The Robot as Scientist: Using Mental Simulation to Test Causal Hypotheses Extracted from Human Activities in Virtual Reality Constantin Uhde¹, Nicolas Berberich¹, Karinne Ramirez-Amaro² and Gordon Cheng¹ Abstract—To act effectively in its environment, a cognitive robot needs to understand the causal dependencies of all intermediate actions leading up to its goal. For example, the system has to infer that it is instrumental to open a cupboard door before trying to grasp an object inside the cupboard. In this paper, we introduce a novel learning method for extracting instrumental dependencies by following the scientific cycle of observations, generation of causal hypotheses and testing through experiments. Our method uses a virtual reality dataset containing observations from human activities to generate hypotheses about causal dependencies between actions. It detects pairs of actions with a high temporal co-occurrence and verifies if one action is instrumental in executing the other action through mental simulation in a virtual reality environment which represents the system's mental model. Our approach is able to extract all present instrumental action dependencies while significantly reducing the search space for mental simulation, resulting in a 6-fold reduction in computational time. #### I. INTRODUCTION Research in cognitive science suggests that children learn causal hypotheses through the combination of observation and testing [1], resembling the scientific approach and thus giving evidence to "The Child as Scientist" theory. This constructivist epistemology, which can be traced back to Jean Piaget's theory of cognitive development, requires the existence of mental models of how one's environment works, which can be dynamically constructed and tested through mental simulation. Similarly, we propose "The Robot as Scientist" approach according to which a cognitive system observes human activities, generates causal hypotheses about instrumental actions from these observations and then tests these hypotheses either in the physical environment or through an appropriate mental simulation of it. This is based on the approach of purposive learning for robots as discussed in [2]. In contrast to natural language processing, where sentences can be interpreted in the presence of word sequence errors, in the robotics domain, a wrong sequence of actions in action planning propagates and can render subsequent actions futile. In everyday human activities, some actions are instrumental for the execution of subsequent actions, e.g. opening a cupboard door is an instrumental action for subsequently grasping a plate inside the cupboard (see Fig. 1) and turning on the water tap is instrumental for cleaning a plate in the sink. Therefore, machine learning sequence-to-sequence models for purposive action sequence generation need to be Fig. 1: Instead of testing all action pairs which are possible in the environment for their instrumental dependency on each other, it is more efficient to first observe human activities and only consider those action pairs which co-occur in the right temporal sequence as candidates for causal dependency to be tested through physical or mental experiments. augmented with semantic knowledge about strictly required action dependencies. Relying on classical good-old-fashioned AI (GOFAI) [3], where these action sequence rules would be predefined by humans as so-called production rules, can lead to the well-known problems of not being able to adapt to dynamic and unforeseen changes in environments and not adapting to the cognitive system's individual embodiment and functionality. Instead, a hybrid combination of datadriven learning and mechanistic rule testing and construction is required which is proposed in this paper. As illustrated in Fig. 2, this is achieved by recording an observational dataset of human activities and extracting pairs of actions from it where one action (prior action) frequently occurs before the second action (posterior action) occurs. These action pairs are considered causal hypotheses for instrumental dependencies and are tested through executability checks in the virtual environment (mental simulation). While supervised machine learning is a behaviorist approach for finding associations between input and output variables (e.g. stimuli and responses) and symbolic AI is based on cognitivism, our hybrid approach can be considered a step towards constructivist AI in which data-driven and mechanistic methods are synergistically combined. #### II. RELATED WORK Using human activity observation for mental simulation has been a topic related to imitation learning for some time. ¹Institute for Cognitive Systems, Technical University of Munich {c.uhde, n.berberich, gordon}@tum.de ²Chalmers University of Technology, Gothenburg karinne@chalmers.se When discussing learning from human activities, roboticists usually refer to curated datasets based on expert demonstrations [4]. As a result, most related work is based on the assumption that the dataset only contains information that is meaningful towards the completion of the task. There have been several publications covering learning from such demonstrations at the trajectory level [5][6] or action level [7][8]. One very important element to consider when learning new tasks is the mental simulation and physical rehearsal capabilities [9]. This mental simulation allows the learning system to explore different possibilities which leads to better learned policies even when different dynamics are explored. For example [10] proposed a learning method that mapped the observed action with the learned primitive. The authors proposed to use physical rehearsal and mental simulation to learn as many possibilities to improve the learned policies in very dynamic situations. In order to develop a mental simulation framework, Virtual Reality (VR) systems are the best suited option since they allow to collect realistic information of the demonstrations in a structured manner [11], [7]. Recent approaches are using VR to bootstrap the learning of human or robot actions using semantic-based approaches [12], [13]. Semantic-based approaches mapped the continuous real-world signals into meaningful symbolic descriptions. This type of approaches are mostly considered as hierarchical methods, where different levels of abstractions are obtained and analyzed. For example, [14] presented a hierarchical method that extracted a set of grammars from human activities. Aksoy et al. [8] introduced the approach named Semantic Event Chain which is based on the affordance principle. In contrast to the robot scientist theory developed by King et al. [15], our system is not built to answer scientific questions in fields such as genetics. However, similar to children, it utilizes the scientific cycle of observations, causal hypotheses and experimentation in order to understand how to effectively act in its current environment. It has been shown that causal structures can be inferred through interventions and controlled experiments [16][17]. ## III. METHODS # A. Observing Human Activities & Action Recognition The data being used in this work has been recorded in a virtual reality (VR) setup. Consumer VR hardware combined with well-supported 3D engines like *Unity3D* provide a good basis to quickly create and distribute new scenarios for recording human activities. Additionally, being able to fully access the environment state makes recognizing actions easier compared to real-world datasets like the *TUM Kitchen Data Set* [18] where one has to employ computer vision methods on video recordings to interpret the environment and extract the observed actions. Our dataset named *Household Activities from Virtual Environments (HAVE)* [19] consists of three scenarios, each depicting a different household task: *Setting a Table, Washing Dishes* and *Cleaning a Living Room.* The environments were set up to allow for variation in the sequence of actions within the given task, in order to TABLE I: Dataset distribution of recordings | Goal | Recordings | |------------------------|------------| | Setting a Table | 83 | | Washing Dishes | 96 | | Cleaning a Living Room | 61 | | Total | 240 | gather data that resembles real-world variance. The dataset has been recorded at the *Automatica¹ Trade Fair 2018* in Munich with the recording setup shown in Fig. 3. It consists of 240 human activities performed by trade fair visitors across the three scenarios. Visitors were allowed one recording per scenario. Each recording is limited to a maximum of 5 minutes and all participants were new to the scenarios. The participants had a brief adaptation phase of several seconds before they were given the scenario specific activity goal. The recordings were done over the course of four days, with three *HTC Vive* systems set up simultaneously. Each scenario is designed inside a 2 by 2 meter square to fit the three recording systems in the same booth and to avoid the need of virtual locomotion which would introduce trajectory discontinuities. For this work, *Setting a Table* was chosen since the importance of identifying instrumental actions such as opening the cupboard doors and drawers is evident. Furthermore, this scenario provides interactions which revolve around object placement such as putting plates and glasses on the table. Whereas in the other two scenarios property changes of objects play a central role. The advantage of focusing on object placement actions is that their executability can be clearly verified through collision checks and path planning. The dataset is provided online² and consists of a thirdperson video, a first-person video and CSV table of object trajectories. In the scope of this work we focus on the analysis of two action types which are relevant for Setting a Table: "Put <object> on table" and "Open/close door/drawer". As with the manual annotation, the automatic action detection is being grounded using grasp events such as grasping and releasing. These binary grasp events are directly recorded when the main VR controller button is pressed and released, together with object and hand trajectories. Based on this information, segments of grasp-translate-release are being group together. When the translated object has the predefined affordance "open close" such as the cupboard doors and drawers, the travel direction along the single degree of freedom determines whether the action is recognized as "opening" or "closing". For objects with the affordance "put on table" the spatial relation to the table is measured when it is released. If the release happens directly above the table, a "Put on Table" action is recognized. These detected labels and their corresponding objects are stored for every recording run in temporal order. ¹https://automatica-munich.com ²https://github.com/ics-tum/have-dataset Fig. 2: The steps for extracting the action dependencies from human activities. Each step can be attributed to one of the three parts of the scientific cycle. (a) The Setting a Table scenario (b) Recording an activity mid activity at Automatica Fig. 3: The recording setup in the Automatica Trade Fair 2018 booth used for collecting human activity data. #### B. Generating Causal Hypotheses of Instrumental Actions The resulting library of recorded action sequences is analyzed for temporal action co-occurrences. Algorithm 1 describes the process. First, all actions which are possible in the environment, are stored in \mathcal{A} . From this, for each possible action pair $\langle a_i, a_i \rangle$ the recordings are searched for cases where a_i comes before a_i . These incidents are counted for all action pairs, stored in a temporal co-occurrence matrix C and normalized by the total number of occurrences of the posterior action a_i . Effectively, this gives a look-up value for each pair, where C(i, j) describes how commonly a_i occurs before a_i . Due to the causal nature of instrumental dependencies, where the temporal sequence is important and one action has to come before the other, the resulting matrix is asymmetric, in contrast to a correlation matrix. An example for such a co-occurrence matrix C can be seen in Fig. 5. Our action recognition system may misclassify sequences in the recording, therefore it is possible that pairs of dependent actions are not registered as co-occurring consistently. If action a_i (e.g. opening the right cupboard door) is misclassified as action a_k (e.g. opening the right drawer) then there will be cases in which plate 1 is put on the table without the system having detected opening the cupboard door beforehand, resulting in C(i, j) being less than 1.0. Due to this immanent uncertainty, we use thresholding to find candidates for dependent action pairs. We mark every entry C(i, j) which is below the chosen threshold τ with a 0, meaning that action i is not instrumental for action j. The candidates of action pairs in which one action frequently occurred before the other action and thus $C(i, j) \geq \tau$ are causal hypotheses of instrumental dependencies which the system needs to test through experiments. ## C. Experiments in Mental Simulation To identify which prior-posterior action pairs in our candidates list contain a dependency, we use mental simulation. We use the same virtual environment in which the dataset was recorded as a mental model for the system in which it can simulate counterfactual scenarios. For example, the system can check for different environment state whether certain actions such as open right cupboard door can be executed successfully. In our kitchen scenario, actions are considered to be executed successfully if their target state can be reached without collision. For opening and closing actions this is checked by moving the object in the simulation along its single degree of freedom towards the target state while checking for collisions with other objects. For placing actions we test through a planning algorithm whether there is at least one possible path between the object's initial position and its goal (Fig. 4). For the latter, an A* planner is used [20]. Since instrumental actions are required for the execution of their dependent action, we evaluate two cases for each priorposterior candidate pair $C(i, j) \ge t$. We check if the posterior action a_i is possible without action a_i being executed prior to it and in the second case if a_i is possible after performing a_i . If a_i is only possible in the latter case, we conclude that action a_i is an instrumental action for action a_i . - a_i is not possible without a_i executed before a_j is possible with a_i executed before - \therefore a_i is instrumental for a_i This information is stored in a dependency matrix $\mathcal{D}(i, j)$. If a_i is possible in both cases, there exists no dependency and if both cases fail, the dependency of a_i can not be resolved yet. After the first pass over all pairs, multi-level dependencies are still possible and not resolved in \mathcal{D} , e.g. the dependency of the posterior action "Put Plate 2 on Table" on the prior action "Open Right Door". However, the system has recognized that putting plate 1 on the table is dependent on opening the right door and that putting plate 1 on the table is itself a candidate for being instrumental for putting plate 2 on the table. Therefore, our system chains both dependency pairs together and executes both "Open Right Door" and "Put Plate 1 on Table" (two prior actions) and then tests "Put Plate 2 on Table". Since this results in a successful execution, the system reasons that "Put Plate 2 on Table" is a 2nd-level dependency of "Open Right Door" (see Fig. 6). Other 2ndlevel and 3rd-level dependencies are detected analogously. # IV. RESULTS After feeding the 83 recordings of human activities from the Setting a Table scenario to our temporal co-occurrence Algorithm 1 we obtain a matrix C of 39×39 elements with rows representing pre-actions and columns representing post-actions. Each element C of the matrix describes how often the pre-action occurred before the post-action. Fig. 5a) depicts a small section of C based on a subset of 9 actions. As can be seen in the first row of the matrix , the action Open Right Door was frequently performed before the objects inside the right cupboard were placed on ## Algorithm 1 Temporal Co-Occurrence ``` Input: O(t): observation trials of action sequences \mathcal{A}: list of performed actions n: number of actions C \leftarrow initialize n \times n co-occurrence matrix with zeros f \leftarrow initialize action frequency vector of length n with zeros for all observation trials O(t_k) do for all ordered pairs \langle a_i, a_i \rangle of actions in \mathcal{A} do if action a_i occurs in observation trial O(t_k) then f(j) \leftarrow f(j) + 1 end if p_i \leftarrow \text{index of first occurrence of } a_i \text{ in } O(t_k) p_i \leftarrow \text{index of first occurrence of } a_i \text{ in } O(t_k) if p_i \leq p_j then C(i, j) \leftarrow C(i, j) + 1 end if end for end for for all post-actions i in C do C(j) \leftarrow C(j)/f(j) end for return C ``` # Algorithm 2 Instrumental Testing in Mental Simulation ``` Input: C: Temporal Co-Occurrence Matrix E: Simulation Environment \tau: Threshold \mathcal{D} \leftarrow \text{initialize } n \times n \text{ dependency matrix} for elements C(i, j) < \tau do \mathcal{D}(i,j) \leftarrow 0 end for for elements C(i, j) \ge \tau do m \leftarrow IsExecutable(a_i) Execute a_i n \leftarrow IsExecutable(a_i) if not(m) \wedge n then \mathcal{D}(i,j) \leftarrow 1 end if reset E end for return \mathcal{D} ``` the table, e.g. in 80% of the activity recordings in which plate 1 was put on the table, the right cupboard door was opened sometime before. As mentioned before, the reason why the values or not 100% for instrumentally dependent action pairs lies in the imperfection of action recognition. It is important to note that the recorded activities had an exploratory nature and were not perfect demonstrations. For example, multiple subjects opened the window even though it does not contribute to the task of setting the table. Often, they started their exploration of possible activities with manipulating objects close to the position of the virtual avatar and expanded the radius of exploration outwards over time, Fig. 4: The mental simulation model running in the *Setting a Table* scenario. Red lines represent valid paths while blue lines represent blocked paths. After opening the right cupboard door (instrumental action), the objects behind it can be successfully put on the table. The exception are plates which are below other plates. testing the opening and closing of the window only towards the end. This explains why multiple values in the column under the post-action Open Window are 100% temporal cooccurrence, meaning that the respective actions have always been performed before the window was opened. Thus, high values of temporal co-occurrence are indicative of but not sufficient for a causal dependency between two actions. After thresholding, only a fraction of the action pairs remain (see elements highlighted in Fig. 5(a) with blue for a threshold of 0.7) and are considered as candidates for causal relationships to be tested through mental simulations. The results of testing the generated causal hypotheses of instrumental action dependencies in simulation via Algorithm 2 are shown in Fig. 5(b). The algorithm successfully finds all instrumental dependencies, e.g. that opening the right door is instrumental for putting plate 1 on the table. Besides direct, 1st-level dependencies, it is able to discover multi-level dependencies such as between opening the right cupboard door and putting plate 3 on the table. Since plate 3 is on the bottom of the stack of plates, it is required to first open the cupboard door, then put plate 1 and then plate 2 on the table before the action Put Plate 3 is executable. Interestingly, our algorithm can even find 1st-level dependencies between pre- and postactions with co-occurrence values below the chosen threshold of $\tau = 0.7$. Namely the value C(i, j) = 0.63 between the preaction a_i of opening the right cupboard door and the postaction a_i of taking the third small plate. This is because the system detects that Put Small Plate 3 is dependent on both putting plate 1 and plate 2 on the table, which are themselves dependent on opening the right cupboard door. Thus, strong short-term dependencies are used to reason about longterm dependency chains. Furthermore, the mental simulation detects that the pre-action of opening the right cupboard door makes it impossible to also open the right window, while without the pre-action, opening the window is possible. Thus, opening the right door is marked as a blocking action for opening the window in the action dependency matrix (X with orange highlighting). The elements of $\mathcal D$ which represent direct (1st-level) dependencies constitute an adjacency matrix from which an action dependency graph can be generated. The graph generated from the section of \mathcal{D} shown in Fig. 5 b) is illustrated in Fig. 6 on the top. The numbers on the arrows represent the level of instrumental dependency from the first activity in the graph. (a) Temporal co-occurrence matrix C. | Open Right Door | |-------------------| | Put Plate 1 | | Put Plate 2 | | Put Plate 3 | | Put Small Plate 1 | | Put Small Plate 2 | | Put Small Plate 3 | | Put Wine Glass 1 | | Open Window | | 0 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | X | |---|---|---|---|---|---|---|---|---| | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (b) Instrumental dependency matrix \mathcal{D} . Fig. 5: (a) Section of the temporal co-occurrence matrix with prior actions as rows and posterior actions as columns. The matrix elements represent the ratio of human activities in which our action recognition system inferred that the prior action was executed before the posterior action. The highlighted elements have co-occurrence values higher than the threshold of 70% and are thus the causal candidates which are tested for instrumental dependency in mental simulation. (b) Section of the instrumental dependency matrix where 1 represents a 1st-level instrumental dependency between pre- and post-action, 2 and 3 represent 2nd-level and 3rd-level dependencies, 0 represents no dependency and X marks that the prior action renders the posterior action non-executable. For evaluation, we compare the performance of our system using human activity data to find candidates for mental simulation against the brute-force approach where no prior information is used and therefore all possible pairs of actions in the environment need to be tested. The brute-force approach equates to the case where the temporal co-occurrence threshold is set to 0. Fig. 7 depicts that in this case all instrumental dependencies are found with a runtime of 1023s ³. Using a higher threshold strongly decreases the runtime, since fewer candidates need to be tested in simulation, while no drop in the number of discovered dependencies is observed until $\tau = 0.8$, where the percentage of discovered dependencies drops to 77% and to 47% for both $\tau = 0.9$ and $\tau = 1.0$. The latter represents the case in which the system only tests pre-post action pairs which co-occurred in the right temporal sequence in 100% of trials. Because there are misclassifications in the action recognition system, sev- ³The analysis has been done on a system using a Intel Core i78565U CPU, 16 GB RAM and an Nvidia GTX1080 GPU. Fig. 6: An overview of all 30 action dependencies present in the *Setting a Table* scenario. Most actions depend only on one other instrumental action, while some actions require the prior execution of two (plate 1, small plate 1) or three (plate 2, small plate 2) other actions. The method also detects that opening the right door prevents opening the window, here depicted with an orange X arrow. eral ground-truth dependencies have temporal co-occurrence values of less than 1.0, are thus not considered as potential candidates for simulation and therefore not discovered. For our scenario, we consider the threshold of $\tau=0.7$ as optimal due to allowing the system to discover all instrumental action dependencies while reducing the runtime to 168s - a 6-fold reduction compared to the brute-force approach. ### V. DISCUSSION Our results support the hypothesis that following the scientific approach of observation, generation of causal hypotheses and deliberate testing enables a cognitive system to efficiently construct knowledge about acting effectively in its environment. Even with a limited set of 39 possible actions in the *Setting a Table* environment, our method was six times faster in finding all action dependencies than the brute-force approach of testing all possible pairs. Since the brute-force approach scales quadratically with the number of possible actions in the environment, we expect an even higher comparative gain in computational speed for more complex environments. A higher accuracy in action recognition would allow to set a higher threshold τ and therefore sorting out a higher percentage of action pairs before mental simulation, thus further increasing the runtime reduction of our method. Environment-dependent action dependency graphs such as those constructed by our method could be used to check automatically generated action sequences for executability and correct them by adding missing instrumental actions. Fig. 7: The temporal co-occurrence threshold decides which pre-post action pairs are considered as candidates for action dependencies and are tested in mental simulation. The boundary case $\tau=0$ represents the brute force approach in which all action pairs are considered as candidates and is shown to find all dependencies at the cost of a running time of 1023s. The boundary case $\tau=1$ represents the case in which only action pairs where the preaction occurred before the post-action in 100% of trials are considered as candidates. Because of the uncertainty of action recognition, in this case not all action dependencies are discovered, but the run-time decreases to 62s. In our scenario, the optimal run-time/performance ratio can be found at a threshold of $\tau=0.7$. All action dependencies are discovered with a run-time of 168s, corresponding to a 6-fold increase in speed compared to the brute force approach. #### VI. CONCLUSION In this work we have shown that a dataset of multiple human goal-oriented activities can be used for bootstrapping exploratory testing of activity dependencies in an environment. We show that our method can significantly decrease the required computation time without loss in performance. This method of creating cognitive systems that combine observations of human activities with the experimental testing of causal hypotheses resembles the scientific approach in which scientists and arguably also children make sense of the world. This is achieved by observing and subsequent testing which actions are instrumental for the execution of other actions. Future research will focus on two main themes - generalization and embodiment. We plan to apply our method to other environments and investigate how knowledge generated in one environment can be used to bootstrap the learning of action dependencies in another environment. In humans the verification of whether a certain action is executable depends on the individual's embodiment and related perception of affordances. Therefore, these constraints should be taken into consideration when testing hypotheses in mental simulation or in a physical environment. #### **ACKNOWLEDGMENT** The research reported in this paper has been (partially) supported by the German Research Foundation DFG, as part of Collaborative Research Center (Sonderforschungsbereich) 1320 "EASE - Everyday Activity Science and Engineering", University of Bremen (http://www.ease-crc.org/). The research was conducted in subproject R1: NEEM-based embodied knowledge system. #### REFERENCES - C. Cook, N. D. Goodman, and L. E. Schulz, "Where science starts: Spontaneous experiments in preschoolers' exploratory play," *Cognition*, vol. 120, no. 3, pp. 341–349, 2011. - [2] G. Cheng, K. Ramirez-Amaro, M. Beetz, and Y. Kuniyoshi, "Purposive learning: Robot reasoning about the meanings of human activities," *Science Robotics*, vol. 4, no. 26, p. eaav1530, 2019. - [3] J. Haugeland, Artificial intelligence: The very idea. MIT press, 1989. - [4] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, "Recent advances in robot learning from demonstration," *Annual Review of Control, Robotics, and Autonomous Systems*, vol. 3, 2020. - [5] S. Schaal, "Learning by demonstration," in *Encyclopedia of Machine Learning and Data Mining*, 1996. - [6] Y. Demiris and B. Khadhouri, "Hierarchical attentive multiple models for execution and recognition of actions," *Robotics Auton. Syst.*, vol. 54, pp. 361–369, 2006. - [7] A. Haidu and M. Beetz, "Action recognition and interpretation from virtual demonstrations," 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2833–2838, 2016. - [8] E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and F. Wörgötter, "Learning the semantics of object–action relations by observation," The International Journal of Robotics Research, vol. 30, pp. 1229 – 1249, 2011. - [9] D. Vernon, C. von Hofsten, and L. Fadiga, "Desiderata for developmental cognitive architectures," *Biologically Inspired Cognitive Architectures*, vol. 18, pp. 116–127, 2016. - [10] D. C. Bentivegna, C. G. Atkeson, A. Ude, and G. Cheng, "Learning to act from observation and practice," *International Journal of Humanoid Robotics*, vol. 1, no. 04, pp. 585–611, 2004. - [11] T. Inamura, T. Shibata, H. Sena, T. Hashimoto, N. Kawai, T. Miyashita, ..., and Y. Yoshikawa, "Simulator platform that enables social interaction simulation — sigverse: Sociointelligenesis simulator," in 2010 IEEE/SICE International Symposium on System Integration. - [12] T. Bates, K. Ramirez-Amaro, T. Inamura, and G. Cheng, "On-line simultaneous learning and recognition of everyday activities from virtual reality performances," in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 3510–3515. - [13] A. Haidu and M. Beetz, "Automated models of human everyday activity based on game and virtual reality technology," 2019 International Conference on Robotics and Automation (ICRA), pp. 2606–2612, 2019. - [14] K. Pastra and Y. Aloimonos, "The minimalist grammar of action," Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 367, no. 1585, pp. 103–117, 2012. - [15] R. King, K. Whelan, F. Jones, P. Reiser, C. Bryant, S. Muggleton, D. Kell, and S. Oliver, "Functional genomic hypothesis generation and experimentation by a robot scientist," *Nature*, vol. 427, no. 6971, pp. 247–252, 2004. - [16] J. Pearl, M. Glymour, and N. Jewell, Causal inference in statistics: An overview. Wiley, 2009. - [17] P. Tadepalli, C. Barrie, and S. J. Russell, "Learning causal trees with latent variables via controlled experimentation," 2019. - [18] M. Tenorth, J. Bandouch, and M. Beetz, "The tum kitchen data set of everyday manipulation activities for motion tracking and action recognition," 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 1089–1096, 2009. - [19] K. Ramirez-Amaro, C. Uhde, T. Bates, and G. Cheng, "A benchmarking dataset for automatic symbolic grounding from virtual demonstrations," in 2nd International Workshop on Computational Models of Affordance in Robotics at the IEEE International Conference on Robotics and Automation (ICRA), 2019. - [20] P. E. Hart, N. J. Nilsson, and B. Raphael, "A formal basis for the heuristic determination of minimum cost paths," *IEEE transactions* on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.