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Abstract

Due to computational cost, simulation software is confronted with the need to
always use optimal building blocks — data structures, solver algorithms, par-
allelization schemes, and so forth — in terms of efficiency, while it typically
needs to support a variety of hardware architectures. AutoPas implements the
computationally most expensive molecular dynamics (MD) steps (e.g., force cal-
culation) and chooses on-the-fly, i.e., at run time, the optimal combination of
the previously mentioned building blocks. We detail decisions made in AutoPas
to enable the interplay with MPI-parallel simulations and, to our knowledge,
showcase the first MPI-parallel MD simulations that use dynamic tuning. We
discuss the benefits of this approach for three simulation scenarios from process
engineering, in which we obtain performance improvements of up to 50%, com-
pared to the baseline performance of the highly optimized ls1 mardyn software.

Keywords: AutoPas, ls1 mardyn, molecular dynamics, particle simulations,
MPI, auto-tuning

1. Introduction

Molecular Dynamics (MD) simulations regularly go hand in hand with very
cost-intensive computations to achieve accurate and reliable results. Different
approaches have been followed to reduce the cost of these simulations. Efforts
comprise, for example, tuning specific algorithms and programs to particular5

types of hardware [1, 2, 3, 4, 5, 6]. In some cases, computationally more favorable
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coarse-grained models, such as continuum models or hybrid particle-continuum
/ multiscale models, can be applied [7, 8, 9].

In case of purely particle-based simulations, it has, however, already been
shown that depending on hardware and simulation scenario different algorithms10

provide optimal performance [1]. Therefore, specific tuning efforts invested into
one algorithm might prove inefficient as other algorithms might perform signif-
icantly better for a different MD scenario, even when they are not optimized to
the same level.

In preceding work of our group [10], the idea of providing multiple algo-15

rithms and then tuning over these algorithms at runtime has been picked up for
n-body simulations. We introduced the node-level library AutoPas, integrated
it into the highly-parallel MD program ls1 mardyn [11] and demonstrated signif-
icant speed-ups for node-level simulations simply by switching between different
traversal strategies.20

In the present paper, we are going beyond node-level scope [10] of auto-
tuned MD simulations, considering MD systems distributed on multiple com-
pute nodes. Implications of this extension in contrast to a node-level system are
outlined and discussed. We lay out modifications to AutoPas and ls1 mardyn
that enable load-balanced, auto-tuned MD simulations on massively parallel25

compute clusters. We show that allowing each MPI rank to independently
choose the optimal algorithm configuration can yield significant performance
benefits especially for heterogeneous particle distributions.

Furthermore, we showcase performance results, load balancing and auto-
tuning on the basis of three very different scenarios for which we achieved per-30

formance benefits of up to 50%.

1.1. Outline
In the next section, we give a short overview of related work, describing two

libraries similar to AutoPas, give a short introduction to static and dynamic
auto-tuning, and provide examples that use these techniques. We continue with35

a brief description of AutoPas and the modifications of AutoPas itself to allow
for its usage in multi-node systems (Section 3). Section 4 introduces ls1 mardyn
and provides information on adaptations of ls1 mardyn that were made in order
to use AutoPas with its full functionality. After a short description of the three
considered scenarios in Section 5, results of this integration are presented in40

Section 6. Finally, we draw conclusions and provide an outlook on the further
development of AutoPas in Section 7.

2. Related Work

There is a great variety of particle simulation software available, including
Gromacs [12], LAMMPS [13], NAMD [14], ESPResSo [15] for MD, and Gadget45

[16], GIZMO [17] and SPHysics [18] for astrophysics. With regard to providing
particle simulation technology via a library approach, two MPI-parallel libraries
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OpenFPM1 and FDPS2 have been published recently [19, 20]. In this section, we
shortly introduce these two libraries, followed by a brief overview of auto-tuning
techniques.50

2.1. Particle Frameworks
Like AutoPas, both OpenFPM and FDPS try to help researchers in the

development of particle-based simulations. In contrast to AutoPas, OpenFPM
also supports mesh-based approaches and combinations of mesh and particle ap-
plications, while FDPS provides means for the calculation of long-range particle55

interactions. AutoPas features auto-tuning on building blocks for short-range
MD, which the other two do not provide. All three of them have in common
that the actual particle interaction is interchangeable and can be provided by
the user. For this purpose, OpenFPM provides iterators over particles and their
neighbors, while FDPS and AutoPas use a functor-like interface to inject the60

kernel into the library. The internally employed node-level data structures of the
libraries also vary. FDPS uses an adaptive octree-based structure, OpenFPM re-
lies on a (statically selected) Verlet or Cell-list, while AutoPas dynamically tunes
over multiple data structures. In contrast to OpenFPM and FDPS, AutoPas
focuses purely on the node-level and does not provide any MPI functionality.65

2.2. Auto-Tuning
Static auto-tuning is performed once, at the latest, at the startup of program

execution. This can include optimizations by the compiler, e.g., through profile-
guided optimization3, optimization of compiler flags [21], or static algorithm
selection, e.g., through micro-benchmarking [22, 23]. In contrast to static auto-70

tuning, dynamic auto-tuning can be performed multiple times during a program
execution to adapt to changes in the simulation domain. One framework that
can be used for dynamic auto-tuning is Active Harmony [24, 25]. It provides a
server-client infrastructure to explore a search space, where the server decides
the next point in the search space that should be sampled by the client(s). Active75

Harmony uses the Nelder-Mead algorithm [26] to explore almost arbitrary search
spaces and provides a relatively simple interface. We are currently in the process
of integrating Active Harmony into AutoPas as one possible tuning algorithm,
but this is not in the scope of this paper.

3. AutoPas: Enabling Auto-Tuning on Multi-Node Systems80

In this section, we first describe AutoPas itself, followed by the modifications
of AutoPas to allow for its usage in an MPI-parallel setup.
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Container Traversal Advantages Disadvantages DLB CS
Direct
Sum

direct
sum

low overhead for
managing particles

O(n2), bad
parallelizability

Linked
Cells

sliced very low scheduling
overhead

each chunk of work
consists of at least
two slices of cells

no XL

c01
1-way-
coloring

only one barrier,
best parallelizability

no support for
Newton3, bad
caching

yes XS

c04
4-way-
coloring

4 barriers, caching,
low scheduling
overhead

lower
parallelizability than
c08

yes M

c08
8-way-
coloring

best parallelizability
with Newton3
support

more barriers than
c04

yes S

c18 many barriers yes S-M
VL
Global

verlet (v.) poor Newton3
support

yes XS

VL Cells

v.-sliced very low scheduling
overhead

bad for small
domains

no XL

v.-c18 many barriers yes XS
v.-c01 only one barrier no Newton3 support yes S-M

VL Build v.-build good parallelizability static LB not
necessarily accurate

partial

Table 1: Traversals implemented in AutoPas, specifying whether dynamic load balancing
(DLB) is supported on the node level or not. A large work chunk size (CS) entails lower
scheduling overhead, a small CS leads to better parallelizability. VerletLists (VL) use neighbor
lists to mark potential interaction partners for the force calculation. These lists are then stored
differently depending on the container: VL Global stores them globally, while VLCells stores
them for each cell individually. VL Build uses a linked cells traversal for the list generation
and stores the interacting pairs for each color and thread separately to prevent race conditions.
Its load balancing is static and given by the load balancing of the list generation. As the VL
containers use indirect and thus unordered memory accesses, they provide worse vectorizability
compared to the linked cells container, but need to carry out fewer distance calculations.
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3.1. AutoPas
AutoPas is a node-level library that enables dynamic auto-tuning on the

node-level for short-ranged n-body simulations, by employing algorithm and85

parameter selection through the tuning of the following items:

Particle Container The container stores and administrates the actual particle
data. In AutoPas, a DirectSum container (storing the particles in a global
vector), a linked cells container and different variants of so-called Verlet
or neighbor list containers [27, 28, 29] are implemented. Except for the90

first one, all reduce the neighbor interaction from an O(n2) to an O(n)
complexity by employing a cutoff radius for the short-ranged interactions.

Traversal The traversal defines the order in which pairs of particles inside of
the container are processed for short-range force evaluations, including
shared-memory parallelism. The purposes of the traversals are (a) to95

prevent race conditions without the need of atomics, force buffers or similar
options, (b) to provide static or dynamic load balancing on the node-
level and (c) to provide different levels of granularity for parallelization.
An overview of the traversals in AutoPas can be found in Table 1. The
traversals often use x-way-coloring on the cell structures for safe multi-100

threading (refer to [1] for examples).

Data Layout Two different data layouts are implemented in AutoPas. The
Array of Structure (AoS) data layout always stores an array (or vector),
wherein multiple particles are stored as a structure (or class). The Stru-
cure of Arrays (SoA) data layout will convert the particle data into mul-105

tiple arrays, one for each property, to allow for better vectorization (refer
to [10] for details).

Newton3 This option allows to enable or disable the application of Newton’s
third law of motion; for particles i and j, the equality Fij = −Fji is
applied for the corresponding force Fij acting between them. Enabling110

it reduces the number of necessary computations by roughly a factor of
two. Disabling it increases the amount of possible parallelization, as a
force calculation only results in a force update of one particle, because all
particles can be updated in parallel.

Currently, AutoPas tunes the algorithm parameters at runtime at fixed time115

step intervals and tests the performance of all valid combinations of parame-
ters, which we refer to as configuration. To minimize tuning overhead, AutoPas
acquires performance samples over multiple time steps of the actual simulation.
During each time step, the force calculation, which is defined through a so-called
functor, is performed using one configuration and the time for its execution is120

1http://openfpm.mpi-cbg.de/
2https://github.com/FDPS/FDPS
3https://docs.microsoft.com/en-us/cpp/build/profile-guided-optimizations
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Figure 1: Overview of the usage of AutoPas in MPI-parallel particle simulations. For each
MPI rank, a dedicated AutoPas object is used. Each AutoPas instance will then determine
the optimal configuration – including the choice of container – on its own and select it.

used as one sample for the chosen configuration. When a specified amount of
samples has been collected for the current configuration, the next configuration
is tested. Once all configurations are tested, the configuration with the best
performance is selected and used until the next tuning is triggered. Currently,
AutoPas uses a fixed number of samples that can be input by the user. The sam-125

pling and auto-tuning process is designed to be oblivious to a user of AutoPas
and thus hidden within the library.

3.2. One Common Interface
AutoPas is intended as a node-level library that does not handle any com-

munication across multiple nodes. The communication is left to the user code130

(see Figure 1).
For AutoPas to be usable across multiple ranks of a particle simulation pack-

age, it is necessary to provide a common interface which AutoPas and all its
internal containers abide to, allowing for a well-defined particle exchange. The
need for this interface becomes apparent when the different containers used135

within AutoPas are inspected in more detail: On the one hand, linked cells
containers typically require an update4 of the container structure every time
step. On the other hand, Verlet list containers, which store a list of potentially
interacting particles for each particle, can only be efficient if the neighbor list
structure is updated sufficiently rarely. This implies that particles contained140

in Verlet list containers have to remain in the same container over a couple of

4An update of the container is the resorting of every particle into the correct cell, that
actually covers the current particle position. For Verlet lists, this entails a rebuild of the
neighbor lists.
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(a) (b)

Figure 2: Illustration of the particle ownership and corresponding behavior in linked cells
and Verlet list containers. The cells of the linked cells container are updated every time step,
ensuring that the particles are always sorted into the correct cells. For the Verlet list container,
the structure of the stored particles is only updated every few time steps. A particle with a
specific color is owned by the cell with the same color. (a) Linked cells container. The particle
is sorted into another cell or is removed from the container, if its position has changed. (b)
Verlet lists container with underlying linked cells structure. The illustration shows an iteration
without sorting: while the particle positions change, the particles are not sorted into other
cells and are also not removed from the container. The cell size of Verlet lists (b) is larger
than that of linked cells (a), as the cell width is at least rc + rskin, compared to rc for linked
cells.

time steps, even if their position is already slightly outside of the domain of the
container, while particles that move outside of a linked cells container should
be removed from it immediately. These differences are illustrated in Figure 2.
Having differently acting containers in one MPI simulation complicates the par-145

ticle exchange or disturb its performance. As we want AutoPas to be able to
freely choose the container type, it is necessary to provide one common inter-
face for all of them. For this purpose, two different approaches were considered:
either using a linked cells-like approach, where every particle will belong to the
process in which domain it resides, or using a Verlet list-like approach, where150

particles will only be moved between processes every few time steps. In this
paper, we will refer to the former as AlwaysUpdateInterface and to the latter
as RegularUpdateInterface.

First, we discuss the AlwaysUpdateInterface and its advantages, disadvan-
tages and possible implementation variants. In this approach, a particle is155

owned5 by a specific process if its position lies within the domain that is governed
by that process. Therefore, leaving particles6 have to be communicated among

5A particle is owned by exactly one process, which is the process that manages its particle
position updates, etc. The particle may still appear as a ghost/halo particle in other processes.

6Particles that leave the domain governed by one process and enter the domain of another
process are called leaving particles.
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processes every time step. This is the default for linked cells-like containers
and has no implications for the linked cells approach or for “direct summation”,
i.e., for brute-force n2 particle-particle interaction evaluations. For Verlet-list160

containers, there are three variants to implement the AlwaysUpdateInterface
interface: either (a) the neighbor lists have to be updated every time step, or
(b) it needs to be explicitly tracked which process owns a particle, or (c) there
has to be a mix between linked cells and Verlet list containers.

At first glance, variant (a) seems to completely destroy the performance of165

the Verlet lists, since rebuilding them is typically a rather expensive operation.
However, this is not necessarily true, as only the container and the neighbor lists
for particles close to the process boundaries need to be updated. Unfortunately,
in the strong scaling limit for small domains, this will always be suboptimal.
In addition, the implementation of a partial update has to be established for170

every position modifying particle operation and potential failures arising from
an erroneous update will be comparably hard to debug, thus raising the software
maintenance overhead.

Option (b) allows the Verlet list container to actually not update the inner
state, except for marking specific particles as owned or not-owned. Therefore,175

no resorting of particles into cells or an update of the neighbor lists is required.
This approach is viable, since relevant particles are already present as halo
particles. However, neighbor lists also have to be built for all halo particles and
the interactions of halo particles with other halo particles have to be considered,
as their owned state might change without a change of the interaction lists.180

This, again, is suboptimal in the strong scaling limit because almost only halo-
halo interactions are calculated in this case, which normally can be ignored.
For Verlet list-like containers, storing the owned state explicitly is mandatory,
as halo particles and particles that have left a container can otherwise not be
distinguished. Consequently, particles may get lost or duplicated. For a linked185

cells container, the explicit tracking of owned particles is not necessary, as the
owned state is given by the cell the particle resides in.

Option (c) is similar to option (a), but instead of rebuilding the interaction
lists on the boundaries, those interactions can be calculated in a linked cells
fashion. In the strong scaling limit, this is the same as using the linked cells190

algorithm and will thus provide the same performance. Option (c), however,
provides a relatively complex data structure that needs to be managed, as some
interactions have to be calculated using a cell-based approach, while other in-
teractions need to be calculated using a neighbor list approach. The different
options are illustrated in Figure 3. Options (a) and (c) are particularly difficult195

to implement for containers that use interaction lists of clusters (e.g. the novel
VerletClusterLists in AutoPas that resemble the algorithms used in Gromacs
[30]).

We now consider the usage of the RegularUpdateInterface. Using this in-
terface, the container structure and (for Verlet lists) the according neighbor200

lists are only updated every few time steps. For linked cells this can be eas-
ily implemented by simply not updating the container structure and thus not
resorting the particles. To maintain physical correctness, the cell size of the
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(a), (c) (b)

Figure 3: Comparison of the three options for the AlwaysUpdateInterface in terms of the
corresponding Verlet list implementation. Different cell types are marked with different colors:
halo cells (red), boundary cells (yellow), inner cells (green). Option (a): Neighbor lists of
particles that have potential interactions with particles in boundary or halo cells are rebuilt
every time step (blue and red lines). The neighbor lists for the other cells remain untouched.
Assuming that the memory location of particles inside the boundary cells is left untouched
when other particles are removed or added to the container, one can additionally reuse the
neighbor lists for interactions across cells that are indicated along the blue lines. Option (c)
is very similar to option (a), but instead of rebuilding the neighbor lists at the boundary, the
interactions on the boundary are directly calculated using the linked cells algorithm. Option
(b): When a particle moves outside of a Verlet list container, the particle is marked as “non-
owned” and remains in the container. A copy of this particle is sent to the other process.
Using this mechanism all neighbor lists remain valid. This container’s main downside is the
additional need for interactions (red lines) among multiple halo cells, as particles inside of
them can also be owned.

linked cells needs to be increased (if particles interact with those in neighboring
cells only), such that all particle pair interactions are calculated, even if the205

position of the particle changed slightly over a few time steps. This increase
in cell size will reduce the effective hit rate for force computations among par-
ticle pairs in (neighboring) linked cells due to the decreasing volumetric ratio
volume(cutoff sphere) : volume(linked cell). For small particle densities, it will,
however, reduce the overhead of iterating through the cells, as there are fewer.210

A RegularUpdateInterface is relatively easy to maintain, but has some draw-
backs for the user, because the particles no longer necessarily lie in the container
one would expect. Due to the imprecise location of the particles, the user will
have to take extra care of the correct exchange of particles. Moreover, using
a RegularUpdateInterface will specify the rebuild frequency over the entire do-215

main and for all AutoPas objects and will not allow for a node-wise selection
(or tuning) of the rebuild frequency.

Following this argumentation, we decided to implement the RegularUp-
dateInterface option, mainly due to better code maintainability (compared to
options (a) and (c)) and since better performance is expected (compared to op-220

tion (b)), even though this approach is a bit more advanced. Support for the
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AlwaysUpdateInterface option (b) within AutoPas might still be considered in
future works.

3.3. Interface Details
In this section, we describe the simulation loop of an MPI-parallel program225

using AutoPas. An outline of this loop is depicted in Listing 1. The interface

1 while(/∗not done∗/){
2 // 1. Update the container.
3 auto [invalidParticles, updated] = autoPas.updateContainer();
4 // ‘invalidParticles‘ is now a std::vector of particles that should be removed

↪→ from the container.
5 // ‘updated‘ indicates whether the container was updated or not.
6
7 // 2. Exchange the leaving particles (if necessary)
8 // If ‘updated‘ is false then ‘invalidParticles‘ is empty and the exchange of

↪→ leaving particles can be skipped.
9 if (updated) {
10 exchangeLeavingParticles(std::move(invalidParticles));
11 }
12
13 // 3. Exchange the halo particles.
14 exchangeHaloParticles(autoPas);
15
16 // 4. Calculate the pairwise interactions.
17 autoPas.iteratePairwise(functor);
18
19 // 5. Update position and velocities of the particles.
20 doPositionAndVelocityUpdate(autoPas);
21
22 // 6. Do other things (output, ...).
23 }

Listing 1: Outline of a simulation loop using AutoPas.

RegularUpdateInterface was implemented for AutoPas. Therefore, leaving par-
ticles will only be communicated among different MPI processes every few time
steps. To make it easy for the user to decide whether leaving particles have to
be communicated or not, the method updateContainer() of AutoPas will return230

both a std::vector of particles that have been removed from the container and
an additional flag that indicates whether the container has been updated. This
flag is provided to be able to skip the exchange of leaving particles. Without the
flag, the user does not have a clear indicator whether or not a container update
was performed because even in time steps in which the container is updated,235

no particle might actually have left the container. The flag guarantees that all

10



processes will execute the required communication steps. Internally, on a call
to updateContainer(), AutoPas will update the container only if the neighbor
lists have to be rebuilt in this step (indicated by the rebuild frequency) or if the
configuration will be changed with the next call to iteratePairwise().240

After the potential exchange of leaving particles (l. 10), the halo particles
need to be updated (l. 14). Therefore, the relevant particles have to be identified
first, before they are sent to other processes. For the correct identification of
the halo particles, AutoPas provides RegionIterators to efficiently and in an
OpenMP-parallel way iterate over particles within a specific region. In addition,245

particles from other processes have to be received, before they are added to the
container. For the RegularUpdateInterface, halo particles may already exist.
In this case, the existing particle should be updated with the properties of
the received particle. To combine these two actions into one, AutoPas was
extended to provide the method addOrUpdateHaloParticle(haloParticle), which250

will either add the halo particle (if the container has been updated in this step)
or will find the appropriate, already existing, particle and update its position
and other properties.

Once the halo has been successfully updated, the pairwise interaction can
be executed using iteratePairwise(functor) (l. 17).255

AutoPas further provides the function updateinterfaceForced() which en-
forces an update of the container, ignoring the rebuild frequency. This method
is needed before rebalancing steps.

4. ls1 mardyn: Extensions and Load Balancing

In this section, we describe the modifications made in ls1 mardyn to support260

AutoPas and its RegularUpdateInterface in both single-node and multi-node
runs. We therefore first shortly discuss ls1 mardyn itself and its previous changes
[10]. Then we describe the changes that we implemented in ls1 mardyn to
support the new interface of AutoPas in single and multi-node applications.
Additionally, we describe new load balancing methods that were implemented265

in ls1 mardyn to enable the support of auto-tuned containers.

4.1. ls1 mardyn
ls1 mardyn is a highly-parallel MD library for chemical engineering and

energy technology applications [11]. It is capable of simulating small rigid
molecules up to extreme scales and was used for the largest MD simulation270

to date, containing more than 2 · 1013 particles [1]. ls1 mardyn uses a linked
cell data structure to handle efficient vectorization of the force calculations and
utilizes OpenMP for an efficient node-level performance. It natively supports
three OpenMP traversals, which are similar to the c08, sliced and c04 traversal
of AutoPas. The traversal type can be selected upon program startup. Dynamic275

load balancing through MPI is supported by employing a k-d tree-based domain
decomposition [31].
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4.2. Previous AutoPas integration
As described in Ref. [10], ls1 mardyn was extended with an additional

particle class and a wrapper around AutoPas, which replaces the previously280

used particle container. The particle class hereby implements both the interface
needed by ls1 mardyn and the interface needed by AutoPas.

Additional changes include a new particle iterator, which was created to wrap
the behavior of AutoPas and make it compatible with ls1 mardyn. For the force
calculation, we use the functors provided by AutoPas instead of creating our285

own ones, as they provide all features needed for the scenarios considered in this
paper.

4.3. Single-Node Modifications
With the new interface of AutoPas, a few additional changes to ls1 mardyn

were necessary. For single-node usage, these included mainly the handling of290

the particle exchange on the periodic boundaries.

Leaving Particle Exchange
As the RegularUpdateInterface requires particles to remain inside their spe-

cific cells, the periodic boundary conditions are only allowed to be applied in
those time steps in which the container is updated. This indicates that particles295

do no longer necessarily remain inside the domain, but can be slightly outside
of it (by at most a distance of rskin/2). Methods acting on specific sub-regions
of the domain had to be updated to incorporate this change.

Halo Particle Exchange
In ls1 mardyn, halo particles need to be communicated in 26 different spatial300

directions (cf. Figure 4a). For the integration of AutoPas, these regions had to
be enlarged by the skin radius rskin in all directions (cf. Figure 4b). This change
was necessary because (a) all interaction partners within rc + rskin have to be
known and (b) because particles can be slightly outside (by at most rskin/2)
of the domain bounding box. In principle, the extension of the regions in the305

direction outside of the domain only needs to be rskin/2, but for simplicity
reasons and because there are no severe negative performance impacts for the
considered scenarios so far, we always enlarged the regions by rskin in all spatial
directions.

4.4. Multi-Node Modifications310

To make ls1 mardyn compatible with the interface of AutoPas in MPI-
parallel simulations, the neighbor exchange had to be modified similarly to the
single-node case.

First, instead of communicating particles that move between processes in ev-
ery time step, the communication is triggered only every Nrebuild steps. Second,315

the halo regions had to be adapted in a very similar fashion to the single-node
case by increasing the halo regions by rskin in all directions.
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rc

(a) Old behavior of the halo exchange (also
new behavior if the skin is zero).

rc rskinrskin

(b) Behavior of the halo exchange if the skin
is non-zero.

Figure 4: Illustration showing the regions that include the boundary particles which need to
be sent for a correct update of the halo particles and the spatial directions in which they need
to be sent.

4.5. Load Balancing
For heterogeneous particle distributions, load balancing is necessary to en-

sure good performance. ls1 mardyn features k-d tree based load balancing that320

leverages and builds upon ls1 mardyn’s linked cell structure [31]. This method
has the advantage that in a single rebalancing step, a very good load balancing
is achievable. The method, however, requires knowledge of the time needed for
the calculations of every cell and is limited to the “cell view” – which might be
too coarse in the strong scaling limit.325

This knowledge is hard to obtain when using AutoPas, as, depending on the
number of cells and properties of the other cells, different algorithms are used
and thus the time spent for the calculation of a cell is dependent on other cells in
the same partition. AutoPas does not provide information about the underlying
data structure, which varies depending on the selected configuration. Moreover,330

k-d tree-based balancing may severely alter the topology within an MPI-parallel
simulation. Hence, drastic fluctuations in the partitioning (ls1 mardyn) may
change the locally optimal algorithm configuration (AutoPas). This makes the
load of a subdomain unpredictable, rendering global load balancing infeasible.

However, if the partitioning varies only slightly from one time step to the335

next, the performance of the algorithms will only deviate marginally. This is
typically the case in MD scenarios, where immediate drastic changes occur over
hundreds of time steps in the worst case. Hence, other load balancing strategies
may be preferable; an evaluation of various strategies can be found in Ref. [32].
We therefore extended ls1 mardyn to support diffusive load balancing, where340

changes to the subdomains are typically rather small, and thus, drastic changes
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Figure 5: Multisection method for 12 ranks. First, the domain is divided into three parts along
the horizontal direction, then each of these partitions is again divided into four subpartitions.
In this schematic, the number of particles estimates the load of a subdomain.

of the performance for a specific partition are unlikely.
For load balancing, we are using the A Load-balancing Library (ALL)7 that is

developed at the Jülich Supercomputing Center and which provides a diffusive
multisection method (called staggered grid in the library). This method is345

similar to an orthogonal recursive bisection method [33], but instead of always
splitting a region into two parts, it allows splitting the domain in multiple
subsections at once. It also limits the depth of the tree to the dimension of the
domain, such that a splitting is only done once for each dimension. A schematic
of that approach is depicted in Figure 5.350

With the integration of diffusive load balancing, ls1 mardyn is no longer
bound to cell-wise domain decomposition, allowing for more precise partition-
ing. In addition, the load no longer needs to be estimated for each cell, but
is measured for an entire process instead. This makes the load calculations
significantly easier, but cannot resolve the load distribution within an MPI pro-355

cess. The technical integration of ALL into ls1 mardyn was straightforward,
as it is provided as an header-only library and the interface matches well with
our previous load balancers. As the library does not share detailed informa-
tion about the neighboring processes, information that describes the necessary
communication partners is provided through global communication.360

5. Scenario Descriptions

To test the performance of the load-balanced ls1 mardyn software with
AutoPas integration, we considered a variety of scenarios. All of these sce-
narios are using single-site molecules that interact with the Lennard-Jones 12-6

7https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/
modules/ALL_library/tensor_method/readme.html
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(a) Spinodal decomposition scenario at the start (l.) and the end (r.) of the simulation.
https://youtu.be/yarl9028dEc

(b) Droplet coalescence scenario at the start (l.) and the end (r.) of the simulation.
https://youtu.be/1tlxDapmgbI

(c) Exploding liquid scenario at the start (l.) and the end (r.) of the simulation.
https://youtu.be/u7TE5KiSQ08

Figure 6: Three scenarios that were studied in this work.
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potential.365

The first scenario is a spinodal decomposition, i.e., a system which is first
equilibrated at a supercritical temperature and a density close to the critical one.
Then, a velocity scaling thermostat is applied to set the temperature far below
the critical one. The fluid immediately becomes unstable and decomposes into
vapor and liquid phases. Throughout the simulation, the system thus changes370

from a homogeneous to a heterogeneous state (cf. Figure 6a). We have chosen
this scenario to compare with results from Ref. [10].

The second scenario is a droplet coalescence. The initial configuration was
set up with two neighboring liquid droplets in equilibrium with their surrounding
vapor. During simulation, the two droplets merge and form a larger droplet (cf.375

Figure 6b).
The third scenario is an exploding liquid that comprises a compressed

and hot liquid film exposed to vacuum. The film rapidly expands and then
disintegrates into filaments and droplets (cf. Figure 6c).

We have chosen the last two scenarios because they possess large inhomo-380

geneities and each subdomain might require a different algorithm so that they
are particularly interesting for auto-tuning. In comparison to the second sce-
nario, the third scenario develops much faster and the dynamic load balancing
takes an important role which we wanted to evaluate.

All experiments were conducted on SuperMUC-NG, a cluster at the Leibniz385

Supercomputing Centre8 in Garching, Germany and, as of November 2019, the
9th fastest supercomputer worldwide9. The cluster contains 6336 nodes, each
containing two sockets with a 24-core Skylake Xeon Platinum 8174 processor.
For the present simulations, we have executed ls1 mardyn with one process per
socket, i.e., two processes per node. We pinned the threads of each process to390

one socket, corresponding to the NUMA domains.

6. Results

6.1. Spinodal Decomposition
First, we have investigated the performance of ls1 mardyn for the spinodal

decomposition scenario. We compared auto-tuning and the performance of ls1395

mardyn with and without AutoPas for different load balancing schemes.
To compare to the results from Ref. [10], we have performed a very similar

experiment and examined the switching behavior of AutoPas for the spinodal
decomposition scenario when choosing between the c08 and sliced traversal.
The results are depicted in Figure 7. For almost all scenarios and node counts400

the simulation starts with the sliced traversal being more beneficial than the
c08 traversal, with the c08 traversal becoming faster in the later stages of the
simulation. This is in accordance with the results from Ref. [10] and can be
attributed to a very homogeneous particle distribution at the beginning of the

8LRZ: https://www.lrz.de/
9https://www.top500.org/lists/2019/11/
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Figure 7: Relative amount of processes for which AutoPas selects the c08 traversal in the
spinodal decomposition scenario. AutoPas was only allowed to select either the c08 or the
sliced traversal. A value of 1 indicates that all processes were using the c08 traversal, a value
of 0 that all processes were using the sliced traversal. Simulations have been carried out for
a small scenario with 2 · 106 particles (left) and a larger scenario with 157 · 106 particles for
both a Cartesian domain decomposition (top) and a load-balanced decomposition (bottom),
for which rebalancing was triggered every 5000 time steps. For this experiment, tuning was
triggered every 1000 time steps. The plot for the 2M scenario only shows the initial 2 · 104
time steps, to better illustrate the switching of the auto-tuning behavior, even though the
entire simulation took 1 · 105 time steps.
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Figure 8: Strong scaling for the spinodal decomposition scenario (1·105 time steps) comparing
ls1 mardyn with AutoPas to ls1 mardyn without AutoPas. ALL: ls1 mardyn with ALL-
based load balancing and using AutoPas. sdd: ls1 mardyn with AutoPas and with standard
domain decomposition. sdd-ls1: ls1 mardyn without AutoPas and with standard domain
decomposition.

simulation and a heterogeneous distribution towards the end of the simulation405

(cf. Figure 6a), for which the c08 traversal is more appropriate due to dynamic
work scheduling on the node-level.

However, it can be seen that the behavior varies significantly depending on
the size of the simulation and the number of processes. Especially for small
scenarios and many processes (nodes), the c08 traversal is chosen by AutoPas410

even at the start of the simulation. This can be explained by a higher degree of
potential parallelization for the c08 traversal compared to the sliced traversal:
The work chunks of the c08 traversal are single cells, whereas the sliced traversal
is one-dimensional and distributes one-dimensional slices of the domain as work
units. The only exception is the 157M scenario with few processes, where the415

sliced traversal remains superior for more than half of the simulation.
Figure 7 also shows the switching behavior with load balancing. It can be

seen that the c08 traversal is selected earlier and more often compared to the
non-load-balanced approach. To some extent, this can be explained by the
fact that some subdomains are getting smaller and thus the traversal with a420

better parallelizability (c08) in terms of dynamic work load distribution on the
node-level is chosen.

A comparison of the simulation performance between the Cartesian domain
decomposition and the diffusive load balancing (using ALL) is displayed in Fig-
ure 8. Except for the smallest scenario (3 · 105 particles, 32 nodes), diffusive425

load balancing can yield some performance benefits compared to the non-load-
balanced simulations. The relatively small performance benefits are within our
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configuration for the droplet coalescence scenario and load balancing with the ALL library.

expectations as the scenario does not provide large inhomogeneities throughout
the entire domain, but contains smaller inhomogeneities that are distributed
throughout the entire simulation domain.430

The performance of the original ls1 mardyn code, i.e., without AutoPas, is
compared to the one of this code using AutoPas in Figure 8. It can be seen that
the simulation is sped-up through AutoPas by about 50% in comparison to the
original ls1 mardyn code which does not contain auto-tuning.

6.2. Droplet Coalescence435

For the droplet coalescence scenario, we have allowed AutoPas to tune over
all available tuning options, with the exception of the DirectSum approach, as
it is not beneficial and its costs are too high. A statistics of the chosen scenario
can be seen in Figure 9. At the beginning, roughly 50% of all processes employ
the VL Build container. This behavior changes relatively quickly until this440

container is used by around 10-20% of the processes.
This change in behavior can be explained by looking at single ranks (cf.

Figure 10). Most of the outer processes, i.e., processes calculating only the
gaseous phase that consists of few particles per volume, are using the Verlet list
traversal because it allows for a quick traversal of the according particle pairs.445

In contrast to the linked cell traversals, this does not incorporate the overhead
of iterating through the cells, but uses the list of particle pairs directly.

Due to load balancing, many of these outer processes will cover larger do-
mains of the simulation volume, as their computational load is small at the be-
ginning and some of these processes will also have to cover parts of the droplet.450

Due to these two changes, these processes have to take more care of load bal-
ancing at the node-level and the c04 traversal of the linked cells container is
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Figure 10: Configurations chosen for the droplet coalescence scenario and decomposition of
a simulation on 32 nodes (64 processes) when using ls1 with enabled AutoPas and ALL load
balancing at the beginning of the simulation (top) and after some rebalancing steps (bottom).
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Figure 11: Strong scaling for the droplet coalescence scenario using ls1 mardyn with and
without AutoPas. The performance of AutoPas with the ALL load balancing is compared
with the original code with k-d tree-based load balancing.

chosen instead, since it has a lower overhead when traversing through many
cells, compared to the c08 traversal.

The volume of the inner ranks will shrink over time as they are calculating455

regions with a high computational load. In comparison to the outer ones, some
ranks will cover relatively small subdomains. As the c08 traversal provides
finer-grained load balancing, this traversal was chosen in this case.

In Figure 11, the scaling behavior of ls1 mardyn with and without AutoPas
is shown both with enabled and disabled load balancing. It can be seen that460

the ALL load balancing is mostly on par with the kdd load balancing and that
AutoPas has no large impact on the overall performance. Comparing the load-
balanced with the non-load-balanced calculations, it can be seen that they pro-
vide the same performance up to four compute nodes. With eight or more nodes,
the load-balanced simulations significantly outperform the non-load-balanced465

ones. Up to four nodes, the load distribution using Cartesian decomposition
(sdd) is optimal because the two droplets are centered exactly in the middle of
the domain and thus the load distribution up to two subdomains in each direc-
tion, i.e., eight subdomains in total, is optimal. This correlates to four nodes,
as they each have two NUMA domains, and one process was used per NUMA470

domain, i.e., two processes per node.

6.3. Exploding Liquid
First, we illustrate the heavily varying performance of the different subdo-

mains in the exploding liquid scenario. Figure 12 shows the sampling results
for the different algorithm configurations for two subdomains when simulating475
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(a) Rank 0, simulating entirely vacuum.
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(b) Rank 1, simulating the liquid film and parts of the vacuum.

Figure 12: Simulation time for one time step for the different configurations at the beginning
of the simulation when simulating the exploding liquid scenario with three MPI processes.
Due to the Cartesian domain decomposition, the three ranks are arranged along the y axis
in an equidistant manner. This corresponds to the first time step, when using the ALL
load balancer (cf. Figure 13). The colors mark different container types (blue=Linked Cells,
red=VL Global, green=VL Cells, orangs=VL Build, see also Table 1). The results for rank 2
are almost identical to rank 0 and are thus not shown.

with three processes. Ranks 0 and 2 represent subdomains which initially are
entirely made up of vacuum, while rank 1 contains the liquid film.

For the processes simulating the vacuum regions (Figure 12a) the c08, c18
and c01 traversals for the linked cells and the v18 and v01 traversals for the
Verlet list container performed worse than the other traversals due to their480

relatively large overhead for dynamic scheduling. In contrast, the sliced traversal
performed well, as it does not provide dynamic scheduling, and the c04 traversal
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Figure 13: Time evolution of the decomposition of the exploding liquid scenario when using
the ALL load balancer on three MPI ranks. The liquid expands over time in y direction, with
the domain decomposition following.

performed reasonably well, as it always schedules larger chunks of data. For the
vacuum region, the Verlet build traversal performed best, as it directly iterates
over pairs of particles inside of a neighbor list, whereas all linked cell traversals485

include the overhead of iterating over the empty cells.
For the process that calculates the subdomain containing the liquid film

(Figure 12b), the requirements for efficient traversals are completely different.
First, vectorization and thus an SoA data structure become favorable, as the film
consists of a dense set of particles. Second, load balancing at node-level through490

dynamic scheduling is now profitable. In addition, the use of Newton’s third
law of motion is beneficial because it halves the amount of required calculations.
For these reasons, all linked cell traversals, with the exception of the sliced
traversal, perform well in their SoA form with enabled Newton3. Due to a
worse vectorizability, the Verlet-like traversals provide a poorer performance495

than the linked cells traversals.
We have repeated the above measurements with ALL load balancing and

checked the measurements for different traversals once a good load balancing
was reached and the liquid film expanded only slightly, i.e., when the inner
rank covered the smallest volume (cf. Figures 13 and 14). In contrast to the500

previous measurements, a good load balancing between the two optimal choices
was observed. In the load-balanced case, the subdomain of the inner rank only
included a part of the liquid phase volume, while the outer ranks contained
both parts of the very dilute gas, as well as parts of the liquid. Because of this
behavior, the inner process (rank 1) did not have to care about load balancing505

so that all linked cells traversals perform equally well. However, both the New-
ton3 optimization and vectorization were important for an efficient processing.
For the outer process, load balancing was essential, making the sliced traversal
perform worst.

The performance of ls1 mardyn with and without AutoPas is shown in510
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(a) Rank 0, simulating mostly vacuum with some parts of the liquid film.
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(b) Rank 1, simulating only the liquid film.

Figure 14: Simulation time for one time step for the different configurations at the point of the
simulation, where the inner subdomain is the smallest (cf. Figure 13), when simulating the
exploding liquid scenario with three MPI processes. The colors mark different container types
(blue=Linked Cells, red=VL Global, green=VL Cells, orangs=VL Build, see also Table 1).
The results for rank 2 are almost identical to rank 0 and are thus not shown.

Figure 15 for the exploding liquid scenario. Overall, using AutoPas and dy-
namic load balancing with ALL provides the best performance for all node
counts, as ALL provides a diffusive load balancing that is able to better follow
the expanding liquid compared to the k-d tree based decomposition.

The kdd load balancing of ls1 mardyn cannot properly follow the explosion515

and thus generally results in the worst performance compared to the other three
options, which can be explained by a poor load prediction, which is especially
complicated for this very inhomogeneous scenario.

Except for very large node counts (starting at 128 nodes, i.e., 3 ·104 particles
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Figure 15: Strong scaling for the exploding liquid scenario with 8 · 106 particles, both for ls1
mardyn with and without AutoPas and for simulations using load balancing (ALL, resp. kdd)
and not using load balancing (sdd).

per process), the performance of ls1 mardyn with and without AutoPas provides520

a similar performance when the Cartesian domain distribution is used. However,
the version without AutoPas provided the better performance for large node
counts. This can be explained by a variety of factors. The following most
negatively influence the performance of communication:

1. The iterators inside of AutoPas have an additional layer of indirection525

that arises through the hiding of the container structure.
2. The RegionIterators that are used to iterate over particles in a specific re-

gion, e.g., to select particles for communication, provide less performance.
These internally work by iterating over all particles in cells that could
potentially accommodate such particles. As the cells using AutoPas are530

always larger (at least rc + rskin) compared to the original ls1 mardyn (at
least rc) the iterators have to consider (and skip) more particles and thus
provide less performance.

3. Inside of the halo exchange, particles are only updated and not deleted
and reinserted when using AutoPas. This requires a search of the particles535

which should be updated.

Additionally, the larger minimal cell size introduces more calculations when
using AutoPas, especially in the strong scaling limit.

For this scenario, AutoPas and ALL load balancing can provide an improve-
ment in speed of up to 43% (32 nodes) compared to the original ls1 mardyn540

code.
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Figure 16: Parallel efficiency for the exploding liquid scenario with 8 · 106 particles, both for
ls1 mardyn with and without AutoPas and for simulations with load balancing (ALL or kdd)
and without load balancing (sdd). The efficiency is normalized by the performance of the
ALL-AutoPas(AP) approach on a single node.

7. Summary and Outlook

7.1. Summary
We have discussed details of the integration of the node-level library AutoPas

into the code ls1 mardyn which enable the first parallel MD simulation that em-545

ploys dynamic auto-tuning. We have provided an overview of the auto-tuning
capabilities of AutoPas inside of MPI-parallel simulations and have success-
fully demonstrated its potential for selecting different algorithm configurations
for different subdomains of highly heterogeneous simulations. Additionally, we
have shown that AutoPas can provide significant speedups over the original ls1550

mardyn both for the exploding liquid (up to 43% speedup) and for the spin-
odal decomposition scenario (up to 50% speedup), while similar performance
was achieved for the droplet coalescence scenario. This is remarkable, with
ls1 mardyn being a highly-optimized code already, and thus underpins both
the potential of and the need for dynamically adapting software in simulation555

technology.

7.2. Outlook
While a speedup compared to the original ls1 mardyn was almost always

observable, it was often not optimal. Especially for the exploding liquid scenario,
only very low parallel efficiencies are achieved (cf. Figure 16). The main reason560

for this is a rapidly developing change of the particle distribution, which the
load balancing could not accurately follow due to a relatively low rebalancing
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frequency and because diffusive load balancing can only react to load imbalances
after they have been observed.

The rebalancing frequency is currently limited by the time AutoPas needs565

to tune and then select a configuration. As AutoPas is currently able to use
around 35 different configurations, it needs 350 time steps to select the best one
when ten samples are collected for each configuration. To provide performance
benefits that outweigh the cost of tuning, the simulation has to continue for a
significant amount of time, e.g., 4000 time steps, without changing the domain570

distribution. To circumvent this long tuning phase, we are currently developing
a variety of methods to speed it up, e.g., by using machine learning or Bayesian
statistics.

Another approach to provide a better load balancing is currently being de-
veloped by the team behind ALL and is described in Ref. [34]. This approach575

aims to provide faster convergence compared to the current diffusive approach
of the staggered grid within the ALL library.
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