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Abstract. Accurate segmentation of the spine in CT images is manda-
tory for quantitative analysis, e.g. in osteoporosis, but remains challeng-
ing due to high variability in vertebral morphology and spinal anatomy
among patients. Conventionally, spine segmentation was performed by
model-based techniques employing spine atlases or statistical shape mod-
els. We argue that such approaches, even though intuitive, fail to address
clinical abnormalities such as vertebral fractures, scoliosis, etc. We pro-
pose a novel deep learning-based method for segmenting the spine, which
does not rely on any pre-defined shape model. We employ two networks:
one for localisation and another for segmentation. Since a typical spine
CT scan cannot be processed at once owing to its large dimensions, we
find that both nets are essential to work towards a perfect segmenta-
tion. We evaluate our framework on three datasets containing healthy
and fractured cases: two private and one public. Our approach achieves
a mean Dice coefficient of ~0.87, which is comparable but not higher
than the state-of-art model-based approaches. However, we show that
our approach handles degenerate cases more accurately.

1 Introduction

Spine segmentation is a crucial component in quantitative medical image anal-
ysis. It directly allows detection and assessment of vertebral fractures and indi-
rectly supports modelling and monitoring of the spinal ageing process. In this
work we propose a method based on ‘deep-learning’, that generates precise spine
segmentations on computed tomography (CT) images. It overcomes the draw-
backs of earlier segmentation approaches and thus can be used in clinical settings.
Particularly, our approach is capable of handling scans with varying fields-of-view
(FOV) and degenerate spine or vertebrae.

Previous works often deal with spine segmentation in a multi-step approach
incorporating spine localisation and vertebra detection followed by the segmenta-
tion [1, 2]. Various traditional computer vision techniques have been successfully
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Fig. 1: Schematic outline of the proposed approach.

applied, such as active shape models and snake-based methods [3, 4], level sets[5]
or graph-based approaches using normalized-cuts [6]. Most of these methods rely
on prior knowledge in the form of spine atlases or statistical shape models which
are used to provide a good initialisation. Such models reach state-of-the-art per-
formance on healthy spines with no signs of osteoporotic fractures, attaining
Dice coefficients (DICE) of over 0.9. However, osteoporotic patients often suffer
from severe vertebral fractures in various stages and spinal deformities such as
scoliosis. In such cases, model-dependent segmentation might fail due to the high
variability of the unique shape of a fracture or deformity that does not resemble
a mean shape model. A shape model is also restricted by its mesh interpola-
tion algorithm, which makes extreme deformations unfeasible. Moreover, CT
images acquired for preoperative planning due to other diseases in the thoracic
or abdominal area have the spine in them as a consequence. Such opportunistic
scans have varying FOVs, spatial resolution, and image reconstruction, in ad-
dition to variations in scan enhancements due to contrast agents. Model-based
approaches, which rely on good initialisations, could fail in such cases either
due to lack of landmarks for registration, uneven intensities, and noise. This
calls for data-driven approach based on supervised learning that does not rely
on pre-defined models, but learns the variability by training on several kinds of
contingencies.

Machine learning-based approaches have proven to fulfil these requirements,
given that enough data is available for their training. Glocker et al. [7] and Suzani
et al. [8] attempt the vertebra detection problem on arbitrary FOVs using ran-
dom forests and multi-layer perceptrons respectively. More recently, Chen et al.
[9] try to make use of the omni-present convolutional neural networks (CNN),
with a clever cost formulation, to detect vertebrae. Eventually the CNNs have
gained large popularity also for image segmentation through the concept of fully-
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convolutional networks (FCN) allowing pixel-to-pixel training and inference on
(nearly) arbitrary sized inputs [10]. The standard FCN architecture of a con-
tracting and an expanding path with shortcut connections is exploited in recent
works on segmentation in the context of medical imaging [11-13]. However, these
approaches cannot be directly extended to obtain a dense segmentation of a spine
scan due to the sheer spatial resolution of a scan. For instance, the segmentation
net used in [10] works on inputs containing ~ 2.5 x 10° pixels; a typical whole
spine CT scan is about 100-1000 times larger, thereby making a straightforward
extension of an FCN non-viable.

We combine the FCN architecture with a domain-specific data-preprocessing
pipeline and data-augmentation scheme to propose a robust and scalable frame-
work for spine segmentation in CT images. The method builds on the following
key elements:

1. A low-resolution attention FCN for spine localisation that works on two-
dimensional sagittal slices of a scan.

2. A high-resolution segmentation FCN for fine segmentation that takes three-
dimensional patches as input.

3. A smart patch extraction strategy to incorporate the FOV invariance and
bypass memory limitations.

4. A domain-specific data augmentation to increase the training set size and
incorporate the typical biological variance.

Our approach is free from predefined shape models and is purely data-driven, and
is thus highly generalisable across varying FOVs, spinal deformities, and spatial
resolutions given sufficiently diverse training data. Methodological details are
presented in Section 2. We evaluate our method on a large private dataset of 56
(a) healthy and (b) fractured patients. We also compare our approach against the
state-of-the-art methods on a publicly available dataset from the 2014 MICCAI
workshop on Computational Spine Imaging (CSI) [14]. Our approach achieves a
comparable mean DICE of around 87%, while perfectly segmenting fine details
of normal as well as deformed vertebrae. Details of the experiments follow in
Section 3.

2 Methodology

We present our approach to spine segmentation in two stages. Firstly, a 2D FCN
which provides a low-resolution localisation of the spine. Secondly, we present
the 2D-3D FCN that generates high-resolution binary segmentations. Fusing
the predictions of both the networks results in a good segmentation of a spine
volume. An overview of our approach is shown in Figure 1.

2.1 Localization: Attention-Net

We exploit the the structure and position of the spine in a scan, that are generally
invariant, to obtain a rough localisation of the spine. The network performing
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Fig.2: Attention-net. The network utilizes 10 convolutional layers with stride
1, kernel sizes and dilation factors are denoted in the image. Moreover, the first 4
conv-layers are followed by max-pooling. Numbers above blobs represent number
of features in the hidden feature space. Observe the drop in spatial resolution
from the input to the output slice, thereby providing a low-resolution attention
map for a given sagittal slice. Every n*" sagittal slice from the scan volume is
considered for inference, thereby reducing the number of forward passes for scan,
which makes the attention generation very fast. Consequently, the original scan
resolution is restored by interpolation in all three directions.

this task is called the attention net. Since sagittal view provides significant con-
text on the spine’s location, the attention net operates fully in 2D on sagittal
slices. The net is fully convolutional and outputs a 2D map of lower dimension
than the input. Every value (€ [0,1]) in the predicted 2D map corresponds to
a 16x16 region in the input, and represents the percentage of foreground vox-
els (‘spine’ voxels) in that region. Figure 2 illustrates the architecture of the
attention-net. A 2D patch of 160x 160 (padded to size 720x720) predicts a maps
of size 10x10. Since context is of utmost importance for determining the pres-
ence of spine, we increase the receptive field with dilated convolutions [15] in
the downstream convolutional layers. We incorporate the resolution reduction
in the third dimension by working only on every n'" sagittal slice. At the end,
given an input volume, the attention net works on sagittal slices and predicts
a lower-resolution volume (called the attention map) whose values indicate the
presence of spine. The attention map is then up-sampled to the input dimension
for further use.

Training and Inference The ground truth for training is obtained from the
available spine segmentations. Every volume is down-sampled by a factor of
16x16xn (n = 8, in our experiments), each voxel representing the ratio of spine-
voxels to total-voxels in its corresponding 16x16 region. The network is trained
to minimise the mean-squared error between predicted map and ground truth.
During training, given a scan volume, we train on large patches randomly sam-
pled from sagittal slices with data augmentation through rigid transformations
(2D rotations by £20° and scaling of the axes by £40%); we advocate the use
of patches as incorporation of invariance to arbitrary FOVs. During test time,
the patches are sampled from every n'" sagittal slice with overlap such that the
entire slice is covered. The predicted low-resolution attention map for each of
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Fig.3: Attention maps. (a) and (b) show two CT scans overlaid with the
response of the Attention-Net aggregated over all slices in the direction of view.
Notice that the response is focused predominantly on the spine. This attention-
map is Gaussian smoothened, thresholded, and converted to a binary mask,
which is then fused with the Segmentation-Net’s response.

these patches is up-sampled to the resolution of the scan volume, and filtered
with a 3D Gaussian kernel, N'(0, X). Figure 3 shows an attention map of two
test cases. For better visualisation of the 3D map, the response is aggregated in
the direction of view and overlaid on the mid-slice. Observe that the net suc-
ceeds in localising the spine. This attention-map is thresholded and converted
to a binary mask, which is then fused with the Segmentation-Net’s response as
elaborated in the following sections. The threshold-value and the covariance of
the Gaussian smoothing (X) are tuned on the validation set.

2.2 Spine Segmentation: Segmentation-Net

Precise segmentation can be obtained when the receptive field of the network
if small enough that it focuses on minute details, while being large enough to
capture sufficient context. We achieve this by incorporating a patch-based ap-
proach. Such an approach also alleviates the restriction that the limited memory
of a GPU imposes on the volume that can be processed by the network. We pro-
pose a segmentation net that is fully convolutional and a combination of 2D and
3D convolutions, building on the versatile ‘U’ architecture commonly used for
segmentation [16,12]. A detailed view of the network’s architecture is shown in
Figure 4. The input to the network is a 3D block from the scan, having larger
receptive field in the sagittal view (for example, an input block could be of size
188x188x%12, with the first two dimensions corresponding to the sagittal view).
At an isotropic resolution of Imm?, the receptive field for predicting one voxel’s
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Fig.4: Segmentation-net. The network has a five-level downsampling path,
each level consisting of two convolutions with a ReLU activation and a max-
pooling, and a symmetric upsampling path, which are connected by skip con-
nections for recovery of high resolution. Notice the utilisation of a combination
of 2D and 3D convolutions to process higher information in the sagittal direc-
tion, while conglomerating information from the adjacent slices. The size of the
inputs and outputs is parameterised by the dimensions of the smallest blob on
the path asx, y >4,z > 3

label has a size of ~ 18.4 x 18.4 x 0.8 cm®. The output is a dense pixel-wise
segmentation of dimensions equal to that of the input.

Training and Inference We use a segmentation-centric loss function of DICE
[13] as the objective function. At the training time we randomly sample patches
from the input volumes and apply online generated rigid deformations to them as
a form of data augmentation. Specifically, we apply rotations along the sagittal
plane by £2° and scaling by +£10% along with minute contrast adjustments.
Employing dropout after the convolutions on the lowest level of the contracting
path gave a significant performance improvement. At the test time, the patches
are extracted uniformly with overlap such that the resulting segmentations cover
the entire test scan.

To conclude the approach: given a scan volume, the segmentation-net pro-
vides its dense segmentation. Since the latter splits the volume in sub-blocks, we
observe that the context in these blocks is insufficient for perfect segmentation.
We therefore observe several false positives in the form of stray segmentation,
wherein, in addition to spine, other regions such as parts of the rib cage, pelvic
bone, sacrum etc. are also segmented. The thresholded binary attention-map,
which localises only the spine, is used as a mask over the segmentation-net’s
output to clear away the stray segmentations', resulting in the final segmenta-
tion map.

1 A cascaded fusion of these nets was also tried where the patches for the segmentation
net are obtained only from the region proposed by the attention map. We observed
that this approach’s accuracy was not superior to our approach of late-fusion.
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3 Experiments and Results

Implementation details The two networks in our approach are implemented
as standalone modules. Given a scan, the inference in both the nets run in
parallel, and their responses are combined. As a preprocessing step, the CT
volumes are subjected to anisotropic diffusion filtering in order to smoothen the
homogeneous regions and improve the details around the edges. Both the nets
were implemented in Caffe [17]. Adam solver was employed for optimising the
loss. The nets were implemented on an Nvidia Titan X GPU with 12GB vRAM
and trained till convergence with initial learning rates of 10~° for segmentation
net and 10~ for the attention net. The convergence was faster for the attention
net owing to its significantly lower number of parameters.

Data We evaluate our framework on three datasets: (Dataset 1) forty five pa-
tients without fractures but varying age from 25 to 69 years, (Dataset 2) eleven
cases with vertebral fractures, to evaluate the performance on deformed ver-
tebrae, and (Dataset 3) the spine segmentation challenge of the 2014 MICCAI
workshop on Computational Spine Imaging dataset containing twenty CT scans,
for comparison with other model-based techniques.

Datasets 1 and 2 are private in-house datasets gathered from our PACS. The
scans were acquired over a period of two years for various patient examinations
and not specifically for the spine analysis, which results in a high diversity in
terms of patient-age, abnormalities, FOV, and scanner calibrations. The ground
truth segmentation for this data was obtained by first using the approach in [1]?
and then manually corrected by a medical expert. Experiments on these datasets
are therefore close to the clinical scenario.

Dataset 1 This is employed to validate the generalisability towards varying
BMDs and scanner calibrations. It includes healthy controls (HC) with no frac-
tures, which have been acquired with varying scanner settings (fields-of-view,
spatial resolution, etc.). Thus, there is a significant variation in the Hounsfield
units (HU) of the scans. We reserve three volumes as a validation set and an-
other three volumes for testing, the remaining thirty nine are used for training.

Dataset 2 We utilise this to evaluate the performance on fracture cases (Fx).
For this experiment we fused the forty five cases of Dataset 1 with eleven cases
from this dataset, all of which have fractures. On top of the splits defined for
Dataset 1, we add six fractured cases to the training set, two to the validation
set, and two to the test set.

Dataset 8 As a final experiment, we intend to compare our algorithm with the
other best-performing segmentation algorithms. For this task, we choose the pub-
lic dataset of the segmentation challenge in CSI Workshop 2014. This contains

2 We would like to thank Klinder et al., the authors and our industry partners (Philips,
Hamburg), for providing us with the segmentation of Datasets 1 and 2 based on their
approach in [1]
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a total of twenty scans, ten for training phase and ten for testing. Of the test
set, five scans are of healthy subjects less than 35 years old, and five other scans
are of osteoporotic spines aged above 55 years. From the ten training volumes
we reserve one for validation and use the remaining nine for fine-tuning of the
model pre-trained on the Dataset 2. We refer the reader to [14] for a detailed
description of the dataset.

Results The results of the experiments on the Datasets 1 and 2 are reported
in the Table 1. Our method reaches good results both for healthy and frac-
tured cases, proving to generalise well to a wide range of data. In both cases
we observed the segmentation net suffer from stray segmentations which were
mostly filtered out by the attention net, steadily improving the DICE by 1-10%.
The resulting segmentation of our method are visualised in Figure 5, comparing
it to a well-known model-based segmentation approach [1]. Notice the over-
segmentation of the vertebral process regions (top row, HC) in the model-based
approach. This is expected as the process of a vertebra has very high variability
from patient-to-patient. Such a variability cannot be captured by an atlas or
a shape model. Such over-segmentation does not occur in our approach. The
bottom row illustrates our approaches performance on a fractured vertebra. Ob-
serve how the model-based segmentation fails to capture the deformities. This
illustrates the restriction the interpolation algorithm in such approaches fails
to capture extreme deviations from the mean shape. Our approach, however,
successfully segments the degenerate vertebra as it learns to segment on the
edges and is not hindered by any shape priors. We attribute the bleeding in the
vertebral process regions (Figure 5, bottom row) to the predicted mask of the
neighbouring slices.

The results of the experiment on Dataset 3 are reported in Table 2. We com-
pare our approach with two methods that have been deemed best performing
according to the challenge organisers. [4] uses a mean shape model based strat-
egy followed by an efficient interpolation theory oriented mesh deformation, and
performed best on healthy cases. [2] performed well on osteoporotic cases. It
uses a multi-atlas based segmentation followed by a B-spline relaxation to adapt
for the variability of vertebral structures. Our algorithm achieves a performance
comparable to [2] on the healthy cohort. However, we observe that the perfor-
mance on the osteoporotic test cases is not up to the mark; we identify the cause
to be following: The fractured vertebra in the test set are treated by cement in-
jection inside the vertebra (for example, case 26 and case 30 have cementing in
T12 and L3 vertebrae). This procedure causes distinctive artefacts in the image,
as opposed to untreated fractures. As there was not a single case of a cement-
treated fracture in our training set and since our approach is purely data-driven,
our method doesn’t perform as expected. This can be observed by observing a
more detailed view on the osteoporotic set’s performance metric, where we ob-
tain a highest Dice score of 89.4% and a median score of 85.48%. However, this
performance can be easily improved by adding more representative data into the
training set.
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’ Dataset ‘ DICE

Dataset 1 (HC) |87.6 + 5.0
Dataset 2 (HC+Fx)|85.91 £+ 4.8

Table 1: DICE (in %) for Datasets 1 and 2. The performance of our method is
consistent among HC and Fx cases.

DICE
HC | Osteo.

Forsberg et al. [2] *{92.1+ 3.0: 89.7+3.0
Korez et al. [4] * |94.7+4.0{ 89.0£3.0
Our approach 92.1+£1.6:83.72+4.7

Approach

Table 2: Comparison of our approach’s performance with other state-of-the-art
methods on the benchmark dataset of CSI 2014, on the healthy and osteoporotic
test sets. (*In these methods, DICE was computed at vertebra level and aggre-
gated; our DICE is computed on entire spine.)

4 Conclusions

In this paper we propose a model-free deep learning based framework for patho-
logical spine segmentation in CT images. Our method uses a pair of fully-
convolutional networks that complement one another: The first network provides
a coarse localisation of the spine in the form of an attention map, while the sec-
ond network provides precise high-resolution segmentations. Both these are fused
to obtain the final segmentation map of the spine. We evaluate the method on
three datasets and obtain promising results indicating applicability in a clinical
setting. Our main conclusions are the following: (1) Our approach based on neu-
ral networks is robust, generalisable, and precise on fine details as a consequence
of its dependence on every voxel and its surrounding, unlike the traditional mod-
els that depend on predefined shapes and edges for fine-tuning, (2) our approach
successfully segments healthy as well as fractured vertebrae, given both cases are
sufficiently represented in the training set, (3) our approach achieves Dice coef-
ficients of above 90% for healthy cases and above 80% for osteoporotic cases on
the CSI 2014 dataset. Since our approach is purely data-driven, its performance
can be further improved with a larger and more representative dataset. Lastly,
(4) we remark that our approach fails to incorporate information pertaining to
structural consistency of a spine. This results in a peculiar behaviour where our
method fails to segment parts of a vertebra or sometimes entire vertebrae at the
start or end of a spine. This can be observed in Figure 5 (top row). We intend
to investigate ways in which such global structural regularity can be imposed
during the training phase of our networks.
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Case 1: 23 yrs Case 2: 55 yrs Case 3: 65 yrs

HEALTHY CONTROLS (HC)

Deep-Net Klinder et al. [1] Deep-Net Klinder et al. [1] Deep-Net Klinder et al. [1]
Case 4: T12 (Fx) Case 4: T7 (Fx)

FRACTURES (Fx)

Deep-Net Klinder et al. [1]

Klinder et al. [1]

Deep-Net

Fig.5: Comparison of the proposed method (red) and Klinder et al. [1] (blue)
to the ground truth (yellow contour). Top row: Test cases from the Dataset 1.
Our method performs better in matching the actual vertebra shape and does not
suffer from over-segmentation. However, it does not always provide structurally
consistent results; for example, the first and the last vertebra in the left-most im-
age are not fully segmented. Bottom row: Fractured cases from the Dataset 2.
Our model-free approach is able to capture the unique deformation of the frac-
tured vertebra, opposed to the model-based method.

As part of future work, we plan to employ a graphical model to split the
binary segmentation into different vertebrae, thereby labelling the segmentation,
based on a conditional random field (CRF)-based approach.
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