.2 and 2.3 to demonstrate different coupling
strategies. In the following, the same example, with the geometrical
physical parameters given in Figure 2.4, is used together with the
Chimera formulation presented in Section 3.3. The simulation domain
setup with the Chimera patch around the cylinder and the flap is shown
in the Figure 4.7. The fluid-structure interaction coupled problem is
solved using a partitioned Gauss-Seidel iteration with a quasi-newton
accelerator multi-vector quasi-Newton (MVQN) described in Bogaers
et al. [12] to accelerate the fixed point iterations. In terms of domain
decomposition, this setup contains two domain decomposition problems.
The first one is of the fluid domain decomposition formulated in a
monolithic way using the Dirichlet-Dirichlet coupling method. The
second is of the fluid-structure decomposition resulting in a multi-
physics coupled problem. Thus this setup represents nested coupled
problems each solved with a different approach.

100



4.4 Numerical examples

Figure 4.7: FSI3 simulation background domain and Chimera patch with
cylinder and the flap.

The resulting hole on the background finite element discretization
together with the patch is shown in Figure 4.8. The simulation uses an
overlapping distance of 0.03m which results in approximately 10 layers
of elements in the overlap zone. The Figure 4.10 shows the comparison
of the displacement of point A(tip of the flap) when compared to the
benchmark result.

Figure 4.8: Hole(in Blue) and active(in Red) region on the background mesh.
Patch mesh in light black in color.

The fluid-structure interaction simulation require that the constraint
equations shown in the Figure 3.24 and given by Equations 3.16 are to
be reformulated every strong coupling iteration step. This is required
as the interface Γ f s and thus the whole patch via the mesh adaption
techniques are updated in every coupling iteration. To reduce the
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computational effort, the hole cutting operation involving level-set
distance field calculation, and the octree search structures are only
calculated at the beginning of each time step, unlike the constraint
equations. This example shows the potential of using Chimera based
CFD solver in a multiphysics simulation with reasonable computational
overhead.

Usage of Chimera technique in such simulation also has the com-
putational advantage as only the patch mesh need to be formulated in
arbitrary Lagrange-Eulerian framework. Thus the mesh motion tech-
niques mentioned in Jendoubi et al. [62], Johnson et al. [63], Stein et al.
[97], and Wick [114] need only be applied on the patch mesh. This, in
addition to the reduced computational costs, will also help improve the
quality of mesh as these methods can be applied effectively on meshes
with uniform discretization in contrast to mesh with massively varying
mesh sizes, Figure 2.3.

(a) Time t = 1.0 (b) Time t = 15.00

(c) Time t = 20.00 (d) Time t = 25.00

Figure 4.9: Location of patch(in white) and the hole(in black) boundaries
showing evolution of velocity around the cylinder and patch.

Figure 4.9 shows the location of the patch and hole boundaries as
the flap moves in the fluid domain. As mentioned, the mesh motion
techniques are only applied on the patch to suit the moving structure.
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Chimera Simulation Benchmark

Figure 4.10: Comparison of tip displacement between Chimera simulation and
Benchmark result from Turek et al. [106]

4.4.2 Multi-coupled systems
This class of coupled problems involve more than two subsystems in-
teracting via multiple interfaces or two subsystems interacting through
more than one interface. These coupled problems can be solved using
multiple approaches which usually involve nested Gauss-Seidel fixed
point iteration loops, which are computationally expensive, see Fig-
ure 2.8. Winterstein et al. [115] a discusses solution procedure of
fluid-structure-control problem which involves three subsystems. A
general and computationally less expensive Jacobi iteration method
is presented in Sicklinger et al. [94] and Uekermann [107]. Another
example of the multi-coupled system involving fluid-structure-contact
problems is presented in Mayer et al. [77].
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Fluid-Structure-Fluid model problem

To demonstrate the possibility of realizing complex simulation setup
cases in multi-coupled systems, we consider the modified version of
the fluid-structure-fluid interaction problem initially presented in Uek-
ermann [107]. The geometry, boundary conditions and the physical
parameters used for simulation are shown in the Figure 4.11. Here the
structural domain in the middle is deformed by the force exerted by the
vortices developed in the domain Fluid 2 because of the rigid flap and
the flow in the domain Fluid 1 is disrupted by the moving structural
domain.

Figure 4.11: Fluid-Structure-Fluid simulation setup and geometry.

The coupled problem presented above is solved using the strong
coupling scheme shown in Figure 4.12. For every time step, first, the
Fluid 2 and Structure are solved in the inner fixed point iterations loop
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by exchanging displacement and force fields between them respectively.
The converged state of this system is then transferred to the system
Fluid 1 the combination of which is solved again in an outer fixed point
iteration loop. The coupled simulation uses a quasi-newton accelerator
MVQN described in Bogaers et al. [12] to accelerate the fixed point
iterations.

Figure 4.12: Fluid 1–Structure–Fluid 2 coupling scheme.

Figure 4.14 shows the velocity magnitude in the fluid domains and
the displacement of the structure at different time steps. Figure 4.13
shows the evolution of point A and B shown in Figure 4.11 with time.
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Figure 4.13: Evolution of the Point A and Point B with time.
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(a) Time t = 2s (b) Time t = 2.6s

(c) Time t = 4s (d) Time t = 10s

Figure 4.14: Time evolution of velocity and and structural displacement.
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5
Showcase simulations

The sliding interface and chimera formulations presented in Chapter 3
together with the benchmark results establish these techniques. The co-
simulation framework presented in Chapter 4 together with the coupling
methods discussed in Chapter 2 opens new avenues for numerical simula-
tion of complex engineering problems. This chapter showcases different
single physics and multiphysics simulations that combine the techniques
mentioned above thus establishing different capabilities of the imple-
mentations. These simulations also show the readiness and necessity of
the developed techniques in industrial large numerical simulations.
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5.1 3D Simulation of wind turbine

For the 3D case, we consider the simulation of a 10MW wind turbine.
The model is based on the virtual DTU 10-MW reference wind turbine
designed as part of the Light Rotor project which is a collaboration
between the Wind Energy Department at the Technical University of
Denmark and Vestas. For a detailed description of the model and the
properties for CFD simulation setup the readers are encouraged to refer
to the report Bak et al. [4].

All aspects of the turbine blades like shaft tilt angle, rotor pre cone
angle and prebend are considered as 0, which is as per the specifications.
The nacelle and the tower are excluded to match with the case defined
in the Report Bak et al. [4]. The Figures 5.1(a) and 5.1(b) show the
geometry of the turbine blades and the patch volume around the blades
used for the simulation. Figure 5.2 and 5.3 shows the total setup of the
turbine together with the background and patch volumes.

Parallel simulation

The parallelization procedure described in Section 3.3.5 is used for a
parallel simulation of this model. As an example, Figure 5.4 shows the
distribution of the patch and background meshes using 64 processors.
The Figure 5.5 presents a strong scaling of the Chimera coupling compu-
tations where the simulation time is computed as an average of the first
50 time steps in each simulation run. It is observed that the gathering
operations for the boundaries as explained in Section 3.3.5 scales very
poorly. It is also expected of this algorithm as this part requires an all
to all communication of the boundary geometry.

Results

Using the above-defined mesh setup and the properties from the report
Bak et al. [4] we present results from the first simulations to demonstrate
the successful operation of the proposed Chimera approach in 3D. A
detailed CFD study of the turbine, for wind energy-related properties,
is planned in the future and is out of scope for the current contribution.
With the mentioned simulation setup, the average mechanical power is
computed as 6814.317 KW. Figure 5.6 shows the Q criterion iso-contours
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5.1 3D Simulation of wind turbine

(a) Geometry of DTU turbine
blades.

(b) Patch domain generated around the turbine
blades.

Figure 5.1: Turbine blades and patch geometry used for simulation

around the turbine blades colored by velocity and Fig. 5.7 show the
pressure distribution on the blades. The computed mechanical power
(P =τ ·ω) is close to the reference values and it is safe to assume that
with the further tuning of the mesh around the blades it will agree with
the reference values.
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Figure 5.2: Patch and Background setup used for the simulation.

(a) Surface mesh of the turbine blades.
(b) Cross section of mesh inside the
patch volume.

Figure 5.3: Mesh details of the blade surface and the patch
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5.1 3D Simulation of wind turbine

(a) Decomposed background volume mesh

(b) Decomposed patch volume mesh

Figure 5.4: Domain decomposition of background and patch volume using 64
processors
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Figure 5.5: Strong scaling of the steps involved in Chimera formulation.

Figure 5.6: Q criterion contours
colored by velocity around the turbine

blades.
Figure 5.7: Pressure plot on the

surface of the blades
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5.2 Rotating propeller in a channel with circular
cross section

Propellers have a wide range of applications in marine, aerospace and
also domestic machines. This section presents a simulation of a repre-
sentative screw propeller1 of a ship that is rotating inside a channel with
a circular cross-section. Apart from the demonstration of capabilities
of the implementation, this simulation shows the mass conservation
property during the simulation with the sliding interface and Chimera
formulations.

The simulation setup and the physical properties used for the simu-
lation are is shown in the Figure 5.8

Figure 5.8: Patch and Background geometries and simulation setup of
propeller test case.

The computational mesh used for the simulation consists of 1.75
Million nodes and 9.5 Million unstructured tetrahedral elements. The

1 https://grabcad.com/library/ship-propeller-10
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mesh together with the boundary conditions is simulated on 120 compute
cores using the MPI parallelization technique described in Section
3.3. An overlap length of 0.2m is chosen for the Chimera simulation
and the background mesh, as well as the patch mesh, have a same
characteristic element size of 0.002m at the patch surface. The results
of this preliminary investigation, the flow field around the propeller and
pressure distribution on the surface of the propeller at a 15s of simulated
time is shown in the Figure 5.9 and Figure 5.10. The difference in mass
flows between inlet and outlet as a percentage of mass inflow is given
in the Figure 5.11. As seen, the results of this simulation are plausible
and are in the range of possible results, Vlašić et al. [108].

Figure 5.9: Q-criterion iso-surface colored by velocity magnitude around the
propeller.
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Figure 5.10: Pressure contours on the surface of propeller: Pressure side(Left)
and Suction side(Right).

Considering the internal flow nature of the problem, this example
also serves to observe the mass conservation properties of the chimera
formulation. Figure 5.11 shows the difference in mass flow between inlet
and outlet as a percentage of the inflow. The two spikes in the mass loss
at around 6 and 12 seconds of simulation time can be attributed to a bad
mismatch of the discretizations of the patch and hole boundaries with
the corresponding host elements. In the remaining of the simulation,
the mass loss is below 0.5%, a good fraction of this can be resulting
from the difference in the discretization of the inlet and outlet surfaces.
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Figure 5.11: Percentage change in the mass
outflow.
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5.3 FSI simulation of rotating propeller

Numerical simulation of Fluid-Structure interaction in rotating and
moving bodies presents several challenges. The following example
demonstrates the different steps involved in such simulations and brings
out the advantages of the co-simulation framework presented in Chapter
4. In this simulation, we consider the fluid-structure interaction of a
drone propeller 2 of length 0.65 c m rotating with a constant angular
velocity ω of 30R P M in a fluid moving with a velocity of 0.1m/s normal
to the plane of rotation. The background domain has a length of 10 c m
and breadth and width of 5 c m . The blades of the propeller flutter as it
rotates in the fluid which is the phenomenon that this simulation aims
to capture. The Figure 5.12 shows the fluid domain together with the
Chimera patch which contains the propeller.

This simulation requires that the elastic structural model is also
rotated as the propeller rotates in the fluid. To avoid the complications
in setting up and using such a structural model, in this example, a
classical non-linear total Lagrangian formulated structural model with
solid elements is used.

Figure 5.12: Fluid domain setup with background, chimera patch
and propeller.

2 https://grabcad.com/library/propeller-drone-2
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To make this possible, at any given time step and coupling iteration
step, the forces calculated on the surface of the propeller f f are trans-
formed to the initial configuration using a rotation operation. Similarly,
the displacements of the structure dm are also to be rotated back onto
the fluid domain. The Figure 5.13 shows the rotation operations using
matrix R (θ ). Where the value of θ is known every time step as the
propeller is rotating at a constant angular velocity.

Figure 5.13: Illustration of rotation operations
between fluid and structural domains.

As in the previous sections, the co-simulation framework imple-
mented in KratosMultiphysics is used to simulate the above multiphysics
problem. The rotation operations shown in the Figure 5.13 are imple-
mented as a part of the solver wrapper used for KratosMultiphysics
which is used for CFD simulation. The CFD simulation also uses the
Chimera methodology described in Section 3.3 to rotate the propeller
together with the patch. The FSI simulation uses Aitken relaxation
discussed in Küttler et al. [70] to accelerate the Gauss-Seidel strong
coupling iterations. For the FSI simulation, as in the FSI3 example
shown in Section 4.4, the mesh motion is applied only on the cylindrical
patch domain shown in Figure 5.12.
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The Figure 5.14 shows the displacement of the point A, Figure 5.13.
This clearly indicates a flutter phenomenon.
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Figure 5.14: Percentage change in the mass
outflow.
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5.4 FSI shape optimization: Flexible ONERA M6
wing

This numerical example deals with multi-objective and multi-disciplinary
shape optimization of a flexible ONERA M6 wing immersed in a com-
pressible inviscid fluid flow. For both the fluid analysis (CFD) and the
structural analysis (CSD), steady cruise conditions are assumed. The
wing structure clamped at the wing root, Figure 5.15. The steady-state
transonic flow over the ONERA M6 wing at Mach 0.8395 and angle
of attack of 3.06 degrees is computed using non-linear Euler equations.
The wing structure is modelled to produce large deformations and uses
a solid using 4-node tetrahedral non-linear solid elements. A flexible
structure for the wing introduces fluid-structure interaction into the
model. So the corresponding shape sensitivity analysis becomes an
aeroelastic problem and requires a coupled sensitivity analysis to be
performed. The general concept of the co-simulation and detached in-
terface approach presented in Chapter 4 is implemented in an extended
version of the open-source tool EMPIRE (Wang et al. [111]) and is used
to perform Fluid-Structure interaction together with an optimization
simulation. A minimal python script is used as an optimizer, which
also acts as a server and SU2 (Economon et al. [34]) is used for com-
pressible fluid simulation and sensitivity analysis. KratosMultiphysics
(KratosMultiphysics [66]) is used for structural simulation and sensitiv-
ity analysis. The coupled solver using KratosMultiphysics and SU2 is
formulated as clients in the simulation.

The optimization problem is formulated with lift-drag ratio from
fluid and strain energy as objectives. This is subjected to a constraint
on the inner volume of the wing. Since the fluid and structural domains
are spatially discretized to different levels of refinement and the coarser
wing surface mesh (structure surface mesh) is used to parametrize the
surface using the Vertex Morphing technique(Bletzinger [9], Hojjat [53],
and Hojjat et al. [54]). For more in-depth discussion the topic readers
are referred to Asl et al. [2].

The optimization has been run for several steps and it has resulted
in a 32.4% increase in the lift-to-drag ratio and a 52% decrease in the
total structural strain energy. The optimization history is presented in
Figure 5.16. Furthermore, Figure 5.17 compares the optimized (scaled
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Figure 5.15: Description and surface discretization of ONERA M6 for FSI.
Left: structural model, right: fluid model

deformation) and unoptimized configuration of the wing. As seen in
Figure 5.18, the strong shock wave that existed along the span has been
reduced significantly.

This example shows the applicability of the framework even for highly
complex shape optimization problems of fully coupled multi-physics
problems. The shape update of the non-matching computational meshes
is controlled using the Vertex Morphing method without additional
modelling effort.

The optimized shape clearly show a reduction in the shock on the
top surface of the wing. Such complex simulations require a versatile
and customizable software framework to extend and implement the
necessary functionalities.
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Figure 5.16: Optimization history for flexible ONERA M6 wing.

Figure 5.17: Left: baseline design, Right: final design scaled by 100 for better
visualization.
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Figure 5.18: Surface traction field (kPa) of the upper surface.
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using the same kind of
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6
Summary and outlook

Domain decomposition and corresponding solution techniques facilitate
numerical simulation of various complex problems in physics, engineering
and design. This thesis work deals with the applicability and formulation
of coupling methods for solving the domain decomposition problems and
their applications. First a review of different existing domain decomposi-
tion methods, coupling techniques, and their applications are presented
as an introduction to this thesis, Section 1.1. This is followed by an
analysis of the existing Dirichlet-Neumann, Neumann-Neumann and
Dirichlet-Dirichlet coupling methods and corresponding formulations
with a strongly coupled fluid-structure interaction example. Here we
demonstrate that classical master-slave elimination technique for ap-
plying multipoint constraints results in a Dirichlet-Neumann boundary
conditions on the slave and master nodes respectively. Extending the
master-slave elimination technique, a novel unidirectional method of ap-
plying the multipoint constraints, resulting in only a Dirichlet condition
on the slaves is presented. This, together with the classical master-slave
elimination method is used to formulate a monolithic fluid-structure
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interaction problem. The benchmark of Turek-FSI3Turek et al. [106] is
presented to establish this method.

Following this, the Chapter 3 applies the previously developed
methodologies to the domain decomposition problems in fluid dynamics
simulations. This mainly focuses on the monolithic formulation of the
coupled problem between the fluid subdomains. As an application of
Dirichlet-Neumann coupling with the master-slave elimination approach,
a formulation of sliding interface problem where a non-overlapping do-
main decomposition is performed, is presented in Section 3.2. After
establishing this technique via benchmark examples, a study of the
effect of different characteristic mesh sizes on slave and master surfaces
of the sliding interface is also presented. From these results it can be
inferred that when the master and slave meshes on the sliding interface
have the same characteristic mesh sizes, the results are in good agree-
ment with the benchmarks in both 2 and 3 dimensions. It can also be
observed that the quality of numerical approximation deteriorates as
the characteristic mesh size ratio between the slave and mater surfaces
increases.

A Chimera approach using a Dirichlet-Dirichlet coupling conditions
is developed using the novel weak constraints to apply the corresponding
boundary conditions. A simple hole cutting methodology using level-
set distance calculation to form a hole on the background domain is
discussed as the first step in the Chimera methodology. As a next step,
the boundary extraction using a simple yet effective way of edge counting
is presented. Following this, multipoint constraints are formulated using
a simple Lagrangian interpolation. These constraint equations together
with the unidirectional multipoint constraint method developed are
used to apply the Dirichlet conditions on the patch and hole boundaries.

Furthermore, a distributed memory parallelization strategy for both
sliding interface and Chimera approaches is also discussed. In this
approach, only the boundaries which contribute to the formulation of
constraints, applied either in classical way or in unidirectional way, are
gathered on each MPI process reducing the communication overhead.
This enables the usage of the sliding-mesh and Chimera methodologies
for industrial scale simulation cases.
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A multiphysics problem is also a domain decomposition problem
where the each subdomain is governed by a different physics. Because of
this reason, a partitioned simulation of the coupled problem where each
physics is solved by a specialized software tool in a co-simulation fashion
is preferred. To facilitate all possible coupling techniques and exchange
of the corresponding transmission conditions, a flexible co-simulation
framework is proposed and described. In this context, an innovative
”Detached Interface” technique to develop interfaces to independent
simulation tools is developed. This technique enables development of
co-simulation tool independent interfaces between the co-simulation
framework and the simulation tool. Effectiveness of this approach
together with the co-simulation framework developed is demonstrated
by the examples presented in Section 4.4 and Chapter 5.

Outlook

The coupling methodologies for sliding-interface and Chimera methods
and the co-simulation framework within this thesis work open new
frontiers in numerical simulation of moving body problems in computa-
tional fluid dynamics. The methodologies are robust to handle complex
and elaborate simulation cases. However, there is still potential for
improvement in different aspects of the methodologies discussed. This
section outlines various improvements which can be employed.

The Hole Cutting methodology which is based on the level set
distance calculation though is a robust approach, it can prove com-
putationally expensive when the body is moving. This is because the
distance field needs to be recalculated every time step. A progressive
hole cutting strategy which tracks and uses the movement of the patch
domain after the first distance calculation operation can be used to im-
prove the efficiency of this step. Furthermore, the strategy proposed by
Liu et al. [73] can also be used to make the hole cutting step more robust.
Both these methods have accompanying advantages and disadvantages.

The examples presented in Sections 3.2.3 and 3.3.6 show that the
quality of the numerical results depend on the ratios of mesh sizes on the
master and slave domains. This is attributed to the simple Lagrangian
interpolation used to form the multipoint constraints. To remedy this
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problem, a mass conservative interpolation of the velocity,in the context
of finite volume based CFD simulations, is presented by Völkner et al.
[109]. Though this approach can be extended to the finite element
based solvers as in this thesis work, an initial investigation shows no
improvement in the results. In a different approach, a conservative
mortar method described in Tianyang [103] can be used to form the
multipoint constraints.

Section 3.5 describes the procedure to include the turbulence models
into the CFD simulations with moving bodies using sliding-interfaces
and Chimera techniques. Implementation and benchmarking these
approaches is an obvious and critical next step for achieving complex and
turbulent simulations with sliding-interfaces and Chimera technologies.

The flexible co-simulation framework together with the detached
interface approach for partitioned simulation of coupled problems is
presented in Chapter 4. The framework has proven to be flexible
and thus instrumental in realizing different complicated co-simulation
scenarios. Sautter et al. [90] uses the framework for coupled simulation
of FEM-DEM solvers. Further application cases are being continuously
developed. The framework is currently being used only in a shared
memory parallel environments, required solvers wrappers to work with
distributed memory parallel solvers and corresponding input/output
methods are yet to be implemented and tested. This improvement
enables high fidelity multi-physics coupled simulations thus widening
the scope of applications.

126



List of Figures

2.1 Domain Ω with corresponding Dirichlet and Neumann
boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Types of decomposition of domain Ω into Ω1 and Ω2 . . . 9
2.3 Fluid and structural mesh used for Turek FSI3 benchmark. 19
2.4 Fluid and structural setup used for Turek FSI3 benchmark. 19
2.5 Tip displacement of the flap : Monolithic formulation vs

Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Gauss-Seidel iteration pattern for strong coupling of two

solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Jacobi iteration pattern for strong coupling of two solvers 22
2.8 Gauss-Seidel coupling of three solvers with inner loop for

two solvers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 Tip displacement of the flap : Neumann-Neumann cou-

pling vs Benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Domain decomposition with sliding interface Γ12/21 . . . . . 41
3.2 Non matching discritization on sliding interface Γ12/21 . . 42
3.3 Illustration of the multi-point constraints between the

nodes of two domains Γ12/21 . . . . . . . . . . . . . . . . . . . . . 42
3.4 Flow around a cylinder with R e = 100. Dimensions in m 44
3.5 Evolution of lift coefficient CL over time and frequency

domain plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Mesh on the interface for different values of rh . . . . . . . . 45
3.7 Mass difference between inlet and outlet as % of inflow. . 46
3.8 Geometry and simulation setup used for simulating ro-

tating plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.9 Simulation results of rotating plate example. . . . . . . . . . 47

127



List of Figures

3.10 Comparison of X - velocity profiles along a vertical line
at 0.5 behind the center of the plate. . . . . . . . . . . . . . . . 48

3.11 Effect of different discritizations on the solution. . . . . . . 49
3.12 Geometry and simulation setup used for simulating Taylor

- Couette instability. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.13 Decomposition of the computational domain with 24

compute cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.14 Iso-surface contours of the Q-Criterion in the volume of

fluid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.15 Velocity profile in the cross-section of the volume. . . . . . 53
3.16 Velocity vectors on the longitudinal cross section of the

flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.17 Illustration of a patch Ωp placed on a background domain Ω 54
3.18 Background with hole and Γp , Γh . . . . . . . . . . . . . . . . . 54
3.19 Meshes of the patch and background for the geometry in

Figure 3.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.20 Distance calculated on background from the patch bound-

ary Γp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.21 Elements marked as hole (blue) on the background . . . . 56
3.22 Patch and hole boundaries Γp and Γh , on which the

constraint equations 3.16 are formulated. . . . . . . . . . . . 56
3.23 Illustration edge counting to extract the boundary of the

hole and patch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.24 Illustration of host elements on patch for nodes on hole

boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.25 Visualization of patch, overlap and background domains

after hole cutting together with patch and hole boundaries
where coupling conditions are applied. . . . . . . . . . . . . . . 59

3.26 Possible situations when using multiple patches. . . . . . . 60
3.27 Hole regions on background and patches . . . . . . . . . . . . 61
3.28 Partitioning of background and patch using 8 processors 63
3.29 Illustration of the processor boundaries (artificial) with

count of 2 and the final boundary after elimination of
the processor boundaries with a count of 1. . . . . . . . . . . 65

3.30 Hole, patch and hole boundaries on multiple ranks. . . . . 65
3.31 Benchmark meshes for flow over a cylinder benchmark . . 66
3.32 Position of hole at different angles of placement of the

patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

128



List of Figures

3.33 X-velocity along a vertical line at the center of cavity for
different angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.34 Y-velocity along a horizontal line at the center of cavity
for different angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.35 X-velocity along a vertical line at the center of cavity for
different overlap distances . . . . . . . . . . . . . . . . . . . . . . . 69

3.36 Y-velocity along a horizontal line at the center of cavity
for different overlap distances . . . . . . . . . . . . . . . . . . . . 70

3.37 Geometry used for flow around a cylinder. Dimensions
in m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.38 Benchmark Mesh for Chimera setup for flow over a cylin-
der benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.39 Background and patch (white) with inactive regions on
background (in Blue). . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.40 Pressure and Velocity fields at Time t = 20s . . . . . . . . . 72
3.41 Coefficient of Lift and Drag comparison . . . . . . . . . . . . 72
3.42 Mass loss as a percentage of inlet mass flow. . . . . . . . . . 73
3.43 Geometry and Simulation setup. . . . . . . . . . . . . . . . . . . 74
3.44 Patch location and corresponding holes . . . . . . . . . . . . . 74
3.45 Force history on the triangle surfaces . . . . . . . . . . . . . . 74
3.46 Velocity field at different points of time . . . . . . . . . . . . . 75
3.47 Coefficient of Lift CL computed with fractional-step fluid

solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Communication and synchronization between SolverA
and SolverB using the functions in Listing 4.1 . . . . . . . . 88

4.2 Communication mechanism between solvers . . . . . . . . . . 89
4.3 Controlling SolverB from SolverA via a plugin . . . . . . . . 90
4.4 UML diagram of the base classes . . . . . . . . . . . . . . . . . 93
4.5 Client Server approach with proxy solvers . . . . . . . . . . . 98
4.6 Hybrid approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.7 FSI3 simulation background domain and Chimera patch

with cylinder and the flap. . . . . . . . . . . . . . . . . . . . . . . 101
4.8 Hole(in Blue) and active(in Red) region on the back-

ground mesh. Patch mesh in light black in color. . . . . . . 101
4.9 Location of patch(in white) and the hole(in black) bound-

aries showing evolution of velocity around the cylinder
and patch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

129



List of Figures

4.10 Comparison of tip displacement between Chimera sim-
ulation and Benchmark result from Turek et al. [106]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.11 Fluid-Structure-Fluid simulation setup and geometry. . . 104
4.12 Fluid 1–Structure–Fluid 2 coupling scheme. . . . . . . . . . . 105
4.13 Evolution of the Point A and Point B with time. . . . . . . 105
4.14 Time evolution of velocity and and structural displacement. 106

5.1 Turbine blades and patch geometry used for simulation . 109
5.2 Patch and Background setup used for the simulation. . . 110
5.3 Mesh details of the blade surface and the patch . . . . . . . 110
5.4 Domain decomposition of background and patch volume

using 64 processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.5 Strong scaling of the steps involved in Chimera formulation. 112
5.6 Q criterion contours colored by velocity around the tur-

bine blades. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.7 Pressure plot on the surface of the blades . . . . . . . . . . . 112
5.8 Patch and Background geometries and simulation setup

of propeller test case. . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.9 Q-criterion iso-surface colored by velocity magnitude

around the propeller. . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.10 Pressure contours on the surface of propeller: Pressure

side(Left) and Suction side(Right). . . . . . . . . . . . . . . . 115
5.11 Percentage change in the mass outflow. . . . . . . . . . . . . . 115
5.12 Fluid domain setup with background, chimera patch and

propeller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.13 Illustration of rotation operations between fluid and struc-

tural domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.14 Percentage change in the mass outflow. . . . . . . . . . . . . . 118
5.15 Description and surface discretization of ONERA M6 for

FSI. Left: structural model, right: fluid model . . . . . . . . 120
5.16 Optimization history for flexible ONERA M6 wing. . . . . 121
5.17 Left: baseline design, Right: final design scaled by 100

for better visualization. . . . . . . . . . . . . . . . . . . . . . . . . 121
5.18 Surface traction field (kPa) of the upper surface. . . . . . . 122

130



Bibliography

[1] M. J. Acton, G. Lenci, and E. Baglietto. “Structure-based
resolution of turbulence for sodium fast reactor thermal striping
application.” In: 2015.

[2] R. N. Asl, I. Antonau, A. Ghantasala, W. G. Dettmer,
R. Wüchner, and K.-U. Bletzinger. “A partitioned scheme for
adjoint shape sensitivity analysis of fluid–structure interactions
involving non-matching meshes”. In: Optimization Methods and
Software 0.0 (2020), pp. 1–31. doi:
10.1080/10556788.2020.1806275. eprint:
https://doi.org/10.1080/10556788.2020.1806275.

[3] S. Badia, F. Nobile, and C. Vergara. “Fluid–structure
partitioned procedures based on Robin transmission conditions”.
In: Journal of Computational Physics 227.14 (2008), pp. 7027
–7051. doi: https://doi.org/10.1016/j.jcp.2008.04.006.

[4] C. Bak et al. “Light Rotor: The 10-MW reference wind turbine”.
In: Proceedings of EWEA 2012 - European Wind Energy
Conference & Exhibition. European Wind Energy Association
(EWEA), 2012. Chap. Light Rotor: The 10-MW reference wind
turbine.

[5] S. Bak and J. Yoo. “FSI analysis on the sail performance of a
yacht with rig deformation”. In: International Journal of Naval
Architecture and Ocean Engineering 11.2 (2019), pp. 648 –661.
doi: https://doi.org/10.1016/j.ijnaoe.2019.02.003.

[6] D. Baumgärtner, J. Wolf, R. Rossi, P. Dadvand, and
R. Wüchner. “A robust algorithm for implicit description of

131

https://doi.org/10.1080/10556788.2020.1806275
https://doi.org/10.1080/10556788.2020.1806275
https://doi.org/https://doi.org/10.1016/j.jcp.2008.04.006
https://doi.org/https://doi.org/10.1016/j.ijnaoe.2019.02.003


BIBLIOGRAPHY

immersed geometries within a background mesh”. In: Advanced
Modeling and Simulation in Engineering Sciences 5.1 (2018),
p. 21. doi: 10.1186/s40323-018-0113-8.

[7] P. Bjørstad, J. Braekhus, and A. Hvidsten. “Parallel
Substructuring Algorithms in Structural Analysis, Direct and
Iterative Methods”. In: 1995.

[8] E. Blades and D. Marcum. “A Sliding Interface Method for
Unsteady Unstructured Flow Simulations”. In: International
Journal for Numerical Methods in Fluids 53 (June 2005),
pp. 507 –529. doi: 10.1002/fld.1296.

[9] K.-U. Bletzinger. “A consistent frame for sensitivity filtering
and the vertex assigned morphing of optimal shape”. In:
Structural and Multidisciplinary Optimization 49.6 (2014),
pp. 873–895. doi: 10.1007/s00158-013-1031-5.

[10] K.-U. Bletzinger. “Shape Optimization”. In: Encyclopedia of
Computational Mechanics Second Edition. American Cancer
Society, 2017, pp. 1–42. isbn: 9781119176817. doi:
10.1002/9781119176817.ecm2109. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/
9781119176817.ecm2109.

[11] K.-U. Bletzinger, M. Firl, and F. Daoud. “Approximation of
derivatives in semi-analytical structural optimization”. In:
Computers & Structures 86.13 (2008). Structural Optimization,
pp. 1404 –1416. doi:
https://doi.org/10.1016/j.compstruc.2007.04.014.

[12] A. Bogaers, S. Kok, B. Reddy, and T. Franz. “Quasi-Newton
methods for implicit black-box FSI coupling”. In: Computer
Methods in Applied Mechanics and Engineering 279 (2014),
pp. 113 –132. doi:
https://doi.org/10.1016/j.cma.2014.06.033.

[13] H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl,
K. Scheufele, A. Shukaev, and B. Uekermann. “preCICE – A
fully parallel library for multi-physics surface coupling”. In:
Computers and Fluids 141 (2016). Advances in Fluid-Structure
Interaction, pp. 250–258. doi:
https://doi.org/10.1016/j.compfluid.2016.04.003.

132

https://doi.org/10.1186/s40323-018-0113-8
https://doi.org/10.1002/fld.1296
https://doi.org/10.1007/s00158-013-1031-5
https://doi.org/10.1002/9781119176817.ecm2109
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119176817.ecm2109
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119176817.ecm2109
https://doi.org/https://doi.org/10.1016/j.compstruc.2007.04.014
https://doi.org/https://doi.org/10.1016/j.cma.2014.06.033
https://doi.org/https://doi.org/10.1016/j.compfluid.2016.04.003


BIBLIOGRAPHY

[14] E. Burman and M. A. Fernández. “An unfitted Nitsche method
for incompressible fluid–structure interaction using overlapping
meshes”. In: Computer Methods in Applied Mechanics and
Engineering 279 (2014), pp. 497 –514. doi:
https://doi.org/10.1016/j.cma.2014.07.007.

[15] J. Chen, D. Zhao, Y. Zheng, Y. Xu, C. Li, and J. Zheng.
“Domain decomposition approach for parallel improvement of
tetrahedral meshes”. In: Journal of Parallel and Distributed
Computing 107 (2017), pp. 101 –113. doi:
https://doi.org/10.1016/j.jpdc.2017.04.008.

[16] G Chesshire and W. Henshaw. “Composite overlapping meshes
for the solution of partial differential equations”. In: Journal of
Computational Physics 90.1 (1990), pp. 1 –64. doi:
https://doi.org/10.1016/0021-9991(90)90196-8.

[17] A. J. Chorin. “Numerical solution of the Navier-Stokes
equations”. In: Mathematics of Computation 22.104 (1968),
pp. 745–745. doi: 10.1090/s0025-5718-1968-0242392-2.

[18] J Cotela Dalmau. “Applications of turbulence modelling in civil
engineerng”. PhD thesis. Barcelona, Spain: Universitat
Polit‘ecnica deCatalunya 2016, 2016.

[19] L. Cowsar and M. Wheeler. “Parallel Domain Decomposition
Method for Mixed Finite Elements for Elliptic Partial
Differential Equations”. In: Jan. 1991.

[20] P. Crosetto, S. Deparis, G. Fourestey, and A. Quarteroni.
“Parallel Algorithms for Fluid-Structure Interaction Problems in
Haemodynamics”. In: SIAM Journal on Scientific Computing 33
(Jan. 2011). doi: 10.1137/090772836.

[21] P. Dadvand, R. Rossi, and E. Oñate. “An Object-oriented
Environment for Developing Finite Element Codes for
Multi-disciplinary Applications”. In: Archives of Computational
Methods in Engineering 17.3 (2010), pp. 253–297. doi:
10.1007/s11831-010-9045-2.

[22] J. Degroote. “Development of algorithms for the partitioned
simulation of strongly coupled fluid-structure interaction
problems”. eng. PhD thesis. Ghent University, 2010,
pp. XXXVII, 267. isbn: 9789085783442.

133

https://doi.org/https://doi.org/10.1016/j.cma.2014.07.007
https://doi.org/https://doi.org/10.1016/j.jpdc.2017.04.008
https://doi.org/https://doi.org/10.1016/0021-9991(90)90196-8
https://doi.org/10.1090/s0025-5718-1968-0242392-2
https://doi.org/10.1137/090772836
https://doi.org/10.1007/s11831-010-9045-2


BIBLIOGRAPHY

[23] J. Degroote, S. Annerel, and J. Vierendeels. “Stability analysis
of Gauss-Seidel iterations in a partitioned simulation of
fluid–structure interaction”. In: Computers & Structures 88.5
(2010), pp. 263 –271. doi:
https://doi.org/10.1016/j.compstruc.2009.09.003.

[24] J. Degroote, K.-J. Bathe, and J. Vierendeels. “Performance of a
new partitioned procedure versus a monolithic procedure in
fluid–structure interaction”. In: Computers & Structures 87.11
(2009). Fifth MIT Conference on Computational Fluid and
Solid Mechanics, pp. 793 –801. doi:
https://doi.org/10.1016/j.compstruc.2008.11.013.

[25] D. Demidov. “AMGCL: An Efficient, Flexible, and Extensible
Algebraic Multigrid Implementation”. In: Lobachevskii Journal
of Mathematics 40.5 (2019), pp. 535–546. doi:
10.1134/S1995080219050056.

[26] S. Deparis, M. Discacciati, and A. Quarteroni. “A Domain
Decomposition Framework for Fluid-Structure Interaction
Problems”. In: Computational Fluid Dynamics 2004. Ed. by
C. Groth and D. W. Zingg. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 41–58. isbn: 978-3-540-31801-9.

[27] W. G. Dettmer and D. Perić. “A new staggered scheme for
fluid–structure interaction”. In: International Journal for
Numerical Methods in Engineering 93.1 (2013), pp. 1–22. doi:
10.1002/nme.4370.

[28] W. G. Dettmer and D. Perić. “A new staggered scheme for
fluid–structure interaction”. In: International Journal for
Numerical Methods in Engineering 93.1 (2013), pp. 1–22. doi:
10.1002/nme.4370. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/nme.4370.

[29] J. Donea, S. Giuliani, H. Laval, and L. Quartapelle. “Finite
element solution of the unsteady Navier-Stokes equations by a
fractional step method”. In: Computer Methods in Applied
Mechanics and Engineering 30.1 (1982), pp. 53 –73. doi:
https://doi.org/10.1016/0045-7825(82)90054-8.

134

https://doi.org/https://doi.org/10.1016/j.compstruc.2009.09.003
https://doi.org/https://doi.org/10.1016/j.compstruc.2008.11.013
https://doi.org/10.1134/S1995080219050056
https://doi.org/10.1002/nme.4370
https://doi.org/10.1002/nme.4370
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.4370
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.4370
https://doi.org/https://doi.org/10.1016/0045-7825(82)90054-8


BIBLIOGRAPHY

[30] J. Donea and A. Huerta. “Finite Element Methods for Flow
Problems”. In: John Wiley & Sons, Ltd, 2005. isbn:
9780470013823. doi: 10.1002/0470013826.ch2. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/
0470013826.ch2.

[31] J. Donea and A. Huerta. “Steady Transport Problems”. In:
Finite Element Methods for Flow Problems. John Wiley & Sons,
Ltd, 2005. Chap. 2, pp. 33–78. isbn: 9780470013823. doi:
10.1002/0470013826.ch2. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/0470013826.ch2.

[32] J. Donea and A. Huerta. “Unsteady Convective Transport”. In:
Finite Element Methods for Flow Problems. John Wiley & Sons,
Ltd, 2005. Chap. 3, pp. 79–145. isbn: 9780470013823. doi:
10.1002/0470013826.ch3. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/0470013826.ch3.

[33] M. Dryja and O. B. Widlund. “Schwarz methods of
neumann-neumann type for three-dimensional elliptic finite
element problems”. In: Communications on Pure and Applied
Mathematics 48.2 (1995), pp. 121–155. doi:
10.1002/cpa.3160480203. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/cpa.3160480203.

[34] T. D. Economon, F. Palacios, T. B. Company, L. Beach,
S. R. Copeland, T. W. Lukaczyk, and J. J. Alonso. “SU2: An
Open-Source Suite for Multiphysics Simulation and Design”. In:
54.3 (2016). doi: 10.2514/1.J053813.

[35] B. Eguzkitza, G. Houzeaux, R. Aubry, H. Owen, and
M. Vázquez. “A parallel coupling strategy for the Chimera and
domain decomposition methods in computational mechanics”.
In: Computers & Fluids 80 (2013). Selected contributions of the
23rd International Conference on Parallel Fluid Dynamics
ParCFD2011, pp. 128 –141. doi:
https://doi.org/10.1016/j.compfluid.2012.04.018.

[36] A. Ehrl, A. Popp, V. Gravemeier, and W. Wall. “A dual mortar
approach for mesh tying within a variational multiscale method
for incompressible flow”. In: International Journal for Numerical
Methods in Fluids 76.1 (2014), pp. 1–27. doi:

135

https://doi.org/10.1002/0470013826.ch2
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470013826.ch2
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470013826.ch2
https://doi.org/10.1002/0470013826.ch2
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470013826.ch2
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470013826.ch2
https://doi.org/10.1002/0470013826.ch3
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470013826.ch3
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470013826.ch3
https://doi.org/10.1002/cpa.3160480203
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.3160480203
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.3160480203
https://doi.org/10.2514/1.J053813
https://doi.org/https://doi.org/10.1016/j.compfluid.2012.04.018


BIBLIOGRAPHY

10.1002/fld.3920. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/fld.3920.

[37] J. Fröhlich and D. von Terzi. “Hybrid LES/RANS methods for
the simulation of turbulent flows”. In: Progress in Aerospace
Sciences 44.5 (2008), pp. 349 –377. doi:
https://doi.org/10.1016/j.paerosci.2008.05.001.

[38] Functional Mockup Interface. http://fmi-standard.org/.
Accessed: 2014-01-21.

[39] M. Gee, U. Küttler, and W. Wall. “Truly monolithic algebraic
multigrid for fluid–structure interaction”. In: International
Journal for Numerical Methods in Engineering 85 (Feb. 2011),
pp. 987–1016. doi: 10.1002/nme.3001.

[40] M. Gee, C Siefert, J Hu, R. Tuminaro, and M Sala. “ML 5.0
Smoothed Aggregation User’s Guide”. In: (Jan. 2006).

[41] U Ghia, K. Ghia, and C. Shin. “High-Re solutions for
incompressible flow using the Navier-Stokes equations and a
multigrid method”. In: Journal of Computational Physics 48.3
(1982), pp. 387 –411.

[42] C. Gomes, C. Thule, D. Broman, P. G. Larsen, and
H. Vangheluwe. “Co-Simulation: A Survey”. In: ACM Comput.
Surv. 51.3 (May 2018). doi: 10.1145/3179993.

[43] P. Gosselet and C. Rey. “Non-overlapping domain
decomposition methods in structural mechanics”. In: Archives of
Computational Methods in Engineering 13.4 (Dec. 2006),
pp. 515–572. doi: 10.1007/bf02905857.

[44] W. Gropp. “Parallel computing and domain decomposition”.
English (US). In: Domain Decomposition Methods for Partial
Differential Equations. Fifth International Symposium on
Domain Decomposition Methods for Partial Differential
Equations ; Conference date: 06-05-1991 Through 08-05-1991.
Publ by Soc for Industrial & Applied Mathematics Publ, 1992,
pp. 349–361. isbn: 0898712882.

136

https://doi.org/10.1002/fld.3920
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.3920
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.3920
https://doi.org/https://doi.org/10.1016/j.paerosci.2008.05.001
https://doi.org/10.1002/nme.3001
https://doi.org/10.1145/3179993
https://doi.org/10.1007/bf02905857


BIBLIOGRAPHY

[45] W. D. Gropp and D. E. Keyes. “Domain decomposition on
parallel computers”. In: IMPACT of Computing in Science and
Engineering 1.4 (1989), pp. 421 –439. doi:
https://doi.org/10.1016/0899-8248(89)90003-7.

[46] W. D. Gropp and D. E. Keyes. “Domain decomposition on
parallel computers”. In: IMPACT of Computing in Science and
Engineering 1.4 (1989), pp. 421 –439. doi:
https://doi.org/10.1016/0899-8248(89)90003-7.

[47] M. Gunzburger, J. Peterson, and H. Kwon. “An optimization
based domain decomposition method for partial differential
equations”. In: Computers & Mathematics with Applications
37.10 (1999), pp. 77 –93. doi:
https://doi.org/10.1016/S0898-1221(99)00127-3.

[48] H Hadzic. “Development and Application of a Finite Volume
Method for the Comuputation of Flows Around Moving Bodies
on Unstructured Grids”. Schriftenreihe Schiffbau, Report Nr.
633, ISBN 3-89220-633-3. PhD thesis. Hamburg, Germany:
Hamburg University of Technology, Institute for Fluid
Dynamics and Ship Theory, 2005.

[49] M. Haghoo and W. Proskurowski. “Parallel Implementation of
Domain Decomposition Techniques on Intel’s Hypercube”. In:
Proceedings of the Third Conference on Hypercube Concurrent
Computers and Applications - Volume 2. Pasadena, California,
USA: Association for Computing Machinery, 1989,
pp. 1735–1745. isbn: 0897912780. doi: 10.1145/63047.63132.

[50] M. Heil. “An efficient solver for the fully coupled solution of
large-displacement fluid–structure interaction problems”. In:
Computer Methods in Applied Mechanics and Engineering 193.1
(2004), pp. 1 –23. doi:
https://doi.org/10.1016/j.cma.2003.09.006.

[51] M. Heil, A. L. Hazel, and J. Boyle. “Solvers for
large-displacement fluid–structure interaction problems:
segregated versus monolithic approaches”. In: Computational
Mechanics 43.1 (2008), pp. 91–101. doi:
10.1007/s00466-008-0270-6.

137

https://doi.org/https://doi.org/10.1016/0899-8248(89)90003-7
https://doi.org/https://doi.org/10.1016/0899-8248(89)90003-7
https://doi.org/https://doi.org/10.1016/S0898-1221(99)00127-3
https://doi.org/10.1145/63047.63132
https://doi.org/https://doi.org/10.1016/j.cma.2003.09.006
https://doi.org/10.1007/s00466-008-0270-6


BIBLIOGRAPHY

[52] M. A. Heroux et al. “An Overview of the Trilinos Project”. In:
ACM Trans. Math. Softw. 31.3 (Sept. 2005), pp. 397–423. doi:
10.1145/1089014.1089021.

[53] M. Hojjat. “Node-based parametrization for shape optimal
design”. PhD thesis. Technische Universität München, 2014.

[54] M. Hojjat, E. Stavropoulou, and K. U. Bletzinger. “The Vertex
Morphing method for node-based shape optimization”. In:
Computer Methods in Applied Mechanics and Engineering 268
(2014), pp. 494–513. doi: 10.1016/j.cma.2013.10.015.

[55] G. Houzeaux and R. Codina. “Transmission conditions with
constraints in finite element domain decomposition methods for
flow problems”. In: Communications in Numerical Methods in
Engineering 17.3 (2001), pp. 179–190. doi: 10.1002/cnm.397.
eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.397.

[56] G. Houzeaux, B. Eguzkitza, R. Aubry, H. Owen, and
M. Vázquez. “A Chimera method for the incompressible
Navier–Stokes equations”. In: International Journal for
Numerical Methods in Fluids 75.3 (2014), pp. 155–183. doi:
10.1002/fld.3886. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/fld.3886.

[57] G. Houzeaux and R. Codina. “A Chimera method based on a
Dirichlet/Neumann(Robin) coupling for the Navier–Stokes
equations”. In: Computer Methods in Applied Mechanics and
Engineering 192.31 (2003), pp. 3343 –3377. doi:
https://doi.org/10.1016/S0045-7825(03)00276-7.

[58] G. Houzeaux and R. Codina. “An iteration-by-subdomain
overlapping Dirichlet/Robin domain decomposition method for
advection–diffusion problems”. In: Journal of Computational
and Applied Mathematics 158.2 (2003), pp. 243 –276. doi:
https://doi.org/10.1016/S0377-0427(03)00447-3.

[59] T. J. Hughes, G. R. Feijóo, L. Mazzei, and J.-B. Quincy. “The
variational multiscale method—a paradigm for computational
mechanics”. In: Computer Methods in Applied Mechanics and
Engineering 166.1 (1998). Advances in Stabilized Methods in

138

https://doi.org/10.1145/1089014.1089021
https://doi.org/10.1016/j.cma.2013.10.015
https://doi.org/10.1002/cnm.397
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.397
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.397
https://doi.org/10.1002/fld.3886
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.3886
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.3886
https://doi.org/https://doi.org/10.1016/S0045-7825(03)00276-7
https://doi.org/https://doi.org/10.1016/S0377-0427(03)00447-3


BIBLIOGRAPHY

Computational Mechanics, pp. 3 –24. doi:
https://doi.org/10.1016/S0045-7825(98)00079-6.

[60] J. Iott, R. T. Haftka, and H. M. Adelman. “Selecting step sizes
in sensitivity analysis by finite differences”. In: 1985.

[61] K. E. Jansen, C. H. Whiting, and G. M. Hulbert. “A
generalized-� method for integrating the filtered Navier–Stokes
equations with a stabilized finite element method”. In:
Computer Methods in Applied Mechanics and Engineering 190.3
(2000), pp. 305 –319. doi:
https://doi.org/10.1016/S0045-7825(00)00203-6.

[62] A. Jendoubi, J. Deteix, and A. Fortin. “A simple mesh-update
procedure for fluid–structure interaction problems”. In:
Computers and Structures 169 (2016), pp. 13 –23. doi:
https://doi.org/10.1016/j.compstruc.2016.02.015.

[63] A. Johnson and T. Tezduyar. “Mesh update strategies in
parallel finite element computations of flow problems with
moving boundaries and interfaces”. In: Computer Methods in
Applied Mechanics and Engineering 119.1 (1994), pp. 73 –94.
doi: https://doi.org/10.1016/0045-7825(94)00077-8.

[64] W. Joppich and M. K. and. “MpCCI—a tool for the simulation
of coupled applications”. In: Concurrency and Computation:
Practice and Experience 18.2 (2005), pp. 183–192. doi:
10.1002/cpe.913.

[65] H.-J. Jung, I.-H. Kim, and S.-J. Jang. “An energy harvesting
system using the wind-induced vibration of a stay cable for
powering a wireless sensor node”. In: Smart Materials and
Structures 20 (May 2011), p. 075001. doi:
10.1088/0964-1726/20/7/075001.

[66] KratosMultiphysics.
https://github.com/KratosMultiphysics/Kratos. Accessed:
Monday 25th April, 2022. Monday 25th April, 2022.

[67] P. Kuberry and H. Lee. “A decoupling algorithm for
fluid-structure interaction problems based on optimization”. In:
Computer Methods in Applied Mechanics and Engineering 267
(2013), pp. 594 –605. doi:
https://doi.org/10.1016/j.cma.2013.10.006.

139

https://doi.org/https://doi.org/10.1016/S0045-7825(98)00079-6
https://doi.org/https://doi.org/10.1016/S0045-7825(00)00203-6
https://doi.org/https://doi.org/10.1016/j.compstruc.2016.02.015
https://doi.org/https://doi.org/10.1016/0045-7825(94)00077-8
https://doi.org/10.1002/cpe.913
https://doi.org/10.1088/0964-1726/20/7/075001
https://doi.org/https://doi.org/10.1016/j.cma.2013.10.006


BIBLIOGRAPHY

[68] U. Küttler, C. Förster, and W. A. Wall. “A Solution for the
Incompressibility Dilemma in Partitioned Fluid–Structure
Interaction with Pure Dirichlet Fluid Domains”. In:
Computational Mechanics 38.4 (2006), pp. 417–429. doi:
10.1007/s00466-006-0066-5.

[69] M. König. “Partitioned solution strategies for strongly-coupled
fluid-structure interaction problems in maritime applications”.
PhD thesis. 2018. doi: 10.15480/882.1736.

[70] U. Küttler, M. Gee, C. Förster, A. Comerford, and W. A. Wall.
“Coupling strategies for biomedical fluid–structure interaction
problems”. In: International Journal for Numerical Methods in
Biomedical Engineering 26.3‐4 (2010), pp. 305–321. doi:
10.1002/cnm.1281. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.1281.

[71] U. Küttler and W. Wall. “Fixed-point fluid-structure interaction
solvers with dynamic relaxation”. In: Computational Mechanics
43 (Jan. 2008), pp. 61–72. doi: 10.1007/s00466-008-0255-5.

[72] C. Liu, J. C. Newman, and W. K. Anderson. “Petrov-Galerkin
Overset Grid Scheme for the Navier-Stokes Equations with
Moving Domains”. In: AIAA Journal 53.11 (2015),
pp. 3338–3353. doi: 10.2514/1.J053925. eprint:
https://doi.org/10.2514/1.J053925.

[73] C. Liu, J. C. Newman, and W. K. Anderson. “A
Streamline/Upwind Petrov Galerkin Overset Grid Scheme for
the Navier-Stokes Equations with Moving Domains”. In: 32nd
AIAA Applied Aerodynamics Conference. doi:
10.2514/6.2014-2980. eprint:
https://arc.aiaa.org/doi/pdf/10.2514/6.2014-2980.

[74] T. Mathew. Domain Decomposition Methods for the Numerical
Solution of Partial Differential Equations. Lecture Notes in
Computational Science and Engineering. Springer Berlin
Heidelberg, 2008. isbn: 9783540772095.

[75] R. Mathur. “An analytical approach to computing step sizes for
finite-difference derivatives”. In: Advances in the Astronautical
Sciences 150 (Jan. 2014), pp. 333–352.

140

https://doi.org/10.1007/s00466-006-0066-5
https://doi.org/10.15480/882.1736
https://doi.org/10.1002/cnm.1281
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.1281
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.1281
https://doi.org/10.1007/s00466-008-0255-5
https://doi.org/10.2514/1.J053925
https://doi.org/10.2514/1.J053925
https://doi.org/10.2514/6.2014-2980
https://arc.aiaa.org/doi/pdf/10.2514/6.2014-2980


BIBLIOGRAPHY

[76] H. G. Matthies and J. Steindorf. “Partitioned strong coupling
algorithms for fluid–structure interaction”. In: Computers &
Structures 81.8 (2003). K.J Bathe 60th Anniversary Issue,
pp. 805 –812. doi:
https://doi.org/10.1016/S0045-7949(02)00409-1.

[77] U. M. Mayer, A. Popp, A. Gerstenberger, and W. A. Wall. “3D
fluid–structure-contact interaction based on a combined XFEM
FSI and dual mortar contact approach”. In: Computational
Mechanics 46.1 (2010), pp. 53–67. doi:
10.1007/s00466-010-0486-0.

[78] M. Mayr, T. Klöppel, W. A. Wall, and M. W. Gee. “A
Temporal Consistent Monolithic Approach to Fluid-Structure
Interaction Enabling Single Field Predictors”. In: SIAM Journal
on Scientific Computing 37.1 (2015), B30–B59. doi:
10.1137/140953253. eprint:
https://doi.org/10.1137/140953253.

[79] M. Mehl, B. Uekermann, H. Bijl, D. Blom, B. Gatzhammer, and
A. [van Zuijlen]. “Parallel coupling numerics for partitioned
fluid–structure interaction simulations”. In: Computers &
Mathematics with Applications 71.4 (2016), pp. 869 –891. doi:
https://doi.org/10.1016/j.camwa.2015.12.025.

[80] V. Mendez, M. D. Giuseppe], and S. Pasta. “Comparison of
hemodynamic and structural indices of ascending thoracic aortic
aneurysm as predicted by 2-way FSI, CFD rigid wall simulation
and patient-specific displacement-based FEA”. In: Computers in
Biology and Medicine 100 (2018), pp. 221 –229. doi:
https://doi.org/10.1016/j.compbiomed.2018.07.013.

[81] A. Mini, R. Wüchner, and K.-U. Bletzinger. “Robust
Mesh-updating Strategies for Fluid-structure Interaction
Problems”. In: Kratos Workshop at GID Convention 2016.
Barcelona, 2016.

[82] R. L. Muddle, M. Mihajlović, and M. Heil. “An efficient
preconditioner for monolithically-coupled large-displacement
fluid–structure interaction problems with pseudo-solid mesh
updates”. In: Journal of Computational Physics 231.21 (2012),

141

https://doi.org/https://doi.org/10.1016/S0045-7949(02)00409-1
https://doi.org/10.1007/s00466-010-0486-0
https://doi.org/10.1137/140953253
https://doi.org/10.1137/140953253
https://doi.org/https://doi.org/10.1016/j.camwa.2015.12.025
https://doi.org/https://doi.org/10.1016/j.compbiomed.2018.07.013


BIBLIOGRAPHY

pp. 7315 –7334. doi:
https://doi.org/10.1016/j.jcp.2012.07.001.

[83] F. Nobile and C. Vergara. “An Effective Fluid-Structure
Interaction Formulation for Vascular Dynamics by Generalized
Robin Conditions”. In: SIAM J. Scientific Computing 30 (Jan.
2008), pp. 731–763. doi: 10.1137/060678439.

[84] C. Othmer. “A continuous adjoint formulation for the
computation of topological and surface sensitivities of ducted
flows”. In: International Journal for Numerical Methods in
Fluids 58.8 (2008), pp. 861–877. doi: 10.1002/fld.1770. eprint:
https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/fld.1770.

[85] A. Placzek, J.-F. Sigrist, and A. Hamdouni. “Numerical
Simulation of an Oscillating Cylinder in a Cross-Flow at Low
Reynolds Number : Forced and Free Oscillations”. In:
Computers & Fluids 38 (Jan. 2009). doi:
10.1016/j.compfluid.2008.01.007.

[86] Protocol-Buffers.
https://developers.google.com/protocol-buffers/.

[87] A. Quarteroni, F. Saleri, and A. Veneziani. “Factorization
methods for the numerical approximation of Navier–Stokes
equations”. In: Computer Methods in Applied Mechanics and
Engineering 188.1 (2000), pp. 505 –526. doi:
https://doi.org/10.1016/S0045-7825(99)00192-9.

[88] A. Quarteroni and A. Valli. “Domain Decomposition Methods
for Partial Differential Equations”. In: (Jan. 1999).

[89] R. Resiga and H. Atassi. “Parallel Computing Using Schwarz
Domain Decomposition Method for Aeroacoustic Problems”. In:
June 1998, pp. 86–96. doi: 10.2514/6.1998-2218.

[90] K. B. Sautter, T. Teschemacher, M. A. Celigueta, P. Bucher,
K.-U. Bletzinger, and R. Wüchner. “Partitioned strong coupling
of discrete elements with large deformation structural finite
elements to model impact on highly flexible tension structures”.
In: Advances in Civil Engineering (Apr. 2020). doi:
10.1155/2020/5135194.

142

https://doi.org/https://doi.org/10.1016/j.jcp.2012.07.001
https://doi.org/10.1137/060678439
https://doi.org/10.1002/fld.1770
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.1770
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.1770
https://doi.org/10.1016/j.compfluid.2008.01.007
https://doi.org/https://doi.org/10.1016/S0045-7825(99)00192-9
https://doi.org/10.2514/6.1998-2218
https://doi.org/10.1155/2020/5135194


BIBLIOGRAPHY

[91] C. Scheifele, A. Verl, and O. Riedel. “Real-time co-simulation
for the virtual commissioning of production systems”. In:
Procedia CIRP 79 (2019). 12th CIRP Conference on Intelligent
Computation in Manufacturing Engineering, 18-20 July 2018,
Gulf of Naples, Italy, pp. 397 –402. doi:
https://doi.org/10.1016/j.procir.2019.02.104.

[92] H. A. Schwarz. “Über einige Abbildungsaufgaben.” In: vol. 1869.
70. 1869, p. 105. doi: 10.1515/crll.1869.70.105.

[93] T. Sengupta, A. Dipankar, and A. K. Rao. “A new compact
scheme for parallel computing using domain decomposition”. In:
Journal of Computational Physics 220.2 (2007), pp. 654 –677.
doi: https://doi.org/10.1016/j.jcp.2006.05.018.

[94] S. Sicklinger, V. Belsky, B. Engelmann, H. Elmqvist, H. Olsson,
R. Wüchner, and K.-U. Bletzinger. “Interface Jacobian-based
Co-Simulation”. In: International Journal for Numerical
Methods in Engineering 98.6 (2014), pp. 418–444. doi:
10.1002/nme.4637. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/nme.4637.

[95] S. Sicklinger, C. Lerch, R. Wüchner, and K.-U. Bletzinger.
“Fully coupled co-simulation of a wind turbine emergency brake
maneuver”. In: Journal of Wind Engineering and Industrial
Aerodynamics 144 (2015), pp. 134–145. doi:
10.1016/j.jweia.2015.03.021.

[96] S. R. Slattery, P. P. H. Wilson, and R. P. Pawlowski. “The Data
Transfer Kit: A geometric rendezvous-based tool for
multiphysics data transfer”. In: (July 2013).

[97] K. Stein, T. Tezduyar, and R. Benney. “Mesh Moving
Techniques for Fluid-Structure Interactions With Large
Displacements ”. In: Journal of Applied Mechanics 70.1 (Jan.
2003), pp. 58–63. doi: 10.1115/1.1530635. eprint: https:
//asmedigitalcollection.asme.org/appliedmechanics/
article-pdf/70/1/58/5469200/58\_1.pdf.

[98] C. Stoermer and G. Tibba. “Powertrain Co-Simulation Using
AUTOSAR and the Functional Mockup Interface Standard”. In:
Proceedings of the 51st Annual Design Automation Conference.
DAC ’14. San Francisco, CA, USA: Association for Computing

143

https://doi.org/https://doi.org/10.1016/j.procir.2019.02.104
https://doi.org/10.1515/crll.1869.70.105
https://doi.org/https://doi.org/10.1016/j.jcp.2006.05.018
https://doi.org/10.1002/nme.4637
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.4637
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.4637
https://doi.org/10.1016/j.jweia.2015.03.021
https://doi.org/10.1115/1.1530635
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/70/1/58/5469200/58\_1.pdf
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/70/1/58/5469200/58\_1.pdf
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/70/1/58/5469200/58\_1.pdf


BIBLIOGRAPHY

Machinery, 2014, p. 1. isbn: 9781450327305. doi:
10.1145/2593069.2602975.

[99] D. Sumner. “Two circular cylinders in cross-flow: A review”. In:
Journal of Fluids and Structures 26.6 (2010), pp. 849 –899. doi:
https://doi.org/10.1016/j.jfluidstructs.2010.07.001.

[100] H. Tang, S. Casey Jones, and F. Sotiropoulos. “An overset-grid
method for 3D unsteady incompressible flows”. In: Journal of
Computational Physics 191.2 (2003), pp. 567 –600. doi:
https://doi.org/10.1016/S0021-9991(03)00331-0.

[101] W. P. Tang. “Generalized Schwarz Splittings”. In: SIAM
Journal on Scientific and Statistical Computing 13.2 (1992),
pp. 573–595. doi: 10.1137/0913032.

[102] G. I. Taylor. “VIII. Stability of a viscous liquid contained
between two rotating cylinders”. In: Philosophical Transactions
of the Royal Society of London. Series A, Containing Papers of
a Mathematical or Physical Character 223.605-615 (1923),
pp. 289–343. doi: 10.1098/rsta.1923.0008. eprint:
https://royalsocietypublishing.org/doi/pdf/10.1098/
rsta.1923.0008.

[103] W. Tianyang. “Development of Co-Simulation Environment and
Mapping Algorithms”. Dissertation. München: Technische
Universität München, 2016.

[104] A. Toselli and O. B. Widlund. Domain Decomposition Methods
— Algorithms and Theory. Springer Berlin Heidelberg, 2005. doi:
10.1007/b137868.

[105] S. Turek and M. Schäfer. Recent Benchmark Computations of
Laminar Flow Around a Cylinder. 1996.

[106] S. Turek and J. Hron. “Proposal for Numerical Benchmarking of
Fluid-Structure Interaction between an Elastic Object and
Laminar Incompressible Flow”. In: Lecture Notes in
Computational Science and Engineering. Springer Berlin
Heidelberg, pp. 371–385. doi: 10.1007/3-540-34596-5_15.

[107] B. Uekermann. “Partitioned Fluid-Structure Interaction on
Massively Parallel Systems”. Dissertation. München: Technische
Universität München, 2016.

144

https://doi.org/10.1145/2593069.2602975
https://doi.org/https://doi.org/10.1016/j.jfluidstructs.2010.07.001
https://doi.org/https://doi.org/10.1016/S0021-9991(03)00331-0
https://doi.org/10.1137/0913032
https://doi.org/10.1098/rsta.1923.0008
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1923.0008
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1923.0008
https://doi.org/10.1007/b137868
https://doi.org/10.1007/3-540-34596-5_15


BIBLIOGRAPHY

[108] D. Vlašić, N. Degiuli, A. Farkas, and I. Martić. “The
Preliminary Design of a Screw Propeller by Means of
Computational Fluid Dynamics”. In: Brodogradnja 69.3 (Apr.
2018), pp. 129–147. doi: 10.21278/brod69308.

[109] S. Völkner, J. Brunswig, and T. Rung. “Analysis of
non-conservative interpolation techniques in overset grid
finite-volume methods”. In: Computers & Fluids 148 (Apr.
2017), pp. 39–55. doi: 10.1016/j.compfluid.2017.02.010.

[110] D.-A. Wang, C.-Y. Chiu, and H.-T. Pham. “Electromagnetic
energy harvesting from vibrations induced by Kármán vortex
street”. In: Mechatronics 22.6 (2012). Special Issue on Intelligent
Mechatronics (LSMS2010 & ICSEE2010), pp. 746 –756. doi:
https://doi.org/10.1016/j.mechatronics.2012.03.005.

[111] T. Wang, S. Sicklinger, R. Wüchner, and K.-U. Bletzinger.
“Concept and Realization of Coupling Software EMPIRE in
Multi-Physics Co-Simulation”. In: 2013.

[112] A. Y. Weisberg, I. G. Kevrekidis, and A. J. SMITS. “Delaying
transition in Taylor–Couette flow with axial motion of the inner
cylinder”. In: Journal of Fluid Mechanics 348 (1997),
pp. 141–151. doi: 10.1017/S0022112097006630.

[113] S. T. Wereley and R. M. Lueptow. “Velocity field for
Taylor–Couette flow with an axial flow”. In: Physics of Fluids
11.12 (1999), pp. 3637–3649. doi: 10.1063/1.870228. eprint:
https://doi.org/10.1063/1.870228.

[114] T. Wick. “Fluid-structure interactions using different mesh
motion techniques”. In: Computers and Structures 89.13 (2011),
pp. 1456 –1467. doi:
https://doi.org/10.1016/j.compstruc.2011.02.019.

[115] A. Winterstein, C. Lerch, K.-U. Bletzinger, and R. Wüchner.
“Partitioned simulation strategies for fluid–structure–control
interaction problems by Gauss–Seidel formulations”. In:
Advanced Modeling and Simulation in Engineering Sciences 5.1
(2018), p. 29. doi: 10.1186/s40323-018-0123-6.

145

https://doi.org/10.21278/brod69308
https://doi.org/10.1016/j.compfluid.2017.02.010
https://doi.org/https://doi.org/10.1016/j.mechatronics.2012.03.005
https://doi.org/10.1017/S0022112097006630
https://doi.org/10.1063/1.870228
https://doi.org/10.1063/1.870228
https://doi.org/https://doi.org/10.1016/j.compstruc.2011.02.019
https://doi.org/10.1186/s40323-018-0123-6


BIBLIOGRAPHY

[116] W. L. Wood, M. Bossak, and O. C. Zienkiewicz. “An alpha
modification of Newmark’s method”. In: International Journal
for Numerical Methods in Engineering 15.10 (1980),
pp. 1562–1566. doi: 10.1002/nme.1620151011. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.
1620151011.

[117] R. Wüchner. “Mechanik und Numerik der Formfindung und
Fluid-Struktur-Interaktion von Membrantragwerken”.
Dissertation. Technische Universität München, 2006.

[118] R. Zorrilla, A. Larese, and R. Rossi. “A modified Finite Element
formulation for the imposition of the slip boundary condition
over embedded volumeless geometries”. In: Computer methods
in applied mechanics and engineering 353 (2019), pp. 123–157.
doi: 10.1016/j.cma.2019.05.007.

[119] R. Zorrilla, R. Rossi, and E. Oñate. “Embedded computational
fluid dynamics techniques for fluid-structure interaction
problems”. In: Congresso de Métodos Numéricos em Engenharia.
2019, pp. 281–281.

146

https://doi.org/10.1002/nme.1620151011
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620151011
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620151011
https://doi.org/10.1016/j.cma.2019.05.007


147



Bisherige Titel der Schriftenreihe

Band Titel

1 Frank Koschnick, Geometrische Lockingeffekte bei Finiten
Elementen und ein allgemeines Konzept zu ihrer Vermeidung,
2004.

2 Natalia Camprubi, Design and Analysis in Shape Optimiza-
tion of Shells, 2004.

3 Bernhard Thomee, Physikalisch nichtlineare Berechnung von
Stahlfaserbetonkonstruktionen, 2005.

4 Fernaß Daoud, Formoptimierung von Freiformschalen -
Mathematische Algorithmen und Filtertechniken, 2005.

5 Manfred Bischoff, Models and Finite Elements for Thin-
walled Structures, 2005.

6 Alexander Hörmann, Ermittlung optimierter Stabwerkmod-
elle auf Basis des Kraftflusses als Anwendung plattformunab-
hängiger Prozesskopplung, 2006.

7 Roland Wüchner, Mechanik und Numerik der Formfind-
ung und Fluid-Struktur-Interaktion von Membrantragwerken,
2006.

8 Florian Jurecka, Robust Design Optimization Based on Meta-
modeling Techniques, 2007.

9 Johannes Linhard, Numerisch-mechanische Betrachtung des
Entwurfsprozesses von Membrantragwerken, 2009.

10 Alexander Kupzok, Modeling the Interaction of Wind and
Membrane Structures by Numerical Simulation, 2009.

148



Band Titel

11 Bin Yang, Modified Particle Swarm Optimizers and their
Application to Robust Design and Structural Optimization,
2009.

12 Michael Fleischer, Absicherung der virtuellen Prozesskette
für Folgeoperationen in der Umformtechnik, 2009.

13 Amphon Jrusjrungkiat, Nonlinear Analysis of Pneumatic
Membranes - From Subgrid to Interface, 2009.

14 Alexander Michalski, Simulation leichter Flächentragwerke
in einer numerisch generierten atmosphärischen Gren-
zschicht, 2010.

15 Matthias Firl, Optimal Shape Design of Shell Structures,
2010.

16 Thomas Gallinger, Effiziente Algorithmen zur partition-
ierten Lösung stark gekoppelter Probleme der Fluid-Struktur-
Wechselwirkung, 2011.

17 Josef Kiendl, Isogeometric Analysis and Shape Optimal De-
sign of Shell Structures, 2011.

18 Joseph Jordan, Effiziente Simulation großer Mauerw-
erksstrukturen mit diskreten Rissmodellen, 2011.

19 Albrecht von Boetticher, Flexible Hangmurenbarrieren: Eine
numerische Modellierung des Tragwerks, der Hangmure und
der Fluid-Struktur-Interaktion, 2012.

20 Robert Schmidt, Trimming, Mapping, and Optimization in
Isogeometric Analysis of Shell Structures, 2013.

21 Michael Fischer, Finite Element Based Simulation, Design
and Control of Piezoelectric and Lightweight Smart Struc-
tures, 2013.

22 Falko Hartmut Dieringer, Numerical Methods for the Design
and Analysis for Tensile Structures, 2014.

149



Band Titel

23 Rupert Fisch, Code Verification of Partitioned FSI Environ-
ments for Lightweight Structures, 2014.

24 Stefan Sicklinger, Stabilized Co-Simulation of Coupled Prob-
lems Including Fields and Signals, 2014.

25 Madjid Hojjat, Node-based parametrization for shape optimal
design, 2015.

26 Ute Israel, Optimierung in der Fluid-Struktur-Interaktion -
Sensitivitätsanalyse für die Formoptimierung auf Grundlage
des partitionierten Verfahrens, 2015.

27 Electra Stavropoulou, Sensitivity analysis and regularization
for shape optimization of coupled problems, 2015.

28 Daniel Markus, Numerical and Experimental Modeling for
Shape Optimization of Offshore Structures, 2015.

29 Pablo Suárez, Design Process for the Shape Optimization of
Pressurized Bulkheads as Components of Aircraft Structures,
2015.

30 Armin Widhammer, Variation of Reference Strategy - Gen-
eration of Optimized Cutting Patterns for Textile Fabrics,
2015.

31 Helmut Masching, Parameter Free Optimization of Shape
Adaptive Shell Structures, 2016.

32 Hao Zhang, A General Approach for Solving Inverse Prob-
lems in Geophysical Systems by Applying Finite Element
Method and Metamodel Techniques, 2016.

33 Tianyang Wang, Development of Co-Simulation Environ-
ment and Mapping Algorithms, 2016.

34 Michael Breitenberger, CAD-integrated Design and Analysis
of Shell Structures, 2016.

150



Band Titel

35 Önay Can, Functional Adaptation with Hyperkinematics
using Natural Element Method: Application for Articular
Cartilage, 2016.

36 Benedikt Philipp, Methodological Treatment of Non-linear
Structural Behavior in the Design, Analysis and Verification
of Lightweight Structures, 2017.

37 Michael Andre, Aeroelastic Modeling and Simulation for the
Assessment of Wind Effects on a Parabolic Trough Solar
Collector, 2018.

38 Andreas Apostolatos, Isogeometric Analysis of Thin-Walled
Structures on Multipatch Surfaces in Fluid-Structure Inter-
action, 2018.

39 Altuğ Emiroğlu, Multiphysics Simulation and CAD-
Integrated Shape Optimization in Fluid-Structure Interaction,
2019.

40 Mehran Saeedi, Multi-Fidelity Aeroelastic Analysis of Flexi-
ble Membrane Wind Turbine Blades, 2017.

41 Reza Najian Asl, Shape optimization and sensitivity analysis
of fluids, structures, and their interaction using Vertex
Morphing Parametrization, 2019.

42 Ahmed Abodonya, Verification Methodology for Compu-
tational Wind Engineering Prediction of Wind Loads on
Structures, 2020.

43 Anna Maria Bauer, CAD-integrated Isogeometric Analysis
and Design of Lightweight Structures, 2020.

44 Andreas Winterstein, Modeling and Simulation of Wind
Structure Interaction of Slender Civil Engineering Structures
Including Vibration Systems, 2020.

151



Band Titel

45 Franz-Josef Ertl, Vertex Morphing for Constrained Shape
Optimization of Three-dimensional Solid Structures, 2020.

46 Daniel Baumgärtner, On the Grid-based Shape Optimization
of Structures with Internal Flow and the Feedback of Shape
Changes into a CAD Model, 2020.

47 Mohamed Khalil, Combining Physics-based models and ma-
chine learning for an Enhanced Structural Health Monitor-
ing,2021.

48 Long Chen, Gradient Descent Akin Method, 2021.

152


	Contents
	List of Symbols
	Introduction
	Domain decomposition and coupled problems : A review
	Outline of the thesis

	Domain decomposition problems
	Problem dcefinition
	Dirichlet-Neumann coupling
	Monolithic formulation
	Master-Slave elimination approach
	Equivalence with Dirichlet-Neumann coupling
	Numerical example

	Partitioned formulation

	Neumann-Neumann coupling
	Partitioned formulation
	Newton-Raphson iterations
	Optimization problem
	Numerical examples


	Dirichlet -Dirichlet coupling
	Monolithic formulation


	Fluid-Fluid coupling
	Governing equations and discretization
	Software framework

	Sliding interfaces (non-overlapping decomposition)
	Interface conditions and monolithic formulation
	Distributed memory paralleization
	Benchmarks and numerical results
	2D Laminar flow over a cylinder(time periodic)
	2D Flow over rotating plate
	Taylor-Couette flow instability


	Chimera formulation (overlapping decomposition)
	Hole cutting
	Coupling conditions and enforcement
	Multi-Point relations
	Treatment of multiple patches
	Distributed memory parallelization
	Partitioning
	Level-set distance calculation
	Hole cutting

	Benchmark examples
	Lid driven cavity
	Effect of overlap distance
	2D Laminar flow over a cylinder(time periodic)
	Moving and multiple patches


	Extension to fractional-step methods
	Overview of fractional step method
	Sliding-interface
	Chimera technique


	Inclusion of turbulence models

	Co-simulation and software framework
	Motivation and the concept
	Detached-interface approach

	Base classes and software architecture
	Realizing co-simulation
	Client-Server approach
	Peer-to-Peer approach
	Hybrid approach

	Numerical examples
	Singly-coupled systems
	Turek FSI3 

	Multi-coupled systems
	Fluid-Structure-Fluid model problem



	Showcase simulations
	3D Simulation of wind turbine
	Rotating propeller in a channel with circular cross section
	FSI simulation of rotating propeller
	FSI shape optimization: Flexible ONERA M6 wing

	Summary and outlook
	List of Figures
	Bibliography

