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Abstract—We propose a framework to analyze and predict
vehicles behavior within shared road segments like intersections
or at narrow passages. The system first identifies critical inter-
action regions based on topological knowledge. It then checks
possible colliding trajectories from the current state of vehicles
in the scene, defined by overlapping occupation times in road
segments. For each possible interaction area, it analyzes the
behavioral profile of both vehicles. Depending on right of way
and (unpredictable) behavior parameters, different outcomes are
expected and will be tested against input. The interaction between
vehicles is analyzed over a short time horizon based on an
initial action from one vehicle and the reaction by the other.
The vehicle to yield most often performs the first action and the
response of the opponent vehicle is measured after a reaction
time. The observed reaction is classified by attention, if there
was a reaction at all, and the collaboration of the opponent
vehicle, whether it helps to resolve the situation or hinders it.
The output is a classification of behavior of involved vehicles in
terms of active participation in the interaction and assertiveness
of driving style in terms of collaborative or disruptive behavior.
The additional knowledge is used to refine the prediction of
intention and outcome of a scene, which is then compared to
the current status to catch unexpected behavior.

The applicability of the concept and ideas of the approach is
validated on scenarios from the recent Intersection Drone (inD)
data set.

I. INTRODUCTION

Urban traffic scenarios still pose a challenge for autonomous
vehicles, as safe maneuvering needs to consider more factors
than well-understood highway applications. This is mainly
due to far more shared spaces as intersections and narrow
passages where interactions with other traffic participants oc-
cur, especially oncoming traffic. In these scenarios, predictable
actions of a vehicle are essential for perceived safety and trust
in the vehicle, as a study finds 41% of drivers do not trust
autonomous vehicle systems [1]. Inside urban areas the fatality
rate for the driver and passengers is lower than outside, still
more drivers and passengers die in accidents than pedestrians
(60/40 ratio in the EU) [2]. According to the NHTSA, 36%
of accidents happen at intersections with around 150.000
accidents in the US happening due to misjudgment of behavior
[3]. An algorithm is to be found to reduce the severity of the
problem by identifying interactions and classifying decisions
of road users to help predict future behavior. Currently first
experimental cars include safety mechanisms for intersections,
mainly relying on safe passage times with large time gaps to
securely pass. However, they do not infer any intention to
collaborate in an encounter which could be used for better
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Fig. 1. Trajectories of two vehicles interacting with each other. At start
position, all trajectories are feasible. Over time, vehicle from the left slows
down to let oncoming traffic pass before turning left. Highlighted interaction
areas (green) based on topology and resource competition analysis, actual
trajectories highlighted by arrow. Scenario 00, vehicles 314 & 316

understanding of an outcome and could lead to more natural
driving behavior for an autonomous vehicle.

Problems for this inference come different sources which
may influence the overall scenario:

1. Topology is fixed at a current scenario, but very indi-
vidual for each intersection. Right of way situations may be
predefined but may be changed currently.

2. Aggressiveness in an encounter plays a major role in an
interaction as it may change the situation completely.

3. Drivers influence each other by behavior and react to
changes in behavior to try to achieve seamless interaction.

4. Early prediction is based on small and noisy measure-
ments which impacts prediction of behavior.

5. Observed behavior may match different outcomes first,
differences may become obvious late.

As vehicles are bound to the road surface, there has been a
lot of research about intentions, also in intersections. Doshi et
al. [4] did a thorough comparison of approaches which have
been extended substantially in the last few years.

Problems with these approaches arise because predictions
are often purely based on current (or possible future) trajectory,
which enables an autonomous vehicle to maneuver between
vehicles, but does not consider behavioral feedback between
drivers. For a human driver, the prediction of another vehicle’s
intention is not only defined by visual and topological clues as
seeing turn signals or driving in a specific lane. Experienced
drivers also take include approaching speeds, “perceived ag-
gressiveness” of a driver and possibilities to avoid interactions
altogether by changing the velocity and/or path slightly.
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Our approach is designed to minimize this gap of knowledge
and prediction by combining base topology and scene outcome
prediction by measurements of reactions to small changes
introduced by one of the vehicles. Depending on the reaction,
the willingness to keep or change the kind of given situation is
predicted and behavioral parameters classified. Base analysis
of a scene tells whoever goes first, depending on difference of
arrival times and right of way. Arrival times are calculated for
an interaction area around the intersection point of trajectories.
The first vehicle introduces a small change in its arrival time
and then waits for a reaction. The type of response classifies
behavior parameters of the other vehicle, leading to a better
understanding of actively modifying a scenario and intention
to cooperate with the first vehicle.

The paper is structured as follows. Section II presents the
related work. In section III, we present our approach from
initial base knowledge and interaction identification based on
difference of Time to Arrival (ATT A). The actions and reac-
tions develop in the derivative TT'A’, where changes can be
see more clearly. The measured behavior refines the predicted
outcome. In section IV, we present a validation of the approach
based on real-world examples from the Intersection Drone
(inD) dataset. We conclude with a review of our approach
and discuss the future work.

II. RELATED WORK

Road users’ intention prediction has been researched
broadly in different aspects as it is especially relevant for
autonomous driving. Simulation environments as SUMOIS5]
include different approaches for simulation and have indi-
vidual models for following, lane changes and intersections.
These methods, as for example the Intelligent Driver Model
(IDM), are often used in driver intention estimation. These
can be enriched by action models as in [6] or tailored to
fit intersection models better using velocity profiles [7], both
showing promising results. Another approach are data-driven
models using aggregated real world data. One of these is
called DESIRE[S8], a deep learning approach for interaction-
awareness which includes multiple possible paths of vehicles
to learn. The main downside is the sheer magnitude of samples
needed for a completely learned world. Bayesian networks
as in [9] use conditional probability tables to infer drivers
intentions at intersections, but are limited to output rather
limited information. In [10], a deep learning network is used to
infer behavior to improve performance of Bayesian networks
for prediction in urban settings. Another approach is to use
LSTMs for intention prediction at intersections as shown by
[11].

Direct inference of vehicle motion from optical flow has
been performed by [12] to predict interactions at intersections
and also considers multiple paths, but the time horizon is very
short as it relies on visible action. A good overview of multiple
current approaches is found in [13] with aspects of intentions
and performed actions for motion planning.

Driver intention in merging scenarios was analyzed by [14]
which featured dynamics to estimate behavioral parameters

and outcome with a more global overview of tactical driver
behavior prediction in [4].

In this paper, Time to Arrival (TTA) is used; it is based
on the concept of Time To Collision (TTC) first introduced
by Hayward [15] in 1972 directly from image data. Further
research by Lee [16] has extended knowledge of accepted time
gaps between vehicles and braking parameters.

In a previous work [17], we proposed an approach for
vehicle-pedestrian interaction prediction which focuses on
interaction areas at which an interaction likely will take place
and analyzes temporal evolution. The topological analysis is
adapted here for motorized traffic. However, there was no
analysis of mutual influences on behavior and classification
of behavioral parameters.

III. APPROACH

The approach consists of three phases: Phase one identifies
possible interactions and a logical map of possible outcomes
in a scenario. Here, static road topology is read from a map
beforehand, enabling the search for possible trajectories of
vehicles in the scene. Overlapping lane paths show possible
interaction areas and are combined with information about
Time to Arrival (TTA) and right-of way situation to create a
map of possible trajectories and outcomes of each interaction.
It is described in chapters III-A to III-B.

In phase two, one vehicle initiates a stimulus/behavior
change to the scenario. It depends on legal and behavioral
parameters such as right of way and aggressiveness of the
driver. In most cases, the yielding vehicle acts first, as it is
legally bound to first try to avoid a collision by changing
behavior (mainly velocity). It is described in chapter III-C.

In phase three, the reaction of the opponent vehicle is
awaited. It is measured first after a fixed reaction time and
then reevaluated over a time period if changes occurs. The
driver may be neutral or ignorant of the stimulus, which
is handled by a classification as such after additional time.
Based on the classified reaction type, a prediction about future
behavior is done and compared against the actual evolution of
the scenario. This phase is described in chapters III-D to III-E.

Figure 2 gives an overview of the three phases of a typical
situation in terms of ATT A, which is the time gap between
vehicles at the interaction area.

1. A vehicle approaches a yield sign and detects a vehicle
being too close to safely pass in front.

2. It starts braking as a stimulus, pushing the time difference
in favor of the other vehicle. The change is noticed by the other
vehicle at reaction time t,qqct.

3. After t,,cqasure. the behavior of the other vehicle is ana-
lyzed for expressed reaction. The other vehicle can ignore the
first vehicle for a neutral/ignorant outcome or actively change
the situation by accelerating (collaborative) or (mistakenly)
brake for a critical disruptive behavior.

This separation enables the algorithm to pick a long-term
high-level outcome at the very beginning from initial status
and then classify driver’s behavior profile at an early stage of
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Fig. 2. Schematic three-phase approach: 1. An interaction situation is detected
(|ATTA| < 10). The first vehicle wants to go second (ATTA > 2). 2. It
brakes, pushing AT'T' A positive. 3. The other vehicle can react multiple ways,
the behavior is measured after a reaction time at t,eqsure. The reaction is
determined by the difference of change in ATT A caused by the first and
second vehicle.

interaction, so that the outcome is refined and future behavior
predicted more accurately.

This approach initial guess relies on previous work [17]
from which interaction areas and TTA-wise thinking was used
but extends further into the domain of a challenge of actions
and reactions between the two drivers to determine behavior
types in an interaction.

A. Identifying an interaction

At the beginning of planning, a static road map with
topology information is needed. It includes lane numbers, turn
options from each lane and all yield information for inter-
sections with state-wide common laws included for otherwise
undefined intersections.

Vehicles are usually bound to the road surface, so planned
movement is following the road network and turning into other
streets to get to a target position. Based on this information,
a map of interaction areas as shown in Figure 3 is created
locally where possible trajectories of vehicles may overlap.
For each vehicle in a scene, the time to arrival to a reachable
interaction area is calculated by

A L (1)

Vo
in which d is the distance to the intersection point and 7y is the
average of the expected velocity profile described in chapter
II-A2.
For each pair of vehicles, ATT A for a common interaction
area is calculated:

vehl1 first
veh2 first

<0,

>0, (@)

ATTA =TT Apeny, =TT Apen, = {

An interaction is likely to happen with |[ATT A| < 2s and
possible with |ATT A| < 10s.

1) Influences of topology: Figure 4 lists the three main yield
situations between vehicles which may be encountered:
Right of way, yield or defined time-wise.

The first two are self-explanatory and often regulated by signs,
the third is found at narrow passages as one-lane bridges or

Fig. 3. Scenario 00/01 of inD data set: Set of all legal pathways (blue) with
possible interaction/collision areas between two vehicles (green). Vehicles
from top have to yield to other traffic.

-

e
Fig. 4. Schematic overview of three yield situations from the first vehicle’s

perspective: LTR: Having right of way, yield to other vehicle, first to come.
First vehicle in purple, other vehicle in green.

ATTA
(@)

-5 - — ;
0 time t

Fig. 5. Schematic temporal evolutions for different outcomes of an interaction
from a vehicle’s perspective: 1/2: Passing behind/in front the other vehicle
from different start values. 3: Sharp braking to let a vehicle pass, especially
in yield situations.
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at four-way stops. In latter cases, usually the vehicle arriving
first has the right of way.

2) Velocity profile: Topology also influences an expected
initial velocity profile vgy. For (nearly) straight roads, the vehi-
cles are set in a constant velocity model v or may accelerate
t0 0 < v < UmazAllowed + Dm/s which includes speeding
11mph/18km/h over the limit. For vehicles speeding faster,
a conservative approach of “don’t pass in front” should be
implemented, as not to come into the path of a dangerous
driver. According to statistics by the UK government[18],
this includes only 6-7% of cars/LCVs on 30mph roads, so it
seems applicable as a threshold. For cornering, the theoretical
maximum velocity of a vehicle is defined by NHTSA for level
surfaces is

g Uiat
p

with g being the gravity, p the road curvature and py4; the
maximum side friction between the wheels and the ground.

However, this is the absolute maximum value a vehicle
can physically corner and not useful for estimation. Another
approach is to take the planned top speed of a corner, which
should be below 15mph or 6.7m/s according to NACTO[19].
The velocity profile vy is set to decelerate at a constant rate b
from velocity v and arrive at cornering speed:

dcorner/v

3)

Umaz =

with d¢orner being the distance to the beginning of the inter-
section and following through with a fixed value of 6.7m/s.

3) Safe passing distances: To account for occupation time,
input noise and safe clearance distance between vehicles, a
buffer is kept between two vehicles.

0.5s,
2.0s

collision
close call

ATTA| < { )
of which the first needs to be avoided at all cost. Close
calls are unsafe maneuvers to be avoided but may occur in
measurements.

The actual value of ATT A when the first party arrives
at the interaction area is an indicator for level of perceived
security/risk acceptance. Real data seems to show dependen-
cies on traffic situation, initial velocity and driver’s skill.
Further research is needed for improved values, as it seems

that vehicles with yield signs tend to wait longer.

B. Expected and possible outcomes

Figure 4 shows the three different scenarios mentioned,
possible outcomes in the domain of ATTA are shown in
Figure 5.

For all situations, |ATT A| < 2s, so an interaction is needed
to keep a safe passing distance between vehicles. Expected
velocity profiles of vehicles are defined as vgyen1 and voyens

The expected outcome for the first two scenarios is the
lawful yield of the respective vehicle. In the third option, both
parties need to agree on an outcome.

In the first scenario, the first vehicle has right of way, so
a temporal evolution and outcome of type 2 is expected, the
other vehicle probably will wait.

The middle scenario has a yield sign for the first vehicle,
so the natural behavior is outcome 1 or even 3 for a defensive
driver as merging sharply at a yield sign can be insecure. The
initially expected outcome is similar to before, with the other
vehicle going first.

For the third situation, both parties need to agree on who
goes first, as they both may arrive at the interaction area at
the same time. Depending on levels of passive or aggressive
behavior, one vehicle will need to let the other pass, so either
behavior 1 or 2 is seen. In this case, the outcome does not
define a vehicle to go first yet, it has to be chosen later. This
approach is limited and would be very complex for all possible
scenarios, so it is generalized to a tow-step action/stimulus by
one vehicle and the reaction of the other vehicle in the next
sections.

2r
treact
1 A
- /_\_
2 L c
0 t:l i It:z !
0 time t

Fig. 6. Schematic example of a stimulus of the first vehicle (purple) and
reaction by the other vehicle (green). First applies a change to its own TTA at
tl by reaching the intersection area faster/slower (1/2). The other vehicle may
react at t2 by changing its TTA to earlier/same/later (A/B/C). The reaction
time is measured between the two changes. No change (B) is set after a
reaction time of 2s has passed.

C. Initial stimulus

As for different cases (having right of way, yielding or
undefined), different analyses of curvatures would be needed,
further analysis is set in TT A’ of each vehicle to see the
individual behavior more clearly - compare the simplification
in Figures 5 to 6.

TTA(t) — TTA(t + At)
At

It expresses a change in velocity by means of change to

the Time to Arrival per time step (compared to the expected

velocity profile vg).

TTA = (6)

< 1, vehicle slows down
TTA =< =1, expected velocity 7
> 1, vehicle accelerates

It is an indicator if a vehicle actively changes behavior to
change its TTA, thus changing the interaction.
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In each interaction situation, one of the vehicles is the first
to react. For an autonomous vehicle, it should be able to first
introduce a stimulus to the interaction, a small but noticeable
change to its own arrival time.

In Figure 6, the purple first vehicle has two options to
choose as initial action: It may either accelerate/keep momen-
tum/take a shorter route to be at the intersection earlier (1) or
slow down to be there later, often to signalize a yield situation
(2). In terms of TT' A’, these actions increase or decrease the
value. For a vehicle with right of way, the option “keep the
anticipated velocity profile” is possible, but discarded here, as
the stimulus would then begin with the other vehicle initiating
a stimulus and the first vehicle possibly reacting to it (or
staying neutral).

1) Stimuli for autonomous vehicles: For an autonomous
vehicle it will be necessary to pick the most favorable option
for both outcome and action to signalize its decision to the
other vehicle. Based on the current data set, human drivers
show different behavior patterns in real scenarios. There is a
need for predefined behavior patterns which to expect from
an autonomous vehicle for it to be perceived as driving safe
but “naturally”. These may include active or even assertive
behavior in certain situations, as strict passive behavior is safe
for the passengers but also takes longer to reach a destination.
In some scenarios as in Scenario 5 (Figure 12) the early
clearing of the intersection enables a smoother ride compared
to coming to a full stop to wait for traffic.

D. Measuring the reaction to behavior

Behavior parameters are defined as

Bveh = {

where the initial values are B,.;, = [passive, neutral].

passive, active
collaborative, neutral, disruptive

®)

To determine the will of collaboration, the reaction ATT A’
of the other driver is measured after a time period Tyeqct = 1.
This time is needed as the driver first needs to register that
the first vehicle has changed behavior and then also needs
to have time to react as intended. If no reaction is visible
there, reaction is awaited for another second in intervals of
0.1s. If still no change seen, the reaction is defined as By =
[passive, neutral].

ATTA.,,, =TTA!

v

eh (tl + treact) - TTA;;eh (tl) (9)

In Figure 6, three reactions are shown to a stimulus: active
acceleration, passive neutral and active deceleration. Active
behavior can be a collaborative or disruptive option.

collab., s(TTA, —1) # s(TTA) — 1)
Byen = { neutral, (TTAL) =1
disruptive, s(TTAL—1)=s(TTA} —1)

(10)
With s being the sign/signum function. TT A" — 1 is used
because at expected velocity real TT'A evolves exactly the
same as expected TT A from vy, so the neutral gradient of the
function is 1.

The collaborative option is changing TT A in the opposite
direction of TT A, as it means reaching the interaction area
faster when the other is slowing down or vice versa. In terms
of ATT A, both vehicles push in the same direction, usually
to widen the time gap between them, virtually agreeing on an
outcome (which may be different than the initial one).

Disruptive behavior is defined if the reaction is in the same
direction as the stimulus with TT A, ~ TT AL, so the ATT A
stays the same. As long as ATT A does not approach zero at
TT A, no additional reaction is needed but may be considered.

In Figure 6, collaborative behavior are pairs 1A and 2C,
disruptive 1C and 2A.

In the real world, this behavior is intuitive for a human
driver: Changes in TTA are clear signals of a driver trying to
pass or yield in a situation, a human assumes that a driver
will drive according to the law and will only intervene if the
situation seems unusual and/or critical. This is exactly the case
when disruptive or incorrect behavior is observed, either by
an inattentive driver (playing on the phone or similar) or by
reckless driving.

E. Prediction and Reevaluation

The two-step function of stimulus and reaction enables
the algorithm to predict the most probable outcome as the
two initial actions are assumed to be kept valid for the rest
of the scene. The outcome is only changed if the vehi-
cle will have enough time clearance to pass in front, with
ATTA(TT Apin) > 2s, calculated as:

ATTA(C) = ATTA + ATTA' - min(TT Ay, TTA;) (11)

With C = min(TTA2, TTA;) - the moment of the first
vehicle to arrive. This guarantees that the gap is large enough
from both vehicles perspective for a vehicle to pass in front
of the other.

Nevertheless, the predicted outcome needs to be reevalu-
ated if situations change unexpectedly. This may include just
incorrect prediction: The other vehicle may mot intend to take
the planned path at all but go for other options in the scene.
An example would be for a yielding vehicle to slow down for
oncoming traffic but the other vehicle slowing down too for a
right turn. Due to these cases, it is necessary to include more
than one interaction area for analysis. In the above case, if all
possible interactions are considered, the velocity profile vy for
the interaction of a right turn would turn out to match better
than going straight, making this interaction more probable.

IV. RESULTS

This chapter is split into two parts: First, the underlying map
and scenario data is explained. Then, analysis of outcomes in
chosen scenarios is performed.

A. Test Environment

For verification, a test environment with a suitable amount
of suitable examples is necessary with different situations and
different behavior and outcomes.
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1) Databases: Although many data sets are available for
research, steady intersection data is quite rare or deprecated.
Data sets recorded on-board are often unavailable in total
as Cityscapes[20] or feature just rather short segments with
few interactions as KITTI[21]. Moreover, camera setups with
ground truth focus towards the front which e.g. means an
interaction behind or to the side of the vehicle is not visible
in-camera.

a) InD data set: The Intersection Drone data set [22] is
quite new and has several benefits such as unobstructed data
from above where multiple intersections are covered several
times with accurate labeling and continuous data. This allows
for early and reliable knowledge about traffic, not limited the
one test vehicle which just needs to be in the perfect spot
to see an interaction. Each vehicle can be defined as the
first vehicle and the scene defined from its view. This also
eliminates unusual behavior towards a strange looking vehicle
with sensors mounted everywhere. Also different driver types
are modeled each time, covering more test cases. The data set
includes the track data itself and added meta data for each track
which includes lane definitions for both real and virtual lane
markings. Latter are the tracks e.g. a turning vehicle should
stay in without them being painted visibly on the street.

b) OpenStreetMap: Topology information is extracted
from OpenStreetMap [23] around the GPS coordinates found
in the meta data of each data set. For this setup information
about right of way rules are extracted, loosely based on
Filippidis [24].

c) Velocity profiles: Velocity profiles are determined as
stated in chapter III-A2. Here, the whole scenario is classified
by start and goal positions of vehicles, creating velocity
profiles for corners, which are then normalized for the initial
speed of vehicles to create vy profiles e.g. for going straight
or turning left/right. By this, a vehicle with a velocity v at
any position can be assigned a “’standard” profile until further
knowledge is gained.

Fig. 7. Scenario 08 of inD data set: Set of all legal lanes for driving (defined
by lane markings or virtual boundaries) in white. Subset of all possible
pathways in blue for vehicles with possible interaction areas between these
in green, defined by overlapping lanes to be occupied by both vehicles.

d) Trajectory extraction: The creators of the inD data
set include thorough information about each vehicle as center

position, heading and velocity. These are then synchronized
with topology data for lane estimation and to predict possible
velocity profiles for different intended goals.

B. Chosen scenarios

For validation, five examples of applicability have been cho-
sen. First, two examples show typical yielding behavior at an
intersection, coming to a full stop. One example shows active
interaction between two vehicles where the yielding vehicle
just slows down but does not stop at the intersection. One
example shows behavior when the yielding vehicle realizes
that the other vehicle will turn and thus not interfere anymore.
The last example shows active collaboration via acceleration
of the other vehicle.

The Scenarios are vehicles X, Y with X to yield for Y:

1. 314,316 in scenario 00: X wants to turn left with Y from
the opposite direction (Fig.1).

2. 254,253 in scenario 00: X comes from the top, turning
right, Y comes from the right going straight.

3. 176,181 in scenario 00: as 3.

4. 160,159 in scenario 08: X comes from the bottom right,
turning left with Y from opposite direction. (Fig. 7).

5. 176,181 in scenario 08: X comes from top left and wants
to turn left, Y from opposite direction.

All examples are chosen that the first vehicle is the one to yield
at the intersection in the initial configuration. This implies that
it introduces a stimulus to the situation and awaits a reaction.
With swapped vehicles, the initial reaction still is expected
from the yielding vehicle as mentioned in chapter I1I-C and the
vehicle with right of way is usually neutral at the beginning.
For validation, these scenarios are also more interesting as
having right of way because just ignoring the other vehicle is
an accepted answer there.

Scenario 1

| —TTa, \
— -\\_/

0 1 2 3
time [s]

e | TA X

TTA' (5]

ATTA

lime [s]

Fig. 8. Scenario 1, top: changes over time in TTA’ for both vehicles, bottom:
ATT A between the two vehicles. t1 and t2 highlighted in red.

Scenario 1 in Figure 8 is a typical scenario in traffic. At
detection (t1), ATT A = 0, so the expected outcome is Y to
go first, as it has right of way. The first vehicle X decelerates
sharply for the oncoming traffic as indicated by its low value
TTA" < 1.Y accelerates a bit first, but it slows its acceleration
and keeps a constant velocity from ¢ = 1.8s and on. It reaches
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the interaction area at t = 3.18s, the time gap being under
1.5s, a close call. The resulting parameters thus are By =
[passive, neutral]. The outcome is just as predicted at first.

Scenario 2

— TTA‘X

—TTA,

/[
/

time [s]

ATTA (5]

time [s]

Fig. 9. Scenario 2, top: changes over time in TTA’ for both vehicles, bottom:
ATT A between the two vehicles. tl and t2 highlighted in red.

The second scenario in Figure IV-B shows a typical “merge
behind a vehicle” situation: The first driver sees a yield sign
and an approaching vehicle. The driver brakes, as seen by
the sharp decline of TT' A’ value. Here, TT A} clearly is
above one, so the other vehicle also accelerates, collaborating
with the first vehicle with By = [active, collaborative]. This
enables X to slow down less, seen by the rise of TT A’ after
t & 2.2s. The outcome is as expected and ATTA(TT Ay) >
2s, so it is a safe passing when the first vehicle Y arrives at
the interaction area.

Scenario 3
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Fig. 10. Scenario 3, top: changes over time in TTA’ for both vehicles, bottom:
ATT A between the two vehicles. t1 and t2 highlighted in red.

In the third scenario (Figure 10), the first vehicle approaches
a yield sign but decides to go before the other vehicle. Its
interaction point is further down the road, as it has a "head
start” in front of the other. It accelerates sharply and keeps
accelerating over the whole period. With a ATTA ~ 0.5s
it is not in favor of the interaction at the beginning but uses
sharp acceleration for its own benefit. The reaction of the other
vehicle is collaborative by slowing down to let the first vehicle

merge in more easily, TT A% (t2) < 1, both push ATTA
in negative direction for the first vehicle to go first. Again,
By = [active, collaborative].

Scenario 4
1 k,_% |
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L . L
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lime [s]

Fig. 11. Scenario 4, top: changes over time in TTA’ for both vehicles, bottom:
ATT A between the two vehicles. t1 and t2 highlighted in red.

The last two scenarios have similar start and end config-
urations but show different parameters of collaboration. In
scenario 4 (Figure 11), the initial ATTA is close to zero,
so an interaction needs to take place. The first vehicle brakes,
but the other vehicle also decelerates with TTA’Y < 1, so
that the first vehicle needs to brake even sharper to let Y pass.
ATT A just rises above one second in the end. The behavior
parameters for Y thus are By = [active, disruptive].

Scenario 5
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Fig. 12. Scenario 5, top: changes over time in TTA’ for both vehicles, bottom:
ATTA between the two vehicles. tl and t2 highlighted in red.

In the last scenario (Figure 12), the initial ATTA ~ 0 is
similar to the one before, so the first vehicle starts braking.
However, the other vehicle accelerates slightly for the whole
time, so that the first vehicle can even slow down less than
anticipated with a similar outcome. Here, the other vehicle
has collaborated actively with the first vehicle for a correctly
predicted behavior By = [active, collaborative)].

V. CONCLUSIONS

The validation of the approach shows that the idea of the
interdependence of actions and reactions between vehicles

9620

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:49:35 UTC from IEEE Xplore. Restrictions apply.



is feasible for prediction of drivers’ intention and situation
outcome. The first part of topology extraction is already useful
for ADAS systems as these can just focus on intersection
regions with other traffic together with possible paths in
a scenario. Interactions are found early purely on ATTA
knowledge, enabling countermeasures to avoid collision.

Our approach of a performed action and measurement of
a possible reaction in terms of TT A’ is feasible for more
detailed prediction as intrinsic driving parameters can be esti-
mated. Parametrization of drivers’ intentions can then be used
for refinement of the base assumptions of driving behavior
(e.g. allowing shorter gaps or demanding longer gaps in certain
situations).

For an autonomous system, this mechanism is very useful
to assess possible smooth and comfortable trajectories through
a scene as it may use perceived collaboration or disruption for
its own planning. It does not need to rely on fixed time gap
values to pass but may detect a collaborative driver to pass first
at an intersection. It could speed up or slow down slightly at an
intersection so that a yielding vehicle could pass more easily.
This enables new ways of path planning and collaborative
outcomes in a scenario.

As byproducts, analysis of possible paths is performed to
match unexpected behavior to a better fitting trajectory which
may no longer interfere with the first vehicle plans.

The validation was done on top view drone data, but a
real vehicle could use LIDAR or stereo camera sensors for
the same result, as only vehicles which see each other can
interact as shown in the approach. Topological data (roads,
lanes, interaction areas etc.) should be included in a HD
map in the vehicle and could updated by onboard systems
or communication devices as C2C/C2I/C2X.

Future analysis should include broader search for interac-
tions, as the inD data set is currently unstructured by means
of scenarios. This would diversify the very long scenes into
categories of interactions which would improve availability
for other approaches. The verification of the approach was
performed on real driver’s behavior. For an automated system,
intrinsic logic for dealing with situations should be defined as
mentioned in Chapter III-C1.

The availability of drones and high definition cameras will
enable easier data set generation for more and diversified
scenarios in the future.

The capability of the approach can be specialized by de-
creasing the necessary input to perform the task so that simpler
and less expensive sensor systems could be used to determine
a similar output.
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