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Abstract

Magnetic resonance imaging (MRI) has been one of the most valuable diagnostic
imaging techniques due to its capability of non-invasively producing highly
detailed anatomical and physiological information of the human body. Perfusion
MRI, as being one of the most crucial and promising dynamic magnetic
resonance imaging (dMRI) modality, enables the quantification of perfusion-
related parameters via exogenous or endogenous contrast agents (CAs). These
techniques can be effectively used in assessing stroke, brain tumors, and
treatment of patients with neurodegenerative diseases. Nevertheless, due to
the vital necessity of tracking the rapid kinetics of a CA uptake following
its administration, conventional perfusion MRI techniques suffer from limited
spatial and temporal resolution, and often produce images with considerably
low signal to noise ratio (SNR). To this end, perfusion MRI can significantly
benefit from acceleration of the acquisition process.

In this thesis, we essentially focus on developing novel image and parameter
reconstruction methods to accelerate perfusion MRI. To put it more concretely,
we aim at reconstructing high quality images and perfusion parameter maps
given the undersampled and/or corrupted perfusion magnetic resonance (MR)
image-time series. To be able to achieve this, we substantially leverage recent
methodological advances in image reconstruction and enhancement, which
largely span compressed sensing, convex optimization, and deep learning
fields. Specifically, we have demonstrated superior outcomes with scientific
contributions in four areas of perfusion MRI: (1) compressed sensing based
reconstruction of dynamic MRI, (2) robust reconstruction of perfusion MR
image sequences using local and nonlocal spatio-temporal regularizers, (3)
deep learning based direct reconstruction of pharmacokinetic parameters from
undersampled dynamic contrast enhanced (DCE) MRI sequences, (4) denoising
perfusion-weighted images of arterial spin labeled MRI based on deep fully
convolutional neural networks (FCNs) together with residual learning strategy.






Zusammenfassung

Die Magnetresonanztomographie (MRT) ist eine der wertvollsten diagnosti-
schen Bildgebungsverfahren aufgrund seiner Fahigkeit, nicht-invasiv sehr de-
taillierte anatomische und physiologische Informationen iiber den menschlichen
Korper zu erhalten. Perfusion MRT, als eine der wichtigsten und vielver-
sprechendsten dynamischen Magnetresonanz Resonanz-Imaging Modalitét,
ermoglicht die Quantifizierung von perfusionsbezogenen Parametern mittels
exogener oder endogener Kontrastmittel. Diese Techniken kénnen effektiv bei
der Beurteilung von Schlaganfall, Hirntumoren und Behandlung von Patienten
mit neurodegenerativen Erkrankungen eingesetzt werden. Dennoch, aufgrund
der Notwendigkeit, die schnelle Kinetik der Kontrastmittelaufnahme nach der
Verabreichung zu verfolgen, leiden konventionelle Perfusions-MRT-Techniken
unter einer begrenzten raumlichen und zeitlichen Auflésung und erzeugen oft
Bilder mit einem sehr niedrigem Signal-Rausch-Verhéltnis. Aus diesem Grund
kann die Perfusions-MRT erheblich von einer Beschleunigung des Aufnahme-
prozesses profitieren.

In dieser Arbeit konzentrieren wir uns im Wesentlichen auf die Entwicklung
neuartiger Bild- und Parameter Rekonstruktionsmethoden zur Beschleunigung
der Perfusions-MRT. Um es konkreter zu formulieren, wir zielen darauf ab,
qualitativ hochwertige Bilder und Perfusionsparameter-Karten zu rekonstruie-
ren der unterabgetasteten und/oder korrumpierten Perfusions-Magnetresonanz
(MR) Bildzeitreihen. Um dies erreichen zu konnen, nutzen wir im Wesentli-
chen die jiingsten methodische Fortschritte bei der Bildrekonstruktion und
-verbesserung, die sich weitgehend auf die Bereiche Compressed Sensing, Con-
vex Optimization und Deep Learning erstrecken. Speziell haben wir {iberlegene
Ergebnisse mit wissenschaftlichen Beitrdge in vier Bereichen der Perfusions-
MRT: (1) Compressed Sensing-basierte Rekonstruktion von dynamischen MRT,
(2) robuste Rekonstruktion von Perfusions-MR Bildsequenzen unter Verwen-
dung lokaler und nicht-lokaler rdaumlich-zeitlicher Regularisierer, (3) Deep
Learning basierte direkte Rekonstruktion von pharmakokinetischen Parame-
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tern aus unterabgetasteten dynamischen kontrastverstirkten MRT-Sequenzen,
(4) Entrauschen Perfusions-gewichteter Bilder von arterieller Spin-Label-MRT
basierend auf tiefen fully Convolutional Neural Networks (FCNs) zusammen
mit einer Residual-Learning-Strategie.
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Introduction

Magnetic resonance imaging (MRI) is a non-invasive and non-ionising imaging
technique and generates cross-sectional images of the body. These images are
subdivided in smaller units called vozels, which are the 3-dimensional version of
a pixel. MRI scans apply a strong magnetic field to the subject, then measure
the signal emitted by hydrogen nuclei in response to changes in this magnetic
field resulting from nuclear magnetic resonance (NMR) [1, 2]. These emitted
signals can — subject to certain assumptions — be used to reconstruct a per-voxel
map of tissue properties. Images obtained with magnetic resonance (MR) are
a reflection of the response of different tissues to a controlled stimulus [3]. This
is conceptually different from other imaging techniques that measure intrinsic
material properties, such as computed tomography (CT) scans which provide
a measure of attenuation coefficient [4]. MRI is today an indispensable tool for
medical diagnosis and research. Its success can largely be originated by the
detailed soft tissue contrast that it can generate and by the great flexibility
enabled due to its acquisition mechanism. A brief illustration of the diversity
of MR images is shown in Fig. 1.1, ranging from structural to functional and
dynamic imaging.

Dynamic magnetic resonance imaging (AMRI) is a very effective type of MR
imaging technique that enables the visualization and analysis of anatomical
and functional changes of internal body structures through time, resulting in a
spatio-temporal signal [5]. In dMRI, the main objective is to characterise the
anatomies in motion through quantitative analysis. Although MRI is a non-
invasive, non-ionizing technology and provides an unmatched quality in soft
tissue contrast, physical and physiological limitations on scanning speed makes
this an inherently slow process [6, 7]. Beside that, specifically in dMRI, there is
a trade-off between the spatial and temporal resolution. The main reason is that
the physics of MRI scanners impose a sequential sampling and the physiology
and motion of body organs limit the speed at which it can be performed,
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(a) Structural brain ) Functional brain ) Cardiac cine (d) Perfusion brain

Figure 1.1: Examples of different MR image modalities. Structural MR for
brain (a) is a static scan, functional brain MR (b), cardiac cine (c) and perfusion
brain (d) are dynamic modalities. (Image adapted from [12])

hence satisfying the Nyquist criterion often entails prohibitive scan durations
or unfavourable balancing of spatial and temporal resolution [8]. In dMRI a
typical clinical examination can last up to 45 minutes of image acquisition.
With increasing acquisition times, these techniques become more susceptible
to motion-related artifacts, including voluntary (e.g. head movement) and
involuntary (e.g. cardiac pulsations, breathing, brain pulsations) motion [9].
Furthermore, quantitative MRI techniques are generally constrained to sacrifice
signal to noise ratio (SNR) or spatial resolution in favor of faster measurements
to achieve feasible scan duration for clinical usability [10, 11].

One of the most popular dMRI methods is known as perfusion-weighted
imaging (PWI), also called perfusion MRI. Medical diagnosis and research
extensively exploit PWI techniques to estimate the blood flow and blood volume
through examination of the spatio-temporal changes of the signal intensities
following the injection of a blood bolus via exogenous paramagnetic tracers [13].
In neuroimaging, these techniques have become widespread clinical tools in
the diagnosis of stroke [14, 15] — for the assessment of the tissue at risk —,
and the treatment of patients with cerebrovascular diseases [16, 17]. One of
the major obstacles in the clinical use of perfusion imaging is the immense
need to track the rapid kinetics of contrast agent (tracer) uptake for precise
perfusion quantification [18, 19]. Moreover, the short scanning time available
for each frame often results in limited spatial and temporal resolution, and
poor SNR images. In order to improve the spatial or temporal resolution, one
widely used approach is to accelerate the acquisition of each frame through
the undersampling of k-space by acquiring only a subset of k-space lines [20].
Acquiring fewer k-space samples than those dictated by the Nyquist criterion
accelerates the process considerably, but exhibits aliasing artifacts in image
space [8]. In the context of perfusion MRI, accurate reconstruction of the
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complete temporal perfusion signal with its peak and the high dynamic range
becomes an even more challenging task. Therefore, dealiasing of MR images
and denoising of temporal perfusion signals from undersampled acquisitions
is an important milestone for the robust acceleration of PWI. This topic has
long been an active research objective of the field [21, 22, 23, 24], and is the
main goal of this thesis.

The rest of this chapter is structured as follows: In Section 1.1, we provide
a brief introduction to MRI principles and give a review of existing approaches
for acceleration of MRI in Section 1.2. Section 1.3 presents a brief description of
available acquisition techniques for perfusion MRI. Subsequently, we summarize
our main contributions in Section 1.4 and outline the remaining sections of
the thesis in Section 1.5.

1.1 Magnetic resonance imaging principles

MRI is a non-invasive and non-ionising medical imaging modality largely
popularised by an unmatched soft tissue contrast. Images obtained with MR
are a reflection of the response of different tissues to a controlled stimulus.
Essentially, the generation of MR images can be summarized with the following
three successive steps: (i) The magnetic pulses used to create a transverse
magnetisation should be designed, (ii) during the acquisition stage the signal
emitted is sampled by a receiver coil in the scanner, (iii) the captured signal is
modeled and reconstructed to generate an image.

In the following sections we provide a summary of the NMR phenomenon
that is at the core of MRI, and explain how it can be utilized to create images
of the body. The presentation of MRI given in this part mainly follows the
classical description available in [25, 26].

1.1.1 Nuclear magnetic resonance

The fundamental physical phenomenon enabling MRI is known as NMR, which
refers to the exchange of energy between atoms and a magnetic field rotating at
a resonant frequency [1]. To introduce this concept more concretely, we should
highlight a sequence of three atomic phases composing the NMR experiment,
which are spin polarisation, excitation and relazation, and lastly Bloch equation,
formally summarising these physical events.
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Spin polarisation

MRI operates by measuring the net magnetisation of hydrogen atoms 'H
abundant in a biological specimen. 'H — an atom with an odd number of
protons — possesses angular momentum called spin. Under the influence of a
homogeneous magnetic field By, two phenomena occur to the spins of hydrogen
atoms: (i) The spins align with By in parallel or anti-parallel direction, which
results in a net magnetisation M of the body in the direction of By, (ii) the
polarised spins exhibit resonance at Larmor frequency w,

w=~B (1.1)

where «y is the gyromagnetic ratio and B is the surrounding magnetic field
strength. ~ is nucleus dependent and ! H atomic nuclei has v = 2.68 x 108
rad/s/T. In MRI, we represent the main static magnetic field as By = (0,0, B),
which by convention is pointing towards z-direction (longitudinal axis). At
equilibrium state, the net magnetisation is denoted My = (0,0, Mp). In a
typical high-field MRI device, the main homogeneous magnetic field Bg is
generated by a cylindrical superconducting magnet.

Excitation and relaxation

The Larmor frequency (w) is the resonance frequency at which energy from an
external magnetic induction field can be absorbed by the nuclear spin system.
In the NMR domain, this field is produced by a radiofrequency (RF) pulse By
which is perpendicular to the static By. If enough energy is deposited in the
system, the spins will come into phase and some low energy spins will jump to
a high energy state, macroscopically tilting the net magnetisation onto the z-y
plane [25]. As a result, longitudinal magnetisation M, decreases and the net
magnetisation M includes a net transverse component M, spinning at the
Larmor frequency as illustrated in Fig. 1.2(c), this step is called ezcitation.

After excitation, net magnetisation returns to the equilibrium state through
a process called relazation. In relaxation, RF energy absorbed during excitation
by some spins to adopt a high energy state is liberated as they return back to a
low energy state, leading to a gradual decay of transverse magnetisation My,
and the recovery of the original longitudinal magnetisation M, as depicted in
Fig. 1.2(d). The liberated energy constitutes the emitted signal which can be
sampled and used for generating images [27].

Two effects govern the transition from the excitation state to equilibrium
over a period of time 7. First, longitudinal relaxation is caused by energy
exchange between the spins and the surrounding lattice, falling back to thermal

4



1.1. Magnetic resonance imaging principles
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a) Thermal equilibrium Spln polarlsatlon
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(c) Excitation (d) Relaxation
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Figure 1.2: Different atomic nuclei phases of NMR. Low-energy state nuclei
are represented in light blue and high-energy state nuclei are represented in
dark blue. After spin polarisation with the By field, the system of spins can
be excited resulting in the transverse magnetisation M,,. Following to the
excitation, the bulk magnetisation relaxes and returns a state where it again
aligns with the By field. (Image courtersy of [12])

equilibrium. It is described by an exponential curve characterised by the
spin-lattice relaxation time 77,

M.(t+7) = M2 — (MY — M.(t)) e 71, (1.2)

where T is a tissue specific constant which is usually longer at higher magnetic
field strengths. Similarly, transverse relaxation is obtained from spins dephasing
in the absence of the RF signal formulated by,

My (t +7) = Mgy (t)e 7. (1.3)

This decay is also governed by an exponential curve with the spin-spin relaxation
time T3, which is also tissue dependent. One should note that Tiand Tb are
tissue specific, given that this makes different tissues react differently to the

5
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same stimulus, becoming a mechanism not only to resolve them but also to
generate images with various contrast patterns [25].

Bloch equation

The temporal behaviour of the net magnetisation of a nuclear spin system was
formalised in 1946 by Felix Bloch [28], known as the Bloch equation,

dM(t) M,(t) = M) My, (t)

= (M) x 9 Ba(0) - 2= o
This equation synthesises the excitation reaction of a net magnetisation M
initially in equilibrium to an external electromagnetic radiation B (¢) and the
subsequent relaxation phase governed by tissue specific T and 75 constants.

(1.4)

1.1.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a technique which exploits the NMR
signal produced by the transverse magnetisation of atomic nuclei to generate
images. The emitted signal is a rotating entity dependent on space and time,
and hence can be described by a complex-valued variable,

m(r,t) = m(r)e™), (1.5)

where r refers to (x,y, z) space and m(r) is the signal of interest [25]. Essential
components of MR imaging are gradient encoding which enables the spatial
characterisation of the received signal, and the notion of k-space which relates
the sampled signal to the magnetisation image.

Gradient encoding

The RF pulse induces all nuclei in the body precessing at the resonant frequency
to emit a signal, regardless of their spatial location within the body. A typical
MRI scanner contains encoding gradient coils which are capable of generating
constant gradients that are superposed to the By field creating spatially linear
varying precessing frequencies [3]. Given the Eq. 1.1, a gradient G(t) will cause
a frequency deviation from the Larmor frequency equivalent to,

Af(r,t) = LG(t) . (1.6)

27

where G(t) = [G,(t), Gy(t), G»(t)] and linearly dependent on the spatial po-
sition. There are generally three mechanisms for spatial localisation using
encoding gradients: selective excitation, phase encoding and frequency encod-
ing.
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Selective excitation. The first magnetic gradient G, is used along the z
direction to select the slice to image by limiting the RF excitation to the slice
of interest. This selection is performed by imposing a dependance between
the static magnetic field and the spatial localization of the MR signal in the 2
direction,

B(z) = By + G.z. (1.7)

Applying a RF pulse By with frequency fo and bandwidth 2A f will only excite
the spins in the selected slice [z9 — Az, zg + Az]. The gradient strength and
timing thus controls the localization and size of the slice, e.g. a strong gradient
or narrow bandwidth will result in a thinner slice.

Phase encoding. A second magnetic field gradient G, is then applied along
the y direction after the RF pulse excitation, and hence the precession frequency
of the spins in a selected slice is affected for a short term. As a result, spins at
various spatial position will precess at different frequencies. Once the magnetic
gradient G, is switched off, the spins in the selected slice precess at the original
frequency but the phase A¢ changes linearly along the y axis. This step is
referred to as the phase encoding and can be mathematically formulated by
the following equation,

Ag(y) = e~ 1Y, (1.8)

where 7 is the gyromagnetic ratio, and 7, denotes the duration of the gradient
Gy along the y dimension.

Frequency encoding. Lastly, a third magnetic field gradient G, is applied
along the x direction. This gradient is applied directly after the slice selection
gradient and RF pulse excitation, and enables the spins to precess at different
frequencies, linearly depending on their position along the = axis. The use
of this gradient to resolve the last encoding dimension is referred to as the
frequency encoding step. This step can be formulated as,

Ad(x) = e~1Gamar, (L9)

where the spins phase change at time 7, along x direction.

Signal equation

The phase component of the spatially encoded signal m(r,t) can be included
in the description of the emitted signal, and after neglecting the carrier Larmor
frequency, this turns into

m(r,t) = m(r)emd’(r’t) = m(r)em“k(t)'r, (1.10)
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where k(t) = %fg G dr, and we use A¢(r,t) = 2nk(t) - r to generalize
encoding in the y and x dimensions, as expressed in Eq. 1.8 and Eq. 1.9.

Given the above formulation per spatial location, the signal received is the
aggregate response from nuclei at all spatial locations which have been subject
to excitation [26]. Assuming that a single body coil is used in MRI acquisition,
the received signal simplifies to

m(t) = /+Oo m(r, t)dr = /+oo m(r)e i2mk®) T, (1.11)

—0o0 —00

We should remark that above expression (Eq. 1.11) does not take into account
a few factors such as the decay of transverse magnetisation, By inhomogeneity
and changes of the object in time.

K-space

The direct mapping observed between precessing frequencies and space locations
through encoding gradients is identical to a Fourier relationship. Therefore,
samples can be interpreted as acquired in the spatial-frequency domain, also
called k-space, where each sample is a sum of magnetisation from atoms in the
entire volume weighted by the Fourier kernel e =27k [25]. The coordinates
of a sample in k-space are given as k(t) = (ky(t), ky(t), k-(t)) and directly
controlled through the gradients G(t). The use of G;(t) and G(t) gradients
enables traversing the x-y plane of k-space. Provided that gradient pulse
durations relate to k-space locations, the received signal can be rewritten as

m(k) = / +°o m(r)e 2Tk T (1.12)

—0o0

The main goal of the conventional MRI process is to produce the image m(r)
by acquiring a sufficient set of signals {m(k)}.crs in k-space and perform
inverse Fourier transform.

An appropriate coordination of gradients leads to a scan protocol traversing
locations of k-space and acquiring various samples. This protocol, commonly
known as a trajectory, plays an important role on the appearance of the recon-
structed image [26]. One of the widely used trajectory type is the Cartesian
trajectory, which traverses a rectangular k-space acquiring equidistant samples
as shown in Fig. 1.3. Cartesian sampling poses a very simple reconstruction
stage, which simply consists of a discrete Fourier transform (DFT), but has
the limitation of requiring many excitation pulses to traverse a full k-space.
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frequency

phase

Fourier
Transform

K-space domain Ak, Image domain -

Figure 1.3: Data in k-space collected on a Cartesian grid (left) for cardiac MR
imaging. The Fourier transform is used to transform the k-space samples to
an image (right). The spacing between adjacent samples in k-space (Ak, and
Aky) is inversely proportional to the resolution in image space (Az and Ay).
(Image adapted from [29])

1.2 Acceleration of MRI acquisitions

Magnetic resonance imaging (MRI) is often very time-consuming process
due to the fact that k-space samples need to be collected sequentially. The
acceleration of MRI acquisition is desirable for a number of reasons. One of
the main potential benefits of faster scans is an increased comfort for patients.
Ideally the patient needs to remain static within the scan duration, but the
patients who are severely ill or especially at a young age may not tolerate
long scanning procedures. Faster scans can also have a great impact on the
quality of images specifically for dynamic MRI because they can reduce the
image distortion introduced by motion artefacts [12]. Moreover, accelerating
MR acquisition may bring considerable benefits on decreasing the high costs
of MR scanning sessions and enabling to scan higher number of patients while
eliminating long waiting lists.

Until recently many solutions have been proposed for accelerating MRI
acquisitions in the field. One of the earliest solutions was to develop pulse
sequence designs that can traverse k-space with fewer RF excitations through
non-cartesian sampling trajectories including radial [30], spiral [31] and variable
density [32]. These trajectories naturally favor denser sampling for low frequen-
cies and sparser at higher frequencies, and shown to be robust against motion.
Moreover, as it was proposed by fast spin echo strategies [33], appropriate
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(a) Full (b) Low-frequency (c) Regular (d) Random

Figure 1.4: Various undersampling strategies in k-space (top) and the aliasing
forms they result in image domain (bottom). (Image courtesy of [12])

design of pulse sequences may allow to collect multiple separately encoded
readouts per RFE pulse.

A different approach on acceleration of MRI was considered by the methods
that assume a particular trajectory but undersample k-space by skipping the
acquisition of several samples at selected locations [34, 20]. Given a binary
mask M € RY*¥ | with entries M (x,7) = 1 if k-space sample at (x,y) location
has been acquired, the undersampled k-space data is formulated as

m = MFm, (1.13)

where F' denotes the Fourier operator. The undersampling of k-space intended
to be sampled at the Nyquist rate leads to aliasing in image space, which
can be observed in different forms as shown in Fig. 1.4. Sampling only low
frequencies results in worse image resolution, regular undersampling creates
coherent aliasing and random sampling leads to random aliasing.

In order to tackle the problem arised by k-space undersampling, researchers
initially proposed to create sampling redundancy through additional hardware.
In particular, the use of multiple receiver coils linearly increases the number
of samples for a particular image which theoretically allows maintaining a
sufficient amount of information even after k-space undersampling. This
method is known as parallel imaging (PI) [35]. In PI, data is acquired using
N, receiver coils, where each receiver coil is more sensitive to signals generated
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in the proximity of that coil. Mathematically, the coil sensitivity maps can
be expressed by spatially varying weights S; € CV*¥ for the ith coil, and the
image produced by the coil can be expressed as S;m. Then, for each receiver
coil the measurement k-space data satisfies the following formulation,

where E; is the encoding operator comprising the ith coil sensitivity weighting
and the Fourier sampling, m is the image to recover, m is the acquired k-space
data and e is the measurement error. The image m is typically reconstructed
by solving the following large linear system

Ne
e =Y Epjmj, k€K (1.15)
j=1

Several PI techniques have been proposed for the reconstruction of m given
m. These methods can be mainly subdivided into those that applied on the
aliased image, i.e. SENSE-type reconstruction [36] and those that reconstruct
the missing k-space data, i.e. GRAPPA-type reconstruction [37]. These two
PI methods are routinely employed on clinical MRI scanners today.

An effective way for accelerating MRI acquisitions which have appeared
more recently is the use of inherent data redundancy. The intuition behind this
approach is that the more information about the object to be imaged is known or
assumed a priori, the fewer samples are needed for its reconstruction. From this
perspective, compressed sensing (CS) [20, 38] based methods have received a
lot of attention by the research community in the last decade. The fundamental
observation used for CS reconstructions is that images or sequences of images
can be sparsely represented in the image or a transform domain. This effectively
enables that missing k-space data can be recovered with the a priori assumption
that the reconstructed image is compressible. Early work on CS-MRI primarily
focused on applying predefined universal sparsifying transforms, such as the
DFT, discrete cosine transform (DCT), total variation (TV), or discrete wavelet
transform (DWT), and developing efficient numerical algorithms to solve
nonlinear optimization problems. Later, data-driven sparsifying transforms (i.e.
dictionary learning) have gained much attention in CS-MRI due to their ability
to express local features of reconstructed images more accurately compared to
pre-defined universal transforms [39, 40].

Dynamic MR sequences usually provide redundant information in both
spatial and temporal domains, which allows the reduction of acquisition time
by applying sparsifying transforms in both domains. One of the first methods
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proposed under the CS-MRI framework for dynamic imaging seek for sparsity
in the x-f support, which exploits the Fourier transform of the image data
along the temporal dimension. An example of successful methods enforcing x-f
support sparsity is k-t FOCUSS [41]. The earlier method k-t SPARSE [42, 34]
additionally sparsifies data across space using a wavelet transform, which is
known to provide approximately sparse representations for the vast majority of
natural signals [43, 44]. More recently, researchers have proposed sophisticated
CS-based reconstruction methods that exploit both spatial and temporal
redundancies of the entire dataset, such as spatio-temporal total variation [45,
46], dictionary learning [40, 47, 48], patch-based regularization [49], low-rank
approximation and sparsity [45, 50, 51], structured sparsity [52, 53], and
manifold learning [54, 55].

1.3 Perfusion MRI

In MRI domain there are two major approaches to measure the tissue perfusion.
The first type of methods is mainly based on application of an exogenous,
intravascular, nondiffusible contrast agent — usually a gadolinium-based CA —
that emphasizes either the susceptibility effects of the contrast agent on the
signal echo, known as dynamic susceptibility contrast (DSC) MR perfusion or
the relaxivity effects of the contrast agent on the signal echo, namely dynamic
contrast enhanced (DCE) MR perfusion. The second type of perfusion methods
involve application of an endogenous contrast agent using magnetically labeled
arterial blood water as a diffusible flow tracer, and this technique is known
as arterial spin labelling (ASL) MR perfusion. Below we provide a brief
description of each of these perfusion techniques, focusing on the details related
to acquisition protocols and quantification models used in each of this technique.

1.3.1 Dynamic susceptibility contrast

Dynamic susceptibility contrast (DSC) MRI is one of the well established
imaging techniques that can be used to measure blood flow and other re-
lated hemodynamic parameters. It involves the intravenous injection of a
paramagnetic MR contrast agent (CA) and relies on measuring and model-
ing the induced changes in 75 and T relaxation, introduced by the induced
susceptibility effect [13]. These changes are amplified when the CA remains
compartmentalized. Due to this amplified effect related to compartmental-
ization, DSC-MRI is an acquisition technique that has primarily been used
to assess cerebral perfusion: the blood vessels in the brain are surrounded
by the so-called blood-brain barrier (BBB), which, when intact, makes the
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gadolinium-based CAs commonly used for DSC-MRI behave effectively as an
intravascular contrast bolus [56].

Given that DSC-MRI exploits the transient changes in 75 and T3, the
most commonly used MRI sequences in clinical investigations are based on a
gradient-echo (GE) or a spin-echo (SE) echo-planar imaging (EPI) acquisition.
While the SE-based sequence has low sensitivity to large vessels and, thus,
is more suited for measuring microvascular perfusion, i.e. , at the capillary
level, the much larger susceptibility effect in GE-based sequences makes them
the sequence of choice in practice. Nevertheless, this comes at the expense
of a significant macrovascular artifacts, where cerebral blood flow (CBF) is
greatly overestimated in voxels containing partial volume effect (PVE) with
large arteries and veins. Some of the major advantages of DSC-MRI lie in
its simple acquisition method, its short acquisition time (approximately 1-2
mins), relative high SNR compared with other perfusion imaging methods
(e.g. CT perfusion, arterial spin labelling (ASL), positron emission tomography
(PET)), and high variety of hemodynamic information or parameters that can
be obtained from the same dataset [57].

In DSC, a tracer kinetic model is commonly applied for perfusion quantifi-
cation. The major perfusion-related parameters CBF, cerebral blood volume
(CBV), and mean transit time (MTT) are estimated from tracer kinetic models
based on the use of the central volume theorem [58]. Using either SE or GE
pulse sequences, the MRI signal intensity following contrast agent administra-
tion can be determined from the changes in the transverse relaxation rates
as,

Sy(t) = Sy(0) - e~ ToAREH) (1.16)

where Tg is the echo time of the acquisition, Si(t) is the post-contrast in-
jection signal intensity, S¢(0) is the pre-contrast signal intensity. The signal
time-intensity curves of each voxel can be directly used to estimate the CA
concentration C¢(t) from the change in the transverse relaxation rate (AR%)

as follows . 5.0
Ci(t) = — n (2522 ) 1.17
0= (500 (1.17)
The hemodynamic parameters CBV, CBF and MTT can be quantified as

too Cy(T)dr
CBV = m, (1.18)

Cy(t) = CBF - Co(t) @ R(t) — CBF - / CCur) Rt -, (119)
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0 L Cy(r)dr
MTT(t) = f_f(’ioo G (T()CET

(1.20)

where C,(t) is the arterial concentration of the CA also called arterial input
function (AIF), R(t) is the tissue residue function which describes the fraction
of the CA remaining in the tissue at time ¢ following an instantaneous bolus
administration. By definition, at time ¢ = 0, all the contrast agent (CA) stays
in the tissue, i.e. R(0) = 1. For a nondiffusible tracer, all the tracer leaves the
tissue after a sufficiently long time, R(oc0) = 0. According to Eq. (1.18-1.20),
CBYV is obtained as the ratio of the areas under the tissue concentration—time
curve and the arterial concentration-time curve. CBF can be estimated via
a deconvolution of the tissue concentration—time curve with the AIF. The
deconvolution process can be complex and requires an accurate measurement
of the AIF. Finally, MTT can be derived from the first moment of the tissue
concentration—time curve.

In practice, a single estimate of the AIF for the whole brain (the so-called
global AIF) is obtained from measuring the changes in R} in and around a
medium-size artery, such as the M1 or M2 segment of the middle cerebral artery
(MCA) at 1.5T and the M2 or M3 segments at 3T [19]. The measurement
of the AIF can be essentially subject to a number of major error sources for
DSC quantification, including PVE, bolus delay and dispersion, nonlinearities,
truncation effect and voxel-shift signal artifacts [18, 19].

1.3.2 Dynamic contrast enhanced

DCE MRI perfusion technique typically consists of intravenous injection of
a CA followed by the repeated acquisition of T1-weighted images, providing
measurements of signal enhancement as a function of time [16]. DCE-MRI
combined with tracer kinetic modelling is widely used for assessing permeability
and perfusion in brain tumours [59, 60] and several neurological disorders that
lead to disruption and breakdown of blood-brain barrier (BBB) [61, 62]. In this
technique, a set of baseline images are acquired without contrast enhancement,
followed by a series of images acquired over time — usually over a few minutes —
during and after the arrival of the CA in the tissue of interest. The acquired
signal is then used to generate so-called time intensity curve (TIC) for the tissue
which contains an induced variation correlating to the local CA concentration
in the tissue upon to the arrival of paramagnetic particle. Through the
quantitative analysis on these curves, several physiological properties that are
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related to the microvascular blood flow, such as vessel permeability, tissue
volume fractions and vessel surface area product, can be derived [63].

Following measurements are typically required in DCE-MRI to be able to
determine relevant physiological parameters [64]:

e Measurement of a map of pre-contrast (before gadolinium injection) T1
values (77(0) map) for the calculation of CA concentrations,

e Acquisition of Ti-weighted image prior and following CA introduction
at a reasonably high temporal resolution to be able characterize the
underlying kinetics of the CA entry and exit out of the tissue,

e Determination of the AIF which is usually based on the estimation of a
smooth CA concentration-time curve (averaged over voxels in a region
of interest (ROI)) in the blood plasma of a feeding artery.

The quantitative analysis are mainly based on fitting an appropriate tracer
kinetic modeling which provides a link between the tissue CA concentrations
and physiological or so-called pharmacokinetic parameters. The fitting is
commonly done voxelwise manner and performed using nonlinear least squares
(NLLS) methods. Pharmacokinetic — or tracer kinetic — modeling was first
introduced for the analysis of DCE-MRI in the early 1990s by Brix et al. [65]
and Tofts et al. [66], followed by a consensus paper on the notations [67]. Since
then, several more complex compartment models have been proposed. We
refer the interested readers to [68, 69] for a more detailed review of different
pharmacokinetic models available in literature.

1.3.3 Arterial spin labeling

Arterial spin labelling (ASL) is a powerful MRI approach to measure the CBF.
ASL is completely non-invasive and uses magnetically labeled blood water as
an endogenous tracer [70, 71]. To this end, it is highly suitable for repetitive
follow-ups and allows for absolute quantification of CBF. Promising research
results have shown how ASL can be used in the diagnosis and analysis of
stroke, tumours, dementia and paediatric medicine, in addition to many other
pathologies and areas [72, 73]. Perfusion imaging techniques have been an
active area of research for decades, but there are many practical barriers to
the widespread use of perfusion imaging. However, due to the fact that ASL
does not require the injection of an exogenous CA, it has the potential to cope
with these limitations and possibly even to bring perfusion imaging to common
clinical practice, as well as expanding its scope in research.
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Despite all these benefits, ASL imaging suffers from a few limitations:
ASL has an inherently low SNR with typically small amount of blood flowing
into the brain over the timescale on which ASL images are acquired [74, 75].
Therefore, typically 20-50 image-pairs (so-called repetitions) with low in-plane
resolutions (3-4 mm) and through plane resolutions (4-8 mm) need to be
acquired to achieve sufficient SNR [76]. Furthermore, ASL is highly prone
to corruption by subject motion, scanner coil instability, boundary artifacts,
and PVE which hinder obtaining accurate signals that reflect the underlying
perfusion, hence leading to significant quantification errors especially in the
gray matter (GM) and white matter (WM) [77, 78].

The basic principles of image acquisition in ASL can be summarised as
follows: A magnetically labelled bolus is created upstream to the tissue of
interest by inverting the magnetization inside the bolus. After a delay time
during which the blood can travel to the tissue and the labeled molecules
transit from the capillary bed to the pool of tissue water, a so-called label image
is acquired. Since only 3-5% of the tissue water stems from blood water and
relaxation further decreases the concentration of labelled blood, the perfusion
signal makes up only 1-2% of the overall signal. Therefore, an additional
control image without any prior labeling is acquired. Ideally, the signal of
the static tissue is identical in the control and label images and the difference
between them arises from the perfusion process. Subtracting the label from
the control image will in theory reveal signal originating from blood-flow and
perfusion, hence the difference signals are directly proportional to the CBF.

An absolute quantitative perfusion maps can be obtained using the General
Kinetic Model developed by Buxton et al. [79]. This model is a type of single-
compartment model which assumes that the labeled water diffuses freely —
no outflow — throughout the tissue voxel. Assuming that AM denotes the
subtraction between labeled and control images, also known as perfusion-
weighted image, the relationship between AM and the CBF depends on the
proton density of the tissue, the relaxation time 77 of the labeled tissue and
blood, as well as their difference. It also depends on the transit time between the
labeling area and the volume of interest. According to the single-compartment
Buxton model, the difference in magnetization between labeled and control
images is described by the following expression,

AM = 2. My(0) - CBF - /Ot (Pt — Dym(t — e, (121)

where M, (0) is the magnetization at equilibrium in an arterial blood voxel, ¢(t)
is the fractionated arterial input function, r(¢ — 7) is the output of the labeled
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protons from the voxel and m(t — 7) is the decaying effect of longitudinal
relaxation.

In addition to the CBF, other perfusion parameters can be estimated with
ASL, provided that specific methods of acquisition or different quantification
models are used. It is possible to quantify the arterial transit time (ATT)
and the volume of arterial blood with a multi-TI sequence [80]. However, the
main disadvantage of using multiple inversion times in ASL is that it can
considerably increase the scan duration to acquire sufficient data. Moreover,
the model fit required to estimate the perfusion parameters become more
complex than simple division, as in the single-TI case. Simultaneous inference
of multiple model parameters can be efficiently solved via nonlinear least
squares (NLLS) [81] and more advanced Bayesian inference methods [82].

For the interested readers we refer the consensus paper [75] which provides
a detailed explanation of recommended implementations of ASL for clinical
applications. For more detailed description of various compartmental models
for perfusion quantification in ASL we refer to [83].

1.4 Summary of Contributions

This thesis essentially spans the context of perfusion MR image and parameter
reconstruction from subsampled, corrupted and noisy acquisitions. We have
targeted to tackle the aforementioned challenges associated with perfusion
MRI acquisition and parameter quantification. This encapsulates all three
existing perfusion MRI techniques and we have explored advanced compressed
sensing (CS) and machine learning (ML) /deep learning (DL) based approaches
to solve these problems.

In the following, we provide a brief summary of the contributions of this
thesis covering mainly four different topics.

Dynamic MRI reconstruction by enforcing local and global
regularities

In this work, we introduce a new spatio-temporal reconstruction approach for
the fast reconstruction of dMRI data from undersampled k-space measurements.
We have mainly aimed at addressing the problem of accurately reconstructing
the fully-sampled image series and removing aliasing artifacts. Inspired by the
dynamic total variation (dTV) sparsity inducing norm which was proposed
for real-time reconstruction, we propose a novel reconstruction scheme that
iteratively enforces not only the local (spatial) regularity in every single frame
but also the global (spatio-temporal) regularity of a full sequence. To this
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end, we introduce a reconstruction model which jointly uses dT'V sparsity and
nuclear norm penalties, exploiting both the sparsity of inter-frame differences
and the low-rank structure of the dynamic MR sequences in the full spatio-
temporal space. We validate our approach on both in-vivo 3D cardiac MRI
and DSC-MRI brain perfusion image series in comparison to state-of-the-art
methods. This work was published as a peer-reviewed conference paper [84]
which will be provided in Chapter 3.

Accelerated reconstruction of perfusion MRI using local and
nonlocal constraints

This work specifically tackles the problem of recovering perfusion MR image
sequences from undersampled k-space data. One of the major obstacles in
the clinical use of perfusion imaging is the need to track the rapid kinetics
of contrast agent (tracer) uptake for accurate perfusion quantification. In
perfusion imaging, undersampling the k-space by acquiring a small subset
of k-space lines not only leads to aliasing artifacts in image space but also
significantly corrupts and degrades the true temporal perfusion signal with its
peak and high dynamics. To circumvent these limitations, we propose a novel
reconstruction model which integrates two fundamentally different constraints:
(i) we enforce a pixel-wise local sparsity constraint on the temporal differences
that limits the overall dynamic of the perfusion time series, (ii) we enforce
a patch-wise similarity constraint on the spatio-temporal neighborhoods of
whole MR sequence, which provides smooth spatial image regions with less
temporal blurring especially when there is significant inter-frame motion and
noise. Results have been demonstrated on brain perfusion datasets as well as
on a publicly available dataset of in-vivo breath-hold cardiac perfusion. This
work was published as a peer-reviewed workshop paper [85] and we present
it in Chapter 4. An extension of this work, which additionally addresses the
perfusion parameter reconstruction problem from the undersampled DSC and
DCE MRI series, was made available as an arXiv manuscript [86] and we
provide it in Appendix A.

Direct reconstruction of pharmacokinetic parameters of DCE MRI
using deep learning

This study presents the first work in the field which leverages the machine
learning algorithms — specifically deep learning — to directly estimate pharma-
cokinetic (PK) parameters from undersampled DCE-MRI sequences. Through
the direct estimation we eliminate the image reconstruction stage which is
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conventionally applied as the first step and usually takes high-computation
time considering the entire 4D volume. Motivated by the recent advances of
deep learning in medical imaging, we formulate the direct inference as a non-
linear mapping problem between the corrupted image-time series and sparse,
topologically less complex residual PK maps, where the mapping is learned
via deep convolutional neural networks (CNNs). Experiments on clinical DCE
brain datasets demonstrate the efficacy of the proposed approach in terms
of fidelity of PK parameter reconstruction and significantly faster parameter
inference compared to existing state-of-the-art iterative reconstruction method.
This contribution has been published as a peer-reviewed conference paper [87]
and given in Chapter 5.

Following the above contribution, we demonstrate how a DL based model
can replace the conventional pipeline of pharmacokinetic parameter quantifi-
cation in DCE-MRI, allowing us to directly infer the parameters from the
acquired DCE image time series. We propose a new parameter inference
framework using deep CNNs which enables more robust and faster inference
than traditional NLLS based model fitting approaches. This study is validated
on in-vivo DCE datasets acquired from clinically evident mild ischaemic stroke
patients. The trained CNN model is able to yield PK parameters which can
better discriminate different brain tissues, including stroke regions. The results
also demonstrate that the CNN model generalizes well to new cases even if a
subject specific AIF is not available for the new data under the assumption that
the data has been acquired with similar acquisition protocol and parameters.
This work has been published as a peer-reviewed journal paper [88] and made
available in Chapter 6.

Denoising ASL MRI using kinetic model incorporated loss and
deep residual learning

The last contribution of the thesis targets to improve the perfusion-weighted
image quality obtained from a subset of all available control/spin-labeled (C/L)
pairwise subtractions in ASL imaging. As previously mentioned, ASL suffers
from inherently low SNR which requires repeated measurements of C/L pairs
in conventional acquisitions, leading to clinically prolonged scanning times. To
alleviate this limitation, this work proposes a novel denoising scheme based
on a deep fully convolutional neural networks (FCNs) together with residual
learning strategy to improve the perfusion-weighted image quality obtained
by using a lower number of subtracted C/L pairs. Our main contribution to
this domain is that we incorporate the Buxton kinetic model — or CBF signal
model — in the loss function during training which enables the network to
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produce high quality images while simultaneously enforcing the CBF estimates
to be as close as reference values. We demonstrate the superior performance
of our method by validations on synthetic and clinical single-TT ASL datasets.
We have published this work as a peer-reviewed conference paper [89] and the
manuscript is provided in Chapter 7.

1.5 Thesis overview

This publication-based dissertation is structured as follows. Chapter 2 covers
the most relevant methodology to the presented publications, starting with
compressed sensing and image reconstruction with prior constraints, followed by
a brief summary of machine learning and deep convolutional neural networks.

Chapter 3 to 7 are composed of five publications [84, 85, 87, 88, 89] in
their original published versions. They have been published as journal articles
or in peer-reviewed conference & workshop proceedings, and thus are all self-
contained. Each of these chapters starts with a summary page, containing
the full citation of the original publication, the abstract part of the published
manuscript and main contributions of the owner of this thesis.

Chapter 8 provides a detailed discussion of the presented methods as well
as possible directions for future work.

Appendix A contains an unpublished manuscript on quantitative perfusion
MRI reconstruction which were submitted to arXiv [86]. Appendix B presents
additional experimental results from related works which are not directly
discussed here, but supplement the scope of the thesis. Finally, a complete list
of authored and co-authored publications that have been published during the
time period of this doctoral thesis can be found in Appendix C.
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This work draws from compressed sensing (CS), MR image reconstruction with
prior constraints, machine learning (ML) and convolutional neural networks
(CNNs). This chapter aims at giving a concise summary of key concepts
and notation used throughout the thesis, but it is not intended to serve as a
representative overview of the most important concepts of each subject. For a
more complete and in-depth description of CS, we refer the interested readers
to [90, 91, 92]. For a thorough review on MR image reconstruction with prior
constraints or regularization, we refer to [20, 93, 94], and to [95, 96, 97, 98, 99]
for topics related to ML and CNNs for deep learning (DL).

2.1 Compressed sensing

Sparsity representation has been vastly studied and recognized as a powerful
tool in many signal and image processing problems, such as image enhancement,
image restoration, image segmentation, and signal compression with the recent
advancements in compressed sensing (CS). CS is based on the principle that
a measured signal can be accurately recovered from far fewer samples than
required by Nyquist—Shannon sampling theorem. To make it more concrete,
CS aims to perfectly recover the original signal x € CV from a set of linear
measurements y € CM which are related as follows:

y = ®x, (2.1)

where & € CM*V is a sensing operator matrix whose rows contain sensing
functions. These functions are mostly obtained by the physics of the acquisition
mechanism, for instance, Fourier functions are sensing functions specific to
MR sampling. Sub-Nyquist sampling is possible if ® can produce a set of
measurements satisfying M < N. Eq. 2.1 corresponds to an under-determined
system of linear equations meaning that for a given y there is an infinite
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number solutions for x. CS proves that this problem is nevertheless solvable
and tractable under the following three assumptions:

1. Signal sparsity: The signal can be sparsely represented in an appropriate
transform basis,

2. Sampling incoherence: The measured samples are randomly chosen, i.e.
incoherent measurements in the signal or transform domain,

3. Nonlinear reconstruction: The CS problem imposes the use of a nonlinear
reconstruction.

A very important property of the above assumptions is the notion of sparsity
in some basis, which corresponds to the number of nonzero (or significant)
coefficients in a specific transform domain. This also assumes the property
that natural signals can be represented by a linear combination of basis
functions. More concretely, given a signal x € CV we can express it as a
coding vector v € C¥ in a basis or frame ¥ € CV*X | with normalized columns
1,12, ..., YK, such that ||[x — ¥y||, = € ensures a very small error for an
approximate representation of the signal.

The second assumption given above states that as undersampling leads to
aliasing of data points, the behavior of the aliasing artifacts must be incoherent
(noise-like) in the transform domain. When the undersampling is not applied
in randomized manner, it is impossible to distinguish between signal and its
aliases. The measurement matrix ® must map two different signals into two
different sets of measurements. Hence all column sub-matrices of ® must be
well contained. For a given constant d; and for all k-sparse vectors x1 and s,
the measurement matrix ® must satisfy the following condition:

(1—08,) o1 — m2]l5 < || @21 — Paoll3 < (1+6) |1 — 223 (2.2)

This property is called restricted isometry property (RIP) and the constant d
is called restricted isometry constant. The property signifies that all pairwise
distances must be well preserved in measurement matrix ®. It has been proven
that many types of random matrices such as independent and identically
distributed Gaussian measurement matrix satisfies the RIP.

Once the above mentioned two conditions are met, a nonlinear reconstruc-
tion of the signal x should be performed to enforce the sparsity of the signal in
transform domain and the consistency of the reconstruction with the acquired
measurements y. This turns into solving the following optimization problem:

argmin || Ax — y/3
X

(2.3)
st. | Oxo < k,

22



2.2. Regularized MR image reconstruction

where ¥ is a sparsifying transform of x and || - ||o is an £p norm which counts
the number of non-zero entries and k is the maximum number of coefficients
that are allowed in the sparse representation. A is known as encoding matrizx
which encodes the combined effect of the sparsifying transform and pseudo-
random sampling pattern. In practice, solving for such sparse solution is an
NP-hard problem, as selecting k non-zero entries is inherently combinatorial.
Fortunately, it turns out that the convex relaxation of Eq. 2.3 robustly converges
to the same sparse solution as reformulated below:

argmin || ATy — y||7 + Ay, (2.4)
Y

where x = W~ and ~ is the corresponding sparse representation of x. The
Eq. 2.4 is known as least absolute shrinkage and selection operator (LASSO)
regression. The attractiveness of CS is that there is a theoretical guarantee
on the number of measurements M required to perfectly reconstruct x of the
dimensionality IV that is k-sparse in W. Choosing the appropriate transforma-
tion basis W is an important step in CS reconstruction, and can provide strong
prior information for image reconstruction and effective sparse representation.

The analysis of CS almost directly translates to the case of MRI recon-
struction problem. As the acquisition time is proportional to the number of
samples required in k-space, CS provides a great potential for accelerating
MR image reconstruction. Nevertheless, we should note that MRI acquisition
process is generally not purely random, and searching for a sampling pattern
that makes the acquired k-space completely incoherent in a sparsity transform
is a challenging task. Only pseudo-random sampling can be achieved in clinical
practice.

2.2 Regularized MR image reconstruction

Let x € CV denote a discrete, complex-valued MR image to be reconstructed,
represented as a vector with N = N, x N, x N, where N;, N,, and N, are
the width, height and depth of the image, respectively. The image can be
2D (N, = 1) or 3D, corresponding to a MR volume. Let y € CM represent
all the k-space measurements flattened into a vectorised format. Then, the
acquired discrete set of samples in k-space can be expressed as follows:

y=Ax+te, (2.5)

where A € CM*N s called a forward model, or a Fourier encoding matrix,
and e is a zero-mean complex Gaussian noise with a specific noise variance,
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2. METHODOLOGY

i.e. e, ~ N(0,0). For instance, for 2D Cartesian sampling mentioned in the
previous sections, A represents the sampled Fourier coefficients. In general, A
is generic and it may represent Cartesian or nonuniform data acquisition, as
well as incorporating multiple weighted measurements for the case of parallel
imaging (PI) techniques. As given in Eq. 2.5, obtaining a quantitatively
accurate estimate of x from A and y is proven to be a challenging task.
The possible reasons of this can be listed as following: i) large size of the
problem, ii) natural imperfection of the coils sensitivities, iii) reduced amount
of acquired lines due to the undersampling, iv) acquisition noise which corrupts
the acquired data. These various factors make the MR reconstruction model
an ill-posed problem meaning that not all of the well-posedness conditions
listed below are satisfied:

1. Euxistence of the solution: For every y there exists a x for which y = Ax.
2. Uniqueness of the solution: The solution or estimated x is unique.

3. The solution depends smoothly on the data: Small perturbations in y do
not result in large perturbations in x

In order to overcome the ill-posedness of the problem, MR image recon-
struction is typically cast as a regularized optimization problem formulated as
follows:

argmin|Ax — y||3 + \R(x), (2.6)

where reconstructed image x is found by balancing the trade-off between data
consistency (||[Ax — y||3 < €) and reduction of measurement artifacts. The
regularization term R(x) is incorporated as an additional constraint on the
reconstructed image, trading-off between reduction of noise and preservation
of image structures and edges. The parameter \ controls the degree of reg-
ularization in the reconstructed image and is usually adapted to the noise
level. The performance of a specific reconstruction technique thus depends on
the good choice of regularizer R as well as a robust optimization method. In
particular, incorporating sparsity and statistical properties of images into the
reconstruction problem have shown great potential to enhance image quality
and sharpness. The regularization terms that have been extensively applied for
MRI reconstruction problem in literature involves wavelet, £y and ¢; sparsity,
low-rank regularization, total variation — due to the inherent piecewise smooth
structure of MR images —, and patch-based regularization. For a detailed
description of various types of regularizers or penalty terms used in CS-based
MRI reconstruction we refer to [20, 94].
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2.3. Machine learning

After a particular sparsity and regularization term is chosen, advanced
and robust convex optimization techniques are essentially used to solve the
optimization problem in Eq. 2.6. These techniques enable to iteratively recon-
struct the final MR image, hence known as iterative reconstruction algorithms.
Depending on the complexity and number of the chosen sparsity and reg-
ularization terms, researchers have employed various optimization methods
to solve the iterative reconstruction problem, including nonlinear conjugate
gradient [100], alternating direction method of multipliers (ADMM) [101],
alternating minimization algorithms [102], iterative shrinkage-thresholding al-
gorithms [103, 104], and composite splitting based algorithms such as proximal
forward-backward splitting [105]. For a comprehensive review of the several
key optimization algorithms used in MR reconstruction domain we refer the
readers to [106].

2.3 Machine learning

Machine learning (ML) allows to statistically learn complex functions or so-
called mappings by building on knowledge from a set of observations. As
opposed to the rule-based systems, which are mainly based on defined heuris-
tics, a ML system can learn directly from data and subsequently act as a
predictive model. Depending on the availability and use of label data in the
observations, machine learning algorithms can be divided into three different
learning categories:

o Supervised learning: It refers to ML algorithms where the ground truth
is available in the training set, i.e. class labels or continuous outputs.
The ground truth information is supposed to be reliable to govern the
learning process.

e Unsupervised learning: Unlike the supervised learning, unsupervised
learning does not require any ground truth for the training. This type of
learning essentially aims to learn the intrinsic structure of the manifold.

e Semi-supervised learning: This learning approach contains the ML algo-
rithms where only very small amount of labeled data are used together
with a relatively large amount of unlabeled data. The main objective is to
improve the supervised learning by leveraging large amount of unlabeled
data during training stage especially when there is limited access to the
labeled data.
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2. METHODOLOGY

Among these three learning strategies, supervised learning has been the most
commonly used strategy on the real-world prediction problems. In a supervised
learning framework, we can build on a training set D = {(x;,y;)};_; involving
available ground truth or labels to learn a function f as follows:

y=f(x;w), VY(x,y)eD (2.7)

where w are the function parameters or known as weights which can be learned.
The learned function mainly maps an input x to an output y based on input-
output pairs from training set, and estimates an approximation of the ground
truth such that f(x;w) =y ~y.

Loss function. The parameters of mapping function f are optimized during
learning or training stage using the labeled training set according to a predefined
loss function. For supervised learning, the general formula of the loss function
L for a given ground truth and predicted labels or output,

N
L(y,y) = mfiHZL (vi, f (xi3w)) (2.8)
=1

where L(-) is the chosen loss function that describes the cost of misclasifying
the ground truth label which may be either discrete or continuous. Prior
knowledge, i.e. domain-specific knowledge, can be incorporated into the loss
function — as a soft constraint — to find an optimal or sub-optimal solution.
The regularized loss function is formulated using Lagrangian multiplier as

N
Lly,y)=min > L(yi, f(xiw))+ A R(f) | (2.9)
f i=1 Y M
Prediction Error Regularization

where A is the regularization parameter to control the effect of the prior
information.

Learning. The learning procedure of supervised learning tries to determine
the weights W satisfying the minimum loss function value £ given the labeled
training set D = {(x4,ya)},;2, as follows:

w = argmin L (D, w). (2.10)

w
In ML domain, this is also referred to as training, fitting or parameter inference
specificially in the context of probabilistic ML models. The loss function
L (D,w) usually does not have closed-form solution, and hence finding a
global minimum of the loss function is usually hard. Many algorithms rely on
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2.3. Machine learning

approximate or heuristic optimization schemes and do not thus guarantee to
find the exact optimum of Eq. 2.10. One of the most prominent examples are
deep neural networks (NNs), where optimization can be done with stochastic
gradient descent (SGD). The learned weights w may correspond to the different
forms with respect to both the type of classification problem and used ML
algorithm. For instance, if we use support vector machine (SVM) classifier
for a binary classification problem, a combination of W represents a set of
hyperplanes in a high dimensional input space, which minimizes the loss and
separates the samples of two classes such that the distance between them is as
large as possible.

In the scope of a traditional ML pipeline, we are not only interested in
how well the learned model fits the training data D, but also essentially how
well it generalizes on unseen data, which denotes the set of samples that were
not made available during the learning stage. To this end, within the ML
pipeline it is a common practice to split the available dataset D into a training
and validation set, where the former is used to learn the weights w and the
latter is used to validate the performance of the learned model on unseen data.
Extensively used resampling methods for validating the model’s performance
are cross-validation and bootstrapping. One of the common problems in ML
is known as bias-variance trade-off. Bias measures the difference between the
average prediction of our model and the correct value which we are trying to
predict. Variance is defined as deviation of predictions, in simple it tells us how
much the estimate of the learned model will change if different training data
is used. In learning stage, one should usually need to avoid the underfitting
and owverfitting problems to improve the generalization capability of the model.
In general, high bias results in underfitting of our model where we miss some
important and relevant relations between the feature and target outputs. On
the other hand, high variance is likely caused by overfitting of the model
in which we learn the random noise in the training data rather than the
intended outputs, therefore the predictions on the different datasets exhibit
high variance.

Inference. Once the weights of the model w have been learned, we can
predict the associated target y of an unseen test sample or observation x as
given in Eq. 2.7, i.e. y = f (X; W). This step is also called testing or prediction.
If y is categorical, the problem is known as a classification problem and if it is
continuous, we name it as regression problem. Unlike the learning step, the
inference phase is usually fast to evaluate as the model weights are already
available. For instance, for linear classifiers, this step often involves just an
inner product and a thresholding operation applied on the given test sample X.
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Majority of ML algorithms exploit the concepts from several domains,
including pattern recognition, statistical learning theory, mathematical opti-
mization and data mining. Some of the examples for widely-used learning
algorithms are SVM [107], the random forest (RF) [108], the neural network
(NN) [109, 110] and its more recent variants that employ the concepts of deep
learning [99, 111]. Over the last few years ML techniques have witnessed
a tremendous amount of attention in a broad range of fields. Especially in
medical image analysis, ML methods have been extensively used in a wide
range of tasks [112, 113] such as segmentation of brain tumors, stroke lesion
and multiple body organs, image reconstruction and enhancement, image
registration, disease diagnosis or prognosis, and so on.

Within the scope of this thesis, we have mainly exploited ML based models
for parameter reconstruction and image enhancement (specifically denoising)
tasks, each of which was formulated as a supervised regression problem.

2.4 Convolutional neural networks

Convolutional neural networks (CNNs) are a class of neural networks with
properties of using spatially structured neurons, local connectivity and weight
sharing. These networks have been shown to be extremely effective for numer-
ous applications in computer vision in the recent years [114, 115, 116]. CNN
essentially extracts features locally, which can build complex image representa-
tions while maintaining spatial correspondences. The building blocks of CNNs
are convolutional layers and fully connected layers, pooling layers, nonlinearity
layers, and normalisation layers. In the following we will describe each of these
layers and provide a brief summary of how the training via backpropagation is
employed in the CNN framework.

2.4.1 CNN layers

Convolutional layer. The most basic building block of a CNN is the con-
volutional layer. In a convolutional layer, each node is connected only locally
to its input layer, in which a set of shared kernels or filters are convolved with
the input to create the next layer. The layer multiplication can be performed
via a convolution operation,

Wlhe =weu, (2.11)

where W has a form of Toeplitz matriz. More formally, for an input ten-
sor x € RNexNyxNe e o 3 2D image with N, channels, and a weight w €
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2.4. Convolutional neural networks

RFwxkyxNexNer and bias b € RN/, convolution layer f is defined as,

I+ke/2  m+ky/2 Ng

[f(x: W, D)]1mn = Z Z ZWi,j,k,an',j,k + by, (2.12)

i=l—ky /2 j=m—ky /2 k=0

Weights in convolution layers are often called convolutional kernels. The hyper-
parameters of convolutional layers typically include kernel width (ks, k),
number of features N, stride and dilation factors. In comparison to fully
connected layer in feed-forward networks, convolutional layer has much less
parameters as the weights are shared across the image spatially. This enables
the network to extract local features and build complex representations before
they are aggregated for further analyses.

Pooling layer. A pooling layer is used to locally aggregate the statistics
of the intermediate features within a certain pooling window. If a pooling
window size is p, X p,, a max-pooling layer on x is defined as,

X = i€lk—po2omsktpz /2] X 213)

JEln—py/2,...,n+py/2]

Average pooling is another commonly used operation which instead computes
the average value in pooling region. As the layer aggregates the local values,
CNNs involving pooling layers are less sensitive to local perturbations. This
attribute is often known as translational invariance. Another key benefit of a
pooling layer is to reduce the spatial dimension of input tensor. The stride of
the operation is often matched by the pooling window size. This enables that
the output of pooling is down-scaled by a factor proportional to the pooling
window size. Once the representation is down-scaled, the network can learn a
representation which aggregates the local information and effectively build a
complex hierarchical representation.

Fully connected layer. Following several convolutional and pooling layers,
the high-level feature extraction in the CNNs is usually performed via fully
connected (FC) layers. The output feature maps of the final convolution or
pooling layer is typically flattened, i.e. transformed into a one-dimensional
(1D) vector, and connected to one or more FC layers, also known as dense
layers, in which every input neuron is connected to every output neuron by
unique learnable weights. Their activation can thus be calculated via a matrix
multiplication followed by a bias offset. The output vector of FC layers can be
either fed forward into a certain number of categories for classification task or
used as a feature vector for further processing.
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Forward propagation

Input x <5

oL oL oL oL oL
oL 96, 09> 865 80, 865
7 €

Backpropagation

Figure 2.1: The schematic illustration of how an exemplary convolutional
neural network based architecture is trained via backpropagation for an image
classification task. (Image adapted from [117])

Nonlinearity layer. Although the convolutional and fully connected layers
standalone can be used to build up the relation between input and output, their
intrinsic linear nature diminishes their utility. Thus, nonlinear activations are
an important component of neural networks as they enable learning arbitrarily
complex mappings. A popular choice of a nonlinearity is rectified-linear unit
(ReLLU), which is defined element-wise as follows:

xz ifx >0,

ReLU(z) = { 0 otherwise. (2.14)

ReLU is a nonlinear activation function which solves gradient vanishing prob-
lem of other nonlinear functions like sigmoid and tanh, enabling training of
extremely deep networks. In practice, most activation functions are applied
right after the linear operation to induce variance in neuron activations.

Normalization layer. As observed in other ML algorithms, neural networks
(NNs) can be very sensitive to numerical problems as the introduced operations
are unbounded in theory. This results in unstable training where parameter
updates can either vanish towards 0 or explode to high values, effectively
resulting in dead neurons or constantly oversatured outputs. To this end, it is
a common practice to employ batch or group normalization during the training
phase of the CNNs to stabilize the training. Moreover, convolution bias can
be eliminated when applying a post-activation normalization after each layer
since each intermediate input is whitened.
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2.4.2 Network training

During training, the input x of a training sample (x,y) is fed through the
network with pre-initialized parameters and results in a prediction y. The
prediction error can be determined by a loss function defined as follows:

Ly,5) = ¢ (yi3) = > ¢(yi f (xi;w, b)), (2.15)
=1 =1

where ¢(-) computes the distance of y to y, e.g. £ norm. Given the loss
function, the network weights are updated via backpropagation so that the
network output becomes closer to the target output for the next training
sample.

For any given differentiable loss function £ evaluated with network output
f(x) and expected output y, the gradient w allows us to optimize the
model parameters 6. Let us assume that our network consists of multiple
convolution and activation blocks of the following form,

fi(xi) = 0i (xi * w; + b;), (2.16)

where o(-) represents the nonlinear activation function. To efficiently calculate
a gradient update, as depicted in Fig. 2.1, we can leverage the layered structure
by working backwards from the output and computing the partial derivatives
along the way. Starting from the last layer, we compute its gradient as follows:

IL(f(%),)

50 =L (fu(x%n),y) -0l (Xn * Wp +by) - (X * Wy, + bn)/. (2.17)

Following the chain rule, the changes in the network are propagated up to
the first layer to assemble the full gradient and perform a descent step. The
established way to train neural networks relies on first-order optimization
variants such as stochastic gradient descent (SGD) with momentum [118] or
adaptive variants like ADAM [119]. However, training deep networks efficiently
and precisely is still ongoing research problem as it is challenging to entirely
capture the nonlinear and highly nonconvex behavior.

During testing, a new unseen sample of x is fed forward through the network
with learned weights and the final layer produces the prediction of the test
sample.
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Abstract: In this paper, we propose a new spatio-temporal reconstruction
scheme for the fast reconstruction of dynamic magnetic resonance imaging
(dMRI) data from undersampled k-space measurements. To utilize both spatial
and temporal redundancy in dMRI sequences, our method investigates the
potential benefits of enforcing local spatial sparsity constraints on the difference
to a reference image for each frame and additionally exploiting the low-rank
property of global spatio-temporal signal via nuclear norm (NN) minimization.
We present here an iterative algorithm that solves the convex optimization
problem in an alternating fashion. The proposed method is tested on in-
vivo 3D cardiac MRI and dynamic susceptibility contrast (DSC)-MRI brain
perfusion datasets. In comparison to two state-of-the-art methods, numerical
experiments demonstrate the superior performance of our method in terms of
reconstruction accuracy.
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ABSTRACT

In this paper, we propose a new spatio-temporal reconstruc-
tion scheme for the fast reconstruction of dynamic magnetic
resonance imaging (dMRI) data from undersampled k-space
measurements. To utilize both spatial and temporal redun-
dancy in dMRI sequences, our method investigates the poten-
tial benefits of enforcing local spatial sparsity constraints on
the difference to a reference image for each frame and ad-
ditionally exploiting the low-rank property of global spatio-
temporal signal via nuclear norm (NN) minimization. We
present here an iterative algorithm that solves the convex op-
timization problem in an alternating fashion. The proposed
method is tested on in-vivo 3D cardiac MRI and dynamic sus-
ceptibility contrast (DSC)-MRI brain perfusion datasets. In
comparison to two state-of-the-art methods, numerical exper-
iments demonstrate the superior performance of our method
in terms of reconstruction accuracy.

Index Terms— compressed sensing, dynamic MR imag-
ing, low-rank approximation, total variation, nuclear norm

1. INTRODUCTION

Dynamic magnetic resonance imaging (dMRI) is an impor-
tant medical imaging technique that enables the visualization
of anatomical and functional changes of internal body struc-
tures through time, resulting in a spatio-temporal signal. Al-
though MRI is a non-invasive, non-ionizing technology and
provides an unmatched quality in soft tissue contrast, phys-
ical and physiological limitations on scanning speed makes
this an inherently slow process [1]. Besides, there is a trade-
off between the spatial and temporal resolution. The reason
is that acquiring fewer k-space samples than those dictated
by the Nyquist criterion accelerates the process significantly,
but exhibits aliasing artifacts in image space. Fortunately, dy-
namic MR sequences usually provide redundant information

This research has received funding from the European Union’s H2020
Framework Programme (H2020-MSCA-ITN-2014) under grant agreement
no 642685 MacSeNet.

* Corresponding author. E-mail: cagdas.ulas@tum.de

978-1-4799-2349-6/16/$31.00 ©2016 IEEE

in both spatial and temporal domains, which allows the reduc-
tion of acquisition time by using compressed sensing (CS) ap-
proaches [2, 3]. More recently, CS theory has been applied to
MRI enabling highly accurate reconstructions from fewer k-
space measurements depending on the assumption of sparsity
of the reconstructed data under some transform domain [4].

In recent years, researchers have proposed sophisticated
CS-based reconstruction methods that exploit both spatial
and temporal redundancies of the entire dataset, such as
spatio-temporal total variation [5], dictionary learning [6],
and low-rank approximation and sparsity [5, 7]. In general,
dynamic MR images are temporally correlated due to slow
changes of the same organ(s) through the whole image se-
quence, and such high correlation in the temporal domain has
been successfully investigated based on a sparsity constraint
in the temporal domain for dMRI reconstruction [6]. As an
extension of the conventional spatial total variation (TV), a
new sparsity inducing norm called dynamic total variation
(dTV) [8] has been recently introduced to utilize both spatial
and temporal correlations in online reconstruction.

In this paper, we make an attempt to integrate two fun-
damentally different approaches for CS-based reconstruction:
we enforce local coherences at the pixel-level via dynamic
total variation (dTV) and global regularity in the full spatio-
temporal domain via a nuclear norm (NN) minimization con-
straint. We present the dTV/NN optimization in a joint formal
framework which allows us to rely on an iterative minimiza-
tion algorithm. The joint minimization problem is solved iter-
atively by utilizing an alternating minimization strategy. The
proposed method is validated on two different dynamic MR
sequences with comparisons to state-of-the-art methods.

Our main contributions can be summarized as follows:
We propose a novel reconstruction scheme that iteratively en-
forces not only the local (spatial) regularity in every single
frame but also the global (spatio-temporal) regularity of a full
sequence. To this end, we introduce a reconstruction model
that is jointly using dTV sparsity and nuclear norm penalties,
exploiting both the sparsity of inter-frame differences and the
low-rank structure of the dynamic MR sequences in the full
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spatio-temporal space. Our approach also employs, for the
first time, the dTV sparsity inducing norm in an offline recon-
struction scheme.

2. METHODS

2.1. Problem formulation

Here, we denote X3” as a dMRI sequence to be represented
as a spatio-temporal 3D volume of size P = N x N x T, i.e.,
the images are of size N x N and T is the total number of
frames in the sequence. Let X; denote the MR image matrix
at the tth frame, y; is the k-space data for the ¢th frame and
T = {1,2,...,T} is the set of frame number indices. The
main objective here is to reconstruct all X;’s, ¢ € T, from
the collected k-space measurements y;’s. The MR imaging
equation for each frame is formulated as

ye = Frxg +1 (n

where F; denotes the undersampling 2D Fourier opera-
tor for frame ¢, i.e., F; = R;Fap, where R, € R™*N,
m < N, is the undersampling mask to acquire only a sub-
set ) of k-space, x; denotes the MR image vector formed
by row/column concatenation of X; and n € C™ is addi-
tive Gaussian noise in k-space. We stack the data for all
the frames of the MR sequence as columns and denote them
as follows: Y = [y1]yz|...lyr], X = [z1]za]|...|z7], and
fu = diag{]—'l,]-'g, ..,.FT}.

We propose solving the following optimization problem
for the reconstruction of dMRI sequences:

min 0 [| X[l + v2(dTV (X, 7))

, @)
st |FX —Y|2<e

where 1 and v are respective regularization parameters for
the two terms, and || X ||, denotes the nuclear norm of X and

is calculated as
X =) oi(X)

where o;(X) represents the i singular value of X. For an
image x; with N2 pixels, dT'V (X, Z) can be defined as

«(xe — ) )2 + (vy(zt - 1_7)?7)2

Y

teT n=1

dTV (X, )

where Z is the reference image calculated by averaging all
the frames in the sequence, V, and V, represent the finite-
difference matrices along the x and y dimensions respectively.

Let us introduce new variables z; = x; — Z and b; =
Yyt —F+Z, then the problem (2) can be reformulated as follows:

r;(nn || X ||« + v2 Z l|z¢l|7v

teT 3
O IEx V< @
H-tht - bt”% S €, Vit

307

where z = [z1,..., 27| and ||z¢||lrv = ||[D12t, D2zt]||2.1.
where D; and D are two N2 x N2 first order finite differ-
ence matrices in vertical and horizontal directions, and ¢ ;
norm is the summation of the ¢5 norm of each row, [a;, az]
denotes concatenating two vectors a; and as horizontally.

2.2. Image reconstruction algorithm

The optimization problem (3) is convex and we choose to split
it into two simpler subproblems that can be efficiently solved
with greedy algorithms. Alternating the solution of these two
subproblems iteratively will give an approximate solution to
Eq. (3). In this approach, an approximate generic solution is
refined towards a better solution.

- Subproblem 1 : Enforcing local (spatial) regularity

min S| Fiz— b3 4wl Vo @)
For each frame z; in the sequence, we solve the optimiza-
tion problem (4) to reconstruct each frame individually given
a reference image . This guarantees that the sum of TV
norms in Eq. (3) is also minimized. The problem (4) can
be efficiently solved by the fast iteratively reweighted least
squares (FIRLS) algorithm [9] based on preconditioned con-
jugate gradient. This algorithm provides fast convergence and
low computational cost by designing a new preconditioner
which can be accurately approximated using the properties
of the Fourier transform and diagonally dominant structure of
the F F; matrix, where H denotes the conjugate transpose.
We refer the reader to [9] for more details on FIRLS.

- Subproblem 2 : Enforcing spatio-temporal regularity

min | FX V]34 X )
X 2
The spatio-temporal signal representation of a dMRI se-
quence can be arranged as a 2D matrix of X, where each
column represents a vectorized image frame. Due to the
repetitive structure of the dMRI sequence between consecu-
tive frames, and the resulting high correlation between each
column of X, this matrix can be generally approximated to be
low-rank, i.e., X has only a few significant singular values.
By exploiting the low-rank property of X, we can solve a
low-rank matrix recovery problem using convex nuclear norm
as a prior. In this way, we pose low-rank matrix recovery
as a nuclear norm regularized linear least squares problem as
stated in (5). This problem can be solved iteratively through
an accelerated proximal gradient (APG) algorithm [10]. The
algorithm provides a computationally efficient way of recov-
ering low-rank matrices iteratively and consists of two main
steps: a first order update and a proximal projection of the
penalty that is solved via the singular value thresholding op-
erator, i.e., S, (G) = Udiag{(¥ — )4}V, where U, X,
'V are obtained from singular value decomposition of G.
Our proposed scheme follows an iterative refinement of an
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Algorithm 1 NNMdATYV reconstruction

1: Input: Y, vq, 1o, Fy, [terNo

2: Output: X

3. Initialize: X = Xy = FAY, 7 = 29 = mean(FH2Y)
4: for i =1to IterNo do

5. foreacht e {1,2,...,T} do

6: % + arg min %H]—'tzt — b|3 + vollzt ||l v
Zt
7 Ty 2 + T
. end for

9:  Form updated X; = [z1]|z3]...|z7]

100 X; « argmin 3| F,X — Y3+ 01X
X

1: & « mean(X;)

12: end for

initial solution. First, we start with zero-filled sequence and
iteratively improve the previous reconstruction by first solv-
ing the Subproblem 1 for each frame and refining this solution
by solving the Subproblem 2 as a following step. Second,
in each iteration we update the reference image that is used
for solving Subproblem 1, providing a better reference image
given as the input to the problem (4), thus yielding more ac-
curate reconstructions. Throughout the paper we will simply
term our proposed method as NNMdTV. Algorithm 1 sum-
marizes the steps of the NNMdTV algorithm.

3. EXPERIMENTS AND RESULTS

3.1. Experimental setup

We evaluate our method on two different types of dynamic
MR sequences. We use an in-vivo breath-hold cardiac per-
fusion sequence [8] of size 192 x 192 x 40 and a dynamic
susceptibility contrast (DSC)-MRI brain perfusion sequence
of size 128 x 128 x 60 with normalized intensities. Both
sequences are artificially corrupted by multiplying its corre-
sponding k-space representation with a binary undersampling
mask and subsequently adding complex Gaussian white noise
with a standard deviation o. A radial sampling mask is used
to simulate undersampling. The same undersampling mask is
used for all frames in our experiments.

3.2. Evaluation

For quantitative evaluation, we adopt the Peak Signal-to-
Noise Ratio (PSNR) as the metric in our experiments. We
compare our method with two state-of-the-art methods: k-t
SLR [5] and dynamic total variation (dTV) [8]. The codes
of dTV and k-t SLR reconstruction methods are downloaded
from each author’s website and for k-t SLR we use the de-
fault parameter settings in the package for all experiments.
For dTV reconstruction, we use the first frame as the refer-
ence frame with 1/4 sampling rate and 1/6 sampling rate for
the remaining frames. The sampling rate for all frames is also

set to 1/6 for NNMdATV and k-t SLR. To ensure fair compar-
ison, the parameters settings used in dTV reconstruction are
also used in our NNMdATV method for all experiments. For
the NNMdTV method, we set ;1 = 5 x 1078, vy = 0.001
and IterNo = 5 for both sequences. The noise standard
deviation is set to o = 10~° for all reconstruction methods.

3.3. Experimental results

In Figs. 1 and 2, we present qualitative results for the DSC
brain and cardiac perfusion datasets respectively. Fig. 1
shows the temporal profile of the DSC brain data along a
fixed row. From the error maps (see Fig. 1(d, f, h)), it is
clearly visible that NNMdTV reconstructs better result com-
pared to other two methods. The red arrows in Fig. 1(h)
show the regions where the reconstruction is improved with
NNMATV. A frame of the reconstructed cardiac sequence is
shown in Fig. 2. Visible artifacts can clearly be seen on the
images reconstructed by k-t SLR. In contrast, compared to the
dTV, the reconstruction result of NNMdTYV is more similar to
the fully-sampled frame, and less noisy (see Fig. 2(h)).

Quantitative results of different methods on two perfusion
datasets are shown in Fig. 3. From the figure, we can clearly
observe that the proposed NNMdATV achieves the highest
PSNR for each iteration and for all frames of the sequences.
The graphs at the top of Fig. 3 mainly validate the fact that it-
eratively updated mean reference image in NNMdTV enables
better reconstruction accuracy.

4. CONCLUSION

In this paper, we have proposed a new CS-based reconstruc-
tion model for dynamic MRI based on the joint minimiza-
tion of local differences in each frame and global differences
in the full spatio-temporal space and developed an iterative
reconstruction algorithm to solve this minimization problem.

I I

Fig. 1. Temporal profile of row 75 in the original DSC brain
dataset (a), its undersampled by 6 zero-filled version (b), and
reconstructions using k-t SLR (c), dTV (e), and NNMdTV (g)
with their respective errors multiplied by 3 (d, f, h).
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Fig. 2. Visual comparison of a fully sampled frame of cardiac
dataset (a), its undersampled by 6 zero-filled version (b), and
reconstructions using k-t SLR (c), dTV (e), and NNMdTV (g)
with their respective errors magnified by 4 (d, f, h).

Experiments on two different perfusion datasets have demon-
strated the effectiveness of our method over the state-of-the-
art. Future work will aim at extending our method with the
use of patch-wise redundancies of spatio-temporal neighbor-
hoods in adjacent frames and making it more robust to noisy
scenarios and large inter-frame motion.

5. REFERENCES

[1] P. A. Gomez et al., “Learning a spatiotemporal dictionary for
magnetic resonance fingerprinting with compressed sensing,”
in Ist Int. Work. on Patch-based Techniques in Medical Imag-

ing, MICCAI, October 2015.

15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 45 50 55 60
Frame Number

Frame Number

5 10

Fig. 3. PSNR comparisons of different reconstruction meth-

ods. Cardiac dataset (left), DSC brain dataset (right).

[2] M. Lustig, D. Donoho, and J. Pauly, “Sparse MRI: The appli-
cation of compressed sensing for rapid MR imaging,” Magn.
Reson. Med., vol. 58, no. 6, pp. 1182-1195, 2007.

[3] U. Gamper, P. Boesiger, and S. Kozerke, “Compressed sensing
in dynamic MRI,” Magn. Reson. Med., vol. 59, no. 2, pp. 365—
373, 2008.

[4] N. Vaswani and W. Lu, “Modified-CS: Modifying compres-
sive sensing for problems with partially known support,” IEEE
Trans. Signal Process., vol. 58, no. 9, pp. 4595-4607, 2011.

[5] S. G. Lingala, Y. Hu, E. DiBella, and M. Jacob, “Accelerated
dynamic MRI exploiting sparsity and low-rank structure: k-t
SLR,” IEEE Trans. on Med. Imag., vol. 30, no. 5, pp. 1042—

1054, May 2011.

[6] J. Caballero, A.N. Price, D. Rueckert, and J. Hajnal, “Dic-
tionary learning and time sparsity for dynamic MR data re-
construction,” IEEE Trans. on Med. Imag., vol. 33, no. 4, pp.
979-994, April 2014.

[71 B. Zhao, J. P. Haldar, A. G. Christodoulou, and Z.-P. Liang,
“Image reconstruction from highly undersampled (k,t)-space
data with joint partial separability and sparsity constraints,”
IEEE Trans. on Med. Imag., vol. 31, no. 9, pp. 1809-1820,
September 2012.

[8] C. Chen, Y. Li, L. Axel, and J. Huang, “Real time dynamic
MRI with dynamic total variation,” in Proc. 17th Int. Conf.
MICCAI 2014, LNCS, pp. 138-145.

[9] C. Chen,J. Huang, L. He, and H. Li, “Preconditioning for ac-
celerated iteratively reweighted least squares in structured spar-
sity reconstruction,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2014, pp. 2713-2720.

[10] K. C. Toh and S. Yun, “An accelerated proximal gradient al-
gorithm for nuclear norm regularized linear least squares prob-

lems,” Pacific Journal of Optimazition, vol. 6, pp. 615-640,

2010.

309

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on January 15,2021 at 21:00:23 UTC from IEEE Xplore. Restrictions apply.



Robust Reconstruction of
Accelerated Perfusion MRI
Using Local and Nonlocal
Constraints

This work has been published as peer-reviewed workshop paper.
(©) Springer International Publishing AG 2017

C. Ulas, P. A. Gémez, F. Krahmer, J. I. Sperl, M. I. Menzel, and B. H.
Menze. “Robust Reconstruction of Accelerated Perfusion MRI Using Local
and Nonlocal Constraints.” In: Reconstruction, Segmentation, and Analysis
of Medical Images: First Int. Workshops, RAMBO 2016 and HVSMR 2016,
in Conjunction with MICCAIL 2017, pp. 37-47. por: 10.1007/978-3-319~-
52280-7_4

Abstract: Dynamic perfusion magnetic resonance (MR) imaging is a com-
monly used imaging technique that allows to measure the tissue perfusion in
an organ of interest via assessment of various hemodynamic parameters such
as blood flow, blood volume, and mean transit time. In this paper, we tackle
the problem of recovering perfusion MR images from undersampled k-space
data. We propose a novel reconstruction model that jointly penalizes spa-
tial (local) incoherence on temporal differences obtained based on a reference
image and the patch-wise (nonlocal) dissimilarities between spatio-temporal
neighborhoods of MR, sequence. Furthermore, we introduce an efficient it-
erative algorithm based on a proximal-splitting scheme that solves the joint
minimization problem with fast convergence. We evaluate our method on
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dynamic susceptibility contrast (DSC)-MRI brain perfusion datasets as well as
on a publicly available dataset of in-vivo breath-hold cardiac perfusion. Our
proposed method demonstrates superior reconstruction performance over the
state-of-the-art methods and yields highly accurate estimation of perfusion
time profiles, which is very essential for the precise quantification of clinically
relevant perfusion parameters.
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Abstract. Dynamic perfusion magnetic resonance (MR) imaging is a
commonly used imaging technique that allows to measure the tissue
perfusion in an organ of interest via assessment of various hemody-
namic parameters such as blood flow, blood volume, and mean tran-
sit time. In this paper, we tackle the problem of recovering perfusion
MR images from undersampled k-space data. We propose a novel recon-
struction model that jointly penalizes spatial (local) incoherence on tem-
poral differences obtained based on a reference image and the patch-
wise (nonlocal) dissimilarities between spatio-temporal neighborhoods of
MR sequence. Furthermore, we introduce an efficient iterative algorithm
based on a proximal-splitting scheme that solves the joint minimization
problem with fast convergence. We evaluate our method on dynamic
susceptibility contrast (DSC)-MRI brain perfusion datasets as well as
on a publicly available dataset of in-vivo breath-hold cardiac perfusion.
Our proposed method demonstrates superior reconstruction performance
over the state-of-the-art methods and yields highly accurate estimation
of perfusion time profiles, which is very essential for the precise quantifi-
cation of clinically relevant perfusion parameters.

1 Introduction

Medical diagnosis and research heavily employ perfusion-weighted magnetic res-
onance imaging (MRI) techniques to estimate the blood flow and volume through
examination of the spatio-temporal changes of the signal intensities following the
injection of a blood bolus via exogenous paramagnetic tracers. In neuroimag-
ing, these techniques have become widespread clinical tools in the diagnosis of
stroke — for the assessment of the tissue at risk —, and the treatment of patients
with cerebrovascular disease. One of the major obstacles in the clinical use of per-
fusion imaging is the need to track the rapid kinetics of contrast agent (tracer)
uptake for accurate perfusion quantification [6]. Moreover, the short scanning
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time available for each frame often results in limited spatial and temporal res-
olution, or poor signal-to-noise ratio (SNR) images. In order to improve the
spatial or temporal resolution, one widely used approach is to accelerate the
acquisition of each frame through the undersampling of k-space by acquiring
only a subset of k-space lines [3,15]. However, the undersampling often results
in aliasing artifacts in image space and in the context of perfusion MRI, accurate
reconstruction of the complete temporal perfusion signal with its peak and high
dynamics becomes an even more challenging task.

In recent years, various approaches have been proposed to solve the recon-
struction problem in related dynamic imaging tasks, considering, such as piece-
wise smoothness in the spatial domain [17], high correlation and sparsity in
the temporal domain [3,4,10], sparse representations of local image regions via
learned dictionaries [3] and low-rank property of MR sequences in the full spatio-
temporal space [10,14,17]. Although these methods allow highly accurate recon-
structions from fewer k-space data, the main drawback is that their performance
is very sensitive to motion and rapid intensity changes occurring over the dura-
tion of image acquisition as encountered in perfusion MRI. In addition, these
methods often result in over smooth and blurry image regions that are lacking
finer details when the acquired data are contaminated with high noise.

In this paper, we integrate two fundamentally different approaches that both
increase the robustness of the reconstruction for perfusion MRI: (i) we enforce
pixel-wise local sparsity constraint on the temporal differences that limits the
overall dynamic of the perfusion time series, (ii) we enforce patch-wise similarity
constraint on the spatio-temporal neighborhoods of whole MR sequence, which
provides smooth spatial image regions with less temporal blurring especially
when there is significant inter-frame motion and noise. We present the main
optimization problem in a joint formal framework and introduce a new proximal
splitting strategy that benefits from the weighted-average of proximals — thus,
overcome a key limitation of the widely used Fast Composite Splitting Algo-
rithm (FCSA) [9] —, and efficiently solves the joint minimization problem with
fast convergence. The proposed method is validated on different types of MR per-
fusion datasets in comparison with the state-of-the-art methods and extensive
experiments demonstrate the superior performance of our method in terms of
reconstruction accuracy and accurate estimation of perfusion time profiles from
undersampled k-space data even when being presented with high noise levels.

Contributions. Our main contributions are four-fold: (1) We present a new
reconstruction scheme which cannot only produce high-quality spatial images
for dynamic MRI but also enable to reconstruct the complete temporal sig-
nal dynamics for perfusion MRI from undersampled k-space data (Sect.2).
(2) We introduce an efficient proximal-splitting algorithm based on a generalized
forward-backward splitting scheme [13]. This algorithm provides fast convergence
and can be easily applied to various medical image applications that consider
optimization problems where the objective function is the sum of several convex
regularization terms (Sect.3). (3) We demonstrate the efficiency and effective-
ness of our method by comparing with state-of-the-art techniques on clinical
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datasets (Sect.4). (4) Our proposed reconstruction model can enable accurate
quantification of clinically useful perfusion parameters while accelerating the
acquisition through the use of fewer k-space samples.

2 Formulation

Throughout the paper we consider the reconstruction problem only on 2D+t
data (i.e., on a single slice followed over time), however the idea presented here
can also easily be extended to 3D+t data. We assume that X3P ¢ CM*NxT
is a 2D perfusion image series represented as a spatio-temporal 3D volume. Let
x; € CM*N denote one perfusion MR frame at time ¢ with M x N pixels, y, is the
corresponding undersampled k-space measurements of x;, and T = {1,2,...,T}
is the set of frame number indices in the sequence. The main goal is to recover
all x;’s from the collected k-space measurements y;’s. The observation model
between x; and y; can be mathematically formulated as

ye = Ri(Fapas + 1) (1)

where R; denotes the undersampling mask to acquire only a subset of k-space,
Fop is the 2D Fourier Transform operator and 7 is additive Gaussian noise in
k-space. We also denote the partial 2D Fourier operator for frame t as F; = Ry Fap,
and stack the F; for all frames of the sequence as F,, = diag{F1, Fa, .., Fr}.

We propose solving the following optimization problem for the reconstruction
of perfusion MR sequences:

A 1
X = argmin {§||qu LY MG(X) + AQQQ(X)} @)

where X € CMNXT denotes the whole perfusion MRI sequence and Y € CMNXT
represents the collection of all the k-space measurements. A\; and A, are the
tuning parameters for two regularization terms.

Local (G;) regularizer: The first regularization term in (2) penalizes the sum of
spatial finite differences on the difference images calculated based on a reference
for every image frame x; € CM*¥ and this term is named as dynamic total
variation (TV) [4] and for the whole MR sequence, it can be defined as

M x N

Gi(X) =5 3 V(Valar - 2)0) + (Vy(ar - 7))’ 3)

teT n=1

where Z is the reference image computed by averaging all the frames in MR
sequence, V, and V, represent the finite-difference operators along the z and y
dimensions, respectively. The intuition behind using dynamic TV over standard
TV is that it is better adjusted to the variation in time, and this regularizer
serves as a penalty on the overall dynamic of the temporal perfusion signal.
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Nonlocal (G2) regularizer: The second regularization term in (2) penalizes
the weighted sum of ¢ norm distances between spatio-temporal neighborhoods
(patches) of MR sequence, and this penalty term can be specified by [16]

Go(X)= D Yo wmallPXP) - R(XPP)E (@)

(pz yPy :pt)eQ (qz sdy ,Qt)GNp

where p = (pz,py,Pt) and q = (qg,qy,q¢) are two voxels, and the voxel of
interest is p € Q, where 2 = [0, M] x [0, N] x [0, T]. The term P,(X3P) denotes a
spatio-temporal 3D patch of the MR sequence centered at voxel p. We represent
N, as a 3D search window around voxel p, and the size of the patch should
be smaller than the size of the search window. We simply denote N, and N,
as the size of a patch and search window, respectively. The weights w(p, q) are
determined based on ¢5 norm distance between the patches and calculated as

1Py (X3P)— Py (x3P) )13

w(p,q) =e 2 (5)

where h is a smoothing parameter controlling the decay of the exponential func-
tion. The use of exponential weighting ensures that a voxel which is more similar
to the voxel of interest in terms of Euclidean distance receives higher weight.

This regularizer is capable of exploiting the similarities between patch pairs in
adjacent frames and it can enforce smooth solutions in the spatio-temporal neigh-
bourhoods of MR sequence even when there is significant inter-frame motion and
high noise introduced during acquisition.

3 Algorithm

To efficiently solve the primal problem (2), we propose to apply a proximal-
splitting framework to this problem. Before describing our proximal-splitting
based algorithm, we should first give the definition of a proximal map.

Proximal map: Given a continuous convex function g(z) and a scalar p > 0,
the proximal operator associated to convex function g can be defined as [9]

. 1 2
proz,(9)(2) i= arg min {ﬂw T g<x>} (©)

Now we can reformulate the problem (2) as the following denoising problem
A . 1
X:arg)?11n{§HX—XgH§+p)\1Q1(X)+,0)\292(X)} (7)

Since each of the regularization term in the cost function (2) is convex, the prob-
lem (7) can be represented as the proximal map of the sum of two regularization
terms as described in Fast Composite Splitting Algorithm (FCSA) [9]

X = prox,(A1G1 + X2G2)(Xy) (8)
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The problem (7) admits to a unique solution as given in (8). However, the prox-
imity operator of the sum of two functions is usually intractable. To compute it
iteratively, one can adopt an efficient proximal-splitting method to this problem.
Proximal-splitting methods are first-order iterative algorithms that solve rela-
tively large-scale optimization problems with several nonsmooth penalties. They
operate by splitting the convex objective function to minimize and generating
individual subproblems which are evaluated easily via proximal operators.

To solve our main problem in (7), we split the objective function into two
individual subproblems that we term G;-subproblem and Gs-subproblem.

Gi1-subproblem: The proximal map for this subproblem can be defined as
. 1
Xo, = pros,(uG)(X,) = argmin { LIX - X, 3+ 0G0} )
X

In order to solve the subproblem (9), we first reformulate it by introducing new
variables d; = x; —  and d}, = X — 7, in this way the problem turns into

. , 1
d=arg;nln{z <%||dt—d§||§+>\1||dt||Tv>} (10)

teT

where d = {dy,...,dr} and ||d¢||rv = ||[Q1d:, Q2d¢]||2,1, where Q1 and Q2 are
two M N x MN first order finite difference matrices in vertical and horizontal
directions, and ¢5 ; norm is the sum of the £5 norm of each row of given matrix.

Given a reference image z, the cost function in (10) can be minimized indi-
vidually for every frame z; of MR sequence. This guarantees that the sum of
the costs in (10) is also minimized. The cost function can be efficiently mini-
mized by using the fast iteratively reweighted least squares (FIRLS) algorithm
[5] based on preconditioned conjugate gradient method. This algorithm enables
fast convergence and low computational cost by adopting a new preconditioner
which can be accurately approximated using the diagonally dominant structure
of the matrix F! F;, where H is the conjugate transpose. Once the problem (10)
is solved, the estimated solution for problem (9) can be calculated as

Xg, = [cil +f,c22+a§,....,dT+@] (11)

Go-subproblem: The proximal map for G, subproblem can be specified by
. 1
X, = prov,(0a02) () = argmin { LIX = X[+ 0G0} (12)
X

The problem (12) can be solved using a two-step alternating minimization
scheme in an iterative projections onto convex sets (POCS) framework [11]. In
each iteration, the first step involves the projection of image estimate onto the
data fidelity term via a steepest descend update and the second step performs
the minimization of the neighborhood penalty term on the projected data. The
minimization of the penalty function in (12) is equivalent to applying non-local
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means (NLM) filter [2] to the projected images. This is mathematically derived
in [12] with a single assumption that only one sub-iteration of the penalty term
is performed with constant and predetermined weights. The mathematical for-
mulation of a NLM filter is given as [12]

% Z(Qz:Qy7Qt)€Np w(p7q)X(q3§7qy7qt)
X(pmapy7pt) =
Z(Qm(?lyy(lt)e/\/}, w<p7 q)

(13)

We have now iterative solvers for each subproblem G; and Gs. In this work,
we have developed an efficient algorithm by adopting a generalized forward-
backward splitting (GFBS) framework [13] that minimizes the sum of multiple
convex functions. Basically, FCSA and GFBS are operator-splitting algorithms
and they both use forward-backward schemes. The main difference between
GFBS and FCSA is that GFBS enables the use of weighted-average of the out-
puts of individual proximal mappings for finitely many convex functions, whereas
FCSA only applies simple averaging. The weighted-average of the outputs of
proximals may practically yield better results depending on the effectiveness of
each penalty (regularization) term employed in various applications.

We further accelerate the convergence of the algorithm with an additional
acceleration step similar to the Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [1]. This step adaptively increases the value of step size parameter (ay)
through iterations and make it sufficiently close to 1. Our proposed reconstruc-
tion algorithm is outlined in Algorithm 1. The most computationally expensive
step of our algorithm is solving each proximal map. Fortunately, the computation
of proximal maps can be done in parallel since there is no dependency between
the inputs of proximity operators. All the other steps involve adding and mul-
tiplying vectors or scalars, and are thus very cheap in terms of computational
complexity. The GFBS method has been shown to converge when v < 2/L if
the convex function f = 1| X — X,||3 has a Lipschitz continuous gradient with
constant L [13]. We refer the readers to original GFBS paper [13] for details
concerning the proof of the convergence of the algorithm.

4 Experiments

Experimental Setup: We evaluate our method on two different types of
perfusion MRI datasets. We use three DSC-MRI brain perfusion sequences
(128 x 128 x 60) and one in-vivo breath-hold cardiac perfusion sequence'
(192 x 192 x 40) from [4] with normalized intensities. All the perfusion datasets
used in the experiments are acquired with full-sampling and the fully-sampled
sequences are artificially corrupted by multiplying its corresponding k-space
representation with a binary undersampling mask and subsequently adding
Gaussian white noise. To simulate undersampling, we retrospectively apply a
time-varying variable density Cartesian mask in our experiments (see Fig.1).
The sampling ratio is set to 1/4 for brain sequences and 1/6 for cardiac sequence.

! Available at: http://web.engr.illinois.edu/~cchen156/SSMRI.html.



Robust Reconstruction of Accelerated Perfusion MRI 43

Algorithm 1. Proposed algorithm

Input: Undersampled k-space data Y, Fu, A1, A2

Initialize: 29 = 28 = FIY, wi, wo, X° =37 wizl, g =0.5,y=1,k=0
while stopping criteria not met do

Xy =XF —yFI(F. X -Y);

2 = 2 g (proz o (2MG1)(XF + X, — 2F) — XF)

w1
2T = 28 1 o (prox o (202G2)(XF + X, — 25) — XF) ;

wy
Ykl k+1 k+1

w12y + w2z, ;
a1 =1+ 2(Ock — 1)/(1 ++/1+ 4(Oék)2) ;
k+—k+1;
end
Output: Reconstructed image data X

We compare our method with three state-of-the-art reconstruction methods: the
dynamic total variation (DTV) [4], (k,t)-space via low-rank plus sparse prior (kt-
RPCA) [14], and fast total variation and nuclear norm regularization (FTVNNR)
[17]. To ensure fair comparison, similar to the experiments presented in [3], we
empirically fine-tune the optimal regularization parameters for all methods indi-
vidually for each dataset and depending on noise level. For our proposed method,
we specifically set Ao = 0.25 for all noise levels and set A\; = 0.025 for relatively
high level noise and A\; = 0.001 for low noise levels. We test the following noise
levels and report the results: o = {1071,5x 1072,1072,5 x 1073, 1073}. For the
proposed method, we set N, =7 x7x 7, N, =5 x5 x5, and w; = wy = 0.5
for all sequences. We consider using small cubic neighborhoods for NV,, and N,
since large neighborhoods drastically increase the computation time. To reduce
the computational burden, we also employ an optimized blockwise version of
the non-local means filter that was proposed by Coupé et al. [7] for 3D med-
ical data. We adopt the Peak Signal-to-Noise Ratio (PSNR) as the metric for
quantitative evaluation. Instead of directly calculating PSNR on a whole image
or 3D sequence, we employ a region-based analysis by calculating the PSNR on
randomly selected 100 image blocks (50 x 50) in 2D frames. This allows us to test
for statistical differences using paired t-test when comparing different methods.

Results: Figures1 and 2 demonstrate a single reconstructed frame of the first
and third brain perfusion dataset, respectively, and the estimation of perfusion
time profiles averaged over voxels inside a small region of interest. The results
in Fig. 1 reveal that kt-RPCA and FTVNNR show quite similar performances,
and the DTV yields both better reconstruction and estimation of perfusion signal
compared to these two methods. Compared with all three methods, our proposed
method can achieve the best reconstruction and very accurate estimation of
perfusion time profiles even when the k-space measurements are contaminated
with a relatively high level noise (¢ = 5x1072). The reconstruction results of our
method are also statistically significant (p-value < 107°) when compared with
all other methods. Moreover, both kt-RPCA and FTVNNR result in over spatial
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DTV kt-RPCA FTVNNR Proposed
Full Sampling (29.86+1.66dB,h=1) (28.70+1.67dB,h=1) (2849+1.90dB,h=1) (31.47 £ 1.68 dB)
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Fig. 1. (Top) Results (mean+std, h-value) of the 22°¢ frame of the first brain dataset
and close-up views of two regions of interest (yellow and green square). h=1 speci-
fies the statistical significance between the results of proposed and compared method,
(Bottom) An exemplary undersampling mask and for each method, estimation of per-
fusion time profiles averaged over the voxels inside the red square shown in top-left
figure. The standard deviation of added Gaussian noise is ¢ = 5 x 1072, Our method
achieves both the best frame-based reconstruction and the most accurate estimation
of peaks and temporal pattern of perfusion signal. (Color figure online)

DTV kt-RPCA FTVNNR Proposed
(32.08+2.27dB,h=1) (31.25+1.50dB,h=1) (3248+£1.66dB,h=1) (35.29 £1.97 dB)

Full Sampling

0.45

0.4

Average signal intensity
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Time Time Time Time Time

0.35

Fig. 2. (Top) Results (mean=std, h-value) of the 15" frame of the third brain dataset
and close-up views of two regions of interest (yellow and green square), (Bottom) For
each method, estimation of perfusion time profiles averaged over the voxels inside the
red square shown in top-left figure. The standard deviation of added Gaussian noise is
o = 1072, Our method again achieves both the best frame-based reconstruction and
the most accurate estimation of peaks and temporal pattern of perfusion signal. (Color
figure online)
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smoothing (see close-up views in Fig. 1) and along time as well, which can be
clearly seen from smoothening of the perfusion peaks in the third-fourth column
of Fig. 1. In contrast, the proposed method reconstructs a perfusion pattern that
is in good agreement with the pattern of the fully sampled data (see Fig. 1 bottom
fifth column), and produces less blurry image regions and sharper edges. The
perfusion time profiles obtained from the third dataset (see Fig.2 bottom plots)
also demonstrate the success of our proposed method. Considering the spatial
outputs, when looking at details in close-up views of Fig. 2, the reconstructions
obtained by kt-RPCA and FTVNNR are more blurry and thus lacking some
finer details in yellow region, whereas the reconstruction obtained by proposed
method involves more finer information in yellow region and provides sharper
edges in green region.

DTV kt-RPCA FTVNNR Proposed
Full Sampling (31.71£1.95dB,h=1) (31.49+£221dB,h=1) (31.67£231dB,h=1) (33.11 £2.07 dB)

Fig. 3. (Top) Results of the 18™ frame of the cardiac dataset with added noise
o = 1072, (Bottom) Temporal cross sections by the red dashed line. All methods
can produce high quality spatial frames, however, our method yields less noisy and
blurry temporal profiles, and the aliasing artifacts are also mostly removed. (Color
figure online)

We also validate our method on a cardiac perfusion data from [4] and the
results are presented in Fig. 3. All methods here can produce high quality images,
however, when looking temporal cross sections at bottom, it can be observed that
our method gives less noisy and with lower aliasing artifacts reconstruction on
myocardium surface while FTVNNR provides more blurry result. The reason is
that our method can utilize both local consistency in temporal differences and
nonlocal similarities between spatio-temporal neighborhoods of MR sequence
while the FTVNNR does not explicitly exploit sparsity in temporal domain.

Quantitative results of different reconstruction methods on both brain and
cardiac perfusion datasets are shown in Fig.4. Note that the NLM only solves
the Go-subproblem of Sect. 3. From the figure, one can clearly see that our pro-
posed method achieves the highest mean PSNR for all noise levels applied. The
running time of all methods on the brain and cardiac datasets is provided in
Table 1. Compared with the other three methods, our method needs the highest
amount of processing time. However, due to its faster convergence, our method
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Fig. 4. PSNR results versus noise std (o) for (left) Brain, (right) Cardiac datasets.
Our joint local and nonlocal regularization based method performs the best.

can achieve the best reconstruction accuracy within the first 3-4 iterations on
average, which approximately takes 4.5 min for cardiac dataset on a desktop with
Intel Xeon CPU E3-1226 v3 Processor.

Table 1. The time cost of different reconstruction methods.

Time (Seconds) DTV | kt-RPCA | FTVNNR | Proposed
Brain (128 x 128 x 60) | 54.5 |194.5 74.3 304.6
Cardiac (192 x 192 x 40) | 46.2 |263.9 81.7 278.1

5 Conclusion

We have presented a robust reconstruction model for perfusion MRI, which is
based on a joint regularization of pixel-wise and patch-wise spatio-temporal con-
straints. Numerical experiments validate the efficiency of our method over the
state-of-the-art methods in terms of reconstruction accuracy and estimation of
perfusion time profiles in varying noise conditions. We also introduce an iterative
algorithm that efficiently solves convex optimization problems with mixtures of
regularizers. Our algorithm provides fast convergence and can be easily extended
to other medical image applications, in particular denoising and super-resolution.
The proposed method can be also extended to parallel MR imaging [8] and be
applied to multi-coil data. Future work will aim at expanding our work with the
fitting of pharmacokinetic models and quantitative analysis of perfusion para-
meters on 3D+t brain perfusion data using partial k-space measurements.
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Abstract: Dynamic contrast enhanced (DCE) MRI is an evolving imaging
technique that provides a quantitative measure of pharmacokinetic (PK) pa-
rameters in body tissues, in which series of Ti-weighted images are collected
following the administration of a paramagnetic contrast agent. Unfortunately,
in many applications, conventional clinical DCE-MRI suffers from low spa-
tiotemporal resolution and insufficient volume coverage. In this paper, we
propose a novel deep learning based approach to directly estimate the PK pa-
rameters from undersampled DCE-MRI data. Specifically, we design a custom
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loss function where we incorporate a forward physical model that relates the
PK parameters to corrupted image-time series obtained due to subsampling
in k-space. This allows the network to directly exploit the knowledge of true
contrast agent kinetics in the training phase, and hence provide more accurate
restoration of PK parameters. Experiments on clinical brain DCE datasets
demonstrate the efficacy of our approach in terms of fidelity of PK parame-
ter reconstruction and significantly faster parameter inference compared to a
model-based iterative reconstruction method.
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Abstract. Dynamic contrast-enhanced (DCE) MRI is an evolving imag-
ing technique that provides a quantitative measure of pharmacokinetic
(PK) parameters in body tissues, in which series of Ti-weighted images
are collected following the administration of a paramagnetic contrast
agent. Unfortunately, in many applications, conventional clinical DCE-
MRI suffers from low spatiotemporal resolution and insufficient volume
coverage. In this paper, we propose a novel deep learning based approach
to directly estimate the PK parameters from undersampled DCE-MRI
data. Specifically, we design a custom loss function where we incorporate
a forward physical model that relates the PK parameters to corrupted
image-time series obtained due to subsampling in k-space. This allows the
network to directly exploit the knowledge of true contrast agent kinet-
ics in the training phase, and hence provide more accurate restoration
of PK parameters. Experiments on clinical brain DCE datasets demon-
strate the efficacy of our approach in terms of fidelity of PK parameter
reconstruction and significantly faster parameter inference compared to
a model-based iterative reconstruction method.

1 Introduction

Dynamic contrast-enhanced (DCE) MRI involves the administration of a T7-
shortening Gadolinium-based contrast agent (CA), followed by the acquisition
of successive Ti-weighted images as the contrast bolus enters and subsequently
leaves the organ [9]. In DCE-MRI, changes in CA concentration are derived from
changes in signal intensity over time, then regressed to estimate pharmacokinetic
(PK) parameters related to vascular permeability and tissue perfusion [6]. Since
perfusion and permeability are typically affected in the presence of vascular and
© Springer Nature Switzerland AG 2018
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cellular irregularities, DCE imaging has been considered as a promising tool for
clinical diagnostics of brain tumours, multiple sclerosis lesions, and neurological
disorders where disruption of blood-brain barrier (BBB) occurs [4,7].

Despite its effectiveness in quantitative assessment of microvascular proper-
ties, conventional DCE-MRI is challenged by suboptimal image acquisition that
severely restricts the spatiotemporal resolution and volume coverage [2,3]. The
shortest possible scanning time often leads to limited spatial resolution ham-
pering detection of small image features and accurate tumor boundaries. Low
temporal resolution hinders accurate fitting of PK parameters. Furthermore, vol-
ume coverage is usually inadequate to cover the known pathology, for instance
in the case multiple metastatic lesions [3]. Facing such severe constraints, DCE
imaging can significantly benefit from undersampled acquisitions.

So far, existing works in [2,6,11] have proposed compressed sensing and par-
allel imaging based reconstruction schemes to accelerate DCE-MRI acquisitions,
mainly targeting to achieve better spatial resolution and volume coverage while
retaining the same temporal resolution. These methods are referred to as indi-
rect methods [3] because they are based on the reconstruction of dynamic DCE
image series first, followed by a separate step for fitting the PK parameters on
a voxel-by-voxel level using a tracer kinetic model [9]. More recently, a model-
based direct reconstruction model [3] has been proposed to directly estimate
PK parameters from undersampled (k, t) space data. The direct reconstruction
method generally poses the estimation of PK maps as an error minimization
problem. This approach has been shown to produce superior PK parameter
maps and allows for higher acceleration compared to indirect methods. How-
ever, the main drawback of this method is that parameter reconstruction of an
entire volume requires considerably high computation time.

Motivated by the recent advances of deep learning in medical imaging, in this
paper, we present a novel deep learning based approach to directly estimate PK
parameters from undersampled DCE-MRI data. First, our proposed network
takes the corrupted image-time series as input and residual parameter maps,
which represent deviations from a kinetic model fitting on fully-sampled image-
time series, as output, and aims at learning a nonlinear mapping between them.
Our motivation for learning the residual PK maps is based on the observation
that residual maps are more sparse and topologically less complex compared to
target parameter maps. Second, we propose the forward physical model loss, a
custom loss function in which we exploit the physical relation between true con-
trast agent kinetics and measured time-resolved DCE signals when training our
network. Third, we validate our method experimentally on human in vivo brain
DCE-MRI dataset. We demonstrate the superior performance of our method in
terms of parameter reconstruction accuracy and significantly faster estimation
of parameters during testing, taking approximately 1.5s on an entire 3D test
volume. To the best of our knowledge, we present the first work leveraging the
machine learning algorithms — specifically deep learning — to directly estimate
PK parameters from undersampled DCE-MRI time-series.
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2 Methods

We treat the parameter inference from undersampled data in DCE imaging as
a mapping problem between the corrupted intensity-time series and residual
parameter maps where the underlying mapping is learned using deep convolu-
tional neural networks (CNNs). We provide a summary of general tracer kinetic
models applied in DCE-MRI in Sect. 2.1, formulate the forward physical model
relating the PK parameters to undersampled data in Sect. 2.2, finally describe
our proposed deep learning methodology for PK parameter inference in Sect. 2.3.

FORWARD MODEL

Contrast agent Undersampled

PK Parameters ~ Tracer kinetic model concentrations Image-time series k-space data

DCE Acqmsmon
Parameters

CONVENTIONAL MODEL

Fig. 1. Computational steps in the forward model and the conventional pipeline of PK
parameter estimation in DCE-MRI.

2.1 Tracer Kinetic Modeling in DCE-MRI

Tracer kinetic modeling aims at providing a link between the tissue signal
enhancement and the physiological or so-called pharmacokinetic parameters,
including the fractional plasma volume (vp), the fractional interstitial volume
(ve), and the volume transfer rate (K"#"%) at which contrast agent (CA) is deliv-
ered to the extravascular extracellular space (EES). One of the well-established
tracer kinetic models is known as Patlak model [8]. This model describes a highly
perfused two compartment tissue, ignoring backflux from the EES into the blood
plasma compartment. The CA concentration in the tissues is determined by,

O(r,1) = vp(X)Cy(t) + KP(x) / Cy(r)dr, 1)

where r € (z,y, 2) represent image domain spatial coordinates, C(r,t) is the
CA concentration over time, and C),(t) denotes the arterial input function (AIF)
which is usually measured from voxels in a feeding artery.

In this work, we specifically employ the Patlak model for tracer pharmacoki-
netic modeling and estimation of ground truth tissue parameters. This model is a
perfect match for our DCE dataset because it is often applied when the temporal
resolution is too low to measure the cerebral blood flow, and it has been com-
monly used to measure the BBB leakage with DCE-MRI in acute brain stroke
and dementia [4,9]. An attractive feature of Patlak model is that the model
equation in (1) can be linearized and fitted using linear least squares which has
a closed-form solution, hence parameter estimation is fast [9].
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2.2 Forward Physical Model: From PK Parameters
to Undersampled Data

Figure 1 depicts the conventional and forward model approaches relating the PK
parameter estimation to undersampled or fully-sampled k-space data, and vice
versa. For direct estimation of PK parameters from the measured k-space data,
as proposed in [1,3], a forward model can be formulated by inverting the steps
in the conventional model as follows:

1. Given the sets of PK parameter pairs (K™*"%(r),v,(r)) and arterial input
function C,(t), CA concentration curves over time C(r,t) are estimated using
the Patlak model equation in (1).

2. Dynamic DCE image series S(r, t) are converted to C(r, t) through the steady-
state spoiled gradient echo (SGPR) signal equation [3], given by

My (r)sina (1 — e~ (E+L)) My (r)sina(1 — e K) )

1 — cosae—(K+L) ) 2)

S(r,t) =

1 — cosae™ &

+ (S(r,o) -

where K = Tr/Tio(r), L = r1C(r,t)Tr, Tr is the repetition time, « is
the flip angle, r; is the contrast agent relaxivity taken as 4.2 s~ mM™!,
S(r,0) is the baseline (pre-contrast) image intensity, and Tio(r) and My(r)
are respectively the 77 relaxation and equilibrium longitudinal magnetization
that are calculated from a pre-contrast 77 mapping acquisition.

3. The undersampled raw (k, t)-space data S(k,t) can be related to S(r,t) for
a single-coil data by an undersampling fast Fourier transform (FFT), F,,

S(k,t) = F,S(r,t), (3)

where k € (k,, ky, k) represents k-space coordinates.

Fig. 2. (a) The relation between a corrupted (6.), target (6:) and residual (0,) PK
maps, (b) Exemplary golden-angle sampling scheme in the k,-k, plane through time.

By simply integrating the three computation steps in (1-3), we can form a
single function f,, modeling the signal evolution in (k-t) space given the PK
maps 0 = {K"(r),v,(r)}, as S(k,t) = fn(0;&), where € denotes all the

predetermined acquisition parameters as mentioned above.



Direct Estimation of PK Parameters of DCE-MRI Using Deep CNN 43

Given the undersampled (k,t)-space data S(k,t), the corrupted image series
Su(r,t) can be obtained by applying IFFT to S(k,t), i.e. Sy(r,t) = FTS(k,t).
We further define a new function f;, that integrates only the first two computa-
tion steps (1-2) to compute the dynamic DCE image series. We will incorporate
fm in our custom loss function that will be explained in the following section.

2.3 PK Parameter Inference via Forward Physical Model Loss

Formulation. We hypothesize that a direct inversion between corrupted
PK parameter maps 6, and S,(r,t) is available through forward model, i.e.,
Su(r,t) = fm (0,). However, this cannot provide yet sufficiently accurate esti-
mate of target parameter maps ; obtained from fully-sampled data S(r,t). To
this end, we estimate a correction or residual map 6, from the available signal
Su(r,t) satisfying 0, = 6, — 6,. As shown in Fig. 2-(a), we observe that residual
PK maps involve more sparse representations and exhibit spatially less varying
structures inside the brain. The task of learning a residual mapping was shown to
be much easier and effective than the original mapping [10]. Following the same
approach, we adopt the residual learning strategy using deep CNNs. Our CNN
is trained to learn a mapping between S, (r,t) and 6, to output an estimate of
residual maps 0,; 0, = R(S,(r,t)|W), where R represents the forward mapping
of the CNN parameterised by W. The final parameter estimate is obtained via
0, =06, —0,.

Loss Function. We simultaneously seek the signal belonging to the corrected
model estimates to be sufficiently close to true signal, i.e., fm (6;) ~ S(r,t).
Therefore, we design a custom loss function which requires solving the forward
model in every iteration of the network training. We refer the resulting loss as
forward physical model loss. Given a set of training samples D of input-output
pairs (Sy(r,t),0,), we train a CNN model that minimizes the following loss,

LW)= > Mo-=0,05 + A =N[S@E,t) = fin (6u — 63 8)II3, (4)
(Su(r,t),0,)eD

where ) is a regularization parameter balancing the trade-off between the fidelity
of the parameter and signal reconstruction. We emphasize that the second term
in (4) allows the network to intrinsically exploit the underlying contrast agent
kinetics in training phase.

Network Architecture. Figure 3 illustrates our network architecture. The net-
work takes a 4D image-time series as input, where time frames are stacked as
input channels. The first convolutional layer applies 3D filters to each channel
individually to extract low-level temporal features which are aggregated over
frames via learned filter weights to produce a single output per voxel. Following
the first layer, inspired by the work on brain segmentation [5], our network con-
sists of parallel dual pathways to efficiently capture multi-scale information. The
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local pathway at the top focuses on extracting details from the local vicinity while
the global pathway at the bottom is designed to incorporate more contextual
global information. The global pathway consists of 4 dilated convolutional layers
with dilation factors of 2,4, 8,16, implying increased receptive field sizes. The
filter size of each convolutional layer including dilated convolutions is 3 x 3 x 3,
and the rectified linear units (ReLU) activation is applied after each convolution.
Local and global pathways are then concatenated to form a multi-scale feature
set. Following this, 2 fully-connected layers are used to determine the best pos-
sible feature combination that can accurately map the input to output of the
network. Finally, the last layer outputs the estimated residual maps.

3 Experiments and Results

Datasets. We perform experiments on fully-sampled DCE-MRI datasets
acquired from three mild ischaemic stroke patients. DCE image series were
acquired using a 1.5T clinical scanner with a 3D T1W spoiled gradient echo
sequence (TR/TE = 8.24/3.1ms, flip angle = 12°, FOV = 24 x 24 cm, matrix =
256 x 192, slice thickness = 4mm, 73s temporal resolution, 21 dynamics). An
intravenous bolus injection of 0.1 mmol/kg of gadoterate meglumine (Gd-DOTA)
was administered simultaneously. The total acquisition time for DCE-MRI was
approximately 24 minutes. Two pre-contrast acquisitions were carried out at flip
angles of 2° and 12° to calculate pre-contrast longitudinal relaxation times.

)

Corrupted
image-time series Fully connected layers Residual PK maps
A Z @ \ Output layer ~ :
# ) # S
VI.\V 4
@ 2
o
) ConvaD + ReLU
:> Dilated Conv3D + ReLU
|:>

‘ Concatenation

Fig. 3. The network architecture used for the estimation of residual PK maps. The
number of filters and output nodes are provided at the bottom of each layer.

Preprocessing. Undersampling was retrospectively applied to the fully-
sampled data in the k,-k, plane using a randomized golden-angle sampling pat-
tern [12] over time (see Fig.2-(b)) with a 10-fold undersampling factor. The
pre-contrast first frame was fully sampled. Due to the low temporal resolution of
our data, we estimated subject-specific vascular input functions (VIF's) extracted
by averaging a few voxels located on the superior sagittal sinus where the inflow
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artefact was reduced compared to a feeding artery [4]. Data augmentation was
employed by applying rigid transformations on image slices. We generated ran-
dom 2D+t undersampling masks to be applied on the images of different orienta-
tions. This allows the network to learn diverse patterns of aliasing artifacts. All
the subject’s data required for network training/testing were divided into non-
overlapping 3D blocks of size 52 x 52 x 33, resulting in 64 blocks per subject.

Experimental Setup. All experiments were performed in a leave-one-subject-
out fashion. The networks were trained using the Adam optimizer with a learning
rate of 1072 (using a decay rate of 10~%) for 300 epochs and mini-batch size of 4.
To demonstrate the advantage of the proposed method, we compare it with the
state-of-the-art model-based iterative parameter reconstruction method using
the MATLAB implementation provided by the authors [3]. We use the concor-
dance correlation coefficient (CCC) and structured similarity metric (SSIM) met-
rics to quantitatively assess the PK parameter reconstruction, and peak signal-
to-noise ratio (PSNR) metric to assess the image reconstruction. Experiments
were run on a NVIDIA GeForce Titan Xp GPU with 12 GB RAM.

Results. Figure 4 shows the qualitative PK parameter reconstructions obtained
from different methods using 10-fold undersampling. The results indicate that
CNN-)X = 0.5 incorporating two loss terms simultaneously produces better maps
and considerably higher SSIM score calculated with respect to fully-sampled PK
maps. The model-based iterative reconstruction yields the PK maps where the
artifacts caused by undersampling are still observable. In Fig.5 we present the
exemplary reconstructed images obtained by applying the operation fm to the
estimated PK maps. All the reconstruction approaches result in high quality
images, however, the model-based reconstruction can better preserve the finer
details. Unfortunately, our fully-sampled data suffer from Gibbs artifacts appear-
ing as multiple parallel lines throughout the image. As marked by white arrows,
our CNN method can significantly suppress these artifacts whereas they still
appear in the image obtained by model-based iterative reconstruction. Finally,
Fig. 6 demonstrates the quantitative results of parameter estimation and image
reconstruction. The highest CCC and SSIM values for parameter estimation
are achieved by our CNN model when both loss terms are incorporated with
= 0.3 and A = 0.5, yielding an average score of 0.88 and 0.92, respectively.
The difference is statistically significant for both CCC (p = 0.017) and SSIM
(p = 0.0086) when compared against model-based reconstruction. The model-
based reconstruction performs the highest PSNR for image reconstruction, where
it is followed by the proposed CNN with A = 0.3. The difference between them is
statistically significant with p < 0.05. The PSNR also shows a decreasing trend
with increasing \ as expected.
We emphasize that the parameter inference of our method on a 3D test
volume takes around 1.5 s while the model-based method requires around 95 min
to reconstruct the same volume, enabling ~ 4 x 103 faster computation.
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Model-based CNN—-A=10 OCNN-XA=0.5 Fully-sampled

59 4 Y,
\& - - ~ 0.01

=
SSIM = 0.9564 0

Fig. 4. Reconstructed PK parameter maps of two exemplary slices of a test subject
with a 10-fold undersampling. Brain masks are applied to estimated maps. Our CNN
model incorporating both loss terms (A = 0.5) achieves the best paramater estimates.
The resulting SSIM values are provided at the bottom-left corner of each map.

Model-based CNN - \A=0.5

CNN-)A=1.0 Fully-sampled

Fig. 5. Visual comparison of the image reconstruction results of an examplary DCE
slice. White arrows indicate a few regions where the Gibbs artifacts are observable.
Our CNN model with both A = 0.5 and 1.0 can significantly suppress the artifacts
appearing in fully-sampled image and model-based reconstruction as well.
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Fig. 6. Parameter estimation (SSIM & CCC) and image reconstruction (PSNR) per-
formances calculated on all test slices for model-based (MB) reconstruction method
and our proposed CNN model with different A settings.
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4 Conclusion

We present a novel deep learning based framework for direct estimation of PK
parameter maps from undersampled DCE image-time series. Specifically, we
design a forward physical model loss function through which we exploit the phys-
ical model relating the contrast agent kinetics to the time-resolved DCE signals.
Moreover, we utilize the residual learning strategy in our problem formulation.
The experiments demonstrate that our proposed method can outperform the
state-of-the-art model-based reconstruction method, and allow almost instanta-
neous inference of the PK parameters in the clinical workflow of DCE-MRI.
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Abstract: Background and Purpose: The T1-weighted dynamic contrast
enhanced (DCE)-MRI is an imaging technique that provides a quantitative
measure of pharmacokinetic (PK) parameters characterizing microvasculature
of tissues. For the present study, we propose a new machine learning (ML)
based approach to directly estimate the PK parameters from the acquired DCE-
MRI image-time series that is both more robust and faster than conventional
model fitting.

Materials and Methods: We specifically utilize deep convolutional neural
networks (CNNs) to learn the mapping between the image-time series and
corresponding PK parameters. DCE-MRI datasets acquired from 15 patients
with clinically evident mild ischaemic stroke were used in the experiments.
Training and testing were carried out based on leave-one-patient-out cross-
validation. The parameter estimates obtained by the proposed CNN model
were compared against the two tracer kinetic models: (1) Patlak model, (2)
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Extended Tofts model, where the estimation of model parameters is done via
voxelwise linear and nonlinear least squares (NLLS) fitting respectively.

Results: The trained CNN model is able to yield PK parameters which
can better discriminate different brain tissues, including stroke regions. The
results also demonstrate that the model generalizes well to new cases even if a
subject specific arterial input function (AIF) is not available for the new data.

Conclusion: A MIL-based model can be used for direct inference of the PK
parameters from DCE image series. This method may allow fast and robust
parameter inference in population DCE studies. Parameter inference on a
3D volume-time series takes only a few seconds on a GPU machine, which is
significantly faster compared to conventional nonlinear least squares (NLLS)
fitting.

Contributions of thesis author: Development and implementation of the
methodology, experimental design, interpretation of the results, composition
and revision of manuscript.
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Background and Purpose: The T1-weighted dynamic contrast enhanced (DCE)-MRI
is an imaging technique that provides a quantitative measure of pharmacokinetic (PK)
parameters characterizing microvasculature of tissues. For the present study, we propose
a new machine learning (ML) based approach to directly estimate the PK parameters
from the acquired DCE-MRI image-time series that is both more robust and faster than
conventional model fitting.

Materials and Methods: \We specifically utilize deep convolutional neural networks
(CNNs) to learn the mapping between the image-time series and corresponding PK
parameters. DCE-MRI datasets acquired from 15 patients with clinically evident mild
ischaemic stroke were used in the experiments. Training and testing were carried out
based on leave-one-patient-out cross- validation. The parameter estimates obtained by
the proposed CNN model were compared against the two tracer kinetic models: (1)
Patlak model, (2) Extended Tofts model, where the estimation of model parameters is
done via voxelwise linear and nonlinear least squares fitting respectively.

Results: The trained CNN model is able to yield PK parameters which can better
discriminate different brain tissues, including stroke regions. The results also demonstrate
that the model generalizes well to new cases even if a subject specific arterial input
function (AIF) is not available for the new data.

Conclusion: A ML-based model can be used for direct inference of the PK parameters
from DCE image series. This method may allow fast and robust parameter inference in
population DCE studies. Parameter inference on a 3D volume-time series takes only a
few seconds on a GPU machine, which is significantly faster compared to conventional
non-linear least squares fitting.

Keywords: dynamic contrast enhanced MRI, pharmacokinetic parameter inference, convolutional neural
networks, ischaemic stroke, tracer kinetic modeling, contrast agent concentration, loss function

Frontiers in Neurology | www.frontiersin.org

1 January 2019 | Volume 9 | Article 1147



Ulas et al.

CNNs for Pharmacokinetic Parameter Inference in DCE-MRI

1. INTRODUCTION

Dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) is an effective dynamic imaging technique that can be
used to study microvascular structure in vivo by tracking the
diffusion of a paramagnetic contrast agent such as gadopentate
dimeglumine (Gd-DTPA) over time (1). By collecting a series
of T;-weighted MR images at intervals of a few seconds, the
uptake and washout of the administered contrast agent can
be observed in the imaged tissue, resulting in characteristic
intensity-time curves across different tissues (2). Vascular and
cellular regularities in human body usually have a strong impact
on the local vascular perfusion and permeability. To this end,
DCE imaging has been used as a promising tool for clinical
diagnostics of brain tumors, multiple sclerosis lesions, and several
neurological disorders that lead to disruption and breakdown
of blood-brain barrier (BBB) (3-6). In DCE-MRI, changes in
contrast agent concentration are determined from changes in
signal intensity over time, and then regressed through the use
of tracer kinetic (TK) models to estimate pharmacokinetic (PK)
parameters which characterizes the vascular permeability and
tissue perfusion (7, 8).

One of the key limitations of TK modeling methods is
that they are simply based on the fitting of voxelwise PK
parameters to contrast agent concentration-time curves (9). The
fitting is usually performed using a nonlinear least squares
(NLS) approach. However, the acquired voxelwise concentration-
time curves are generally very noisy and involve only a small
number of sampling points, hence the model fitting may yield
parameter estimates with large variance as well as considerable
bias (see Figurel for an exemplary representation of this
limitation). Moreover, an iterative NLS solver may converge to
erroneous solutions since the NLS objective is not convex and
can have multiple local minima (10). Another major drawback is
that the voxelwise model fitting is computationally demanding
considering the thousands of voxels in a single MR slice (11).
More sophisticated approaches (10, 12) were also proposed
based on Bayesian theory of statistical inference of the DCE
parameters for the fitting of nonlinear models. Unlike the
standard NLS regression, these approaches exploit the spatial
information of the neighboring voxels and provide reduce
variability of parameters in local homogeneous regions. However,
the bottleneck is their drastically increased computation time,
usually taking hours for the estimation of parameters on a single
DCE scan.

Machine learning (ML) methods have been extensively used
in the medical imaging community for several tasks (13) such
as parameter estimation, disease classification, segmentation, so
on. Recently, a random forest regression based method (14)
was proposed to estimate accurate spectral parameters in MR
spectroscopy. Deep learning methods (15-17) have recently
gained large popularity and achieved predominantly state-of-
the-art results in the medical imaging field including various
image-to-image translation tasks (18-20). A deep neural network
based approach for perfusion parameter estimation (21) was first
proposed for dynamic susceptibility contrast (DSC) MRI without
requiring a standard deconvolution process.

To alleviate the aforementioned limitations in DCE-MRI,
we present a direct and fast PK parameter estimation method
which introduces several concepts from machine learning. Our
proposed approach can directly infer the PK parameters from
the observed signal intensity over time. In order to achieve this,
we first train a deep convolutional neural network (CNN) to
learn the underlying mapping - or relation — between intensity
image-time series and PK parameters using a large training data
consisting of millions of voxels taken from the brain DCE dataset.
In our method, the target PK parameters used in training step
can be either estimated by any existing tracer kinetic models,
or can be defined with reference values depending on a specific
biomarker or disease that has been built on one specific type
of model. Our method can intrinsically provide the following
advantages over the conventional model fitting based parameter
estimation approaches:

e The proposed method can directly estimate the corresponding
physiological perfusion parameters when only observed
signal intensities over time given, which eliminates several
intermediate computation steps of the conventional pipeline
as illustrated in Figure 2.

e Our method serves as a high-level parameter estimation model
such that we can train a network from which we expect to
yield parameter estimates as close as the target values that are
obtained using any optimization approach, e.g., standard NLS
fitting, regularized Bayesian estimation methods, etc.

e Due to its strong generalization ability, this method shows
increased robustness to signal noise and outliers, and it
can significantly mitigate the effect of irregularity and
discontinuity problem which is quite apparent in the
parameter maps estimated by conventional NLS fitting.

e The parameter estimates obtained by the proposed approach
yields improved statistically significant differences between
different tissue types, which can ultimately allow better
discrimination of normal and pathological regions in stroke
analysis.

e Compared to conventional fitting methods, the PK parameter
inference with our ML based approach is computationally
faster, taking only seconds on an entire 3D DCE-MRI volume.

2. MATERIALS AND METHODS

2.1. Dataset and Preprocessing

2.1.1. Patients

Fifteen patients were recruited for this study. The patient cohort
presents first clinically evident mild (i.e., expected to be non-
disabling) ischaemic stroke from the local stroke service. The
patients were over 18 years old and had a definite diagnosis of
ischaemic stroke. They were able to consent themselves, had an
MRI scan at diagnosis and were medically stable enough to return
for a DCE-MRI scan at between 1 and 3 months post-stroke and a
follow-up after 1 year. All patients underwent clinical assessment
by a stroke physician, diagnostic MR imaging and cognitive
testing at presentation. An expert panel of stroke physicians and
neuro-radiologists assessed each case in order to confirm the
diagnosis of ischaemic stroke and classify the ischaemic stroke
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DCE Image

FIGURE 1 | Effect of signal noise on the resulting parameters with conventional fitting models. (A) an examplary DCE image (left) displaying two neighboring voxels
(marked by red and blue circles) in the stroke region, and the corresponding Ktrans maps (right), (B) resulting fitted contrast agent concentration curves for these two
voxels using Extended Tofts model. Although the neighboring voxels are spatially very close to each other (only 1-pixel away), the observed concentration data are
different due to the excessive signal noise. Eventually, there is a substantial difference in the fitted concentration curves and parameter values

(Ktrans — 5,18 x 10~ min~" for voxel 1, and K@ = 2.48 x 103 min~" for voxel 2).

0.0351 ® Data: Voxel 1 o

® Data: Voxel 2
— Fitted: Voxel 1
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parameter values during training.

FIGURE 2 | The conventional pipeline of pharmacokinetic parameters for DCE-MRI. Our proposed machine learning (ML) model allows to directly infer the parameters
from the acquired DCE image time series. To this end, the intermediate computational steps—i.e., conversion to contrast concentration, extraction of AlF, and fitting to
a tracer kinetic (TK) model—can be eliminated when applied on a test data. We note that in our approach a specific TK model can be still used to estimate target

TK Model

AIF PK Parameter Maps

subtype. DCE-MRI was performed a minimum of 1 month after
the stroke in order to avoid acute effects of the stroke on the
local BBB (22). This study was approved by the Lothian Ethics of
Medical Research Committee (REC 09/81101/54) and the NHS
Lothian R + D Office (2009/W/NEU/14), and all patients gave
written informed consent.

2.1.2. MRI Acquisition
MR imaging was performed on a 1.5 T MRI scanner (Signa
HDxt, General Electric (GE), Milwaukee, WI) using an 8-channel

phased-array coil. Structural MR images for diagnostic purpose
were acquired at first including axial T2-weighted (T2W; TR/TE
= 6000/90 ms, FoV = 240 x 240 mm, acquisition matrix =
384 x 384, 1.5 averages, 28 x 5 mm slices, 1 mm slice gap),
and axial fluid-attenuated inversion recovery (FLAIR; TR/TE/TI
=9000/153/2200 ms, FoV= 240 x 240 mm, acquisition matrix =
384 x 224,28 x 5 mm slices, 1 mm slice gap).

DCE image series were acquired using a 3D TIW spoiled
gradient echo sequence (TR/TE = 8.24/3.1 ms, flip angle = 12°,
FoV = 240 x 240 mm, acquisition matrix = 256 x 192, slice
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FIGURE 3 | A representative MRl image and corresponding tissue
segmentations. FLAIR image (left) and tissue masks superimposed on FLAIR
image (right). NAWM, normal-appearing white matter; WMH, white matter
hyperintensities; DGM, deep gray matter; RSL, recent stroke lesion.

thickness = 4 mm, 42 slices). Two pre-contrast acquisitions were
carried out at flip angles of 2° and 12° to calculate pre-contrast
longitudinal relaxation times (T19). An intravenous bolus
injection of 0.1 mmol/kg of gadoterate meglumine (Gd-DOTA,
Dotarem, Guerbet, France) was administered simultaneously
with the start of 20 acquisitions with 12° flip angle and a temporal
resolution of 73 seconds. The total acquisition time for DCE-MRI
was approximately 24 minutes.

2.1.3. Image Processing

For image preprocessing, we mainly followed the steps described
in Heye et al. (22). First, all structural and DCE MR images
were coregistered to the 12° pre-contrast image using rigid-
body registration to correct for bulk patient movement. All
small vessel features were determined according to agreed
STRIVE standards (23). We employed a multispectral MRI
data fusion and minimum variance quantization method
(24) for the segmentation of white matter hyperintensities
(WMH) and normal-appearing white matter (NAWM), and the
resulting masks were manually refined. We used the “Region of
Interest” tool of Analyze 11.0™ (AnalyzeDirect, KS) to semi-
automatically outline the old stroke lesions and recent stroke
lesion (RSL) boundaries separately. Stroke lesion masks were
checked for precision by a neuroradiologist; all other tissue
masks were checked visually for accuracy and manually edited
by an expert if necessary. Moreover, subcortical/deep gray matter
(DGM) masks were generated automatically using a software
pipeline as described in Heye et al. (22). In order to minimize
any residual contamination of the DGM, the resulting mask was
eroded by one voxel. Figure 3 depicts a representative FLAIR
image and corresponding tissue segmentation.

2.2. DCE-MRI Analysis

Data collected at multiple flip angles were first used to calculate
the T19 map based on the variable flip angle method proposed in
Brookes et al. (25), given by

_— = (1)
Tio Tr

1 1 1 Srsinaycosa,; — sino,cosaoy,
Srsinay, — sina, ’

where Sg = S,/S;, with S, and S, denoting the signal intensities
of the two pre-contrast acquisitions with flip angles o, = 2° and
ap = 12°, and Ty is the repetition time.

Dynamic DCE image series S(t) are converted to contrast
agent concentration Ci(t) through the steady-state spoiled
gradient echo (SGPR) signal equation (26),

Mysina (1 — e~ K+L)
1 — cosape—K+L)

S = Mpsino(1 — e_K)> ’

* <S(0) 1 — cosape—K

)
where K = Tr/Ti9, L = rCi(t)Tg, r1 is the contrast agent
relaxivity taken as 4.2 sT'mM™!, §(0) is the baseline (pre-
contrast) image intensity, and T and My are respectively the T;
relaxation and equilibrium longitudinal magnetization that are
calculated from a pre-contrast 71 mapping acquisition.

For each subject, we extracted a vascular input function
(VIF) from a region located on the superior sagittal sinus (SS)
because partial volume effects and inflow artifact were reduced
at this location compared to obtaining the arterial input function
(AIF) from a feeding artery (22); the delay between arterial and
venous responses is expected to be very small compared with
the temporal resolution of our acquired data. Instead of selecting
only a single voxel, we determined a 3 x 3 patch inside the
SS region and estimated the VIF by averaging the time-signal
intensities over the voxels within the patch. This enabled us to
obtain more smooth variations in the DCE-MRI time course.
We converted the whole-blood concentration C(t) measured
in the SS to plasma concentration using the formula C,(t) =
Cyp(t)/(1 — Hct) where Hct is the blood hematocrit measured in
large arteries and assumed to be Hct = 0.45 as previously used in
literature (22, 26, 27).

2.2.1. Tracer Kinetic Models

Tracer kinetic modeling (28) is applied in DCE-MRI to provide
a link between the contrast agent concentration and the
physiological or so-called pharmacokinetic parameters, including
the fractional plasma volume (vp), the fractional interstitial
volume (v¢), the volume transfer rate (K"#) at which contrast
agent (CA) is delivered to the extravascular extracellular space
(EES) from plasma space.

In this study, we fitted the following two models to the tissue
concentration curves C;(t): (i) the extended Tofts model, (ii) the
Patlak model. A schematic overview of the two models and their
relationship is illustrated in Figure 4.

The extended Tofts (eTofts) model (29) mainly describes a
highly perfused (F, = o0) two- compartment tissue model
considering bidirectional transport between the blood plasma
and EES. The concentration of contrast agent in the tissue is
determined by,

t
Ce(t) = vpCp(t) + K0S / Cp(r)e =gz, (3)
0
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Extended Tofts

Tissue space

Patlak

plasma space is negligible.

No backflux
(C,>>C,)

FIGURE 4 | lllustration of two tracer kinetic models: Extended Tofts (left) and Patlak (right) model. Target parameters of DCE-MRI modeling are the contrast agent
transfer rate from plasma space to tissue space K'rans the fractional plasma volume vp, the fractional interstitial volume ve, and transfer constant from the tissue
space to the blood plasma kep. Patlak model is related to Extended Tofts model through the assumption Cp >> Cg such that the backflux from the EES into the

v

where kep = K'ans /y, represents the transfer constant from the
EES back to the blood plasma. For the fitting of eTofts model, we
used limited-memory Broyden-Fletcher Goldfarb-Shannon (I-
BFGS) method for nonlinear minimization of the sum of squared
residuals. The algorithm was run till convergence for a maximum
of 30 iterations.

The Patlak Model (30) can be considered as a special case of
the eTofts model, where the backflux from the EES into the blood
plasma compartment is negligible. To this end, this model only
allows measurement of the two parameters K" and v, given
by,

t
Gl = G0+ K™ [ Gy(oya, )
0

An attractive feature of Patlak model is that the model equation
in (4) is linear and model parameters can be fitted using linear
least squares which has a closed-form solution, hence parameter
estimation is fast (9).

2.3. Deep Learning for Pharmacokinetic

Parameter Estimation
In this study, we consider the PK parameter inference in DCE-
MRI as a mapping problem between intensity image-time series
and parameter maps where the underlying mapping can be
efficiently learned using deep CNNs. The proposed CNN aims
at learning data-driven features with the use of convolutional
feature filters to effectively detect the local spatio-temporal
characteristics of the DCE time series. The extracted spatio-
temporal features are desired to represent the underlying relation
between the input and output of the network as much as possible.
Specifically, our CNN is trained to learn a mapping between
S(t) and 6 to output an estimate of PK maps 0;0 = £(S(t)|w),
where f denotes the forward mapping of the CNN with the
learned set of filter weights w. We note that set of parameters
are represented by 6 = {K"",v,} for Patlak model and 6§ =
{K'™, kep, vp} for eTofts model.

2.3.1. Loss Function

To learn the network weights (w) during training, we need to
define an objective function (or loss function) to be minimized.
In addition to the standard mean squared error (MSE) loss
between the true PK parameter values 6 and the estimated
values § which enforces high fidelity in parameter reconstruction,
we simultaneously seek the fitted contrast agent concentrations
of the PK parameters to be sufficiently close to the observed
concentrations, Ci(t). To this end, we formulate a new loss
function which jointly incorporates these two loss criteria. Given
a large number of training samples D of input-output pairs
(8(1),0), we train a CNN model that minimizes the following loss,

Lowy = >

(S(1),0)eD

(10 =012 + 160 -f@B), ©

where fy is the tracer kinetic model equation of either eTofts
or Patlak model as formulated by Equation (3) or Equation (4),
respectively.

2.3.2. Network Architecture

We illustrate the network structure used in this study in Figure 5.
The network takes DCE image-time series as input with a
patch size of 24 x 24 x 21, where time frames are stacked as
input channels. The first convolutional layer applies 2D filters to
each channel individually to extract low-level temporal features
which are aggregated over frames via learned filter weights to
produce a single output per voxel. Inspired by the work on
brain segmentation (31) and denoising in arterial spin labeling
(32), our network consists of parallel dual pathways to efficiently
capture multi-scale information after the first layer. The local
pathway focuses on extracting details from the local image
regions while the global pathway is designed to incorporate
more contextual global information. The global pathway consists
of 3 dilated convolutional layers with dilation factors of 2,4,
and 8, indicating increased receptive field sizes. Zero-padding is
applied before every convolution operation to keep the spatial
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dimensions of the output equal to the input. The filter size of
each convolutional layer including dilated convolutions is chosen
as 4 x 4. The rectified linear units (ReLU) activation function
(f(x) = max(0, x)) is applied after each convolution to introduce
non-linearity into the mapping. Local and global pathways are
then concatenated to form a multi-scale feature set. Following
this, two fully-connected layers of 256 and 128 hidden nodes
are used to determine the best possible feature combination that
can accurately map the input to output of the network. Finally,
the last fully-connected layer outputs the parameter estimates
of a patch size 24 x 24 x n, where 7 is the number of kinetic
model parameters. We emphasize that as our proposed network
was structured to estimate outputs for every single voxel of the
input patch, it is essential to keep the spatial dimensions of the
input and output same throughout the network. Therefore, in
our network we can consider a fully-connected (FCN) layer as
a convolutional (CONV) layer with 1 x 1 convolutions.

2.3.3. Network Training

Among all the follow-up scans we only selected one DCE-MRI
scan per subject in our experiments. All these scans were acquired
at between 1-3 months post-stroke. For each patients data, we
neglected the first and last 5 image slices due to insufficient
brain coverage. Among the remaining slices of each patient we
randomly selected 20 slices to be considered in analysis. We
note that these are the central 20 slices that contain most of
the brain regions in overall. Following to this, each 2D DCE
image slice was divided into overlapping patches of size 24 x 24
voxels with step size of 6 voxels. This resulted in a collection
of approximately 12,000 patches for every patients data. We
applied the same procedure on contrast agent concentration
data and target parameter maps required for network
training.

All experiments were performed in a leave-one-subject-out
fashion, i.e., 30 different networks were trained in total based
on both Patlak and eTofts model parameters. Randomly chosen
10,000 overlapping patches of each subject were split into
training (80%) and validation (20%) sets. The networks were
trained using the Adam optimizer with a learning rate of 1073
and a decay rate of 10~ for maximum number of 200 epochs
and a mini-batch size of 1000 patches. Early stopping was applied
to prevent poor generalization performance when the validation
loss stopped improving within consecutive 15 epochs. In Figure 6
we provide two exemplary plots depicting the changes in training
and validation loss over epochs for CNN trained on Patlak and
eTofts models. Both losses show a decreasing trend and converge
to a minimum. We implemented our code using Keras library
with TensorFlow (33) backend, and experiments were run on a
NVIDIA GeForce Titan Xp GPU with 12 GB RAM.

2.3.4. Testing

Once the network is trained and network parameters are learned,
DCE image-time series data of a test subject can be fed into
the network to directly predict the PK parameters. Since the
predictions are processed in a patch-wise manner, all overlapping
16 predictions of a neighborhood are averaged to obtain a final
value for every individual voxel.

3. RESULTS

3.1. Comparison of Pharmacokinetic Maps
We compare the qualitative PK parameter maps obtained by
Patlak model fitting, eTofts model fitting and CNN model
trained by either Patlak or eTofts model. Figures 7B,C shows
PK parameter maps of an exemplary slice of a patients data.
In overall, the parameter maps by CNN model looks very
similar with the Patlak model fitting. However, the CNN
model produces higher estimates of K" in especially small
RSL region as marked on the DCE image in Figure 7A.
Moreover, the RSL region is more distinctive and can be
discriminated well with respect to other tissues in both the
parameter maps of CNN model. For numerical evaluation
of output parameter maps, we used two evaluation metrics
calculated within the entire brain region: Structural similarity
index (SSIM) and normalized root mean square error (nRMSE).
These values were calculated by considering the output maps
of Patlak model as reference, shown in Figures 7B,C. For
K™ we obtain a high SSIM of 0.991 and a low nRMSE
of 0.0144. For v,, SSIM is calculated as 0.973 and nRMSE is
0.0168.

Figures 8B,C demonstrates PK parameter maps of an
exemplary slice of an another patients data fitted by eTofts model.
The parameter estimates significantly match each other (for CNN
and eTofts) in many of the tissue regions except NAWM as
depicted on the DCE image in Figure 8A. As shown in Figure 8C,
CNN model yields lower v, values in comparison to eTofts
model in NAWM. Hence, the discrimination of the NAWM
with respect to WMH is more prominent. Quantitatively,
when compared against the parameter maps obtained by eTofts
model, CNN maps yield a SSIM score of 0.998 and 0.961
for K™ and vp, respectively, while nRMSE is 0.0073 and
0.0156.

3.2. Fitting to the Observed

Concentration -Time Series

We evaluate the accuracy of the fitting to the observed
concentration-time series data. The fitted contrast agent
concentration-time series were estimated via (3) and (4) by using
the parameter estimates of Patlak, eTofts, and CNN models
separately.

Table 1 demonstrates the quantitative comparison of the
fitting to the observed contrast agent concentration time series
data for different models in terms of nRMSE and SSIM. The
metric values were calculated for every 2D slice of a subject’s
volume, and statistical values (mean + std) were obtained
using all 15 subject’s data. The results indicate that standard
Patlak and eTofts model can fit the data better compared
to the CNN model trained with these models separately.
However, the difference is not substantial that CNN model still
achieves high accuracy with less than an average %2 fitting
error.

Figures 9A,B shows the fitting of contrast concentration
(in mM) for the NAWM and RSL regions in a single
patient data. In general, the CNN model trained by either
Patlak or eTofts model parameters can fit the data similarly
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FIGURE 6 | Training and validation loss over epochs obtained by training a CNN model using (A) Patlak and (B) eTofts model parameters. Gradual decrease in the
loss indicates the efficiency of the network for learning useful representations related to the underlying mapping between the input and output.
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well when compared with Patlak and eTofts model. An
interesting observation in Figure 9B is that the eTofts model
does not fit the observed data well whereas the fitting
obtained by CNN model trained on eTofts parameters is more
accurate.

3.3. Statistical Analysis of PK Parameter

Estimation

We perform statistical analysis of the parameter estimates on
different tissues. A comparison between tissue types is shown
in Figure 10. We assessed the statistical significance of the
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CNN Patlak

FIGURE 7 | Comparison of qualitative PK parameter maps from a slice of a stroke patient data. (A) a DCE image slice on which the tissue masks are superimposed
(WMH: green, RSL: red), (B) K@ and (C) v, parameter maps obtained by CNN model and Patlak fitting.

FIGURE 8 | Comparison of qualitative PK parameter maps from a slice of a patient data with white matter hyperintensities. (A) a DCE image slice on which the tissue
masks are superimposed (NAWM: blue, WMH: green, DGM: yellow), (B) Krans and (C) vp parameter maps obtained by CNN model and eTofts fitting. We remark that
WMH represents the WM tissue associated with increased risk of dementia and cognitive decline.
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TABLE 1 | nRMSE (%) and SSIM statistics (mean =+ std) obtained from concentration-time series data fitting. The SSIM value can vary between —1 and 1, where 1

indicates perfect similarity.

Models
Metric Patlak eTofts CNN: Patlak trained CNN: eTofts trained
NRMSE (%) 1.1200 + 0.5225 1.0575 + 0.5744 1.6398 + 0.6878 1.7360 + 0.7408
SSIM 0.9812 + 0.0141 0.9835 + 0.0127 0.9750 £+ 0.0138 0.9719 £ 0.0162

differences using the paired Wilcoxon signed rank test. For
Patlak and eTofts model, all differences between tissue types were
significant (p < 0.001) except for K" in DGM and WMH, and
vp in WMH and RSL. For CNN model trained on Patlak model
parameters, all differences of K" between tissue types were
significant including the difference between WMH and DGM
(p =34 x 10~4). The difference between WMH and RSL for
v, is again statistically significant with p = 1.6 x 107°. The CNN
model trained on Patlak generally tends to overestimate the K"
and v, parameters compared to either Patlak or eTofts model.
The difference between them are significant with p < 0.001,
and this is valid for all tissue types except DGM (p = 0.021
for K3), On the other hand, the CNN model trained with
eTofts parameters yield underestimated K'™" and overestimated
vp values when compared against either Patlak or eTofts model.
The underestimation of K™ by CNN is statistically significant
for all tissue types except WMH (p = 0.317). The overestimation
of v, by CNN is significant for all tissue types (p < 0.001).
Figure 11 depicts the Bland-Altman plots of K™ values
in three different tissues (DGM, WMH, RSL) obtained from a
patient’s data. As can be observed in Figure 11A, when compared
against the Patlak model, CNN model trained with Patlak tends
to slightly underestimate the K™ in DGM and overestimate the
values in WMH and RSL. Figure 11B indicates that K™ are
underestimated by CNN trained with eTofts in DGM and RSL.
The values in WMH highly match with Patlak fitting showing
no systematic difference. In general, the results in Bland-Altman
plots agree with the statistical results as shown in Figure 10,
meaning that systematic differences are observable between
the estimates of CNN and model fitting although concordance
correlation coefficients (CCCs) indicate a strong agreement.

4. DISCUSSION

The results of this study show that a CNN based ML model can
yield PK parameter estimates that are comparable to traditional
model fitting. As depicted in Figures 7,8, the qualitative
parameter maps estimated by CNN models match highly with
the ones obtained by conventional TK model fitting methods.
Moreover, ML based models can enable better discrimination of
different brain tissues. As can be seen in Figure 7, small stroke
lesion is more visible with higher K" values assigned to this
region. In addition to this, the discontinuities of parameter values
arising especially at highly perfused regions (i.e., vessels) can be
mitigated by CNN model, and more smoother local areas are
produced in these regions as shown in Figures 7, 8.

Statistical analysis in Figure 10 indicate that significant
differences between tissue types can be achieved by CNN model
whereas both Patlak and eTofts model fail in quantitatively
differentiating some of the tissues pairwise including WMH-
DGM. Especially higher K" values are generally assigned to
stroke regions i.e., RSL, allowing better discrimination of these
areas against non-stroke regions. To this end, the proposed ML
model can be an appropriate parameter inference model for
quantification of subtle BBB disruption where measuring low-
level BBB permeability is vital in several diseases, including
cerebral small vessel disease, lacunar stroke and vascular
dementia. Another interesting observation is that the plasma
volume v, values estimated by CNN model in WMH are
considerably greater than in normal-appearing WM areas. This
may result in improved identification of the hyperintensity
areas from the surrounding normal appearing WM tissue. WM
hyperintensities are usually regarded as surrogates of small vessel
disease and frequently seen in elderly people (34).

The major advantage of ML based model is that the parameter
inference of a voxel belonging to a specific tissue type is
performed by taking into account many other training samples,
or voxels, of the same tissue type. Therefore, if the signal time
series of a target voxel is subject to high noise, it is likely that
a parameter value associated with the voxels that show similar
signal trends and located in the same tissue type can be assigned
to the target voxel. One example relevant to this observation
can be seen in Figure 9B, where the fitted concentration time
curves are provided for a ROI inside the RSL region of a patients
data. Here, the eTofts model does not provide a good fit to
the measured signal and the fitted concentration-time curve
describes more a vascular region (i.e., blood vessel). However,
the fit of the CNN model trained with eTofts model parameters
can produce significantly better fit to the observed data, and
the fit resembles more an RSL region, which is highly similar
with the fits by Patlak and CNN model trained by Patlak model
parameters. These findings reveal better generalization ability
of ML models (35) which can extract and learn important
tissue specific features from a large cohort of training examples.
However, it should be noted that the correction of misfit of
concentration time curves in Figure 9B does not point out an
unique feature of our CNN based approach, but rather shows a
specific case. The avoidance of a misfit with the CNN network
primarily depends upon the model and optimization approach
on which the network is trained.

Another observation from Figure 11 also signifies the
tendency of CNN model to produce parameter estimates
close to a mean value of parameter distribution learned from
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FIGURE 9 | Comparison of model fits to the observed patient data. Exemplary concentration-time curves for tissue regions (A) NAWM and (B) RSL. In general, the
CNN model trained by either Patlak or eTofts model parameters can fit the data similarly well when compared with fitted Patlak model. More interestingly, the CNN
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FIGURE 10 | Comparison of fitted and estimated PK parameters between tissue types obtained from all subjects data. Box plots shows the distribution of (A) Kirans
and (B) vp in NAWM, WMH, DGM, and RSL. Box plots depict the median with a colored horizontal line for every method in comparison. Remarkably, CNN model
trained on Patlak model results in K@ and vp values which show statistically significant differences between tissue types.

many training voxels within in a specific tissue. Here, when  Patlak model due to significant signal noise and fitting to the
compared to the standard Patlak model parameters, we observe  local minima. In this regard, systematic differences between
overestimated values in especially WMH and RSL region = CNN model estimates and standard NLS fitting are inevitable
where the K" usually has higher values. The overestimation  because the parameter estimates by NLS fitting is not optimal
in some of the voxels within these tissues is presumably and usually produces a parameter distribution from a high
caused by the relatively lower parameter values estimated by  range of values within the voxels of a specific tissue, as it
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can be seen in Figure 10. We anticipate that more accurate
evaluation of systematic differences can be obtained using the
synthetic DCE dataset where the ground truth parameters are
known.

As mentioned before, one of the key advantages of our method
is its utility to avoid intermediate computation steps of parameter
inference in DCE-MRI by replacing it with a direct inference
model. Although we use two existing TK models to estimate the
reference parameters, based on the specific DCE application, one
can use different TK models in literature (9) to infer the PK
parameters to be used during training of the CNN network. If
available, the network can be also trained using ground truth
parameter values. In addition to this, as previously done in
Banerji et al. (36) and Bosca and Jackson (37), synthetic DCE
phantom data can be generated by simulating the signal equation

and TK model equations with the PK parameters estimated from
real patient’s data, and a CNN model can be trained based on
the synthetic data and corresponding parameter maps. With this
approach, more realistic synthetic DCE datasets can be generated
by taking into account the acquisition noise and motion artifacts.
The generated synthetic datasets may be utilized to train a
network which can be later tested on in vivo DCE dataset to
obtain less noise-sensitive parameter estimates.

In conventional DCE-MRI analysis pipeline, subject-specific
AJF extraction from a ROI of a feeding artery is one of the
essential steps for the estimation of kinetic parameters (28, 38).
In this study, we demonstrate that CNN based ML model can
estimate PK parameters by no need of subject-specific AIF of
the test subject without introducing any significant bias in the
parameter estimation. Although this can be seen as one of the
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Time (min) is quite likely that the CNN model shows a poor performance on
these test data comprised of non-healthy tissues. In principle, in
FIGURE 12 | Examplary subject specific vascular input functions (VIFs) order to obtain a stable CNN mOdel, it is necessary to constitute
extracted from averaging a few voxels located on the superior sagittal sinus .. . .
- a training data pool according to the demands or expectation
(SS). Although the VIFs appear to have similar shapes, the peaks and steady o . . L R
state signal can have varying magnitude (contrast agent concentration). from such a prediction model in our specific clinical applications.

benefits of our model, we should remark that the data used in
this work is a part of a population study where the temporal
resolution and other parameters related to DCE acquisition
and contrast injection are fixed in all subjects. However, as
can be clearly seen in Figure 12, the subject-specific AlFs
of our dataset usually have varying magnitudes of the peak
and steady-state signal even though the time point where the
signal reaches the peak is similar for all subjects. The signal
pattern of the AIF curves are directly related to signal time
intensities through Equation (2), hence the trained network
can intrinsically learn the relation between the AIF and target
parameters via the mapping between the input and output of
the network and the designed loss function which takes into
account the underlying TK model through its equation. On the
other hand, the performance of proposed model on a mixed
data—ideally involving DCE image series acquired with different
acquisition parameters and protocols—can be subject to further
investigation. For parameter estimation with a model trained on
a mixed data, we anticipate that a bi-CNN input model similar
to as proposed for DSC-MRI (21) might be a good approach to
avoid bias and error in parameter estimation. In that setting,
the DCE image time series and other acquisition parameters—
including AIF—of both training and test subjects can be given to
the network as two separate inputs.

We emphasize that our CNN model is not trained on a entire
brain basis, but on individual time series. Out of the 15 patient
datasets we extract more than 160 million training samples,
i.e., number of total voxels in the training dataset. Moreover,
our network architecture is not very deep and we demonstrate
that this huge number of training samples is sufficient to
train a network that generalizes well, where the inability to

For instance, if we aim to discriminate well the acute/post-acute
stroke regions, our training data should contain high number of
voxels from both stroke and non-stroke regions.

Nevertheless, we should discuss the several limitations of
this study. First, although ML based methods can have strong
generalization ability, the bias is also inevitable when tested
on an unseen data because the model is always trained using
other subject’s data without any access to test data. Second, the
performance of our method may be improved depending on
the input patch size and filter size of the network. Moreover,
we only considered 2D convolution operations, however, 3D
convolutions may produce better results when more spatial
context information are extracted. Third, further investigation
on synthetic data is required to perform accurate assessment
of error and bias when the ground truth parameter values are
known. Lastly, our current approach is sensitive to variation
in acquisition parameters, especially temporal resolution, i.e.,
number of time points in DCE data. One feasible solution to
the variations in temporal resolution across multiple datasets is
to apply interpolation on time. In practice, we may interpolate
all training data acquired with various temporal resolutions to a
common temporal resolution so that a test data with completely
different temporal resolution can be also fed into the trained
network to produce parameter estimates.

In conclusion, this study shows that a ML based direct
inference approach can estimate PK parameters that are
comparable to the conventional model fitting in DCE-MRI.
Our results, based on a sample of mild ischaemic stroke
patients, demonstrate the efficiency of CNN model to enable
better discrimination of brain tissue types. Specifically, our
proposed ML based method has the potential to improve
the current quantitative analysis of DCE-MRI studies due
to its increased robustness to noise. Significant difference of
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permeability parameters between stroke and non-stroke regions
may ultimately effect the stroke medical decision process.
Finally, parameter inference of the proposed model on a 3D
brain volume is considerably faster than the standard NLS
fitting, demonstrating the applicability of such models in clinical
practice. Considering such faster computation time, clinical
experts may perform parameter inference using various TK
models in parallel to benefit from making more detailed analysis
between different models.
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Abstract: Arterial spin labelling (ASL) allows to quantify the cerebral blood
flow (CBF) by magnetic labeling of the arterial blood water. ASL is increasingly
used in clinical studies due to its noninvasiveness, repeatability and benefits in
quantification. However, ASL suffers from an inherently low signal to noise
ratio (SNR) requiring repeated measurements of control/spin-labeled (C/L)
pairs to achieve a reasonable image quality, which in return increases motion
sensitivity. This leads to clinically prolonged scanning times increasing the risk
of motion artifacts. Thus, there is an immense need of advanced imaging and
processing techniques in ASL. In this paper, we propose a novel deep learning
based approach to improve the perfusion-weighted image quality obtained
from a subset of all available pairwise C/L subtractions. Specifically, we train
a deep fully convolutional neural network (FCN) to learn a mapping from
noisy perfusion-weighted image and its subtraction (residual) from the clean
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image. Additionally, we incorporate the CBF estimation model in the loss
function during training, which enables the network to produce high quality
images while simultaneously enforcing the CBF estimates to be as close as
reference CBF values. Extensive experiments on synthetic and clinical ASL
datasets demonstrate the effectiveness of our method in terms of improved
ASL image quality, accurate CBF parameter estimation and considerably small
computation time during testing.
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Abstract. Arterial spin labeling (ASL) allows to quantify the cerebral
blood flow (CBF) by magnetic labeling of the arterial blood water. ASL
is increasingly used in clinical studies due to its noninvasiveness, repeata-
bility and benefits in quantification. However, ASL suffers from an inher-
ently low-signal-to-noise ratio (SNR) requiring repeated measurements
of control/spin-labeled (C/L) pairs to achieve a reasonable image qual-
ity, which in return increases motion sensitivity. This leads to clinically
prolonged scanning times increasing the risk of motion artifacts. Thus,
there is an immense need of advanced imaging and processing techniques
in ASL. In this paper, we propose a novel deep learning based approach
to improve the perfusion-weighted image quality obtained from a sub-
set of all available pairwise C/L subtractions. Specifically, we train a
deep fully convolutional network (FCN) to learn a mapping from noisy
perfusion-weighted image and its subtraction (residual) from the clean
image. Additionally, we incorporate the CBF estimation model in the
loss function during training, which enables the network to produce high
quality images while simultaneously enforcing the CBF estimates to be
as close as reference CBF values. Extensive experiments on synthetic
and clinical ASL datasets demonstrate the effectiveness of our method
in terms of improved ASL image quality, accurate CBF parameter esti-
mation and considerably small computation time during testing.

1 Introduction

Arterial spin labeling (ASL) is a promising MRI technique that allows quanti-
tative measurement of cerebral blood flow (CBF) in the brain and other body
organs. ASL-based CBF shows a great promise as a biomarker for many neuro-
logical diseases such as stroke and dementia, where perfusion is impaired, and
thereby the blood flow alterations need to be investigated [2]. ASL has been
increasingly used in clinical studies since it is completely non-invasive and uses
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magnetically labeled blood water as an endogenous tracer where the tagging is
done through inversion radio-frequency (RF) pulses [2,12]. In ASL, a perfusion-
weighted image is obtained by subtracting a label image from a control image in
which no inversion pulse is applied. The difference reflects the perfusion, which
can be quantified via appropriate modelling [2,11].

Despite its advantages, ASL significantly suffers from several limitations
including the low signal-to-noise ratio (SNR), poor temporal resolution and
volume coverage in conventional acquisitions [5]. Among these limitations, the
low SNR is the most critical one, necessitating numerous repetitions to achieve
accurate perfusion measurements. However, this leads to impractical long scan-
ning time especially in multiple inversion time (multi-TT) ASL acquisitions with
increased susceptibility to motion artifacts [2,9,12].

To alleviate this limitation, several groups have proposed spatial and spatio-
temporal denoising techniques, for instance denoising in the wavelet domain [3],
denoising in the image domain using adaptive filtering [13], non-local means fil-
tering combined with wavelet filtering [10], spatio-temporal low-rank total vari-
ation [5], and spatio-temporal total generalized variation [12]. Just recently, a
deep learning based ASL denoising method [9] has been shown to produce com-
pelling results. All of these methods primarily consider improving the quality
of noisy perfusion-weighted images, followed by CBF parameter estimation as a
separate step although accurate quantification of CBF is the main objective in
ASL imaging.

In this paper, unlike the previous deep learning work [9] which is only data
driven, we follow a mixed modeling approach in our denoising scheme. In par-
ticular, we demonstrate the benefit of incorporating a formal representation of
the underlying process — a CBF signal model — as a prior knowledge in our deep
learning model. We propose a novel deep learning based framework to improve
the perfusion-weighted image quality obtained by using a lower number of sub-
tracted control/label pairs. First, as our main contribution, we design a custom
loss function where we incorporate the Buxton kinetic model [4] for CBF esti-
mation as a separate loss term, and utilize it when training our network. Second,
we specifically train a deep fully-convolutional neural network (CNN) adopting
the residual learning strategy [7]. Third, we use the images from various noise
levels to train a single CNN model. Therefore, the trained model can be utilized
to denoise a test perfusion-weighted image without estimating its noise level.
Finally, we demonstrate the superior performance of our method by validations
using synthetic and clinical ASL datasets. Our proposed method may facilitate
scan time reduction, making ASL more applicable in clinical scan protocols.

2 Methods

2.1 Arterial Spin Labeling

In ASL, arterial blood water is employed as an endogenous diffusible tracer
by inverting the magnetization of inflowing arterial blood in the neck area by
using RF pulses. After a delay for allowing the labeled blood to perfuse into
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the brain, label and control images are repeatedly acquired with and with-
out tagging respectively [2,11]. The signal difference between control and label
images is proportional to the underlying perfusion [2]. The difference images are
known as perfusion-weighted images (AM), and can be directly used to fit a
kinetic model. For CBF quantification in a single inversion-time (TI) ASL, the
single-compartment kinetic model (so-called Buxton model [4]) is generally used.
According to this model, the CBF in ml/100g/min can be calculated in every
individual voxel for pseudo-continuous ASL (pCASL) acquisitions as follows,

PLD
6000 - 3 - AM - e Tib
Q'Q'le'SIPD'<1—€_ﬁ>,

f(AM) = CBF = (1)

where £ is the brain-blood partition coefficient, 77y, is the longitudinal relaxation
time of blood, « is the labeling efficiency, 7 is the label duration, PLD is the
post-label delay, and SIpp is the proton density weighted image [2].

2.2 Deep Residual Learning for ASL Denoising

Formulation. Our proposed CNN model adopts the residual learning formu-
lation [7,8]. It is assumed that the task of learning a residual mapping is much
easier and more efficient than original unreferenced mapping [14]. With the uti-
lization of a residual learning strategy, extremely deep CNN can be trained and
superior results have been achieved for object detection [7] and image denoising
[14] tasks.

The input of our CNN model is a noisy perfusion-weighted image AM,, that
is obtained by averaging a small number of pairwise C/L subtractions. We denote
a complete perfusion-weighted image as AM,. estimated by averaging all avail-
able C/L subtractions. We can relate the noisy and complete perfusion-weighted
image as AM,, = AM.+ N, where N denotes the noise image which degrades the
quality of the complete image. Following the residual learning strategy, our CNN
model aims to learn a mapping between AM,, and N to produce an estimate of
the residual image N; N = R(AM,,|®), where R corresponds to the forward
mapping of the CNN parameterised by trained network weights ©. The final
estimate of the complete image is obtained by AM, = AM,, — N.

Loss Function Design. In this work, we design a custom loss function to
simultaneously control the quality of the denoised image and the fidelity of CBF
estimates with respect to reference CBF values. Concretely, given a set of training
samples D of input-target pairs (AM,,N), a CNN model is trained to learn the
residual mapping R for accurate estimation of complete image by minimizing
the following cost function,

LO)= Y AN=N[3 + (1=N]f— f(AM, - N;9)[3, (2

(AM,,,N)eD

where A is regularization parameter controlling the trade-off between the fidelity
of the residual image and CBF parameter estimates, f; represents the reference
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CBF values corresponding to an input AM,,, and £ denotes all predetermined
variables as given in (1). We emphasize that the second term of our loss function
(2) explicitly enforces the consistency of CBF estimates with respect to reference
CBF values, computed from the complete perfusion-weighted image through the
use of the Buxton kinetic model. This integrates the image denoising and CBF
parameter estimation steps into a single pipeline allowing the network to generate
better estimates of perfusion-weighted images by reducing noise and artifacts.

Network Architecture. Figurel depicts the architecture of our network. The
network takes 2D noisy gray image patches as input and residual image patches
as output. Our network consists of eight consecutive 2D convolutional layers fol-
lowed by parametric rectified linear units (PReLU) activation. Although ReLU
activation has been reported to achieve good performance in denoising tasks
[9,14], we empirically obtained better results on our ASL dataset using PReLU
in which negative activation is allowed through a small non-zero coefficient that
can be adaptively learned during training [6]. The number of filters in every con-
volutional layer is set to 48 with a filter size of 3 x 3. Following eight consecutive
layers, we apply one last convolutional layer without any activation function.
The last layer only includes one convolutional filter, and its output is considered
as the estimated residual image patch.

Noisy Image Residual Image

Al Al

ﬁ Conv+PReLU ﬁ Conv

Fig. 1. The architecture of the proposed network used for the estimation of a residual
image from the noisy perfusion-weighted image given as input.

Training. Training was performed using 18000 noisy and residual patch pairs of
size 40 x 40. The network was trained using the Adam optimizer with a learning
rate of 10~ for 200 epochs and mini-batch size of 500. We trained a single CNN
model for denoising the noisy input images from different noise levels. Inference
on test data was also performed in a patch-wise manner.

3 Experiments and Results

Datasets. Pseudo-continuous ASL (pCASL) images were acquired from 5
healthy subjects on a 3T MR scanner with a 2D EPI readout using the fol-
lowing acquisition parameters (TR/TE = 5000/14.6 ms, flip angle = 90°, voxel
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size = 2.7 x 2.7 x 5 mm?, matrix size = 128 x 128, 17 slices, labeling duration

(1) = 1800 ms, post-label delay (PLD) = 1600 ms). 30 C/L pairs and one Slpp
image were acquired for each subject.

Additionally, high resolution synthetic ASL image datasets were generated
for each real subject based on the acquired SIpp and coregistered white-matter
(WM) and grey-matter (GM) partial volume content maps. To create a ground-
truth CBF map, we assigned the CBF values of 20 and 65 mL/100g/min to
the WM and GM voxels respectively, as reported in [12]. To generate synthetic
data with a realistic noise level, the standard deviation over 30 repetitions was
estimated from the acquired C/L images for each voxel. We subsequently added
Gaussian noise with estimated standard deviation to each voxel of the synthetic
images. This step was repeated 100 times to create a synthetic data per sub-
ject containing 100 C/L pairs. For synthetic data, we set 7 = 1600 ms and
PLD = 2200 ms. All the other constant variables in (1) were fixed based on the
recommended values for pCASL given in [2].

Averaging Dilated Conv Proposed Reference
PSNR = 22.60 dB PSNR = 24.86 dB PSNR = 25.55 dB

00 @

@
=]

RMSE = 2.36 RMSE = 1.53 RMSE =1.37

Iy

Fig. 2. Visual comparison of denoising results (top) and resulting CBF maps (bottom)
on an examplary synthetic data using 20% of 100 pairwise subtractions. Corresponding
PSNR and RMSE values calculated with respect to references are also displayed at top-
left corner of each image estimate. The proposed method can yield the best results both
qualitatively and quantitatively.
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Data Preprocessing. Prior to training the network, the standard preprocess-
ing steps (motion correction, co-registration, Gaussian smoothing with 4 mm
kernel size) [2] were applied on C/L pairs using our in-house toolbox implemen-
tation for ASL analysis. The top and bottom slices of each subject were removed
from the analysis due to excessive noise caused by motion correction.

Data augmentation was applied on every 2D image slices using rigid trans-
formations. After augmentation, every image was divided into non-overlapping
2D patches of size 40 x 40, leading to 5440 patches per subject. This process was
repeated for input, target, and other variables required for network training.
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For each subject, we consider four different noise levels obtained by averaging
randomly selected 20%, 40%, 60% and 80% of all available C/L repetitions, all
of which were used during training and also tested on the trained network.

Experimental Setup. All experiments were performed using the leave-one-
subject-out fashion. The synthetic and in-vivo models were trained and tested
separately. In order to show the benefit of our proposed method, we compare it
with the recent deep learning based denoising method [9] for ASL. Throughout
the paper we refer to this method as Dilated Conv. For this network we use
exactly same dilation rates and number of filters as suggested in the paper, and
evaluate it using mean-squared-error (MSE) loss during training. We employ the
peak signal-to-noise ratio (PSNR) to quantitatively assess the quality of image
denoising, and the root-mean-squared error (RMSE) and Lin’s concordance cor-
relation coefficient (CCC) to assess the accuracy of CBF parameter estimation.
We run the experiments on a NVIDIA GeForce Titan Xp GPU, and our code
was implemented using Keras library with TensorFlow [1] backend.

Averaging Dilated Conv Proposed Reference
PSNR = 25.14 dB PSNR =27.03 dB PSNR = 28.65 dB

% M M
W w W

.
RMSE = 0.97 RMSE = 0.93

CBF (mL/100g/min)

Fig. 3. Visual comparison of denoising results (top) and resulting CBF maps (bottom)
on an examplary real data using 40% of 30 pairwise subtractions. Although the esti-
mated images qualitatively look similar, the quantitative metrics calculated inside the
brain demonstrates the better performance of the proposed method.

Results. Figure2 demonstrates the denoised images and corresponding CBF
maps of an exemplary slice of a synthetic dataset. Here, only 20% of 100 synthetic
C/L subtractions were used. Our proposed model produces the highest quality
perfusion-weighted images where noise inside the brain is significantly removed
compared to conventional averaging. The resulting CBF map of our proposed
method is also closer to the reference CBF map yielding the lowest RMSE score.

In Fig. 3 we present the qualitative results from a real subject’s data using
40% of 30 C/L subtractions. Although the proposed method achieves the best
PSNR and RMSE for perfusion-weighted image and CBF map respectively, the
improvement against conventional averaging is less apparent compared to the
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Averaging Dilated Conv Proposed
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Fig. 4. Bland-Altman plots of different methods obtained in a grey-matter region of a
real subject’s data. Differences in CBF (y-axis) between the reference and compared
method is plotted against the mean (x-axis) values of the two. The unit for horizontal
and vertical axes are in ml/100g/min. Solid green lines indicate mean difference. Solid
gray lines at top and bottom correspond to upper and lower margins of 95% limits of
agreement. Linear regression lines are also shown with red solid lines. Corresponding
CCC values are displayed at top-left corner of each plot.

synthetic data. The underlying reason is that as it can be clearly seen in Fig. 3,
our reference perfusion-weighted images obtained by averaging all 30 C/L sub-
tractions still suffer from significant noise and artifacts. Since we train our net-
work using these images as target, the network cannot produce results that show
better quality beyond the reference images. The Dilated Conv method also faces
similar problem for real data. Figure4 depicts the Bland-Altman plots of CBF
values in GM tissue obtained from different methods using a real subject’s data.
The plots indicate that our proposed method can yield better fidelity of CBF
estimation with smaller bias (green solid line) and variance (difference between
solid grey lines). The linear regression line (solid red) fitted in the averaging
method also shows a systematic underestimation error whereas this error is con-
siderably reduced by the proposed method where the regression line is closer to
a straight line, y = 0. Note that all three methods contain outlier voxels caused
due to excessive noise and artifacts observable in most of the C/L subtractions.
We also quantitatively compare the predicted results in Table1 in terms of
PSNR, RMSE and CCC. Our proposed method outperforms other competing
methods in all the metrics when either A = 0.2 or A = 0.5, which further demon-
strates the advantage of the incorporation of CBF estimation model in denoising
step. Taking into account data from all subjects, the differences between PR-
A = 0.2 and the Dilated Conv method on synthetic dataset are statistically
significant with p < 0.05 for all metrics. The differences are also statistically
significant on real dataset for PSNR and RMSE, but not significant for CCC
with p = 0.1388. Finally, we emphasize that image denoising using our trained
network takes approximately 5 ms on a single slice of matrix size 128 x 128.
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Table 1. Quantitative evaluation in terms of mean(std) obtained by different meth-
ods using all the subjects for synthetic and real datasets. The best performances are
highlighted in bold font. All the metric values are calculated inside the brain region.
Note that PR-A = = denotes our proposed method when X value is set to .

Method Synthetic dataset Real dataset
PSNR RMSE CCC PSNR RMSE CCccC

Averaging 20.3(4.81) | 2.20(2.51) | 0.88(0.06) | 23.6(6.16) | 1.49(0.80) | 0.85(0.07)
Dilated Conv | 25.2(5.09) | 1.48(1.06) | 0.93(0.05) | 24.2(5.90) | 1.41(0.72) | 0.87(0.06)
PR-A=0.2 | 28.0(3.82) 1.33(0.79) 0.95(0.04) 25.1(5.36) | 1.37(0.65) | 0.88(0.05)
PR-A=0.5 | 26.9(4.23) | 1.40(0.84) | 0.95(0.04) 24.3(5.35) | 1.38(0.67) |0.88(0.06)
PR-A = 0.7 | 25.6(6.07) | 1.51(1.76) | 0.94(0.06) | 24.0(5.39) | 1.39(0.69) | 0.88(0.06)
PR-A=1.0 25.3(5.62) | 1.49(1.56) | 0.93(0.05) |23.9(6.00) | 1.42(0.70) | 0.87(0.06)

4 Conclusion

We have proposed a novel deep learning based method for denoising ASL images.
In particular, we utilize the Buxton kinetic model for CBF parameter estimation
as a separate loss term where the agreement with reference CBF values is simul-
taneously enforced on the denoised perfusion-weighted images. Furthermore, we
adopt the residual learning strategy on a deep FCN which is trained to learn a
single model for denosing images from different noise levels. We have validated
the efficacy of our method on synthetic and in-vivo pCASL datasets. Future
work will aim at extending our work to perform denoising on multi-TT ASL data
where the estimation of the arterial transit time (ATT) parameter can be also
exploited in the loss function.
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Conclusions and Outlook

This dissertation essentially explored advanced techniques for image enhance-
ment — involving both reconstruction and denoising — and parameter recon-
struction problems for perfusion MR imaging. In this chapter we will present a
brief summary and general discussion of each thesis contributions, specifically
highlight their importance as well as their limitations, and will discuss possible
directions for future research.

Accelerated dynamic MR data reconstruction

In Chapter 3 we have presented a new reconstruction approach for the fast
reconstruction of dynamic MRI data from undersampled k-space measurements.
By jointly integrating two fundamentally different constraints, which enforces
not only local coherences at the pixel-level but also global correlation in the
full spatio-temporal domain, our proposed approach can iteratively reconstruct
the full dynamic MRI sequences. In comparison to the state-of-the-art iterative
reconstruction techniques, our method demonstrates superior performance in
terms of reconstruction accuracy and image quality when test on in-vivo 3D
cardiac and brain MRI datasets.

Nevertheless, our approach exhibits a few limitations. First, despite working
with real imaging data, the undersampling was applied in retrospective manner,
where we simulated the undersampling from fully sampled data. Ideally, a
proper evaluation of our reconstruction method should be done with true data
distribution, i.e. from raw undersampled data which are prospectively sampled
on the MR scanner. It is worth mentioning that several previous works [22,
120, 52] have shown that the reconstruction performance on prospectively
undersampled data usually align well with retrospectively undersampled data
unless there is a high amount of motion and imaging artifacts introduced during
the acquisition of prospectively sampled data. Second, the computational time
of reconstructing the entire 3D dynamic sequence is typically long, i.e. on the
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order of minutes or sometimes hours depending on the data size and efficiency
of solver of the optimization problem. In our case, it takes roughly 3 minutes
to reconstruct a 3D dynamic sequence of size 128 x 128 x 10. Another relevant
weakness of our method is that it requires fine-tuning of the regularization
parameters for each regularization term. Finding the optimal values of these
parameters is not an easy task because it heavily depends on various factors,
including the image data type, sampling trajectories, acceleration factor, etc.
It is usually good practice to apply exhaustive grid search based techniques to
find the optimal combinations of the hyper-parameters. Inappropriate settings
of the regularization parameters generally yield poor reconstruction quality.
Over the last three years, deep learning (DL) based networks [121, 122,
123, 124] have been predominantly used for the dynamic MRI reconstruction
task and have been shown to outperform the conventional CS-based dynamic
MRI reconstruction techniques. The main advantages of DL based data-driven
models over the CS-based iterative reconstruction techniques are as follows:
(i) The reconstruction of full dynamic sequence is significantly faster once
a network is trained, i.e. on the order of miliseconds or seconds. (ii) The
intrinsic relation between the undersampled data and fully-sampled (high
quality) images are directly learned from a large amount of training data,
meaning that one does not need to find the optimal sparsifying transform
or constraints for the given dynamic MR data. To this end, exploring the
deep neural networks (NNs) on a prospectively undersampled dynamic MRI
might be an interesting direction of future work. However, due to the intrinsic
generalization property of deep NNs, one needs to further investigate the
reconstruction quality around the specific pathological tissue regions.

Perfusion MR data reconstruction

We proposed a reconstruction model specifically designed for recovering per-
fusion MR image series from undersampled k-space data in Chapter 4. Ap-
pendix A additionally presents the asssesment of proposed model with the
estimations of perfusion related parameters obtained from clinical DSC and
DCE MRI brain perfusion sequences. The essence of our model is based on the
observation that the rapid signal contrast variations over time — occurring due
to attenuation related to the passage of the contrast agent (CA) — generally
vary in different tissues, including blood vessels, normal tissues, tumor regions,
etc, appearing as small areas inside the organ being imaged. One of the key
findings here is that the quality of the reconstructed images highly depends on
the resolution of the acquired images, the noise introduced during acquisition
and the acceleration factor of undersampling. Chapter 4 shows that 4x to
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6x acceleration can yield satisfactory reconstruction quality when applied
on relatively low-resolution data, whereas pushing towards 20x acceleration
still enables us to obtain perfect quality (highly similar with fully-sampled
images) when the images have high-resolution, as presented in Appendix B.
The parameter quantification was applied as a post-processing step on the
reconstructed and fully-sampled image series data, therefore the quality of
image reconstruction directly reflects on the accuracy of estimated parameter
maps. To be more precise, up to 8-fold acceleration our model produces very
similar parameter maps with respect to the reference maps, however for the
higher acceleration rates we start observing oversmooth regions in different
brain areas of the parameter maps. Furthermore, it is worth mentioning that
as the proposed approach is based on an iterative reconstruction scheme, it
inherently possesses the above-mentioned drawbacks of our dynamic MRI
reconstruction model.

One potential direction of future research on this topic might be using the
recurrent neural network based DL models to exploit the full temporal dynamics
of the perfusion signal. Several approaches towards this direction [125, 126]
have been recently applied on undersampled cardiac cine MRI data for motion
estimation and compensation as well as reconstruction of full dynamic sequence.
As the temporal variations in perfusion image series occur essentially at the
local regions of the organ, it is benefical to train the network on small image
patches instead of entire images. Furthermore, a novel loss function capturing
the complete temporal perfusion signal information can be incorporated when
training the network.

Direct reconstruction/inference of pharmacokinetic parameters of
DCE MRI

In Chapter 5 we presented a deep learning based approach to directly estimate
the pharmacokinetic (PK) parameters from undersampled DCE-MRI data.
We treat the parameter inference from undersampled data in DCE imaging
as a mapping problem between the corrupted image-time series and residual
parameter maps where the underlying mapping is learned uing deep CNNs.
One of the main contribution of this work is that by integrating the forward
physical model into the loss function, which relates the PK parameters to
the corrupted perfusion signal, our proposed model can allow the network to
inrinsically exploit the underlying contrast agent kinetics in training phase,
thus provide more accurate restoration of PK parameters. Results on 10-fold
undersampled in-vivo brain DCE-MRI dataset demonstrates high similarity
with the reference parameter maps obtained from fully-sampled data. The
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key benefits of our approach are as follows. First, our method serves as a
direct parameter reconstruction approach where the image reconstruction
step is completely eliminated. Second, parameter inference at testing stage
takes significantly less time, i.e. around 1-2 seconds on a 3D DCE volume,
in comparison to state-of-the-art iterative model-based direct reconstruction
method.

Following to the above-mentioned work, we further targeted to directly
infer the PK parameters from the observed signal intensity over time, where
no undersampling was applied on the original DCE image series. As provided
in Chapter 6, we presented a comprehensive assessment of the quality of
estimated parameters from our model on brain DCE datasets acquired from
patients with clinically evident mild ischaemic stroke. The results demonstrated
several advantages of our approach over the traditional model fitting based
parameter estimation techniques, including (i) avoiding a few intermediate
computation steps of quantification of PK parameters, (ii) increased robustness
to signal noise and outliers, (iii) enabling statistically significant differences of
parameter values between different tissue types.

Nevertheles, we should point out the several limitations of both of these
works. First, our approach works only for the situation where both the training
and test data were acquired with the same acquisition protocol and parameters,
ideally acquired in a population study. Especially when the subject-specific
AlFs vary significantly across different subjects or dataset, this should be
handled appropriately, otherwise paramater inference on a unseen test data
may provide quite poor results. Second, further investigation on synthetic
data is required to perform more precise assessment of error and bias when
the ground-truth parameter values are known. Third, due to the strong
generalization ability of our DL model, we partly observe the problem of
overestimated parameter values over the highly perfused brain tissues, e.g.
in white matter hyperintensities or stroke lesion. The overestimation within
these tissue regions is presumably caused by the relatively lower paramater
values estimated by reference kinetic model fitting (e.g. Patlak model) due to
significant signal noise and fitting to the local minima of the NLLS. However,
these observations neccessiate a deep investigation of the parameter estimations
within the critical regions of interest, performed by the expert radiologists.
Until clinical trials are performed, the true assessment of the utility of our
proposed method remain unclear.

Following to our first DL-based contributions [87, 88] to this field, several
other works have been recently proposed mainly considering different network
architectures [127, 128] and uncertainity estimation of parameter inference [129].
One of the interesting direction of future work related to this topic might be
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designing a single DL network which can be trained and tested on a mixed
dataset — ideally involving DCE image series acquired with different acquisition
parameters and protocols — to investigate the possibility and efficacy of an
acquisition protocol-agnostic network. Related to this idea, an emerging field
of federated learning based approaches [130, 131] can be further exploited
without centralising the mixed dataset if each data must reside in different
sites to avoid data governance and privacy problems.

Denoising arterial spin labeled MRI

As presented in Chapter 7, we proposed a novel DL based framework for
denoising the perfusion-weighted image quality obtained from a subset of
available pairwise control/label image subtractions in ASL perfusion imaging.
Our key contribution here is that we follow a mixed modeling approach in
our denoising scheme by incorporating a formal representation of the CBF
signal model as a prior knowledge in our network, more precisely, we use the
Buxton kinetic model as a separate term of the loss function during training
stage. This allows us to produce high quality perfusion-weighted images
while simultaneously enforcing the network to estimate CBF maps that are
highly similar with reference CBF maps. In comparison to the first DL-based
work [132] appeared in this domain, we demonstrated the efficiency and superior
performance of our proposed denoising model using both synthetic and in-vivo
single-TT (or post-label delay) ASL datasets. Another main benefit of our
work is that we showed how a single CNN model can be effectively learned to
denoise perfusion-weighted images subject to different noise levels. However,
as a main drawback of this work, our model was designed to primarily work
on a single-TI setting, where all ASL images are acquired with the similar
acquisition parameters, including a constant post-label delay, label duration
and labeling efficiency. Extending this work to learn a parameter-agnostic
DL network, which can effectively denoise perfusion-weighted images acquired
with different acquisiton protocols and parameters, might be an interesting
future work.

Following to our published work [89], a few other studies have been recently
proposed on single-TT ASL denoising [133, 134], artifact suppression [135, 130]
and super-resolution [137] using different DL network architectures. Neverthe-
less, until now researchers have not paid enough attention to develop denoising
methods directly applied on multi-TI ASL data even though their utility and
effectivenes are much more prominent when considering significantly high scan
duration of a complete multi-TT acquisition session. Moreover, multi-TT acquisi-
tions provide estimation of additional perfusion parameters, e.g. arterial transit

97



8. CONCLUSIONS AND OUTLOOK

time (ATT), and more precise estimation of CBF. Therefore, as an interesting
line of future work, we currently work on estimating high-quality and realistic
perfusion parameters directly inferred from noisy perfusion-weighted images
acquired at multiple post-label delays or inversion times, where we explore to
adapt generative adversarial networks (GANs) framework.
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Abstract: Perfusion-weighted magnetic resonance imaging (MRI) is an imag-
ing technique that allows one to measure tissue perfusion in an organ of
interest through the injection of an intravascular paramagnetic contrast agent
(CA). Due to a preference for high temporal and spatial resolution in many
applications, this modality could significantly benefit from accelerated data
acquisitions. In this paper, we specifically address the problem of reconstruct-
ing perfusion MR image series from a subset of k-space data. Our proposed
approach is motivated by the observation that temporal variations (dynamics)
in perfusion imaging often exhibit correlation across different spatial scales.
Hence, we propose a model that jointly penalizes the voxel-wise deviations in
temporal gradient images obtained based on a baseline, and the patch-wise
dissimilarities between the spatio-temporal neighborhoods of entire image
sequence. We validate our method on dynamic susceptibility contrast (DSC)-
MRI and dynamic contrast enhanced (DCE)-MRI brain perfusion datasets
acquired from 10 tumor patients in total. We provide extensive analysis of
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reconstruction performance and perfusion parameter estimation in comparison
to state-of-the-art reconstruction methods. Experimental results on clinical
datasets demonstrate that our reconstruction model can potentially achieve
up to 8-fold acceleration by enabling accurate estimation of perfusion param-
eters while preserving spatial image details and reconstructing the complete
perfusion time intensity curves (TICs).
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Abstract—Perfusion-weighted magnetic resonance imaging
(MRI) is an imaging technique that allows one to measure
tissue perfusion in an organ of interest through the injection
of an intravascular paramagnetic contrast agent (CA). Due to
a preference for high temporal and spatial resolution in many
applications, this modality could significantly benefit from accel-
erated data acquisitions. In this paper, we specifically address
the problem of reconstructing perfusion MR image series from a
subset of k-space data. Our proposed approach is motivated by
the observation that temporal variations (dynamics) in perfusion
imaging often exhibit correlation across different spatial scales.
Hence, we propose a model that jointly penalizes the voxel-
wise deviations in temporal gradient images obtained based on
a baseline, and the patch-wise dissimilarities between the spatio-
temporal neighborhoods of entire image sequence. We validate
our method on dynamic susceptibility contrast (DSC)-MRI and
dynamic contrast-enhanced (DCE)-MRI brain perfusion datasets
acquired from 10 tumor patients in total. We provide extensive
analysis of reconstruction performance and perfusion parame-
ter estimation in comparison to state-of-the-art reconstruction
methods. Experimental results on clinical datasets demonstrate
that our reconstruction model can potentially achieve up to 8-fold
acceleration by enabling accurate estimation of perfusion param-
eters while preserving spatial image details and reconstructing
the complete perfusion time-intensity curves (TICs).

Index Terms—Perfusion-weighted magnetic resonance imag-
ing, reconstruction, tracer kinetic modeling, acceleration

I. INTRODUCTION

TUDYING blood flow and blood flow patterns is a major

field in clinical radiology and diagnostics. Perfusion-
weighted magnetic resonance imaging (MRI) provides a mean
for assessing tissue perfusion and vascular permeability in
vivo through examination of the spatio-temporal changes of
signal intensities following the injection of an exogenous
paramagnetic contrast agent (CA) [1]. These techniques have
become valuable clinical tools since they play a crucial role,
for instance, in the diagnosis of stroke, the determination of
tissue(s) at risk of infarction, and the prediction of prognosis
after treatments of patients with stroke and tumors [2]. Two
of the most common methods used in perfusion-weighted
imaging (PWI) are dynamic susceptibility contrast MRI (DSC-
MRI) and dynamic contrast enhanced MRI (DCE-MRI).
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Both techniques require intravenous bolus administration of
gadolinium, followed by the acquisition of successive images
as the contrast bolus enters and subsequently leaves the organ
of interest. DSC-MRI relies on dynamic alterations of the 75
transverse relaxation times of tissues and it is employed to
assess the hemodynamic status of tissues [3]. DCE-MRI on the
other hand relies on changes of the 7} longitudinal relaxation
times of the tissues. DCE-MRI is widely used to interrogate
the vascular characteristics of tumors in clinical settings [2].
Vast majority of clinical research on PWI have considered
the problem of estimating accurate voxel-wise perfusion pa-
rameters which are generally obtained by fitting a tracer kinetic
model to the observed time-intensity curves (TICs) [4]. An
illustration displaying the major steps of kinetic parameter
estimation in DSC-MRI is provided in supplementary material.
One of the major obstacles in the clinical use of PWI is the
immense need of high temporal resolution to capture the rapid
contrast changes of CA uptake for precise perfusion quantifi-
cation [1]. Furthermore, the short scanning time available for
each frame often leads to limited spatial resolution to detect
small image features and accurate tumor boundaries, and low
signal-to-noise ratio (SNR) to enable precise fitting of kinetic
model parameters. Considering such severe constraints, PWI
can benefit from subsampled acquisitions [5]. However, sub-
Nyquist sampling often results in aliasing artifacts in image
space and in the context of PWI, reconstruction of complete
temporal signal with its peak and high dynamics (observable
in blood vessels) constitutes even a more challenging problem.
Recently, various reconstruction approaches have been pro-
posed in related dynamic imaging applications, based on, such
as piece-wise smoothness in the spatial domain [6], [7], high
correlation and sparsity in the temporal domain [7], [8], [9],
[10], sparse representations of local image regions via learned
dictionaries [10], [11] and low-rank property of MR sequences
in the full spatio-temporal space [8], [12], [6]. However, there
are only a few works dedicated directly to reconstruction prob-
lem in PWI, considering the constraint of the image frames
based on a baseline (pre-contrast) image [13], the penalization
of time curves with high temporal gradients [14], and the
minimization of temporal finite-differences enforced together
with multiple constraints on spatial domain [7], [15]. The main
limitation of these methods is that they consider the temporal
variations only in single voxel level and neglect the similarities
and variations between the voxels located in a spatially close
neighborhood. For this reason, their performance is very
sensitive to rapid signal changes occurring over the duration of
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image acquisition as encountered in PWI. These methods often
produce blurry image regions and oversmooth reconstruction
of TICs, and ultimately result in underestimated peak value
of the perfusion signal, which substantially deteriorates the
accuracy of estimated perfusion parameters. To this end, an
optimal choice of the reconstruction model is essential for
PWI targeting to recover the complete temporal pattern of the
perfusion TICs while preserving the spatial quality of image
series. We believe that a reconstruction model satisfying such
conditions can be used to accelerate the acquisition of PWI
and practically allow to acquire more samples in time domain
and improve the volume coverage of the organ of interest.

In perfusion imaging, we observe rapid signal (contrast)
variations over time due to the attenuation related to the pas-
sage of the contrast agent. Depending on the level of perfusion
incurred by the tracer, these variations mainly differ in tissues,
blood vessels, and tumor regions, etc., appearing as small local
areas inside the organ to be imaged. Motivated by this obser-
vation, we propose a new reconstruction model specifically
for PWIL. Our model primarily integrates two fundamentally
different data-driven constraints: (i) a voxel-wise local sparsity
constraint on the temporal gradient images with respect to a
baseline, limiting the overall dynamic of the perfusion time
series, and (ii) a patch-wise similarity constraint on the spatio-
temporal neighborhoods of the entire perfusion image series,
providing smooth spatial regions with better alignment to tem-
poral variations in small local areas represented with patches.
We formulate the main optimization problem in a joint formal
framework and introduce a new proximal splitting strategy
[16] that benefits from the weighted-average of proximals,
and can efficiently solve the joint minimization problem with
fast convergence. The proposed method is validated on DSC
and DCE-MRI perfusion datasets collected from brain tumor
patients and compared with existing reconstruction meth-
ods. Extensive experiments demonstrate the efficiency of our
method in terms of reconstruction performance and estimation
of perfusion parameters from accelerated acquisitions. To the
best of our knowledge, this is the first work to exploit the
spatial and temporal variations jointly at different scales for
the purpose of reconstruction of PWI, successfully applied on
both DSC and DCE-MRI time series.

Preliminary results of this work presented at a conference
[17] are herein extended by additional validation on DCE-
MRI datasets collected from a clinical cohort of glioma
patients, assessment of our method with estimated hemody-
namic and pharmacokinetic parameters underlying perfusion,
and experimental analysis of convergence properties of the
proposed algorithm. The key contributions of this paper can
be summarized as follows:

e« We present a robust reconstruction method for PWI
dynamic series. Our proposed model exploits the spatio-
temporal variations jointly at single voxel and patch level.

o The proposed reconstruction model can enable accurate
quantification of clinically useful perfusion parameters
while attaining up to 8-fold acceleration through the use
of only a subset of k-space measurements.

o We introduce a formal iterative algorithm to solve the
minimization of the sum of convex regularizers based on

proximal-splitting applied to a reconstruction problem.

The remainder of this paper is organized as follows. Sec-
tion II provides the detailed description of the proposed recon-
struction model along with its formulation and the algorithm
to solve the reconstruction problem. In Section III, we briefly
describe the acquisition parameters of our clinical perfusion
datasets and employed tracer kinetic models for data analysis.
Section IV presents the experimental setup and the results of
conducted experiments. After a general discussion we provide
the concluding remarks in Section V.

II. RECONSTRUCTION MODEL

Our proposed reconstruction model jointly imposes two
spatio-temporal constraints both on a voxel-wise (local) and
patch-wise (nonlocal) level as illustrated in Fig. 1. In the
following sections we provide the intuition behind using
specifically these constraints and describe how to mathemati-
cally formulate the joint regularization problem along with the
algorithm that efficiently solves the optimization.

A. Formulation

We remark that throughout the paper we describe our
method on 2D + t data only for simplicity of the presentation.
However, a generalization to 3D + t volumes is also straight-
forward. We assume that X € R¥N«*NvXT" jg 3 2D perfusion
MR image series (sequence) represented as spatio-temporal
3D data involving a total number of N = N, x N, x T
voxels. Let 2y € RN=*Ny denote a perfusion MR frame at
time ¢, y; is the acquired undersampled k-space measurement
of , and T = {1,2,..., T} is the set of frame number indices
in the sequence. The main objective is to reconstruct all x;’s
from the acquired k-space measurements y;’s. The physical
model between x; and y; can be formulated as,

yr = A(Fzy + 1), (D

where A, represent the sampling matrix to acquire only a
subset of k-space samples, F' is the 2D Fourier Transform
operator and 7 is additive Gaussian noise in k-space. We
denote the partial 2D Fourier operator for frame ¢ as F; =
AyF, and stack the F;’s for all frames of the sequence as
Fu = diag{F1, Fa, .., Fr}. The investigated problem in (1) is
an ill-posed inverse problem [6], [10]. Regularization is often
required to find a unique and stable solution to such problems.

We pose the joint regularization for the reconstruction of
perfusion image series as the following optimization problem,

5 1
X = argmin §||.7-"UX—Y||§+)\1RL(X)+)\2RNL(X), )
X

where X denotes the entire perfusion image series and Y
represents the corresponding k-space measurements. The first
term in (2) ensures data consistency, Ry and Ryp are two
regularization terms imposed on reconstruction, A\; and Ao are
the tuning parameters for these penalty terms.

Local (R.) regularizer: This regularizer penalizes the
sum of voxel-wise intensity differences in temporal gradients
calculated based on a reference for every frame x;, defined as,

Ny XNy
RUX) =3 SV (Valwe = 2)) + (9 (a0 — 2)a)’,

teT n=1
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where T is a reference (baseline) image, V,, and V,, represent
finite-difference operators along = and y dimensions, respec-
tively. This penalty is termed as dynamic total variation (DTV)
and was orignally proposed for online reconstruction [9]. Here
we employ DTV in offline manner, where all the frames
are available. This term is better adjusted to the variations
in time since it explicitly enforces temporal coherence by
minimizing the difference with respect to a reference for every
frame. Presumably, if there are deviations from the baseline
intensities, they should be spatially homogeneous, i.e., a block
of neighboring voxels should exhibit the same amount of
deviation. Intuitively, this regularizer serves as a penalty on
the large deviations from a baseline perfusion signal, enabling
to smooth extreme local image regions.

Nonlocal (Ryy) regularizer: This regularizer penalizes the
weighted sum of ¢ norm distances between spatio-temporal
neighborhoods (patches) of the image series and we use it as
a fully 3D nonlocal scheme. The term is specified by [18],

RaL(X Z Z (P, )| Pp(X) — Py(X) |3,
pEQ qeN,

where p = (P, Py, Pt) and q = (qg, gy, q¢) are two voxels,
and the voxel of interest is p € Q, where Q = [0, N,] X
[0, Ny] x [0,T]. The term Pp(X) denotes a spatio-temporal
3D patch of the image sequence X, centered at voxel p. We
represent N, as a 3D search window around voxel p. We
simply denote N, and N,, as the size of a patch and search
window, respectively. The size of the patch must be smaller
than the size of the search window. The weights ¢(p,q) are
calculated based on Euclidean distance between the patches,

o(p,q) = exp (=[|Pp(X) = Pa(X)I3/h%), ()
where h is a parameter controlling the decay of the exponential
function. The exponential weighting favors the similar patches
in terms of Euclidean distance by assigning higher weight to
their center voxels. Intuitively, this regularizer can exploit the
similarities between patch pairs in adjacent frames and enforce
smooth solutions in the spatio-temporal neighborhoods of the
MR sequence even in the presence of significant inter-frame
signal changes and high noise introduced during acquisition.

B. Algorithm

The algorithm solving the primal problem (2) is mainly
based on a proximal-splitting framework. For the better un-
derstanding of our algorithm, we first start with the definition
of a proximal map.

Proximal map: Given a continuous convex function g(x)
and a scalar p > 0, the proximal operator associated to convex
function g can be defined as [19]

. 1
proz,(g)(z) := argmin % lx — zH% + g(z). 4
TEH 14

Concretely, this operator serves as an individual minimizer for
the convex function g, which approximates a value close to a
reference point z [20].

The reconstruction problem in (2) can be reformulated as
the following denoising problem,

. 1
X = arg min 5||X—Z||§+pA1RL(X)+pA2RNL(X), 6)
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Fig. 1. Illustration of the two constraints enforced in our reconstruction model.

where Z = FH2Y and H is the conjugate transpose. Assuming
that each of the regularization terms in the cost function (2)
is convex, the above denoising problem can be represented as
the proximal map of the sum of two regularization terms as
described in [19],

X = proz,(MRL + AaRnp)(2). (6)

The problem (5) admits to a unique solution as provided
in (6). Proximal-splitting methods can allow tractable solu-
tions for the proximity operator of the sum of two convex
functions. These methods are first-order iterative algorithms
that solve relatively large-scale optimization problems with
several nonsmooth penalties. They operate by splitting the
main objective function into individual subproblems which can
be easily evaluated via proximal operators [20].

To solve our main problem in (5), we therefore split the
objective function into two individual subproblems that we
term Rp-subproblem and Ryp-subproblem.

Ry-subproblem: The proximal map for this subproblem
can be defined as,

. 1
proz,(MRL)(Z) = arg;nln 2—p||X — Z||§ + MRL(X).

To efficiently solve this subproblem, we first reformulate it
by introducing new variables d; = z; — 7, Z; = Ffly; and
dtg = Z; — T, then the problem can be turned into

i=argmin Y- (ool = dy I+ Mlldday ) )
d ter P

where d = {dl,...,dT} and ||dt||TV = ||[Q1dt,Q2dt]”2’1,
where ()1 and Q2 are two NN, x NN, first order finite
difference matrices in vertical and horizontal directions, ¢5 1
norm is the sum of the 5 norm of each row of given matrix.
When a reference image  is given, the cost function in
(7) can be minimized individually for every frame x; [9].
This guarantees that the sum of the costs is also minimized.
The minimization can be efficiently solved using the fast
iteratively reweighted least squares (FIRLS) algorithm [21]
based on preconditioned conjugate gradient method. This al-
gorithm provides fast convergence and low computational cost
by adopting a preconditioner approximated using diagonally
dominant structure of the symmetric matrix F}1 ;. Once the
problem (7) is solved, the final solution of R -subproblem is

simply obtained by,

Xp, = |d +Z,dy+ Z,...,dp + 55} . (8)
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Algorithm 1: Reconstruction algorithm

Input: Acquired k-space data Y, F, A1, A2

I 2
Initialize: 20 = 23 = FEY, wy, wo, X° = Dot wizd, ag,
y=1,k=0

while stopping criteria not met do
Xg = X" —yFI(F X -Y)
2=k ak(proxwi@)\lRL)(Xk + X, — 28— XF)

1
2T = 2k —&—ak(prom%(Q)\zRNL)(Xk + X, —25) - X%)
XE — wlziCJrl + w2z2+1
apy1 =14+ 2(ap — 1) /(1 4+ /1 + 4(ak)?)

k<~ k+1
end

Output: Reconstructed image sequence X

Rnp-subproblem: The proximal map for this subproblem
can be specified by,

. 1
proz,(AeRnL)(Z) = arg;mn 2—p||X — Z||§ + AR (X).

The nonlocal penalty function in this problem is nonconvex.
However, it has been shown in [22] that the problem has
a convex nature when the nonlocal regularization functional
is assumed to be explicitly dependent on constant and pre-
determined weights (. The minimization problem here can
be solved via a two-step alternating minimization scheme in
an iterative projections onto convex sets (POCS) framework
[23]. In each iteration, the first step projects the image estimate
onto the data consistency term and the second step performs
the minimization of the neighborhood penalty term on the
projected data after re-estimating the weights from the current
data estimate. The minimization of penalty term is equivalent
to applying a non-local means (NLM) filter to the projected
images [24]. The NLM filter is mathematically formulated as,

5 Z(qz7qy7qt)eNp (P, 0)X(dx, dy, at)

X Pz, Py, P -
( op Z(quvaqt)eNp ¢(p,q)

and essentially calculates a weighted average of closest patches
in a search neighborhood and updates every voxel accordingly.
To reduce the computational burden of searching closest
patches, we employed an optimized blockwise version of NLM
proposed by Coupé et al. [25].

Primal problem: After solving each subproblem', we adopt
a generalized forward-backward splitting (GFBS) framework
[16] that jointly minimizes the sum of convex functions as
given in our primal problem (2). GFBS is an operator-splitting
algorithm and uses a forward-backward scheme [20]. Our
proposed reconstruction algorithm is outlined in Algorithm 1.
The algorithm mainly involves the computation of proximals
on the gradient projections in every iteration and then weighted
averaging of the two resulting proximal maps with weights
denoted as (wy,ws). We further accelerate the convergence of
the algorithm with an additional acceleration step similar to
the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
[26]. This step adaptively updates the value of step size
parameter (o) through iterations and make it sufficiently close
to 1. The effect of adaptive aj update on the convergence
will be emprically demonstrated in Section IV-B1. The GFBS

)

IThe details of algorithms solving each subproblem are given in supple-
mentary material.

method has been shown to converge when v < 2/L if the
convex function f = 1||X — X,|3 has a Lipschitz continuous
gradient with constant L. We refer the readers to GFBS paper
[16] for more details concerning the proof of convergence.

ITI. DATA ANALYSIS
A. Dynamic Susceptibility Contrast (DSC)

1) Data: Five glioma patients were imaged on a 3T MRI
scanner using a 16-channel head neck coil. DSC-MRI image
series were acquired using a 2D single-shot gradient-echo EPI
sequence with parameters (Ig = 1500 ms, Ty = 30 ms, flip
angle = 70°, voxel size = 1.8 x 1.8 x 4 mm?, acquisition
matrix = 128 x 128, 20 slices). A bolus of 15 ml Gd-DTPA
(Magnevist, 0.5 mmol/ml) was injected 3 minutes after an
initial first bolus of 7.5 ml with 4 ml/s injection rate. In total
60 frames were collected up to around 1.5 minutes.

2) Analysis: The signal time-intensity curves (TICs) of
each voxel were directly used to estimate the CA concen-
tration C.4,, from the change in the gradient echo transverse
relaxation rate, AR5 [4],

Craw(t) < ARy = —(1/Tg)log [S(t)/5(0)], (10)
where S(t) is the post-contrast injection signal intensity, S(0)
is the pre-contrast signal intensity, and 7 is echo time. Based

on a well established tracer kinetic model in [3], the amount
of contrast in the tissue is characterized by,

t
Cy(t) = CBF - / Cu(T)R(t — T)dr, (1D
0

where Cy(t) is the average CA concentration in a tissue voxel,
CBF is the cerebral blood flow, C,(t) is the local CA con-
centration at the artery inlet, known as arterial input function
(AIF), and R(t) is the tissue residue function which measures
the fraction of CA remaining in the given vascular network
over time. The arterial input function C,(t) was determined
over voxels in a small region extracted from branches of the
middle cerebral artery. The noisy AIF signal was fit through
a gamma-variate function to provide smooth concentration
curves. Tissue residue functions R(t) were obtained by de-
convolving the tissue concentration time curves with the AIF
using circulant truncated singular value decomposition [27].
The CBF was computed as the peak of the residue function,
the CBV was determined as the area under the concentration
time curves and the MTT was computed as the ratio of the
CBYV to CBF according to the central volume theorem [3].

B. Dynamic Contrast-Enhanced (DCE)

1) Data: The data from five different glioblastoma patients
were used for evaluation of the methods. For each patient, two
data sets were sequentially acquired on a 3T MRI scanner:
one for constructing 77 maps and one for the DCE-MRI
analysis. Data for constructing 77 maps were acquired using
a 3D fast gradient echo multiple flip angle approach with
parameters (Ig = 6 ms, Tx = 2.32 ms, flip angles of
{2°,5°,10°,15°,20°,30°}, voxel size = 2 x 2 x 2 mm?,
acquisition matrix = 128 x 128, 20 slices). Dynamic DCE
series were acquired with identical parameters but with a
single flip angle of 10°. A bolus of 0.1 mmol/kg of GD-
DTPA (gadopentetic acid) was injected after 52 s. Initially,
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Fig. 2. Exemplary sampling patterns in (kx, Ky) space corresponding to 8-fold
acceleration: (a) Variable density Cartesian sampling (b) Radial Sampling.

a total of 250 frames were collected for up to 6 minutes. Each
set of 5 frames were averaged before reconstruction, resulting
50 frames in total to constitute a dynamic sequence.

2) Analysis: Data collected at multiple flip angles for the
T} map were fit using a non-linear least-squares fitting to the
gradient echo signal intensity equation, given by [5]

1 — exp|—Tr/T4 (1)

1 — cosaexp[—Tr/Ti(t)]’
where M is the proton density, « is the flip angle and Tg is
the repetition time. Here, we assume that Ty << T5'.

The increase in the relaxation rate can be further linearly
related to the concentration of CA in the tissue, C;(t) [28],

1/Ti(t) = 1/T1(0) + r1.Cy (1), (13)
where T3(0) is the tissue T3 relaxation prior to the CA
administration, 77 (t) is the T} relaxation during and after
injection, and r; is the CA relaxivity. We use the Patlak model
[29] for tracer pharmacokinetic modeling and estimation of
tissue perfusion parameters. This model describes a highly
perfused two compartment tissue, ignoring backflux from the
extracellular extravascular space (EES) into the blood plasma
compartment. The CA concentration in the tissues is given by,

S(t) = Msina (12)

t

Co(t) = v,Cy(£) + K™ / Co(ndr, (4
0

where KU js the volume transfer rate at which CA is

delivered to the EES, v, is the plasma fraction, and Cy(t) is

the CA concentration in blood plasma. C)(t) denotes the AIF

measured as in DSC analysis. The ROCKETSHIP toolbox [28]

is used for 77 map fitting and Patlak model implementation.

IV. EXPERIMENTS AND RESULTS
A. Experimental Setup

All perfusion datasets described in Section III were acquired
as fully sampled data. The min-max normalized fully-sampled
dynamic sequences were retrospectively undersampled by
multiplying its corresponding k-space data with a binary un-
dersampling mask and subsequently adding complex additive
white Gaussian (AWG) noise, as formulated in (1). The power
of AWG noise was fixed to 02 = 107! in all experiments.
Undersampling was simulated with a time-varying variable
density Cartesian sampling and Radial sampling (see Fig. 2).
These sampling strategies were commonly used for dynamic
MR applications [12], [9], [10]. To provide better evaluation
of different methods, we considered increasing acceleration

(@ (b)

~

) W, wy = (0'7j 0.3) =kt RPCA
E 0.03 4wy, wy = (0.6,0.4) - FTVNNR
wy, wy = (0.5,0.5) DTV
0.025 ewy,wy = (0.4,0.6) ~Proposed, afxea = 0.3
( ) -x-Proposed, ag 0.3

0.3,0.7

wy, wy =

Proposed, as
Proposed, a4

0.015
1 2 3 4 5 6 7 8 9 0 20 40 60 80 100

Iteration Iteration

Fig. 3. (a) RMSE versus iteration number for different (w1, w2) combinations
obtained from proposed method, (b) PSNR versus iteration number for
different reconstruction methods displaying the convergence of our algorithm
depending on varying settings of step size («) parameter.

factors of R = {2x, 4x, 8x, 12x, 16x} in the experiments. The
reference image used in the Ry -subproblem was initially taken
as the direct inverse FFT (zero-filled) reconstruction of the first
frame with 2-fold subsampling. Later on, it was updated as the
average of all frames in the reconstructed sequence through
iterations. Perfusion parameter estimation was employed after
image reconstruction as a separate step.

We compare our method with three state-of-the-art dynamic
reconstruction techniques: (k,t)-space via low-rank plus sparse
prior (k-t RPCA) [12], dynamic total variation [9], fast total
varitation and nuclear norm regularization (FTVNNR) [6]. To
ensure fair comparison, as presented similarly in [10], we
empirically fine-tuned the optimal regularization parameters
for all three methods and individually for each dataset consid-
ering the suggested parameter space in the respective papers.
The regularization parameters of our algorithm were set as
A1 = 0.001 and Ao = 0.25. We also fixed N, = 7x 7 x 7
and NV, = 5 x 5 x 5 in all experiments. We considered
using small cubic patches for NV,, and N, because larger
patches drastically increase the computation time despite not
improving the results substantially. The choice of proximal
weights wi,w, and step size « parameters of Algorithm 1
will be explained in Section IV-B1.

The quality of reconstructions was quantitatively measured
with the Root-Mean-Square Error (RMSE) and Peak Signal-
to-Noise Ratio (PSNR) metrics. RMSE for a 3D recon-
structed sequence involving in total N voxels is calculated
as RMSE(X,) = /[|[Xy — X,||3/N and PSNR is computed
as PSNR(X,) = 20log[1/RMSE(X,)], where X; denotes
the fully sampled sequence. To ensure convergence, all re-
construction methods were stopped when a maximum number
of iterations (varying depending on the method) was reached,
or when (|| X! —XF|2) /IXk||2 < 1075, where k is the
iteration number. For the purposes of evaluation, we treated
the fully sampled data as ground truth. As a commonly used
metric in quantitative imaging [27], [7] we adopted the Lin’s
Concordance Correlation Coefficients (CCCs) to quantitatively
assess the agreement of estimated perfusion parameters with
reference values obtained from ground truth.

B. Results

1) Convergence of Proposed Algorithm and Effects of Pa-
rameters: In this experiment, we investigate the effect of
proximal weights (wj,ws) and step size («) parameters on
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Fig. 4. Qualitative reconstruction results of a single frame and perfusion time intensity curves (TICs) obtained by each reconstruction algorithm. (a) DSC
subject data. (b) DCE subject data. Single frame reconstructions are obtained using radial sampling with 12-fold acceleration for DSC data and 8-fold
acceleration for DCE data. Close-up views of two regions of interest (yellow and green square) are also provided in every single frame reconstruction images.
The TICs display the signal intensity over time averaged over the voxels inside the red square (corresponding to an arterial region) as shown in Full Sampling
images, obtained from using Cartesian and Radial sampling schemes. Our proposed model results in high quality image frames as observed in close-up views.
The reconstructed TICs also show strong alignment with the ones obtained from fully sampled data when undersampled by two different sampling schemes.

the convergence speed of our proposed algorithm. Fig. 3
shows the resulting RMSE and PSNR values versus iterations
depending on various combinations of (wj,wsy) pairs and
varying settings of «. Fig. 3(a) reveals that the convergence
rate of our proposed algorithm increases when the weight of
the first proximal has a higher value. The highest convergence
rate is achieved by the weight pair of (0.7,0.3). This implies
that Rp-proximal yields better intermediate reconstruction
accuracy than the one obtained by Rnp-proximal. Therefore,
a higher weight given to Ry -proximal will yield lower RMSE

ing. This demonstrates the stability and robustness of the
GFBS based splitting algorithm against proximal weighting.

The impact of various step size (a) parameter settings on
reconstruction performance is displayed in Fig. 3(b). In this
experiment, we set wy,ws = (0.5,0.5) for all cases of «.
Ofixed denotes a fixed o value while ovugapiive denotes adaptive
« updated through iterations as given in Algorithm 1. The
results in Fig. 3(b) reveal that our proposed adaptive setting
of « increases the convergence speed of the algorithm. This is

in a less number of iterations, indicating higher convergence
rate. Fig. 3(a) also shows that all combinations of weights
ultimately reach similar RMSE values, meaning that the final
reconstructions are not affected by different proximal weight-

clearly visible when atixed = Qtadaptive = 0.3. After 6™ iteration,
our proposed method reaches the highest PSNR value (with
Qtadaptive = 0.3) when compared to other methods. Fig. 3(b)
also demonstrates that the acceleration gain of convergence
decreases when initial g has a higher value, for instance
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Fig. 5. Boxplots displaying the PSNR values of reconstruction methods with respect to increasing acceleration factors R. Reconstruction results obtained
from all 5 DSC sequences with (a) Cartesian, and (b) Radial sampling; from all 5 DCE sequences with (c) Cartesian, and (d) Radial sampling. Each DSC
sequence involves 60 frames and each DCE sequence involves 50 frames. PSNR values were calculated for every single frame individually. The proposed
method performs the best average PSNR in all acceleration rates for both with DSC and DCE datasets.

Ofixed = Oadapive = 0.7. The PSNR results obtained with
Otadaptive = 0.9 suggests that increasing step-size parameter of
GFBS algorithm enables faster convergence. To this end, we
set the initial ovg = 0.9 and use the adaptive setting scheme for
« in the remaining experiments of the paper. This allows us to
reach the highest reconstruction accuracy in the least number
of iterations, thereby significantly reducing processing time.

2) Reconstruction Performance: This section presents the
reconstruction results of all competing methods using variable
density Cartesian and radial sampling schemes. Fig. 4 demon-
strates a single reconstructed frame of one of the DSC and
DCE brain perfusion datasets and estimated perfusion TICs
averaged over voxels inside an arterial region. The acceleration
factors here are 12 and 8 for DSC and DCE data, respectively.
The results in Fig. 4 show that our proposed reconstruction
algorithm can achieve the best spatial reconstruction and
highly accurate estimation of TICs when compared to the other
three methods. Considering the spatial results, when looking
at details in close-up views of Fig. 4(a), DSC frame recon-
structions obtained by k-t RPCA and our proposed method
produce the best results compared to DTV and FTVNNR.
DTV reconstructions are mostly lacking finer details whereas
FTVNNR yields more blurry spatial regions. The TIC recon-
structions in Fig. 4(a) indicate that radial sampling yields more
accurate matching of full sampling TICs compared to variable
density Cartesian sampling. Among all TIC results, DTV and
our proposed method reconstruct perfusion signal patterns that
are in good agreement with the pattern of the fully sampled
data (see Fig. 4(a) bottom third and fifth column) when radial
sampling is used for undersampling. DTV produces signifi-

cantly worse TICs with underestimated perfusion peaks while
our method still yields very accurate matching of TICs with
Cartesian sampling. As we also demonstrated in our previous
work [17], k-t RPCA and FTVNNR estimate oversmooth TICs
and reconstruct underestimated perfusion peaks with Cartesian
sampling (see Fig. 4(a) bottom second and fourth column).
However, radial sampling helps these two methods to improve
their accuracy in TIC estimation, especially FTVNNR yields
highly accurate matching of TICs with fully sampled data.
These results evidence that radial sampling should be preferred
over Cartesian sampling for the quantitative perfusion MRI in
which the fidelity of TICs plays a vital role.

Considering the spatial results of DCE data in Fig. 4(b),
DTV and our proposed method provide the best reconstruc-
tions. When looking at details in close-up views, it is visible
that our method reconstructs finer details compared to DTV.
FTVNNR again shows more blurry regions and thus lacking
details. Unlike the results in DSC data, k-t RPCA yields spatial
reconstructions with missing details and blurred edges in DCE
data. In terms of TIC reconstruction, Fig. 4-(b) demonstrates
that our method can achieve the most accurate TICs both
with Cartesian and radial sampling, where DTV achieves the
second best. However, when the observed signal dynamics are
lower compared to DSC, both k-t RPCA and FTVNNR fail
in the estimation of perfusion TICs in DCE. The peaks of the
perfusion signal are underestimated and there is a large offset
between the estimation and real value. This result reveals that
k-t RPCA and FTVNNR are not robust against small temporal
variations since these methods do not explicitly exploit sparsity
in the temporal domain while our method exploits the temporal



JOURNAL OF KIEX CLASS FILES, VOL. XX, NO. X, AUGUST 2017

>
B
CBF (mL/100g/min)

CBV (mL/100g)

o
MTT (secs)

Fig. 6. Hemodynamic parameter maps (CBF, CBV, MTT) of a DSC subject
for different methods with an 8-fold acceleration. This subject has a low-grade
glioma which cannot be easily recognized.

variations in both voxel and patch-wise levels.

Fig. 5 presents the quantitative results (in terms of PSNR)
of all reconstruction methods depending on increasing ac-
celeration factors for both DSC and DCE sequences. As
expected, PSNR values decrease with increasing acceleration
due to the increase in missing k-space samples. Moreover, all
reconstruction methods benefit from radial sampling because
it can be seen that zero-filled reconstruction already gives
an improved reconstruction compared to the one obtained by
Cartesian sampling. The reason is that the resulting artifacts
produced by radial sampling resemble noise compared to
Cartesian undersampling [12]. Fig. 5 clearly shows that our
proposed method performs the best PSNR in all acceleration
rates for both with DSC and DCE datasets. It is also observed
that the performance of k-t RPCA and FTVNNR is improved
with radial undersampling while on average DTV performs
worse with radial sampling especially in higher accelerations.

3) Perfusion Parameter Estimation: For the estimation of
perfusion parameters, we only used the reconstruction results
obtained by radial sampling due to its efficiency in both spatial
and temporal reconstruction, as demonstrated in the previous
section. Figs. 6-7 display qualitative results of estimated hemo-
dynamic parameter maps from two DSC subjects. From Fig. 6,

30 &
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CBV (mL/100g)

MTT (secs)

Fig. 7. Hemodynamic parameter maps (CBF, CBV, MTT) of a DSC subject
resulting from our proposed method with respect to different acceleration
factors and Reference (Ref) maps for comparison. White arrow in Reference
CBF map indicates the tumor region.
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Fig. 8. Pharmacokinetic parameter maps (K", v,) of a DCE subject for
different methods with a 12-fold acceleration. The tumor area is marked by
a white arrow in the Reference K% map.

it can be seen that the proposed method results in perfusion
maps where most of the tissue structures are preserved and
appear sharper compared to FTVNNR and DTV with 8-fold
acceleration. Compared to reference maps, CBF and CBV
values are overestimated in some regions of white matter
(WM) and gray matter (GM) while perfusion values in blood
vessels (appear as small red areas) stay mostly accurate. The
k-t RPCA method produces highly inaccurate (oversmooth)
perfusion maps as expected by the mismatch of TICs shown
in Fig. 4(a). Fig. 7 demonstrates that estimated hemodynamic
parameter maps generated by our proposed method appear
highly accurate up to 8-fold acceleration, however the maps
start to deteriorate and involve oversmooth regions at higher
acceleration rates. CBF assessment in tumor areas (at tumor
boundary and core) also appear quite consistent with reference
maps up to 12-fold acceleration.

Fig. 8 shows estimated pharmacokinetic parameter maps
of a DCE subject with a 12-fold acceleration. The estimated
maps indicate that significantly higher permeability (K")
can be observed in tumor tissues (white arrow). The proposed
method produces parameter maps which show a strong match
with reference maps at the tumor region and exhibit relatively
oversmooth regions in WM and GM due to a high rate
of acceleration (12-fold). The k-t RPCA especially produces
highly overestimated plasma fraction v, values and again
reveals the fact that it is inadequate for PWI reconstruction.
Due to the page limitation, we provide the qualitative results
of an another DCE subject in supplementary material.

Fig. 9 presents Bland-Altman plots of the CBF and K"
values obtained by our method with respect to increasing
acceleration factors. The plots indicate that the fidelity of
estimation is very high at lower acceleration rates where
we observe very small differences between the estimation
and ground truth. With increasing acceleration, the bias and
variance of the differences generally become larger and sub-
sequently CCC values diminish. This quantitative assessment
coincides with the qualitative results shown in Fig. 7.

Finally, Table I reports the average CCCs of DSC and
DCE perfusion parameter maps obtained from all methods
with varying acceleration rates. Our reconstruction method
yields the best CCCs for all parameters and accelerations.
The k-t RPCA generally performs even worse than zero-filled
reconstruction since it leads to oversmoothing of the temporal
perfusion signal. The DTV and FTVNNR show relatively
similar performance with our method at lower accelerations
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Fig. 9. Bland-Altman plots and 95% confidence intervals within two red lines for CBF (top) and K™ (bottom) perfusion parameters of one DSC and DCE
subject data depending on different acceleration factors, resulting from our proposed reconstruction method. Corrresponding CCCs are also provided at the
top-left corner of each plot. For these subjects, CBF values can range from 0 to 71 mL/100g/min and K" values can range from 0 to 2 min~'. As can
be clearly seen in the plots, CCCs decrease with increasing acceleration, which coincides with the changes of bias and variance.

TABLE I
AVERAGE CCC VALUES OF THE DSC PERFUSION MAPS (CBF, CBV, MTT) AND DCE PERFUSION MAPS (K 74"% v,,) ESTIMATION OBTAINED FROM

ALL THE SUBJECTS. CCCS TAKE VALUES IN [0, 1] INTERVAL. THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD FONT.

Acceleration Rate

Method R=2x R=4x R=8x R=12x R=16x
Zero-filled | 0.924, 0.888, 0.854 | 0.718, 0.684, 0.630 | 0.485, 0.479, 0.432 | 0.345, 0.362, 0.320 | 0.221, 0.205, 0.155
DSC k-t RPCA 0.839, 0.786, 0.767 | 0.889, 0.897, 0.796 | 0.812, 0.823, 0.728 | 0.733, 0.719, 0.654 | 0.634, 0.625, 0.644
Parameters DTV 0.962, 0.957, 0.939 | 0.930, 0.930, 0.889 | 0.807, 0.804, 0.813 | 0.713, 0.691, 0.751 | 0.614, 0.628, 0.734
FTVNNR 0.966, 0.941, 0.870 | 0.946, 0.937, 0.841 | 0.804, 0.784, 0.733 | 0.695, 0.689, 0.614 | 0.603, 0.600, 0.429
Proposed 0.968, 0.962, 0.947 | 0.958, 0.948, 0.897 | 0.887, 0.862, 0.821 | 0.741, 0.751, 0.759 | 0.637, 0.663, 0.739
Zero-filled | 0.987, 0.973 0.927, 0.857 0.877, 0.727 0.763, 0.677 0.741, 0.663
DCE k-t RPCA 0.790, 0.681 0.634, 0.370 0.596, 0.352 0.531, 0.312 0.498, 0.275
Parameters DTV 0.990, 0.985 0.943, 0.941 0.847, 0.813 0.789, 0.736 0.764, 0.670
FTVNNR 0.984, 0.903 0.952, 0.839 0.879, 0.694 0.848, 0.589 0.791, 0.546
Proposed 0.994, 0.991 0.973, 0.967 0.919, 0.845 0.889, 0.768 0.848, 0.686

(up to 4-fold) and worse performance at higher accelerations.

4) Computation Time: The most computationally expen-
sive step of our algorithm is solving each proximal map.
We process the computation of proximal maps in parallel
since proximal-splitting can allow it due to the independence
between the inputs of proximity operators. Other steps of the
algorithm involve adding and multiplying vectors or scalars,
and are thus very cheap in terms of computational complexity.

All methods were ran using Matlab R2015b on a desktop
computer with Intel Xeon CPU E3-1226 v3 Processor at
3.3 GHz and 32 GiB of memory. Table II provides the
processing time (in seconds) of all methods on two types of
datasets. Among all methods, our method requires the highest
processing time. However, within a similar computation time
(corresponding to ~ 3-4 iterations) as competing methods, our
method can usually reach the best reconstruction accuracy.

Considering the longer processing times (~ 15 minutes for
DCE data analysis) for voxel-wise fitting of perfusion param-
eters, we believe that the slightly longer reconstruction time
of our method can be negligible.

V. DI1SCUSSION AND CONCLUSION

In this paper, a new reconstruction model exploiting spatio-
temporal variations jointly at multiple levels was proposed for
the acceleration of PWI acquisitions. The proposed method
was compared with existing state-of-the-art reconstruction
methods and evaluated on clinical DSC and DCE-MRI patient
datasets. Extensive experiments validated the effectiveness
of our method in terms of improved spatial reconstructions,
highly accurate matching of perfusion temporal signals, and
more precise estimation of clinically relevant perfusion param-
eters. Experiments based on retrospective undersampling re-
vealed that our reconstruction model can potentially enable up
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TABLE I
COMPUTATION TIME OF DIFFERENT RECONSTRUCTION METHODS.

Time (secs) k-t RPCA DTV  FTVNNR  Proposed
DSC dataset 187.2 72.3 142.4 324.1
DCE dataset 165.6 61.8 106.3 268.7

to 8-fold acceleration on clinically feasible perfusion datasets.
We also demonstrated that our method is very robust against
incoherent artifacts caused by varying sampling patterns. Our
recent work [30] showed that the proposed model can also
achieve similar performances with Poisson-disc sampling.

The maximum acceleration achieved with our method can
be further increased with the use of a high-spatial resolution
data as applied in [7], [15] for DCE study. However, we remark
that high spatial resolution is not so clinically realistic for
PWI because high temporal resolution is vital to capture entire
contrast dynamics for precise blood flow quantification.

As mentioned already, this paper considers the reconstruc-
tion on 2D +t data, i.e., on a single slice followed over
time. However, our approach can be easily extended to 3D + t
data. One should take into account time complexity because
especially applying NLM filter on 4D patches can significantly
increase the computation time due to exhaustive search of
similar patches in larger windows. Hence, an optimized GPU
implementation is necessary to perform it efficiently in 4D.

We would like to emphasize that our regularization approach
can also be adopted to many inverse problems in medical
imaging with only a few modifications. Possible applications
beyond perfusion imaging might be MR Spectroscopy [31],
low-dose CT denoising [32], and MR super-resolution [33].
Moreover, our algorithm can provide an efficient way of
solving such regularized inverse problems.

One of the limitation of our method is that it usually
produces oversmooth reconstructions and therefore overesti-
mated perfusion parameters when the acceleration factor is
relatively higher (>12-fold). This observation is mostly valid
for parenchyma voxels (i.e., WM and GM) where the signal
drop or enhancement is very low compared to blood vessels.
Iterative reconstruction algorithms usually tend to produce
repeating structures and smooth the available information
throughout neighboring image regions when there is a large
amount of missing data due to the high undersampling. In
order to obtain more accurate parameter estimates in highly
undersampled data, deep neural networks [34] can be exploited
to learn deeper spatio-temporal representations and similarities
within the MR image series than conventional NLM can learn
with a simple k-nearest neighbors approach. One idea might be
to learn the noise-free temporal signal for every voxel within
the spatially correlated image regions given the corresponding
noisy signal using deep learning methods. Future lines of
research will attempt to explore this idea.
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VI. SUPPLEMENTARY MATERIAL

In this supplementary, we provide a few extra materials that
have been referenced in the original manuscript.

A. A Diagram on parameter estimation in DSC-MRI
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Fig. 10. A diagram illustrating the steps of hemodynamic parameter estima-
tion in dynamic susceptibility contrast (DSC) 7% -weighted perfusion MRL
First, time-intensity curves (TICs) for each voxel are converted to tracer tissue
concentration-time courses based on a linear relationship between the signal
drop in T2* and tissue concentration. Then, a tracer kinetic model based on the
deconvolution of arterial input function and tissue concentrations is applied
to determine perfusion parameters [4]. As the voxel-wise TICs are directly
correlated to the amount of contrast medium in tissue, precise estimation
of TICs is very crucial to accurately quantify the hemodynamic parameters.
Especially under and over estimation of the peak of the TICs entirely reflect
the resulting parameters obtained by a deconvolution process.

B. Algorithm for solving Ry -subproblem

As stated in the manuscript, this subproblem can be solved
efficiently using an accelerated iteratively reweighted least
squares algorithm proposed for structured sparsity reconstruc-
tion [21]. The total-variation (TV) term in our problem (7) can
be modeled as the group sparsity,

lzllrv = ll2llzn =Y g ll2y i=1,2,..om  (15)
where z,, denotes the component in the i-th group and m
is the total number of groups. For instance, TV component
in each dimension (e.g. V) constitutes a group. Following
the notations given in (II-B), the problem in (7) is solved by
iteratively updating the weight matrix W and the solution d;
for each frame individually [9]. W is a diagonal matrix with
the i-th diagonal entry given as

Wk =1/y/(V.dh)?
where k is the iteration number.
the following linear equation:

(FEF + 2QFW Q1 + \QFW* Qo) dy = b, (17)
where b; = y; — F:x. The close form solution of (17)
is derived as df = ST'FHb, , where S = FHF, +
AQHEWEQ + AQEWEQ), is the system matrix. However, the
direct inversion of .S is not computationally feasible. In [21], it
is proposed to use a preconditioner P which is close to S and
the inverse of S can be computed in a more computationally
efficient way. The overall problem in (17) can be solved by a
preconditioned conjugate gradient (PCG) method.

+(Vydk)?, i =1,2,...,
d1]5€+1

NyN, (16)
is updated by solving

Algorithm 2: R -subproblem

Input: 7, Z, Y, Initial estimate X0 \=2)\
forte T=1{1,2,..,7} do
Initialize: d0 = 20 — Z, by =y —
while stopping criteria not met do
Obtain W* via (16) ;
S=F'F+ )\Ql wWkQ: + AQ?WkQQ ;

P = sI 4 Qi FWrQL + AQFW*Qo = LU, P! =
vt
while PCG stopping criteria not met do

Update d** by PCG for Sd; = FH b, with

P= LU ,;
end

k< k+1;

.th,kzo

end
T =dt + %

end

Output: X, = [#1, %2, - - , &4

The preconditioner P in our problem can be designed based
on the following observation [9]: The symmetric matrix AtH Ay
is diagonal and therefore F F, = F AR A, F is diagonally
dominant. Due to the properties of the Fourier transform,
all the diagonal elements of F/IF; is equal to the mean of
diagonal elements of A A;, which is the undersampling factor
denoted as s. A good approximation for F}I F; can be made
with sI, where [ is the identity matrix. The new preconditioner
is finally defined as P = sI + A\QFW*Q, + Q¥ W*Q,. The
new procoditioner P is a symmetric penta-diagonal matrix
which does not have a closed form inverse. However, P
is usually diaogonally dominant because the regularization
parameter A is often very small in our specific problem.
Therefore, an incomplete LU decomposition can be applied
to such matrix with P ~ LU, where L and U are a lower
triangle matrix and an upper triangle matrix, respectively.

Provided all the details, the steps of algorithm solving R -
subproblem is outlined in Algorithm 2.

C. Algorithm for solving Rny-subproblem

The subproblem is solved via a simple two-step alter-
nating minimization scheme. In every main iteration, the
reconstructed image data estimate is first projected onto the
data fidelity term and then NLM filtering is applied to the
projected data in entire spatio-temporal (3D) space. The steps
of the algorithm solving Ry -subproblem is provided below
in Algorithm 3.

In this algorithm, NLM operation performs the NLM
filtering on the projected data given the filter parameters.
Basically, in each spatio-neighborhood window N, first the

Algorithm 3: Ryp-subproblem

Input: F,, Y, Initial estimate X% a =2\, Ny, Ny, o
Initialize: X%, = X%, h =020, k=0
while slapping criteria not met do
Xproj = Xest + ]:H (Y Fu Xekst) 5
Xoim = NLM (Xprojy Nuw,s Np7 h);
Xekst+1 Xekst + Ol(anm - Xest) 5
k—k+1;
end

Output: XRNL = Xest
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weights between the centers of the patches are calculated via
(3) and then these weights are directly used to update each
voxel value via (9) taking into account the other voxels in
N surrounding the voxel p. As the inter-pixel weights are
re-estimated in every iteration, the estimated weights become
more reliable when the quality of the reconstructed data X
are improved through iterations.

We note that the classical NLM filter [24] was normally
defined with a Gaussian-weighted Euclidean distance, | - [|3 .
where a is the standard deviation of a Gaussian kernel. This
kernel basically gives decaying weights to voxel differences
away from the center of the patches. However, in this work,
we used the classical Euclidean distance || - ||3 to simplify the
complexity of the problem and reduce the computational time
as proposed in [25]. We anticipate that a Gaussian-weighted
distance measure may slightly improve the quality of our
reconstructions because assigning uniform weights to all the
voxels inside a patch may lead to stronger smoothing in image
regions involving especially large texture and more fine details.

D. Additional Qualitative Parameter Maps of a DCE Subject

Fig. 11. Pharmacokinetic parameter maps (K" v,) of a DCE subject
obtained by our proposed method with respect to increasing acceleration
factors and Reference (Ref) maps for comparison. White arrow in Reference
K map marks the tumor region.

Fig. 11 shows the estimated pharmacokinetic parameter
maps of our proposed reconstruction model with respect to
increasing acceleration factors. The estimated maps look very
similar up to 4-fold acceleration when compared to reference
maps. However, starting from 8-fold acceleration, our method
yields oversmooth image regions in different brain areas.
Especially in higher acceleration factors (>12-fold), K™
values are largely underestimated in WM and GM, and the
maps contain expanded tumor regions (oversmoothed). On the
other hand, v, values are mostly overestimated in WM and
GM due to oversmoothing, and we clearly observe expanded
regions especially around a few blood vessels which are highly
perfused and affect the neighboring brain areas as well.



Additional Experimental
Results of Previous Works

This chapter mainly involves two sections:

1. Section B.1 contains a few experimental results which were obtained
by running our proposed image reconstruction approach [85, 86] on
high-resolution brain and cardiac DCE-MRI datasets.

2. Section B.2 provides several interesting plots of a published ISMRM
abstract [138] which presents a random forest regression based ML
method for direct estimation of pharmacokinetic parameters in DCE-
MRI.

B.1 Image Reconstruction on High-resolution
DCE-MRI

This part mainly presents the reconstruction results achieved by our recon-
struction model [85, 86] using DCE-MRI brain and cardiac (rest and stress)
perfusion datasets provided by the Brain Research Imaging Centre and Clinical
Research Imaging Centre at The University of Edinburgh.

Brain dataset: Three patients with first clinically evident mild ischaemic
stroke were imaged on a 1.5 T MRI scanner using an 8-channel phased-array
head coil. DCE-MRI was performed at approximately 1 month after first
presentation of stroke and consisted of a 3D T1W spoiled gradient echo
sequence with TR/TE = 8.24/3.1 ms, 24 x 24 cm FOV, 256 x 192 acquisition
matrix and 42 x 4 mm slices. Two pre-contrast acquisitions were carried out at
flip angles of 2° and 12° to enable the calculation of pre-contrast longitudinal
relaxation times (77(0)). An intravenous bolus injection of 0.1 mmol/kg of
gadoterate meglumine (Gd-DOTA) was administered simultaneously with the
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start of 20 acquisitions with 12° flip angle and a temporal resolution of 73 s,
leading to a DCE-MRI duration of approximately 24 minutes [17].

Cardiac dataset: All data were acquired using a 3T Verio system. Standard
cardiac imaging planes and a short axis stack of left ventricular cine data were
acquired using routine steady state free precession (TrueFISP) acquisitions.
Stress imaging was performed by intravenous infusion of 140 ug/kg/min of
adenosine (Adenoscan, Sanofi Aventis). Fifty dynamic perfusion images were
obtained at diastole across three short-axis view slices: basal, mid-ventricular
and apical slices according to the standard 16-segment heart model. Perfusion
images were acquired using a turbo-fast low angle shot (FLASH) saturation
recovery prepared single-shot gradient echo pulse sequence (TR/TE = 2.20/1.07
ms, flip angle = 12°, slice thickness = 8 mm, preparation pulse delay (PD) to
central line of k-space = 100 ms, matrix size = 192 x 108 and FoV = 330 mm
x 440 mm). With the application of GRAPPA (accelerator factor of 3) and
partial Fourier acquisition of 0.75, each dynamic frame consisted of 48-phase
encoded lines [139].

Figure B.1: Exemplary time varying radial sampling pattern in (k,, ky) space
corresponding to 20-fold acceleration. Equi-angular spacing projections are
used and incoherency in time is achieved by applying a random rotation
between [—30°,30°] on the whole pattern across each acquisition frame. Note
that the radial sampling is here directly approximated to the closest Cartesian
trajectory, hence it is referred to as “pseudo-radial” [140)].
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Figure B.2: (Top) Close-up views of three different regions of interest (yellow,
green and cyan square) from a single frame of a fully sampled image and
reconstructed version from 20-fold undersampling. Reconstructed image again
provides sharper regions compared to fully sampled data with the preserved
finer details. (Bottom) TICs displaying the signal intensity over time averaged
over the voxels inside the small red, blue and magenta squares — corresponding
to a vessel, parenchyma (white matter) and stroke region, respectively — as
shown in Fully Sampled image. The proposed reconstruction model can achieve
highly accurate matching of TICs in different brain regions despite a higher
rate of undersampling.

B.2 Random Forest Regression for
Pharmacokinetic Parameter Estimation

This study proposes a novel alternative approach to estimate pharmacokinetic
(PK) parameters of dynamic contrast enhanced (DCE)-MRI. Our approach
leverages machine learning field and mainly targets to automatically learn tem-

117



B. ADDITIONAL EXPERIMENTAL RESULTS OF PREVIOUS WORKS

Reconstructed (10-fold undersampling)

Fully Sampled

Right Ventricle Left Ventricle Myocardium (Wall)
0.8 0.6 0.25 .
- = =Zeroilled - - =Zero-illed n - = = Zero-illed
2 — Reconstructed 205 Reconstructed 2 ,’ ‘\ — Reconstructed
“o6 Full Sampling G Full Sampling G 0.2 X Full Sampling
Q Q Q
€ £04 £ ]
£ = = 0.15
o [} ©
504 503 5
o ° o 01
g g02 g
So2
2 0.1 2005
0 0 0
0 20 40 0 20 40 0 20 40
Time Time Time

Figure B.3: Results on a basal slice taken from a cardiac rest perfusion acqui-
sition. (Top) Close-up views of two different regions of interest (yellow and
green square) from a single frame of a fully sampled image and reconstructed
version from 10-fold undersampling. Reconstructed image reduces the noise
in ventricles and provides sharper regions as displayed in green area. (Bot-
tom) TICs displaying the signal intensity over time averaged over the voxels
inside the small red, blue and magenta squares — corresponding to a right
ventricle, left ventricle and myocardium wall, respectively — as shown in Fully
Sampled image. The estimated time curves show a strong alignment with the
ones obtained from fully sampled data. We remark that TICs obtained from
zero-filled reconstruction of cardiac data can successfully capture the signal
dynamics especially in ventricles from accelerated acquisitions while this is not
observable in brain data.

poral patterns of the voxel-wise concentration-time curves (CTCs) from a large
amount of training samples in order to make accurate parameter estimations.
We consider the estimation of parameters as a regression problem and specifi-
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cally use Random Forest (RF) regression. We demonstrate its potential and
utility to improve the conventional model-fitting based quantitative analysis of
DCE-MRI especially in various noise conditions, and validate our method on
clinical brain stroke datasets.
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Figure B.4: A diagram illustrating the pipeline of the training and testing
procedures of our method. Each subject’s data is represented with a matrix
where each row involves a concentration-time curve (CTC) per voxel. Training
data is created from randomly selected 12 slices of held-in subject’s data and
test data is obtained from randomly selected 2 slices of held-out subject’s data.
A RF model is trained from the training data and its corresponding target
values. Testing is then performed by giving the test data as input to the RF
model which outputs the estimated PK parameters. This process is repeated
50 times (trials) for each subject to obtain unbiased estimation.
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Figure B.5: PK parameter maps estimated by RF model on noise-free data
taken from each subject. The reference maps are also provided for comparison.
In no-noise condition, the estimated maps by RF model are almost similar with
reference maps. This asserts that it is possible to directly estimate accurate
PK parameters of a subject using other subject’s data with the use of a RF
based machine learning approach.
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Figure B.6: Boxplots displaying the RMSE statistics of PK parameters —
K'"ans(left), v, (right) — obtained from our RF regression model and Patlak
model on noisy data. The top plots depict results for increasing subsampling
factors whereas the bottom plots show results for increasing additive Gaussian
noise levels. The RMSE statistics are reported from in total 150 trials of
three subjects. The results demonstrate that RF model mostly produces lower
median RMSE compared to Patlak model for both PK parameters. Another
main conclusion is that RF model is more robust to increasing noise levels
rather than subsampling rates.
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