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Abstract

Proteins constitute one of the central molecules of life that are involved in almost
all cellular processes. These molecules perform most of their functions interacting
through assemblies, like protein-protein complexes or protein complexes with small
molecules. Due to huge advances in experimental structure determination (X-ray
crystallography, NMR, and cryo-EM), large progress in the study of proteins and
their partners could be achieved. In particular, molecular dynamics simulations
and docking methods usually rely on such structural data to study proteins in silico.
From a computational perspective, biomolecular complexes can be studied using
docking approaches, in which one aims to predict the native binding site of the
receptor and calculate the associated binding affinity. Compared to traditional dock-
ing techniques, molecular dynamics simulations are computationally quite costly,
however, they provide higher theoretical rigor. Molecular dynamics simulations
account for an atomistic representation of the solute, proper treatment of the aque-
ous environment, and full flexibility of the partner molecules. These simulations
are often assisted by advanced sampling methods to reduce the computational
demand. In this thesis, such advanced sampling methods were developed to study
biomolecular complexes and tackle the main goals of computational docking.

First, an umbrella sampling approach was applied on a protein-protein bench-
mark set, calculating the absolute binding free energy. In particular, this approach
performed better than the simple energy-based scoring schemes to predict the native
binding site for a multitude of docking poses.

Identification of the correct binding site from regular MD simulations alone is a
difficult task due to many local energy minima at the receptor surface. To address
this issue, the repulsive scaling (RS-REMD) approach is introduced in this thesis.
It is shown to speed up MD-based association simulations considerably to capture
the native binding placement of protein complexes. The correct binding site was
identified for five out of six protein-protein cases and for two proteins bound to
small ligands.

The RS-REMD methodology is further extended to estimate the (absolute) binding
free energy of protein complexes. A high correlation to experimental affinities is
observed for 36 protein-protein cases and for two proteins bound to several small
ligands. This binding affinity estimate is shown to be able to discriminate correct
ligand binding placements from other poses. Due to their simple implementation,
the developed repulsive scaling techniques can be applied to all kinds of molec-
ular complexes, including DNA, RNA, polysaccharides, or small peptides. Such
MD-based docking techniques are thought to become increasingly affordable with
expected hardware enhancements.
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1 Introduction

Proteins are the building blocks of the cell and mediate most cellular processes.
They are constituted of differing amino acid sequences that define the protein’s
three-dimensional structure and thus code for a remarkably diverse range of func-
tions. Proteins can act as transporters, molecular switches, or catalysts in enzymatic
reactions. They aid in the transduction of signal pathways within the cell but also
give the cell its structure and provide mechanical stability. Malfunctioning proteins
are responsible for several diseases (e.g. Alzheimer’s disease) but also carry out
specific immune responses through antibodies.

The versatile function of proteins fundamentally relies on the binding to partner
molecules. Proteins can bind to nucleic acids, lipids, small molecules, or other
proteins and either form stable complexes or transient and reversible assemblies.
Understanding the physics behind these binding processes allows the design of
small molecular agents [228, 176, 183] in drug discovery projects or completely novel
de novo proteins [130, 32, 18]. Most effectively these protein interactions are studied
in a complementing collaboration of experimental and in silico approaches [281, 176,
183].

In the last decades, significant progress within the field of structural biology has
led to a huge number of high-resolution three-dimensional protein models. The
data are experimentally obtained using NMR, X-ray crystallography, and lately also
cryo-EM. The structural models are collected in the Protein Data Bank (PDB) [27]
which currently contains more than 150000 protein entries.

These structural models constitute the starting point of most molecular dynamics
(MD) simulations. In MD the details of molecular binding can be revealed with
high spatial and temporal resolution. These simulations allow a realistic description
of biomolecules in a solvated environment based on an atomistic force field. Most
importantly, the absolute free energy of binding, the central feature of molecular
association, can be computed with MD.

Simultaneously, a multitude of experimental methods to calculate the binding
affinity like surface plasmon resonance and isothermal titration calorimetry are
currently available. Such experimental results are united in benchmark sets allowing
computational scientists to validate their predictions and develop new approaches
[153, 309, 150].

Apart from characterizing the strength of a bimolecular interaction the identi-
fication of putative binding sites is of central importance. In the last decades a
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1 Introduction

vast number of docking algorithms have emerged, e.g. for protein-protein docking
[73, 44, 329] as well as protein docking to small ligands [299, 307, 93, 227]. These
approaches attempt to predict the complex structures based on the unbound part-
ner molecules by evaluating a very large number of possible placements of one
molecule around its partner. Docking algorithms rely on certain scoring functions
to rank the predicted placements that can for example be based on statistical- or
knowledge-based potentials [329, 217, 260] or might be due to molecular mechanics
type force field descriptions [73, 44]. These docking algorithms often have a low
computational cost, but can fail to predict the correct binding site in several situ-
ations [150]. Common difficulties arise from limited molecular flexibility, coarse
pseudo-atomic models, or no proper solvent representation.

In principle, these challenges can be addressed using MD simulations. With un-
limited computer power, it would be possible to simulate the reversible association
and dissociation of transiently bound partner molecules. Such simulations could
potentially predict the native binding site and further allow for the calculation of the
free energy of binding. Yet, on an average computing cluster, the required amount
of calculations is not practicable in most applications, which increases the need for
advanced sampling methods that significantly speed up simulation time. In this
thesis such advanced sampling techniques for MD are developed that efficiently
allow for the prediction of native protein binding sites, as well as the calculation of
absolute binding free energies.

This thesis is organized as follows:

• An introduction to structural and functional aspects of proteins and experi-
mental methods to study the conformation and binding mechanisms of these
molecules are given in Chapter 2.

• In Chapter 3, molecular dynamics (MD) simulations are introduced, the com-
putational technique used in this thesis to study biomolecules with an atom-
istic resolution. The theoretical foundations of MD simulations and advanced
sampling methods (Hamiltonian replica exchange molecular dynamics (H-
REMD) and umbrella sampling) are explained. Moreover, an introduction to
the calculation of binding free energies (e.g. free energy perturbation, Bennett
acceptance ratio) is given.

• In silico methods to predict binding affinities with a focus on protein-protein
complexes are reviewed in detail next (Chapter 4). Simple scoring functions
are discussed but also more advanced methods that rely on the foundations of
Chapter 3.

• Chapter 5 applies an umbrella sampling approach to calculate the absolute
binding free energy and to refine docking poses for a large protein-protein

2



benchmark set. The advanced sampling method is compared to simple energy-
based scoring functions.

• In Chapter 6, the repulsive scaling (RS-REMD) scheme is designed that relies
on an H-REMD approach, introducing repulsive biases between ligand and
receptor atoms. The method is shown to predict the native binding site of
protein-protein complexes in long association simulations but also in shorter
refining simulations.

• After that, the RS-REMD method is extended to yield binding free energies
to score native and predicted binding poses (Chapter 7). Different solvent
conditions are compared for a protein-protein benchmark set.

• In Chapter 8, RS-REMD is employed to complexes of proteins bound to small
ligands. Moreover, a procedure to calculate the native binding site in a blind
docking scenario is stated.

• The thesis concludes with a summary and future perspectives of the estab-
lished methods (Chapter 9).
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2 Structure and Function of Proteins

Proteins are one of the fundamental biomolecules that life relies on. In this chapter, I
will introduce these molecules in more detail and give an outline of their versatile
function. Finally, an overview of experimental strategies is given to elucidate the
structure of proteins and to predict the binding affinity to other molecules. Based on
such experimental data, computational approaches can be designed and validated.

2.1 From amino acids to folded protein structures

Proteins are formed by amino acid building blocks with their backbone linearly
connected by peptide bonds. With little exceptions, the primary structure of proteins
that occur in living organisms is built from different arrangements of 20 amino acids.
The amino acids have a uniform composition with an amino group, a carboxyl
group, a hydrogen atom, and a variable side chain bound to the central Cα atom.
The side chain defines the properties of each amino acid, that can for example be
grouped into charged and uncharged or hydrophobic, hydrophilic, and amphipathic
residues, the latter having both, a polar and a nonpolar character [245].

The primary amino acid arrangement defines the stability and shape of the 3D
structure of the folded proteins. According to the thermodynamic hypothesis this
native state is given by the free energy minimum of the protein in water [13]. Apart
from disulfide bridges, originating from covalently bound cysteine side chains, the
folded protein is stabilized to the main degree through a multitude of noncovalent
interactions. Oppositely charged amino acids are attracted electrostatically and can
form salt bridges within the protein or with a protein partner. Further, hydrophilic
amino acids can form hydrogen bonds either with water molecules, the peptide
backbone, or with each other. Networks of hydrogen bonded interactions of the
backbone lead to secondary structure elements such as alpha helices and β-sheets.
Finally, hydrophobic residues are likely to accumulate at the core of the protein
(the "hydrophobic effect") so that they are not directly exposed to water molecules.
Examined individually, these non-covalent interactions are associated with little
increase in energy (e.g. one hydrogen bond in the range of a few kcal/mol) but the
accumulation of these contributions can form stable folds.
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2 Structure and Function of Proteins

2.2 How proteins perform their function

A protein’s non-bonded interactions not only define its three-dimensional fold but
can also lead to the association with other molecules. Intermolecular binding can
be viewed as the most fundamental property of proteins, leading to a tremendous
functional repertoire including catalysis, switching, and the building of structural
elements [245]. The nature of these binding events can be stable in some cases but
also short-lived (transient) in many situations.

Protein assemblies can form stable complexes in many designs, including large
structural components of the cell or the extracellular matrix. For example, collagen
is built from three protein chains that are covalently bound through cross-links and
stabilized by interstrand hydrogen bonds in a coiled-coil formation [274]. Other
proteins serve as scaffolds that can bind to multiple proteins, aiding in the formation
of functional complexes (e.g. signaling complexes) by spatial organization [79].

The improper aggregation of proteins can cause diseases, such as in the case of
amyloid fibrils, a protein assembly composed of large stacks of β-sheets that are
believed to be connected to Alzheimer’s disease. Similarly, pathological assemblies
of misfolded prion proteins can lead to a set of diseases, including Creutzfeldt-Jakob
in humans, BSE in cattle, and scrapie in sheep [6]. Proteins can assemble as subunits
of large structures that form e.g. the spherically shaped capsids of many viruses. On
the other hand, recognition of pathogenic viruses by the adaptive immune system
can lead to a response of antibodies, which are immune proteins that selectively
bind to a specific antigen (antibody generator), ultimately inactivating the virus or
mark it as a target for destruction.

In a quite different role, specialized membrane transport proteins move water-
soluble proteins and ions across cellular membranes to establish electrochemical
gradients, receive nutrients and segregate metabolic waste products. Such proteins
can also transfer extracellular molecules that lead to signal activation inside the cell.
The signaling pathway can involve a series of protein interactions that ultimately
regulate the behavior of the cell and e.g. lead to cell growth, division, or differentia-
tion. Such signaling proteins often act as molecular switches, which are activated
through phosphorylation or binding of GTP. With the aid of enzyme proteins, certain
stimulatory signals can be amplified by triggering catalytic cascades. These enzymes
bind specifically to their substrates, often assisted by cofactors, and can be activated
or inhibited by regulatory molecules [6].

The function of proteins is extremely versatile and the study of intermolecular
interactions often depends on delicate details. General networks of protein-protein
interaction data can in principle be elucidated by high throughput studies that
typically rely on yeast two-hybrid screening or affinity purification of complexes
followed by mass spectrometry [323, 252, 35]. However, to gain a deeper under-
standing of protein binding and thus the mechanisms governing life, we must gain
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2.3 Experimental methods for structure prediction

more knowledge of the atomistic constitutions and the energetic contributions that
influence intermolecular interactions. This is most effectively undertaken as an
interplay of experimental and in silico methods that complement each other in many
disciplines.

2.3 Experimental methods for structure prediction

The experimental 3D models of protein structures are archived in the Protein Data
Bank (PDB) [27]. Up to date, the PDB contains more than 150000 protein structure
files and the number of resolved proteins is growing fast since the early 1970s. The
protein structures are mostly obtained via X-ray crystallography (78 %) or solution
nuclear magnetic resonance (NMR) (7 %) and increasingly also using single-particle
cryo-EM (electron microscopy). The method of choice depends e.g. on the molecular
weight of the molecule, the solubility or whether a crystallization is possible.

2.3.1 X-ray crystallography

X-ray crystallography can generate protein structures of high accuracy, for which
often a resolution around 2 Å is achieved. The resolution of the huge structure of
the 50S ribosomal subunit (nearly 2 MDa) [19] or the 66 MDa bacteriophage PRD1
[1] exemplify that no principal limit in the size of the resolved structures exists that
prevents accurate prediction.

In such an experiment a focused X-ray beam is scattered at a single crystal of the
protein, leading to a diffraction pattern that is observed. Often the crystal is cooled
to cryogenic temperatures to prevent radiation damages during the experiment.
Using Fourier transform techniques the electron density of the molecules in the
crystal is reconstructed from reciprocal diffraction space to direct space. For this
reconstruction two Fourier coefficients are needed, the structure factor amplitude,
which is accessible through the measured intensities of the diffraction spots, and the
phase angle. The second term can not be accessed directly, but additional phasing
experiments have to be conducted, which makes the structure determination quite
demanding [257]. Two basic techniques exist to determine the phases, either a
structural model of the protein is used as a source for the initial phases, or the
protein is labeled by heavy atoms for which the position in the crystal is measured
in an additional experiment [245]. Having reconstructed the electron density map, a
refinement step that fits the observed data to a structure model is conducted.

2.3.2 Nuclear magnetic resonance

Using nuclear magnetic resonance (NMR) experiments the structures of proteins of
small to medium size can be obtained in solution. NMR has a particular advantage to
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2 Structure and Function of Proteins

study partially disordered proteins, proteins that stabilize in multiple conformations
or dynamical aspects of certain parts of a protein. A prerequisite is that the proteins
do not aggregate in solution.

In NMR spectroscopy the transitions between spin states of nuclei are observed
in an external magnetic field. To this end, a second magnetic field is applied that
oscillates in the radio-frequency (RF) regime and perturbs the nuclear magnetization.
The induced current of the precessing nuclear spins is then measured by the NMR
spectrometer. Only the signals of magnetically active atoms can be observed, usually
1H, 13C,15N,31P. In many cases, the sensitivity of the experiment is increased by la-
beling the molecule with certain isotopes (e.g.13C,15N) due to low natural abundance
[43].

Several NMR experiments can be conducted to obtain geometrical constraints on
the molecule. For example, the chemical shift is associated with a screening effect of
the magnetic field due to the chemical environment of each nucleus. Thus, matching
the chemical shifts with specific amino acid residues gives information about the 3D
structure of the molecule. Atoms with high proximity can be revealed in 2D NMR
observing the cross-peaks of e.g. correlation spectroscopy (COSY) or heteronuclear
correlation spectroscopy (HETCOR) experiments [118].

Further, short interproton distances (up to 5 Å) can be observed using the nuclear
Overhauser effect (NOE), which leads to constraints on 1H− 1H distances for a
refinement of the structure e.g. using molecular dynamics simulations. In particular,
the 2D NMR (NOESY) experiment reveals residues that are close in space through
the observed cross peaks [118, 21].

2.3.3 Cryo-electron microscopy

In the past decade, the number of resolved proteins using single-particle cryo-EM
(electron microscopy) increased rapidly, from 320 entries in the PDB until 2010
to over 6000 structures that were resolved until 2020. This huge increment in
applicability and resolution of cryo-EM in the last years is due to developments
in direct electron detection techniques, the processing steps and in the automation
of the setup to obtain high-quality data. Cryo-EM is achieving increasing high
resolutions for many structures (under 4 Å for 51 % of the structures in the EMDB in
2019) and has a particular advantage over X-ray crystallography for structures that
are difficult to crystallize like e.g. membrane proteins [46].

An electron beam is scattered at a sample of the structure. The scattered electrons
can be recorded by film, scintillator based CCD, or nowadays most often with direct
detection cameras. The sample is quickly frozen in liquid ethane. Due to the fast
cooling rate the water does not crystalize but instead transforms into an amorphous
state. This has two main advantages, first amorphous ice is transparent to electrons,
second, the sample is retained in its solution environment thus representing a
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snapshot of the state before freezing [77]. The ability to take a snapshot of a solution
by fast freezing also allows for time-resolved imaging techniques. A protein can
be incubated with its substrate and quickly be frozen. The resulting cryo sample
will then contain a mixture of different reaction phases which allows studying
time-critical processes like substrate processing [91].

The images of a sample represent 2D projections, thus to obtain the 3D volume,
these have to be back projected onto this volume. In recent years the step from
simple back projection based frameworks toward Bayesian statistics based models,
combined with the introduction of direct electron detectors, has led to a significant
improvement in the achievable resolution [261].

2.4 Experimental methods for binding affinity prediction

In order to calculate the binding affinity, we are interested in the reversible reaction
of molecules of species A and B

[A] + [B]
kon−−⇀↽−−
ko f f

[AB], (2.1)

with the association rate constant kon and the dissociation rate constant ko f f and
[ · ] denoting concentrations. Thus [AB] is the concentration of the product, for
example a protein-protein complex. If the reaction is at equilibrium we can define
the dissociation constant Kd and the association constant Ka:

Kd =
[A][B]
[AB]

=
ko f f

kon
=

1
Ka

. (2.2)

In other words, Kd is the concentration of free A at which half of B is bound to A in
equilibrium. The dissociation constant is directly related to the Gibbs free energy
of dissociation ∆Gd and can be related to the change in enthalpy, ∆Hd, and entropy,
∆Sd :

∆Gd = −kT ln
(

Kd

c0

)
= ∆Hd − T∆Sd, (2.3)

with the Boltzmann constant k, the temperature T, and c0 the standard state concen-
tration. I will further refer to the binding free energy as the negative of ∆Gd, which
one obtains from the association constant Ka, so that a binding event is preferable
for negative values of the binding free energy.

In principle, it is possible to deduce the enthalpy and entropy values from equation
2.3 by conducting several experiments to calculate the the dissociation constant Kd
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2 Structure and Function of Proteins

for different temperatures using the van’t Hoff equation [173]:

ln
(

Kd

c0

)
= −∆Hd

kT
+

∆Sd

k
. (2.4)

If Hd and Sd are temperature independent we can obtain the values from a linear
fit of the individual experiments. Still, this is not the case for example in reactions
where the hydrophobic effect plays a major role, leading to temperature dependent
enthalpy changes.

A plethora of experimental methods have been proposed to evaluate the bind-
ing affinities of biomolecules. For protein-protein complexes, the most prominent
methods are comprised of isothermal titration calorimetry (ITC) and surface plas-
mon resonance (SPR) (according to the affinity benchmark 1.0 [153]) for binding
affinities in the micromolar to nanomolar range. I will discuss these two methods
in more detail below and three additional experimental setups, namely, circular
dichroism, biolayer interferometry, and fluorescence polarization assays. Although
there are still much more methods that can be discussed (see [215, 310]), these give
an overview of different physical phenomena to measure the affinities under dif-
ferent experimental conditions, like e.g. immobilization or labeling of one partner
molecule, and varying post processing steps that one has to be conscious about to
correctly interpret the resulting values. The obtained affinities can vary significantly
for the same molecule depending on the accuracy and the experimental method
conducted and one should preferably choose an affinity benchmark set that uses the
same experimental method that was realized in one laboratory [150, 153].

2.4.1 Isothermal titration calorimetry

Isothermal titration calorimetry gives the opportunity to directly measure thermo-
dynamic parameters of a binding reaction like the change in entropy, enthalpy and
the free energy of binding [305]. It is a label-free method that also gives access to the
change in heat capacity upon complex formation. However, binding events of very
high or very low affinity can be impracticable to study with ITC due to insufficient
titration curves [310].

In the experiment, the calorimeter is composed of an adiabatic chamber with
two cells that are held at constant temperature: the sample cell that is filled with
sample solution and the reference cell. Through an injection syringe, ligand solution
is added to the sample cell in multiple steps, and the change in heat is measured
associated with the binding reaction between ligand and receptor in the sample cell.
This procedure is repeated until the protein in the sample cell is saturated and no
heat release upon further ligand addition is measured. From a nonlinear fit of the
heat against molar ratio plot, the change in enthalpy and the association constant
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can be calculated directly. The change in heat capacity can be obtained by repeating
the experiment for different temperatures and gives insights to characteristics of the
binding reaction like e.g. the dependence on hydration effects [105, 305].

2.4.2 Surface plasmon resonance

A label-free observation of protein binding to a substrate can be achieved in real-time
using surface plasmon resonance (SPR) [231]. Using an optical detection technique
the kinetic and equilibrium parameters of the binding events can be extracted.

The ligand is immobilized on a sensor chip surface and an analyte solution flow
is passed over it, leading to binding events between ligand and analyte. An incident
light beam is refracted at a certain refraction angle at the surface of the gold sensor
chip. A change in the mass attached to the sensor chip, due to occurring binding
events between analyte and ligand, leads to a change in its refractive index, which
can be observed by optical means as the binding response[321].

Different stages in the measurement of the binding response over time are char-
acteristic: First, an increase in binding response due to more and more binding
events occurring is observed. Second, an equilibrium phase is reached with no
change in the binding response, as binding and dissociation of the analyte are in
equilibrium. Finally, the binding response deteriorates again after stopping the in-
jection of analyte solution due to ongoing dissociation of the analyte. Modeling the
measured binding response curves with the appropriate binding model determines
the binding constants kon, ko f f and Keq.

2.4.3 Optical biosensors: Biolayer interferometry

Biolayer interferometry, as an example for optical biosensors, allows label-free and
real-time measurement of kinetic rates and equilibrium constants. In biolayer ex-
periments the ligand is immobilized on a biosensor surface, surrounded by analyte
molecules in solution. Incident white light is directed so that it reflects at the bio-
compatible surface and at a reference layer. The two reflected beams interfere with
each other and the observed spectral pattern changes depending on the thickness of
the biolayer surface and thus the number of molecules bound to the ligand. On the
sensorgram, a progressively increasing number of bound complexes can be read out
until a plateau is reached. Next, the dissociation phase is initialized by dipping the
biosensor into a buffer, leading to a decreasing curve on the sensorgram. The kinetic
rates and the dissociation constant can be obtained by fitting the binding model to
the sensorgram curve [170].
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2.4.4 Fluorescence polarization assays

Experiments that rely on fluorescence labeling are prominent, like for example
fluorescence polarization assays, in which a bound complex can be distinguished in
the fluorescence signal due to an increase in fluorescence polarization. To this end,
one of the proteins is labeled with a fluorophore that can either be a small molecule
or a variant of GFP. The partner molecule is progressively added in a titration
experiment to the solution and the fraction of bound protein can be obtained due to
an altered fluorescence signal. The formed complex rotates less rapidly and thus has
a higher rotational correlation time (the time it takes the molecule to rotate 68.5◦),
which leads to a higher fluorescence polarization. The dissociation constant can be
obtained from the binding isotherms, i.e. the plot of the fraction of bound protein
against the concentration of the free (unlabeled) protein [251].

2.4.5 Circular dichroism

The difference in absorption between left and right circularly polarized light is called
circular dichroism (CD) [81]. CD spectroscopy is sensitive to conformational changes
of proteins in solution that can be observed during complexation or unfolding. Sig-
nals in the far ultraviolet region arise from amides of the protein backbone and give
information on the secondary structure of the protein. Signals in the near-ultraviolet
and visible regions originate from aromatic amino acid side chains, disulfide bonds,
and extrinsic bands from prosthetic groups. The observed CD spectra are fitted to
spectral databases to obtain the conformations. Also, the employment of neural
networks that are first trained on a set of known proteins is possible [112].

Changes in the CD spectra are directly related to the number of protein complexes
formed and can thus be used in titration experiments to determine dissociation
constants. Moreover, differences in the thermal stability of unbound and bound
proteins can be used in thermal denaturation experiments to calculate the binding
constants, assuming that the change in free energy of folding is due to the binding
free energy [111].
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To rationalize and predict the behavior of biomolecules in silico, the basic concept
of the simulation model has to be introduced first. Molecular dynamics (MD)
simulations combine approaches from various disciplines in physics. Throughout
this chapter, I will give an overview of the theoretical foundations and the general
strategies applied in MD.

3.1 Simulation of molecular systems

The theory of quantum mechanics provides the most rigorous method to simulate
biomolecules from first principles. Numerical solutions to the time-independent
Schrödinger equation can be gained e.g. with Hartree Fock methods [269]. In this
context, processes of interest are changes in the electron distribution of a molecule,
like bond-breaking or bond-forming [185]. However, if one does not seek to gain
insight into such chemical reactions there are less computationally demanding
approaches that give access to the dynamics of biomolecules, such as molecular
dynamics (MD) simulations.

In MD simulations, a classical mechanics approach is used to describe the atom-
atom interactions by solving Newton’s second law of motion

Fi = mi
d2ri

dt2 . (3.1)

The forces acting on each atom Fi are calculated from an empirical potential function
termed "force field" (see Section 3.2.1). An atomistic model of the biomolecules is
used due to two main assumptions: First, the nuclear motion is considered separate
from the electron motion according to the Born-Oppenheimer approximation [222,
2]. Moreover, the nuclei are modeled as point particles surrounded by an average
electron density [212]. Thus, the movement of classical atoms is captured by inte-
grating Newton’s equations of motion (see Section 3.2.2). In order to simulate these
moving macromolecules under physiological conditions, they are solvated (Sections
3.3.3 and 3.3.4) and coupled to a heat bath (Section 3.3.2).
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3.2 Force field and dynamics in simulations

3.2.1 Force field

In molecular dynamics simulations, the quantum mechanical interactions of
molecules are approximated based on a classical force field. The parameters of
these empirical force fields are gained using quantum mechanical calculations in
conjunction with experimental measurements. Underlying approximations include,
that the parameters calculated for a small set of molecular compounds are also
valid for a much higher number of similar molecules (transferability) and that the
functional form of the force field has a simple physical interpretation and can be
expressed through the sum of several individual potential energy terms (additivity)
[222]. The typical bonded and non-bonded force field contributions are expressed as
follows [222]:

U = ∑
Nb

1
2

kbi(bi − bi,0)
2 + ∑

NΘ

1
2

kΘi(Θi −Θi,0)
2 + ∑

Nt

∑
n

Vn

2
(1 + cos(nτ − τ0))

+ ∑
nb

4εij

[(
σij

rij

)12

−
(

σij

rij

)6
]
+ ∑

nb

qiqj

εrij
(3.2)

The first two terms describe the bond length and angle contributions of covalently
bound atoms according to harmonic potentials. The force constants are represented
by kbi and kΘi (e.g. originating from experimental vibrational frequencies), the ref-
erence position is described by bi,0 and the reference angle by Θi,0. The periodic
cosine function characterizes the torsional potential with the torsion angle τ, the
phase factor τ0, the barrier height Vn and the multiplicity n [264].

The van der Waals (vdW) contributions are described by the Lennard-Jones (LJ)
potential, with the well depth parameter εij and the effective (pairwise) van der
Waals radius σij. The first term contributes to short-range repulsion, known as
Pauli’s exclusion principle. The second part accounts for attraction between the
particles, according to London dispersion interactions, that arise from quantum
mechanical dipole fluctuations. Finally, the electrostatic interaction between two
atoms with distance dij is calculated based on Coulomb’s law. The particles are
assigned partial charges qi and qj.

All these parameters are specified for each atom type. In many force fields,
multiple atom types are introduced for the same element to account for the chemical
environment of the elements. For example, the standard AMBER force field consists
of 13 different carbon atom types [60].

In general, deviations from this functional form are possible, as a wide range of
different force fields (e.g. AMBER [60], CHARMM [196]) exist for differing purposes.
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For example, polarisation effects are included in some force fields which are in
theory more rigorous but have the drawback of higher computational costs [139].
Also, coarser force field models lacking an atomistic resolution are possible that
replace certain groups of atoms with pseudo particles to lower the computational
effort [329, 199]. In the Attract force field for protein-protein docking, each amino
acid is represented by up to 4 pseudo atoms. The backbone is represented by 2
pseudo atoms, depending on their size side chains get assigned one or two atoms
[329]. The Attract force field is an empirical model consisting of only non-bonded
interactions: the sum of a Coulomb type term and a soft LJ type potential [87].

3.2.2 Integrating the equations of motion

In MD simulations, one is interested in calculating the system’s dynamics by inte-
grating Newton’s equations of motion. The starting positions are often known from
experimental data (see Section 2.3), their time evolution corresponds to a multi-body
problem that has to be solved numerically with a finite difference method. Typical
integration schemes are the Verlet algorithm [308] and the LeapFrog algorithm [78],
both being symplectic and time-reversible.

In order to exemplify such an integration scheme, the derivation of the Verlet
algorithm starts by expanding the position at times t + ∆t and t− ∆t by a Taylor
series [300]:

ri(t + ∆t) = ri(t) + ∆tvi(t) +
∆t2

2mi
Fi(t), (3.3)

ri(t− ∆t) = ri(t)− ∆tvi(t) +
∆t2

2mi
Fi(t). (3.4)

Adding equations 3.3 and 3.4 yields the Verlet algorithm:

ri(t + ∆t) = 2ri(t)− ri(t− ∆t) +
∆t2

mi
Fi(t). (3.5)

This equation can be solved by calculating the force that acts on each particle Fi by
taking the derivative of the potential-energy function U, known from the force field
(Equation 3.2):

Fi = −
∂U
∂ri

. (3.6)

A long time step ∆t is advantageous to cover the highest amount of phase space
with the lowest number of iterations and thus the lowest computational effort.
Unfortunately, an overly raised time step can lead to instabilities in the integration
scheme because of high energy overlaps between atoms. Thus, the integration step
is restrained into the regime below the fastest occurring motions of the system,
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which is the bond stretching vibrations of small hydrogen atoms [2]. Constraining
the bond lengths to hydrogen atoms by algorithms like SHAKE [258] a time step ∆t
of 2 fs is accessible. A further increase of the time step by a factor of 2 is possible
through repartitioning the heavy atoms’ masses into the bonded hydrogen atoms
[126].

3.3 Simulating physiological conditions

The MD system until now describes a microcanonical ensemble as a consequence
of the conservation of the total energy (E) with a constant number of particles (N)
and volume (V). However, general biological experiments are performed under
different conditions, for instance fixing the temperature rather than the energy. Thus,
to simulate under the more realistic conditions of a canonical ensemble (NVT) -
all MD simulations in this thesis are performed in this ensemble - thermodynamic
properties that rely on statistical mechanics have to be introduced.

3.3.1 Basic statistical mechanics concepts

The canonical partition function of a system consisting of N identical particles that
interact through a potential U(r1, ..., rN) in a volume V and at temperature T can be
expressed, integrating over the spatial domain D(V) [300]:

Q(N, V, T) =
1

N!h3N

∫
dN p

∫
D(V)

dNr exp

{
−β

[
N

∑
i=1

p2
i

2m
+ U(r1, ..., rN)

]}
, (3.7)

with the factor 1/N! to avoid overcounting due to the identical nature of the N
particles, Planck’s constant h and β = 1/kT. The canonical partition function is a
measure for the total number of accessible microstates. As the individual properties
of the system are defined by the potential U(r1, ..., rN) it is convenient to introduce
the configurational partition function

Z(N, V, T) =
∫

D(V)

dr1...drN e−βU(r1,...,rN). (3.8)

The ensemble average of a function a(r1, ..., rN) is given by,

〈a〉 = 1
Z

∫
D(V)

dr1...drN a(r1, ..., rN)e−βU(r1,...,rN). (3.9)
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The thermodynamic potential that corresponds to the canonical ensemble is the
Helmholtz free energy G [265]

G = −kT ln(Q). (3.10)

The NVT ensemble is completely described by the partition function or the free
energy. In MD simulations, the partition function is accessed by sampling trajectories
in phase space over discrete time steps (see Section 3.2.2). In principle, with an
infinite amount of time, the whole phase space would be sampled. The ergodic
hypothesis states that the ensemble average can be related to the discrete time-
average of a property a [300].

< a >= lim
T→∞

1
T

T∫
0

dt a(xt) =
1
M

M

∑
n=1

a(xn∆t) = a. (3.11)

3.3.2 Statistical ensembles in MD

To generate a canonical ensemble, the system is coupled to a much bigger thermal
reservoir that exchanges energy with the system, so that it is kept in thermal equilib-
rium. In MD simulations a plethora of thermostats have been introduced that lead
to constant temperature in the system [11, 233, 25, 241]. For instance, the Berendsen
thermostat rescales the velocities according to the following weak coupling scheme
[25]:

vnew
i = vold

i ·
√

1 +
∆t
τ

(
Tbath

T(t)
− 1
)

(3.12)

The old velocity is rescaled according to the fraction of target temperature Tbath and
instantaneous temperature T(t). The strength of the coupling can be modified by
the relaxation parameter τ and ∆t is the time step. This scaling method is relatively
simple but has the disadvantage of not generating rigorous canonical averages
which can lead to artifacts [178].

A more robust thermostatting method that generates a canonical system employs
the Langevin equation of motion [241, 242]:

m
d2x(t)

dt2 = F{x(t)} − γ
dx(t)

dt
m + R(t). (3.13)

The force on each particle is considered to have three sources: inter-particle inter-
actions, frictional forces mediated by the collision frequency γ and a random-force
vector R. The random force is usually assumed to be a Gaussian distribution with
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the following statistical properties:

〈R(t)〉 = 0 and 〈R(t)R(t′)〉 = 2γkTmδ(t− t′), (3.14)

relating γ and R through the fluctuation-dissipation theorem, with the Dirac symbol
δ and the temperature T. Note that, in the limit of γ → 0 of equation 3.13 we
obtain Newton’s equation as the coupling to the heat bath disappears. In the
simulations, the Langevin equation has to be integrated numerically, for example
using a generalized Verlet algorithm [36], which is valid in the low friction regime
(γ∆t� 1).

Furthermore, it is also possible to simulate the system in a constant pressure envi-
ronment, generating an isobaric-isothermal ensemble. For example, the Berendsen
barostat controls pressure analogous to equation 3.12: the volume (instead of the
velocity) of the system is updated by coupling the positions of the particles to a
scaling factor [25].

3.3.3 Explicit solvent and non-bonded interactions

Biological systems are characterized as an integral part by the solvent surrounding
the solute molecules. An aqueous environment can either be modeled explicitly or
using a continuum solvent approach (see Section 3.3.4). Having an explicit water
model hydrogen bonds can be modeled accurately, which potentially stabilize the
molecule or mediate between different sites. In implicit solvent models, this feature
of aqueous solutions is not considered.

Various approaches were introduced to explicitly describe water molecules that
differ in their number of sites, the amount of flexibility of the atoms, and whether
they account for polarization effect [143, 144, 26, 135, 38, 315]. A popular and simple
choice is the rigid TIP3P water model, with one interaction point for each atom,
which is used throughout this work.

To mimic the simulation of a large number of solvent molecules around the solute
and to reduce artifacts due to hard boundaries, a simulation box (e.g. of cubic or
truncated octahedron shape) with periodic boundary conditions is usually used
[92]. The original box has infinitely many identical images in space. In practice, only
the particles in the original box are propagated. As soon as a molecule leaves the
box, it is replaced by an image reentering from the opposite side, conserving the
total number of particles. Due to the minimum image convention, only the closest
interaction for each atom pair is considered [2].

Electrostatic interactions decay slowly with r−1
ij and a simple evaluation would

introduce a considerable computational effort that scales quadratically with the
number of particles [2]. Instead, these long-range contributions are typically evalu-
ated using an Ewald sum that splits the total Coulomb energy into several terms.
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First, a short-range term represents the original point charges that are neutralized
by introducing Gaussian charge distributions of the same magnitude but opposite
sign. A second long-range term is evaluated in Fourier space and exactly counter-
acts the first neutralizing contribution. Using a grid-based charge distribution the
fast Fourier transform (FFT) can be applied to evaluate the reciprocal long-range
term yielding a scaling of O(N log N) in the particle mesh Ewald method [63, 297].
Usually, a cutoff is introduced limiting the space in which van der Waals interactions
and real-space Coulomb interactions are calculated.

3.3.4 Implicit solvent models

A high fraction of the total computation time in most explicit solvent simulation
setups is spent on the solvent molecules. To save computer time, but still incorporate
a solvated environment for the investigated molecules as a dielectric continuum,
implicit solvent models can be applied.

In principle, the solvation free energy ∆GSolv is defined as the energy needed to
transfer a molecule from vacuum into the solvent [235]. It is usually split into a
nonpolar and a polar contribution:

∆GSolv = ∆GNonpolar + ∆GPolar. (3.15)

The hydrophobic contribution (∆GNonpolar) consists of a favorable van der Waals
interaction between solute and solvent and the unfavorable effect of breaking the
molecular structure of the solvent molecules around the solute [235]. This term is
approximated via the solvent-accessible surface area (SASA) for which a linear de-
pendence on the surface tension parameter γ (obtained from experimental solvation
free energies of alkanes) was found,

∆GNonpolar = γ · SASA. (3.16)

The SASA can be calculated by rolling a spherical probe over the surface of the
molecule [275].

The polarization term (∆GPolar) is the most time-consuming part of the solvation
free energy computation and accounts for the electrostatic interactions through the
solvent. The electrostatic potential Φ(r) of a molecule with charge density φ(r) in
an ionic dielectric continuum (position dependent dielectric constant ε(r)) is given
by the Poisson-Boltzmann (PB) equation, which can be written in a linearized form
[178]:

∇ · [ε(r)∇Φ(r)]− κ2ε(r)Φ(r) = −4πφ(r). (3.17)

The Debye-Hückel parameter κ accounts for screening effects through the salt
concentration. This differential equation can be solved numerically for example
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using finite difference methods. The electrostatic contribution to the solvation free
energy can now be calculated performing two independent calculations, the first
with the exterior dielectric of the medium εout,1 and the second in vacuum (εout,2 = 1)
[178]:

∆GPolar =
1
2 ∑

i
qi(Φεout,1(ri)−Φεout,2(ri)), (3.18)

with the summation for all charges i in the solute. A high number of other applica-
tions are possible, like for example the calculation of the association free energy of
two molecules using a thermodynamic cycle [107, 48].

A computationally efficient approximation of the PB equation is given by the
generalized Born (GB) model [289, 4]

∆GPolar = −
1
2 ∑

ij

qiqj

fGB

(
1

εin
− 1

εout

)
(3.19)

fGB =
√
(r2

ij + RiRje−Dij); Dij = r2
ij/4RiRj. (3.20)

The summation goes over all atom pairs i,j, with the pairwise distance rij, the
effective Born radius Ri and charge qi of atom i. The dielectric constant of the
molecule (εin) is usually low, while the solvent dielectric constant (εout) is high.
The design of the function fGB can be understood looking at two scenarios. For
i = j we have fGB = R and the Born equation is obtained, which describes the
electrostatic component of the free energy of solvation for a single ion. Assuming a
large separation of the two charges (rij � Ri, Rj) yields approximately the sum of
the Coulomb interaction with the Born expression.

The amount of descreening of each atom i is measured through the effective Born
radius Ri that is the degree of burial of the atom inside the solute. More precisely
it is defined through the self-energy of the atom inside a molecule, which is the
polar solvation free energy of a molecule, where all charges except the atom’s charge
are turned off. The effective radius is the radius of a corresponding spherical ion
that has the equivalent polar solvation free energy as the self-energy of the atom
[221]. The descreening effect of the surrounding molecule typically leads to a bigger
effective radius than the intrinsic radius of the atom.

The effective Born radius can be computed using a Coulomb field integral [221,
146]:

R−1
i = ρ−1

i −
1

4π

Solute∫
|r|>ρi

|r|−4dV . (3.21)

The integration is performed over the volume inside the solute and outside of atom
i, with corresponding radius ρi (the origin of the integration is shifted to the center
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of atom i). This approach introduces a bias in ∆GSolv, it is only exact in case of a
spherical solute, for a point charge located at its center [117, 221].

3.4 Free energy calculation with advanced sampling
methods

We have treated the basic concepts that enable us to simulate biomolecules under
physiological conditions that resemble experimental setups. Yet, these free MD
simulations are in most cases too expensive to reach the timescales between mi-
croseconds and several seconds, in which most biophysical mechanisms occur, like
protein folding or ligand-receptor binding [335]. In this section, some methods are
presented that enhance the sampling of simulations. These methods make it possible
to predict the free energy of processes that are out of the scope of free simulations.

3.4.1 Perturbation methods to access free energy differences

Let us consider the transformation of a thermodynamic state 1 to another state 2,
with the potential energy functions U1(r1, ..., rN) and U2(r1, ..., rN). The Helmholtz
free energy difference between the two states results from equation 3.10,

∆G = G2 − G1 = −kT ln
(

Q2

Q1

)
= −kT ln

(
Z2

Z1

)
. (3.22)

In the last step we could replace the canonical partition functions by the configura-
tional partition functions as the momentum integrations cancel out of the ratio.

If one considers the change in the potential energy as a small perturbation

U2(r1, ..., rN) = U1(r1, ..., rN) + ∆U(r1, ..., rN) (3.23)

the division of both partition functions yields the ensemble average taken with
respect to state 1.

Z2

Z1
=

∫
dNr e−[U1(r1,...,rN)+∆U(r1,...,rN)]/kT∫

dNr e−U1(r1,...,rN)/kT

=

∫
dNr e−U1(r1,...,rN)/kT · e−∆U(r1,...,rN)/kT∫

dNr e−U1(r1,...,rN)/kT

=
〈

e−∆U(r1,...,rN)/kT
〉

1
. (3.24)

Substitution of equation 3.24 into equation 3.22 yields the equation of Zwanzig [338].
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∆G = −kT ln
(

Z2

Z1

)
= −kT ln

〈
e−[U2(r1,...,rN)−U1(r1,...,rN)]/kT

〉
1

. (3.25)

It is crucial that the perturbation ∆U is small, which means that the configuration
spaces of states 1 and 2 need to have enough overlap [300]. If states 1 and 2 differ
significantly, it is possible to create a set of intermediate states in λ steps, for example
using a linear interpolation:

U(λ) = (1− λ) ·U1 + λ ·U2 (3.26)

The free energy difference is the sum of all individual contributions from equation
3.25

∆G =
N−1

∑
i=1

∆Gλi ,λi+1 (3.27)

= −kT
N−1

∑
i=1

ln
〈

e−[U(λi+1)−U(λi)]/kT
〉

i
. (3.28)

It is also possible to derive the free energy difference between state 1 and state 2
of equation 3.22 following the Bennett acceptance ratio (BAR) method [24]. We start,
by exploring the following identity:

Z2

Z1
=

Z2

Z1

∫
dNr w(r1, ..., rN) e−[U2(r1,...,rN)+U1(r1,...,rN)]/kT∫
dNr w(r1, ..., rN) e−[U2(r1,...,rN)+U1(r1,...,rN)]/kT

=

〈
w e−U2/kT〉

1
〈w e−U1/kT〉2

. (3.29)

The weighting function w(r1, ..., rN) is arbitrary and can be expressed so that the
statistical estimate of the free energy has the highest accuracy. Using Lagrange mul-
tipliers the Fermi Dirac function f (x) = 1/(1 + exp(x/kT)) results as the optimal
choice and we obtain the Bennett acceptance ratio,

Z2

Z1
=
〈 f (U2 −U1 + C)〉1
〈 f (U1 −U2 − C)〉2

eC/kT. (3.30)

This equation is valid for any value of the constant C. In practice, C is determined
so that the following condition is fulfilled, when summing over all configurations
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m1 (m2) of state 1 (2):

∑
m1

f (U2 −U1 + C) = ∑
m2

f (U1 −U2 − C). (3.31)

The BAR method, in comparison to equation 3.25, makes use of the sampled data
in state 1 and state 2, which can lead to statistically more precise results [272]. It is
further possible to extend the BAR approach to the multistate case (MBAR), which
is the estimator with the lowest variance in case of multiple states [271]. Instead of
considering only adjacent states of a λ coordinate as in equation 3.27, an estimator
for the free energy differences of all states is produced:

∆Gi,j = −kT ln
Zj

Zi
(3.32)

The approach seeks weighting functions αi,j according to the identity that was
already used in the BAR approach (equation 3.29):

Zi
〈
αi,j exp(−Uj/kT)

〉
i = Zj

〈
αi,j exp(−Ui/kT)

〉
j (3.33)

We now sum over the index j and yield K estimating equations, which are known as
extended bridge sampling estimators:

K

∑
j=1

Ẑi

Ni

Ni

∑
n=1

αi,j exp(−Uj(rin)/kT) =
K

∑
j=1

Ẑj

Nj

Nj

∑
n=1

αi,j exp(−Ui(rjn)/kT), (3.34)

where we substituted N−1
i ∑Ni

n=1 g(ri,n) for the expectation values of 〈g〉i. For this
class of estimating equations the choice of αi,j with the lowest variance is known
from the statistics literature [294]. A self-consistent solution for the free energy
estimates Ĝi can be computed iteratively, obtained by combining the choice of αi,j
and equation 3.34:

Ĝi = −kT ln
K

∑
j=1

Nj

∑
n=1

exp
[
−Ui(rjn)/kT

]
∑K

k=1 Nk exp
[
(Ĝk −Uk(rjn))/kT

] . (3.35)

Choosing K = 2 states the BAR equation can be reproduced after some rearrange-
ments [271].

3.4.2 Umbrella sampling

To study biomolecular systems it is often desirable to shrink the available phase
space to a subspace of particular interest. The design of adequate reaction coor-
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dinates is strongly dependent on the process that one seeks to understand, for
example, the dissociation of two proteins could be parametrized by a center of mass
(COM) distance coordinate between ligand and receptor proteins (see Chapter 5).
The corresponding free energy profile is associated with the probability that the
generalized coordinate q = f (r1, ..., rN) has the predefined value s [300]:

G(s) = −kT ln P(s) (3.36)

= −kT ln
CN

Q(N, V, T)

∫
dN p dNr e−βH(r,p) δ( f (r1, ..., rN)− s), (3.37)

with the constant CN = 1/N!h3N , the total Hamiltonian H(r, p) and the Dirac
function that ensures to take only states with appropriate s into account while
integrating over the phase space. Often, the free energy profile along a reaction
coordinate is called the potential of mean force (PMF). In order to enhance the
sampling along a defined path, umbrella potentials w can be applied, that restrain
the reaction coordinate q = f (r1, ..., rN) in several intermediate steps k = 1, ..., n
using harmonic biasing potentials (force constant κ):

w( f (r1, ..., rN), s(k)) =
κ

2
( f (r1, ..., rN)− s(k))2. (3.38)

This umbrella potential is added to the potential U(r) so that a biased probability
distribution on the predefined path is sampled. Here, substantial overlap between
adjacent umbrella windows is important, to ensure adequate sampling of the whole
coordinate range of interest. In order to obtain the corresponding PMF, the his-
tograms of the simulated states have to be combined and the underlying unbiased
probability distribution can be reconstructed e.g. by using the weighted histogram
analysis method (WHAM) [116]. The WHAM equations have to be solved iteratively
until they reach self consistency [300]:

P(q) = ∑n
k=1 nkPk(q)

∑n
k=1 nkeβ(GK−G0)e−βw(q,s(k))

, (3.39)

e−β(GK−G0) =
∫

dq P(q)e−βw(q,s(k)), (3.40)

with the full unbiased probability distribution P(q). Interestingly, the WHAM
equations can be understood as an approximation to MBAR using histogram kernel
density estimators and an equivalence of both methods was shown for histograms
of zero bin widths [271].
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3.4.3 Hamiltonian replica exchange molecular dynamics

Many biological systems are described by rough potential energy landscapes with
multiple local minima that are separated by high barriers. Hamiltonian replica
exchange molecular dynamics (H-REMD) combines MD simulations with a Monte
Carlo method, to further improve the sampling in phase space [95]. It enables
the system if it is for example trapped by a potential well, to surpass it by simply
switching coordinates instead of drifting over the barriers, which would take a lot
of simulation time.

In this scheme a set of n regular simulations (replicas), that differ in their Hamilto-
nian, is started in parallel. After a certain amount of simulation steps, the exchange
probability between neighboring replicas, i and j, according to a metropolis criterion,
is evaluated [214]

Pacc = min

(
1,

e−β[Ui(rj)+Uj(ri)]

e−β[Ui(ri)+Uj(rj)]

)
, (3.41)

which yields correct probability distributions in the sampled thermodynamic ensem-
ble. Basically, the acceptance criterion is one if the Boltzmann weighted sum of the
replicas potential energies before the attempt (denominator), is smaller than after
the attempt (numerator), resulting in a guaranteed exchange. Otherwise, if the ex-
change is energetically unfavourable, the coordinates of the systems are exchanged
depending on the calculated probability.

Such an H-REMD technique can be combined with free energy perturbation
methods (Section 3.4.1) to improve the sampling of intermediate states to calculate
free energy differences for alchemical transformations [280, 239, 192]. In combination
with umbrella sampling approaches (see Section 3.4.2), H-REMD is used on a regular
basis to improve the convergence in the simulations [331, 194, 157].

The repulsive scaling (RS-) REMD technique can be used to study bimolecular
complexes. It is a H-REMD based method that increases the effective pairwise van
der Waals radii along the replica ladder. Thus, a physical dissociation of the ligand
is introduced while the interactions within the molecules and with the solvent are
not altered. The resulting phase space sampling of the higher replicas is improved
by avoiding local energy minima on the receptor surface, which can efficiently drive
the system into the global energy minimum (see Chapter 6) [276]. In addition to
that, a free energy difference along the physical dissociation path can be computed
using perturbation approaches like FEP, BAR or MBAR (see Chapter 7) [278].
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4 Computational Prediction of Binding
Affinities

In order to evaluate the functional relevance of putative protein complexes (see
Chapter 2), realistic binding affinity prediction is of increasing importance. Several
computational tools ranging from simple force field or knowledge-based scoring of
single complexes to ensemble-based approaches and rigorous binding free energy
simulations are available to predict relative and absolute binding affinities. In the
present chapter, an overview of such in silico methods will be given, with most of
these techniques relying on the theoretical foundations of Chapter 3. I will focus
on protein-protein complexes, although the most important approaches are also
applicable to other ligands. 1

4.1 Introduction

The interaction of proteins is of fundamental importance for basically all processes
in living systems. Most functions in a cell are mediated by the assembly of proteins
to form transient dimers or oligomers to act as enzymes, transporters, or to stabilize
the shape of the cell [232, 200]. Numerous interactions between proteins in a cell
are in principle possible but only a fraction of putative complexes and assemblies
are indeed formed and of functional relevance [141]. The associated binding free
energy of protein-protein interactions determine the stability of association and the
conditions for complex formation. Hence, a full understanding of cellular processes
requires not only knowledge of all possible protein-protein interactions but also a
quantitative insight into the structure and stability of the formed complexes [200,
224]. This also includes the effect of mutations in proteins that can modulate or
even disrupt the binding to partner proteins. Protein-protein interactions are often
mediated by reoccurring subdomains [273, 133]. Within different protein families,
these domains can differ in sequence resulting in different binding specificities
and different combinations of possible interactions. Predicting and understanding
the significance of putative domain-domain interactions requires a quantitative
understanding of protein-protein binding affinity.

1The contents of this chapter have been published in a similar form in [277].
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In recent years, the possibility to design new synthetic protein-protein complexes
with the desired function has gained significant momentum [166, 159]. One goal is
to modify existing natural proteins in such a way that the geometry and affinity of a
known protein-protein interaction may change or the interaction with a different
protein surface on another protein partner becomes possible. In the longer run,
it is desired to create completely new protein partners with programmed surface
properties to allow for new interactions with selected candidate partners [159, 130].
Such efforts may form the basis for synthetic complexes that can act as designed
molecular machines with a desired new function. A prerequisite for the successful
rational design of such interactions and new complexes is the detailed understanding
of protein-protein interaction and affinity.

The driving force for a protein binding process corresponds to the associated
change in free energy that can be related to the structural and physicochemical prop-
erties of the protein binding partners. Initially proposed by Fischer [167] the “lock
and key” concept of binding emphasizes the importance of optimal complementarity
of binding partners at the interface as the decisive element for high binding affinity
and specificity. Nevertheless, proteins and other biological macromolecules (e.g.,
RNA and DNA) can undergo various types of conformational fluctuations at physio-
logical temperatures and, hence, are not rigid objects (illustrated in Figure 4.1). Often
significant conformational changes of the binding partners upon association have
been observed leading to the induced-fit binding concept of partner proteins [167,
61]. During binding, proteins appear to induce conformational changes in the part-
ners that are a prerequisite for specific complex formation. In principle, all protein
binding processes require some conformational adaptation but these changes can in
certain cases be less than 1-2 Å for the root mean square deviation (RMSD) between
bound and unbound conformations [181]. Besides of the induced-fit concept, the
idea of a pre-existing ensemble of several interconvertible conformational states of
proteins at equilibrium has been postulated [61, 319]. Within this ensemble, there
are structures close to the bound and unbound forms and the process of binding
to partner molecules shifts the ensemble toward the bound form. The mechanism
of conformational selection versus induced-fit has been systematically studied for
many known protein-protein interactions [288]. However, every conformation is,
in principle, accessible even in the unbound state albeit with a potentially very
low statistical weight. Hence, the original induced-fit concept is a special case
of conformational ensemble selection where only the presence of a ligand gives
rise to an appreciable concentration of the bound partner structure. For an accu-
rate calculation of protein-protein binding free energies, it is desirable to account
for conformational changes and also for changes in the conformational freedom
(conformational entropy) upon binding [12, 326].

A great variety of experimental techniques is available to determine the struc-
ture of protein-protein complexes and assemblies (see Section 2.3). Protein X-ray
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Figure 4.1: protein-protein association can induce different types of conformational
changes. Conformational changes can involve side chain flips (a) indicated for a
tyrosine side chain flip in the complex of RNAseA (yellow) inhibitor (green: un-
bound structure, pink: bound structure) complex, pdb1DFJ). For a protease-inhibitor
complex (pdb1GL1), a loop refolding is observed (b, blue: unbound inhibitor; yel-
low: bound inhibitor). Besides local changes also global adaptations can accompany
binding (c) demonstrated for the bound (pink cartoon) and unbound (green cartoon)
of an RNAseA inhibitor (yellow cartoon: RNAseA).

crystallography is still the most common high-resolution technique to determine
the structure of protein complexes. However, it requires the formation of suffi-
ciently well-ordered crystals that can be difficult or impossible to obtain especially
for low-affinity transient complexes and for large assemblies containing multiple
partners. For the latter cases, recent improvements of cryo-EM (electron microscopy
under cryogenic conditions) resulted in solving the structure of many new large
and transient biomolecular assemblies achieving often an atomic or near-atomic
resolution [17, 80]. The cryo-EM method is limited to complexes above a certain size
limit (∼ 100 kD) to achieve sufficient contrast of the image relative to a noisy back-
ground but no crystals of the complex are necessary. It requires only a sufficiently
large number of object images from different viewpoints that can be combined to
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solve the three-dimensional (3D) structure [17]. Nuclear-magnetic resonance (NMR)
spectroscopy in solution can also be used for structure determination of mostly
small dimeric protein-protein complexes [121, 57]. Several NMR techniques can be
used to quantify protein-protein affinity and also help in modeling complexes if the
structure of partner proteins is known [337].

A significant fraction of protein interactions are mediated by protein domains and
for many domain-domain pairs, 3D structures are available and also data on the
range of domain-domain affinities. In such cases, the prediction of domain-domain
interaction affinities is often sufficient to estimate the affinity of whole complexes.
Databases of protein domain-domain interactions such as 3DiD [225], SCOPPI [322],
or PIBASE [65] are available that allow identification of interfaces and are helpful to
predict the range of binding affinities for domain-mediated protein complexes.

Despite the great progress in recent years, the experimental determination of
protein-protein complexes remains a challenging task and it will be impossible to
determine experimentally all putative and transient protein-protein complexes of a
cell in the foreseeable future [133, 285]. An additional difficulty arises because many
protein-protein interactions involve conformational changes or even the coupled
folding or refolding of disordered segments. In particular, transient protein-protein
interactions in cells frequently include disordered protein segments. Such cases
complicate both the structure prediction of complexes but also the prediction of
binding affinities.

Computational prediction of protein-protein binding affinity typically requires the
three-dimensional (3D) structure of the complex or at least a model of the complex
structure. As the first part of the present review, we will first briefly outline the
computational methods to generate structural models of protein-protein complexes
(see also Figure 4.2).

A second prerequisite for evaluating methods to calculate and predict binding free
energies are accurate experimental binding affinity data. Several different methods
can be used to measure experimental binding equilibria (see Section 2.4) and one
can distinguish between methods that require the separation of the bound complex
from the isolated partners such as gel filtration, electrophoretic separation, or ultra-
centrifugation approaches or methods that directly measure the concentration of
bound and unbound proteins [94]. Methods based on the separation of complex
and unbound partners require long lifetimes of the complex (small dissociation rate
constants) beyond the time scale of the experiment. In direct methods, the complex
formation can be detected by changes in heat capacity of the solution upon varying
partner concentration (e.g., in isothermal titration calorimetry [175]) or optically
using for example an associated change in absorbance or fluorescence [94, 22]. In
the surface plasmon resonance technique, one partner is immobilized on a sensor
surface. Addition of a partner protein that binds to the sensor surface results in a
change of the refractive index that can be optically detected [320]. With the method,

30



4.1 Introduction

Figure 4.2: Computational protein-protein docking starting from separate unbound
partners typically results in several putative sterically possible complex geometries.
Task of a scoring step is to identify the most realistic geometry and to estimate the
relative binding affinity of putative docked geometries.

it is also possible to analyze the time dependence of binding and to determine kinetic
constants of protein-protein association and dissociation. For a critical comparison
of methods to predict protein-protein binding affinities, the accuracy and consis-
tency of the experimental reference data are of critical importance. It has been found
that experimental protein-protein binding affinities can depend significantly on the
experimental method [150, 153]. In addition, binding data for protein complexes are
obtained under different experimental conditions (variation in ionic strength, pH,
and temperature) whereas computational approaches typically assume the same
conditions for all evaluated complexes. However, curated protein-protein binding
affinity benchmark sets are available for which also structures of the complexes
and the unbound protein partners have been determined [150, 153, 115]. These sets
can serve as references for evaluating computational efforts; however, one should
always be aware of experimental conditions and the method for binding affinity
determination compared to the computational setup.

In the present review on calculating and predicting protein-protein binding affin-
ity, we will first give a brief overview on modeling and predicting the structure
of protein-protein complexes. These methods can also be used to predict which
proteins in a cellular system may interact [318]. In the second and third sections,
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we will focus on rapid approaches to rank predicted complexes and to estimate
binding affinities based on single complex structures or ensembles of structures
with a focus on force field-based methods. In the last sections, we introduce the
application of ensemble-based methods and rigorous free energy simulations either
for calculating relative binding free energies, for example, for predicting the effect
of mutations on binding affinity or to calculate the absolute binding free energy
of protein-complexes. As will be discussed below, such methods can also include
the contribution of conformational changes to binding. The last sections will also
include the application of different advanced sampling approaches and a discussion
of the possibility to use such approaches for systematic applications of evaluating
docked protein-protein complex geometries and possible future developments.

4.2 Predicting the structure of protein-protein complexes

The prediction of the binding affinity of putative protein-protein interactions is
related to the computational modeling of the structure of protein-protein complexes
and the ranking of possible predicted solutions [152, 150]. Besides experimentally
determined complexes, one can distinguish two main computational techniques
to provide structures of putative protein-protein complexes. First, computational
protein-protein docking methods can be considered as “ab initio” approaches for
generating complex geometries although in practice experimental (or other bioinfor-
matics) data can be included to restrict the search for possible solutions [12, 326, 285,
29]. In addition, the de novo design of protein-protein interactions requires docking
or modeling of new protein-protein interfaces [166]. Second, for the majority of
natural stable protein-protein interactions one often finds homologous complex
geometries in the data-base of experimentally determined complexes [172]. Hence,
many interactions especially those mediated by reoccurring protein domains can be
modeled based on similarity to an already known interaction [115]. In the following,
we briefly introduce existing protein-protein docking approaches and also discuss
template-based protein-protein complex prediction.

4.2.1 Protein-protein docking

The aim of computational protein-protein docking is the prediction of the structure
of protein-protein complexes based on the structure of the isolated protein partners
(Figure 4.2). The great majority of protein-protein docking algorithms use optimal
complementarity as the main target criteria for predicting interactions [303]. A
variety of computational methods exist to efficiently generate a large number of
putative binding geometries typically with an initial systematic docking search
keeping partner structures rigid. Subsequently, one or more refinement and scoring
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steps of a set of preselected rigid docking solutions are added to achieve a closer
agreement with the native geometry and to recognize near-native docking solutions.
Among the most common are geometric hashing methods to rapidly match geo-
metric surface descriptors of proteins [206, 134] and fast Fourier transform (FFT)
correlation techniques [326, 303, 155, 40] to efficiently locate overlaps between com-
plementary protein surfaces. Alternatively, molecular dynamics (MD), Brownian
dynamics, Monte Carlo, or multi start energy minimization can be used to generate
locally optimized protein-protein docking complexes [326]. To enhance the speed,
often coarse-grained (CG) instead of atomistic protein models are used. These
methods have in principle the capacity to introduce conformational flexibility of
binding partners already at the initial search step but are, nevertheless, slower than
FFT-based correlation methods or geometric hashing. Some approaches included
conformational changes during docking already during the initial search includ-
ing soft collective normal mode (NM) directions as additional variables during
docking by energy minimization [327, 329] or in using swarm optimization [219].
If experimental data or data based on bioinformatics analysis are available, this
information can be included either directly during the docking search, for example,
in the HADDOCK, [73] ATTRACT [329], or RosettaDock [44, 203] approaches, or
can be used to screen and rerank the docking solutions obtained from rapid FFT-
based methods.37 The final stage of a protein-protein docking protocol consists
of a structural refinement at atomic resolution of the binding partners and often
rescoring of the various docking solutions. Often the final scoring step employs
potentials that are intended to also provide an estimate of the binding affinity of
the predicted complex (discussed below). protein-protein docking performance
is regularly evaluated in the community-wide blind docking prediction challenge
Critical Assessment of PRedicted Interactions (CAPRI). [181, 180, 182]

4.2.2 Prediction of protein-protein complexes based on homology to
known structures

Due to the growing number of solved protein-protein complex structures, it is often
possible to generate a structural model of a complex by using a known complex
structure as a template [171]. In fact, it has been found that the majority of stable
natural protein-protein interactions can in principle be modeled by a template-based
approach [172]. The main task is then to find an appropriate and realistic alignment
of the target protein sequence to the template sequence. In combination with an
accurate prediction of the binding free energy for a template-based complex model,
one could then predict if the putative protein-protein interaction is likely to occur.

In general, to enhance the impact of protein-protein docking in structural biology,
it is highly desirable to be able to use partner protein structures obtained by compar-
ative (homology) modeling. The accuracy of such comparative models depends on
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the correct alignment of target and template sequence. Even in cases of significant
average target-template similarity, the quality of the alignment is often not uni-
form along the whole protein sequence, for example, due to insertions or deletions
in the aligned sequences which can result in structural inaccuracies. Overlap of
such inaccurate structural segments with the protein region in contact with binding
partners may interfere with the possibility to produce near-native complexes using
template-based modeling or rigid docking methods. This is also reflected in the fact
that docking cases that involve homology modeled protein partners belong to the
most difficult cases in the CAPRI docking challenge. [181, 182]

4.3 Force field and knowledge-based scoring methods for
ranking and to predict binding affinities

The comparison of known native protein-protein interfaces indicates typically a
well-packed interaction region with high shape complementarity between protein
partners and few cavities some of which might be occupied by water molecules
[53, 137, 16, 15]. Polar side chain or backbone groups buried at the interface are
forming hydrogen bonds or other polar contacts. Assuming that both nonpolar,
as well as polar contacts, contribute on average favorably to protein-protein inter-
actions one early simple idea is to relate binding affinity to the size of the buried
solvent accessible surface area (buried SASA: BSA) upon complex formation. The
BSA is obtained by subtracting the SASA of the complex from the SASA of the two
protein partners. Surprisingly, the BSA without considering the detailed nature of
the interface correlates already quite well with the experimentally measured binding
affinity (R ∼ −.55), if one excludes structures that undergo large changes upon
complex formation. [153, 15] More sophisticated physics-based or knowledge-based
approaches often result in correlation coefficients that are not much larger. How-
ever, interestingly, in systematic docking searches, one frequently obtains incorrect
solutions with similar BSA as the near-native docked complexes. Often for pairs
of proteins, one can generate complex geometries that have a similar or larger BSA
than the native geometry. It indicates that the assumption that polar and nonpolar
interface regions all contribute on average favorably to binding might be reasonable
for the native interface but not for alternative non-native interfaces. Hence, these
incorrect interfaces are either not well packed or contain other unfavorable contacts
that prevent favorable association. Recently, it was also found that residues outside
of the interface (defined by the BSA) can contribute to binding [154]. In an extension
of the BSA approach for binding prediction, Vangone and Bonvin [304] suggested
a contact-based scoring with optimal weights on various types of contacts at an
interface (e.g., polar-polar, polar-nonpolar, etc.) that showed improved correlation
with experimental binding affinity data on a benchmark set (R ∼ −.73).
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binding affinities

More sophisticated statistical- or knowledge-based potentials can be designed
that either are based on the statistics of residue or atom contacts at interfaces or
can even include the distance and orientation of residues (atoms) around inter-
faces. As the term “knowledge-based” indicates such potentials are extracted from
known protein-protein complexes. The underlying concept is to relate the observed
frequency of atom-atom or chemical group-group contacts (or distances) to the corre-
sponding expected frequency assuming a random distribution. Overrepresentation
or underrepresentation of a given pair of atoms or residues relates to favorable
or unfavorable interactions. In most cases, the inverse-Boltzmann statistics with
an appropriate reference state is used to derive an effective potential in terms of
group distances and possibly also group-group orientation. The idea to extract
effective interaction energies between groups or atoms based on contact frequen-
cies in known protein structures dates back to Tanaka and Scheraga [295] and was
further pioneered by Miyazawa and Jernigan [218] as well as Sippl and Weitckus
[283]. For evaluating protein-protein complexes, a variety of knowledge-based
statistical potentials have been designed in recent years [90, 217, 334, 54, 34]. The
potentials differ in the resolution of the interface description. Several potentials
are based on interatomic distances and possibly also orientation [334, 190, 138, 186,
191] or representing the protein on the level of whole residues or chemical groups
[332, 47, 74, 260]. The potentials also vary in the number of atom or pseudo atom
types or the reference state from which the expected contact or distance proba-
bility for atom-pairs are derived. Although mostly used for scoring and ranking
docked protein-protein complexes, statistical potentials can also be optimized for
predicting binding affinities. In this latter case, one should keep in mind that many
contributions to binding ranging from solvent effects, restriction of conformational,
rotational, and translational mobility of partners (that can all be different for individ-
ual complexes) are all averaged over many (training) complexes and merged into
atom (or group) pair potentials to estimate binding affinities of predicted complexes.
In additon, typically a knowledge-based scoring includes only interaction terms
between partners and does not account for possible internal energy changes of each
partner. Given these approximations, it is surprising that often quite reasonable
correlations to experimental data are observed [304, 334].

Besides using knowledge-based statistical potentials for ranking of docked com-
plexes, it can also be based on a molecular mechanics (MM) type force field descrip-
tion of binding partners [73, 44, 263]. Similar to the statistical potentials discussed
above, these scoring potentials are mostly used to provide a relative ranking of
single predicted complex structures but can also be optimized to predict the binding
affinity of protein-protein complexes [115, 182]. For ranking, various terms of the
force field are weighted to give an optimal correlation to experimental data on a
training set of complexes [9, 67]. The majority of force field scoring potentials neglect
any intramolecular energy changes of the binding partners and therefore do not
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include changes in intramolecular interactions or changes in conformational entropy
(e.g., restriction of conformational fluctuations upon binding).

For a binding process, one can, however, distinguish several energetic and entropic
contributions. Binding results in an interaction between binding partners that can
involve electrostatic and van der Waals intermolecular interactions. The partners
will also change their average conformation (see Figure 4.1) that is accompanied by a
change in intramolecular interactions which is typically an unfavorable contribution.
Additionally, the interaction of each partner with the solvent (and surrounding ions)
will change upon complex formation. For the change in solvation, one typically
distinguishes between a nonpolar contribution (related to hydrophobic effect) and
a polar (electrostatic solvation or reaction field) contribution [114, 66, 89, 311]. For
rapid evaluation of single complex structures, usually explicit solvent molecules
are not included. Hence, solvation contributions are calculated using an implicit
solvent model (see Figure 4.3).

It is more realistic to represent a complex geometry not by a single structure but
by an ensemble of relevant conformations and to estimate binding affinities from the
evaluation of the ensemble of conformations. In the linear interaction energy (LIE)
method, this is achieved by taking appropriately weighted averages of interactions
between partners from MD simulations [14, 123]. More frequently, approaches are
used that involve a reevaluation of explicit solvent MD trajectories after replacement
of the surrounding environment by an implicit solvent model (see next paragraph).

4.4 MM-Poisson-Boltzmann/surface area and
MM-generalized Born/surface area ensemble-based
"endpoint" free energy methods

In recent years, full atomic resolution MM approaches for the binding partners
combined with an implicit continuum solvent model have been applied to evaluate
protein-protein complexes. In contrast to the scoring of single complexes, an en-
semble of complex conformations is evaluated in MM Poisson-Boltzmann/surface
area (MM-PBSA) or MM-GBSA (using the generalized Born method instead of the
Poisson-Boltzmann) approaches. In most cases, the ensemble is generated using
MD simulations with an explicit solvent representation. To limit the computational
demand and to also keep a narrow distribution of conformations near an initial state,
usually, simulations of a few nanoseconds are performed [311]. Due to the large
energy fluctuations of the explicit solvent molecules, the reanalysis of the trajectory
(ensemble) is performed after removing the explicit water molecules (sometimes
interface waters are retained) employing an implicit solvent model.

For each evaluated complex structure, the mean partner interaction energy can be
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Figure 4.3: Evaluation of protein-protein complexes based on a continuum solvent
model during MM-PBSA or MM-GBSA calculations. The binding process consists
of an interaction contribution indicated in the lower panel (interaction energy is
calculated as the difference in the vacuum energies of the complex and the separate
partners). The transfer of the partners and the complex into the aqueous environ-
ment (upper panel) adds a solvation contribution (also calculated as the difference
between complex and partner contributions). The solvation part consists typically
of separate cavity terms and van der Waals interaction with the solvent plus an elec-
trostatic reaction field (solvation) contribution either based on the generalized Born
(GB) method or based on solving the finite-difference Poisson-Boltzmann (FDPB)
equation numerically.

calculated. In the most basic single trajectory approach, this is achieved by taking
the ensemble average energies of the complex and subtracting the corresponding
energies of the partners from the same trajectory. This approximation implies that
ligand and receptor do not undergo significant conformational changes upon bind-
ing and changes in intra-molecular energies can be neglected. The mean interaction
energy consists of pairwise electrostatic Coulomb interactions and electrostatic (po-
lar) solvation contributions obtained using the finite-difference Poisson-Boltzmann
or generalized Born (GB) equations. Nonpolar solvation (or desolvation) is usually
calculated from the BSA surface upon complex formation using an empirical surface
tension parameter that represents both cavity creation and van der Waals interaction

37



4 Computational Prediction of Binding Affinities

of the protein with the solvent. Alternatively, the nonpolar part can also be split
further into a surface area dependent cavity or hydrophobic term and a change in
van der Waals interaction between proteins and solvent. The latter contribution
can be estimated from a solvent grid representation around the complex [311] or
a surface integral approach [328]. To include changes in intramolecular contribu-
tions, it is possible to run MD simulations not only for the complex but also for
separate (unbound) partners and evaluate each ensemble separately. However, the
single trajectory approach is used much more frequently and gives typically better
convergence of the mean energies due to the cancellation of the intramolecular
contributions. Nevertheless, interaction energies obtained from MM-PBSA or MM-
GBSA can show significant statistical errors due to numerically small interaction
energies that need to be calculated from the subtraction of numerically large and
slowly converging mean energies (of the complex and the individual partners).

In addition to interaction energies, changes in the conformational entropy of
binding partners can be estimated from an NM analysis of the complex and the
isolated partners. This term is often neglected due to its large computational costs or
replaced using alternative approaches based on the energy fluctuations within the
ensemble or a quasi-harmonic (QH) analysis of the trajectories. Methods have also
been developed to just obtain the change in translational and orientational (external)
entropy of one partner to the other [52, 23].

MM-GBSA and MM-PBSA have been used both for the calculation of absolute
protein-protein binding affinities and to evaluate docked protein-protein complex
structures (reviewed in Reference [311]). For example, Gohlke et al [104, 103]. inves-
tigated the Ras-Raf and Ras-RalGDS complex and reported binding free energy in
good agreement with the experiment, however, depending on how conformational
entropy was estimated and with errors of about several kcal/mol. MM-GBSA and
MM-PBSA were successfully used in several studies for reranking protein-protein
docking solutions [148, 75, 45, 197, 187]. A very systematic study to predict the
free energy of binding and to score docked complexes was recently performed by
Chen et al [45]. The authors compared various force fields, protocols for performing
MD simulations and using the Poisson-Boltzmann or the GB solvation model (not
including conformational entropy effects) for 46 protein-protein complexes. The
highest correlation between the predicted binding affinities and the experimental
data was −0.64 using MM-GBSA, a low interior dielectric constant of 1 and the
AMBER ff02 force field. This correlation was better than using MM-PBSA for which
the highest correlation was −0.523.

Often water molecules form specific water-mediated contacts at protein-protein
interfaces that may not be accurately represented in an implicit solvent model
[51]. It is straightforward to include interface water molecules in the calculations
and only treat the bulk water as a dielectric continuum [197]. The inclusion of an
explicit water model has been proven to give good results in various protein-protein
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binding affinity predictions for single complexes (e.g., Ulucan et al [301].). For
example, the correlation of MM-GBSA results to experimental binding affinities
of 20 native protein-protein complexes was shown to increase significantly (up to
30%) by the inclusion of 30 explicit water molecules at the binding interface [197].
On a smaller test set of four proteins, crystal water molecules were added in the
evERdock approach that improved water-mediated contacts so that the identification
of near-native binding decoys could be improved [293].

The changes in conformational entropy upon protein-protein complex formation
are usually neglected in the MM-PBSA evaluation due to the large computational
costs to perform NM analysis on protein-protein complexes and the isolated partners.
However, alternative methods to estimate the conformational entropy contribution
have recently been introduced and tested also for evaluating predicted protein-
protein complexes. In the interaction entropy (IE) approach, the protein-ligand or
protein-protein interaction energy fluctuations during the MD trajectories are used
to estimate the conformational entropy [76]. This method does not allow to calculate
absolute entropy values but is applicable to calculate relative entropy changes, for
example, after protein-ligand binding. As no extra computational effort is needed,
it has been concluded that for receptor-ligand binding affinity prediction using
IE is superior to the standard NM analysis for estimating entropy effects. IE has
been successfully applied in studies in combination with MM-PBSA and MM-GBSA
calculations of protein-protein [292, 291] or protein-ligand [76, 291] binding affinities.
Interestingly, quite substantial differences in the resulting free energies of binding
using NM and IE were encountered in several studies [76, 291, 163]. In a recent
study of Sun et al [291]., entropy effects on the performance of endpoint methods
of over 1,500 protein-ligand systems were assessed. The best correlation to the
experimental binding affinities was gained with IE, whereas the absolute binding
free energy values had the highest correspondence to experimental values using NM
calculations. Recently, however, Kohut et al [163]. proposed that the reproducibility
of IE is less robust than that of NM or QH, especially for flexible systems. The
calculated entropy value is mainly determined by the highest spikes of interaction
energy and it is argued that the calculated entropies are difficult to converge as the
simulations are prolonged. Aldeghi et al [8]. also found a higher sensitivity of the
IE term to the simulated ensemble than the other MM-PBSA terms for three sets of
bromodomain-inhibitor pairs. Hence, further testing could be useful to check the
robustness of the IE approach. In a study of 20 protein-protein systems using IE
with MM/GBSA, the mean absolute error to experimental binding affinities could
be substantially reduced by optimizing the residue type-specific dielectric constants,
the errors were especially lower than with NM analysis using a standard dielectric
constant of 1 [187].

Formally, the solute entropy change during association can be split into an ex-
ternal entropic contribution due to the reduction of motion in external degrees
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of freedom (relative position and orientation of ligand and receptor) and internal
entropy (conformational) upon complex formation. Although a full decoupling of
external and internal entropy is not in general possible, one can still compute the
lowest upper bound of the external entropy [23]. The number of configurations
needed to obtain converged results is, however, quite high using the approach with
simulations of over 1 µs required for a Barnase-Barstar complex. Furthermore, an
external entropy correction alone has been shown to not necessarily improve the
correlation to experimental binding affinities for protein-ligand systems [213].

4.4.1 Mutations influencing protein-protein binding affinities

Mutagenesis of residues at protein-protein interfaces has demonstrated that the
contributions to binding affinity are not uniformly distributed but can often be
attributed to a small number of residues called hot spots [156, 249]. For protein
engineering, it is of significant interest to predict changes in binding affinity of
protein-protein complexes due to mutations and to identify important residues for
the interaction (hotspots). Several approaches based on just single complex struc-
tures are available to estimate the effect of interface mutations (recently reviewed in
[100]). The ensembles-based MM/PBSA or MM/GBSA approaches can also be used
to identify hot spots and to calculate the change in the binding free energy upon
mutation of interface residues [282]. The hot spots of 15 protein-protein complexes
were calculated recently with MM/PBSA using residue type-specific dielectric con-
stants (11 for charged residues and 7 for nonpolar and polar residues).77 In this
study, a mean SE of 1.1 kcal/mol was achieved in 210 mutations after geometry opti-
mization and subsequent MD simulations in explicit solvent. Using an extension of
the MM/PBSA method with residue-specific dielectric constants, Petukh et al [246].
achieved a high correlation (correlation coefficient of −0.62) with experiment for a
set of 1,300 mutations in 43 protein-protein complexes (several other applications
are reviewed in Reference [311]).

Besides estimating binding free energy changes due to mutations using single
complex conformations or changes in mean interaction energies obtained from the
MM/PBSA or MM/GBSA methods, it is also possible to perform alchemical trans-
formations to mutate residues in silico. In alchemical free energy simulations, one
represents the selected amino acid side chain by two force fields, one representing
the wild type (State A) and the other the mutated residue (State B). During a series of
MD simulations, the force field for State A is switched off (decoupled from the inter-
action with other parts of the system) whereas the force field of State B is switched
on. The changes in free energy can be calculated by integrating the generalized force
along the switching pathway (thermodynamic integration [TI] [160]), free energy
perturbation (FEP) [338] or using alternative methods such as Bennett acceptance
ratio (BAR) method (see Section 3.4.1 for additional details on these methods) [24].
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To obtain the effect of a mutation on binding affinity, the transformation needs to be
performed in the complex and for the unbound solvated partner. The advantage
of the approach is that all energetic as well as entropic contributions that may in-
fluence the change in binding affinity are accurately included (within the limits of
a molecular mechanic force field description of the system). The disadvantage is
the typically higher computational cost compared to the above d-scribed endpoint
methods. Due to methodological progress and increased computational power,
alchemical free energy methods are increasingly being used to study the effect of
mutations on protein stability and protein-protein binding [98, 254, 161, 99, 216,
193]. Although typically performed in explicit solvent, it is also possible to perform
alchemical transformations in implicit solvent [239] with computational costs simi-
lar to MM/PBSA but avoiding the endpoint approximations inherent to endpoint
ensemble approaches. A recent systematic assessment of more than 100 mutations
(including charge changing mutations) in four protein-protein complexes resulted
in better performance and higher correlation of the alchemical FEP approach (root-
mean-square error [RMSE] = 1.2 kcal/mol) than MM/GBSA (RMSE = 1.5 kcal/mol)
in reproducing experimental affinities [56].

4.5 Rigorous free energy approaches to calculate absolute
binding free energies

4.5.1 Analyzing protein-protein binding by multiple simulations and
advanced sampling approaches

In principle, MD simulations allow studying protein-protein association at full
atomic detail, including full flexibility of binding partners and explicit inclusion
of surrounding water molecules and ions [148, 75]. The most straight forward
approach is then to start from separate protein molecules and follow binding during
sufficiently long MD simulations. Indeed, in early applications starting from sepa-
rate components (in bound conformation) of the Barnase-Barstar complex relatively
short MD simulations (< 100 ns) were sufficient to observe complex formation to
form a complex in close agreement with the native geometry [5]. However, such
association simulations do not allow direct extraction of the associated binding free
energy. To obtain the free energy of binding from unrestrained simulations requires
both association to the native binding site but also sampling of dissociation from the
bound complex. The dissociation constants of typical protein-protein complexes are
in the nanomolar range and the dissociation rate can reach minutes or even larger
times much beyond the timescale of current MD simulations. Hence, it seems that
direct extraction of binding free energies from counting association and dissocia-
tion events during sufficiently long MD simulations is in principle only possible for
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weakly bound complexes with fast association and dissociation characteristics. How-
ever, several approaches have been developed to overcome this sampling dilemma
in recent years. Using a large number of simulations starting from various initial
placements of the Barnase-Barstar system, the Noe group observed multiple binding
events [248]. With a further adaptive selection of new starting configurations and
addition of a biasing potential to promote also dissociation of the bound complex in
Hamiltonian replica exchange (H-REMD) simulations [95] it was possible to sample
sufficient association and dissociation events to generate a Markov model for the
binding process [248]. Such Markov model allows the extraction of kinetic rates
for transitions between various transient states of the system and also of the asso-
ciated thermodynamic quantities [31, 50]. It includes not only the sampling of the
native binding but allows also the characterization of alternative and intermediate
encounter binding states. For the Barstar-Barnase system, the kinetic rates and the
free energy of binding could be extracted in good agreement with experimental data.
As an alternative to multiple unrestrained simulations to obtain a Markov model for
the binding process, it is possible to use weighted ensemble (WE) methods to study
binding processes along a preset reaction coordinate (RC) [131, 336]. Briefly, in this
technique, the space along one or more RCs is discretized in intervals, and simula-
tions are distributed along the coordinates such that each interval is populated by a
fixed number of simulations. Each simulation is assigned a statistical weight that
can be transported to neighboring intervals and new simulations are then started
or eliminated such that the total statistical weight and the number of simulations
per interval remain constant. The WE technique allows eventually the extraction
of both kinetic and thermodynamic data along the binding RC [336]. Although so
far only applied to study small-ligand binding to proteins, [336, 339] in principle, it
could also be used to study protein-protein binding.

Finally, the idea of destabilizing the bound state with an added biasing potential
during otherwise unrestraint MD simulations has been utilized in recent simulated
tempering simulations applied to a set of six different protein-protein complexes.125
During the simulated tempering, different levels of the biasing potential that weak-
ens the protein-protein interaction are applied. Still, extremely long MD simulations
in explicit solvent were required (> 100 µs) to allow reversible association and
dissociation of the protein-protein complexes [240]. It is also possible to extract
kinetics and binding free energies from these simulations. Despite the rapid in-
crease in computational resources, it is, however, unlikely that such methods will
be used as routine methods to predict protein-protein binding affinities in the near
future. One should keep in mind that the costs for the electricity to run such simula-
tions alone exceed by far any experimental effort to determine the corresponding
protein-protein binding affinities. An approach using a restraining potential to avoid
trapping of protein-protein complexes in nonspecific transient states but at the same
time restraining the partners not to separate has been introduced to refine docked
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complexes [238]. Different levels of the biasing potential are applied in an H-REMD
simulation with one replica running under the control of the original force field
allowing rapid identification of putative complex geometries and possibly also an
estimate of the binding free energy.

4.5.2 Binding free energies from advanced sampling including
geometrical restraints

The complex formation of two partner molecules leads to the restriction of the trans-
lational and rotational degrees of freedom of the partner molecules relative to each
other (Figure 4.4). In addition, the conformation and conformational freedom of the
partners can change and the interaction with the surrounding solvent and ions is
affected. Finally, van der Waals and electrostatic interactions may stabilize or desta-
bilize a bound state. All these contributions influence the affinity or binding free
energy of the complex. In binding free energy simulations, one ultimately aims at
calculating free energies of binding including accurately all the above contributions.

Using Monte Carlo or MD simulations, it is indeed possible to calculate these
contributions rigorously and to obtain absolute binding free energies of protein-
protein complex formations. In principle, an alchemical transformation pathway
to annihilate one partner protein in the complex and the unbound state is possible
(as described in the previous section). The difference in free energy changes for
these two calculations (and inclusion of standard state conditions) gives the absolute
binding free energy of the two proteins. However, the annihilation of a complete
protein force field in an explicit solvent simulation box may suffer from insufficient
convergence. The resulting binding free energy is a small number obtained from the
subtraction of large free energies of annihilating (or creating) the protein force field
in the bound and unbound states.

Instead of an alchemical pathway, it is also possible to use a spatial coordinate to
dissociate (or associate) a complex during an MD or MC simulation and record the
associated free energy change. Since dissociation of a high-affinity complex typically
does not occur during unrestrained MD simulations, a key element is to induce such
dissociation (and/or association) along the preselected RC. In the majority of cases,
this RC is a distance, for example, between the center of mass of binding partners or
involving other subsets of atoms near or around the binding sites on the partners.
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Figure 4.4: Binding free energy calculations including geometrical restraints. The
conformational flexibility as well as the relative rotational/axial degrees of freedom
of the binding partners are restrained during the calculation of the potential of mean
force (PMF) along a separation coordinate (typically a distance r). This limits the
necessary sampling of relevant states during the PMF calculation (third row). The
contributions of the restricted mobility can be calculated at the endpoints (bound and
fully separated states) of the PMF simulation using either analytical or free energy
perturbation (FEP) methods. The absolute binding free energy between the unre-
strained proteins ∆Gbind (top row) is calculated by accounting for several free energy
contributions through the illustrated thermodynamic cycle. It requires the separate
calculation of ∆Gcon f (site,bulk) (second row), orientation ∆Gorient (site,bulk), and
direction of separation ∆Gaxial_site (third row).
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By adding a biasing potential (umbrella potential) along this RC during the MD
simulations, it is possible to induce dissociation or guide association of the complex.
In most applications, this is achieved in discrete steps by adding a quadratic umbrella
potential with reference values for the RC change in steps of 0.5-2 Å in the case
of a distance RC. The weighted-histogram analysis method [169, 286] or related
algorithms are then used to calculate a potential of mean force (PMF) along the
RC. This PMF represents the free energy change associated with the dissociation
or association of the partners along the RC. Sufficient sampling of relevant states
within each umbrella window and overlap of sampled states between neighboring
windows is of critical importance for convergence of the calculated free energy
profile [161, 194, 49]. Significant improvements can often be achieved by coupling
umbrella sampling with H-REMD allowing exchanges of sampled states between
separate US windows [194, 164, 62]. Another possibility is to calculate first an
approximate PMF and add this to bias the simulations along the RC to smooth the
effective interaction for calculating a precise PMF in a second step or iteratively in
several steps [331]. Alternatively, it is possible to use umbrella integration, [149]
metadynamics, [59, 64, 177] or to apply an adaptive force (ABF) [59, 64] along the RC
to offset the effective interaction between partners. In the case of metadynamics, this
is achieved by adding a series of biasing potentials in the form of Gaussian functions
along the RC [177]. The process is continued until a uniform diffusive sampling
along the RC is observed. The added sum of Gaussian biasing potentials represents
the free energy change along the RC. In the ABF approach, the added biasing force
along the RC can be integrated to obtain an associated free energy change. Another
recent approach to efficiently obtain free energy changes for reversible dissociation
and association of a protein-protein complex is the perturbed distance restraints
approach [286]. In this case, the bound and unbound states are characterized by
different sets of distances that are included as distance restraints, and a coupling
parameter lambda is employed to transform between the sets of restraints. The
free energy along the coupling parameter can be extracted by TI or BAR methods
and H-REMD can be used to improve the convergence of the binding free energy
calculation [244].

The calculation of the PMF along an RC for dissociating a complex without any
other restraints up to a state where the interaction of the partners can be neglected
gives directly the free energy of binding (after accounting for standard state condi-
tions of the binding partners). However, complete freedom of the conformation and
relative orientation of the binding partners means also that to achieve converged free
energy results sufficient sampling of relevant states at every position along the RC
is required. This includes all possible orientations, placements, and conformations
within each window in case of umbrella sampling. The convergence of calculating
the free energy of dissociation/association along an RC can be enhanced by restrict-
ing the relative orientation and conformational freedom of the binding partners.
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Woo and Roux [324] devised a method by using a series of simulations including
restraints on the spatial arrangement and conformation of the binding partners to
further reduce the necessary sampling at every step of the PMF simulation (Figures
4.4 and 4.5).

Figure 4.5: Illustration of the rotational and axial angles that are typically used to
restrain the rotation of one partner and to restrain the axial placement (relative to
the second partner) in PMF-based free energy simulations. For the definition, three
centers in each partner need to be selected (indicated as blue and green spheres).
These can be centers-of-mass of groups of atoms. The three Euler angles α, χ,
and γ are used to restrain the rotation of one partner, and the two axial angles θ
and φ restrict the direction of r to separate the protein partners. Additionally, the
conformation of both partner proteins is restrained, preferably via root mean square
deviation (RMSD) restraints to a reference structure. The distance r is typically used
as a reaction coordinate for the PMF calculation to induce dissociation (or guide
association) of the complex.

The contributions due to restricting orientation and placement as well as confor-
mation need to be calculated only at the endpoints of the dissociation/association
process (bound state vs. noninteracting separated state). Hence, much fewer states
need to be sampled within each US window resulting in enhanced convergence
of the PMF calculation. The restriction of orientation and axial placement in the
separated state can be calculated analytically whereas commonly the FEP approach
is employed to obtain the corresponding contributions in the bound complex (see
Appendix A.1 for further details).

The contribution due to restriction of the conformation of the partners typically
using a restraining term based on the RMSD of partners from a reference conforma-
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tion is more difficult to estimate. Frequently, a single-step perturbation approach
is used with an unrestrained simulation of the isolated partners and the complex
as a reference and treating the conformational restraining potential as a (single-
step) perturbation. The treatment assumes that an unrestrained simulation samples
all relevant conformations in case of the complex but also for the unbound part-
ners. If significant conformational changes are associated with complex formation
(e.g., refolding processes), this may not be sufficient to estimate the restriction of
conformational space due to binding. More accurate but also more demanding is
the possibility to perform free energy simulations along an RMSD coordinate to a
reference conformation [324].

Free energy calculations based on PMFs along a spatial (not alchemical) coordinate
have been widely used to calculate absolute binding free energies [49]. However,
most of these applications focused on drug binding, ion binding, or other small
organic molecules binding to biological macromolecules. Typically, such PMF
simulations are performed in explicit solvent that results in large system sizes and
also requires long simulation times to achieve reasonable convergence. Only recently,
applications to calculate protein-protein affinities have been published [244, 119,
120].

These examples indicate that the methodology, in principle, allows accurate
calculation of protein-protein binding free energies if the bound complex structure is
known. In practice, it is, however, desirable to use accurate free energy calculations
to predict if a given docking geometry or designed interaction is realistic and to
predict the affinity of the predicted interaction. Since PMF simulations in explicit
solvent can take several days for a single binding mode depending on the system size
an application for systematic evaluation of many docked protein-protein complexes
is out of reach with current resources. The representation of both binding partners
by a CG model is one possibility to drastically reduce the computational demand
[208]. This was indeed successfully employed on T-cell receptor interactions with
MHC-peptide complexes [208]. However, one should keep in mind that a CG model
misses many details of intermolecular interactions such as hydrogen bonds and
several conformational degrees of freedom are merged into effective interaction
potentials. The agreement with experiment will in general dependent on how it is
parameterized with respect to experimental binding data or effective interactions
between CG centers.

Instead of using an explicit solvent representation, it is also possible to use an
implicit, for example, GB, solvent model during US-based binding free energy sim-
ulations at atomic resolution. On modern graphical processing units (GPUs), GB
simulations can be performed very efficiently. Due to the instantaneous solvent
response (at every time point in equilibrium with the solute structure) and the possi-
bility to use a low viscosity, it also allows for faster convergence than explicit solvent
simulations (in each US window). In a recent study, it has been demonstrated that it
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is possible to directly employ such binding free energy simulations to score a reason-
able set of 50 decoy complexes for 20 test complexes within about a day on a GPU
cluster (see Chapter 5) [279]. The calculated binding free energies for the near-native
complex geometries were in reasonable agreement with experiment. Additionally,
an improved ranking of near-native docking solutions compared to simple single
complex structure evaluation after energy minimization or short MD simulations
was observed [279]. The study demonstrated the feasibility for systematic eval-
uation of predicted complexes based on calculated binding free energies instead
of single point interaction, knowledge-based scores, or mean interaction energies.
Further developments of the approach that preferably employ an explicit solvent
representation are desirable for evaluating predicted complexes and allowing a clear
judgment if a given geometry is thermodynamically stable or may represent only a
transient state or represent an unfavorable binding geometry.

4.6 Conclusion

In recent years, the number of experimentally determined protein-protein complex
structures and structures of large multiprotein assemblies has grown rapidly. In
addition, bioinformatics data, data on residue conversation at putative interfaces,
low-resolution experimental data, and the increasing number of protein-protein
template structures allow creation of structural models of many putative complexes
and interface geometries. Hence, judging if a predicted complex geometry or puta-
tive domain-domain interaction is stable and of functional relevance is of increasing
importance. This is also of importance for the design of new protein-protein in-
teractions preferably with a controlled affinity. For protein-protein interactions in
the cell, one should keep in mind that the effective interaction is influenced by the
distribution of proteins in the different compartments of a cell and the crowded
environment. Nevertheless, an accurate estimate of the affinity of a putative com-
plex structure is already valuable for the isolated complex. Rigorous binding free
energy calculations employing a spatial coordinate for protein-protein binding and
unbinding on a so-far limited number of cases show promise and may offer a route
to obtain the desired accuracy to offer reliable predictions (that do not need to be
controlled by experiment). However, if the computational effort is far larger than an
experimental affinity measurement the practical value is limited. The combination
of fast scoring-type approaches either based on single structures or ensembles to
preselect likely putative natural or designed interfaces and limit the application
of the most time-consuming and accurate methods to a small subset might be a
reasonable route for practical applications. It is important to note, however, that
rigorous binding free energy calculations even on known complexes with known
binding affinity allow one to distinguish and characterize different energetic and
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entropic contributions to binding often difficult to obtain experimentally. Hence,
these studies give valuable insights into the mechanism of specific protein-protein
recognition. It is important to note that in vivo not all interactions reach equilibrium
and hence not only the binding affinity but also the kinetics of interactions are of
increasing relevance [250, 39]. Finally, with increasing computational resources and
the development of improved advanced sampling methods, the option to directly
follow protein-protein association and dissociation offers the opportunity for an
in-depth understanding of transient nonspecific and specific binding.
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5 Evaluation of Predicted Protein-Protein
Complexes by Binding Free Energy
Simulations

As discussed in Chapter 4 the binding free energy of a predicted protein-protein
complex can be calculated using umbrella sampling (US) (see Section 3.4.2) along a
predefined dissociation/association coordinate of a complex. In the current Chap-
ter, such atomistic US-molecular dynamics simulations are employed including
appropriate conformational and axial restraints and an implicit generalized Born
solvent model to calculate binding free energies of a large set of docked decoys for
20 different complexes. In principle, the approach includes all energetic and entropic
contributions to the binding process. Although time-consuming it may open up a
new route for realistic ranking of predicted geometries based on the calculated free
energy of binding.1

5.1 Introduction

Protein-Protein interactions play a key role in basically all cellular processes, ranging
from signal transduction to enzymatic transformations and transport phenomena.
Understanding the three-dimensional (3D) structure of protein-protein complexes
is of major importance for understanding the molecular mechanism of many dis-
eases and to identify potential targets for drug design [128, 226, 145]. Structure
determination of protein-protein complexes at high resolution and binding affinity
measurements are challenging experimentally, and for transient interactions not
always possible [287, 224]. The theoretical prediction of the structure of protein-
protein complexes is not less challenging due to the complicated shape of proteins,
the variety of interactions, and possible conformational changes associated with
binding [29, 326, 330].

A large variety of docking methods are available to generate putative complexes
based on the unbound protein or modeled protein conformations [326, 129]. Simple
scoring functions are typically used during the systematic search in the six degrees
of freedom (three translational and three rotational) of possible relative placements

1The contents of this chapter have been published in a similar form in [279].
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to rank predicted solutions [302, 129, 184, 333, 150].
Large efforts have been made to introduce flexibility of the proteins in docking
schemes since a major limiting factor of most rigid docking methods are induced-fit
conformational changes [174, 296, 326]. This can for instance be targeted using soft
contacts, i.e. reducing the energy potentials at sterical contacts [83, 192], employing
soft coarse-grained force fields [329, 327, 69] or incorporating site chain flexibility
[44, 211] or possible global motions based on soft collective modes [209, 210, 219].
Frequently, a refinement step is employed on a subset of solutions obtained in the
first systematic docking approach to obtain higher quality solutions. Experimental
data also can help to limit the selected subset of putative solutions. Several refine-
ment methods based on Monte Carlo (MC) or molecular dynamics (MD) simulations
have been developed in recent years [67, 204, 263, 306, 69]. The final identification
of the most realistic predicted complex involves a scoring function that ideally
represents directly the binding affinity of the bound protein partners. Common
scoring functions either use force field-based approaches, i.e. scoring functions that
are based on a physical model for the potential energy functions [168, 67, 44, 302]
or empirical scoring approaches, that incorporate experimental data in a statistical
scoring [325, 327, 333, 113].

Typically, a scoring function involves the evaluation of one complex structure and
therefore neglects any entropic contributions to the restricted conformational flexi-
bility and translational/rotational mobility of the partner molecules. Furthermore,
most scoring functions consist of pairwise additive terms and often neglect or only
approximately account for solvent effects.
In recent years, approaches with a full atomic resolution of the binding partners
and a continuum model for the surrounding solvent have been applied to eval-
uate docked complexes [103, 45, 223]. Instead of scoring only one complex an
ensemble of complex geometries is evaluated in Molecular Mechanics Poisson-
Boltzmann/SurfaceArea (MM-PBSA) or MM-GBSA (using the generalized Born
method instead of the Poisson-Boltzmann) approaches [165]. For each complex
structure, the partner interaction energy is calculated and electrostatics are obtained
using the finite-difference Poisson-Boltzmann or generalized Born equations. Hy-
drophobic contributions are calculated from the buried solvent accessible surface
upon complex formation. A mean over the ensemble results in a calculated score.
MM-GBSA and MM-PBSA have been used successfully to improve the prediction
of near-native protein-protein complex geometries [45]. However, MM-GBSA or
MMPBSA are end-point methods that only give a mean interaction energy between
partners without taking into account the energetic changes within each partner upon
binding and also usually do not account for changes in the conformational entropy
upon binding.

In addition, interaction energies obtained from MM-PBSA can show large statisti-
cal errors due to numerically small interaction energies that need to be calculated
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from the subtraction of numerically large and slowly converging mean energies
(of the complex and the individual partners). For example, Gohlke et al. [103]
investigated the Ras-Raf and Ras-RalGDS complex and reported errors of calculated
binding free energies of about 6 kcal/mol corresponding to about one third of the
calculated total binding free energy [103].

However, using MD simulations there are rigorous approaches of calculating
relative or even absolute binding free energies based for example on umbrella
sampling (US) along a dissociation (or association) coordinate [102, 324, 71, 119, 331].
The convergence of calculating the free energy of dissociation/association along
a typical distance coordinate can be enhanced by adding restraints to the relative
orientation and conformational freedom of the binding partners [324]. By adding
contributions due to restraining degrees of freedom to the potential of mean force
along the reaction coordinate it is in principle possible to extract an absolute binding
free energy. In contrast to MM-PBSA or MM-GBSA such an approach includes
all energetic and entropic contributions to binding, hence, is ideal for ranking of
binding modes. Typically and preferably, US free energy simulations are performed
on ligand-receptor or protein-protein complexes including explicit solvent. However,
only a few but quite successful applications to protein-protein or peptide-protein
binding have so far been published [120, 119] i.e. due to the large computational
demand of explicit solvent MD simulations. It should be emphasized since such
simulations can take several days for a single binding mode an application for
systematic evaluation of many docked protein-protein complexes is out of reach
with current resources.

However, instead of using an explicit solvent representation it is also possible to
perform US-based binding free energy simulations at atomic resolution in an implicit
generalized Born (GB) solvent [230, 236]. On modern graphical processing units
(GPUs) GB simulations can be performed very efficiently [108] and also allow for
faster convergence than explicit solvent simulations (in each US window) because
the solvent response is instantaneous for each sampled structure. We demonstrate
that it is possible to directly employ such binding free energy simulations to score a
reasonable set of 50 preselected complexes for a series of 20 test cases within a day
on a GPU cluster.

This demonstrates a basis for systematic evaluation of predicted complexes based
on calculated binding free energies instead of single point interaction or knowledge-
based scores or mean interaction energies. We compared the docking ranking based
on calculated binding free energies with simple one-point energy evaluation of
energy-minimized complexes, and after MD-based refinement of docked complexes
and compare the results to experimental binding free energies.
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5.2 Material and methods

5.2.1 Protein-protein docking using ATTRACT

Since umbrella sampling simulations for evaluation of docked complexes are com-
putationally highly demanding it was necessary to limit the number of systems to
a set of 20 complexes from the protein docking benchmark 5 [132] (Table 5.1) with
small partner structures. For each system, the bound and unbound conformations
of both partners are known. The docking was performed using the unbound partner
structures with the program ATTRACT [329, 69]. A standard docking protocol with
rigid partner proteins and grid-acceleration for fast energy evaluation was used
[68]. After the final docking scoring step (based on the ATTRACT scoring potential),
the 300 top-ranked complexes were considered. We distinguish between receptor
and ligand-protein according to the assignment in the benchmark 5 [132] (typically
the large protein partner is the receptor and the smaller is the ligand partner). For
evaluation of the deviation of a decoy complex from the native geometry, we use
the RMSD (root mean square deviation of the complex after best superposition of
the complex to the native complex structure, only the Cα atoms considered). The 50
models with the lowest RMSD to the native complex structure were used for further
evaluation based on atomistic simulations.

5.2.2 Refinement of docking solutions using molecular dynamics
simulations

Atomistic refinement of docked complexes was performed with the Amber16 molec-
ular dynamics (MD) Package [42] using the pmemd.cuda module [108] in combi-
nation with the ff14SB [198] force field for proteins following a standard protocol
developed previously [263]. Energy minimization and MD simulations employed
the generalized Born implicit solvent model [230] (igb=8 in the Amber input section)
and an infinite cutoff. Energy minimization consisted of 2500 minimization steps
(400 steps of steepest descent, 2100 steps of conjugate gradient). Scoring after mini-
mization was performed by subtracting the potential energy of the partners from
the energy of the complex. For further MD-refinement the systems were heated
in three steps (each 5 ps) to 300 K using a Langevin thermostat for temperature
scaling. For the production run (mass-weighted) RMSD restraints of the Cα atoms
of each individual protein were applied (force constant 10000 kcal/mol · Å2

for each
protein), together with a small distance restraint (force constant 0.5 kcal/mol · Å2

)
between the COM of ligand and receptor that prevents the protein partners from
dissociating. Finally, weak distance restraints between the Cα atoms at the interface
of the proteins were applied to gently push the binding partners towards each other
(force constant 0.25 kcal/mol · Å2

). The purpose of the restraints during the MD
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simulation is to avoid dissociation due to possible initial sterical overlap and to
improve the sterical complementarity at the interface. In total, the refined structures
were simulated for 30 ps and evaluated after a final minimization for another 2500
steps. On average the refinement of 50 models took approximately 1 hour on a PC
with a GeForce GTX 1080 for the different proteins.

Table 5.1: Table of the 20 protein complexes analyzed in this study with according
PDB-id and difficulty (as defined in the benchmark [132]).

PDB Difficulty Protein1 Protein2

7cei Rigid Body Colicin E7 nuclease Im7 immunity protein
1ak4 Rigid Body Cyclophilin HIV capsid
1ay7 Rigid Body Rnase SA Barstar
1ppe Rigid Body Trypsin CMTI-1 squash inhibitor
1r0r Rigid Body Subtilisin carlsberg OMTKY
2i25 Rigid Body Shark single domain antigen receptor Lysozyme
1j2j Rigid Body Arf1 GTPase.GNP-RanBD1 GAT domain of GGA1

1z0k Rigid Body RAB4 binding domain of Rabenosyn Rab4A GTPase
1qa9 Rigid Body CD2 CD58
1gcq Rigid Body GRB2 C-ter SH3 domain Vav N-ter SH3 domain
2oob Rigid Body Ubiquitin ligase Ubiquitin
1ffw Rigid Body Chemotaxis protein CheY Chemotaxis protein CheA
1zhi Rigid Body BAH domain of Orc1 Sir Orc-interaction domain
3a4s Rigid Body SUMO-conjugating enzyme UBC9 NFATC2-interacting protein
1fle Rigid Body Elastase Elafin
2sni Rigid Body Subtilisin Chymotrypsin inhibitor 2
3sgq Rigid Body Ovomucoid inhibitor third domain Streptogrisin B
1syx Medium Spliceosomal U5 15 kDa protein CD2 receptor binding protein 2
2cfh Medium BET3 TPC6
1z5y Rigid Body N-term of DsbD E.coli CCMG protein

5.2.3 Restraint umbrella sampling

The complexes obtained after the MD-based refinement served as the starting struc-
tures for the umbrella sampling (US) simulations (details on the calculations of
absolute binding free energies are given in Appendix A.1). The same temperature
and solvent conditions as for the refinement were used. The center of mass distance
between ligand’s and receptor’s Cα atoms served as the reaction coordinate. A har-
monic potential U(ξ) =

kξ

2 (ξ0− ξi)
2 was applied, with the force constant kξ ranging

from 4 kcal/mol · Å2 to 6 kcal/mol · Å2. The reference distance ξ0 was modified in
each US window.

In addition to the distance restraint along the reaction coordinate 5 angu-
lar restraints (2 axial restraints and 3 orientational restraints) were applied ac-
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cording to a harmonic potential U(α) = kα
2 (α0 − αi)

2 with a force constant of
kα=10 kcal/mol · rad2. The angular restraints were based on 3 additional centers-
of-masses of subsets of 20 atoms in each partner protein. The separation of the
new COMs was taken as large as possible. Taking the angles between three or
four points the axial or orientational restraints were defined (see Appendix Figure
A.1). We gained the reference positions α0 by evaluating the starting structures. To
allow limited backbone and full side-chain flexibility of partner proteins the same
harmonic intra-molecular RMSD restraints of the Cα atoms were applied as during
MD refinement (force constant 0.05 kcal/mol · Å2

per atom).
First, an initial series of MD-simulations for 20-60 ps (per window) was performed

with a separation along the reaction coordinate of 0.15 to 0.5 Å between the windows.
In each run, the coordinates and velocities of the previous window were used
as starting conditions. The data gathering in each US window was extended to
1ns that allowed in general good overlap of sampled distance distributions and
rapid convergence of the calculated PMF (see Appendix Figures A.3,A.4). A great
advantage of the US technique is that it is possible to add additional windows after
a fist inspection of the distribution overlap between neighboring US windows to
improve the sampling in regions with too little sampled distance overlap between
neighboring windows. Occasional new US windows were added to improve the
convergence. Furthermore, due to the differences in the interaction strength of the
protein partners in the different complexes the force constants and spacing were
adjusted and slightly vary for each case due to variation in the slope of the free
energy curves (steep or weakly varying PMF) (Table 5.2). Finally, the potentials of
mean force (free energy change) along the COM distance (PMFs) were evaluated
using the WHAM algorithm (in Section 3.4.2 the WHAM equations are given) [116].
Due to the small US windows, the conformational, axial and orientational restraints
and the use of an implicit solvent reasonable convergence could be achieved with a
simulation length of 1ns per window (Appendix Figures A.3,A.4,A.5)

Additionally, to obtain the absolute binding free energy, three free simulations
of the complex, the ligand, and the receptor were performed for 4 ns, with no
restraints applied. As starting structure the umbrella sampling window was used
that corresponded to the minimum position of the PMF. The equilibrium binding
constant can be calculated from the work of bringing the binding partner from the
bulk to the native binding state (see details in Appendix Section A.1). [324]

Keq = 4π · ξ2
bulk ·

∫
site

dξ e−β(A(ξ)−A(ξbulk)). (5.1)

The integration is performed over the phase space region representing the bound
state. ξbulk indicates a distance in the bulk region where ligand and receptor are not
bound.
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Furthermore, the standard binding free energy can be expressed as follows [102,
324]

∆Gbind = −kT ln(KeqC◦), (5.2)

with the standard concentration C◦=1/1661 Å
3
. The incorporation of this concentra-

tion is crucial, in order to compare the free energy values to experimental results.
The advantage of this method is that the whole dissociation/association process
is considered. Hence, also entropic effects are included and the whole free energy
profile of binding is obtained.

A typical PMF A(ξ) has the following characteristics: It lowers with increasing
COM distance of the Cα atoms between ligand and receptor (x-axis) until the opti-
mum distance is reached at the minimum PMF. After that, the PMF increases until
the ligand and the receptor cease to influence each other and the PMF reaches a
plateau (bulk region).

The region representing the bound state was defined as the states around the
minimum position where the PMF does not exceed 2 kcal/mol. Note that the defini-
tion of the binding site is not prone to errors, as high PMF values are exponentially
suppressed. Hence, by considering a much larger bound region, deviations of less
than 0.01 kcal/mol were observed for the calculated free energy. Thus, for PMFs
where the bulk state was below 2 kcal/mol, the barrier height was diminished to
approximately 1 kcal/mol. Like this, we were able to obtain reasonable results also
for models with a low affinity. Nevertheless, nearly all cases included some decoy
complexes that were so weakly bound that no proper PMF was obtained and thus
no free energy of binding could be calculated. In particular, for the protein 1qa9 only
21 models could be resolved followed by 3a4s with 38 results. As we are primarily
interested in the ranking of the complexes with high affinity, the lack of on average
4 weakly bound decoy models does not deteriorate the results.

Additionally, the RMSD from the native structure was recalculated by evaluating
the deviation at the minimum position of the PMF. Moreover, the uncertainties
of the RMSD (standard deviation of the mean RMSD at the minimum PMF) and
the free energy of binding (mean of the standard deviation was ±1.0 kcal/mol)
are presented. In this context, the simulations were split into 6 parts, where each
one was treated separately, and the mean free energy of binding with its standard
deviation was calculated.

The mean difference in ∆G between evaluating the parts of the simulations and
evaluating the whole trajectory is 0.03 kcal/mol. It lies at least one order of mag-
nitude under the range of the uncertainty and is clearly smaller than the scale in
which changes in the specificity occur. Compared to the MD refinement the US
simulations were much more expensive and took 5.0 days on average for all decoy
complexes for one protein-protein complex (see Table 5.2) using one GeForce GTX
1080 or GeForce GTX 1080 Ti GPU card.
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Table 5.2: Umbrella Sampling simulation setups for each protein-protein complex.
PDB Number of windows Simulation time Separation Force constant

days Å kcal/mol · Å2

7cei 30 4.1 0.30 5.0
1ak4 30 6.1 0.30 5.0
1ay7 25 3.1 0.25 6.0
1ppe 24 3.8 0.40 4.0
1r0r 30 5.7 0.30 5.0
2i25 40 5.8 0.30 5.0
1j2j 40 5.3 0.25 6.0

1z0k 24 3.4 0.30 5.0
1qa9 24 3.0 0.30 5.0
1gcq 24 1.5 0.40 4.0
2oob 20 0.6 0.50 4.0
1ffw 55 6.0 0.15 5.0
1zhi 30 6.9 0.30 5.0
3a4s 55 7.6 0.15 5.0
1fle 40 7.4 0.30 5.0
2sni 30 7.3 0.30 5.0
3sgq 25 3.2 0.30 6.0
1syx 40 4.0 0.25 6.0
2cfh 30 6.8 0.30 5.0
1z5y 40 6.7 0.30 5.0

Each complex is indicated by PDB-id. The number of windows corresponds to the
number of separate umbrella sampling simulations. The distance between each US
interval, force constant for the quadratic distance restraint and total simulation time on a
single GPU (for 50 complexes) are also indicated.

5.3 Results and discussion

Realistic ranking of predicted protein-protein complex structures is one of the key
challenges in the field of protein-protein docking and decisive for using such tech-
niques in any useful application. So far the ranking of complexes is typically based
on scoring functions based on force field or knowledge-based evaluation of single
complex structures or on mean interactions energies between partners. However,
protein-protein binding is determined by the associated free energy change that
includes solvent effects and entropic as well as energetic contributions. Hence,
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the binding free energy associated with complex formation can be considered as
the ideal ranking score for evaluating docked complexes. The aim of our study is
to evaluate the possibility to use a calculated binding free energy obtained from
restraint US simulations as docking scoring function and to compare it with a score
based on single-point energy minimization and after a short MD-based refinement
(Figure 5.1).

EM

MD Refinement

Restraint US

Interaction Energy 

Accounting for Restraints

Interaction Energy 

Potential-of-mean Force of Binding 

Absolute Binding Free Energy 

Figure 5.1: The different scoring methods that are used in this study. The binding
energy was calculated after energy minimization (EM) and MD based refinement.
Restraint umbrella sampling (US) yields the binding free energy and the absolute
binding free energy was accessed by accounting for the restraints via the Woo and
Roux scheme [324].

Preferably, one would use an explicit solvent representation but due to the many
water molecules (large box sizes are necessary for allowing to separate the protein
partners to an appropriate unbound distance) such approach is computationally
too demanding for application to many decoy complexes of a given protein-protein
complex system. Besides, since it is possible to use a reduced effective viscosity
in the implicit solvent case (see Methods) faster convergence of translational and
rotational (diffusive) sampling of the partners is possible. The use of an implicit
solvent has the additional advantage that the same force field and implicit solvent
model is employed for scoring based just on energy minimization, or following
short MD-based refinement or US-based free energy calculation.
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Initial systematic docking on 20 benchmark test cases with unbound partner
structures using ATTRACT [329, 69, 68] resulted in 50 docked decoy complexes with
an RMSD less than 15 Å from the native geometry (see Table 5.2). The scoring based
on the ATTRACT force field is indicated in the Supporting Information (Figure S8).
The RMSD indicates the root-mean-square deviation of the complex relative to the
native structure after best superposition onto the native complex. The docking result
corresponds to a frequently encountered prediction case in which the approximate
binding regions on partner molecules are known and only a limited set of solutions
need to be considered.

For a first docking evaluation we use the same force field model as used in the
US simulations based on the Amber ff14SB [198] in combination with an advanced
GB model specifically designed for proteins [234, 136] (igb=8 option in Amber) after
extensive energy minimization of each docking solution (Figure 5.2). The binding
interaction energy ∆EBind was calculated according to equation 5.3, by subtracting
the complex energy from the sum of the corresponding ligand and receptor energies,

∆EBind = ∆ECoul + ∆ELJ + ∆GSolv (5.3)

with contributions due to Coulomb interaction (∆ECoul), Lennard-Jones interaction
(∆ELJ) and difference in solvation free energy (∆GSolv). The last term consists of a
polar component (∆GGB) and a nonpolar surface tension component that is propor-
tional to the loss of solvent accessible surface area (SASA) upon complex formation.
However, it turns out that the SASA surface tension contribution differed only little
between the sampled conformations in the bound complexes (in comparison to the
other interaction energy contributions) and therefore it was only calculated for the
final structures and not included during energy minimization or MD simulations.
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Figure 5.2: Force field scoring after energy minimization of all 50 decoy protein-
protein complexes for each test case (indicated as pdb-id). The calculated interaction
energy (green circles) between both protein partners is plotted vs. the RMSD
from the native complex. The green squares display the unbound partners after
superposition on the bound native complex and subsequent energy minimization
(best possible placement for unbound rigid docking), the magenta square depicts
the interaction energy of the native bound complex (after energy minimization).
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Docking models with a very small RMSD of around 1 Å from the native complex,
were obtained for the structures 3sgq, 1gcq, 2oob, 1qa9, 1ay7, 2sni and 1r0r. In the
case of 1j2j and 3a4s the predicted structures closest to the native show an RMSD
of 2-3 Å. While, in most cases, the RMSD was relatively evenly distributed in the
range from 1-12 Å, for the complex 1qa9 only solutions with RMSD lower than 3
Å or higher than 9 Åwere obtained. The calculated scoring interaction energy of
the best-scored models was highest for the structures 7cei (-78 kcal/mol), 2sni (-
52 kcal/mol), and 3sgq (-45 kcal/mol), respectively. The lowest scoring value of
around -15 kcal/mol was obtained for complex 1ay7, followed by -19 kcal/mol for
1z5y. Evaluation of the bound complex structure with the same energy minimization
and force field protocol resulted in the best score for the bound complex in all test
cases (Figure 5.2) supporting the quality of the continuum solvent force field score.
In the case of the native complex with unbound partners (by fitting the Cα atoms of
the partners to the native complex, corresponding to the best possible rigid docking
solution for unbound docking) the resulting complex often scored considerably
worth than the bound solution and other solutions obtained from the systematic
search (Figure 5.2). In contrast, the RMSD of the energy minimized unbound form
relative to the native complex was around 1 Å for nearly all cases. Only in the
case of 7cei, 1syx and 2cfh the deviations were higher, up to 2 Å. These can be
due to variations of the backbone orientation (7cei) or a conformational twist that
involves whole α-helices (2cfh). The unfavorable scoring of the energy minimized
unbound complex (in near-native starting geometry) observed for several cases is
likely due to trapping of the incorrect side-chain and possibly backbone states at the
protein-protein interface compared to the bound docking case. For four structures
docking models were found that had nearly the same RMSD as the unbound form
(3sgq, 1gcq, 1r0r and 2cfh). The correlation of binding energy to RMSD value was
reasonable for 1syx, 3sgq, 7cei, 2cfh and 2sni. Here, models with a small deviation to
the native complex were scored more favorable compared to high RMSD solutions.
Nevertheless, for most proteins, the docking run produced several solutions with
high RMSD that scored well (1ffw, 1qa9, 3a4s, 1ay7, 1gcq, 1ppe, 2oob, 1r0r, 1fle,
1z5y and 2i25). For some structures, e.g. 3a4s, 1j2j, 1ak4, 1r0r and 1qa9, low RMSD
solutions with predicted high affinity were found, but at the same time also models
with a similar RMSD but calculated low score.

The atomistic scoring function with implicit GB solvent model identifies the
bound complex in most but not all cases as the best scoring solution. In some
cases, solutions very close to the bound complex can significantly vary in scoring
because of side chain or small backbone differences at the interface region. Hence, an
MD-based refinement might be necessary to improve the specificity of the scoring.
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Figure 5.3: Force field scoring after molecular dynamics refinement of all 50 decoy
protein-protein complexes for each test case (indicated as pdb-id).The calculated
protein-protein interaction energy (blue circles) is plotted vs. the RMSD from the
native complex. The interaction energy after refinement of the unbound complexes
is indicated as green squares. The magenta squares depict the interaction energy of
the native bound complex (after refinement).
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Figure 5.4: RMSD of all refined complexes from the native complex vs. the initial
RMSD after the protein-protein docking. Red circles (522) mark models, where the
RMSD decreased upon refinement and blue circles (459) identify models for which
the RMSD increased after the refinement.

5.3.1 Molecular dynamics refinement of docked complexes

A standard MD-based refinement procedure was applied to all energy minimized
complexes following closely a standard procedure that is used as the final refinement
step in the ATTRACT docking protocol [263]. It consists of a short MD simulation in-
cluding restraints to keep the backbone structure of each partner reasonably close to
the start conformation but allowing full side-chain flexibility and some adjustment
of relative partner translation and orientation followed by a final energy minimiza-
tion (see Methods section for details). During the refinement, the same force field
was used as in the energy minimization (EM) protocol. It is important to emphasize
the MD-refinement is not intended to serve as a new search procedure to identify
new relevant docking geometries (this is done by the initial systematic docking
run, see above). The purpose of the short MD-refinement is to more effectively
reach a nearby local minimum (compared to just energy minimization). It relates
to procedures widely used in the protein-protein docking field to rapidly locally
optimize thousands of docking solutions obtained from a systematic docking run
using various docking methods (e.g. FFT-dock [168], ATTRACT [263], HADDOCK
[73]).
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On average the refinement procedure resulted in a better agreement of predicted
complexes compared to the native complex for many cases (Figure 5.3). The lowest
sampled RMSD decreased for 14 out of the 20 structures after the refinement. In par-
ticular, for cases with initial RMSD of less than 5 Å frequently further improvement
was observed. The largest impact was found for 1j2j, where the RMSD improved by
1.7 Å. The calculated interaction energies are lower for all complexes compared to
the start structures. The improvement ranged from 9 kcal/mol (1zhi) to 40 kcal/mol
(1ay7) for the best-scored model. Also, the scoring of native-like complexes with
unbound partner structures improved in most cases with a reduced deviation from
the scoring of the bound complex indicating sterical adjustments at the partner
interface. For 13 cases (1z0k, 1j2j, 2sni, 3sgq, 1zhi, 7cei, 1gcq, 1ay7, 1ppe, 1r0r, 2oob,
1syx and 1qa9) a favorable scoring of low RMSD solutions was observed. More-
over, compared to the EM of docked complexes for 9 cases an improved ranking
of structures close to the native complex compared to high RMSD solutions were
found (1ay7, 1ffw, 1qa9, 1ppe, 2oob, 2sni, 1zhi, 1r0r and 2i25). The scoring got worse
compared to EM for eleven docked complexes. However, only in the case of 1ak4
the funnel plot changed from a higher specificity to a lower specificity after MD
refinement, while the specificity improved for four structures (1ay7, 1ppe, 1zhi and
1r0r).

Overall, the refinement step enhanced the quality of the results. In many cases,
the shape of the resulting funnel plots improved. Further refinement runs under
different temperature conditions (100K, 200K, 300K) as well as longer simulation
times were tested but did not improve the relative scoring (not shown). A final
re-evaluation after the refinement results with a more sophisticated implicit solvent
treatment using both, a R-6 integration scheme introduced by Aguilar et al. [4] or
solving the linearized finite-difference Poisson-Boltzmann (FDPB) equation instead
of a GB model also did not noticeable improved scoring specificity (Appendix
Figures A.6,A.7).

5.3.2 Binding free energy calculation using umbrella sampling

The present force field scoring based on energy minimization or after MD-based
refinement identified in several cases complex structures close to the native geometry
as complexes with the lowest interaction energy. However, still, for several cases,
non-native complex geometries achieved better scores than the native structures
and even in successful cases the separation between the best scoring near-native
solutions and several incorrect complexes was small relative to the range of scores.

To obtain a more realistic free energy based scoring, we sample the binding
dissociation/association process along a center of mass (COM) distance coordinate
using umbrella sampling (US). Such simulations are performed by applying a
set of harmonic potentials that restrain the relative position of the partners to an

65



5 Evaluation of Predicted Protein-Protein Complexes by Binding Free Energy
Simulations

interval along a distance reaction coordinate in several simulations. The potential
of mean force (PMF) is then calculated by evaluating the distance histograms of
the simulations by employing the WHAM algorithm [116] (see Methods section for
details). To achieve rapid convergence, both the conformational flexibility and the
relative rotational degrees of freedom of the protein partners were restricted (three
torsional angles between receptor and ligand: α, χ and γ and two axial angles: θ and
φ, see Appendix Figure A.1). The use of a continuum solvent model combined with
the conformational and orientational restraints resulted in reasonable convergence of
the calculated PMFs within 1 ns sampling per US window (using 20-55 US windows,
see Appendix Figures A.2,A.3,A.4).

The orientational and conformational restraining contributions can be calculated
separately at the two end-points of the US simulations (bound state vs. bulk state)
as described in the methods section (see also Appendix Section A.1). However,
in a first attempt we compare the calculated free energies without accounting for
the orientational and conformational restraining contributions (Figure 5.6), hence
assuming that the calculated PMFs dominate the binding free energy.

The calculated PMF binding free energy ranges from −6 ± 1 kcal/mol (3a4s) to
−23 ± 1 kcal/mol (2sni) for the best-bound model much more positive than the
interaction energies obtained with the same force field before or after refinement
(see above). Encouragingly, the range of calculated free energies is similar to ex-
perimental binding free energies of protein-protein complexes [150, 153] (see also
next section). Using the native bound complexes as start structure resulted in the
most favorable calculated PMF for 5 complexes and in 12 cases the bound structure
ranks among the best-ranked complexes. Thus, only for 3 proteins (3a4s, 2oob and
1j2j) it failed to score the native binding mode among the top-ranked complexes.
The difference in the calculated binding PMF of unbound to bound form was high
(above 10 kcal/mol) for the complexes 1fle, 2sni and 2i25, indicating that differences
in backbone and side-chain conformations still exists and shifts the results to lower
calculated binding PMFs for the unbound complex. Nevertheless, in many cases,
other models close to the native complex scored very favorably.
The selectivity of the funnel plot (for the definition of selectivity see the paragraph
on selectivity) was favorable for 16 structures (1z0k, 7cei, 1ffw, 1syx, 1qa9, 1j2j, 3sgq,
1gcq, 1ppe, 2cfh, 1ak4, 2sni, 1zhi, 1r0r, 1z5y and 2i25), with a clear preference of
the models having a low RMSD. In addition to that, an unfavorable selectivity was
obtained for four models. Here, the highest scored pose at the binding site has a
lower ranking than the highest scored pose not at the binding site (2oob, 1ay7, 3a4s
and 1fle).

Interestingly, for two cases a large gap between the calculated binding free energy
in case of starting from the bound complex vs. any other decoy including the un-
bound complex was found (1fle and 2i25). Inspection of these cases identified indeed
an unfavorable unbound backbone conformation at the interface that interferes with
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the correct interface structure (see Figure 5.5). For example, the protein 2i25 has a
loop at the interface that directs towards the receptor in the native bound confor-
mation but not in the unbound conformation. The switching of the loop during
the simulations towards the bound form is not observed during the US simulations
(presumably because of the RMSD constraints to limit the conformational flexibility
during the US simulations).

Compared to the single-point scoring after refinement a clear improvement of the
results could be achieved for 15 of the 20 structures (1z0k, 3a4s, 7cei, 1ffw, 1syx, 1qa9,
3sgq, 1gcq, 1ppe, 2cfh, 1ak4, 2sni, 1zhi, 1z5y and 2i25). Most importantly, in six cases
a low selectivity during refinement changed to a high selectivity (1ffw, 2cfh, 1ak4,
1z5y and 2i25) after the restraint US simulations. The ranking of the models did not
change considerably for five structures (3sgq, 7cei, 1fle, 1syx and 1qa9). Importantly,
the employment of restraint umbrella sampling did only yield two funnel plots that
were considered as less selective than after the simple refinement (1ay7 and 2oob).

Figure 5.5: Superposition of the decoy complex (ligand protein in red cartoon, recep-
tor as blue surface representation) of the pdb2i25 case with the smallest deviation
from the native complex (ligand protein as green cartoon). The loop of the native
bound ligand conformation at the interface (green cartoon) fits well into a receptor
pocket, whereas the loop of the decoy complex (partners in unbound conformation)
deviates significantly from the placement in the native interface.
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Figure 5.6: Scoring of decoy complexes based on the potential of mean force free
energy obtained from restrained umbrella sampling simulations vs. deviation from
the native complex geometry. The green squares display the results for starting from
the native complex but using unbound partner structures whereas the magenta
squares depict results obtained starting from the native bound complex.
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5.3.3 Absolute binding free energy calculation
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Figure 5.7: Same as Figure 5 but plotting the calculated absolute binding free energies
vs. deviation from the native complex. The green squares display the results for
starting from the native complex but using unbound partner structures whereas the
magenta squares depict results obtained starting from the native bound complex.
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In the previous section, the ranking of decoy complexes was based on free energies
calculated including restraints on orientation and conformation of the binding
partners (PMF obtained along the reaction coordinate). It is possible to account for
the axial, orientational (orient) and conformational (conf) contributions following
an approach introduced by Woo and Roux [324] that yields the absolute binding
free energy (details are given in the Methods section and Appendix Section A.1):

∆Gbind = −kT ln
[

C◦e−β[∆Grestr,axial
bind +(∆Gbulk

orient+∆Gbulk
con f )−(∆Gsite

orient+∆Gsite
axial+∆Gsite

con f )]
]

∆GAbsolute = ∆Gbind + ∆GSASA

In the case of the bound state, the calculation of the conformational and axial
and orientational site (bound) terms require additional simulations of the complex
(starting from the window of the minimum PMF) without applying restraints. Based
on free energy perturbation (FEP) it is possible to evaluate the corresponding free
energy contributions (see Methods and Appendix section A.1).

The conformational restraining contribution can also be estimated through an
additional simulation of the individual ligand and receptor proteins without restrain-
ing potentials and using FEP to estimate the associated free energy contribution.
The orientational- and axial bulk (unbound) contributions can be calculated without
additional simulations (see Appendix Section A.1 for a more detailed description).
Finally, since we are now interested in absolute binding free energies the nonpolar
solvation contributions were accounted for by adding a cavity solvent tension term,
calculated from the buried SASA, to the binding free energy.

In Figure 5.7, the funnel plots (absolute binding free energy vs. RMSD from the
native complex) are shown for the 20 proteins. Accounting for the additional con-
tributions resulted in less favorable binding free energies for all complexes (mean
difference 5 kcal/mol), so that for most of the decoys (55%) the associated binding
free energy is positive predicting unfavorable binding. Hence, in contrast to the
simple scoring schemes described above the absolute binding free energy calcula-
tions predict that the majority of decoy complexes do not form at all. However, the
binding free energy was still attractive for the best-scored model of all structures and
for all cases when using the bound partner conformations in the starting complex
except for three cases: 1ffw, 2oob, and 3a4s (Figure 5.7).

Apart from the PMF contribution, the term that varied the most between the
different systems was the conformational bulk contribution (the orientational, and
axial contributions did not vary strongly between the systems due to the relatively
small force constants). The shift towards more unfavorable binding affinity was
generally due to a higher bulk contribution of axial, orientational and conformational
restraints in comparison to the same terms for the associated state (see Figure
5.8). It reflects a free energy cost related to a loss of freedom due to a restricted

70



5.3 Results and discussion

axial, orientational and conformational mobility in the associated state. For loosely
bound complexes the free energy cost due to restriction of axial, orientational and
conformational mobility is expected to be smaller than for binding to the high-
affinity sites, and indeed considering absolute binding free energy gives a ranking
that favors the near-native complexes less than the binding free energy based only on
the PMF calculation (previous paragraph). Thus, the preference improved compared
to the US evaluation for eight structures (3a4s, 7cei, 1ay7, 1j2j, 3sgq, 2cfh, 1r0r and
1fle) and deteriorated for twelve structures (1z0k, 1ffw, 1syx, 1qa9, 1gcq, 1ppe,
2oob, 1ak4, 2sni, 1zhi, 1z5y and 2i25). Overall, the selectivity changed from a high
preference to a low preference for three structures (1ffw, 1ak4 and 2i25) and vice
versa for one structure (3a4s). Thus, also for the proteins where a change in the
specificity was observed, this was mainly due to an alteration in the relative scoring
of only a few models.
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Figure 5.8: Contributions of individual free energy terms (from the absolute binding
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of the most favorable non-native decoy.
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5.3.4 Evaluation of the binding selectivity of the scoring methods

To be able to compare the different scoring methods, a measurement for selectivity
has to be defined, reflecting how well the poses at the binding site score compared
to all other decoys. The overall shape of the funnel plots of each structure is pretty
similar (besides a shift in the scoring axis) for the different scoring methods, it’s
the scoring of just a few poses per structure that leads to high differences in the
selectivity. Thus, it is possible to scale the different scorings to relative values and
consequently be able to compare the selectivity by identifying the key poses.

First, comparable scores were obtained by shifting each score Si by the mean value
of all scores S and dividing it by the minimum scoring value Smin:

S′i =
Si − S
Smin

(5.4)

Second, a decoy was defined as being at the binding site if its RMSD was smaller
than Rmin + 1.5Å, with Rmin being the smallest RMSD value of all poses. The pose
with the highest score (minimum binding energy), while being at the binding site
is called the true (T) result. The highest-ranked pose that is not at the binding site
is called the false (F) result. The selectivity is measured by taking the difference of
these key poses

Selectivity = S′T − S′F. (5.5)

The selectivity lies between 1.0 and -1.0 (as ST, SF < S for all structures and scoring
methods). A value of 1.0 indicates a perfectly selective scoring, the best-scored pose
at the binding site is separated clearly from the other poses. On the other hand,
a value of -1.0 indicates that there is a high selectivity for the poses not being at
the binding site. Finally, a selectivity of 0 means that the scoring of false and true
decoys was the same. Note that due to the definition of the origin of the scaled
scores as the mean scoring value (in contrast to eg. the mean scoring value minus
one standard deviation), the selectivity values are only in a few cases higher than
0.5 although the selectivity is good regarding the funnel plots (eg. 1z0k, 1ppe, 1ffw
with US). Thus, the defined selectivity should be considered as a relative value to
compare the different scoring approaches, not as an absolute value for the selectivity
of individual funnel plots (as this value highly depends on the defined origin of the
scaled scores).

In Figure 5.9 the calculated selectivity is shown for all structures and all scoring
approaches. The scoring with EM had the highest selectivity for two structures (7cei
and 1ak4), single-point scoring after MD refinement had the highest selectivity for
three structures (1ay7, 2oob and 1r0r), the US approach was the most selective for
ten structures (1z0k, 1ffw, 1syx, 1qa9, 1gcq, 1ppe, 2sni, 1zhi, 1z5y and 2i25) and the
absolute binding free energy calculation had the highest selectivity for five structures
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(3a4s, 1j2j, 3sgq, 2cfh, 1fle). Considering the mean selectivity for all structures US
performed best with a value of 0.33, the second highest was the absolute binding free
energy calculation (selectivity = 0.28). Less selective were the single-point scoring
after refinement (0.14) and single-point scoring of the docked and minimized poses
(0.06). This reflects a clear improvement in the overall selectivity using the more
sophisticated scoring methods in contrast to single-point scoring.
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5.3.5 Comparison of the scores with experimental binding free energies
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Figure 5.10: Binding affinity of the best-scored pose at the binding site (defined as
in the selectivity paragraph) for the different scoring methods. The values for all
structures are shown and can be compared to the experimental binding affinities
(orange bars) which were available for 16 structures.

For 16 evaluated structures, experimental binding free energies are available (Ap-
pendix Table A.1). These values have to be regarded with caution, as not all results
were obtained by the same experimental approach. It has been found that exper-
imental binding affinities of protein-protein complexes can depend significantly
on the experimental method [150, 153]. For the comparison with experiment, the
best scoring complex among the ensemble of native-like complexes (see above) was
considered. Interestingly, the restraint US approach (just considering the PMF along
the dissociation/association coordinate) showed the best agreement with the experi-
mental data, followed by the absolute binding free energy calculation. Both methods
performed remarkably better than simple single-point scoring, due to a shift towards
higher absolute energy values (see Figure 5.10). Hence, for 50 % of the structures
the binding free energies calculated from the PMF only were within a range of
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±2 kcal/mol of the experimental binding affinities (7cei, 1ppe, 1z0k, 1qa9, 1ak4,
2oob, 1ffw, 3a4s) and a small mean deviation of ∆∆GMean = ∆Gexp − ∆Gcalc = 0.4
kcal/mol was observed. The highest scored pose at the binding site was considered
for each structure, as described in the last paragraph. Accounting for the restraining
contributions 25 % of the structures had a scoring in very good agreement (±2
kcal/mol) with the experimental values (1r0r, 1j2j, 1z0k and 1gcq) with a mean devi-
ation of -3.8 kcal/mol. In case of the single-point scoring, after the EM evaluation
two structures (13 %) scored close to the experimental values (2i25 and 1ay7). Note,
that these two structures had a negative selectivity (see Figure 5.9), meaning that the
pose at the binding site that was considered for the evaluation was not the overall
best-scored pose. With MD refinement no structure had a pose at the binding site
with a scoring value in agreement to the experimental binding affinity. In both
cases, the shift in the scoring towards too high energy values is pointed out by a
mean deviation of 19.8 kcal/mol and 47.1 kcal/mol to the experimental binding free
energies.

In case of just limiting the analysis to the scoring of the native (bound) poses a
slightly lower agreement to the experiment was obtained: 39 % of the structures
were in close agreement for the US evaluation (1ppe, 1j2j, 1z0k, 1qa9, 1ak4, 2oob
and 1ffw) and 13 % for the absolute binding free energy calculation (1qa9 and 2i25).
For the single-point interaction energy evaluations the native models were never in
close agreement with the experimental binding free energies.

We also calculated the Pearson correlation coefficient (PCC) between the highest
scored binding affinity at the binding site and the experimental data. Note that a
coefficient of 1 represents a perfectly correlated system and 0 a completely uncorre-
lated state. This yielded significant correlations of 0.73 and 0.74, for the PMF-based
approach and the absolute binding free energy calculation, respectively. Thus, we
find no difference between these methods if the PCC is considered which is in
accordance with the finding of the previous section that calculating the absolute
binding free energy has only a minor influence on the selectivity. The highest PCC
of 0.85 was found for the MD refinement, the scoring with EM had the lowest value
of 0.60.

The results have to be regarded with caution, as we are dealing with a limited
data size that incorporates much more low energy binder than high energy binder,
the latter consequently have a much higher impact on the correlation coefficient.
Moreover, calculating the correlation coefficient omits the fact that the US calcula-
tions have to be much more precise than the single-point scoring values to achieve
the same correlation coefficient, due to the much higher absolute scorings of the
single-point evaluation.

75



5 Evaluation of Predicted Protein-Protein Complexes by Binding Free Energy
Simulations

5.4 Conclusions

A long-term goal of our efforts is to design a scoring approach that is reliable enough
to realistically predict the binding free energy of complexes and is so accurate that
new interactions between proteins (not those already discovered experimentally)
can be reliably predicted. In the present study, the possibility of evaluating docked
protein-protein complexes using US-based free energy simulations was explored.
The results were compared to scoring using the same force field approach but eval-
uating the interaction energy of energy-minimized or MD-refined complexes. In
the present study we used the ATTRACT docking program [329, 69] for generating
putative docked complexes (typically generating hundred of thousands of solutions
within hours of computer time). However, this step can also be replaced by other
search techniques to obtain putative protein-protein binding geometries. In terms
of selectivity, the free energy simulation approach resulted in improved scoring
compared to the simpler approaches based on the interaction energy of single com-
plexes. Encouragingly, the calculated binding free energies are in quite reasonable
agreement with experimental data. The remaining differences might be due to
inaccuracies of the force field and implicit solvent model but can also be in part due
to the experimental methods used for affinity measurements [150].

In most protein-protein docking tasks one ends up with a limited number of
possible complex geometries (e.g. often experimental data may limit the regions
of interaction on partner proteins). In such cases, the present binding free energy
simulation approach might be very useful to further limit the number of putative
complexes or to even reliably identify the most realistic complex structure.

Interestingly, scoring based just on the restraint US approach resulted in the most
precise results with a high selectivity found for 16 complexes and only in four cases
failed to predict the native binding site. For two proteins a substantial difference
in scoring of the bound and the unbound native conformation was observed. In
these cases, conformational changes at the binding site, leading to a high affinity
of the complex, were not captured (due to conformational restraints during the
simulations). Nevertheless, for all other complexes, the near-native models showed
a high ranking. Interestingly, the selectivity did not change significantly upon calcu-
lation of the absolute binding free energy indicating that the individual restraining
contributions play a smaller role (and may compensate each other in part) compared
to the effective receptor-ligand interactions captured through the US calculations
along the distance coordinate.

Furthermore, we found a significant correlation to experimental results of 0.73
and 0.74 for the restraint US free energy values and the absolute binding free energy,
respectively. The MD refinement gave an even higher correlation of 0.85, due to
the overall higher scorings the PCC is less prone to deviations of some kcal/mol
in the interaction energy. In particular, the calculated PCCs were higher than the
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correlation of all scoring methods evaluated by Kastritis and Bonvin [150] yielding
a maximum correlation coefficient of -0.32 but on a larger benchmark set of 81
complexes.

A better correlation was achieved recently by Chen and coworkers that investi-
gated the performance of MM/PBSA and MM/GBSA methods on 46 proteins of the
same protein-protein benchmark as in our study [45]. They achieved a maximum
correlation of 0.647 using MM/GBSA, a low interior dielectric (ε = 1) and the force
field ff02. Interestingly, testing the same force field that was used in our study,
ff14SB, a worse correlation of 0.578 was achieved.

The inclusion of explicit solvent represents an obvious possible improvement of
the present approach. However, although in principle more accurate than an implicit
solvent model, it is significantly more demanding especially for small systems and
requires longer simulation times for convergence. Nevertheless, in cases where the
number of decoy complexes is even smaller than the 50 complexes considered in the
present study inclusion of explicit solvent may represent a realistic option. Another
limitation of the present approach are the conformational restraints employed to
achieve rapid convergence. Although allowing also limited deformations of the
backbone such restraints may prevent a transition to a near-native bound partner
structure especially if the conformational difference between unbound and bound
conformations is significant. In future studies, we plan to test if optimization of the
conformational restraints employed during the US simulations can further improve
the results. Secondly, the employment of advanced sampling methods like replica
exchange umbrella sampling (REUS or HREUS) along the distance coordinate [189,
62] can also further improve the results.
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6 Prediction of Protein-Protein Complexes
Using Replica Exchange With Repulsive
Scaling

Molecular dynamics (MD) simulations allow one to follow the association process
of protein-protein complex structures under realistic conditions (see Chapter 4),
including full partner flexibility and surrounding solvent. However, due to the many
local binding energy minima at the surface of protein partners, MD simulations
are frequently accumulated for long simulations in transient trapped states. A
H-REMD (see Section 3.4.3) based scheme is designed in the following chapter,
employing different levels of a repulsive biasing between partners in each replica
simulation. The bias acts only on intermolecular interactions due to an increase
in effective pairwise van der Waals radii (repulsive scaling (RS)-REMD) without
affecting interactions within each protein or with the solvent. 1

6.1 Introduction

Biomolecular binding and in particular protein-protein binding processes to form
functional complexes are key elements of almost all biological processes. Knowledge
of the three-dimensional (3D) structure of protein-protein complexes is a prerequisite
for understanding its function. Experimental structure determination as well as
prediction of protein-protein complex structures are also of significant interest for
the rational design of drug molecules to influence biological processes. Compu-
tationally efficient docking algorithms are frequently applied to identify putative
protein-protein binding geometries based on surface complementarity or simple
pairwise interaction potentials [110, 255, 326, 115]. Molecular docking, however,
often largely neglects or only approximately accounts for the flexibility of the bind-
ing partners and interactions with the solvent [296, 326, 312, 72]. It is possible to
include a moderate degree of flexibility using for example deformations in soft
normal modes at reasonable computational costs [209, 210, 205, 306, 219]. In some
approaches a refinement stage with side-chain flexibility is performed, mainly focus-
ing on interfacial rearrangements [83, 67]. In addition, the evaluation of identified

1The contents of this chapter have been published in a similar form in [276].
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binding geometries is largely based on empirical scoring functions applied to single
complex conformations neglecting conformational and orientational entropic contri-
butions to binding. Ideally, molecular association should be simulated including
full flexibility of both partners and accounting for surrounding water molecules and
ions [277]. Molecular dynamics (MD) simulations are in principle well suited for
investigating biomolecular association processes including full atomic flexibility.
The methodology has already been used to refine potential binding geometries
identified in the docking efforts [253, 293, 270]. In selected cases, it is even pos-
sible to skip any initial docking but to use ultra-long atomistic MD simulations
and directly mimic the physical binding process [37, 266]. This is, however, com-
putationally very demanding and only possible up to timescales on the order of
microseconds to milliseconds for individual examples with current computational
resources. The search for putative binding regions on the surface of proteins is
associated with a rough energy landscape. Hence, the binding partners often get
kinetically trapped in local energy minimum for long time intervals resulting in
a waste of computational resources. Several efforts have been undertaken to ac-
celerate the search for binding sites. It is possible to employ temperature replica
exchange molecular dynamics (TREMD) with multiple parallel MD simulations
and periodic exchanges. It can improve the sampling by exploring the surface of
the receptor more rapidly at higher temperatures and extracting relevant states at
lower temperatures. However, TREMD does not scale well with the system size
and another method, Hamiltonian REMD (H-REMD) might be more suitable [95]
because one can specifically scale force field parameters affecting receptor-ligand
interactions. One possibility is to linearly scale the Lennard-Jones and electrostatic
potential across replicas [314] or reduce the ruggedness of the energy landscape
by introducing soft core potentials [192]. The latter method has shown promising
results to refine complex geometries close to the native binding mode but do not
effectively reduce the problem of trapped binding sites on the receptor surface [192].
Transient binding states in agreement with experiment could be recognized using
replica exchange Monte Carlo simulations for three protein-protein complexes using
a coarse-grained representation of the molecules [158].

It is also possible to use meta-dynamics methods to reconstruct the free energy sur-
face of association and dissociation of protein-ligand systems by gradually adding
biasing potentials that destabilize already sampled protein surface regions [101].
In the latter study the choice of only two collective variables (CVs) was enough to
identify the binding site of four protein-ligand systems. In general, a higher number
of CVs is necessary to completely describe the relative ligand-receptor position
and orientation [30]. A larger set of CVs can be chosen using reconnaissance meta-
dynamics that incorporates a self-learning algorithm that gradually pushes linear
combinations of the CVs [284]. For a protein-ligand system, this method was able to
identify multiple binding sites of the protein.
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In a recent study by Pan et al. reversible association and dissociation of five
protein-protein complexes was observed using tempered binding MD simulations
[240]. However, the binding and unbinding events were captured in still expensive
computer simulations (simulation times of several hundred microseconds) on the
special purpose machine Anton [267]. In tempered binding, the interaction strength
between the two solutes (but not within each protein partner) is used as tempering
coordinate (instead of the total temperature as used in standard simulated tem-
pering). As another alternative, it is possible to add an explicit repulsive biasing
potential between partners in a series of replicas (BP-REMD) that keeps the ligand
and receptor at various distance intervals apart in higher replicas [238]. The higher
replicas allow to keep some space between partner molecules and therefore result
in fast diffusion. Upon exchange with lower replicas, favorable binding sites can
be rapidly sampled also in the reference replica. This method showed a promising
performance to specifically accelerate the search process for identifying ligand bind-
ing sites on protein surfaces under realistic conditions [238]. However, the method
requires calculating an ambiguity distance between all pairs of surface atoms of
both partners which is computationally demanding and not well suited to run in
parallel on many cores such as graphical processing units (GPU)s.

In the present study, the possibility of increasing the repulsion between ligand
and receptor by specifically increasing the pairwise effective van der Waals (vdW)
radii and reducing the vdW attraction along the replicas in an H-REMD simulation
is explored. It weakens not only the Lennard-Jones contribution to binding interac-
tions but also reduces the number of hydrogen bonds and electrostatic interactions
due to an increased average distance between ligand and receptor. Hence, the bias-
ing potential in the replicas allows the partners to rapidly dissociate from possible
suboptimal binding sites to effectively search the protein surface. The method is
promising for its simplicity of implementation and only requires adjusting parame-
ters and can therefore be used with existing simulation software that runs on GPUs.
The approach was tested on several protein-protein complexes of different sizes
and types. In contrast to regular MD simulations, it allowed the identification of
near-native complexes even when starting far from the native binding region. In
addition, we tested the approach for the refinement of complexes starting from
geometries in the vicinity of the native binding arrangement. In this case, also a
slightly better performance than regular MD simulations at the same computational
effort was achieved.

6.2 Materials and methods

For all atomistic simulations the Amber16 or Amber18 software packages [42, 41],
were used employing the pmemd.cuda module for efficient calculations on Graphical
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Processing Units (GPU)s. The ff14SB [198] force field was used together with an
implicit water representation using the OBC generalized Born (GB) model [237]
(igb=8 option in amber) involving an infinite cutoff.

6.2.1 Simulations of protein-protein complexes starting far from the
binding geometry

MD simulations on protein-protein complexes in order to identify the native binding
arrangement were started from an initial placement of one partner (termed ligand) at
the opposite side of the second (receptor) protein with respect to the native binding
site. Six complexes were considered for these simulations (pdb-id of complexes:
2oo9, 2cfh, 7cei, 2sni, 1gcq, and 1syx, see also Supporting Information Table S1).
In all cases, the unbound protein structures were used for the simulations. The 6
complexes were selected due to the relatively small size from the docking benchmark
3.0 [132]. We distinguish between receptor and ligand-protein according to the
assignment in the benchmark 3.0 [132] (typically the large protein partner is the
receptor and the smaller partner is the ligand). The root mean square deviation
(rmsdligand : Rmsd of the ligand after best superposition of the receptor with respect
to the native complex structure) of the initial relative placement of the partner
proteins from the native complex geometry was between 30 Å and 61 Å.

MD simulations were performed using the OBC (Onufriev, Bashford, Case) gener-
alized Born (GB) implicit solvent model [237] (igb=8 option) and using an infinite
cutoff radius for both the GB radii and nonbonded interactions. A Langevin thermo-
stat with a collision frequency of γ = 5 ps−1 was used to control the temperature.
The collision frequency is reduced relative to a more physical value of 50 ps−1 to
reduce the apparent viscosity of the solvent and speed up sampling [10]. Equi-
libration of the start geometry was achieved after energy minimization (50 steps
steepest descent followed by 1500 steps conjugate gradient) and heating in three
steps (each 12 ps) to 300K with positional restraints of 0.05 kcal mol−1Å

−2
applied

on the heavy atoms relative to the starting structure. Since we observed in long
MD simulations for some proteins a partial unfolding, positional restraints on the
receptor Cα atoms (force constant 0.05 kcal mol−1Å

−2
) were also included during

production simulations. Note, that such weak restraints allow still considerable
backbone fluctuations and full side-chain flexibility but prevent unfolding or large
domain motions in the proteins. To prevent the ligand from diffusing too far away
from the receptor, restraints between the center of masses (COM) of the Cα atoms of
the proteins were employed. The restraining energy was zero for COM distances
below a certain threshold and increased quadratically beyond the threshold (force
constant 1.0 kcal mol−1Å

−2
) so that it prevents large receptor-ligand separation but

still allows the ligand to dissociate from the receptors up to a certain distance. The
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COM distance threshold ranged from 27 Å to 50 Å for the different protein-protein
complexes and was slightly larger than the sum of the largest center to surface
distances for the two partner proteins (see Table B.1). The mean difference of the
applied COM distance restraints and the native COM distances was 10.8 Å. For
avoiding unfolding of the ligand-protein additional intra-molecular pairwise dis-
tance restraints between the Cα atoms of the ligand-protein (only distances between
5-10 Å ) were applied, that prevented the ligand backbone from unfolding (force
constant 2.0 kcal mol−1Å

−2
) but allow full side-chain flexibility.

In order to perform Hamiltonian replica exchange simulations (H-REMD), 16 repli-
cas for each protein were generated with different Lennard-Jones (LJ) parameters
for atom pairs involving atoms from different protein molecules (all intra-molecular
nonbonded parameters within were preserved). The intermolecular LJ potentials
were scaled by a parameter d that adjusts the effective van der Waals radius and a
factor e that changes the potential well depths (see next section for a detailed de-
scription). The following parameter set for d and e, with a smaller step size between
the parameters close to the reference replica that increases in the higher replicas
gave the best results for protein-protein test simulations (see Table 6.2). For each
replica, a short equilibration was performed for 32 ps with no exchange attempts. In
the production run every 1000 MD steps an exchange between neighboring replicas
was attempted, yielding a total simulation time (per replica) ranging from 340 ns to
845 ns (see Table B.1).

Finally, starting from the same equilibration runs, 16 regular MD simulations
with no H-REMD but different initial velocities (using the same restraints) were
performed for comparable timescales as the H-REMD simulations (see Table B.1).

6.2.2 Refinement of individual protein-protein docking poses in implicit
solvent

In addition to simulations starting far away from the native binding geometry,
H-REMD, and regular MD simulations were also performed for arrangements in
the vicinity of the native complex structure obtained by an initial protein-protein
docking run using the program ATTRACT [329, 69]. The same set of structures and
docking procedure as used in a previous study [279] were employed (see Support-
ing Information Table S2). Since the H-REMD method for refinement of docked
complexes is computationally demanding the number of test complexes was limited
to 20 complexes from the docking benchmark 3.0 [132]. The docking was performed
using a standard docking protocol on the unbound partner structures with the
program ATTRACT [329, 69]. The 300 top-ranked complexes were considered. Out
of this set the 50 models with the lowest RMSD to the native complex structure
were used for further refinement using the RS-REMD or regular MD simulations.
In order to refine the docking solutions atomistic replica exchange simulations in
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Table 6.1: Simulation setups for each complex indicated by the PDB-id for the
repulsive scaling H-REMD (RS-REMD) approach and the regular MD simulations.

PDB Simulation time COM da

RS-REMD regular MD
ns/replica ns/simulation Å

7cei 772 400 40
2oo9 730 684 27
2cfh 845 899 50
1syx 438 380 35
2sni 340 308 35
1gcq 640 640 30

a Distance was chosen slightly larger than the sum
of the largest center to surface distances for the two
partner proteins.

implicit solvent were performed (OBC model [237], using the same conditions as
described above) starting from the 50 docking poses of 20 protein-protein complexes.
Energy minimization consisted of 2500 minimization steps (400 steps of steepest
descent, 2100 steps of conjugate gradient). The systems were heated gradually in
three steps of 15 ps to 300 K using a Langevin thermostat for temperature scaling.
For each equilibrated pose 8 replicas were generated with increasing bias for higher
replica numbers of the intermolecular LJ parameters. As described above for the
simulations starting from the opposite side of the receptor protein a parameter d
adjusting the effective van der Waals radius and a factor e that changes the potential
well depths were varied between the 8 replicas (see Table 6.2).
Each replica was simulated for 0.5 ns with an exchange attempt every 125 steps
amounting to 4 ns simulation time per pose. Intra-molecular pairwise distance
restraints between the Cα atoms of each individual protein were applied (force
constant 0.5 kcal mol−1Å

−2
) together with a COM distance restraint of interfacial

Cα atoms between the ligand and receptor (atoms with distances between 10 and 15
Å were considered) with a half parabolic shape (force constant 1.5 kcal mol−1Å

−2
)

that prevents full dissociation in the high replicas and shrinks the possible sampling
space for these short simulations. The same simulation conditions and restraints
were applied for regular MD simulations of each pose (no replica exchange and
bias involved) of the same simulation time (4 ns) following a standard refinement
protocol developed previously [263, 279]. For evaluating the interaction energy
a short MD simulation (30 ps) was applied on the reference replica of the REMD
simulations followed by a minimization (500 steps of steepest descent, 2000 steps of
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Table 6.2: Lennard-Jones scaling parameters for the different RS-REMD simulation
setups. For the repulsive scaling simulations starting far from the binding geometry
and for the refinement of a docking ensemble the 16 replica scheme was used
(column 2 and 3). In the refinement simulations of individual docking poses the 8
replica setup was used (column 4 and 5).

Replica Number 16 replicas 8 replicas
d(Å) e d(Å) e

1 0.0 1.0 0.0 1.0
2 0.01 0.99 0.015 0.99
3 0.02 0.98 0.03 0.985
4 0.04 0.97 0.045 0.98
5 0.08 0.96 0.06 0.97
6 0.12 0.94 0.075 0.96
7 0.16 0.92 0.09 0.95
8 0.2 0.9 0.12 0.935
9 0.24 0.88
10 0.28 0.86
11 0.32 0.84
12 0.38 0.82
13 0.44 0.8
14 0.5 0.78
15 0.58 0.76
16 0.68 0.74

conjugate gradient), which was also applied to evaluate the final structures from reg-
ular MD simulations. Finally, the minimized structures were scored by subtracting
the potential energy of the partners from the energy of the complex [279]. To access
the deviation of the refined structures from the native binding site the rmsdligand
was calculated, the root mean square deviation of the ligand to the native ligand
after superpositioning the receptor on the native receptor (only heavy atoms were
considered).

6.2.3 Refinement of a protein-protein docking ensemble in implicit
solvent

Multiple docking poses were considered in a single REMD run to perform refinement
simulations for each of the 20 protein-protein complexes. Only docking poses with
a rmsdligand above 10 Å (for the complex 7cei 8 Å was chosen, due to a lack of poses
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with large RMSD) were considered as starting structures for the subsequent RS-
REMD refinement. Each of these poses was first scored based on the potential energy
difference of the complex to the individual partners. The 16 highest ranked poses
were considered for the subsequent REMD simulations. The poses formed the start
structures in the 16 replicas and were distributed based on the ranking (best-ranked
pose in replica 1, second-best in replica 2, etc.). Thus, the (initially) best-ranked pose
started in the reference replica. Each replica was simulated for 30 ns amounting
to a total simulation time of 480 ns per RS-REMD run with an exchange attempt
every 250 steps between neighboring replicas. Finally, for comparison, regular MD
simulations (no biases and no replica exchange involved) were performed starting
from the same poses and simulating the same time as in the RS-REMD case.

6.3 Lennard-Jones parameter scaling between partner
molecules

The Lennard-Jones interaction consists of an attractive part proportional to 1/r6

and a repulsive contribution typically modeled by a term proportional to 1/r12.
The parameters εij and Rij in the Lennard-Jones potential determine the magnitude
of attractive interaction and the effective (pairwise) van der Waals radius of the
interaction between a pair of atoms of type i and j.
Typically, only the parameters between atoms of the same type, εii and Rii are used
and one obtains parameters for pairs of different atom types using the Lorentz-
Berthelot rules [188]:

Rij =
Rii + Rjj

2
(6.1)

εij =
√

εiiεjj . (6.2)

By defining new atom types it is possible to specifically modify the Lennard-Jones
potential for interactions between the ligand and receptor without affecting the
Lennard-Jones interaction within one partner molecule or with the solvent. We used
this possibility by adding an adjustable parameter d to an effective pair-wise van
der Waals interactions between pairs of ligand and receptor atoms,

R′ij = Rij + d . (6.3)

One might also scale Rij by multiplying with a factor, but this would increase the
effective radius of pairs of atoms by different amounts and may strongly distort an
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interaction interface. A change in the potential well depth εii is described by a factor
e:

ε′ij = e · εij . (6.4)

As this factor enters multiplicative instead of additive the same relative scaling
of attractive interactions of different pairs of atom types is possible. One subtle
problem with increasing d, however, is that the number of atoms that can interact
increases (illustrated in Figure 6.1).

Figure 6.1: Effect of increasing the van der Waals radius on the number of possible
interactions.

This increases the total binding strength, even though any individual interaction
might be weaker due to an e < 1. εij has to be decreased further to compensate
for that effect. The number of atoms that can exactly fit into the energy minimum
around one atom is proportional to the surface area of a sphere with van der Waals
radius, which would suggest the following quadratic correction:

ε′′ij = (
R
R′

)2ε′ij = (
R

R + d
)2ε′ij . (6.5)

The Lennard-Jones potential minimum also gets wider linearly as Rij increases and
more atoms can fit into the minimum along the radial direction, leading to a cubic
correction:

ε′′ij = (
R

R + d
)3ε′ij . (6.6)

In the cubic case, the binding energy stays approximately constant so that the cor-
rection with equation (6.6) compensates well for the additional possible interactions
and a lowering of e < 1 indeed weakens the attractive LJ interaction between the
partner molecules. Hence, in all cases, a cubic correction of εij was used.
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6.4 Results and discussion

6.4.1 Simulations of near-native protein-protein complex formation

For 6 protein-protein complexes the regular MD simulations and the RS-REMD
(repulsive scaling replica exchange molecular dynamics) method was compared to
identify the native complex geometry after starting from distant initial locations of
partner proteins. In the starting arrangement the ligand-protein was located on the
opposite side of the receptor partner with respect to the native binding site (worst-
case scenario of the initial guess). In each case 16 MD simulations with different
initial velocities were performed using an implicit generalized Born (GB) solvent
model (see Methods for details). The use of an implicit solvent model reduces the
computational demand and allows for faster free diffusion of the proteins due to
appropriate reduction of the viscosity compared to an explicit solvent model. The
simulations started from the unbound ligand and receptor conformations. Only in 2
of the test cases (2oo9, 1syx) individual regular MD simulations reached locations
near to the native binding site and sampled it for longer than a few ns with the
16×(300 to 900) ns (see Table B.1). In the smallest test case (2oo9) the native binding
site (rmsdligand < 10 Å) (root mean square deviation of the ligand to the native ligand
after best superposition of native and simulated receptors) was identified in 10 runs
after an average simulation time of 186 ns (relative occupancy of binding site 47
% in the second half of the simulations, see Supporting Information Table S1). For
1syx one simulation reached placements near the binding site (rmsdligand < 10
Å) after a long simulation time of 236 ns where it stayed for a short time span
(approximately 44 ns) until the rmsdligand grew again beyond 10 Å. In the other
simulations including all 16 regular MD simulations of the other 4 protein cases
(2cfh, 2sni, 1gcq, 7cei) trapping at locally stable sites but no approach of the native
binding site was observed (see Figure 6.2).

Next, we employed the repulsive scaling (RS)-REMD technique using 16 replicas
and starting from the same initial placement as the regular MD simulations. In all
but one case sampling of near-native arrangements was observed in the reference
replica after ∼ 20-400 ns (see Figure 6.2 and Table 6.3). For the 2oo9 system, it took
55 ns and thus a bit longer than in the case of the regular MD simulations (28 ns).
Here, the interacting proteins are very small (contain fewer than 70 residues) with an
apparently small number of alternative locally stable binding geometries. However,
using RS-REMD the ligand of 2oo9 reached the native site on average faster than
in the case of regular MD simulations (by ∼ 100 ns, see Table 6.3) and the relative
occupancy of the binding site was 78 % in the reference replica, higher than the 47 %
observed when combining all regular MD results (see Supporting Information Table
S1). The RS-REMD simulation on 1syx explored near-native binding arrangements
(rmsdligand < 10 Å) after 68 ns and thus more than 150 ns faster than the free
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simulations. For the other three proteins, the RS-REMD simulations captured the
native binding site after 21 ns (2sni), 258 ns (7cei), and 405 ns (2cfh). For these
complexes, one can observe that the ligand continuously approaches the native
binding site through several intermediate states (see Figure 6.2). It illustrates the
advantage of RS-REMD compared to regular MD simulations: while regular MD
simulations can get easily trapped in intermediate binding states for significant
simulation times the RS-REMD allows the system to more rapidly dissociate from
such states and reach near-native geometries. The process of approaching the
binding site is illustrated for the 7cei case in Figure 6.3. The initial population of
the centers of mass of the ligand-protein is located on the opposing side of the
receptor in the first third of the simulation (in the reference replica). The sampled
distribution eventually shifts towards the binding site on the receptor protein and
there increases continuously until the ligand is mostly populated at the binding site
or in the vicinity of the binding site in the reference replica. A similar representation
for the highest replica shows a quite uniform spherical population of the ligand
around the receptor (see Supporting Information Figure S1).

In all the cases for which the binding site was identified RS-REMD lead occa-
sionally to a very close agreement to the native structure with a lowest rmsdligand

of ∼ 3 Å (see Table 6.3). In particular, the lowest rmsdligand using RS-REMD was
closer than for regular MD also in those cases were both methods identified the
correct binding site. Thus, in these cases RS-REMD not only performs better than
regular MD in the global searching process for the binding site but also for local
rearrangements at the binding site.

In only one case, 1gcq, the near-native binding geometry was not detected after
the upper limit of 640 ns of simulation time in the RS-REMD and also not during
any of the 16 regular MD simulations (Figure 6.2). In the 1gcq case, the correct
position of the ligand at the protein-interface site of the receptor was captured
but the orientation of the ligand was incorrect (see Supporting Information Figure
S2). It is possible that the force field and implicit solvent representation favor in
this case the non-native binding geometry. Stabilization of alternative (non-native)
binding geometries (in the current force field setup) is also observed for some of the
other test cases. For example, in the 1syx case, complexes with an rmsdligand < 5
Å are occasionally visited in the reference replica but alternative states with larger
rmsdligand ∼ 8 Å are more frequently sampled. Besides force field artifacts, such
deviation can also be due to the conformational restraining with respect to the
unbound (backbone) protein conformation that we include during all simulations.
Indeed, the protein association in the case of 1syx involves some backbone changes
towards the bound structure at the protein interface (1syx corresponds to a target of
medium difficulty, Supporting Information Table S2).
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Figure 6.2: Rmsdligand from the native structure for the reference replica of the
RS-REMD simulations (magenta dots; first and second row) and for the regular
MD simulations (green dots; third and fourth row) of the six protein–protein test
cases. The results of the 16 individual simulations (separated by vertical lines) were
concatenated in the regular MD cases.
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Figure 6.3: (Upper panel) Three snapshots from the reference replica trajectory of
the RS-REMD of the 7cei complex example (green cartoon: receptor protein, blue
cartoon: ligand-protein, black cartoon: native ligand protein placement). (Lower
panel) The population of the sampled ligand (center of mass) placements during
RS-REMD is indicated as blue spheres around the receptor (green cartoon). The
ligand-protein placement in the native complex is shown by an enlarged black
sphere.

In particular, a loop conformation at the interface of the receptor protein differed
in the sampled near-native complexes from the structure in the bound form (see
Supporting Information Figure S3). Also, states with larger rmsdligand are still
populated in the reference replica in the final stage of the RS-REMD simulation
(Figure 6.2). In the 2cfh case a near-native geometry (rmsdligand < 5 Å) forms the
dominant sampled state in the final simulation stage but an alternative binding
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Table 6.3: Simulation details for each complex indicated by the PDB-id.
PDB Time to encounter native site lowest rmsd

RS-REMD regular MD RS-REMD regular MD
ns/replica ns/simulation Å Å

7cei 258 363a 2.7 7.6a

2oo9 55 186b 2.4 2.4
2cfh 405 3.0 14.9
1syx 68 236 3.1 4.5
2sni 21 2.1 37.4
1gcq 11.6 10.2

a The ligand was not stable at the binding site and stayed only for 1.4 ns.
b The mean value of all encounter times was taken.

geometry with rmsdligand ∼ 25 Å remains also highly populated. The result indicates
that the force field setup stabilizes in many cases not only exactly the native binding
geometry but also alternative states in the vicinity of the native structure but also
some binding modes quite far from the experimentally observed complex structure.
All protein simulations for which the binding site was captured were extended for
more than 300 ns after having encountered the native binding site. The relative
population in the reference replica of near-native states at the binding site grows
in several cases with ongoing simulation time (reaching > 50%) (see Supporting
Information Table S1). This is not the case for 1syx with a population of the near-
native complex of ∼ 25% (still forming the largest populated cluster; Supporting
Information Figure S4) but some alternative binding modes reaching a similar
population indicating similar binding affinity. The population of ligand placements
at the native binding site is highest in the reference replica and decreases for the
higher replicas (see Supporting Information Figure S5 for the example case 7cei)
due to the higher repulsive bias. Hence, an advantage of the RS-REMD technique
relative to regular MD is that the near-native binding site can be identified by just
looking at the population in the different replicas.

6.4.2 Refinement of individual protein-protein docking poses in implicit
solvent

Significant computational demand and simulation times are still necessary to reach
near-native binding geometries using RS-REMD from distant initial placements.
However, this corresponds to a worst-case scenario. Instead, it is also possible to first
perform a rapid protein-protein docking (not including solvent or partner flexibility)
in order to first identify potential binding sites possibly not too far from the native
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binding geometry. In a second step, short RS-REMD simulations are used as a
refinement procedure to further improve the docking results. We first performed
a docking run on a subset of 20 protein–protein complexes of the protein-protein
benchmark 3.0 [132] using the docking program ATTRACT and obtained 50 top-
ranked poses with different ligand deviations from the bound complex (rmsdligand <

25 Å) around the receptor protein (same as used in a recent study on protein-protein
docking scoring [279]). For each of these poses, a short RS-REMD refinement (4 ns)
was performed to refine the docking results. In order to limit the computational
demand for this procedure, an RS-REMD with 8 replicas was performed.

Overall, upon RS-REMD refinement of all 50 decoys for the 20 test cases a slightly
larger number of models (65%) with higher rmsdligand was observed compared to the
starting structures (35 % of poses had higher rmsdligand before refinement) (Figure
6.4). Likely, because of the short simulation time, no rmsdligand improvements better
than 13 Å were sampled. More important than the rmsdligand improvement of poses
with a high deviation from the native binding mode is the refinement performance
of the near-native models. For the docking model closest to the native binding site a
smaller rmsdligand after RS-REMD refinement was observed for 13 complexes. Also,
the improvement in rmsdligand was higher, so an overall improvement of 0.49 Å
was found considering the mean difference in rmsdligand before and after RS-REMD
refinement of the closest to native pose (see Figure 6.4, left panel).

The RS-REMD scaling results are compared to a well established atomistic re-
finement procedure [263, 279] using regular MD simulations with 8 times longer
simulation time per decoy and final energy minimization (same force field setup and
positional and distance restraints as in the RS-REMD, see Methods). In Figure 6.4
(right panel) the rmsdligand after RS-REMD refinement is plotted vs. rmsdligand after
regular MD refinement. A slightly higher amount of structures had a lower rmsd
with RS-REMD refinement (57 %, magenta dots) than with regular MD refinement
(43 %, green dots). RS-REMD refinement also performed better than the regular
MD refinement considering the model with the lowest rmsdligand for each protein-
protein complex. For 13 complexes the near-native pose was closer for RS-REMD
refinement than regular MD refinement and the mean rmsdligand of the near-native
poses of all structures was slightly lower (0.33 Å) for RS-REMD refinement.

Finally, the refined poses were scored based on the interaction energy of ligand
and receptor, the total energy of the complex was subtracted from the total energy
of the individual ligand and receptor. The selectivity of the resulting funnel plots
(rmsdligand versus scoring) was compared (see Figure 6.5 and Supporting Infor-
mation Figures S6 and S7), measuring the ability of the refinement procedures to
distinguish near-native from other decoys. The selectivity was calculated based
on an approach introduced recently (see Chapter 5) [279], by calculating the nor-
malized difference in binding energy of the highest scored pose at the binding site
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(rmsdligand < 10 Å from the pose of minimal rmsdligand) S′T and not at the binding
site S′F:

Selectivity = S′T − S′F. (6.7)

The two key poses were shifted by the mean scoring value of all poses and divided
by the minimum scoring value in order to obtain comparable results for each protein.

S′i =
Si − S
Smin

. (6.8)

A selectivity of 1 means a perfectly selective funnel plot for the best-bound pose at
the binding site and -1 means that the funnel plot is very selective for the highest
scored decoy not at the binding site. A value of 0 means that the highest scored
near-native pose and the highest scored pose not at the binding site have the same
binding affinity.
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Figure 6.4: The rmsdligand of all refined complexes after RS-REMD refinement is
plotted against the rmsdligand before refinement (left panel) and after regular MD
refinement (right panel). Magenta dots mark poses where the rmsdligand decreased
due to RS-REMD refinement (35 % for the left panel and 56 % for the right panel)
and green dots depict the poses for which the rmsdligand increased after RS-REMD
refinement.

In 16 cases RS-REMD was able to identify the near-native binding placement
(positive selectivity) and only in four cases the refinement approach resulted in a
clearly negative selectivity (1ffw, 2oob, 1ak4, 2i25), identifying an incorrect binding
site.
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The selectivity was slightly higher for 14 structures in RS-REMD (1z0k, 3a4s, 7cei,
1ay7, 1ffw, 1qa9, 3sgq, 1gcq, 2oob, 2cfh, 1ak4, 1fle, 1z5y, 2i25) compared to using
regular MD refinement. The mean selectivity of all structures was also higher after
the RS-REMD refinement procedure (0.12) in contrast to regular MD refinement
(0.06).

In summary, the RS-REMD refinement was able to improve in many cases the
placements of the near-native poses. It overall performed slightly better than an
established regular MD refinement procedure (at the same computational costs) in
terms of the selectivity in identifying the native binding site.
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Figure 6.5: Mean selectivity of all structures and the selectivity of each structure for
the different refinement procedures. The selectivity was calculated as described in
the main text (see equations 6.7, 6.8), considering the highest ranked poses at the
binding site and not at the binding site, respectively. The corresponding funnel plots
(scoring vs rmsdligand) are shown in the Supporting Information Figures S1 and S2.
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6.4.3 Refinement of a protein-protein docking ensemble in one RS-REMD

Instead of refining every docked pose separately, it is also possible to start from a
different docking decoy in each replica leading to a higher diversity in the starting
conditions such that multiple possible binding sites are represented in different
replicas. In the case of a sufficient number of replicas it is then possible to perform
only one RS-REMD simulation per complex in contrast to 50 separate simulations
for individual refinement of decoys (see above). To increase the challenge, the
refinement was initialized exclusively from starting placements that were not located
at the binding site. Only poses with an rmsdligand above 10 Å (for the complex 7cei
8 Å, due to a lack of poses with large RMSD) were considered as starting structures.
An increasing replica number was linked to a lower ranking after docking for the
selected starting poses. The results of the RS-REMD (with 16 replicas) are again
compared to 16 regular MD simulations of the same length starting from the same
initial placements.
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Figure 6.6: Histograms of the rmsdligand from the native structure for the reference
replica of the RS-REMD refinement (magenta) (for all 20 protein–protein test cases)
is compared to the rmsdligand histograms of the regular MD simulations (green). The
refinement was performed starting from initial placements not at the binding site.
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Figure 6.7: Histograms of the rmsdligand from the native structure for the reference
replica of the RS-REMD refinement (magenta) (for all 20 protein–protein test cases
in an individual figure) is compared to the rmsdligand histograms of the regular MD
simulations (green). Both refinement procedures were initialized from poses that
were not at the binding site.

The resulting total population of sampled near-native states close to the binding
site (rmsdligand < 10 Å) increased significantly (30 %) in comparison to regular MD
refinement (17 %) (see Figure 6.6). For 14 of the 20 structures, RS-REMD was able to
capture the binding site, in some cases, the population was highest at the binding
site (see Figure 6.7). It points out, that even relatively short RS-REMD simulations
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can capture near-native binding geometries that were not already found in the initial
docking search.

Performing only one refinement simulation starting from an ensemble of promis-
ing docking solutions and not refining every single pose individually can signifi-
cantly reduce the computational demand.

Comparing the rmsdligand histograms of the refinement procedure to the his-
tograms of the pure RS-REMD simulations (see Figure 6.2 and Supporting Infor-
mation Figure S4) the dominant states are consistent in most cases, especially for
rmsdligand values under 10 Å(see 2cfh, 7cei, 2sni, 1syx). In the case of 1gcq, the
binding site was not captured in the long repulsive scaling simulation, still the two
populated spikes around 20 Å are also present in the refinement simulations.

6.5 Conclusion and outlook

A new H-REMD scheme is presented that includes a repulsive scaling potential
(RS-REMD) between different protein molecules based on a modification of the
intermolecular LJ parameters. The bias requires a modification of the simulation
parameter file but no changes in the underlying MD program are involved and
full GPU support is possible. The replica exchange scheme was applied and tested
on three tasks that seek to identify the native binding geometry of protein-protein
complexes using an implicit solvent model. First, RS-REMD allowed sampling near-
native binding placements in 5 out of 6 example complexes, starting from a random
placement far away from the native binding site. In contrast to multiple regular MD
simulations, which were stuck mostly at locally stable sticky sites, these sticky sites
were overcome through several intermediate steps in the RS-REMD. While the higher
replicas sampled the whole receptor surface, the reference replica sampled locally
favorable sites quickly until the native binding site was captured but depending
on the case alternative binding modes were also still sampled. Although much
less demanding than regular continuous (c)MD simulations still quite extensive
sampling is needed for this approach that may limit its applicability.

In addition to starting from a worst-case scenario, we also used the approach for
refining pre-docked poses. By applying a short RS-REMD run for each of the 50
poses of a benchmark set of 20 protein-protein complexes, it was possible to decrease
the mean deviation from the native binding site. Moreover, the mean selectivity of
identifying the native binding site according to a simple scoring function (based on
the interaction energy) was increased in comparison to a regular MD refinement.

The simulation effort could be further reduced using a refinement scheme that
associates each replica in the RS-REMD run with a different docking pose as starting
structure. In contrast to the first refinement procedure, only one refining simulation
had to be performed for each protein-protein complex. The population of the
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ligand-protein partners near the binding site was clearly increased with RS-REMD
beyond the result achieved by regular MD simulations. The benchmark set also
contained difficult test cases (see Chapter 5 and also reported in [279]), where
the identification of the native binding site was not possible in both refinement
procedures. Possible reasons are inaccuracies of the implicit solvent model that
may not always favor correct complex structure relative to alternative arrangements.
Explicit solvent simulations may help to solve this issue and will be tested in future
studies. However, the probably slower diffusion and increase in the number of
particles will likely demand higher computational efforts. Another limitation of
our setup is the inclusion of conformational restraints of the partner molecules with
respect to the unbound conformations. This avoids any large-scale conformational
change or unfolding of partners but in some cases may prevent conformational
adaptations necessary for productive protein-protein complex formation. More
global restraining methods like the inclusion of backbone Rmsd restraints can help
to overcome this issue in future efforts.

In principle, the RS-REMD biasing scheme can also be helpful to study fold-
ing/unfolding events or dissociation/association of parts of a protein structure. In
such a case only the interactions of the selected part of the protein with other protein
segments are scaled in the replica simulations.
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7 Efficient Refinement and Free Energy
Scoring of Predicted Protein-Protein
Complexes Using Replica Exchange
With Repulsive Scaling

Typically, putative protein-protein complexes are predicted based on docking meth-
ods and simple force field or knowledge-based scoring functions are applied to
evaluate single complex structures (Chapter 4). In the next chapter, we will extend
the repulsive scaling RS-REMD scheme of Chapter 6 to simultaneously refine and
calculate a free energy score of protein-protein complexes. Originally introduced for
implicit solvent, we will employ a more realistic explicit water environment. The
approach is computational demanding but may offer a route for refinement and
realistic ranking of predicted protein-protein docking geometries.1

7.1 Introduction

Protein-protein interactions (PPI) play an important role in nearly all cellular pro-
cesses. Despite a growing number of experimentally determined protein-protein
complex structures, there is still a demand for accurate prediction of complexes
especially in combination with limited or low-resolution experimental data. On the
computational side, two aspects are of utmost importance to elucidate the details of
the PPI, the identification of the native binding site of two protein partners (sampling
step) and the correct prediction of the corresponding binding affinity (scoring step).
A variety of computational docking and scoring methods have emerged (reviewed
in [277, 326, 115, 150, 303, 29, 109]). Current methods can usually generate rapidly
numerous putative complex geometries but the generation of near-native geometries
and the realistic scoring of the complexes is limited. Hence, a near-native complex
structure is not necessarily detected as the most favorable binding geometry. Sec-
ondly, during a systematic search step, the partners are typically represented as
rigid bodies or at limited resolution using a coarse-grained model. Depending on
possible conformational changes associated with complex formation or in the case

1The contents of this chapter have been published in a similar form in [278].
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of homology-modeled partner structures none of the generated complexes is close
to a native geometry [115, 326, 296]. Even with a realistic scoring the prediction fails
in this case because of the lack of near-native solutions in the generated pool.

In principle, an atomistic description of the proteins including full flexibility with
an explicit water model in a molecular dynamics (MD) simulation should be ideally
suited to predict realistic interaction geometries [277, 240, 101]. Indeed, in recent
years near-native protein-protein complex structures have been recovered from
multiple MD simulations [248]. However, such approaches are computationally
very demanding and in recent years promising advanced sampling methods have
been developed to identify near-native protein-protein interaction structures [101,
219, 244, 240].

Recently, encouraging strategies to tackle the identification of the native binding
site have been conducted on sets of protein-protein complexes using molecular
dynamics simulations in combination with advanced sampling methods. One
approach used tempered binding to explore several binding events of five protein-
protein cases on the special purpose computer ANTON [240, 267]. In tempered
binding, the interaction strength between the protein partners is scaled in regular
steps to enhance the simulation of rare events. Still, the computational demand of
the approach is large. Another more efficient approach employs perturbed distance
restraints to allow reversible protein-protein association during MD simulations
[244].

A very popular advanced sampling method is replica exchange, in which several
copies of the system (replicas) are simulated in parallel, performing exchange at-
tempts between the different replicas in regular time intervals [194]. One possibility
is to employ different temperatures along the replica coordinate (T-REMD) [290].
The system is able to escape local minima in the replicas of higher temperature and
introduce the newly sampled phase space to replicas of lower temperature. The
efficiency of the T-REMD method is, however, strongly limited by the size of the
simulation system. It is also possible to exchange the Hamiltonian between the
copies (H-REMD) with the temperature held constant [95, 314, 192, 3, 127, 147].

Improvement of efficiency compared to T-REMD can be achieved by specific
scaling of relevant interaction parameters. In a recent method, various levels of a
biasing potential are introduced in each replica that keep the partner at different
distances from the receptor surface and thus accelerates the searching process for
the correct binding site [238]. The efficiency can be further enhanced by a specific
repulsive intermolecular bias between the ligand and receptor, based on modified
Lennard-Jones parameters in the replicas (RS-REMD) (see Chapter 6) [276]. With
this method for five protein-protein complexes (out of six) it was possible to identify
the native binding site, even when starting from ligand placements on the other side
of the receptor. Moreover, short RS-REMD simulations (< 10 ns) allowed frequent
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identification of near-native complex structures when starting from an ensemble of
pre-docked placements in the vicinity of the binding site.

Atomistic MD-simulations can also be used to rigorously calculate free energy
changes of a molecular system including full flexibility and solvent effects. A variety
of methods were established in the past decades to calculate the free energy of bind-
ing [277]. Some methods to calculate binding free energies are based on multi-step
alchemical decoupling (DDM) of the ligand in the complex with a receptor protein
vs. free solution [7, 70]. Such alchemical transformations become more expensive
with increasing atom number of the conformers, making the use of a DDM inefficient
in the context of protein-protein complexes.
For protein-protein complexes usually physical pathway methods are used to predict
the binding affinity, introducing a coordinate for physical separation of the partners
and measuring the dissociation work [119, 244]. Good agreement with experiment
was found for selected cases. Siebenmorgen and Zacharias applied an umbrella
sampling (US) approach in all-atom implicit solvent MD simulations to calculate
the absolute binding free energy of (50) pre-docked poses for 20 protein-protein
complexes (see Chapter 5) [279]. The US free energy method showed improved
performance to selectively discriminate native binders compared to simply evaluat-
ing the interaction energy [279]. Perthold and Oostenbrink evaluated recently 18
protein-protein docking targets from the CAPRI (Critical Assessment of PRedcited
Interactions) docking challenge using short nonequilibrium explicit solvent simu-
lations (GroScore) with very promising results compared to the best CAPRI scorer
performance [243].

In the present study, we extend the RS-REMD method to perform simulations
in explicit solvent and in addition to also allow extracting a free energy score of
binding. For a benchmark set of 36 complexes, the RS-free energy score (in explicit
solvent) gives a quite good correlation to experimental binding data with modest
computational demand. An application to 50 docked decoys based on unbound
partner structures for 20 protein-protein docking cases gave on average a significant
improvement of the prediction geometry (deviation from the native complex) and
for each decoy a predicted RS-score for binding. In many but not all cases the
near-native solutions could be detected as those with the lowest free energy score.
The failure in some cases and the differences in the performance for explicit solvent
and implicit solvent treatment are investigated and discussed.
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7.2 Materials and methods

7.2.1 Explicit solvent simulations of native protein-protein complexes

A subset of the protein-protein affinity benchmark [150] was evaluated with RS-
REMD in explicit solvent, containing 36 native protein-protein complexes. The
benchmark contained 16 structures that we already evaluated in an earlier study
on binding free energy simulations [279] and 20 additional structures for which the
experimental affinity measurements were stated as reliable [151]. In order to reduce
the computational effort only dimeric complexes with no more than 700 residues
were taken into account. Missing residues were added using the program Modeller
[201]. All MD simulations of this study were conducted with the pmemd.cuda
module of the Amber18 software package [41]. The protein force field ff14sb [198]
was used for all protein-protein complexes. The proteins were solvated using the
tip3p [144] water model in an octahedron box with periodic boundary conditions
(minimum distance between protein and box edge were 15 Å). The charges were
neutralized with Na+ and Cl- ions. The systems were minimized (1000 steps of
steepest descent), heated in 3 steps to 300 K using a Langevin thermostat, and
equilibrated in 16 ps. Next, the repulsive scaling (RS) REMD simulations were
performed (5 ns per replica, exchange attempts every picosecond), i.e. H-REMD
simulations with 16 replicas and increasing bias between the ligand and receptor
Lennard-Jones parameters (see Table 7.1). The trajectories were analyzed using
pytraj and the associated relative binding free energies were calculated with MBAR
(see Section 3.4.1 for details on the MBAR method) [271].

7.2.2 Implicit solvent simulations of native protein-protein complexes

The same 36 native protein-protein complexes and the same force field as for the
explicit solvent simulations were used for the implicit solvent MD simulations.
The OBC (Onufriev, Bashford, Case) generalized Born (GB) implicit solvent model
[237] (igb=8 option) was used with an infinite cutoff radius for the GB radii and
non-bonded interactions. For temperature scaling a Langevin thermostat with a col-
lision frequency of γ = 2 ps−1 was used. For geometry optimization of the starting
structures minimization was performed consisting of 400 steps of steepest descent
followed by 2100 steps of conjugate gradient. During 45 ps of simulation time, the
systems were heated in 3 steps to 300K and equilibrated. RS-REMD simulations
were performed for 2.5 ns per replica using the same LJ parameter scaling scheme
as in the explicit solvent case (see Table 7.1). Between the Cα atoms of each indi-
vidual protein harmonic pairwise distance restraints were applied (force constant
0.5 kcal mol−1Å

−2
) (with respect to the unbound partner structures!). Comparable

restraints were also used in previous implicit solvent simulations of these structures.
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[279] Moreover, dissociation far from the receptor was limited using half-parabolic
COM distance restraints between the Cα atoms of ligand and receptor (force constant
2.0 kcal mol−1Å

−2
for distances 15 Å above the COM distance of the equilibrated

structure).

7.2.3 Scoring of protein-protein docking poses in explicit solvent

A set of 50 docking poses for 20 protein-protein complexes was generated using
ATTRACT [329]. As in previous studies, the 50 models with the lowest root-mean-
square deviation (RMSD) to the native structure out of the 300 top-ranked poses
were considered [279]. The simulations were prepared in the same way as the native
explicit solvent simulations (force field ff14sb with tip3p water representation). Each
docking model was minimized, heated to 300 K, and equilibrated as in the case of
the native explicit solvent simulations.

For each docking pose a RS-REMD simulation was conducted with 16 replicas
and the same parameter scaling as in the preceding simulations (see Table 7.1).
The simulation time between each docking pose was constant and varied slightly
between different protein-protein cases (5 ns - 5.5 ns per replica).

7.2.4 Scoring of protein-protein docking poses in implicit solvent

The same 50 ligand placements in 20 protein-protein complexes as for the explicit
solvent RS scoring of pre-docked poses was used for implicit water RS-REMD
simulations. The same force field parameters as for the native implicit solvent
simulations were used (force field ff14sb and igb=8 option for the implicit solvent
model). Also, the minimization, heating to 300 K and equilibration was conducted
for each docking pose as the native implicit solvent simulations with the same
restraints applied. A RS-REMD simulation of 2.5 ns (per replica) with 16 replicas
(same parameter set as before, see Table 7.1) was performed for every docking pose.

7.2.5 Free energy calculation along RS-REMD replicas

In the RS-REMD simulations, N = 16 replicas were simulated in parallel with an
increasing bias between ligand and receptor atoms with higher replica number.
The introduced bias is associated with a lower (attractive) potential well depths
ε and higher (repulsive) effective pair-wise van der Waals radius in the Lennard-
Jones parameters, which leads to a dissociation of the ligand in the higher replicas
(no contact with the partner). Thus, the reference replica (no bias between ligand
and receptor) ideally represents the bound state of the complex (α = 1) which is
progressively transferred to the unbound state in the higher replicas. This leads to
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Table 7.1: Lennard-Jones scaling parameters for the RS-REMD simulations in implicit
and explicit solvent with 16 replicas.

Replica Number 16 replicas
d e

1 0.0 1.0
2 0.01 0.99
3 0.02 0.98
4 0.04 0.97
5 0.08 0.96
6 0.12 0.94
7 0.16 0.92
8 0.2 0.9
9 0.24 0.88
10 0.28 0.86
11 0.32 0.84
12 0.38 0.82
13 0.44 0.8
14 0.5 0.78
15 0.58 0.76
16 0.68 0.74

distributions with very good overlap along the distance between partner proteins
which is also reflected in the high REMD acceptance rate of usually close to 0.5 (see
Figure 7.1). A binding free energy score between the bound and unbound state of
the complexes can now be calculated with a perturbation approach along the biasing
(α-) coordinate associated with a higher replica number (see Table 7.1).

The introduced bias in each replica is calculated using trajectory re-evaluation.
The trajectory of replica α + 1 is evaluated with the LJ parameter set of replica α
and the LJ parameter set of replica α + 1. The associated free energy difference can
be obtained using the BAR (Bennet-acceptance ratio) method [24]. This approach
can be extended from only evaluating adjacent biases along the α path ∆Uα,α+1, to
evaluating all pairs of biases ∆Ui,j, with i, j = 1, ..., N. The corresponding free energy
difference is calculated using MBAR [271]. For calculating the relative binding free
energies only the second half of the simulation time was incorporated and the first
half was considered as equilibration time. The statistical errors were calculated
by splitting the simulations into 5 parts and calculating the mean and standard
deviation.
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Figure 7.1: Sampled center of mass (COM) distance histograms of all 16 replicas
for a typical RS-REMD run in explicit solvent (pdb1z0k case). The solid black line
represents the reference replica distribution (associated state) while the dashed
black line represents the distribution in the highest replica (sampling mostly the
dissociated state). The intermediate replicas (blue histograms) indicate substantial
overlap in the transition from the reference to the highest replica distribution. The
distance observed in the experimental complex structure is depicted with a red
vertical line.

7.3 Results and discussion

7.3.1 Evaluation of the RS-REMD free energy scoring on native
protein-protein complexes

The RS-REMD technique employs a series of (16) parallel running replicas with
increasing repulsive biasing between protein partners based on a scaling of the
effective pairwise van der Waals radius and attractive Lennard-Jones parameters
(Table 7.1). Only the intermolecular interactions are modified without affecting
intramolecular interactions or interaction with the solvent [276]. In the reference
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replica the original unmodified force field is used. Starting from complexed states
including explicit solvent the technique allows rapid generation of extensively
overlapping partial or fully dissociated distributions of one protein relative to
the partner (Figure 7.1) along the replicas. The technique was first applied to a
benchmark set of 36 native protein-protein complexes of relatively small to medium
size and for which binding free energies are available. In the RS-REMD simulations
the bound state has a higher tendency to remain in the lower replicas while the
dissociated state is predominantly detected in the highest replicas (see Appendix,
Tables C.1, C.2). The histograms of the COM distances of the associated state
(replica with minimum rmsdligand calculated in each frame) and the dissociated state
(replica with highest COM distance of each frame) evaluated for the second half of
the simulation are shown in the Appendix, Figure C.1. Only narrow fluctuations
around the native distance (vertical black line) are observed in the bound states
(blue histograms). A clear separation between associated and dissociated states (red
histograms in Appendix, Figure C.1) is visible. The mean COM distance difference
for all complexes between the associated and the dissociated states is 8.4 Å (see
Appendix, Table C.1).

Figure 7.2: Calculated relative binding free energy vs. experimental binding affinity
for the explicit water RS-REMD simulations (blue dots in the left panel) and the
implicit water simulations (red dots in the right panel) of all 36 native protein-protein
complex cases. A linear regression is fitted to the data points with PCCs of 0.77
(explicit solvent) and 0.55 (implicit solvent), respectively.

In order to calculate the free energy difference between bound and unbound
states, we applied the MBAR approach along the RS-REMD replicas (see Methods).
It is important to note that the calculated free energy change does not represent an
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absolute binding free energy of the complex. For example, only a fraction of the
full translational and rotational freedom of the partners in the unbound state will
be sampled. It is, nevertheless, of interest to compare the calculated free energy
change for the set of complexes with corresponding experimental binding free ener-
gies (Figure 7.2). The Pearson correlation coefficient (PCC) indicates a quite good
correlation of 0.77 (a PCC=1 indicates a perfect linear correlation, 0 = no correlation).
It is higher than correlations of a similar benchmark set evaluated with the MMG-
BSA/MMPBSA (molecular mechanics generalized Born/Poisson-Boltzmann surface
area) approaches, that achieved a maximum correlation of 0.65 and 0.52, respectively
[45]. A subset of the present benchmark set was recently evaluated by Siebenmorgen
and Zacharias (2019) using an umbrella sampling approach in implicit solvent to
calculate the absolute binding free energy with a correlation of 0.74 (see Chapter 5)
[279]. Taking only those complexes into account that were used in the latter study
an even higher correlation of 0.87 can be extracted from the present results.

7.3.2 RS-REMD free energy scoring of native protein-protein complexes
in implicit solvent

RS-REMD simulations on the same native protein-protein complexes as used for
the explicit water case were also performed with an implicit generalized Born
(GB) solvent representation. Also, in case of the implicit GB solvent simulations
the RS-REMD allowed to effectively dissociate the native complexes along the
replica simulations (see Appendix, Figure C.2 and Table C.2). A mean difference
in COM distance between the dissociated and the associated states around 11.9
Å was observed, slightly higher than in the explicit water case. Importantly, the
native binding site is stable in the reference replica in all cases, with only small
deviations in the COM distances from the distance in the experimental complex
structure. However, the average RMSD with respect to the native complex was on
average higher compared to the explicit solvent simulations.

The free energy differences are calculated using the same approach as for the
explicit water case. A reasonable correlation of the calculated free energy differences
and the experimental affinities was obtained (Figure 7.2) with a lower associated
PCC of 0.55 compared to the explicit solvent results. The implicit water RS-score
has a higher tendency to underestimate the calculated binding affinity, as in 75 %
of the cases the achieved ∆GCalc was more than 2.5 kcal/mol too low. Overall, the
calculated free energy values are in slightly better agreement with the experimental
affinities with a mean difference of ∆GDi f f = ∆GCalc − ∆GExp = -4.5 kcal/mol. In 7
cases the difference in affinity was under 2.5 kcal/mol (2sni, 1zhi, 1r0r, 2i25, 1s1q,
2hle, 1b6c).
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7.3.3 RS-REMD refinement and free energy scoring of protein-protein
docking poses in explicit solvent

RS-REMD simulations were performed on a benchmark set of 50 pre-docked poses
of 20 protein-protein complexes in explicit solvent. The complexes were obtained
from rigid docking of unbound partner structures (see Methods and [276]). The RS-
REMD scoring technique was applied separately to every docking pose to calculate
an associated free energy change for the dissociation and also to check for a possible
improvement of the complex geometry. The simulations of 50× 16× 1 ns for each
case (5 ns were simulated overall for each case) took on average 4.9 days (2.3 hours
per pose) on a single GPU (see Appendix, Table C.3).

Figure 7.3: The rmsdligand of the first and the last frame of the RS-REMD reference
replica simulations for the explicit water representation (left panel) and the implicit
water representation (right panel). The minimum rmsd of all replicas was chosen in
frame 0 and in the last frame to account for occasional exchanges of the reference
structure to higher replicas. An improvement of rmsd (red dots) was observed in 81
% (explicit) and 67 % (implicit) of the cases.

We reported recently, that the RS-REMD technique is able to significantly improve
the sampling of near-native binding geometries, especially for start structures in the
vicinity of the native binding site (see Chapter 6) [276]. Comparing the rmsdligand
from the native binding site of the initial structures and the final sampled geometries
of the RS-REMD simulations indicates an improvement in rmsdligand in 81 % of the
poses (see Figure 7.3, left panel). Again, especially for structures in the vicinity of the
binding site (rmsdligand < 20 Å) in many cases quite dramatic improvements were
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observed despite relatively short simulation times. It indicates that the repulsive
biasing in the replicas is effective in disrupting trapped states and therefore allows
rapid diffusion towards low free energy configurations on the protein surfaces.
Note that for evaluating the improvement in complex geometry the minimum
rmsdligand of all replicas at the end of the simulation was considered, to account for
the occasional exchanges from the reference replica to higher replicas. The average
minimum rmsdligand of all poses vs. simulation time decays rapidly in the first half
of the simulations (Figure 7.4 (blue line)).

The RS-REMD free energy scoring results vs. rmsdligand from the native complex
(using again the minimum in the replicas of the last frame of the RS-REMD sim-
ulations) are shown in Figure 7.5. The free energy difference was calculated with
the same procedure described for the native complexes (from the last 2.5 ns of each
RS-REMD simulation, errors were estimated after splitting the data set into 5 parts
to calculate mean and standard errors). For most of the structures, clear discrimi-
nation between poses close to the native binding site and alternative placements
are observed. Comparison to a plot of the same scores vs. initial rmsdligand of the
docked start structures also demonstrates the improvement in predicted complex
structure (see Appendix, Figure C.3).

Remarkably, in several cases a complex structure is reached (starting from a non-
native docked complex based on unbound partner structures!) with an rmsdligand
basically identical to the rmsdligand when starting from the native structure and a
score very close to the score obtained for the native complex (black dots in Figure 7.5).
This indicates both reasonable convergence and sampling power of the approach.
However, there are few cases that failed to reach a complex very close to the native
complex or resulted in complexes with free energy scores lower than starting from
the native complex (e.g. 3a4s, 2oob, and 1ak4).

In order to quantify the ability of the RS-REMD free energy score to differentiate
between close to native poses from other poses, a selectivity of each funnel plot was
calculated following an approach we introduced previously (see Chapters 5 and
6) [279, 276]. Basically, the selectivity measures the difference in scoring between
the highest-ranked ligand pose at the binding site G′Site (rmsdligand < 8 Å from the
pose of minimal rmsdligand) from the highest-ranked ligand pose not at the binding
site G′NotSite. To this end, each score was first shifted by the mean value of all scores
and divided by the minimum scoring value to achieve comparable results for the
different protein-protein complex cases:

G′i =
Gi − G
Gmin

. (7.1)
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Next, the selectivity is given by the normalized difference of the key poses:

Selectivity = G′Site − G′NotSite. (7.2)

The resulting selectivity is a value between 1 (perfectly selective for the pose at
binding site) and -1 (perfectly selective for pose not at the binding site). A value of 0
means that the scoring of the highest scored pose at the binding site was the same
as the scoring of the highest scored pose not at the binding site.

The selectivity for each structure is given in Figure 7.6. RS score was able to
identify the closest to native poses in 11 cases (selectivity higher than 0.1) and
only in 4 cases the poses not at the binding site were scored considerably higher
(selectivity lower than -0.1). For 5 structures the highest-ranked poses at the binding
site and not at the binding site scored quite equally (selectivity between 0.1 and -0.1).
A mean selectivity of 0.22 was measured for all structures, which is comparable to
the selectivities achieved in a previous study using umbrella sampling for absolute
binding free energy calculations in implicit solvent on the same benchmark set
(0.28) [279]. Please note that a slightly different rmsd metric and conformational
restraining methods were used in the previous study.

Figure 7.4: The rmsdligand following the replica of minimal rmsdligand against per-
centage of simulation time for the explicit (blue) and implicit (red) water simulations.
The mean value of all simulated poses was considered. Due to differing sampling
steps we interpolated linearly between the sampled values.

112



7.3 Results and discussion

Figure 7.5: RS-REMD scoring of all 50 poses for 20 protein-protein cases against
rmsdligand from the native complex. The results of the explicit solvent RS-REMD
simulations of the different poses (blue dots) and the native structures (black dots)
are given with uncertainties.
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Figure 7.6: Selectivities of the explicit solvent (cyan) and implicit solvent (red) RS-
REMD free energy scoring for all 20 protein-protein complex cases (right panel)
calculated as described in the main text using equations 7.1 and 7.2. The mean
selectivity of all cases reaches 0.20 (left panel) for the implicit solvent simulations
and 0.22 in case of the RS-REMD in explicit solvent.

7.3.4 RS-REMD free energy scoring of protein-protein docking poses in
implicit solvent

The ability of RS score to differentiate poses at the binding site from other poses was
also studied in implicit solvent. The same benchmark set containing 50 poses for
20 protein-protein cases was tested as in the explicit water case. These simulations
took approximately half of the time required for the explicit water simulations on
one GPU (2.4 days per complex for every 1 ns simulation time of 16 replicas and 50
poses, see Appendix, Table C.3).

An improvement in rmsdligand during the RS-REMD simulations for 67 % of the
poses was observed (see Figure 7.3, right panel and Appendix, Figure C.4), a slightly
worse performance than the explicit water case. Again, the minimum rmsdligand of
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all replicas was chosen in order to account for exchanges between the replicas. The
development of the minimum rmsdligand (mean over all simulated poses) along the
simulation time shows the same minimum as in the explicit water case with a high
decrease in the first 0.25 ns (see Figure 7.4, red line). Interestingly, the curve reaches
the minimum already after 40 % of the simulation time (1 ns), much faster than in
the explicit water case (4 ns).

Figure 7.7: RS score of all 50 poses for 20 protein-protein complexes vs. rmsdligand
(replica of minimal rmsdligand in the last frame) from the native complex. The results
of the implicit solvent RS-REMD simulations of the different poses (red dots) and
the native structures (black dots) are given with uncertainties.
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A funnel-like shape of the RS score versus rmsdligand from the native complex
(minimal rmsdligand of all replicas in the last frame taken as reference) can be ob-
served for most of the structures (see Figure 7.7). The selectivity was calculated
as described for the explicit water scoring. RS score resulted in a high preference
for the highest scored pose at the binding site (rmsdligand < 8 Å from the pose of
minimal rmsdligand) in contrast to the highest scored pose not at the binding site in
14 cases (selectivity higher than 0.1). A clear preference for poses not at the binding
site was found in 6 cases (selectivity lower than -0.1). Overall, the mean selectivity
is 0.20 and thus slightly worse than in the explicit solvent case.

7.3.5 Structural details leading to different selectivities

The identification of the native binding site was possible using the RS-REMD free
energy scoring for several but not all complexes. Still, we also identified some
cases with a medium or low selectivity for the native binding geometry, even in
the most rigorous explicit solvent simulation case. The 3 cases 1fle, 1z5y, and 2i25
resulted in very favorable scores when starting from the native bound complexes
but gave for all 50 decoy start structures a low-affinity score in the RS-REMD
simulations (explicit and implicit solvent), although some decoys reached relatively
small final rmsdligand. For these cases, loop rearrangements or misplacements of
single side chains at the interface were found to cause the unfavorable scoring
(see Appendix Figure C.5 for details). Since our REMD scheme does not drive
loop or side chain transitions explicitly along the replicas (but only dissociation of
transiently bound states to allow rearrangements) it might be difficult to sample
such necessary interface rearrangements within the limited simulation time.

Besides these specific cases, it is also of interest to identify structural and inter-
action details that could be responsible for the low selectivity in several cases. The
cases were split into three groups according to the selectivity (high selectivity: se-
lectivity higher than 0.1; medium selectivity: selectivity between -0.1 and 0.1; low
selectivity: selectivity lower than -0.1). The stability of salt bridge contacts is given
by a delicate balance between large compensating solvation and Coulomb interac-
tion contributions and are especially sensitive to force field parameterization. In case
of low or medium selectivity, the model with the lowest rmsdligand from the native
binding site was selected (this model was not scored realistically). The model with
the overall best scoring was considered in case of high selectivity of the structure
(and thus a placement close to the native binding structure). An intermolecular salt
bridge was identified if the distance between the carboxylate group (centered at the
carbon atom) from an aspartic acid or a glutamic acid residue and the ammonium
(centered at the nitrogen atom) of either a lysine or an arginine residue was lower
than 6 Å. The mean counts and standard deviation were calculated for the second
half of the simulation following the replica with lowest rmsdligand for the explicit
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and implicit water cases (see Figure 7.8). Moreover, the number of salt bridges for
the native bound complexes were counted.

Figure 7.8: The counts of simulated salt bridges (distances lower than 6 Å were
defined as contacts for the salt bridges) at the binding site of ligand and receptor
proteins for the explicit water simulations (blue; upper row) and implicit water
simulations (red; upper row) are compared to the counts of salt bridges in the
native complex for each structure (indicated as pdb-id). The mean counts over
the last half of the simulations (following the replica with minimum rmsd) with
corresponding standard deviation were evaluated. The counts for the structures
are separated into three subfigures according to their selectivity (high selectivity:
selectivity higher than 0.1; medium selectivity: selectivity between -0.1 and 0.1; low
selectivity: selectivity lower than -0.1). In case of low or medium selectivity, the
pose with minimal rmsdligand was shown, in case of high selectivity the counts for
the best-scored pose of each structure were displayed. A circle was assigned if the
number of counts was below 0.5.

For 9 of the 20 structures no or only one salt bridge was found at the native
interface but for several structures, a higher number of salt bridges up to 11 were
counted (see black bars in Figure 7.8). The structures of low selectivity in the implicit
water case seem to have a higher number of native salt bridges (mean count of 3.0)
while the low selectivity explicit water cases are dominated by structures with a
lower number of native salt bridges (mean count of 1.0). Apparently, the implicit
water model has more difficulties in scoring the native binding site correctly if
a higher number of charged interactions are involved in stabilizing the binding
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geometry. On the other hand, if the number of salt bridges at the interface was
below 2 in the implicit case the native binding site was identified correctly, except
for the structure 2oob. Interestingly, also some structures with a higher number of
salt bridges were scored with high selectivity. Thus, it is not the number of native
intermolecular salt bridges alone that leads to scoring of high or low selectivity.
Three of the implicit solvent structures with low selectivity and a high number of
salt bridges are assigned a medium selectivity in the explicit water case (1z0k, 3a4s,
2i25). These structures are scored better with the explicit water model but still are
difficult cases to predict.

Looking at the difference between simulated and native number of salt bridges
the explicit water case has a higher tendency to stabilize the correct number of salt
bridges (−1 ≤ CountExplicit−CountNative ≤ 1 in 75 % of the cases) while the implicit
water representation is more likely to underestimate the number of salt bridges at
the interface (CountImplicit −CountNative < −1 in 35 % cases).

Overall, the analysis of these limited cases indicates that the better performance
of the RS-score with an explicit solvent model in predicting the native binding site
could in part be due to better representation of the salt bridges at the native binding
site. However, it requires further analysis of a larger set of structures.

7.4 Conclusion and outlook

The realistic in silico prediction of protein-protein binding structures and affinities
is of importance to better understand many cellular processes. Based on our earlier
work in which we introduced repulsive scaling (RS-)REMD simulations (Chapter
6) [279], we have extended the RS-REMD method to improve docked binding
geometries in explicit solvent and to estimate binding affinities. The ability of RS-
REMD free energy scoring to predict native binding affinities was explored for 36
protein-protein cases in explicit and implicit solvent. The explicit water simulations
gave a quite high correlation to experimental binding free energies (0.77) with
better performance than the implicit water case (0.55). Note that in the latter case
conformational restraints (with respect to the unbound partner structures) were
included to avoid unfolding or large conformational changes of protein partners
during the simulations. This may in part influence the scoring results (no restraints
were used in explicit solvent). The majority of current scoring schemes involve
energetic evaluation of single structures or ensembles of docked structures (reviewed
in Chapter 4 and in [277]). The current scheme is computationally demanding but
results in a free energy like score that includes contributions due to flexibility of
the partners as well as due to the surrounding solvent. Only a few recent methods
explore related free energy scoring schemes [244, 279, 243]

An advantage of our present RS-REMD scoring approach is that it allows simulta-
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neous improvement of the structure of a docked decoy (improvement of the RMSD
with respect to the native complex) and free energy type scoring. For a benchmark
set of 50 pre-docked poses for 20 protein-protein complexes overall a significant
improvement of the docking geometries relative to the native complex was obtained
especially for initial docking decoys in the vicinity of the native complex structure.
Although for the majority of cases (14 out of 20 in explicit solvent) a near-native
structure was found as the best scoring refined decoy for some cases it failed to best
score a near-native structure. This can be attributed to force field inaccuracies but
in several cases, it is likely due to significant conformational differences between
unbound and bound structures at the interface that were too large to be sampled
during our RS-REMD simulations. In future efforts, it might be possible to include
additional biases to promote conformational transitions at interface regions to also
enhance the sampling of such conformational changes. The approach could also
be useful to investigate weak transient protein-protein interactions that are often
difficult to solve experimentally or to more realistically evaluate docked structures
based on homology to a similar protein-protein complex.
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8 Accurate Refinement and Calculation of
the Absolute Binding Free Energy of
Small Ligand Molecules to Proteins
Using Replica Exchange With Repulsive
Scaling

The repulsive scaling scheme introduced in Chapter 6 for protein-protein complexes
has a simple implementation that leads to a straightforward application of the
method to other biomolecular assemblies. In the current chapter, we will evaluate
RS-REMD for protein complexes with small ligands. We will further extend the ∆G
score of Chapter 7 to yield absolute binding free energies and we will demonstrate
how the method can be applied in the context of blind docking studies. In the future,
RS-REMD may be applicable in drug design campaigns that could prove to be useful
to the pharmaceutical industry as well.

8.1 Introduction

Successful characterization of ligands binding to a target protein and identification
of high affinity binders, while preserving the general properties of the molecules, is
the aim of computer aided drug discovery. The most rigorous in silico approaches
to estimate the binding free energy rely on physics based methods using Molecular
Dynamics and Monte Carlo approaches. Such approaches are getting increasing
attention in the commercial sector [268, 262] due to progress in force field devel-
opment [313, 124, 298], algorithms [316, 259] and computational hardware [267,
259].

In the last decades a multitude of in silico methods to calculate the binding affini-
ties of bimolecular systems have been developed [277]. In order to access the relative
binding free energy of small molecules, free energy perturbation (FEP) approaches
are well suited that imply alchemical transformations from one ligand to another
[316]. The FEP scheme can be generalized, using additional constraining simulations,
to calculate the absolute binding free energy in a double decoupling method (DDM)
[102, 30]. Aldeghi and coworkers achieved a high accuracy of such a decoupling
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scheme for a Bromodomain target with a mean absolute error of 0.6 kcal/mol [7, 8].
Another method to calculate the binding free energy is by introducing a physical
separation of ligand and receptor along a pathway. This can be achieved using the
Jarzynski relationship and applying non-equilibrium dynamics or by computing
the potential of mean force in umbrella sampling simulations. Using a method
introduced by Woo and Roux such umbrella sampling simulations can be extended
to yield an absolute binding free energy by constraining the relative orientation and
conformation of ligand and receptor [324, 279]. Deng et al. compared the accuracy
of DDM with the Woo and Roux scheme on charged ligands and obtained similar
accuracy in both methods [70].

Apart from calculating the binding affinity of ligands it is of high importance to
predict correct binding modes. Lately, structure based virtual screening predictions
were successfully conducted with docking on an ultra-large ligand library resulting
in new chemotypes that were experimentally validated [195]. Overall, many docking
software packages are available [307, 93, 227, 58], in particular Auto-dock vina
showed to be quite successful for native docking experiments [299]. Still, these
docking approaches are not completely rigorous and have limitations especially
regarding their scoring functions [142]. In principle, full atomistic MD simulations
provide the method of highest rigor to dynamically model bimolecular binding,
incorporating explicit solvent effects, entropic contributions and partner flexibility
[277]. The association process of a ligand molecule to its target was elucidated
in unguided MD simulations by the D.E. Shaw lab [266]. Further, to distinguish
stable from unstable ligand poses short MD simulations were shown to be effective
[179]. In a recent study, Guterres et. al used MD simulations to distinguish active
from decoy ligands for a large benchmark set of 560 small ligands by evaluating
the ligand stability. They achieved a 22 % improvement of ROC AUC compared to
AutoDock Vina results with a moderate refinement of the binding modes [122].

In the field of protein-protein docking the efforts to predict native protein binding
sites from MD simulations alone have intensified [240, 276, 238]. A replica-exchange
based repulsive scaling (RS-REMD) scheme successfully predicted the native bind-
ing site for five protein-protein cases using full partner flexibility and an implicit
solvent model (Chapter 6) [276]. Recently, the RS-REMD method was extended to
simultaneously refine protein-protein complexes and yield a realistic free energy
score in explicit solvent (Chapter 7) [278]. The aim of this study is to apply RS-
REMD for the first time on a benchmark set of 24 protein-ligand structures. We
will show that complete ligand association is possible with RS-REMD in explicit
solvent, starting from a worst case scenario of the original placement. Moreover, we
extend the RS-REMD approach to yield absolute binding free energies with a quite
good correlation to experimental affinities. We further show that repulsive scaling
refinement of ligand placements in the vicinity of the binding site is efficient and
a RS-REMD absolute binding free energy score predicts the near native structures
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correctly for most cases. Finally, the performance of the repulsive scaling scheme in
a fully blind docking context using single point MMGBSA scores is discussed.

8.2 Materials and methods

8.2.1 RS-REMD simulations to estimate the absolute binding free energy
of native protein-ligand complexes

As a benchmark set two protein systems were analyzed in this study,the Fk1 domain
of FKBP51 (Fkbp) and the first bromodomain of human BRD4 (Br4). In both protein
systems the ligand binding site is not deeply buried and the receptor molecules are
relatively rigid. For these proteins a large number of ligands with experimental
binding affinities and structural models are available in the PDB. In the case of Fkbp
14 small ligands were selected with a broad range of binding affinities. For the
bromodomain system 10 ligands were used that were evaluated as a benchmark
set in a recent study by Aldeghi and coworkers (incorporating only the ligands for
which structural data were available) [7].

The MD simulations throughout this study were conducted using the amber18
[41] software suite with a tip3p explicit water model and the ff14sb [198] protein
force field. The ligand parameters were generated using antechamber with AM1-
BCC charges and the gaff2 [298, 313] force field. The systems were solvated in an
octahedron box with 15 Å minimum distance of the solute to the box edge. After
minimization (1000 steps steepest descent) the systems were heated to 300 K and
equilibrated for 16 ps. Repulsive scaling replica exchange molecular dynamics (RS-
REMD) simulations were performed for 5 ns (per replica) on the equilibrated native
structures using 16 replicas with increasing repulsive bias of the Lennard-Jones
parameters between ligand and receptor atoms (parameter set given in Table 8.1).
Half parabolic COM distance restraints (force constant 15 kcal mol−1Å

−2
) of the Cα

atoms between the ligand and the receptor interface were introduced that restricted
the accessible volume of the ligand to a sphere of 20 Å radius around the receptor
interface. The accessible volume of the ligand was estimated for one snapshot by
counting the water molecules in the spherical volume. The second half of the RS-
REMD simulation was analysed as the production run, which was split into five
parts to give uncertainty estimates. In order to calculate the binding free energy
the repulsive biases introduced in each replica were calculated using trajectory
reevaluation with pytraj. The total energy (sum of Lennard-Jones and Coulomb
interaction) of the ligand and the protein was reevaluated for each replica with each
lj parameter set, following the perturbation approach introduced recently (Chapter
7) [278]. The bias between the reference state and the actual state was calculated
taking the corresponding difference of the total energy. To reduce the computational
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Table 8.1: Lennard-Jones scaling parameters for the different RS-REMD simulation
setups. For the repulsive scaling absolute binding free energy calculations the
16 replica scheme was used (column 2 and 3). In the refinement and association
simulations the 8 replica setup was used (column 4 and 5).

Replica Number 16 replicas 8 replicas
d(Å) e d(Å) e

1 0.0 1.0 0.0 1.0
2 0.01 0.99 0.015 0.99
3 0.02 0.98 0.03 0.985
4 0.04 0.97 0.045 0.98
5 0.08 0.96 0.06 0.97
6 0.12 0.94 0.075 0.96
7 0.16 0.92 0.1 0.94
8 0.2 0.9 0.15 0.9
9 0.24 0.88

10 0.28 0.86
11 0.32 0.84
12 0.38 0.82
13 0.44 0.8
14 0.5 0.78
15 0.58 0.76
16 0.68 0.74

effort 50 snapshots per replica were considered. Finally, the statistically optimal
estimate of the free energy of binding was calculated using the calculated biases
with pymbar (see Section 3.4.1 for details on the MBAR method) [271].

8.2.2 RS-REMD simulation of protein-ligand association starting from an
ensemble of incorrect binding poses

For both proteins the performance of longer RS-REMD simulations to predict the
native binding site for one ligand (pdb-id 3u5j in case of Br4, pdb-id 3o5r for Fkbp)
was tested. Around each protein 16 ligand poses were generated with AutoDock
Vina, excluding the ligand placements close to the native binding site. This test case
corresponds to a scenario in which only wrong binding sites are predicted by the
docking program. The individual placements were prepared, heated to 300 K and
equilibrated as described in section 8.2.1. Repulsive scaling REMD simulations were
performed using 8 replicas (see Table 8.1 for lj repulsive scaling parameters) for 300ns
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(in case of 3u5j) and 600 ns (in case of 3o5r) per replica. The 8 binding poses with the
highest MMGBSA score (only last frame evaluated) were used as starting structures
for each replica. Additionally, 8 regular MD simulations of the same length and
starting from the same placements were performed for both protein-ligand systems.

8.2.3 RS-REMD refinement of ligand poses in the vicinity of the binding
site

Ten binding poses in the vicinity of the binding site were generated for both proteins
and the respective 13 and 10 ligands. The placements were obtained through short
MD simulations with a repulsive COM distance restraint between ligand and protein
applied, starting from the different replicas of the RS-REMD scoring simulations of
the native structures. Each ligand pose was restricted to be placed in a spherical
volume of 20 Å around the receptor interface. Like this, a docking scenario in which
the binding site of the protein is approximately known is mimicked, for which still
some refinement of the ligand placement is possible. For the 10 poses, refining
RS-REMD simulations of 10 ns (per replica) were performed using 8 replicas (see
table 8.1 for lj scaling parameter set). Moreover, 8 regular MD simulations starting
from the same placement with the same simulation time as the RS-REMD replicas
were conducted. Moreover, one regular MD simulation with a simulation time
of 80 ns (amounting to the same simulation time as all replicas of the RS-REMD
simulations) was executed from the identical starting structure.
Finally, from the resulting structure of the RS-REMD refinement, a RS-REMD ab-
solute binding free energy scoring was performed as described in section 8.2.1. To
account for occasional exchanges in the reference replica (no bias between ligand
and receptor) different models are evaluated to estimate the replica from which
the scoring simulations are started. The best case scenario, the replica of minimal
rmsdligand, is evaluated against the replica of highest MMGBSA score, the replica
of minimal distance between ligand and receptor and the reference replica. These
parameters were calculated using pytraj.

8.3 Results and discussion

8.3.1 Evaluation of the RS-REMD absolute binding free energy on native
protein-ligand complexes

Repulsive scaling (RS-REMD) simulations were performed to calculate the absolute
binding free energy for a benchmark set of 14 ligands for Fkbp and 10 ligands for Br4.
To obtain the binding free energy we adopted an approach introduced recently for
protein-protein complexes. Basically, we apply repulsive potentials between ligand
and receptor for each replica that lead to a dissociation of the ligand from its binding
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site. The introduced repulsive bias in each replica is calculated using trajectory
reevaluation. From these biases the free energy difference between the associated
and the dissociated states is calculated with a perturbation approach using mbar.
The ligand was restricted to a spherical shell volume around the receptor binding
site, so that a standard state correction could be applied, resulting in an absolute
binding free energy.

Figure 8.1: RS-REMD calculated absolute binding free energy against experimental
binding affinity for the native ligand-protein complexes. On the left panel the 14
complexes of Fkbp, on the right panel the 10 complexes of Br4 are given with the
corresponding linear fit. For Fkbp a correlation coefficient of 0.54, in case of Br4
a coefficient of 0.72 was achieved. The result for the structure 3mxf of Br4 was
omitted due to its poor performance (given as gray dot) which was probably due to
an unfavourable starting position as discussed in the main text.

The introduced repulsive biases resulted in a clear separation of associated and
dissociated states as shown in Figures 8.3 and 8.2. The histograms of the COM
distance distribution between ligand and receptor heavy atoms of the associated
states (replica of lowest rmsdligand in each frame) and dissociated states (replica of
highest COM distance in each frame) are given for every native structure.
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Table 8.2: Experimental affinities and calculated binding free energies with uncertain-
ties in kcal/mol for the protein Br4 (each structure indicated by pdb-id). In brackets
the corresponding references are given. The difference ∆GDi f f = ∆GCalc − ∆GExp is
given in the last column.

Structure ∆GExp ∆GCalc ∆GDi f f
4mr4 [247] -7.3 [256, 20] -8.2 ± 0.3 -0.9 ± 0.3
4mr3 [247] -7.3 [256, 20] -10.0 ± 0.7 -2.7 ± 0.7
3u5l [85] -8.5 [85] -11.6 ± 0.5 -3.1 ± 0.5
4ogi [55] -10.2 [55] -11.2 ± 0.9 -1.0 ± 0.9
3mxf [86] -10.0 [86] -4.8 ± 0.5 5.2 ± 0.5
3u5j [85] -7.7 [85] -8.4 ± 0.8 -0.7 ± 0.8
4j0r [125] -8.8 [125] -8.7 ± 0.2 0.2 ± 0.2
4ogj [55] -9.3 [229] -13.6 ± 0.7 -4.3 ± 0.7
4hbv [88] -6.4 [88] -7.3 ± 0.3 -1.0 ± 0.3
3svg [84] -7.3 [125] -9.2 ± 0.6 -1.9 ± 0.6

Table 8.3: Experimental affinities and calculated binding free energies with uncertain-
ties in kcal/mol for each structure (given as pdb-id) of the protein Fkbp. In brackets
the corresponding references are given. The difference ∆GDi f f = ∆GCalc − ∆GExp is
given in the last column.

Structure ∆GExp ∆GCalc ∆GDi f f
3o5r [33] -9.7 [96] -14.3 ± 1.4 -4.5 ± 1.4
4tx0 [28] -9.4 [28] -11.2 ± 1.4 -1.8 ± 1.4
4jfj [317] -7.8 [317] -11.8 ± 0.5 -4.0 ± 0.5

4jfm [317] -7.5 [317] -7.7 ± 0.8 -0.2 ± 0.8
5div [96] -9.4 [96] -18.9 ± 0.4 -9.5 ± 0.4

4drk [106] -7.6 [317] -9.9 ± 1.0 -2.3 ± 1.0
4jfl [317] -6.8 [317] -10.7 ± 1.1 -3.9 ± 1.1
4jfk [317] -8.8 [317] -12.7 ± 0.6 -3.8 ± 0.6
4tw7 [97] -10.4 [97] -18.5 ± 1.3 -8.1 ± 1.3
5dit [82] -8.4 [82] -13.1 ± 0.6 -4.7 ± 0.6

4drh [202] -11.7 [317] -11.0 ± 0.8 0.7 ± 0.8
4jfi [317] -6.5 [317] -10.8 ± 0.4 -4.3 ± 0.4
5diu [96] -10.1 [96] -18.9 ± 1.2 -8.8 ± 1.2
4tw6 [97] -5.8 [97] -11.2 ± 0.6 -5.4 ± 0.6
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Figure 8.2: Histograms of COM distance between ligand and receptor for the as-
sociated state (replica of minimum rmsdligand in blue) and the dissociated state
(histogram of the replica of maximum distance in red) for the 10 ligands of Br4
(indicated as pdb-id). Only the second half of the RS-REMD simulation was taken
into account. The native COM distance is given by the black vertical line.
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Figure 8.3: Histograms of COM distance between ligand and receptor for the as-
sociated state (replica of minimum rmsdligand in blue) and the dissociated state
(histogram of the replica of maximum distance in red) for the 14 ligands of Fkbp
(indicated as pdb-id). Only the second half of the RS-REMD simulation was taken
into account. The native COM distance is given by the black vertical line.

The calculated binding affinities are given Figure 8.1 for both protein systems.
Pearson correlation coefficients of 0.72 for Br4 and 0.54 for Fkbp to the experimental
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binding free energies were achieved. Due to the small ∆∆G range of the individual
ligands (∆∆G = ∆GExperiment,max − ∆GExperiment,min = 5.9 kcal/mol for Fkbp and
3.8 for Br4) it is challenging to obtain high correlations for these systems. In the
case of Br4 we did not consider the result of 3mxf with a very low affinity of
only -4.8 kcal/mol (shown as gray dot). This value differed considerably from the
experimental ∆G measurement and is also inconsistent with the binding affinities of
the RS-REMD docking results (see section 8.3.3). The poor performance is probably
due to an unfavorable ligand placement from which the simulations were started. A
slightly varied ligand placement, obtained from a RS-REMD docking simulation,
resulted in a two-fold increase in the calculated binding free energy.

The absolute values of the binding affinities were in quite good agreement with
the experimental data in case of Br4. For 5 structures the calculated binding affinities
had 1.0 kcal/mol difference or lower (see Table 8.2). These results are comparable
in accuracy to the binding affinities calculated using a double decoupling scheme
(DDM) by Aldeghi and coworkers [7]. In the case of Fkbp, the affinities were
overestimated slightly (∆GDi f f = ∆Gcalc − ∆GExp = −4.3 kcal/mol) so that only 3
structures had affinities within 2 kcal/mol.

8.3.2 RS-REMD simulation of protein-ligand association starting from an
ensemble of incorrect binding poses

Extensive MD simulations of the ligand association were performed for one ligand
of each protein (3u5j for Br4 and 3o5r for Fkbp). The ability to sample the native
binding site was compared between RS-REMD and regular MD simulations. For
both approaches the equal amount of simulation time (between 300ns and 600 ns)
was conducted starting from an ensemble of 8 poses that were placed at incorrect
binding sites using AutoDock Vina [299]. This test layout characterizes a worst case
scenario in which the docking program only generates false positive solutions. Thus
the capacity of the MD schemes to overcome the pre-set incorrect binding minima
can be investigated. RS-REMD was performed with 8 replicas and also regular MD
simulations with differing starting conditions were executed.

The rmsdligand against simulation time can be compared for all individual replicas
for 3o5r and 3u5j in Figures 8.5 and 8.4, respectively. In both cases the RS-REMD
simulations were able to sample the native binding site with rmsdligand values
around 5 Å. In case of the regular MD simulations for 3u5j the binding site was not
sampled at all (lowest rmsdligand ) and for 3o5r the ligand was sampled in a stable
position close to the binding site (rmsdligand around 10 Å) in two simulations. The
simulations stuck at local minima in many simulations. These observations are in
compliance with a recent study of protein-protein association using RS-REMD with
an implicit solvent model (see Chapter 5) [276].
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Figure 8.4: Development of the rmsdligand for the simulation of ligand association
to Br4 (pdb-id 3u5j). The results for every replica of RS-REMD (red) and every
simulation of the regular MD case (blue) are given.
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Figure 8.5: Development of the rmsdligand for the simulation of ligand association
to Fkbp (pdb-id 3o5r). The results for every replica of RS-REMD (red) and every
simulation of the regular MD case (blue) are given.

The development of the rmsdligand of the replica with lowest rmsdligand (account-
ing for exchanges between the replicas) for both protein cases is given in Figure
8.6. A multi-step process to identify the native binding site is observable, with
different residence times for the local minima. For the RS-REMD simulations of
3u5j occasional dissociations of the ligand from the binding site can be witnessed,
followed by reassociations. However, the ligand stayed most of the time (over 200
ns) at the binding site (rmsdligand below 5 Å) with a minimum rmsdligand of 0.3 Å.
Such a small rmsdligand was possible due to the small size and little flexibility of
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the ligand. In case of the regular MD simulations the native binding site was not
encountered at all, the smallest rmsdligand was 7.4 Å that was reached after 275 ns.

For 3o5r, binding placements in closer proximity to the native binding site
(rmsdligand below 10 Å) were encountered slightly faster in the regular MD simula-
tions (after 102 ns) than with RS-REMD (after 152 ns). Still, in the regular MD simu-
lations the ligand is stuck in rmsdligand regions between 5 and 10 Å, whereas the RS-
REMD simulations accumulated over 50 ns at the native binding site (rmsdligand <

5 Å) with the first encounter after 161 ns. Overall, the lowest measured rmsdligand in
case of RS-REMD was 3.5 Å, for regular MD it was 4.9 Å. The latter was the only
snapshot for the regular MD simulations with an rmsdligand below 5 Å. Interestingly,
in the RS-REMD simulation the ligand was not bound firmly after the first encounter
of the native binding site, which lastet around 60 ns. After a period of multiple
binding and unbinding events (240 ns) a ligand placement around 5 Å rmsdligand
was explored that was stable for over 100 ns.

Figure 8.6: Rmsdligand against simulation time (result for the replica with minimum
rmsdligand in every snapshot) for the RS-REMD (red) and the regular MD simulations
(blue). The results for Br4 (pdb-id 3u5j) are given in the upper panel for Fkbp in
lower panel (pdb-id 3o5r). The black dots mark the 20 snapshots of highest single
point MMGBSA score.

For a blind docking scenario it is of interest how well a successfully captured
binding site is predicted using a scoring function. As it turns out, a simple MMGBSA
single point scoring of the trajectory is sufficient to predict the snapshots of correct
associations. The 20 best scored snapshots are given as black dots in Figure 8.6.
For both cases the frames of very low rmsdligand for the RS-REMD simulations are
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selected. In case of 3o5r the best scored snapshot of the RS-REMD simulations has an
rmsdligand of 5.7 Å (9.0 Å for the regular MD) and for 3u5j the best scored rmsdligand

was 1.4 Å (14.0 Å for the regular MD). Interestingly, using such a scoring scheme
it is also possible to identify the parts in the simulations of occasional dissociation,
which are given by a substantially lower binding score (see Figure 8.7).

Figure 8.7: Rmsdligand against simulation time (result for the replica with minimum
rmsdligand in every snapshot) for the RS-REMD (red) simulations. The results for
Br4 (pdb-id 3u5j) are given in the upper panel for Fkbp in the lower panel (pdb-id
3o5r). The 30 percent of snapshots with the lowest single point MMGBSA scoring
are shown as black dots.

8.3.3 RS-REMD refinement of ligand poses in the vicinity of the binding
site

The ability of different MD refinement schemes to predict the native ligand bind-
ing pose starting in the vicinity of the binding site (less than 20 ÅCOM distance
separation to the interface of the native binding site and rmsdligand up to around
20 Å) are evaluated. For each of the 10 (for Br4) and 14 (for Fkbp) ligands 10 lig-
and placements were considered. For the refinement simulations RS-REMD was
compared to multiple regular MD simulations (the same number of simulations as
replicas for RS-REMD but unaltered parameter set and different starting conditions
in each simulation) and a single regular MD simulation of the same total simulation
length of 80 ns (starting from the identical ligand placement in each scheme). The
rmsdligand of the first and the last frame of all structures for three MD refinement
methods can be compared in Figure 8.8. For the schemes using multiple simulations
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(RS-REMD and regular multiple MD) the replica of lowest rmsdligand was consid-
ered for the two evaluated frames. A clear improvement of the rmsdligand (red dots)
for RS-REMD (94 % for Br4, 89 % for fkbp) and regular multiple MD (95 % for
Br4, 97 % for fkbp) can be witnessed that was especially higher than for the single
regular MD simulation (58 % for Br4, 62 % for fkbp). In contrast to the scenario in
which association simulations from local minima of the receptor were carried out
(see section 8.3.2), the regular multiple MD simulations performed substantially
better in particular the sampling of the native binding site was equally good (for
Br4) or slightly better than using RS-REMD. This is probably due to a low number
of alternative sticky minima around the vicinity of the binding site that had to be
overcome in this test case.

Figure 8.8: Rmsdligand of the last frame againts Rmsdligand of the first frame of the
different refinement schemes (RS-REMD in first column, regular MD with multiple
simulations in second column, regular MD with a single simulation in third column)
for the cases Br4 (upper row) and Fkbp (lower row). The replica of lowest rmsdligand
was considered in the schemes using multiple simulations. Red dots indicate an
improvement, blue dots a deterioration in rmsdligand due to the refinement.

In case of a blind docking scenario the replica of lowest rmsdligand is not known,
so that a different measurement to predict the replica of lowest rmsdligand has to be
executed. Calculating the replica of minimal single point MMGBSA score is able to
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identify a rmsdligand enhancing replica for most of the poses (see Figure 8.9) with
improvements of 83 % (Br4) and 79 % (fkbp) for RS-REMD and 83 % (Br4) and 86 %
(fkbp) for regular multiple MD.

Figure 8.9: Rmsdligand of the last frame againts Rmsdligand of the first frame of the
different refinement schemes (RS-REMD in first column, regular MD with multiple
simulations in second column) for the cases Br4 (upper row) and Fkbp (lower
row). The replica of lowest MMGBSA single point score was considered in the
schemes, representing the result of a blind refinement scenario. Red dots indicate an
improvement, blue dots a deterioration in rmsdligand due to the refinement.
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Figure 8.10: Absolute binding free energy against rmsdligand from the native structure
for the 14 ligands (indicated as pdb-id) of Fkbp. For each ligand the results for the 10
refined poses (blue dots) and the results of the native pose (black dots) are given. The
uncertainties were calculated as the standard deviation from splitting the simulation
into five parts.
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Figure 8.11: Absolute binding free energy against rmsdligand from the native structure
for the 10 ligands (indicated as pdb-id) of Br4. For each ligand the results for the 10
refined poses (red dots) and the results of the native pose (black dots) are given. The
uncertainties were calculated as the standard deviation from splitting the simulation
into five parts.

For each RS-REMD refined structure (starting from the replica with highest MMG-
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BSA score in the last frame) we calculated the absolute binding free energy with
RS-REMD just as for the native complexes in section 8.3.1. The resulting ∆G against
rmsdligand is given in Figures 8.10 (Fkbp) and 8.11 (Br4) including the native results
(black dots). For every ligand structure a binding pose at the binding site was
sampled with an rmsdligand similar or better than the native case. The RS-REMD
absolute binding free energy predicted the arrangement at the native binding site
correctly (assigning it the highest ∆G score) with only one exception for Fkbp (4jfl)
and four exceptions for Br4 (4mr3, 4j0r, 3u5l, 4hbv) of which only one favored a pose
above 5 Å rmsdligand. The structure 3mxf is notable as the score of the native binding
pose was the second worst, emphasizing that the adopted ligand arrangement was
unfavorable in the native case.

8.4 Conclusion and outlook

The correct in silico prediction of ligand-protein binding geometries as well as
having a realistic binding affinity estimate is of increasing importance in drug
design projects. In this study, we applied the repulsive scaling (RS-)REMD scheme,
that was originally developed using protein-protein benchmark sets, to small ligand
protein complexes in explicit solvent. Basically, a repulsive biasing potential between
ligand and receptor lj parameters is increased along a replica ladder which leads
to dissociation of the ligand from free energy minima at the receptor surface in the
higher replicas. This effect can be used in applications to improve the sampling of
accurate ligand placements as well as the scoring of these placements in docking
efforts. On the one hand, the binding free energy of the ligand can be calculated
with a perturbation approach accounting for the effective biasing energy introduced
in the system. On the other hand, RS-REMD can be used to effectively explore the
receptor surface escaping local minima in the higher replicas to eventually identify
the native binding site. These methods can be implemented in blind docking studies
using single point MMGBSA scores to identify the correct results.

The absolute binding free energy was calculated with RS-REMD to a benchmark
set of two proteins with 10 and 14 ligands. A standard state correction could be
included restricting the ligand to a spherical shell volume around the receptor
binding site. A good correlation of 0.72 for Br4 (omitting the results of 3mxf) and
0.54 for Fkbp was achieved to the experimental binding free energies with an overall
slight overestimation of the affinities.

Moreover, we tested the ability of RS-REMD to identify the native binding site for
one ligand of each protein. The initial placements represent a worst case scenario
starting from an ensemble of incorrect binding sites based on an AutoDock Vina run.
In both cases the RS-REMD simulations were able to escape the local minima and
sample the native binding site. The lowest sampled rmsdligand values were 0.3 Å for
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3u5j and 3.5 Å for 3o5r. The performance was superior to regular MD simulations
that in one case failed to predict the native binding site completely and in the second
case stuck at rmsdligand values above 5 Å. Using a single point MMGBSA score it is
possible to effectively classify RS-REMD simulations in a blind docking scenario.
The frames of lowest rmsdligand were indicated by a high score, whereas the regions
of occasional dissociations are given by a low MMGBSA affinity.

For less computationally expensive refinement efforts, RS-REMD simulations
were conducted starting from ten placements in the vicinity of the native ligand
pose. These were compared to the performance of a single regular MD simulation
and multiple regular MD simulations with differing starting conditions. Both, the RS-
REMD and the regular multiple MD simulations resulted in a drastic improvement
of the starting rmsdligand and performed in particular better than the single regular
MD. Interestingly, the results of regular multiple MD were slightly superior to
the RS-REMD results, probably due to a low number of competing local minima
around the binding site, diminishing the need for repulsive sampling. Identification
of a replica of low rmsdligand for a blind docking study is possible using a single
point MMGBSA score. From the identified binding placements we calculated the
RS-REMD absolute binding free energy. This scoring scheme assigned the highest
binding affinity to the lowest rmsdligand pose for 19 of the 24 structures.
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The study of protein interactions is of major importance to ultimately elucidate
the human interactome. To classify and understand the versatile complexes that
proteins form through computational approaches, atomistic molecular dynamics
simulations are best suited. In these simulations a proper treatment of the aqueous
environment and inclusion of all energetic and entropic contributions to binding for
free energy calculations is possible. Throughout this work, several MD advanced
sampling approaches were established to efficiently identify the native binding site
of proteins and also predict the binding affinity of different ligand poses.

In Chapter 5 the correct identification of near-native binding poses was possible
using umbrella sampling simulations to apply a perturbation scheme that calculates
the absolute binding free energy. The approach was validated on a benchmark
set of 20 protein-protein complexes with 50 pre-docked poses using an implicit
solvent model. The umbrella sampling approach was in particular advantageous
comparing it to a single point score using the same force field description. The
atomistic refinement procedure of the docked poses could improve the ligand
conformation for some placements but was not able to sample the native state unless
the simulations started in proximity of the binding site.

This task was addressed with the repulsive scaling scheme introduced in Chapter
6. The RS-REMD method establishes a repulsive bias along a replica ladder between
ligand and receptor atoms. The method only affects the intermolecular pairwise van
der Waals interactions but no intramolecular or solvent terms. Like this, the ligand
is driven out of multiple local energy minima at the receptor surface to eventually
encounter and stabilize the native binding site. Starting from worst case scenarios of
the original ligand placements the native binding site was identified for five out of
six protein-protein complexes in implicit solvent and two protein-ligand complexes
in explicit solvent (Chapter 8). In particular, an improved sampling of the binding
site in comparison to regular MD simulations was shown. In addition to that, the
refinement of pre-docked protein poses (Chapter 7) and small ligand poses (Chapter
8) was possible with repulsive scaling and showed a substantial improvement in
the rmsdligand in many cases.

Furthermore, a reliable free energy estimate that can be obtained from repulsive
scaling simulations was introduced (Chapter 7). In the method the applied bias in
each replica is calculated via trajectory reevaluation. Using a perturbation approach,
the free energy difference between the associated and the dissociated states can be
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obtained. This free energy score gave a high correlation in explicit solvent to experi-
mental binding affinities and also proved to successfully distinguish placements at
the binding site from other poses for several protein-protein cases.

Finally, the RS-REMD score was extended to yield absolute binding free energies,
restricting the ligand to a spherical volume around the receptor, for several protein
complexes bound to small ligands (Chapter 8). The possibility of using single point
MMGBSA scores for blind docking challenges to predict associated and dissociated
sampling stages of repulsive scaling simulations was also elucidated.

I envision that, due to its simple implementation based on the force field param-
eters the RS-REMD method can be used for a much wider range of applications.
Studying the association of other biomolecules is possible including structures like
DNA, RNA or peptide-protein complexes. For example, the RS-REMD approach
was successfully employed on protein-polysaccharide complexes in recent studies
[207, 162]. Moreover, the repulsive scaling approach can be applied to investigate the
stability of certain regions of a biomolecule. For example, the affinity of a specified
alpha helix on a protein could be measured against different mutations and thus
give suggestions to experimentally customize the protein.

The usability of the method could be increased by making it available to other
software packages like GROMACS, CHARMM or NAMD. It is already possible
to convert a parameter set between different types of force fields, but a direct
implementation in packages like CHARMM-GUI [140] would highly facilitate the
applicability to the MD community.

In future efforts, imposing an additional layer of guidance in the dissociated
replicas could be of high benefit. In the current scheme the dissociated replicas
still sample the receptor surface completely unguided which can lead to relatively
high simulation times. Choosing an ensemble based initial placement of the ligands
can already speed up the sampling step of the approach considerably (see Chapter
6). Still, a guidance of the dissociated states inspired by a metadynamics type of
approach in which already sampled states are progressively avoided in the highest
replicas could decrease the sampling time for the native binding site drastically.

To validate the accuracy of scoring functions the correlation to experimental bind-
ing affinities is usually calculated. Still, it is often difficult to assess the reliability of a
novel method from the publication alone, as especially the choice of the benchmark
can determine to a great part the complexity of obtaining a high correlation. As a
perspective, it would be desirable that the community agrees on specific test sets
and validation schemes that include verified experimental data [220]. These com-
mon evaluation standards should incorporate a correlation to experimental binding
affinities but also a measurement of the deviation to native binding free energies in
absolute terms.

In the long term, MD-based docking techniques are expected to increasingly gain
importance due to probable enhancements in the computation hardware. Even
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realistically resolving complete protein interaction networks could come into sight
with such techniques, that might eventually shed light on the complete protein
interactome.
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Appendix A

Evaluation of Predicted Protein-Protein
Complexes by Binding Free Energy
Simulations

A.1 Absolute binding free energy calculation

Based on an approach introduced by Woo and Roux [324] the sampling of a dissoci-
ation/association process can be enhanced by introducing geometrical restraints.
Apart from radial distance restraints, additional biasing potentials that reduce the
axial (direction of separation), orientational (orient) and conformational (conf) de-
grees of freedom, are applied. The absolute binding free energy can be accessed
by accounting for each contribution in supplementary simulations and calculations
(illustrated in Figure A.2). The free energy is split into the following parts (standard
concentration C◦=1/1661 Å

3
)

∆Gbind = −kT ln
[
C◦e−β[∆Grestr

bind +(∆Gbulk
orient+∆Gbulk

con f )−(∆Gsite
orient+∆Gsite

axial+∆Gsite
con f )]

]
with

∆Grestr
bind = −kT ln(IS) (A.1)

being the restraint binding free energy. Superscripts bulk and site represent the
unbound and bound conformation, respectively. The separation of ligand and
receptor is denoted similar to equation 1 by an integral over the bound state of a
distance PMF A(ξ) with ξbulk being the distance in the unbound state

I =

∫
site dξ e−βA(ξ)

e−βA(ξbulk)
. (A.2)

S accounts for the restraining of receptor and ligand to a fixed axial orientation
towards each other. A sphere shell volume element at the bulk radius ξbulk is
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calculated via

S = ξ2
bulk

π∫
0

dθsin(θ)
2π∫
0

dφe−βUaxial(θ,φ). (A.3)

Uaxial denotes the harmonic potential of the axial angles, θ and φ, that restrict the
relative movement of the two bodies to a single axis. The bound contribution that cor-
rects the orientational and axial restraining of ligand and receptor ∆Gsite

orient + ∆Gsite
axial ,

is calculated by employing the FEP equation. The harmonic bias potential Uorient,
that accounts for the rotation of the bodies via the three euler angles α, χ and γ as
well as the axial contribution Uaxial , are treated as a perturbation of an unrestrained
simulation:

∆Gsite
orient + ∆Gsite

axial = −kBT ln
〈

e−β[Uaxial(θ,φ)+Uorient(α,χ,γ)]
〉

U
. (A.4)

The corresponding contribution ∆Gbulk,site
con f for either the bound (site) or unbound

case (bulk), is corrected by again using the FEP equation

∆Gbulk,site
con f = −kT ln

〈
e−βUbulk,site

con f

〉
U

. (A.5)

The remaining term to obtain ∆Gbind is the orientational contribution in the bulk
∆Gbulk

orient, that can be solved analytically by integration over the Euler angles

∆Gbulk
orient = −kT ln

 1
8π2

π∫
0

dα sin(α)
2π∫
0

dχ

2π∫
0

dγ e−βUorient(α,χ,γ)

 . (A.6)

Here, the bulk is assumed to be isotropic and thus does not depend on the relative
orientation of the bodies.
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A.2 Figures
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Figure A.1: The three orientational (α, χ and γ) and two axial restraint angles (θ and
φ) were defined as shown using three COM positions (blue circles) on each partner
protein (gray ellipse).

147



Appendix A Evaluation of Predicted Protein-Protein Complexes by Binding Free
Energy Simulations

Bla Vla Bla

 ΔGbind
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 ΔGconf
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 ΔGorient
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 ΔGconf
site

 ΔGorient
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Figure A.2: The thermodynamic circle illustrating the different free energy contribu-
tions gained with FEP (∆Gbulk,site

con f , ∆Gsite
orient and ∆Gsite

axial ), the distance PMF (∆Grestr
bind )

and integration over the Euler angles (∆Gorient
bulk ).
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Figure A.3: Typical distance probability (y-axis) histograms of the US windows
indicating sufficient overlap for accurate free energy estimation. For six different
protein-protein complexes the case closest to the native complex is shown. In Figure
A.4 the corresponding PMFs and pdb-entries for each case are given.
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Figure A.4: The PMFs associated with the distance histograms of Figure A.3 are
shown. The simulation was split into six parts and the corresponding running PMFs
(from blue to red) show good convergence in all cases.
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Figure A.5: The PMF free energy for each decoy was calculated after 1/6, 2/6, etc.
of the total simulation time and subtracted from the calculated free energy obtained
after the total simulation time for each US interval (values are given relative to the
final simulation results). The error bars represent the standard variation over the
results for all decoys of a given system.
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Figure A.6: Re-scoring after MD refinement/energy minimization and subsequent
recalculation of the polar solvation free energy by solving the linearized finite-
difference Poisson-Boltzmann equation. The pink and green squares indicate results
for the bound and unbound starting conformations, respectively. The mean se-
lectivity was 0.04 and thus lower than for MD refinement using the GB-model as
described in the main text.

152



A.2 Figures

−60

−40

−20

0

1Z0K

−50

−30

−10

10

1SYX

−60

−40

−20

0

1PPE

−60

−20

20

1ZHI

−40

−20

0

3A4S

−50

−30

−10

10

1QA9

−30

−10

10

2OOB

−60

−40

−20

0

1R0R

−100

−60

−20

∆
G

(k
ca
l/
m
ol

)

7CEI

−40

−20

0

1J2J

−80

−40

0

2CFH

−60

−40

−20

0

1FLE

−40

−20

0

20

1AY7

−60

−20

20

3SGQ

−50

−30

−10

1AK4

−50

−30

−10

10

1Z5Y

0 2 4 6 8 10 12 14

−40

−20

0

20

1FFW

0 2 4 6 8 10 12 14

Rmsd (Å)

−40

−20

0

1GCQ

0 2 4 6 8 10 12 14

−60

−20

20

2SNI

0 2 4 6 8 10 12 14

−60

−40

−20

0

2I25

Rmsd (Å)

Figure A.7: Same as Figure S3 after re-scoring of the MD refinement results using
a R−6 integration scheme [4] for calculating effective Born radii in the generalized
Born model to estimate the polar solvation free energy. The mean selectivity was
slightly higher (0.16) than using the standard GB model as described in the main
text (0.14).
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Figure A.8: Original Attract [329] docking score of the 50 models used in this study
for 20 protein-protein complexes with rmsd to the native complex. The mean
selectivity was -0.29 and thus lower than the selectivity of all subsequent refinement
procedures.
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Table A.1: Table of the experimental binding affinity ∆GExp [150, 153] and the binding
affinity of the best scored model at the binding site evaluated with US ∆GUS and
the absolute binding free energy ∆GAbsolute for all structures (only for 16 structures
experimental binding affinities are available).

Structure ∆GExp ∆GUS ∆GAbsolute
[kcal/mol] [kcal/mol] [kcal/mol]

7cei -19.8 -18.4 ± 3.3 -13.4 ± 3.5
1ay7 -13.2 -8.3 ± 1.5 -3.7 ± 1.5
1ppe -15.6 -15.1 ± 1.2 -11.1 ± 1.9
1r0r -14.3 -18.5 ± 3.7 -14.0 ± 3.8
2i25 -12.28 -6.8 ± 1.6 -3.3 ± 2.2
1j2j -8.13 -12.0 ± 1.3 -8.5 ± 1.3

1z0k -7.01 -8.3 ± 1.4 -5.0 ± 1.0
1qa9 -7.16 -6.5 ± 1.0 -2.4 ± 1.7
1ak4 -6.43 -7.9 ± 1.2 -2.4 ± 1.8
1gcq -6.51 -10.7 ± 1.9 -6.5 ± 0.6
2oob -5.76 -7.6 ± 1.5 -3.0 ± 1.6
1ffw -8.1 -6.8 ± 0.6 -2.2 ± 1.5
1zhi -9.1 -11.3 ± 1.8 -2.1 ± 2.8
3a4s -7.57 -5.7 ± 1.0 -2.6 ± 2.0
1fle -12.28 -8.3 ± 1.3 -7.5 ± 2.6
2sni -15.96 -23.2 ± 7.1 -20.3 ± 7.2
1syx -11.7 ± 1.6 -8.2 ± 2.2
3sgq -12.1 ± 1.2 -7.1 ± 1.8
2cfh -23.5 ± 2.4 -20.4 ± 3.3
1z5y -9.8 ± 1.7 -3.7 ± 2.1
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Appendix B

Prediction of Protein-Protein Complexes
Using Replica Exchange With Repulsive
Scaling

B.1 Figures and tables

Table B.1: Population of the binding site (rmsdligand < 10 Å) of the second half of the
simulations (see Figure S1 for the whole rmsdligand populations) for each complex
indicated by the pdb-id for the repulsive scaling (RS-REMD) approach and the
regular MD simulations.

PDB RS-REMD Regular MD

7cei 77 % 0 %
2oo9 78 % 47 %
2cfh 46 % 0 %
1syx 23 % 1 %
2sni 70 % 0 %
1gcq 0 % 0 %
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Table B.2: Table of the 20 protein complexes analyzed in this study with according
pdb-id and difficulty in terms of the magnitude of deviation between unbound and
bound structures (as defined in the benchmark [132]).

PDB Difficulty Protein1 Protein2

7cei Low Colicin E7 nuclease Im7 immunity protein
1ak4 Low Cyclophilin HIV capsid
1ay7 Low Rnase SA Barstar
1ppe Low Trypsin CMTI-1 squash inhibitor
1r0r Low Subtilisin carlsberg OMTKY
2i25 Low Shark single domain antigen receptor Lysozyme
1j2j Low Arf1 GTPase.GNP-RanBD1 GAT domain of GGA1

1z0k Low RAB4 binding domain of Rabenosyn Rab4A GTPase
1qa9 Low CD2 CD58
1gcq Low GRB2 C-ter SH3 domain Vav N-ter SH3 domain
2oob Low Ubiquitin ligase Ubiquitin
1ffw Low Chemotaxis protein CheY Chemotaxis protein CheA
1zhi Low BAH domain of Orc1 Sir Orc-interaction domain
3a4s Low SUMO-conjugating enzyme UBC9 NFATC2-interacting protein
1fle Low Elastase Elafin
2sni Low Subtilisin Chymotrypsin inhibitor 2
3sgq Low Ovomucoid inhibitor third domain Streptogrisin B
1z5y Low N-term of DsbD E.coli CCMG protein
1syx Medium Spliceosomal U5 15 kDa protein CD2 receptor binding protein 2
2cfh Medium BET3 TPC6

158



B.1 Figures and tables

Figure B.1: The population of the ligand (placements shown as blue spheres, each
depicts the placement of the same ligand Cα atom) around the receptor (green
cartoon) in the highest replica of the extensive RS-REMD simulation of the structure
7cei.
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Repulsive Scaling

Figure B.2: (Left panel) The population of the ligand (placements shown as blue
rectangles, each depicts the orientation of the same ligand Cα atom) around the re-
ceptor (green cartoon) of the reference replica in the extensive RS-REMD simulation
of the structure 1gcq. The native ligand placement and orientation is shown by a
magenta rectangle (same Cα atom as for the blue rectangles chosen, see right panel).
The native ligand is oriented differently than all the sampled ligands. (Right panel)
The corresponding native (purple cartoon) and simulated (dark grey cartoon) ligand
orientations.
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Figure B.3: Snapshots of the reference replica of the extensive RS-REMD simulations
of structure 1syx with an rmsdligand under 18 Å. The native structure is shown
in blue cartoon, the simulated receptor protein is aligned on the native receptor
protein (black cartoon). Four Cα atoms of the native structure (red spheres) and
the corresponding Cα atoms of simulated snapshots of the ligand (green spheres)
and the receptor (black sphere) (both restrained on the unbound conformation)
are shown. (1) The simulated receptor loop that coordinates the ligand-receptor
interaction is shifted apart from the receptor COM compared to the native state
(black spheres compared to the closest red sphere on the left panel), presumably due
to the restraining on the unbound conformation. (2) Still, the simulated ligand is
coordinated by this loop as little deviation is visible in the distribution of the green
spheres on the left panel. (3) On the contrary the lower part of the simulated ligand
shows high deviations in the same snapshots (green spheres right panel), while the
receptor has low fluctuations (4, black spheres right panel). Thus the interaction
between the lower part of ligand and receptor is not stable, presumably due to the
deviation of the coordinating loop between unbound and native conformation (1).
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Figure B.4: Histograms of the rmsdligand from the native structure for the reference
replica of the RS-REMD simulations (for all 6 protein–protein test cases in an individ-
ual figure) is compared to the rmsdligand histograms of the regular MD simulations
(green), considering only the last half of the simulation time, respectively. The
corresponding population at the binding site is given in Table S1.
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Figure B.5: Rmsdligand from the native structure vs. simulation time for all 16 replicas
of the RS-REMD simulation of the 7cei protein-protein complex starting with the
ligand partner on the opposite site of the native binding region of the receptor
protein.
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Figure B.6: Force field scoring after RS-REMD refinement of the 50 decoy complexes
for each of the 20 protein-protein complex test case (indicated by pdb-id). Calculated
final protein-protein interaction energy (violet circles) is plotted vs. the rmsdligand
with respect to the native complex.
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Figure B.7: Force field scoring after regular MD refinement of the 50 decoy complexes
for each protein-protein complex test case (indicated by pdb-id). Calculated protein-
protein interaction energy (green circles) is plotted vs. the rmsdligand from the native
complex.
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Appendix C Efficient Refinement and Free Energy Scoring of Predicted
Protein-Protein Complexes Using Replica Exchange With Repulsive Scaling

C.1 Figures and tables

Figure C.1: Histograms of the protein-protein COM distances of the bound states
(blue, replica with minimal rmsdligand for each frame in the second half of the
simulation) and the dissociated state (red, replica with the highest COM distance in
each frame of the second half of the simulation) observed during the explicit water
RS-REMD simulations for all native protein-protein cases (indicated by pdb-id). The
native distances are given as black vertical lines. The mean values and distance
differences are given in Table C.1.
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Figure C.2: Histograms of the protein-protein COM distances of the bound states
(blue, replica with minimal rmsdligand for each frame in the second half of the
simulation) and the dissociated state (red, replica with the highest COM distance in
each frame of the second half of the simulation) observed during the implicit water
RS-REMD simulations for all native protein-protein cases (indicated by pdb-id). The
native distances are given as black vertical lines. The mean values and distance
differences are given in Table C.2.
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Table C.1: For all protein-protein complexes in explicit solvent the native COM
distance (dNat) is given. The mean COM distance between ligand and receptor in
the associated state (dAsso) and the dissociated state (dDisso) and the corresponding
difference in distance are shown. Additionally, the mean replica number (counting
from 0) of the associated state (RepAsso) and the dissociated state (RepDisso) are given.

Structure dNat dAsso dDisso dDisso − dAsso RepAsso RepDisso
1z0k 22.2 22.4 ± 0.3 29.7 ± 1.2 7.2 ± 1.3 2.1 ± 1.9 12.9 ± 1.8
3a4s 26.4 26.5 ± 0.3 39.1 ± 1.1 12.7 ± 1.2 1.2 ± 1.1 11.6 ± 2.6
7cei 27.6 28.3 ± 0.4 34.5 ± 2.3 6.1 ± 2.3 4.8 ± 2.0 13.2 ± 1.4
1ay7 24.6 24.9 ± 0.2 32.7 ± 0.8 7.8 ± 0.8 2.4 ± 1.8 12.6 ± 1.8
1ffw 25.8 26.2 ± 0.4 36.8 ± 1.6 10.6 ± 1.7 2.8 ± 1.9 13.6 ± 1.4
1qa9 26.1 26.3 ± 0.3 31.3 ± 1.6 4.9 ± 1.7 3.0 ± 1.9 12.3 ± 2.0
1j2j 23.1 24.0 ± 0.4 38.1 ± 2.5 14.1 ± 2.5 5.6 ± 3.6 14.2 ± 1.1

1gcq 20.5 21.2 ± 0.3 37.6 ± 2.7 16.4 ± 2.7 2.9 ± 2.2 13.3 ± 1.5
1ppe 18.5 18.9 ± 0.2 22.6 ± 0.5 3.8 ± 0.6 2.5 ± 1.9 14.0 ± 0.9
2oob 21.4 22.0 ± 0.3 43.8 ± 4.3 21.8 ± 4.3 2.0 ± 1.7 11.8 ± 2.5
1ak4 38.0 39.1 ± 0.6 53.2 ± 1.9 14.1 ± 2.0 5.5 ± 2.6 13.6 ± 1.2
2sni 26.5 26.2 ± 0.3 36.0 ± 1.8 9.8 ± 1.8 3.0 ± 2.4 14.6 ± 0.5
1zhi 31.2 31.8 ± 0.3 36.6 ± 0.9 4.8 ± 0.9 2.1 ± 2.0 13.3 ± 1.7
1r0r 24.1 24.6 ± 0.2 40.8 ± 2.9 16.2 ± 2.9 2.5 ± 2.0 13.2 ± 1.4
1fle 25.3 25.9 ± 0.3 36.1 ± 4.6 10.2 ± 4.6 6.5 ± 1.9 14.3 ± 0.8
2i25 32.5 33.2 ± 0.3 39.7 ± 2.1 6.5 ± 2.1 3.0 ± 2.0 12.7 ± 1.5
1grn 29.8 30.1 ± 0.5 36.6 ± 0.8 6.5 ± 0.9 2.3 ± 2.3 13.0 ± 1.4
1oph 47.6 48.3 ± 0.5 55.0 ± 0.6 6.7 ± 0.8 2.8 ± 2.2 13.1 ± 1.2
1e96 31.8 32.6 ± 0.4 40.1 ± 1.0 7.5 ± 1.1 1.7 ± 1.4 12.4 ± 2.1
1s1q 25.3 25.7 ± 0.3 34.8 ± 2.4 9.0 ± 2.4 1.8 ± 1.5 12.4 ± 2.1
1ghq 38.8 39.0 ± 1.0 45.8 ± 1.6 6.8 ± 1.8 2.6 ± 2.6 12.7 ± 2.1
2ajf 47.7 48.0 ± 0.7 56.4 ± 1.4 8.4 ± 1.5 5.7 ± 3.3 13.8 ± 1.2
1e6e 28.9 29.8 ± 0.3 36.9 ± 0.8 7.1 ± 0.8 1.7 ± 1.1 12.9 ± 1.7
2c0l 34.3 34.4 ± 1.0 42.8 ± 1.3 8.4 ± 1.7 5.7 ± 4.5 13.0 ± 1.9
1h1v 38.3 39.3 ± 0.3 46.9 ± 0.8 7.6 ± 0.9 2.7 ± 1.8 14.2 ± 1.2
1m10 27.7 28.3 ± 0.4 32.9 ± 0.5 4.6 ± 0.6 1.6 ± 1.4 12.2 ± 2.1
2btf 35.4 35.6 ± 0.3 41.0 ± 0.6 5.4 ± 0.7 1.8 ± 1.4 12.8 ± 1.9
2hle 28.0 28.8 ± 0.6 34.1 ± 1.0 5.3 ± 1.2 2.7 ± 3.0 13.7 ± 1.2
1dfj 24.4 24.3 ± 0.4 28.6 ± 0.7 4.2 ± 0.8 1.2 ± 1.3 12.8 ± 2.0
1b6c 36.9 37.8 ± 0.3 45.2 ± 1.4 7.4 ± 1.5 3.3 ± 2.4 14.4 ± 0.8
1mah 29.6 29.7 ± 0.4 38.9 ± 1.3 9.2 ± 1.4 3.4 ± 2.9 13.7 ± 1.1
1kxq 36.6 38.5 ± 0.3 45.5 ± 1.2 7.0 ± 1.2 4.6 ± 3.2 13.7 ± 1.2
1wq1 25.4 26.1 ± 0.5 31.6 ± 0.7 5.5 ± 0.9 5.2 ± 2.2 13.4 ± 1.4
1bvn 27.0 27.4 ± 0.4 35.0 ± 1.9 7.5 ± 2.0 4.5 ± 2.9 14.1 ± 0.9
2b42 32.3 33.0 ± 0.3 38.9 ± 1.1 5.8 ± 1.2 1.4 ± 1.6 14.1 ± 1.0
1ibr 19.8 20.1 ± 0.4 25.3 ± 0.6 5.1 ± 0.7 1.9 ± 1.8 13.2 ± 1.5
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C.1 Figures and tables

Table C.2: For all protein-protein complexes in implicit solvent the native COM
distance (dNat) is given. The mean COM distance between ligand and receptor in
the associated state (dAsso) and the dissociated state (dDisso) and the corresponding
difference in distance are shown. Additionally, the mean replica number (counting
from 0) of the associated state (RepAsso) and the dissociated state (RepDisso) are given.

Structure dNat dAsso dDisso dDisso − dAsso RepAsso RepDisso
1z0k 22.2 23.2 ± 0.4 37.3 ± 0.6 14.1 ± 0.7 1.6 ± 1.5 10.4 ± 3.2
3a4s 26.4 27.6 ± 0.4 42.9 ± 0.6 15.2 ± 0.8 0.9 ± 1.1 9.4 ± 3.8
7cei 27.6 28.3 ± 0.4 37.1 ± 1.3 8.8 ± 1.4 1.3 ± 1.2 10.7 ± 2.8
1ay7 24.6 25.4 ± 0.4 40.4 ± 0.7 15.0 ± 0.8 1.4 ± 1.5 10.3 ± 3.3
1ffw 25.8 26.8 ± 0.7 40.9 ± 0.7 14.1 ± 0.9 1.6 ± 1.6 10.2 ± 3.0
1qa9 26.1 28.8 ± 0.7 43.1 ± 0.5 14.4 ± 0.9 1.2 ± 1.0 8.9 ± 4.0
1j2j 23.1 24.5 ± 0.5 30.1 ± 1.2 5.6 ± 1.3 3.8 ± 3.2 12.7 ± 2.0

1gcq 20.5 21.8 ± 0.4 36.3 ± 0.8 14.5 ± 0.9 1.9 ± 1.5 10.3 ± 2.9
1ppe 18.5 19.4 ± 0.3 34.7 ± 0.5 15.3 ± 0.5 2.0 ± 1.5 11.3 ± 2.3
2oob 21.4 23.2 ± 1.0 32.6 ± 4.5 9.4 ± 4.6 5.4 ± 4.2 11.0 ± 3.2
1ak4 38.0 40.2 ± 1.1 50.0 ± 1.7 9.8 ± 2.0 3.6 ± 2.9 11.4 ± 2.7
2sni 26.5 27.6 ± 0.4 40.9 ± 1.4 13.3 ± 1.4 3.1 ± 2.2 11.7 ± 2.0
1zhi 31.2 32.0 ± 0.6 41.9 ± 2.4 9.9 ± 2.5 3.5 ± 3.1 12.2 ± 2.3
1r0r 24.1 25.0 ± 0.2 38.1 ± 2.3 13.2 ± 2.3 2.2 ± 1.7 11.5 ± 2.5
1fle 25.3 25.7 ± 0.5 38.9 ± 1.8 13.2 ± 1.8 3.5 ± 2.5 12.6 ± 1.5
2i25 32.5 33.8 ± 0.9 47.2 ± 1.3 13.5 ± 1.6 5.4 ± 3.2 11.7 ± 2.1
1grn 29.8 31.0 ± 0.9 44.3 ± 0.9 13.3 ± 1.3 1.8 ± 2.6 10.6 ± 3.0
1oph 47.6 48.9 ± 0.7 62.4 ± 0.6 13.5 ± 0.9 3.1 ± 2.2 11.5 ± 2.2
1e96 31.8 35.2 ± 1.0 41.0 ± 0.9 5.8 ± 1.4 7.0 ± 4.5 10.7 ± 3.1
1s1q 25.3 25.9 ± 0.7 40.3 ± 0.6 14.3 ± 1.0 4.6 ± 3.3 11.2 ± 2.4
1ghq 38.8 40.8 ± 1.2 53.2 ± 0.9 12.4 ± 1.5 3.7 ± 3.5 9.9 ± 3.3
2ajf 47.7 49.7 ± 0.8 61.4 ± 1.1 11.7 ± 1.4 1.8 ± 1.9 9.6 ± 3.2
1e6e 28.9 30.6 ± 0.5 40.9 ± 1.4 10.3 ± 1.4 1.5 ± 2.2 11.3 ± 2.5
2c0l 34.3 35.6 ± 0.8 47.4 ± 1.4 11.8 ± 1.6 4.6 ± 2.9 10.7 ± 2.5
1h1v 38.3 40.7 ± 0.5 51.6 ± 1.2 11.0 ± 1.3 1.7 ± 1.6 10.8 ± 2.4
1m10 27.7 30.3 ± 0.5 42.7 ± 0.6 12.4 ± 0.8 2.0 ± 1.6 9.5 ± 3.0
2btf 35.4 37.9 ± 0.5 50.3 ± 0.9 12.4 ± 1.1 1.6 ± 1.6 9.1 ± 3.5
2hle 28.0 29.6 ± 0.4 40.2 ± 2.3 10.6 ± 2.3 1.9 ± 2.1 12.1 ± 2.1
1dfj 24.4 25.6 ± 1.0 38.0 ± 1.3 12.3 ± 1.6 1.5 ± 1.4 10.7 ± 2.8
1b6c 36.9 38.6 ± 0.6 50.3 ± 2.0 11.6 ± 2.1 2.8 ± 3.1 11.8 ± 2.0
1mah 29.6 30.3 ± 0.4 41.2 ± 1.9 10.9 ± 1.9 2.7 ± 2.0 11.2 ± 2.3
1kxq 36.6 38.7 ± 0.5 48.4 ± 1.6 9.7 ± 1.6 2.8 ± 2.8 12.7 ± 1.9
1wq1 25.4 27.5 ± 1.0 40.0 ± 0.9 12.5 ± 1.3 2.6 ± 3.8 10.5 ± 2.8
1bvn 27.0 28.7 ± 0.5 41.5 ± 1.1 12.8 ± 1.3 2.4 ± 1.8 10.9 ± 2.6
2b42 32.3 33.8 ± 0.7 47.0 ± 0.7 13.2 ± 1.0 1.7 ± 2.0 11.1 ± 2.4
1ibr 19.8 21.2 ± 0.5 28.0 ± 1.1 6.8 ± 1.2 1.8 ± 1.9 11.1 ± 2.8
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Table C.3: RS-REMD timings for simulating every ns (per replica and pose) for all
protein-protein cases (50 poses and 16 replicas in each simulation) using implicit and
explicit water representation on one GPU. On average 1 ns (per pose and replica)
for one complex took 2.4 days in the implicit case and 4.9 days in the explicit water
case.

Structure Implicit Explicit
GPU Time (days) GPU Time (days)

1z0k GTX 1080 Ti 2.1 GTX 1080 5.4
3a4s GTX 1080 Ti 2.1 GTX 1080 Ti 4.4
7cei GTX 1080 Ti 2.1 GTX 1080 5.7
1ay7 RTX 2080 Ti 1.9 GTX 1080 Ti 4.2
1ffw GTX 1080 2.2 GTX 1080 Ti 3.6
1syx GTX 1080 Ti 1.7 GTX 1080 Ti 4.4
1qa9 RTX 2080 Ti 1.7 GTX 1080 7.2
1j2j RTX 2080 Ti 2.2 GTX 1080 Ti 3.1

3sgq GTX 1080 Ti 2.1 GTX 1080 Ti 3.9
1gcq RTX 2080 Ti 1.4 GTX 1080 Ti 3.5
1ppe RTX 2080 Ti 3.0 GTX 1080 Ti 2.8
2oob RTX 2080 Ti 1.4 GTX 1080 Ti 2.4
2cfh RTX 2080 Ti 2.8 GTX 1080 Ti 5.3
1ak4 RTX 2080 Ti 2.5 GTX 1080 8.2
2sni GTX 1080 Ti 3.5 GTX 1080 5.7
1zhi RTX 2080 Ti 3.1 GTX 1080 Ti 7.5
1r0r GTX 1080 Ti 3.3 GTX 1080 5.2
1fle GTX 1080 Ti 3.3 GTX 1080 Ti 4.6
1z5y GTX 1080 Ti 2.5 GTX 1080 Ti 5.4
2i25 GTX 1080 3.5 GTX 1080 Ti 6.0
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C.1 Figures and tables

Figure C.3: RS score of all 50 poses for 20 protein-protein complexes vs. rmsdligand
(replica of minimal rmsdligand in the first frame) from the native complex. The results
of the explicit solvent RS-REMD simulations of the different poses (blue dots) and
the native structures (black dots) are given with uncertainties.
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Appendix C Efficient Refinement and Free Energy Scoring of Predicted
Protein-Protein Complexes Using Replica Exchange With Repulsive Scaling

Figure C.4: RS score of all 50 poses for 20 protein-protein complexes vs. rmsdligand
(replica of minimal rmsdligand in the first frame) from the native complex. The results
of the implicit solvent RS-REMD simulations of the different poses (red dots) and
the native structures (black dots) are given with uncertainties.
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C.1 Figures and tables

Figure C.5: Native complexes (left panel) and RS-REMD simulated complexes (right
panel) in explicit solvent (reference replica) for three structures with only small
deviations in the rmsdligand but high differences in the corresponding scoring (see
main text Figure 7.5). We identified the small structural details having a high impact
on the binding affinity: (1) In case of 1fle in the native structure an alanine residue
(black; vdw representation) of the ligand sits in the central pocket of the receptor. In
the simulation the ligand is associated to the correct binding site but the binding is
coordinated by different residues, an isoleucin residue sits in the mentioned receptor
pocket (gray vdw representation). (2) For the second complex (1z5y) a proline
residue of the receptor protein (black vdw spheres) fits deep into the native pocket
of the ligand (red vdw representation). In the simulation this pocket is closed so
that the proline residue is sterically hindered at the ligand surface and a compatible
matching of ligand and receptor is not possible. (3) In case of 2i25 a serine amino
acid of the native ligand protein fits deeply into the pocket of the receptor protein
(black vdw spheres). In contrast, during the unbound simulations this residue sticks
at the surface of the receptor (blue vdw representation) not being able to enter the
pocket.

175





List of Publications

[1] Till Siebenmorgen, Michael Engelhard and Martin Zacharias. ‘Prediction of
protein–protein complexes using replica exchange with repulsive scaling’. In:
Journal of Computational Chemistry 41.15 (2020), pp. 1436–1447.

[2] Till Siebenmorgen and Martin Zacharias. ‘Computational prediction of pro-
tein–protein binding affinities’. In: Wiley Interdisciplinary Reviews: Compu-
tational Molecular Science (2019), e1448.

[3] Till Siebenmorgen and Martin Zacharias. ‘Efficient Refinement and Free
Energy Scoring of Predicted Protein–Protein Complexes Using Replica Ex-
change with Repulsive Scaling’. In: Journal of Chemical Information and
Model- ing 60.11 (2020), pp. 5552–5562.

[4] Till Siebenmorgen and Martin Zacharias. ‘Evaluation of predicted protein–
protein complexes by binding free energy simulations’. In: Journal of Chemical
Theory and Computation 15.3 (2019), pp. 2071–2086.

[5] Till Siebenmorgen and Martin Zacharias. ‘Origin of ion specificity of telom-
eric DNA G-quadruplexes investigated by free-energy simulations’. In: Bio-
physical journal 112.11 (2017), pp. 2280–2290.

[6] Martyna Maszota-Zieleniak, Mateusz Marcisz, Małgorzata M. Kogut, Till
Siebenmorgen, Martin Zacharias, Sergey A. Samsonov. ‘Evaluation of Replica
Exchange with Repulsive Scaling Approach for Docking Glycosaminoglycans.’
In: Journal of Computational Chemistry (manuscript accepted).

177





Acknowledgments

Ich danke Martin Zacharias für die Einführung in die Welt der Protein-Simulationen
und die Betreuung während der Promotion, sein stets offenes Ohr in allen Prob-
lemstellungen und seine Zuversicht bei schwierig erscheinenden Hindernissen.
Außerdem danke ich dem gesamten bestehenden und ehemaligen T38-Team für
viele Inspirationen und Hilfestellungen in den Projekten, aber vor allem für den
tollen Zusammenhalt und die vielen Erlebnisse abseits der Arbeit. Insbesondere
die Weihnachtsfeiern, Winterschulen und Ausflüge zur Isar werden mir noch lange
im Gedächtnis bleiben. Mein besonderer Dank gilt Sonja für die stets gute Or-
ganisation, Danial für die vielen gemeinsamen Stunden im Büro, Julian für die
Fahrrad-Expertise, Paul dafür, dass der Arbeitsalltag mit ihm nie langweilig wird
und schließlich Max dafür, dass wir seit dem ersten Studientag den gleichen Weg
beschreiten.

Ich danke der TUM für das Ermöglichen der Promotion und der deutschen
Forschungsgesellschaft für die Finanzierung über den SFB 863. Für die Zusamme-
narbeit zum Interleukin-Projekt bedanke ich mich bei Isabel Aschenbrenner und
Matthias Feige. Außerdem gilt mein Dank Sergey Samsonov und seinen Kollegen
für die weiterführende Anwendung der RS-REMD Methode.

Für viele konstruktive Anmerkungen und Korrekturen verschiedener Abschnitte
bedanke ich mich bei Massimo, Clio, Korbi, Max, Ralf, Brianda, Caro, Martha,
Dagmar und Julian.

Mein abschließender Dank gilt meiner Familie und meinen Freunden. Ich danke
Clio dafür, dass ich sie immer kontaktieren und ich mir ihrer Hilfe gewiss sein kann,
auch abgesehen von chemischer Expertise. Ich danke meinen Eltern für ihre stete
Unterstützung und dafür, dass sie mir diesen Weg ermöglicht haben. Zuletzt gilt
mein ganz besonderer Dank Martha, für all die wunderbaren Momente, du bist
mein Herz.

179





Bibliography

[1] Nicola GA Abrescia et al. ‘Insights into assembly from structural analysis of
bacteriophage PRD1’. In: Nature 432.7013 (2004), pp. 68–74.

[2] Stewart A Adcock and J Andrew McCammon. ‘Molecular dynamics: survey
of methods for simulating the activity of proteins’. In: Chemical reviews 106.5
(2006), pp. 1589–1615.

[3] Roman Affentranger, Ivano Tavernelli and Ernesto E Di Iorio. ‘A novel Hamil-
tonian replica exchange MD protocol to enhance protein conformational
space sampling’. In: Journal of Chemical Theory and Computation 2.2 (2006),
pp. 217–228.

[4] Boris Aguilar, Richard Shadrach and Alexey V Onufriev. ‘Reducing the
secondary structure bias in the generalized Born model via R6 effective radii’.
In: Journal of Chemical Theory and Computation 6.12 (2010), pp. 3613–3630.

[5] Mazen Ahmad et al. ‘Adhesive water networks facilitate binding of protein
interfaces’. In: Nature communications 2.1 (2011), pp. 1–7.

[6] Bruce Alberts et al. ‘Molecular biology of the cell’. In: (2018).

[7] Matteo Aldeghi et al. ‘Accurate calculation of the absolute free energy of
binding for drug molecules’. In: Chemical science 7.1 (2016), pp. 207–218.

[8] Matteo Aldeghi et al. ‘Statistical analysis on the performance of Molecular
Mechanics Poisson–Boltzmann Surface Area versus absolute binding free
energy calculations: Bromodomains as a case study’. In: Journal of chemical
information and modeling 57.9 (2017), pp. 2203–2221.

[9] Rebecca F Alford et al. ‘The Rosetta all-atom energy function for macromolec-
ular modeling and design’. In: Journal of chemical theory and computation 13.6
(2017), pp. 3031–3048.

[10] Ramu Anandakrishnan et al. ‘Speed of Conformational Change: Comparing
Explicit and Implicit Solvent Molecular Dynamics Simulations’. In: Biophysi-
cal Journal 108.5 (Mar. 2015), pp. 1153–1164.

[11] Hans C Andersen. ‘Molecular dynamics simulations at constant pressure
and/or temperature’. In: The Journal of chemical physics 72.4 (1980), pp. 2384–
2393.

181



Bibliography

[12] Nelly Andrusier et al. ‘Principles of flexible protein–protein docking’. In:
Proteins: Structure, Function, and Bioinformatics 73.2 (2008), pp. 271–289.

[13] Christian B Anfinsen. ‘Principles that govern the folding of protein chains’.
In: Science 181.4096 (1973), pp. 223–230.

[14] J Aqvist and John Marelius. ‘The linear interaction energy method for predict-
ing ligand binding free energies’. In: Combinatorial chemistry & high throughput
screening 4.8 (2001), pp. 613–626.

[15] Ranjit Prasad Bahadur et al. ‘A dissection of specific and non-specific protein–
protein interfaces’. In: Journal of molecular biology 336.4 (2004), pp. 943–955.

[16] RP Bahadur and M Zacharias. ‘The interface of protein-protein complexes:
analysis of contacts and prediction of interactions’. In: Cellular and Molecular
Life Sciences 65.7-8 (2008), pp. 1059–1072.

[17] Xiao-chen Bai, Greg McMullan and Sjors HW Scheres. ‘How cryo-EM is
revolutionizing structural biology’. In: Trends in biochemical sciences 40.1 (2015),
pp. 49–57.

[18] Jacob B Bale et al. ‘Accurate design of megadalton-scale two-component
icosahedral protein complexes’. In: Science 353.6297 (2016), pp. 389–394.

[19] Nenad Ban et al. ‘The complete atomic structure of the large ribosomal
subunit at 2.4 Å resolution’. In: Science 289.5481 (2000), pp. 905–920.

[20] Matthias GJ Baud et al. ‘New synthetic routes to triazolo-benzodiazepine
analogues: expanding the scope of the bump-and-hole approach for selective
bromo and extra-terminal (BET) bromodomain inhibition’. In: Journal of
medicinal chemistry 59.4 (2016), pp. 1492–1500.

[21] Ad Bax. ‘Two-dimensional NMR and protein structure’. In: Annual review of
biochemistry 58.1 (1989), pp. 223–256.

[22] Andrea Becchetti and Annarosa Arcangeli. Integrins and ion channels: molecular
complexes and signaling. Vol. 674. Springer Science & Business Media, 2010.

[23] Ido Y Ben-Shalom et al. ‘Efficient approximation of ligand rotational and
translational entropy changes upon binding for use in MM-PBSA calcula-
tions’. In: Journal of chemical information and modeling 57.2 (2017), pp. 170–
189.

[24] Charles H Bennett. ‘Efficient estimation of free energy differences from Monte
Carlo data’. In: Journal of Computational Physics 22.2 (1976), pp. 245–268.

[25] Herman JC Berendsen et al. ‘Molecular dynamics with coupling to an external
bath’. In: The Journal of chemical physics 81.8 (1984), pp. 3684–3690.

[26] HJC Berendsen, JR Grigera and TP Straatsma. ‘The missing term in effective
pair potentials’. In: Journal of Physical Chemistry 91.24 (1987), pp. 6269–6271.

182



[27] Helen M Berman et al. ‘The protein data bank’. In: Nucleic acids research 28.1
(2000), pp. 235–242.

[28] Matthias Bischoff et al. ‘Stereoselective construction of the 5-hydroxy diaz-
abicyclo [4.3. 1] decane-2-one scaffold, a privileged motif for FK506-binding
proteins’. In: Organic letters 16.20 (2014), pp. 5254–5257.

[29] Alexandre MJJ Bonvin. ‘Flexible protein–protein docking’. In: Current opinion
in structural biology 16.2 (2006), pp. 194–200.

[30] Stefan Boresch et al. ‘Absolute binding free energies: a quantitative approach
for their calculation’. In: The Journal of Physical Chemistry B 107.35 (2003),
pp. 9535–9551.

[31] Gregory R Bowman, Vijay S Pande and Frank Noé. An introduction to Markov
state models and their application to long timescale molecular simulation. Vol. 797.
Springer Science & Business Media, 2013.

[32] Scott E Boyken et al. ‘De novo design of protein homo-oligomers with modu-
lar hydrogen-bond network–mediated specificity’. In: Science 352.6286 (2016),
pp. 680–687.

[33] Andreas Bracher et al. ‘Structural characterization of the PPIase domain of
FKBP51, a cochaperone of human Hsp90’. In: Acta Crystallographica Section D:
Biological Crystallography 67.6 (2011), pp. 549–559.

[34] Ryan Brenke et al. ‘Application of asymmetric statistical potentials to
antibody–protein docking’. In: Bioinformatics 28.20 (2012), pp. 2608–2614.

[35] Anna Brückner et al. ‘Yeast two-hybrid, a powerful tool for systems biology’.
In: International journal of molecular sciences 10.6 (2009), pp. 2763–2788.

[36] Axel Brünger, Charles L Brooks III and Martin Karplus. ‘Stochastic boundary
conditions for molecular dynamics simulations of ST2 water’. In: Chemical
physics letters 105.5 (1984), pp. 495–500.

[37] Ignasi Buch, Toni Giorgino and Gianni De Fabritiis. ‘Complete reconstruction
of an enzyme-inhibitor binding process by molecular dynamics simulations’.
In: Proceedings of the National Academy of Sciences 108.25 (2011), pp. 10184–
10189.

[38] James W Caldwell and Peter A Kollman. ‘Structure and properties of neat
liquids using nonadditive molecular dynamics: water, methanol, and N-
methylacetamide’. In: The Journal of Physical Chemistry 99.16 (1995), pp. 6208–
6219.

[39] Huaiqing Cao, Yongqi Huang and Zhirong Liu. ‘Interplay between binding
affinity and kinetics in protein–protein interactions’. In: Proteins: Structure,
Function, and Bioinformatics 84.7 (2016), pp. 920–933.

183



Bibliography

[40] Phil Carter et al. ‘Protein–protein docking using 3D-Dock in rounds 3, 4, and
5 of CAPRI’. In: Proteins: Structure, Function, and Bioinformatics 60.2 (2005),
pp. 281–288.

[41] DA Case et al. ‘AMBER 18. 2018’. In: University of California, San Francisco
(2018).

[42] DA Case et al. ‘AMBER 16’. In: University of California, San Francisco (2016).

[43] Kandala VR Chary and Girjesh Govil. NMR in biological systems: from molecules
to human. Vol. 6. Springer Science & Business Media, 2008.

[44] Sidhartha Chaudhury et al. ‘Benchmarking and analysis of protein docking
performance in Rosetta v3. 2’. In: PloS one 6.8 (2011), e22477.

[45] Fu Chen et al. ‘Assessing the performance of the MM/PBSA and MM/GBSA
methods. 6. Capability to predict protein–protein binding free energies and
re-rank binding poses generated by protein–protein docking’. In: Physical
Chemistry Chemical Physics 18.32 (2016), pp. 22129–22139.

[46] Yifan Cheng. ‘Single-particle cryo-EM—How did it get here and where will
it go’. In: Science 361.6405 (2018), pp. 876–880.

[47] Jean-Baptiste Chéron et al. ‘Update of the ATTRACT force field for the
prediction of protein–protein binding affinity’. In: Journal of Computational
Chemistry 38.21 (2017), pp. 1887–1890.

[48] Alexander S Cheung et al. ‘Solvation effects in calculated electrostatic asso-
ciation free energies for the C3d-CR2 complex and comparison with exper-
imental data’. In: Biopolymers: Original Research on Biomolecules 93.6 (2010),
pp. 509–519.

[49] Christophe Chipot. ‘Frontiers in free-energy calculations of biological sys-
tems’. In: Wiley Interdisciplinary Reviews: Computational Molecular Science 4.1
(2014), pp. 71–89.

[50] John D Chodera and Frank Noé. ‘Markov state models of biomolecular
conformational dynamics’. In: Current opinion in structural biology 25 (2014),
pp. 135–144.

[51] Song-Ho Chong and Sihyun Ham. ‘Dynamics of hydration water plays a key
role in determining the binding thermodynamics of protein complexes’. In:
Scientific reports 7.1 (2017), pp. 1–10.

[52] Song-Ho Chong and Sihyun Ham. ‘New computational approach for ex-
ternal entropy in protein–protein binding’. In: Journal of chemical theory and
computation 12.6 (2016), pp. 2509–2516.

[53] Cyrus Chothia and Joël Janin. ‘Principles of protein–protein recognition’. In:
Nature 256.5520 (1975), pp. 705–708.

184



[54] Gwo-Yu Chuang et al. ‘DARS (Decoys As the Reference State) potentials for
protein-protein docking’. In: Biophysical journal 95.9 (2008), pp. 4217–4227.

[55] Pietro Ciceri et al. ‘Dual kinase-bromodomain inhibitors for rationally de-
signed polypharmacology’. In: Nature chemical biology 10.4 (2014), pp. 305–
312.

[56] Anthony J Clark et al. ‘Relative binding affinity prediction of charge-changing
sequence mutations with FEP in protein–protein interfaces’. In: Journal of
molecular biology 431.7 (2019), pp. 1481–1493.

[57] G Marius Clore and Angela M Gronenborn. ‘Determining the structures of
large proteins and protein complexes by NMR’. In: Trends in biotechnology
16.1 (1998), pp. 22–34.

[58] Ryan G Coleman et al. ‘Ligand pose and orientational sampling in molecular
docking’. In: PloS one 8.10 (2013), e75992.

[59] Jeffrey Comer et al. ‘The adaptive biasing force method: Everything you
always wanted to know but were afraid to ask’. In: The Journal of Physical
Chemistry B 119.3 (2015), pp. 1129–1151.

[60] Wendy D Cornell et al. ‘A second generation force field for the simulation
of proteins, nucleic acids, and organic molecules’. In: Journal of the American
Chemical Society 117.19 (1995), pp. 5179–5197.

[61] Peter Csermely, Robin Palotai and Ruth Nussinov. ‘Induced fit, conforma-
tional selection and independent dynamic segments: an extended view of
binding events’. In: Nature Precedings (2010), pp. 1–1.

[62] Jeremy Curuksu, Jiri Sponer and Martin Zacharias. ‘Elbow flexibility of the
kt38 RNA kink-turn motif investigated by free-energy molecular dynamics
simulations’. In: Biophysical journal 97.7 (2009), pp. 2004–2013.

[63] Tom Darden, Darrin York and Lee Pedersen. ‘Particle mesh Ewald: An N
log (N) method for Ewald sums in large systems’. In: The Journal of chemical
physics 98.12 (1993), pp. 10089–10092.

[64] Eric Darve and Andrew Pohorille. ‘Calculating free energies using average
force’. In: The Journal of Chemical Physics 115.20 (2001), pp. 9169–9183.

[65] Fred P Davis and Andrej Sali. ‘PIBASE: a comprehensive database of struc-
turally defined protein interfaces’. In: Bioinformatics 21.9 (2005), pp. 1901–
1907.

[66] LF Pineda De Castro and M Zacharias. ‘DAPI binding to the DNA minor
groove: a continuum solvent analysis’. In: Journal of Molecular Recognition
15.4 (2002), pp. 209–220.

185



Bibliography

[67] Sjoerd J De Vries et al. ‘HADDOCK versus HADDOCK: new features and
performance of HADDOCK2. 0 on the CAPRI targets’. In: Proteins: structure,
function, and bioinformatics 69.4 (2007), pp. 726–733.

[68] Sjoerd J de Vries et al. ‘A web interface for easy flexible protein–protein
docking with ATTRACT’. In: Biophysical Journal 108.3 (2015), pp. 462–465.

[69] Sjoerd de Vries and Martin Zacharias. ‘Flexible docking and refinement
with a coarse-grained protein model using ATTRACT’. In: Proteins: Structure,
Function, and Bioinformatics 81.12 (2013), pp. 2167–2174.

[70] Nanjie Deng et al. ‘Comparing alchemical and physical pathway methods for
computing the absolute binding free energy of charged ligands’. In: Physical
Chemistry Chemical Physics 20.25 (2018), pp. 17081–17092.

[71] Yuqing Deng and Benoıt Roux. ‘Computations of standard binding free
energies with molecular dynamics simulations’. In: The Journal of Physical
Chemistry B 113.8 (2009), pp. 2234–2246.

[72] Aalt D. J. van Dijk and Alexandre M. J. J. Bonvin. ‘Solvated docking: introduc-
ing water into the modelling of biomolecular complexes’. en. In: Bioinformatics
22.19 (Oct. 2006), pp. 2340–2347.

[73] Cyril Dominguez, Rolf Boelens and Alexandre MJJ Bonvin. ‘HADDOCK:
a protein- protein docking approach based on biochemical or biophysical
information’. In: Journal of the American Chemical Society 125.7 (2003), pp. 1731–
1737.

[74] Qiwen Dong and Shuigeng Zhou. ‘Novel nonlinear knowledge-based mean
force potentials based on machine learning’. In: IEEE/ACM transactions on
computational biology and bioinformatics 8.2 (2010), pp. 476–486.

[75] Ron O Dror et al. ‘Biomolecular simulation: a computational microscope for
molecular biology’. In: Annual review of biophysics 41 (2012), pp. 429–452.

[76] Lili Duan, Xiao Liu and John ZH Zhang. ‘Interaction entropy: a new
paradigm for highly efficient and reliable computation of protein–ligand
binding free energy’. In: Journal of the American Chemical Society 138.17 (2016),
pp. 5722–5728.

[77] J Dubochet and AW McDowall. ‘Vitrification of pure water for electron
microscopy’. In: Journal of Microscopy 124.3 (1981), pp. 3–4.

[78] JW Eastwood and RW Hockney. ‘Computer Simulation using particles’. In:
New York: Mc GrawHill (1981).

[79] Elaine A Elion. ‘The ste5p scaffold’. In: Journal of Cell Science 114.22 (2001),
pp. 3967–3978.

186



[80] Dominika Elmlund, Sarah N Le and Hans Elmlund. ‘High-resolution cryo-
EM: the nuts and bolts’. In: Current opinion in structural biology 46 (2017),
pp. 1–6.

[81] Gerald D Fasman. Circular dichroism and the conformational analysis of
biomolecules. Springer Science & Business Media, 2013.

[82] Xixi Feng et al. ‘Structure–affinity relationship analysis of selective FKBP51
ligands’. In: Journal of medicinal chemistry 58.19 (2015), pp. 7796–7806.

[83] Juan Fernández-Recio, Maxim Totrov and Ruben Abagyan. ‘ICM-DISCO
docking by global energy optimization with fully flexible side-chains’. In:
Proteins: Structure, Function, and Bioinformatics 52.1 (2003), pp. 113–117.

[84] Panagis Filippakopoulos. ‘Crystal Structure of the first bromodomain of
human BRD4 in complex with a 3,5-dimethylisoxazol ligand (Pdb entry:
3svg, to be published)’. In: ().

[85] Panagis Filippakopoulos et al. ‘Benzodiazepines and benzotriazepines as
protein interaction inhibitors targeting bromodomains of the BET family’. In:
Bioorganic & medicinal chemistry 20.6 (2012), pp. 1878–1886.

[86] Panagis Filippakopoulos et al. ‘Selective inhibition of BET bromodomains’.
In: Nature 468.7327 (2010), pp. 1067–1073.

[87] Sébastien Fiorucci and Martin Zacharias. ‘Binding site prediction and im-
proved scoring during flexible protein-protein docking with ATTRACT’. In:
Proteins: Structure, Function, and Bioinformatics 78.15 (2010), pp. 3131–3139.

[88] Paul V Fish et al. ‘Identification of a chemical probe for bromo and extra
C-terminal bromodomain inhibition through optimization of a fragment-
derived hit’. In: Journal of medicinal chemistry 55.22 (2012), pp. 9831–9837.

[89] Federico Fogolari, Alessandro Brigo and Henriette Molinari. ‘The Poisson–
Boltzmann equation for biomolecular electrostatics: a tool for structural
biology’. In: Journal of Molecular Recognition 15.6 (2002), pp. 377–392.

[90] Oriol Fornes et al. ‘On the use of knowledge-based potentials for the evalua-
tion of models of protein–protein, protein–DNA, and protein–RNA interac-
tions’. In: Advances in protein chemistry and structural biology. Vol. 94. Elsevier,
2014, pp. 77–120.

[91] Joachim Frank. ‘Time-resolved cryo-electron microscopy: Recent progress’.
In: Journal of structural biology 200.3 (2017), pp. 303–306.

[92] Daan Frenkel and Berend Smit. Understanding molecular simulation: from algo-
rithms to applications. Vol. 1. Elsevier, 2001.

187



Bibliography

[93] Richard A Friesner et al. ‘Glide: a new approach for rapid, accurate docking
and scoring. 1. Method and assessment of docking accuracy’. In: Journal of
medicinal chemistry 47.7 (2004), pp. 1739–1749.

[94] Haian Fu. Protein-protein interactions: methods and applications. Vol. 261.
Springer Science & Business Media, 2004.

[95] Hiroaki Fukunishi, Osamu Watanabe and Shoji Takada. ‘On the Hamiltonian
replica exchange method for efficient sampling of biomolecular systems:
Application to protein structure prediction’. In: The Journal of chemical physics
116.20 (2002), pp. 9058–9067.

[96] Steffen Gaali et al. ‘Rapid, structure-based exploration of pipecolic acid
amides as novel selective antagonists of the FK506-binding protein 51’. In:
Journal of Medicinal Chemistry 59.6 (2016), pp. 2410–2422.

[97] Steffen Gaali et al. ‘Selective inhibitors of the FK506-binding protein 51 by
induced fit’. In: Nature chemical biology 11.1 (2015), pp. 33–37.

[98] Vytautas Gapsys et al. ‘Accurate and rigorous prediction of the changes in
protein free energies in a large-scale mutation scan’. In: Angewandte Chemie
International Edition 55.26 (2016), pp. 7364–7368.

[99] Alfonso T Garcıa-Sosa and Ricardo L Mancera. ‘Free energy calculations of
mutations involving a tightly bound water molecule and ligand substitutions
in a ligand-protein complex’. In: Molecular Informatics 29.8-9 (2010), pp. 589–
600.

[100] Cunliang Geng et al. ‘Finding the ∆∆G spot: Are predictors of binding affinity
changes upon mutations in protein–protein interactions ready for it?’ In:
Wiley Interdisciplinary Reviews: Computational Molecular Science 9.5 (2019),
e1410.

[101] Francesco Luigi Gervasio, Alessandro Laio and Michele Parrinello. ‘Flexible
docking in solution using metadynamics’. In: Journal of the American Chemical
Society 127.8 (2005), pp. 2600–2607.

[102] Michael K Gilson et al. ‘The statistical-thermodynamic basis for computation
of binding affinities: a critical review’. In: Biophysical journal 72.3 (1997),
pp. 1047–1069.

[103] Holger Gohlke and David A Case. ‘Converging free energy estimates: MM-
PB (GB) SA studies on the protein–protein complex Ras–Raf’. In: Journal of
computational chemistry 25.2 (2004), pp. 238–250.

[104] Holger Gohlke, Christina Kiel and David A Case. ‘Insights into protein–
protein binding by binding free energy calculation and free energy decompo-
sition for the Ras–Raf and Ras–RalGDS complexes’. In: Journal of molecular
biology 330.4 (2003), pp. 891–913.

188



[105] Javier Gomez et al. ‘The heat capacity of proteins’. In: Proteins: Structure,
Function, and Bioinformatics 22.4 (1995), pp. 404–412.

[106] Ranganath Gopalakrishnan et al. ‘Evaluation of synthetic FK506 analogues
as ligands for the FK506-binding proteins 51 and 52’. In: Journal of medicinal
chemistry 55.9 (2012), pp. 4114–4122.

[107] Ronald D Gorham, Chris A Kieslich and Dimitrios Morikis. ‘Electrostatic
clustering and free energy calculations provide a foundation for protein
design and optimization’. In: Annals of biomedical engineering 39.4 (2011),
pp. 1252–1263.

[108] Andreas W Gotz et al. ‘Routine microsecond molecular dynamics simulations
with AMBER on GPUs. 1. Generalized born’. In: Journal of chemical theory and
computation 8.5 (2012), pp. 1542–1555.

[109] Jeffrey J Gray. ‘High-resolution protein–protein docking’. In: Current Opinion
in Structural Biology 16.2 (2006), pp. 183–193.

[110] Jeffrey J Gray et al. ‘Protein–protein docking with simultaneous optimization
of rigid-body displacement and side-chain conformations’. In: Journal of
Molecular Biology 331.1 (2003), pp. 281–299.

[111] Norma J Greenfield. ‘Circular dichroism (CD) analyses of protein-protein
interactions’. In: Protein-Protein Interactions. Springer, 2015, pp. 239–265.

[112] Norma J Greenfield. ‘Methods to estimate the conformation of proteins and
polypeptides from circular dichroism data’. In: Analytical biochemistry 235.1
(1996), pp. 1–10.

[113] Sam Z Grinter and Xiaoqin Zou. ‘A Bayesian statistical approach of improv-
ing knowledge-based scoring functions for protein–ligand interactions’. In:
Journal of computational chemistry 35.12 (2014), pp. 932–943.

[114] Paweł Grochowski and Joanna Trylska. ‘Continuum molecular electrostatics,
salt effects, and counterion binding—a review of the Poisson–Boltzmann
theory and its modifications’. In: Biopolymers: Original Research on Biomolecules
89.2 (2008), pp. 93–113.

[115] M Michael Gromiha, K Yugandhar and Sherlyn Jemimah. ‘Protein–protein
interactions: scoring schemes and binding affinity’. In: Current opinion in
structural biology 44 (2017), pp. 31–38.

[116] Alan Grossfield. ‘WHAM: an Implementation of the Weighted Histogram
Analysis Method. Version 2.0. 9’. In: Rochester University: Rochester, NY (2013).

[117] Tomasz Grycuk. ‘Deficiency of the Coulomb-field approximation in the gen-
eralized Born model: An improved formula for Born radii evaluation’. In:
The Journal of Chemical Physics 119.9 (2003), pp. 4817–4826.

189



Bibliography

[118] Jenny Gu and Philip E Bourne. Structural bioinformatics. Vol. 44. John Wiley &
Sons, 2009.

[119] James C Gumbart, Benoıt Roux and Christophe Chipot. ‘Efficient determina-
tion of protein–protein standard binding free energies from first principles’.
In: Journal of chemical theory and computation 9.8 (2013), pp. 3789–3798.

[120] James C Gumbart, Benoıt Roux and Christophe Chipot. ‘Standard binding
free energies from computer simulations: What is the best strategy?’ In:
Journal of chemical theory and computation 9.1 (2013), pp. 794–802.

[121] Peter Güntert. ‘Automated structure determination from NMR spectra’. In:
European Biophysics Journal 38.2 (2009), p. 129.

[122] Hugo Guterres and Wonpil Im. ‘Improving protein-ligand docking results
with high-throughput molecular dynamics simulations’. In: Journal of Chemi-
cal Information and Modeling 60.4 (2020), pp. 2189–2198.

[123] Tomas Hansson, John Marelius and Johan Åqvist. ‘Ligand binding affinity
prediction by linear interaction energy methods’. In: Journal of computer-aided
molecular design 12.1 (1998), pp. 27–35.

[124] Edward Harder et al. ‘OPLS3: a force field providing broad coverage of
drug-like small molecules and proteins’. In: Journal of chemical theory and
computation 12.1 (2016), pp. 281–296.

[125] David S Hewings et al. ‘Optimization of 3, 5-dimethylisoxazole derivatives
as potent bromodomain ligands’. In: Journal of medicinal chemistry 56.8 (2013),
pp. 3217–3227.

[126] Chad W. Hopkins et al. ‘Long-Time-Step Molecular Dynamics through Hy-
drogen Mass Repartitioning’. In: Journal of Chemical Theory and Computation
11.4 (2015), pp. 1864–1874.

[127] Jozef Hritz and Chris Oostenbrink. ‘Hamiltonian replica exchange molecular
dynamics using soft-core interactions’. In: Journal of Chemical Physics 128.14
(2008), p. 144121.

[128] Sheng-You Huang. ‘Exploring the potential of global protein–protein docking:
an overview and critical assessment of current programs for automatic ab
initio docking’. In: Drug discovery today 20.8 (2015), pp. 969–977.

[129] Sheng-You Huang. ‘Search strategies and evaluation in protein-protein dock-
ing: principles, advances and challenges’. In: Drug Discovery Today 0 (2014),
In press.

[130] Po-Ssu Huang, Scott E Boyken and David Baker. ‘The coming of age of de
novo protein design’. In: Nature 537.7620 (2016), pp. 320–327.

190



[131] Gary A Huber and Sangtae Kim. ‘Weighted-ensemble Brownian dynamics
simulations for protein association reactions’. In: Biophysical journal 70.1
(1996), pp. 97–110.

[132] Howook Hwang et al. ‘Protein–protein docking benchmark version 3.0’. In:
Proteins: Structure, Function, and Bioinformatics 73.3 (2008), pp. 705–709.

[133] Wonpil Im et al. ‘Challenges in structural approaches to cell modeling’. In:
Journal of molecular biology 428.15 (2016), pp. 2943–2964.

[134] Y Inbar, R Nussinov, HJ Wolfson et al. ‘PatchDock and SymmDock: servers
for rigid and symmetric docking’. In: Nucleic Acids Res 33 (2005), W363–W367.

[135] Saeed Izadi, Ramu Anandakrishnan and Alexey V Onufriev. ‘Building water
models: a different approach’. In: The journal of physical chemistry letters 5.21
(2014), pp. 3863–3871.

[136] Saeed Izadi et al. ‘Accuracy comparison of generalized Born models in the
calculation of electrostatic binding free energies’. In: Journal of chemical theory
and computation 14.3 (2018), pp. 1656–1670.

[137] Joël Janin. ‘Assessing predictions of protein–protein interaction: the CAPRI
experiment’. In: Protein Scienceence 14.2 (2005), pp. 278–283.

[138] Lin Jiang et al. ‘Potential of mean force for protein–protein interaction stud-
ies’. In: Proteins: Structure, Function, and Bioinformatics 46.2 (2002), pp. 190–
196.

[139] Zhifeng Jing et al. ‘Polarizable force fields for biomolecular simulations:
Recent advances and applications’. In: Annual Review of biophysics 48 (2019),
pp. 371–394.

[140] Sunhwan Jo et al. ‘CHARMM-GUI: a web-based graphical user interface for
CHARMM’. In: Journal of computational chemistry 29.11 (2008), pp. 1859–1865.

[141] Graham T Johnson et al. ‘cellPACK: a virtual mesoscope to model and vi-
sualize structural systems biology’. In: Nature methods 12.1 (2015), pp. 85–
91.

[142] William L Jorgensen. ‘The many roles of computation in drug discovery’. In:
Science 303.5665 (2004), pp. 1813–1818.

[143] William L Jorgensen and Jeffry D Madura. ‘Temperature and size dependence
for Monte Carlo simulations of TIP4P water’. In: Molecular Physics 56.6 (1985),
pp. 1381–1392.

[144] William L Jorgensen et al. ‘Comparison of simple potential functions for
simulating liquid water’. In: The Journal of chemical physics 79.2 (1983), pp. 926–
935.

191



Bibliography

[145] Agnieszka A Kaczor et al. ‘Protein–Protein Docking in Drug Design and Dis-
covery’. In: Computational Drug Discovery and Design. Springer, 2018, pp. 285–
305.

[146] Hiqmet Kamberaj. Molecular Dynamics Simulations in Statistical Physics: Theory
and Applications. Springer, 2020.

[147] Srinivasaraghavan Kannan and Martin Zacharias. ‘Enhanced sampling of
peptide and protein conformations using replica exchange simulations with
a peptide backbone biasing-potential’. In: Proteins: Structure, Function, and
Bioinformatics 66.3 (2007), pp. 697–706.

[148] Martin Karplus and J Andrew McCammon. ‘Molecular dynamics simulations
of biomolecules’. In: Nature structural biology 9.9 (2002), pp. 646–652.

[149] Johannes Kästner and Walter Thiel. ‘Bridging the gap between thermo-
dynamic integration and umbrella sampling provides a novel analysis
method:“Umbrella integration”’. In: The Journal of chemical physics 123.14
(2005), p. 144104.

[150] Panagiotis L Kastritis and Alexandre MJJ Bonvin. ‘Are scoring functions
in protein- protein docking ready to predict interactomes? Clues from a
novel binding affinity benchmark’. In: Journal of proteome research 9.5 (2010),
pp. 2216–2225.

[151] Panagiotis L Kastritis and Alexandre MJJ Bonvin. ‘Erratum: Are scoring
functions in protein-Protein Docking Ready to predict interactomes? Clues
from a novel binding affinity benchmark (Journal of Proteome Research
(2010) 9 (2216-2225)’. In: Journal of Proteome Research 10.2 (2011), pp. 921–922.

[152] Panagiotis L Kastritis and Alexandre MJJ Bonvin. ‘On the binding affinity of
macromolecular interactions: daring to ask why proteins interact’. In: Journal
of The Royal Society Interface 10.79 (2013), p. 20120835.

[153] Panagiotis L Kastritis et al. ‘A structure-based benchmark for protein–protein
binding affinity’. In: Protein Scienceence 20.3 (2011), pp. 482–491.

[154] Panagiotis L Kastritis et al. ‘Proteins feel more than they see: fine-tuning of
binding affinity by properties of the non-interacting surface’. In: Journal of
molecular biology 426.14 (2014), pp. 2632–2652.

[155] Ephraim Katchalski-Katzir et al. ‘Molecular surface recognition: determi-
nation of geometric fit between proteins and their ligands by correlation
techniques’. In: Proceedings of the National Academy of Sciences 89.6 (1992),
pp. 2195–2199.

192



[156] Ozlem Keskin, Buyong Ma and Ruth Nussinov. ‘Hot regions in protein–
protein interactions: the organization and contribution of structurally con-
served hot spot residues’. In: Journal of molecular biology 345.5 (2005), pp. 1281–
1294.

[157] Maximilian Kienlein and Martin Zacharias. ‘Ligand binding and global
adaptation of the GlnPQ substrate binding domain 2 revealed by molecular
dynamics simulations’. In: Protein Science 29.12 (2020), pp. 2482–2494.

[158] Young C Kim et al. ‘Replica exchange simulations of transient encounter com-
plexes in protein–protein association’. In: Proceedings of the National Academy
of Sciences 105.35 (2008), pp. 12855–12860.

[159] Neil P King et al. ‘Accurate design of co-assembling multi-component protein
nanomaterials’. In: Nature 510.7503 (2014), pp. 103–108.

[160] John G Kirkwood. ‘Statistical mechanics of fluid mixtures’. In: The Journal of
chemical physics 3.5 (1935), pp. 300–313.

[161] Pavel V Klimovich, Michael R Shirts and David L Mobley. ‘Guidelines for
the analysis of free energy calculations’. In: Journal of computer-aided molecular
design 29.5 (2015), pp. 397–411.

[162] Małgorzata M Kogut et al. ‘Computational insights into the role of calcium
ions in protein–glycosaminoglycan systems’. In: Physical Chemistry Chemical
Physics (2021).

[163] Gergely Kohut et al. ‘Protein–Ligand interaction energy-based entropy cal-
culations: fundamental challenges for flexible systems’. In: The Journal of
Physical Chemistry B 122.32 (2018), pp. 7821–7827.

[164] Hironori Kokubo, Toshimasa Tanaka and Yuko Okamoto. ‘Ab Initio pre-
diction of protein–ligand binding structures by replica-exchange umbrella
sampling simulations’. In: Journal of computational chemistry 32.13 (2011),
pp. 2810–2821.

[165] Peter A Kollman et al. ‘Calculating structures and free energies of complex
molecules: combining molecular mechanics and continuum models’. In:
Accounts of chemical research 33.12 (2000), pp. 889–897.

[166] Tanja Kortemme and David Baker. ‘Computational design of protein–protein
interactions’. In: Current opinion in chemical biology 8.1 (2004), pp. 91–97.

[167] Daniel E Koshland Jr. ‘Das Schüssel-Schloß-Prinzip und die Induced-fit-
Theorie’. In: Angewandte Chemie 106.23-24 (1994), pp. 2468–2472.

[168] Marcin Król, Alexander L. Tournier and Paul A. Bates. ‘Flexible relaxation of
rigid-body docking solutions’. In: Proteins: Structure, Function, and Bioinfor-
matics 68.1 (2007), pp. 159–169.

193



Bibliography

[169] Shankar Kumar et al. ‘The weighted histogram analysis method for free-
energy calculations on biomolecules. I. The method’. In: Journal of computa-
tional chemistry 13.8 (1992), pp. 1011–1021.

[170] Sriram Kumaraswamy and Renee Tobias. ‘Label-free kinetic analysis of
an antibody–antigen interaction using biolayer interferometry’. In: Protein-
Protein Interactions. Springer, 2015, pp. 165–182.

[171] Petras J Kundrotas et al. ‘Dockground: a comprehensive data resource for
modeling of protein complexes’. In: Protein Scienceence 27.1 (2018), pp. 172–
181.

[172] Petras J Kundrotas et al. ‘Templates are available to model nearly all com-
plexes of structurally characterized proteins’. In: Proceedings of the National
Academy of Sciences 109.24 (2012), pp. 9438–9441.

[173] John Kuriyan, Boyana Konforti and David Wemmer. The molecules of life:
Physical and chemical principles. Garland Science, 2012.

[174] Daisuke Kuroda and Jeffrey J Gray. ‘Pushing the backbone in protein-protein
docking’. In: Structure 24.10 (2016), pp. 1821–1829.

[175] John E Ladbury and Babur Z Chowdhry. ‘Sensing the heat: the application of
isothermal titration calorimetry to thermodynamic studies of biomolecular
interactions’. In: Chemistry & biology 3.10 (1996), pp. 791–801.

[176] Cheng-Tsung Lai et al. ‘Rational modulation of the induced-fit conforma-
tional change for slow-onset inhibition in Mycobacterium tuberculosis InhA’.
In: Biochemistry 54.30 (2015), pp. 4683–4691.

[177] Alessandro Laio and Michele Parrinello. ‘Escaping free-energy minima’. In:
Proceedings of the National Academy of Sciences 99.20 (2002), pp. 12562–12566.

[178] Andrew R Leach. Molecular modelling: principles and applications. Pearson
education, 2001.

[179] Hui Sun Lee et al. ‘Application of binding free energy calculations to predic-
tion of binding modes and affinities of MDM2 and MDMX inhibitors’. In:
Journal of chemical information and modeling 52.7 (2012), pp. 1821–1832.

[180] Marc F Lensink, Raúl Méndez and Shoshana J Wodak. ‘Docking and scoring
protein complexes: CAPRI 3rd Edition’. In: Proteins: Structure, Function, and
Bioinformatics 69.4 (2007), pp. 704–718.

[181] Marc F Lensink, Sameer Velankar and Shoshana J Wodak. ‘Modeling protein–
protein and protein–peptide complexes: CAPRI 6th edition’. In: Proteins:
Structure, Function, and Bioinformatics 85.3 (2017), pp. 359–377.

194



[182] Marc F Lensink and Shoshana J Wodak. ‘Docking and scoring protein inter-
actions: CAPRI 2009’. In: Proteins: Structure, Function, and Bioinformatics 78.15
(2010), pp. 3073–3084.

[183] Huei-Jiun Li et al. ‘A structural and energetic model for the slow-onset
inhibition of the Mycobacterium tuberculosis enoyl-ACP reductase InhA’. In:
ACS chemical biology 9.4 (2014), pp. 986–993.

[184] Lin Li et al. ‘ASPDock: protein-protein docking algorithm using atomic
solvation parameters model’. In: BMC bioinformatics 12.1 (2011), p. 36.

[185] Hai Lin and Donald G. Truhlar. ‘QM/MM: what have we learned, where are
we, and where do we go from here?’ In: Theoretical Chemistry Accounts 117.2
(2006), p. 185.

[186] Song Liu et al. ‘A physical reference state unifies the structure-derived po-
tential of mean force for protein folding and binding’. In: Proteins: Structure,
Function, and Bioinformatics 56.1 (2004), pp. 93–101.

[187] Xiao Liu, Long Peng and John ZH Zhang. ‘Accurate and Efficient Calculation
of Protein–Protein Binding Free Energy-Interaction Entropy with Residue
Type-Specific Dielectric Constants’. In: Journal of chemical information and
modeling 59.1 (2018), pp. 272–281.

[188] HA Lorentz. ‘Ueber die Anwendung des Satzes vom Virial in der kinetischen
Theorie der Gase’. In: Annalen der Physik 248.1 (1881), pp. 127–136.

[189] Hongfeng Lou and Robert I Cukier. ‘Molecular dynamics of apo-adenylate
kinase: a distance replica exchange method for the free energy of confor-
mational fluctuations’. In: The journal of physical chemistry B 110.47 (2006),
pp. 24121–24137.

[190] Hui Lu, Long Lu and Jeffrey Skolnick. ‘Development of unified statistical
potentials describing protein-protein interactions’. In: Biophysical journal 84.3
(2003), pp. 1895–1901.

[191] Mingyang Lu, Athanasios D Dousis and Jianpeng Ma. ‘OPUS-PSP: an
orientation-dependent statistical all-atom potential derived from side-chain
packing’. In: Journal of molecular biology 376.1 (2008), pp. 288–301.

[192] Manuel P Luitz and Martin Zacharias. ‘Protein–ligand docking using hamil-
tonian replica exchange simulations with soft core potentials’. In: Journal of
Chemical Information and Modeling 54.6 (2014), pp. 1669–1675.

[193] Manuel P Luitz and Martin Zacharias. ‘Role of tyrosine hot-spot residues
at the interface of colicin E9 and immunity protein 9: A comparative free
energy simulation study’. In: Proteins: Structure, Function, and Bioinformatics
81.3 (2013), pp. 461–468.

195



Bibliography

[194] Manuel Luitz et al. ‘Exploring biomolecular dynamics and interactions using
advanced sampling methods’. In: Journal of Physics: Condensed Matter 27.32
(2015), p. 323101.

[195] Jiankun Lyu et al. ‘Ultra-large library docking for discovering new chemo-
types’. In: Nature 566.7743 (2019), pp. 224–229.

[196] Alex D MacKerell Jr et al. ‘All-atom empirical potential for molecular model-
ing and dynamics studies of proteins’. In: The journal of physical chemistry B
102.18 (1998), pp. 3586–3616.

[197] Irene Maffucci and Alessandro Contini. ‘Improved computation of protein–
protein relative binding energies with the Nwat-MMGBSA method’. In:
Journal of chemical information and modeling 56.9 (2016), pp. 1692–1704.

[198] James A. Maier et al. ‘ff14SB: Improving the Accuracy of Protein Side Chain
and Backbone Parameters from ff99SB’. In: Journal of Chemical Theory and
Computation 11.8 (2015), pp. 3696–3713.

[199] Siewert J Marrink et al. ‘The MARTINI force field: coarse grained model for
biomolecular simulations’. In: The journal of physical chemistry B 111.27 (2007),
pp. 7812–7824.

[200] Joseph A Marsh and Sarah A Teichmann. ‘Structure, dynamics, assembly, and
evolution of protein complexes’. In: Annual review of biochemistry 84 (2015),
pp. 551–575.

[201] Marc A Martı-Renom et al. ‘Comparative protein structure modeling of genes
and genomes’. In: Annual Review of Biophysics and Biomolecular Structure 29.1
(2000), pp. 291–325.

[202] Andreas M März et al. ‘Large FK506-binding proteins shape the pharma-
cology of rapamycin’. In: Molecular and cellular biology 33.7 (2013), pp. 1357–
1367.

[203] Nicholas A Marze et al. ‘Efficient flexible backbone protein–protein docking
for challenging targets’. In: Bioinformatics 34.20 (2018), pp. 3461–3469.

[204] Efrat Mashiach, Ruth Nussinov and Haim J Wolfson. ‘FiberDock: Flexible
induced-fit backbone refinement in molecular docking’. In: Proteins: Structure,
Function, and Bioinformatics 78.6 (2010), pp. 1503–1519.

[205] Efrat Mashiach, Ruth Nussinov and Haim J. Wolfson. ‘FiberDock: a web
server for flexible induced-fit backbone refinement in molecular docking’. In:
Nucleic Acids Research 38.suppl 2 (2010), W457–W461.

[206] Efrat Mashiach et al. ‘An integrated suite of fast docking algorithms’. In:
Proteins: Structure, Function, and Bioinformatics 78.15 (2010), pp. 3197–3204.

196



[207] Martyna Maszota-Zieleniak et al. ‘Evaluation of Replica Exchange with Re-
pulsive Scaling Approach for Docking Glycosaminoglycans’. In: Journal of
Computational Chemistry (2021).

[208] Ali May et al. ‘Coarse-grained versus atomistic simulations: realistic inter-
action free energies for real proteins’. In: Bioinformatics 30.3 (2014), pp. 326–
334.

[209] Andreas May and Martin Zacharias. ‘Accounting for global protein deforma-
bility during protein–protein and protein–ligand docking’. In: Biochimica et
Biophysica Acta (BBA)-Proteins and Proteomics 1754.1-2 (2005), pp. 225–231.

[210] Andreas May and Martin Zacharias. ‘Energy minimization in low-frequency
normal modes to efficiently allow for global flexibility during systematic
protein–protein docking’. In: Proteins: Structure, Function, and Bioinformatics
70.3 (2008), pp. 794–809.

[211] Andreas May and Martin Zacharias. ‘Protein-ligand docking accounting for
receptor side chain and global flexibility in normal modes: evaluation on
kinase inhibitor cross docking’. In: J Med Chem 51.12 (2008). PMID: 18517186,
pp. 3499–3506.

[212] Jarek Meller. ‘Molecular dynamics’. In: e LS (2001).

[213] William M Menzer et al. ‘Simple entropy terms for end-point binding free
energy calculations’. In: Journal of chemical theory and computation 14.11 (2018),
pp. 6035–6049.

[214] Nicholas Metropolis et al. ‘Equation of state calculations by fast computing
machines’. In: The journal of chemical physics 21.6 (1953), pp. 1087–1092.

[215] C.L. Meyerkord and H. Fu. Protein-Protein Interactions: Methods and Applica-
tions. Methods in Molecular Biology. Springer New York, 2016.

[216] Julien Michel, Nicolas Foloppe and Jonathan W Essex. ‘Rigorous free energy
calculations in structure-based drug design’. In: Molecular informatics 29.8-9
(2010), pp. 570–578.

[217] Julian Mintseris et al. ‘Integrating statistical pair potentials into protein
complex prediction’. In: Proteins: Structure, Function, and Bioinformatics 69.3
(2007), pp. 511–520.

[218] Sanzo Miyazawa and Robert L Jernigan. ‘An empirical energy potential
with a reference state for protein fold and sequence recognition’. In: Proteins:
Structure, Function, and Bioinformatics 36.3 (1999), pp. 357–369.

[219] Iain H Moal and Paul A Bates. ‘SwarmDock and the use of normal modes in
protein-protein docking’. In: International journal of molecular sciences 11.10
(2010), pp. 3623–3648.

197



Bibliography

[220] David L Mobley and Michael K Gilson. ‘Predicting binding free energies:
frontiers and benchmarks’. In: Annual review of biophysics 46 (2017), pp. 531–
558.

[221] John Mongan et al. ‘Generalized Born model with a simple, robust molecular
volume correction’. In: Journal of chemical theory and computation 3.1 (2007),
pp. 156–169.

[222] Luca Monticelli and D Peter Tieleman. ‘Force fields for classical molecular
dynamics’. In: Biomolecular simulations: Methods and protocols (2013), pp. 197–
213.

[223] Irina S Moreira, Pedro A Fernandes and Maria J Ramos. ‘Protein–protein
docking dealing with the unknown’. In: Journal of computational chemistry 31.2
(2010), pp. 317–342.

[224] Roberto Mosca, Arnaud Céol and Patrick Aloy. ‘Interactome3D: adding
structural details to protein networks’. In: Nature methods 10.1 (2013), p. 47.

[225] Roberto Mosca et al. ‘3did: a catalog of domain-based interactions of known
three-dimensional structure’. In: Nucleic acids research 42.D1 (2014), pp. D374–
D379.

[226] Roberto Mosca et al. ‘Towards a detailed atlas of protein–protein interactions’.
In: Current opinion in structural biology 23.6 (2013), pp. 929–940.

[227] Demetri T Moustakas et al. ‘Development and validation of a modular,
extensible docking program: DOCK 5’. In: Journal of computer-aided molecular
design 20.10-11 (2006), pp. 601–619.

[228] Asher Mullard. Protein–protein interaction inhibitors get into the groove. 2012.

[229] Lenka Munoz. ‘Non-kinase targets of protein kinase inhibitors’. In: Nature
Reviews Drug Discovery 16.6 (2017), p. 424.

[230] Hai Nguyen, Daniel R Roe and Carlos Simmerling. ‘Improved generalized
born solvent model parameters for protein simulations’. In: Journal of chemical
theory and computation 9.4 (2013), pp. 2020–2034.

[231] Zaneta Nikolovska-Coleska. ‘Studying protein-protein interactions using
surface plasmon resonance’. In: Protein-Protein Interactions. Springer, 2015,
pp. 109–138.

[232] Irene MA Nooren and Janet M Thornton. ‘Diversity of protein–protein inter-
actions’. In: The EMBO journal 22.14 (2003), pp. 3486–3492.

[233] Shuichi Nosé. ‘A unified formulation of the constant temperature molecular
dynamics methods’. In: The Journal of chemical physics 81.1 (1984), pp. 511–519.

198



[234] Alexey Onufriev. ‘Continuum electrostatics solvent modeling with the gen-
eralized Born model’. In: Modeling Solvent Environments: Applications to Simu-
lations of Biomolecules (2010), pp. 127–165.

[235] Alexey Onufriev. ‘Implicit solvent models in molecular dynamics simula-
tions: A brief overview’. In: Annual Reports in Computational Chemistry 4
(2008), pp. 125–137.

[236] Alexey Onufriev, Donald Bashford and David A Case. ‘Exploring protein
native states and large-scale conformational changes with a modified gen-
eralized born model’. In: Proteins: Structure, Function, and Bioinformatics 55.2
(2004), pp. 383–394.

[237] Alexey Onufriev, Donald Bashford and David A. Case. ‘Modification of the
Generalized Born Model Suitable for Macromolecules’. In: Journal of Physical
Chemistry B 104.15 (Apr. 2000), pp. 3712–3720.

[238] Katja Ostermeir and Martin Zacharias. ‘Accelerated flexible protein-ligand
docking using Hamiltonian replica exchange with a repulsive biasing poten-
tial’. In: PloS one 12.2 (2017), e0172072.

[239] Katja Ostermeir and Martin Zacharias. ‘Rapid alchemical free energy calcula-
tion employing a generalized born implicit solvent model’. In: The Journal of
Physical Chemistry B 119.3 (2015), pp. 968–975.

[240] Albert C Pan et al. ‘Atomic-level characterization of protein–protein associa-
tion’. In: Proceedings of the National Academy of Sciences 116.10 (2019), pp. 4244–
4249.

[241] Richard W Pastor, Bernard R Brooks and Attila Szabo. ‘An analysis of the
accuracy of Langevin and molecular dynamics algorithms’. In: Molecular
Physics 65.6 (1988), pp. 1409–1419.

[242] RW Pastor. ‘Techniques and applications of Langevin dynamics simulations’.
In: The Molecular Dynamics of Liquid Crystals. Springer, 1994, pp. 85–138.

[243] Jan Walther Perthold and Chris Oostenbrink. ‘GroScore: Accurate Scoring of
Protein–Protein Binding Poses Using Explicit-Solvent Free-Energy Calcula-
tions’. In: Journal of Chemical Information and Modeling 59.12 (2019), pp. 5074–
5085.

[244] Jan Walther Perthold and Chris Oostenbrink. ‘Simulation of reversible
protein–protein binding and calculation of binding free energies using per-
turbed distance restraints’. In: Journal of chemical theory and computation 13.11
(2017), pp. 5697–5708.

[245] Gregory A Petsko and Dagmar Ringe. Protein structure and function. New
Science Press, 2004.

199



Bibliography

[246] Marharyta Petukh, Minghui Li and Emil Alexov. ‘Predicting binding
free energy change caused by point mutations with knowledge-modified
MM/PBSA method’. In: PLoS computational biology 11.7 (2015), e1004276.

[247] Sarah Picaud et al. ‘RVX-208, an inhibitor of BET transcriptional regulators
with selectivity for the second bromodomain’. In: Proceedings of the National
Academy of Sciences 110.49 (2013), pp. 19754–19759.

[248] Nuria Plattner et al. ‘Complete protein–protein association kinetics in atomic
detail revealed by molecular dynamics simulations and Markov modelling’.
In: Nature chemistry 9.10 (2017), p. 1005.

[249] Vladimir Potapov, Mati Cohen and Gideon Schreiber. ‘Assessing compu-
tational methods for predicting protein stability upon mutation: good on
average but not in the details’. In: Protein engineering, design & selection 22.9
(2009), pp. 553–560.

[250] Sanbo Qin, Xiaodong Pang and Huan-Xiang Zhou. ‘Automated prediction of
protein association rate constants’. In: Structure 19.12 (2011), pp. 1744–1751.

[251] Ronald T Raines. ‘Fluorescence polarization assay to quantify protein-
protein interactions: an update’. In: Protein-Protein Interactions. Springer,
2015, pp. 323–327.

[252] Seesandra V Rajagopala et al. ‘The binary protein-protein interaction land-
scape of Escherichia coli’. In: Nature biotechnology 32.3 (2014), pp. 285–290.

[253] Giulio Rastelli et al. ‘Binding estimation after refinement, a new automated
procedure for the refinement and rescoring of docked ligands in virtual
screening’. In: Chemical Biology Drug Design 73.3 (2009), pp. 283–286.

[254] Sereina Riniker et al. ‘Calculation of relative free energies for ligand-protein
binding, solvation, and conformational transitions using the GROMOS soft-
ware’. In: The Journal of Physical Chemistry B 115.46 (2011), pp. 13570–13577.

[255] David W Ritchie and Vishwesh Venkatraman. ‘Ultra-fast FFT protein docking
on graphics processors’. In: Bioinformatics 26.19 (2010), pp. 2398–2405.

[256] F Anthony Romero et al. ‘Disrupting acetyl-lysine recognition: progress in
the development of bromodomain inhibitors’. In: Journal of medicinal chemistry
59.4 (2016), pp. 1271–1298.

[257] Bernhard Rupp. Biomolecular crystallography: principles, practice, and application
to structural biology. Garland Science, 2009.

[258] Jean-Paul Ryckaert, Giovanni Ciccotti and Herman JC Berendsen. ‘Numerical
integration of the cartesian equations of motion of a system with constraints:
molecular dynamics of n-alkanes’. In: Journal of Computational Physics 23.3
(1977), pp. 327–341.

200



[259] Romelia Salomon-Ferrer et al. ‘Routine microsecond molecular dynamics
simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald’.
In: Journal of chemical theory and computation 9.9 (2013), pp. 3878–3888.

[260] Alexander Sasse et al. ‘Rapid design of knowledge-based scoring potentials
for enrichment of near-native geometries in protein-protein docking’. In: PloS
one 12.1 (2017), e0170625.

[261] Sjors HW Scheres. ‘RELION: implementation of a Bayesian approach to
cryo-EM structure determination’. In: Journal of structural biology 180.3 (2012),
pp. 519–530.

[262] Christina EM Schindler et al. ‘Large-scale assessment of binding free en-
ergy calculations in active drug discovery projects’. In: Journal of Chemical
Information and Modeling (2020).

[263] Christina EM Schindler, Sjoerd J de Vries and Martin Zacharias. ‘iATTRACT:
Simultaneous global and local interface optimization for protein–protein
docking refinement’. In: Proteins: Structure, Function, and Bioinformatics 83.2
(2015), pp. 248–258.

[264] Tamar Schlick. Molecular modeling and simulation: an interdisciplinary guide: an
interdisciplinary guide. Vol. 21. Springer Science & Business Media, 2010.

[265] Daniel V Schroeder. An introduction to thermal physics. 1999.

[266] Yibing Shan et al. ‘How does a drug molecule find its target binding site?’ In:
Journal of the American Chemical Society 133.24 (2011), pp. 9181–9183.

[267] David E Shaw et al. ‘Anton 2: raising the bar for performance and pro-
grammability in a special-purpose molecular dynamics supercomputer’. In:
SC’14: Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis. IEEE. 2014, pp. 41–53.

[268] Bradley Sherborne et al. ‘Collaborating to improve the use of free-energy and
other quantitative methods in drug discovery’. In: Journal of computer-aided
molecular design 30.12 (2016), pp. 1139–1141.

[269] C David Sherrill. ‘An introduction to Hartree-Fock molecular orbital theory’.
In: School of Chemistry and Biochemistry Georgia Institute of Technology (2000).

[270] Ai Shinobu et al. ‘Refining evERdock: Improved selection of good protein-
protein complex models achieved by MD optimization and use of multiple
conformations’. In: Journal of Chemical Physics 149.19 (Nov. 2018), p. 195101.

[271] Michael R Shirts and John D Chodera. ‘Statistically optimal analysis of sam-
ples from multiple equilibrium states’. In: The Journal of chemical physics 129.12
(2008), p. 124105.

201



Bibliography

[272] Michael R Shirts and Vijay S Pande. ‘Comparison of efficiency and bias of free
energies computed by exponential averaging, the Bennett acceptance ratio,
and thermodynamic integration’. In: The Journal of chemical physics 122.14
(2005), p. 144107.

[273] Benjamin A Shoemaker and Anna R Panchenko. ‘Deciphering protein–
protein interactions. Part II. Computational methods to predict protein and
domain interaction partners’. In: PLoS Comput Biol 3.4 (2007), e43.

[274] Matthew D Shoulders and Ronald T Raines. ‘Collagen structure and stability’.
In: Annual review of biochemistry 78 (2009), pp. 929–958.

[275] Andrew Shrake and John A Rupley. ‘Environment and exposure to solvent
of protein atoms. Lysozyme and insulin’. In: Journal of molecular biology 79.2
(1973), pp. 351–371.

[276] Till Siebenmorgen, Michael Engelhard and Martin Zacharias. ‘Prediction of
protein–protein complexes using replica exchange with repulsive scaling’. In:
Journal of Computational Chemistry 41.15 (2020), pp. 1436–1447.

[277] Till Siebenmorgen and Martin Zacharias. ‘Computational prediction of
protein–protein binding affinities’. In: Wiley Interdisciplinary Reviews: Compu-
tational Molecular Science (2019), e1448.

[278] Till Siebenmorgen and Martin Zacharias. ‘Efficient Refinement and Free
Energy Scoring of Predicted Protein–Protein Complexes Using Replica Ex-
change with Repulsive Scaling’. In: Journal of Chemical Information and Model-
ing 60.11 (2020), pp. 5552–5562.

[279] Till Siebenmorgen and Martin Zacharias. ‘Evaluation of predicted protein–
protein complexes by binding free energy simulations’. In: Journal of Chemical
Theory and Computation 15.3 (2019), pp. 2071–2086.

[280] Till Siebenmorgen and Martin Zacharias. ‘Origin of ion specificity of telom-
eric DNA G-quadruplexes investigated by free-energy simulations’. In: Bio-
physical journal 112.11 (2017), pp. 2280–2290.

[281] Daniel-Adriano Silva et al. ‘De novo design of potent and selective mimics
of IL-2 and IL-15’. In: Nature 565.7738 (2019), pp. 186–191.

[282] Inês CM Simões et al. ‘New parameters for higher accuracy in the computa-
tion of binding free energy differences upon Alanine Scanning Mutagenesis
on protein–protein interfaces’. In: Journal of Chemical Information and Modeling
57.1 (2017), pp. 60–72.

[283] Manfred J Sippl and Sabine Weitckus. ‘Detection of native-like models for
amino acid sequences of unknown three-dimensional structure in a data
base of known protein conformations’. In: Proteins: Structure, Function, and
Bioinformatics 13.3 (1992), pp. 258–271.

202



[284] Pär Söderhjelm, Gareth A Tribello and Michele Parrinello. ‘Locating binding
poses in protein-ligand systems using reconnaissance metadynamics’. In:
Proceedings of the National Academy of Sciences 109.14 (2012), pp. 5170–5175.

[285] Neelesh Soni and MS Madhusudhan. ‘Computational modeling of protein
assemblies’. In: Current opinion in structural biology 44 (2017), pp. 179–189.

[286] Marc Souaille and Benoıt Roux. ‘Extension to the weighted histogram analy-
sis method: combining umbrella sampling with free energy calculations’. In:
Computer physics communications 135.1 (2001), pp. 40–57.

[287] Einat Sprinzak, Shmuel Sattath and Hanah Margalit. ‘How reliable are exper-
imental protein–protein interaction data?’ In: Journal of molecular biology 327.5
(2003), pp. 919–923.

[288] Amelie Stein et al. ‘A systematic study of the energetics involved in structural
changes upon association and connectivity in protein interaction networks’.
In: Structure 19.6 (2011), pp. 881–889.

[289] W Clark Still et al. ‘Semianalytical treatment of solvation for molecular
mechanics and dynamics’. In: J. Am. Chem. Soc 112.16 (1990), pp. 6127–6129.

[290] Yuji Sugita and Yuko Okamoto. ‘Replica-exchange molecular dynamics
method for protein folding’. In: Chemical Physics Letters 314.1-2 (1999), pp. 141–
151.

[291] Huiyong Sun et al. ‘Assessing the performance of MM/PBSA and MM/GBSA
methods. 7. Entropy effects on the performance of end-point binding free
energy calculation approaches’. In: Physical Chemistry Chemical Physics 20.21
(2018), pp. 14450–14460.

[292] Zhaoxi Sun et al. ‘Interaction entropy for protein-protein binding’. In: The
Journal of Chemical Physics 146.12 (2017), p. 124124.

[293] Kazuhiro Takemura, Nobuyuki Matubayasi and Akio Kitao. ‘Binding free
energy analysis of protein-protein docking model structures by evERdock’.
In: The Journal of chemical physics 148.10 (2018), p. 105101.

[294] Zhiqiang Tan. ‘On a likelihood approach for Monte Carlo integration’. In:
Journal of the American Statistical Association 99.468 (2004), pp. 1027–1036.

[295] Seiji Tanaka and Harold A Scheraga. ‘Medium-and long-range interaction
parameters between amino acids for predicting three-dimensional structures
of proteins’. In: Macromolecules 9.6 (1976), pp. 945–950.

[296] Maxim Totrov and Ruben Abagyan. ‘Flexible ligand docking to multiple re-
ceptor conformations: a practical alternative’. In: Current opinion in structural
biology 18.2 (2008), pp. 178–184.

203



Bibliography

[297] Abdulnour Y Toukmaji and John A Board Jr. ‘Ewald summation techniques
in perspective: a survey’. In: Computer physics communications 95.2-3 (1996),
pp. 73–92.

[298] Johannes Träg and Dirk Zahn. ‘Improved GAFF2 parameters for fluorinated
alkanes and mixed hydro-and fluorocarbons’. In: Journal of Molecular Modeling
25.2 (2019), p. 39.

[299] Oleg Trott and Arthur J Olson. ‘AutoDock Vina: improving the speed and
accuracy of docking with a new scoring function, efficient optimization, and
multithreading’. In: Journal of computational chemistry 31.2 (2010), pp. 455–461.

[300] Mark E. Tuckerman. Statistical Mechanics: Theory and Molecular Simulation.
Oxford Graduate Texts, 2011.

[301] Ozlem Ulucan, Tanushree Jaitly and Volkhard Helms. ‘Energetics of hy-
drophilic protein–protein association and the role of water’. In: Journal of
chemical theory and computation 10.8 (2014), pp. 3512–3524.

[302] Sandor Vajda, David R Hall and Dima Kozakov. ‘Sampling and scoring: A
marriage made in heaven’. In: Proteins: Structure, Function, and Bioinformatics
81.11 (2013), pp. 1874–1884.

[303] Sandor Vajda and Dima Kozakov. ‘Convergence and combination of methods
in protein–protein docking’. In: Current opinion in structural biology 19.2 (2009),
pp. 164–170.

[304] Anna Vangone and Alexandre MJJ Bonvin. ‘Contacts-based prediction of
binding affinity in protein–protein complexes’. In: elife 4 (2015), e07454.

[305] Adrian Velazquez-Campoy, Stephanie A Leavitt and Ernesto Freire. ‘Charac-
terization of protein-protein interactions by isothermal titration calorimetry’.
In: Protein-Protein Interactions. Springer, 2004, pp. 35–54.

[306] Vishwesh Venkatraman and David W. Ritchie. ‘Flexible protein docking re-
finement using pose-dependent normal mode analysis’. In: Proteins: Structure,
Function, and Bioinformatics 80.9 (2012), pp. 2262–2274.

[307] Marcel L Verdonk et al. ‘Improved protein–ligand docking using GOLD’. In:
Proteins: Structure, Function, and Bioinformatics 52.4 (2003), pp. 609–623.

[308] Loup Verlet. ‘Computer" experiments" on classical fluids. I. Thermodynami-
cal properties of Lennard-Jones molecules’. In: Physical review 159.1 (1967),
p. 98.

[309] Thom Vreven et al. ‘Updates to the integrated protein–protein interaction
benchmarks: docking benchmark version 5 and affinity benchmark version
2’. In: Journal of molecular biology 427.19 (2015), pp. 3031–3041.

204



[310] Karine Vuignier et al. ‘Drug–protein binding: a critical review of analytical
tools’. In: Analytical and bioanalytical chemistry 398.1 (2010), pp. 53–66.

[311] Changhao Wang et al. ‘Recent developments and applications of the
MMPBSA method’. In: Frontiers in molecular biosciences 4 (2018), p. 87.

[312] Chu Wang, Philip Bradley and David Baker. ‘Protein–protein docking with
backbone flexibility’. In: Journal of Molecular Biology 373.2 (2007), pp. 503–519.

[313] Junmei Wang et al. ‘Development and testing of a general amber force field’.
In: Journal of computational chemistry 25.9 (2004), pp. 1157–1174.

[314] Kai Wang et al. ‘Identifying ligand binding sites and poses using GPU-
accelerated Hamiltonian replica exchange molecular dynamics’. en. In: Jour-
nal of Computer-Aided Molecular Design 27.12 (Dec. 2013), pp. 989–1007.

[315] Lee-Ping Wang et al. ‘Systematic improvement of a classical molecular model
of water’. In: The Journal of Physical Chemistry B 117.34 (2013), pp. 9956–9972.

[316] Lingle Wang et al. ‘Accurate and reliable prediction of relative ligand binding
potency in prospective drug discovery by way of a modern free-energy
calculation protocol and force field’. In: Journal of the American Chemical
Society 137.7 (2015), pp. 2695–2703.

[317] Yansong Wang et al. ‘Increasing the efficiency of ligands for FK506-binding
protein 51 by conformational control’. In: Journal of medicinal chemistry 56.10
(2013), pp. 3922–3935.

[318] Mark Nicholas Wass et al. ‘Towards the prediction of protein interaction
partners using physical docking’. In: Molecular systems biology 7.1 (2011),
p. 469.

[319] Thomas R Weikl and Fabian Paul. ‘Conformational selection in protein bind-
ing and function’. In: Protein Scienceence 23.11 (2014), pp. 1508–1518.

[320] M Willander and S Al-Hilli. Micro and Nano Technologies in Bioanalysis: Methods
and Protocols. 2009.

[321] Magnus Willander and Safaa Al-Hilli. ‘Analysis of biomolecules using sur-
face plasmons’. In: Micro and Nano Technologies in Bioanalysis. Springer, 2009,
pp. 201–229.

[322] Christof Winter et al. ‘SCOPPI: a structural classification of protein–protein
interfaces’. In: Nucleic acids research 34.suppl_1 (2006), pp. D310–D314.

[323] Shoshana J Wodak et al. ‘Protein–protein interaction networks: the puzzling
riches’. In: Current opinion in structural biology 23.6 (2013), pp. 941–953.

[324] Hyung-June Woo and Benoıt Roux. ‘Calculation of absolute protein–ligand
binding free energy from computer simulations’. In: Proceedings of the National
Academy of Sciences 102.19 (2005), pp. 6825–6830.

205



Bibliography

[325] Yinghao Wu et al. ‘OPUS-Ca: A knowledge-based potential function requir-
ing only Cα positions’. In: Protein Science 16.7 (2007), pp. 1449–1463.

[326] Martin Zacharias. ‘Accounting for conformational changes during protein–
protein docking’. In: Current opinion in structural biology 20.2 (2010), pp. 180–
186.

[327] Martin Zacharias. ‘ATTRACT: protein–protein docking in CAPRI using a
reduced protein model’. In: Proteins: Structure, Function, and Bioinformatics
60.2 (2005), pp. 252–256.

[328] Martin Zacharias. ‘Continuum solvent modeling of nonpolar solvation: Im-
provement by separating surface area dependent cavity and dispersion con-
tributions’. In: The Journal of Physical Chemistry A 107.16 (2003), pp. 3000–
3004.

[329] Martin Zacharias. ‘Protein–protein docking with a reduced protein model ac-
counting for side-chain flexibility’. In: Protein Scienceence 12.6 (2003), pp. 1271–
1282.

[330] Martin Zacharias. Protein-protein complexes: Analysis, modeling and drug design.
World Scientific, 2010.

[331] Fabian Zeller and Martin Zacharias. ‘Adaptive biasing combined with Hamil-
tonian replica exchange to improve umbrella sampling free energy simu-
lations’. In: Journal of chemical theory and computation 10.2 (2014), pp. 703–
710.

[332] Chi Zhang et al. ‘A knowledge-based energy function for protein- ligand,
protein- protein, and protein- DNA complexes’. In: Journal of medicinal chem-
istry 48.7 (2005), pp. 2325–2335.

[333] Zheng Zheng and Kenneth M Merz Jr. ‘Development of the knowledge-
based and empirical combined scoring algorithm (kecsa) to score protein–
ligand interactions’. In: Journal of chemical information and modeling 53.5 (2013),
pp. 1073–1083.

[334] Yaoqi Zhou et al. ‘What is a desirable statistical energy functions for proteins
and how can it be obtained?’ In: Cell biochemistry and biophysics 46.2 (2006),
pp. 165–174.

[335] Daniel M Zuckerman. ‘Equilibrium sampling in biomolecular simulations’.
In: Annual review of biophysics 40 (2011), pp. 41–62.

[336] Daniel M Zuckerman and Lillian T Chong. ‘Weighted ensemble simulation:
review of methodology, applications, and software’. In: Annual review of
biophysics 46 (2017), pp. 43–57.

206



[337] Erik RP Zuiderweg. ‘Mapping protein- protein interactions in solution by
NMR spectroscopy’. In: Biochemistry 41.1 (2002), pp. 1–7.

[338] Robert W Zwanzig. ‘High-temperature equation of state by a perturbation
method. I. Nonpolar gases’. In: The Journal of Chemical Physics 22.8 (1954),
pp. 1420–1426.

[339] Matthew C Zwier et al. ‘WESTPA: An interoperable, highly scalable soft-
ware package for weighted ensemble simulation and analysis’. In: Journal of
chemical theory and computation 11.2 (2015), pp. 800–809.

207


	Introduction
	Structure and Function of Proteins
	From amino acids to folded protein structures
	How proteins perform their function
	Experimental methods for structure prediction
	X-ray crystallography
	Nuclear magnetic resonance
	Cryo-electron microscopy

	Experimental methods for binding affinity prediction
	Isothermal titration calorimetry
	Surface plasmon resonance
	Optical biosensors: Biolayer interferometry
	Fluorescence polarization assays
	Circular dichroism


	Theory
	Simulation of molecular systems
	Force field and dynamics in simulations
	Force field
	Integrating the equations of motion

	Simulating physiological conditions
	Basic statistical mechanics concepts
	Statistical ensembles in MD
	Explicit solvent and non-bonded interactions
	Implicit solvent models

	Free energy calculation with advanced sampling methods
	Perturbation methods to access free energy differences
	Umbrella sampling
	Hamiltonian replica exchange molecular dynamics


	Computational Prediction of Binding Affinities
	Introduction
	Predicting the structure of protein-protein complexes
	Protein-protein docking
	Prediction of protein-protein complexes based on homology to known structures

	Force field and knowledge-based scoring methods for ranking and to predict binding affinities
	MM-Poisson-Boltzmann/surface area and MM-generalized Born/surface area ensemble-based "endpoint" free energy methods
	Mutations influencing protein-protein binding affinities

	Rigorous free energy approaches to calculate absolute binding free energies
	Analyzing protein-protein binding by multiple simulations and advanced sampling approaches
	Binding free energies from advanced sampling including geometrical restraints

	Conclusion

	Evaluation of Predicted Protein-Protein Complexes by Binding Free Energy Simulations
	Introduction
	Material and methods
	Protein-protein docking using ATTRACT
	Refinement of docking solutions using molecular dynamics simulations
	Restraint umbrella sampling

	Results and discussion
	Molecular dynamics refinement of docked complexes
	Binding free energy calculation using umbrella sampling
	Absolute binding free energy calculation
	Evaluation of the binding selectivity of the scoring methods
	Comparison of the scores with experimental binding free energies

	Conclusions

	Prediction of Protein-Protein Complexes Using Replica Exchange With Repulsive Scaling
	Introduction
	Materials and methods
	Simulations of protein-protein complexes starting far from the binding geometry
	Refinement of individual protein-protein docking poses in implicit solvent
	Refinement of a protein-protein docking ensemble in implicit solvent

	Lennard-Jones parameter scaling between partner molecules
	Results and discussion
	Simulations of near-native protein-protein complex formation
	Refinement of individual protein-protein docking poses in implicit solvent
	Refinement of a protein-protein docking ensemble in one RS-REMD

	Conclusion and outlook

	Efficient Refinement and Free Energy Scoring of Predicted Protein-Protein Complexes Using Replica Exchange With Repulsive Scaling
	Introduction
	Materials and methods
	Explicit solvent simulations of native protein-protein complexes
	Implicit solvent simulations of native protein-protein complexes
	Scoring of protein-protein docking poses in explicit solvent
	Scoring of protein-protein docking poses in implicit solvent
	Free energy calculation along RS-REMD replicas

	Results and discussion
	Evaluation of the RS-REMD free energy scoring on native protein-protein complexes
	RS-REMD free energy scoring of native protein-protein complexes in implicit solvent
	RS-REMD refinement and free energy scoring of protein-protein docking poses in explicit solvent
	RS-REMD free energy scoring of protein-protein docking poses in implicit solvent
	Structural details leading to different selectivities

	Conclusion and outlook

	Accurate Refinement and Calculation of the Absolute Binding Free Energy of Small Ligand Molecules to Proteins Using Replica Exchange With Repulsive Scaling
	Introduction
	Materials and methods
	RS-REMD simulations to estimate the absolute binding free energy of native protein-ligand complexes
	RS-REMD simulation of protein-ligand association starting from an ensemble of incorrect binding poses
	RS-REMD refinement of ligand poses in the vicinity of the binding site

	Results and discussion
	Evaluation of the RS-REMD absolute binding free energy on native protein-ligand complexes
	RS-REMD simulation of protein-ligand association starting from an ensemble of incorrect binding poses
	RS-REMD refinement of ligand poses in the vicinity of the binding site

	Conclusion and outlook

	Summary and Outlook
	Evaluation of Predicted Protein-Protein Complexes by Binding Free Energy Simulations
	Absolute binding free energy calculation
	Figures

	Prediction of Protein-Protein Complexes Using Replica Exchange With Repulsive Scaling
	Figures and tables

	Efficient Refinement and Free Energy Scoring of Predicted Protein-Protein Complexes Using Replica Exchange With Repulsive Scaling
	Figures and tables

	List of Publications
	Acknowledgments
	Bibliography

