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Abstract— Service function chains (SFCs) are an ordered set
of virtual network functions (VNFs) which can realize a specific
network service. Enabled by virtualization technologies, these
VNFs are hosted on physical machines (PMs), and intercon-
nected by network switches. In today networks, these resources
are usually under-utilized and/or over-provisioned, resulting in
power-inefficient deployments. To improve power-efficiency, SFCs
should be deployed utilizing the minimum number of PMs and
network equipment, which are not concomitant. Considering the
existing PM and switch power consumption models and their
resource constraints, we formulate the power-aware and delay-
constrained joint VNF placement and routing (PD-VPR) problem
as an Integer Linear Program (ILP). Due to the NP-completeness
of the problem, we propose Holu, a fast heuristic framework
that efficiently solves the PD-VPR problem in an online manner.
Specifically, Holu decomposes the PD-VPR into two sub-problems
and solve them sequentially: i) a VNF placement problem that
consists of mapping the VNFs to PMs using a centrality-based
ranking method, and ii) a routing problem that efficiently
splits the delay budget between consecutive VNFs of the SFC,
and finds a Delay-Constrained Least-Cost (DCLC) shortest-path
through the selected PMs (hosting VNFs) using the Lagrange
Relaxation based Aggregated Cost (LARAC) algorithm. Our
simulation results indicate that Holu outperforms the state-of-
the-art algorithms in terms of total power consumption and
acceptance rate by 24.7% and 31%, respectively.

Index Terms—power optimization, power efficiency, energy
efficiency, VNF placement, service function chaining

I. INTRODUCTION

In the modern telecommunication world, network providers
have been deploying their network services using Virtual
Network Functions (VNFs). A service is usually composed
of an ordered list of VNFs, deployed on commercial off-the-
shelf (COTS) equipment in different parts of the network.
This ordered sequence of VNFs is referred to as a Service
Function Chain (SFC) [1]. Upon receiving user requests with
a specific SFC to traverse, network providers have to find the
best server(s) to configure the required VNFs while taking the
Network Function Virtualization (NFV) architecture and its
available resources into the account. The NFV architecture
consists of several interconnected nodes which consist of
network switches and hosting Physical Machines (PMs). The
former forward the traffic through the network, whereas the
latter host VNFs, in form of Virtual Machine (VMs) or
containers. Since PMs can host several VNFs, it enables the
physical consolidation of networks. To serve the user requests,
VNFs must be mapped to the PMs and the traffic should be
routed through these VNFs that form the requested SFC.

Despite of its importance, the power-efficiency of the NFV-
enabled networks has been only slightly considered. Today,

Fig. 1: Power consumption vs. utilization (power-proportionality) comparison
for online PMs and network switches with respect to the theoretical ideal
power-proportional case. We observe that both PMs and switches are not
power-proportional, i.e., they consume a significant amount of power when
they are in the idle state, while in the standby state, they consume a negligible
amount of power. Therefore, to increase the power-efficiency, the number of
online components should be reduced (increasing the resource utilization).

around 7-12% of the total power consumption is required
for Internet technologies [2]–[4]. Network providers are chal-
lenged to increase their connectivity and services while being
sustainable. Bolla et. al. [5] have shown the aggressive in-
crease of power consumption in the networks operated by the
major Telecom operators worldwide (e.g., AT&T, Verizon).
Moreover, the global annual Internet traffic is expected to
reach 4,2 ZB, i.e., 4.2×1012 GB, in 2022 (with an increase of
almost 400% with respect to 2017 [4]). As a result, more and
more operators work on the reduction of their carbon footprint
and greenhouse gas emission by aiming at decreasing their
power consumption [6], [7].

In order to reduce the power consumption, an analysis
and modeling of the power consumed by the main NFV
components needs to be done, particularly PMs and network
equipment. According to Fig. 1, three power states can be
considered for PMs and switches: i) standby: the server is in
low-power (sleep) mode and consumes a negligible amount
of power, ii) idle: the device is powered-on, however its
utilization is almost 0% (no traffic load), iii) online: the device
is powered-on and its utilization is higher than 0% (processing
the traffic load). Starting with the PM power consumption,
it has been shown that PMs can consume almost 50% of
their maximum power when they are in idle state [8]–[10].
Also, they consume a negligible amount of power when are
in standby mode [11] (also referred to as the offline state in
some works). Similar to PMs, network resources are usually
over-provisioned to support the maximum traffic. However,
their utilization rarely reaches the peak network capacity [12],
[13]. It has been observed that the online network components
such as switch chips and fans consume a significant amount of
power even with low workload [12], [14], [15]. Consequently,
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idle networking devices are not power-efficient, since an idle
network switch can consume up to 90% of the peak power
consumption [13].

Accordingly, the relation between power consumption and
the device utilization is depicted in Fig. 1 for PMs and
switches, assuming a linear power profile [10], [16]. It can
be observed that PMs and network devices are not power-
proportional, i.e., they do not consume power proportional
to their utilization, which differs significantly with the ideal
power proportionality case [9], [10], [17]. This difference
causes a waste of power consumed by under-utilized devices.
Thus, minimizing the number of online PMs and switches
can improve the power-proportionality (See Fig. 1) and hence,
improving the power-efficiency of the service provider.

In this work, we study the power-aware and delay-
constrained joint VNF placement and routing (PD-VPR)
problem. Considering the capacitated network resources, the
main goal is to minimize the number of online PMs and
network switches required to allocate the requested SFCs,
while meeting the end-to-end delay (i.e., sum of propagation
and VNF processing delay) requirements. We first formulate
this problem as an Integer Linear Program (ILP) based on
our previous work [18]. The problem formulation has been
improved by considering also the VNF processing time, which
dynamically changes depending on the traffic. Considering
the NP-completeness of the problem, the ILP is not usable
for solving real-world problem sizes. Therefore, we propose
Holu, an efficient heuristic that solves the PD-VPR problem
in an online manner. In more detail, Holu decomposes the
PD-VPR problem into two sub-problems which are solved
in sequence: i) VNF placement, ii) routing. In the first sub-
problem, we rank the PMs in the network according to their
centrality and the requested VNF types in the SFC. Thereafter,
we employ a Delay-Constrained Least-Cost (DCLC) shortest-
path algorithm to find the path between the selected VNFs
in the previous step using a routing heuristic proposed in our
previous work [19]. As an important feature, our routing al-
gorithm is able to efficiently split the end-to-end delay budget
between subsequent VNFs in an SFC. This can significantly
increase the acceptance rate of requests, even with very strict
end-to-end delay requirement.

Therefore, the main contributions of this paper can be
summarized as:

• Presenting the PD-VPR problem as an ILP optimization
model to i) determine the optimal number of the VNFs
and their mapping to the PMs, ii) allocate user requests
to the VNF instances, iii) find a path to route the traffic
through the allocated VNFs to form the SFC, iv) meet
the resource capacities and end-to-end delay constraints
including the link propagation and traffic-aware VNF
processing delays, and v) minimize the total power con-
sumption.

• Proposing Holu, an online heuristic framework to tackle
the PD-VPR problem by dividing it into two sub-
problems: VNF placement, and routing.

• Implementation and performance evaluation of the pro-
posed heuristic and comparing with the state-of-the-art

CPVNF and BCSP algorithms [18], [20] in terms of total
power consumption, acceptance ratio, runtime, etc.

The rest of the paper is organized as follows: The related
work is reviewed in Section II. Then, we present the system
model and problem definition in Section III followed by the
ILP formulation in Section IV. Thereafter, in Section V, we
introduce the Holu framework. Finally, we present the perfor-
mance evaluation of the work in Section VI, and conclude the
paper in Section VII.

II. RELATED WORK

Although power-efficient VM placement is a well-studied
field in the cloud computing environment [37]–[39], VM
placement and VNF placement in NFV/SFC paradigm prob-
lems differ in many ways. The former case is a problem
that focuses on placing/packing a set of VMs on different
PMs, while the latter, considers a specific ordered set of
VNFs. In addition, the solution should contain routing and
path allocation through these ordered VNFs, which makes it a
fundamentally difficult problem to solve [40]. Therefore, the
VM placement can be considered as a special case of the latter
problem. There has been a large body of work that have inves-
tigated the VNF placement and routing problem with different
objectives, such as minimizing total deployment cost [41]–
[44], minimizing total end-to-end delay [45]–[47], minimizing
network resources [48], [49] and routing costs [31], [32],
maximizing reliability [50]–[53].

Let us summarize the most recent and relevant works
addressing the power-aware VNF placement and routing
problem [11], [21]–[29], [33]–[36]. These works have been
grouped into three categories: i) VNF placement: place a set
of VNFs in order to meet an objective, ii) SFC routing: these
works assume the VNFs are already deployed in the network.
Thus, they focus on finding the path for the traffic traversing
through these VNFs, and iii) joint VNF placement and routing:
in addition to VNF placement, the traffic path through these
VNFs must be determined. In the first category, not concerned
with the routing decisions, authors in [21], [22], [26] have
tackled the VNF placement problem. In particular, Pham et.
al.. [21] aimed at deploying VNFs by using as fewer number of
online PMs, such that the communication cost between them is
optimized. They proposed a fast solution by using a sampling-
based Markov approximation method combined with matching
theory. Further, Yang et. al. [22] studied VNF chain placement
in data centers. They provided an algorithm to save power in
servers and network switches. A step further was taken by
authors in [26] and proposed a dynamic server consolidation
approach using VM live migration to achieve power-efficiency
by maximizing the number of PMs in standby state.

The second category belongs to the works which tackle
the challenges brought by the routing problem. There are
several dimensions to consider in this category. There are
some works that have focused on the routing problem and
have considered the power consumption of ternary content-
addressable memory (TCAM) of network switches into the
account [54]–[58]. However, in our work, we consider the
network power consumption based on the online network
switches and the number of active ports and their utilization.
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References Decisions Power Consumption Features
VNF Placement Routing (chaining) Physical Machines Network Delay-Constrained Shared VNF Instance Online

[19] 3 3 7 7 3 3 3
[18] 3 3 3 3 3 3 7
[20] 3 3 3 7 3 3 7
[21] 3 7 3 7 3 7 7
[22] 3 7 3 3 7 3 7
[23] 3 3 3 3 7 3 7
[24] 3 3 7 3 7 3 7
[25] 7 3 3 7 3 3 7
[26] 3 7 3 7 7 3 3
[11] 3 3 3 7 3 3 3
[27] 3 3 3 3 7 7 3
[28] 3 3 3 7 3 3 7
[29] 3 3 3 7 7 7 7
[30] 3 3 7 7 7 3 7

[31], [32] 7 3 7 7 7 7 7
[33], [34] 3 3 3 7 7 3 7
[35], [36] 3 3 3 7 3 7 7
This paper 3 3 3 3 3 3 3

TABLE I: Comparison of related work and the proposed solution.

Assuming that the VNFs are already placed in the network,
some works have focused on finding a path going through the
required VNFs (i.e., SFC) considering some constraints, e.g.,
delay, capacity. For example, the authors in [25] formulated a
problem to allocate and schedule traffic flows with deadlines
to VNFs while minimizing the total PM power consumption.
Recently, the graph layering technique is proposed as an
efficient way to find a path through an already placed set of
VNFs [19], [30]–[32]. These works transform the network into
a layered graph in which each VNF in the SFC is represented
by a layer. The user traffic can be routed layer by layer from
the top to the bottom layer. For instance, KARIZ, a local
search heuristic proposed by [30], finds the path between two
layers by solving the minimum cost flow problem. Disregard-
ing the end-to-end delay constraint, the objective of KARIZ
is minimizing the network resource costs. As another work,
after the graph layering transformation, authors in [31] uses
conventional shortest-path algorithms e.g., Dijkstra to calculate
the path between the source and destination nodes. To reduce
the computational time when using a shortest-path algorithm,
Sallam et. al. in [32] propose a pruning algorithm to simplify
the constructed layered graph. However, similar to [30] and
[31], they did not consider the end-to-end delay constraint in
their problem. Nevertheless, in our previous work [19], we
proposed a heuristic to find a delay-constrained path, passing
through a selected set of VNF nodes in a layered graph,
achieving near-optimal performance.

Finally, as the third category, some works extend the prob-
lem to consider the routing jointly with the VNF placement
decision [11], [23], [24], [27]–[29], [33]–[36]. In more detail,
their main goal is to place the VNFs on PMs, allocate
them to the user requests, and route the traffic through these
VNFs. These decisions can be constrained to capacity and/or
delay requirements, optimizing PM and/or network power
consumption. Specifically, the authors in [35] focused on
determining the required number and placement of VNFs to
optimize the network utilization and operational costs (in terms
of PMs power consumption), without violating service level
agreements. They presented an efficient heuristic based on
dynamic programming to solve this problem. Furthermore,

Jang et. al. [29] formulated a multi-objective optimization
model which maximizes the acceptance ratio and minimizes
the power cost for multiple service chains. After transforming
the model into a single-objective mixed integer linear pro-
gramming (MILP) problem, they proved that the problem is
NP-hard and proposed an algorithm based on linear relaxation
and rounding to approximate the solution of the MILP in
polynomial time. In addition to optimizing the VNF placement
and routing, the authors in [11] presented online algorithms to
reconfigure the network based on traffic changes.

However, in these three categories, there are a number of
missing considerations that are addressed in this paper. For
example, in the first and third categories, the necessity of
coordination between VNF placement and routing decisions
is disregarded. Thus, in this work, we tackle the PD-VPR
problem. Moreover, opposed to this work, there are some
approaches that do not consider both PM and network power
consumption into account, which can increase the OPEX of
service providers. Moreover, unlike some reviewed related
works, we take the QoS constraints in terms of end-to-
end delay into account. Also, some works [11], [26], [33]
considered VNF migration and reconfiguration which we do
not focus on it in this work. A comparison of different state-
of-the-art solutions with respect to this work is summarized
in Table I. Further, comprehensive surveys on VNF chain
placement are available for interested readers [59]–[62]. In
this work, we present Holu, an online heuristic framework that
presents an efficient VNF placement approach coupled with a
fast delay-constrained routing algorithm to solve the PD-VPR
problem.

III. SYSTEM MODEL AND PROBLEM DEFINITION

Before presenting the mathematical modeling of the work,
we note that the used notations through this paper and their
definition are presented in Table II.

A. Network Model. In this paper, we focus on a Wide Area
Network (WAN) scenario, where we represent the network as
a unidirectional graph G = (N, L), being N the set of nodes,
and L the set of unidirectional links between pair of nodes.
Each physical link (i, j) ∈ L is characterized by the data rate
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Sets and Parameters
G = (N, L) Physical network graph

R Set of requests
Ḡr = (N̄r , L̄r ) Virtual network graph of the request r

F Set of VNF types
Vs

r Source node of request r
Vd

r Destination node of request r
Br Data rate of request r
Dr Maximum delay of request r
Cr SFC of request r

B(i, j) Data rate capacity of physical link (i, j)
d(i, j) Propagation delay of physical link (i, j)
ϕ f Processing delay of VNF type f
Φ f Processing capacity of VNF type f
U Set of VNFs/PMs resource types
∆ f ,u Required resource type u ∈ U by VNF type f
Ci,u Maximum capacity of resource type u ∈ U in PM i

θCPU
i CPU utilization of PM i

Pidle
pm , Pidle

switch
PM and network switch idle power consumption

Pmax
pm Maximum PM power consumption

Ppor t Network switch port power consumption
PT
pm , PT

net Total PM and network power consumption
Ψ Large positive integer
γ
r, f
n The ranking value of PM n with respect to VNF f ∈ Cr

α
r, f
n The centrality impact of PM n with respect to VNF f ∈ Cr

β
r, f
n The power consumption impact of PM n with respect to VNF f ∈ Cr

c(i, j) Routing cost function assigned to link (i, j)
P(i, j) Routing power impact of using link (i, j)
Q j Betweenness centrality of node j
Sr Set of candidate PMs for request r

Decision Variables
xi ∈ {0, 1} =1, if PM i is online
yi ∈ {0, 1} =1, if switch i is online

q(i, j) ∈ {0, 1} =1, if link (i, j) is online
w
(i, j)
(k, l),r

∈ {0, 1} =1, if virtual link (k, l) ∈ L̄r is mapped to (i, j) ∈ L

ai, f ,r ∈ {0, 1} =1, if VNF f for request r is placed in PM i
ni, f ∈ N Number of instances of VNF type f on PM i

TABLE II: Notation definition

capacity B(i, j) and the propagation delay d(i, j) (based on the
distance of nodes i and j). Every node n ∈ N consists of a
switch and a co-located PM (or a cluster of PMs). The switch
can interconnect any input port with any output port as well
as forwarding the connection to the PM when required. On
the other hand, the PM is characterized by a set of resources
u ∈ U, such as CPU, RAM, and storage. Also, each VNF type
f ∈ F has a resource requirement ∆ f ,u , processing delay ϕ f ,
and processing capacity Φ f . A deployed instance of VNF f
can be shared among user requests as long as its maximum
processing capacity ϕ f is not surpassed. Otherwise, the new
instance of VNF f should be placed either on an online PM
with enough available resources, or on a PM which must be
powered on. These three alternatives have different impact on
the power consumption as introduced in the later sections.

B. User Request: We define a user request r ∈ R as
following 5-tuple:

r = (Vs
r ,V

d
r ,Dr,Br, Cr ) (1)

where Vs
r and Vd

r are the source and the destination nodes,
Dr is the maximum allowed end-to-end delay, Br is the
requested data rate, and Cr = { f1, f2, ..., f |cr |} is the requested
SFC, an ordered set of VNFs that the traffic should be routed
through.

SFCs can be modeled as a virtual network represented as
a graph Ḡr = (N̄r, L̄r ), where for request r , N̄r are the set
of virtual nodes which are Cr = { f1, f2, ..., f |cr |}; and L̄r are
the set of links where the virtual link (i, i+ 1) interconnects fi
with fi+1. In particular, for each request r , the virtual nodes N̄r

(i.e., the VNFs) and their interconnecting links L̄r should be
mapped to the physical network G. Hence, the link (i, j) ∈ L̄r

between two consecutive VNFs must be assigned to a path

connecting physical links in L. Also, the ingress and egress
virtual nodes match the physical source and destination nodes
in the substrate physical network. In this way, Ḡr has to be
mapped over G such that the requirements of request r are
met in terms of delay and capacity while the consumed total
power is minimized.

C. Power Consumption Models: Let us introduce the power
consumption models considered in this problem.
1) Network Power Consumption Model: The network power
consumption refers to the amount of power consumed for
the transmission, which includes the power consumed by
the switches at the network nodes as well as the active
interconnecting links. In particular, when a network switch is
powered on, it consumes a base power Pidle

switch
Watts which is

independent of the traffic load [15], [16], [63], [64]. Similarly,
the network ports consume Pport Watts if the port is powered
on (otherwise, 0 Watts). Therefore, the power of a network
switch can be computed as [15], [64]:

Pswitch =

{
Pidle
switch

+
∑

i∈ports Pi , if it is online
0 , otherwise

(2)

2) PM Power Consumption Model: The most power-
consuming factor of a PM has been shown to be the CPU [65]–
[68]. Hence, the power consumption model for the PM is
based on its CPU utilization, denoted by θCPU

i . The power
consumption of a PM can be calculated as below [69]–[71]:

Ppm =

{
Pidle
pm + (P

max
pm − Pidle

pm ) θ
CPU
pm , if it is online

0 , otherwise
(3)

where Pidle
pm and Pmax

pm is the consumed power when the CPU
utilization is 0% and 100%, respectively. Also, θCPU

pm is the
CPU utilization of the PM.

D. Problem Statement: Given a network and a set of
requested SFCs: i) determine the optimal number of the VNF
instances to be deployed, ii) Mapping of these VNF instances
to the PMs, ii) allocating user requests to the deployed
VNFs, iv) find a path to route the user traffic through the
allocated VNFs (i.e., forming the SFC), v) guarantee the end-
to-end delay required by the user requests, which should not
exceed the sum of the network propagation delay and the
processing delay of VNFs, vi) meet the PM and network
capacity constraints, and finally vii) minimize the total PM
and network power consumption.

IV. OPTIMIZATION FORMULATION

In this section, we mathematically formulate the PD-VPR
problem as an Integer Linear Program (ILP) optimization
model. Total Power Consumption: As mentioned before, the
objective function is to minimize the total power consumption
which is defined as the sum of the network and PM consumed
power. According to the network power consumption model in
Eq. 2, the total network power consumption denoted by PT

net

can be calculated as:
PT
net = Pidle

switch

∑
i∈N

yi + 2Pport

∑
(i, j)∈L

q(i, j) (4)

where yi ∈ {0, 1} is a variable indicating if switch i is online.
Also, q(i, j) ∈ {0, 1} is defined as a variable that is equal to
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1 if the physical link between nodes i and j is online. Note
that an active physical link l(i, j) ∈ L (connecting node i to j)
requires two online ports (one per source/destination node).

Moreover, according to the PM power consumption model
Eq. 3, the total PM power consumption PT

pm can be calculated
as:

PT
pm =

∑
i∈N

xi

(
Pidle
pm + (P

max
pm − Pidle

pm ) θ
CPU
i

)
(5)

where xi is a binary variable indicating if the PM i is powered
on. θCPU

i is the CPU utilization of PM i, which is calculated
as the ratio between the all required CPU resources by the
hosted VNFs and the available CPU resources on PM i, i.e.,
θCPU
i =

∑
f ∈F ∆ f ,u/Ci,u for u = CPU. In addition, there are

some constraints that need to be met by the ILP model.

Capacity Constraints: There are three capacity constraints.
First, the set of resources on a PM is limited, and therefore,
these resources cannot be exceeded by the hosted VNFs, i.e.,:∑

f ∈F

∆ f ,uni, f ≤ Ci,u , ∀i ∈ N, ∀u ∈ U, (6)

where ∆ f ,u is the amount of resource type u used by the
placed VNF f , ni, f is an integer variable indicating the number
of placed VNFs type f on PM i, and Ci,u represents the
maximum capacity of resource type u in PM i.

Secondly, each VNF f has a limited processing capacity,
which is denoted by Φ f . Therefore, the sum of the rates of
all requests served by function f in the PM i must not exceed
the processing capacity of VNF f , i.e.,∑

r ∈R

ai, f ,rBr ≤ ni, fΦ f , ∀i ∈ N, ∀ f ∈ F, (7)

where ai, f ,r ∈ {0, 1} is a variable which equals to 1 if VNF f
of request r is assigned to the PM i, and Br is the requested
data rate of r . The last set of capacity constraints belong to
the physical link capacities. In fact, the sum of the data rate
required by all requests served by link (i, j) should not be
larger than the capacity of the link (i, j):∑

r ∈R

∑
(k,l)∈L̄r

w
(i, j)

(k,l),r
Br ≤ B(i, j), ∀i ∈ N, ∀ j ∈ N, (8)

where w
(i, j)

(k,l),r
∈ {0, 1} is a variable that equals to 1 if the

physical link (i, j) is used by the virtual link (k, l) of r .

As introduced in Section III, the nodes of the virtual
network graph Ḡr = (N̄r, L̄r ) demanded by the request r must
be embedded in the physical graph G = (N, L). Firstly, the
source and destination nodes of Ḡr must be mapped to the
physical source and destination nodes in the G. Hence, the
source and destination nodes of request r should be mapped
to the same node on the substrate physical node:

ai, f ,r = 1, if i = f = Vs
r , ∀r ∈ R, (9)

ai, f ,r = 1, if i = f = Vd
r , ∀r ∈ R. (10)

Moreover, the VNFs in SFC Cr must be mapped to a node
n ∈ N that actually host an instance of VNF f , ∀ f ∈ Cr :

ai, f ,r ≤ ni, f , ∀i ∈ N, ∀ f ∈ F, ∀r ∈ R. (11)
The flow conservation law is expressed in flow states such that
for each network switch i ∈ N , the difference of all outgoing
and incoming physical links that are used for the virtual link

between virtual nodes k and l, and request r must be equal:∑
(i, j)∈L

w
(i, j)

(k,l),r
−

∑
(j,i)∈L

w
(j,i)

(k,l),r
= ai,k,r − ai,l,r,

∀i ∈ N, ∀k ∈ N̄r, ∀l ∈ N̄r, ∀r ∈ R, (12)
The total delay of the embedded request r is modeled as the

sum of the VNF processing time of each VNF f ∈ Cr , denoted
by ϕ f ,r , and the propagation delay d(i, j) in the physical links.
This summation must be limited to the required end-to-end
delay Dr of each request r ∈ R, thus:∑

i∈N

∑
f ∈F

ϕ f ai, f ,r +
∑
(i, j)∈L

∑
(k,l)∈L̄r

d(i, j)w
(i, j)

(k,l),r
≤ Dr , ∀r ∈ R,

(13)
where ϕ f ,r denotes the processing delay of the VNF f for
request r , which is considered proportional to the data rate of
request r (i.e., ϕ f ,r = Br/Φ f ).

Finally, let us introduce three indicator variables to control
the operation status (i.e., online or standby) of PMs, physical
links, and network switches):∑

r ∈R

∑
(k,l)∈L̄r

w
(i, j)

(k,l),r
≤ q(i, j)Ψ, ∀i ∈ N, ∀ j ∈ N, (14)∑

j∈N

(q(i, j) + q(j,i)) ≤ yiΨ, ∀i ∈ N, (15)∑
f ∈F

ni, f ≤ xiΨ, ∀i ∈ N, (16)

where Ψ is a large positive number. Considering the afore-
mentioned definitions and constraints, we can formulate the
ILP optimization model as below:

min
(
PT
pm + PT

net

)
, (17)

s.t. constraints (6) − (16),
vars: xi, yi ∈ {0, 1}, ∀i ∈ N,

q(i, j) ∈ {0, 1}, ∀(i, j) ∈ L,

w
(i, j)

(k,l),r
∈ {0, 1}, ∀(i, j) ∈ L, ∀(k, l) ∈ L̄r, ∀r ∈ R,

ai, f ,r ∈ {0, 1}, ∀i ∈ N, ∀ f ∈ F, ∀r ∈ R,

ni, f ≥ 0, ∀i ∈ N, ∀ f ∈ F .

In this formulation, we jointly map a set of virtual nodes
N̄r, ∀r ∈ R to PMs together with the mapping of virtual
links L̄r, ∀r ∈ R onto paths in the underlying network G
connecting the respective servers. Also, this embedding must
meet capacity and path length (i.e., delay) constraints. This
problem can be reduced to the graph embedding problem
which is generally NP-hard and inapproximable [40], [72].
Thus, the presented ILP model (17) does not apply to practical-
sized problems as it cannot be solved in a reasonable period.
Therefore, in the following sections, we propose an online
heuristic algorithm to solve the aforementioned problem in
polynomial time.

V. HOLU: THE ONLINE HEURISTIC FRAMEWORK

In this section, we propose an efficient online heuristic
framework named Holu to solve the PD-VPR problem with
much lower and more manageable complexity. Many of the
heuristics presented in the state-of-the-art divide the problem
based on each VNF, they solve the resulting sub-problems
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Fig. 2: Flowchart of the Holu framework. Given the user request r (Eq. 1) and the network graph G, Holu solves the PD-VPR problem by collaboratively
performing VNF placement (Sub-problem 1) and routing (Sub-problem 2). In Sub-problem 1, using a node ranking mechanism, the PM exploration matrix is
formed. Then, a set of candidate PMs are picked using a PM selection mechanism. Thereafter, in Sub-problem 2, a routing algorithm attempts to realize the
requested SFC by routing the traffic from the source node to the destination node through the candidate PMs returned by Sub-problem 1. If the path meets the
required delay, the algorithm accepts the request r and registers it in the network. Otherwise, in the next iteration, it attempts to find a new delay-constrained
path using the second candidate PMs set. After a limited number of unsuccessful iterations, Holu rejects the user request r .

sequentially per VNF [18], [20], [24], [28], [34], [73]–
[75]. In more details, considering a user request r with
Cr = { f1, f2, f3}, the referred state-of-the-art papers would
consider four sub-problems to determine a solution to the
VNF placement and routing problems, one for each VNF and
last one for routing from the last VNF to the destination,
without having a fallback mechanism after a decision for a
VNF is made. They sequentially solve these sub-problems,
i.e., determining the VNF placement and the routing first for
f1, then for VNF f2, and finally f3 and they build the SFC
from the Vs

r to Vd
r . Considering the previous example, the

algorithm tries to place f3 after placing the f1, f2, and find a
path from the placed f2 to the potential f3 PMs. This might
not be feasible anymore, since the constraint budgets (e.g.,
delay) might have been already consumed by the previous
VNFs f1 and f2. Therefore, they cannot efficiently distribute
the cost/constraint budgets between different sections of a
SFC (budget-division problem). This can potentially reduce
the quality of found solutions dramatically as well as the
acceptance rate. In contrast, Holu employs an end-to-end
decision-making strategy to solve the PD-VPR problem. This
strategy consists on placing all the VNFs at once, and then
find the best route, both considering the power consumption.
In this way, we can solve the budget-division problem which
exists in the state-of-the-art sequential solutions. Moreover,
a fallback mechanism improves the quality of solution in an
iterative way.

To do so, we divide the PD-VPR in two sub-problems,
regardless of the length of the requested SFC: i) Sub-problem
1: VNF placement to minimize PT

pm, and ii) Sub-problem 2:
routing aiming at minimizing PT

net while meeting the delay
constraints. As depicted in the flowchart in Fig. 2, having
a request r in hand, the VNF placement sub-problem finds
a set of PMs to host the VNFs f ∈ Cr . Particularly, Holu
uses a ranking mechanism to assign a score to the candidate
PMs for hosting the VNFs requested in the Cr . Thereafter, it
builds a matrix (referred as exploration matrix) to represent
the candidate PMs that can host VNFs f ∈ Cr and sorts
them based on the calculated ranking values. According to
this sorting, a potential VNF placement solution (the PMs to
host VNFs f ∈ F) is selected and passed as an input to Sub-
problem 2, which attempts to find a routing through these PMs,
considering the delay constraint Dr . To do so, we employ our
previous work [19] to find a delay-constrained path to route the
traffic through the candidate PMs in a power-aware manner.
If the routing is not successful (no path is found with respect
to delay/capacity constraints), another set of candidate PMs
is selected by Sub-problem 1 and the routing is recomputed.

Note that since it is not straightforward to select a good set
of PMs at once (as it would imply solving the whole problem
at once), there is an iteration in order to gradually improve
the solution. This loop is repeated either until a successful
routing is found, which leads to accepting the request r , or a
stopping condition (e.g., VNF placement returns no result), in
which case the request r is rejected. An illustrative example
is presented in Fig. 3.

As a result, by identifying the VNF hosting PMs for the SFC
(Sub-problem 1) and finding a path passing through these PMs
(Sub-problem 2), we are able to distribute the cost (power)
and the delay budget between different segments of the SFC.
In below, the details of these two sub-problems and their
respective solutions are presented.

A. Sub-problem 1: VNF Placement

As mentioned before, the VNF placement process identifies
to map each of VNFs in the requested Cr on a PM in network
with the goal of minimizing the first element of the objective
function, PT

pm (See the ILP model (17)). In order to improve
power-efficiency, we focus on increasing the reusability of
VNFs by sharing them between more SFCs, thus, increasing
their utilization and minimizing the number of online PMs
(i.e., improving power-proportionality, See Fig. 1). Therefore,
it is critical for the VNF placement process to identify the
PMs that maximize the VNF reusability factor. We achieve
this goal by introducing a PM ranking strategy, as explained
below.

1) PM Ranking Mechanism: Given the request r , we deter-
mine a set of PMs that are the best candidates for hosting each
VNF f ∈ Cr . To do so, we employ a mechanism that assigns
a ranking value to each PM, according to the requested SFC
Cr . We define the score of PM n ∈ N to host VNF f ∈ Cr as
γ
r, f
n :

γ
r, f
n = α

r, f
n + β

r, f
n , f ∈ Cr, n ∈ N, (18)

In following, we define αr, fn and β
r, f
n in detail.

Node Centrality Impact (αr, fn ): Given a network topology,
a wide spectrum of centrality metrics can be defined in order
to find the most critical/important node(s) in a network [76],
[77]. Metrics relying only on the node degree have been shown
to not improve the resource reusability as they incur higher
network power consumption or too long delays [77]. Hence,
in this work, three centrality metrics relying on the length of
shortest-paths between all node pairs are used to determine
the value of αr, fn : Betweenness (BC), Closeness (CC), and
Katz Centrality (KC) [76], [77]. Using one of the three chosen
metrics, we calculate the centrality value for all the nodes
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Fig. 3: A high-level example that illustrates the steps that the Holu framework takes to find a solution for a request r . The request r is defined with source
node Vs

r = n4, destination node Vs
r = n6, and the requested SFC as Cr = { f1, f2, f3 } (in this example we do not consider/show the data rate Br ). (a)

Physical network graph G with |N |=6 nodes, where the request r must be embedded. (b) Considering the graph G and the request r , the PM exploration
matrix Mr is formed in this sub-figure. There are |N |=6 columns and |Cr |=3 rows. Each row contains the candidate PMs for the respective VNF, sorted by
their ranking value γr, fn (e.g., considering the first row, γr, f1n1 > γ

r, f1
n5 > γ

r, f1
n2 > ... > γ

r, f1
n6 ). It also shows the first set of candidate PMs that are chosen to

host the VNFs in Cr is Sr = {n1, n2, n5 }. (c) As determined by the PM exploration matrix, the PMs in the first column n1, n2, n5 are the candidate PMs to
host f1, f2, and f3, respectively. In the first iteration, the delay-constrained shortest-path algorithm (Sub-problem 2) should find a path meeting all the routing
constraints. In this example, there is not such a path (e.g., the path (n4 − n1 − n2 − n5 − n6) does not meet the delay constraint). (d) After the unsuccessful
path search in the first iteration, the PM selection mechanism selects the next best PM candidate set from the matrix Mr by replacing n5 by n3 for hosting
f3, having Sr = {n1, n2, n3 }. (e) In the second iteration, the routing algorithm successfully finds a path (n4 − n1 − n2 − n3 − n6) which meets the delay and
capacity requirements. Finally, this path as well as the VNF configuration on PMs n1, n2, and n3 are registered in the network.

n ∈ N and then normalize the obtained values between 0 and
1 to obtain α

r, f
n ∀n ∈ N .

Power Consumption Impact (βr, fn ): This metric aims at
prioritizing PMs which causes the minimum increase in the
power consumption to process a new SFC request r (either by
creating a new VNF instance or using an existing one). The
β
r, f
n can take three different values based on the state of a PM

n ∈ N with respect to VNF f ∈ Cr (the power consumption
caused by hosting f is increasing from first to the third case):

• β
r, f
n = 1: The PM n is online and already hosts an

instance of VNF f with enough available capacity to
process the data rate Br .

• β
r, f
n = 0.1: The PM n is online and has sufficient

resources to launch a new instance of VNF f .
• β

r, f
n = 0: The PM n is standby and must be turned on to

launch a new instance of VNF f .
The β

r, f
n values can be tuned by the operator e.g., based on

the power-proportionality of PMs and/or the size (impact) of
specific VNF types that is being used.

After determining the values of αr, fn and β
r, f
n , upon receiv-

ing a SFC request r , for each f ∈ Cr , the values of γr, fn can be
computed. Note that the weights of αr, fn and β

r, f
n metrics can

be changed according to the operator preferences/priorities.
2) PM Exploration Matrix: As mentioned before, given a

request r , we would prefer to place the VNF f ∈ Cr on a
PM with the highest γr, fn value. Here, the challenge is how to
select this set of candidate PMs, which is denoted by Sr , where
|Sr | = |Cr |. To do so, we define a PM exploration matrix
Mr
|Cr |× |N |

which represents the search space of the candidate
PMs: each row represents a set of candidate PMs to host a
VNF f ∈ Cr , which are sorted in decreasing order according
to their γr, fn value. Potentially, since all the PMs in the network
are candidate nodes, there are N columns in the matrix Mr .
Fig. 3b shows an example of a PM exploration matrix Mr for
a user request r . In this exemplary matrix, there are three (i.e.,
|Cr |) rows, one per VNF in Cr , and four (i.e., |N |) columns.

3) PM Selection Mechanism: The VNF placement problem
consists in selecting one PM from each row in the matrix Mr .
Since the PMs in each row are sorted based on their γr, fn value,
the first (and the best) choice of PM candidates is the first PM

from each row in Mr . For example, in Fig. 3b, the best (first)
candidate PMs to host VNFs { f1, f2, f3} are supposed to be
n1, n2, and n5, respectively.

Having the set of candidate PMs Sr , a path from Vs
r

to Vd
r passing through the sequence of PM nodes n ∈ Sr

should be calculated. However, such a path might not be
found because of the routing algorithm incompleteness or
capacity/delay constraint violations. If this happens, we retry
to find a path for an updated set of candidate PMs. In our
approach, we select a PM from the current Sr and replace
it by the next PM with the highest ranking value from the
respective row in matrix Mr . For example, in Fig. 3d, after
no solution is found for the first candidate PM set n1, n2, n5
(Fig. 3b), the PM n5 is chosen to be replaced by the next PM
n3 to form the new candidate PM set n1, n2, n3.

The question here is which PM from the current candidate
PMs set Sr should be replaced. Since different candidate PM
sets can lead to different solutions with different qualities,
it is important to determine how to select the next set of
candidate PMs, which is expected to reduce the power con-
sumption while allowing a path through them guaranteeing the
constraints. Having the PM exploration matrix in hand, we
propose three different candidate PM selection mechanisms to
determine the next candidate PM set:

• The Highest Node Ranking (HNR): The first approach
uses the γ

r, f
n metric to select and replace a PM from

the candidate PMs set Sr . HNR selects the candidate
PM with the highest γr, fn value among the current set
of PMs. Then the selected candidate PM is replaced by
the next PM in the corresponding row of Mr . Thereby,
this approach relaxes the power savings to meet the end-
to-end delay and in-turn, increases the acceptance ratio.

• The Highest Remaining Capacity (HRC): HRC selects
the PM with the highest remaining capacity and replaces
it by the next PM from its corresponding row in matrix
Mr . The idea is to use up PMs fewer remaining compute
resources over PM with more compute resources so that
the power-efficiency is higher (See Fig. 1).

• The Largest Sub-path Delay (LSD): The third approach
uses the sub-path delay metric to identify and prune a
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Fig. 4: Example of the LSD PM selection method. Considering the failed
solution from the example in Fig. 3c, a total |Cr | sub-paths are formed, each
corresponding to a VNF f ∈ Cr . Moreover, each sub-path has a certain total
delay based on the propagation delay of each of its links. In this example, the
delays of sub-paths 1, 2, and 3 are assumed to be 4, 6, and 8 ms respectively.
As the third sub-path (corresponding to VNF f3) has the highest delay among
the sup-paths, the LSD removes the PM at n5 hosting f3, and looks for another
PM, according to the matrix Mr (See Fig. 3d).

PM from the candidate PM set. To do so, we first divide
the shortest-path from Vs

r to Vd
r through candidate PMs

of Sr into |Cr | sub-paths: Vs
r to f2 (here f1 is the

intermeddiate VNF), f1 to f3, an f |Cr |−1 to Vd
r . Each

sub-path contains a single PM hosting a VNF as an
intermediate PM. Then, for each sub-path, we calculate
the shortest-path from the start to the end node of the
sub-path with the delay as the cost function. Afterward,
we prune the PM which is an intermediate PM of the sub-
path with the largest sub-path delay from the current PM
set. As a result, the candidate PM with a high contribution
to the end-to-end delay of the original path is replaced
with the next PM from the respective row in the matrix
Mr . Fig. 4 shows an example where a path and its delay
from Vs

r to Vd
r through f1, f2, and f3 VNFs is shown.

The heuristic continues to try different candidate PM sets
Sr until a solution meeting the delay and capacity constraints
is found or a stopping condition is reached (See Fig 2). This
condition can be chosen by the operator based on the network
size and the service provider’s decision time constraints.

B. Sub-problem 2: Routing

In this section, we present the solution to the routing sub-
problem which aims at minimizing the second element of the
objective function, PT

net (Eq. 17). At this stage, the user request
r and an ordered set of candidate PMs Sr are given by Sub-
problem 1. The problem now, is to find a path from source
Vs

r to destination Vd
r , that traverses the candidate PMs in Sr ,

and that satisfies the delay constraint Dr . Given a cost function
that models the power consumption of a path, the problem is
to find a Delay-Constrained Least-Cost (DCLC) path from a
given source src to destination dst, which can be modeled as:

z∗(src, dst) = min
p∈Psr c,dst

∑
(i, j)∈p

c(i, j) (19)

s.t.
∑
(i, j)∈p

d(i, j) ≤ Dr

where Psrc,dst is the set of paths from node src to dst, and
c(i, j) and d(i, j) are the cost (i.e., network power consumption)
and delay functions of link (i, j) respectively.

In the following, we show how to solve Sub-problem 2
by using the Lagrange Relaxation based Aggregated Cost

(LARAC) algorithm [78] and an extension of it, LARAC-
SN [19]. Let us first shortly describe these two algorithms.

1) LARAC Algorithm: The DCLC problem is NP-hard [79].
Accordingly, numerous heuristics have been proposed to
quickly find close to optimal solutions [80]. The LARAC
algorithm finds a DCLC path in a graph by running several
times the Dijkstra shortest-path algorithm. It is commonly
considered as one of the best performing heuristics for the
DCLC problem [19], [80]. The algorithm is based on the
Lagrange relaxation, a mathematical optimization technique
for solving constrained optimization problems. Using the
Lagrange relaxation principle, a heuristic solution zR(s, t)
to the DCLC problem (Eq. 19) can be found by optimally
solving [80]:

zR(Vs
r ,V

d
r ) = max

λ∈R+

(
min

p∈P
Vs
r ,Vd

r

∑
(i, j)∈p

c(i, j) (20)

+ λ

( ∑
(i, j)∈p

d(i, j) − Dr

))
.

Solving this maximization problem requires to solve several
times the inner minimization problem (called relaxed problem)
by varying the λ parameter. Interestingly, for this problem, the
relaxed problem corresponds to a shortest-path problem with
a modified cost function cλ = c(i, j)+λ×d(i, j) [78]. As a result,
LARAC finds a heuristic solution to the DCLC problem by
successively running Dijkstra with the modified cost function
cλ and by adapting the λ at each iteration to converge to the
maximum of Eq. 21.

LARAC starts by finding the least-delay and least-cost paths
in the network from a given source node src to destination dst.
If the least-delay path does not exist, it returns null since there
no path exists that meets the delay constraint. If the least-cost
path (λ = 0) does not violate the delay constraint, the path
is returned as the solution (which is the optimal solution for
sub-problem 2). Otherwise, if the delay of the least-cost path
is higher than Dr , it performs subsequent Dijkstra runs with
the modified cost function cλ. At each iteration, λ is adapted
in order to give more or less importance to the cost and/or the
delay. More details on the rationale behind the convergence
strategy are available in the original reference [78] and the
survey [80]. The algorithm is complete, i.e., it always finds a
solution if it exists, but not optimal. However, it was shown
that its optimality gap is quite low [80] while keeping a
relatively low runtime. Thus, it becomes a perfect candidate
to be used as part of the solution to Sub-problem 2 that we
solve repeatedly to obtain a solution to our original problem.

2) LARAC-SN Algorithm: LARAC-SN builds on top of
LARAC to force the traversal of an ordered set of nodes [19].
To do so, the algorithm adapts the underlying Dijkstra proce-
dure used by LARAC. Instead of running Dijkstra from the
source to the destination node, LARAC-SN splits the Dijkstra
run from the source node to the first VNF, from the second
VNF to the next one, and so on until the destination. By doing
so, the algorithm ensures that LARAC only considers paths
that traverse the set of candidates PMs and hence that the
final path satisfies this constraint. As we ensure that pc , pd

and p always traverse the VNFs of Cr (i.e., the PM nodes in
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Sr ), the path returned by LARAC-SN will also traverse the
VNFs. Splitting the underlying Dijsktra run rather than the
LARAC run removes the need for splitting the delay constraint
between the different VNFs. That is automatically handled
by the LARAC procedure by adapting the weights of the
aggregated cost function, which can significantly increase the
acceptance rate of the requests. Inheriting the properties of
LARAC, LARAC-SN is complete and close-to-optimal [19].

3) Routing Metrics: Delay, Cost, and Capacity: The first
metric is the delay. It is a global constraint metric. The
delay of a link corresponds to its propagation delay (the VNF
processing delay can be pre-computed and subtracted from
the delay constraint budget Dr ), thus, its value for a link is
static for a given routing request. The second metric is the
cost which is a global optimization metric. Our cost function
essentially considers the power consumption impact of taking
a given path. The cost of a link (i, j) is defined as

c(i, j) = P̂(i, j) + Q̂ j, (21)
where the ·̂ notation represents the fact that both values are
normalized to a value between 0 and 1. As it can be seen,
c(i, j) consists of two cost elements. The first one is the impact
of power consumption P̂(i, j) for using a given link (i, j) and
it is computed as

P̂(i, j) =
1
2

Pidle
switch × (2 − yi − yj) + 2Pport × (1 − q(i, j)), (22)

where yi and q(i, j) are binary variables reporting whether the
switch i or link (i, j) are already powered on, respectively. In
fact, variables y and q allow to penalize the usage of a switch
or link that is not yet used (i.e., that is in the standby state).
The second term forming the c(i, j) is the centrality metric Q̂ j

of the destination node j of the link. The reason for adding
this term is that the power consumption of links can often be
equal, as only six different values are possible (based on the y

and q variables). As a result, the routing algorithm will often
face equal-cost paths. Instead of letting the algorithm pseudo-
randomly choose among these paths, the centrality term acts
as a tie breaker to direct the algorithm towards more central
nodes that tend to be used more often and hence reduce the
power consumption of subsequent requests. We note that we
use the BC value of the node j for the Q̂ j . Computing the
value of our cost function c(i, j) requires to know all the links
previously visited by the routing algorithm. Indeed, since the
state s(k,l) of a link depends on whether it is used already
(i.e., whether we already visited it), knowing all the previously
visited links is necessary to compute P̂(i, j) and hence c(i, j). In
[81], it is shown that such a metric as global optimization
metric increases the optimality gap of an algorithm. Yet, the
algorithm stays complete.

The third and last metric we use is the capacity of links.
It is a local constraint metric. A link can only be used if it
still has sufficient capacity to host the new flow. Similar to the
cost function, checking if the new flow can be accommodated
by the remaining capacity at a link requires to know whether
we visited this link already. In traditional routing, it is not
the case, because we know the remaining capacity of all
links in advance and we do not route into loops. However,
when routing through a set of VNFs, we can potentially

Type SFC Set Data Rate Delay Share
Web NAT-FW-TM-WOC-IDPS U[0.6-1] Mbps 500 ms 18.2%
VoIP NAT-FW-TM-FW-NAT U[0.384-0.64] Mbps 100 ms 11.8%

Streaming NAT-FW-TM-VOC-IDPS U[24-40] Mbps 100 ms 69.9%
Gaming NAT-FW-VOC-WOC-IDPS U[0.24-0.5] Mbps 60 ms 0.1%

TABLE III: Overview of service types and their SFC set, data rate, end-
to-end delay, and share of the total requests. We have considered request
aggregation by considering a range of data rate to mimic the traffic coming
from multiple users at the same time from a single network node. (NAT:
network address translator, FW: Firewall, TM: traffic monitor, WOC: WAN
optimization controller, IDPS: intrusion detection prevention system, VOC:
video optimization controller)

route through loops. Unfortunately, such a metric as a local
constraint metric makes the routing algorithm incomplete [81].
Recovering the completeness of algorithms in such situation
leads to intractable runtime [81]. In fact, this is one of the
reasons for which we have to iterate back and forth between
sub-problems 1 and 2. Indeed, once Sr has been selected in
Sub-problem 1, the algorithm used in Sub-problem 2 cannot
guarantee (because it is not complete) to find a solution for the
Sr , even if it exists. We iterate between the two sub-problems
until the routing algorithm finds a solution. In the evaluation
section, we show that the incompleteness of the algorithm is
not very high, and hence solutions can be found in relatively
few iterations and hence, short runtime.

VI. PERFORMANCE EVALUATION

A. Simulation Setup

This section provides details about the network topologies
and the simulation parameters considered for the evaluation.
The results presented in this section correspond to: No-
belEU [82], and Internet2 [83]. Similar results have been
obtained for Geant topology [84] but not included due to
space limitations. Each network node is equipped with a
switch and a PM for hosting VNFs. The PM resources are
characterized by the number of CPU cores, which has been set
to 16. The PM power consumption is computed in accordance
to Eq. 3. The idle and maximum power consumption of
the PM is chosen as Ppm

idle
=299 Watts and Ppm

max=521 Watts,
respectively [85]. On the other hand, the network switch power
consumption consists of a static hardware power and network
interface power (See Eq. 2). The static hardware power of
the switch Pidle

switch
is set to 315 Watts [86]. The network

interface power consumption of switch port varies based on
the data rate configuration, which is modeled to operate at
three different configurations: 100 Mbps, 1 Gbps, or 10 Gbps
with 26 Watts, 30 Watts, and 55 Watts of power consumption,
respectively [64], [87]. The physical link data rate capacity is
set to a randomly generated value between 6 to 10 Gbps. To
generate the user requests, the source and destination pairs are
generated randomly, such that Vs

r , V
d
r . We have considered

commonly used service types: video streaming, web service,
voice-over-IP (VoIP), and online gaming [18], [24]. As it is
presented in Table III, each of these service types requires
a specific SFC, data rate, maximum end-to-end delay, and
the share of the service type in the set of user requests.
Additionally, the VNFs forming the SFCs have considered
with different resource requirements and processing capacities
as listed in Table IV [35], [88].
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VNF Type Num. CPU Cores Processing Capacity
NAT 2 500 Mbps
FW 8 400 Mbps
TM 1 200 Mbps

VOC 2 580 Mbps
WOC 2 300 Mbps
IDPS 8 600 Mbps

TABLE IV: The number of CPU cores and their processing capacity (maxi-
mum throughput) of each VNF type.

To choose the best centrality metric and PM selection
mechanism for Holu, we have extensively evaluated them in
terms of power consumption and acceptance rate. Based on the
results (omitted due to the lack of space), we have selected
the best-performing settings to evaluate Holu. In particular,
for each node n ∈ N , we use CC as centrality metric αr, fn and
the LSD as the PM candidate exploration strategy (supportive
evaluations are presented in the results section). The proposed
ILP optimization model (17) has been implemented using
Gurobi solver [89] in Python. Besides, Holu framework and
the state-of-the-art approaches are simulated using Java. The
simulations have been performed on a machine equipped with
Intel Core i7-6700HQ @2.60 GHz, 16 GB of RAM, running
Ubuntu 18.04.

B. Algorithms to Compare

We compare the proposed ILP model and the Holu heuris-
tic with two state-of-the-art algorithms: i) A state-of-the-art
approach named CPVNF [20], and ii) The BCSP algorithm,
which was presented in our previous work [18] (referred as
the BC-Based algorithm). These two algorithms are briefly
explained in below:

1) CPVNF: The CPVNF algorithm [20] addresses VNF
placement and routing problem with the objective of minimiz-
ing the number of online PMs and communication costs, while
meeting end-to-end delay and resource capacities. CPVNF act
in a sequential way (solving VNF per VNF). To select high-
quality PMs in the network to host each VNF, it uses a ranking
algorithm based on the Google PageRank method. PageRank
is a variant of the Eigen Vector centrality measure [90] and
assigns ranks to a web page based on both the quality and
quantity of the web pages linked to it. Comparatively, the
authors of CPVNF algorithms assign ranks to PMs based
remaining capacity of PM itself, aggregated remaining band-
width of its outgoing links, and rank of its directly connected
nodes [20]. Additionally, nodes are assigned personalized
PageRank to bias towards PMs with VNF instance under
question. For every request, the CPVNF algorithm uses the
computed rank metric along with a delay function to select the
VNF hosting PMs. CPVNF uses the k-shortest-path algorithm
to compute the routing at each stage, and selects the path with
the lowest delay value. If the end-to-end delay is less than the
Dr , the user request is accepted in the network. Otherwise, a
new set of VNF hosting PMs is selected by increasing the
importance of aggregate outgoing link bandwidth over the
remaining CPU resource in node rank computation. The search
continues until the iteration reaches the predefined search limit.

2) BCSP: This algorithm represents the BC-based algo-
rithm in our previous work [18]. This algorithm performs

the VNF placement and routing sequentially for each VNF in
the requested SFC. BCSP works based on the BC centrality
metric for VNF placement and shortest-path for routing. It
first calculates the BC metric for all the nodes in the graph.
Then, for each request r , it calculates the shortest-path between
sourceVs

r and destinationVd
r nodes using Dijkstra with delay

as the cost function. Then, the BCSP algorithm tries to place
the required VNFs of the Cr on the nodes with higher BC
value on the shortest-path in a greedy manner. According to
the BC definition, a higher BC value means a higher number
of shortest-paths that are passing through a node n and hence,
a higher probability of VNF re-usability for future requests,
which can lead to power-efficiency.

C. Simulation Results

This subsection summarizes the performance evaluation on
two topologies. Before presenting the results, we note that due
to the scalability issues, we were able to run the ILP model
for up to 25 user requests (more than 48 hours of computation
time for a single problem instance with 50 requests).

1) Power Consumption: Let us start comparing the to-
tal, PM, and network power consumption per accepted user
request for the optimal case and the three heuristics for
different number of user requests. Fig. 5 shows the mean
power consumption per accepted request value. Among all the
heuristics, it can be observed that the Holu has the lowest total
power consumption per request values in all the topologies.
In more detail, Holu is performing on average 19.3% worst
than the optimal solution, and outperforming CPVNF and the
BCSP algorithms by 19% and 24.7%, respectively. However,
for higher number of requests, the network gets saturated and
hence, the gap between the different heuristics decreases.

All the three heuristics utilize centrality measures to deter-
mine the PMs to place VNFs. However, it is evident from
the results that the effectiveness of all the centrality measures
is not the same. The performance of the CPVNF algorithm
decreases when the network contains densely connected re-
gions away from the graph center (e.g., more connected at
the edges of the network). That is, unlike the ranking method
of Holu, the PMs with higher ranks have more distance from
other high rank nodes, making it difficult to meet the required
SFC delay constraint. For instance, Internet2 is from this group
of graphs, which the power consumption of CPVNF is even
worse than the BCSP algorithm, because BCSP is always
using the shortest-path (cost is considered as delay) between
source and destination (See Fig. 5a). On the bright side, the
Holu algorithm first ranks the PMs by using the CC and their
power consumption impacts (i.e., αrn and βrn, respectively) The
CC value of a node depends on its position in the network
for all other nodes. As a result, Holu can identify the PMs
that increase the reusability of resources, leading to lower
power consumption. The average number of online PMs per
request have been summarized in Table V for 25 user requests.
The lower number of online PMs per user request for Holu
compared to the other heuristics reflects the effectiveness of
the proposed PM ranking and selection approach. Concerning
BCSP, the disadvantage when solving the VNF placement
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(a) Internet2

(b) NobelEU

Fig. 5: Comparison of total, network, and PM power consumption per user request for (a) Internet2 and (b) NobelEU topologies. It can be seen that the
proposed Holu heuristic outperforms the achieved total power consumption achieved by CPVNF and BCSP algorithms up to 19% and 24.7% on average.

Topology ILP Holu CPVNF BCSP
Internet2 0.14 0.25 0.38 0.62
NobelEU 0.12 0.14 0.19 0.6

TABLE V: Comparison of the average number of online PMs per request
for 25 user requests. Holu utilizes a fewer number of online PMs to serve
the user requests compared to state-of-the-art approaches, thus improving the
power-proportionality of the network.

problem, is that the search space is limited to the nodes along
the shortest-path between request’s source and destination. As
a result, the resource reusability decreases, which leads to an
increase of online PMs in both topologies.

2) Acceptance Rate: In our next study, we run Holu,
CPVNF, and BCSP for up to 500 user requests to compare
the acceptance rate for the two topologies. As we were able
to run the ILP for a maximum of 25 requests, the feasibility of
the problem for the larger inputs is unknown to us and requires
further investigations. Also, we note that the ILP model either
accepts all the requests or nothing, therefore it is omitted from
the plots. As it can be seen in Fig. 6, Holu can accept 31%
and 20% more requests for Internet2, and 16.3% and 14.1%
for NobelEU topology compared to the CPVNF and BCSP,
respectively. An important parameter in successfully accepting
a request is meeting its delay requirement. The results in Fig. 6
indicate that opposed to the other algorithms, by employing
LARAC, Holu is able to divide the delay budget between
the VNFs in the chain. In this way, it can increase its delay-
awareness which leads to a significant improve in acceptance
ratio.

The CPVNF algorithm sorts the PMs of the network based
on their ranking (i.e., according to the PageRank metric),
ignoring the delay role. Thus, it is possible that the node
with a high ranking is located far from the request’s source
and/or destination. As a result, the delay requirement of the
user request may not be guaranteed and hence, the request
is rejected. Besides, the BCSP algorithm uses the BC metric
for the PMs along the shortest-path to select the candidate
nodes for VNFs. Therefore, a node with a high BC value may
be located closer to the user request’s destination node. As a
result, the BCSP algorithm needs to make a loop along the
shortest-path to realize the SFC. Under such circumstances,

(a) Internet2 (b) NobelEU

Fig. 6: Comparison of the acceptance rate of the algorithms for different
number of user requests. This figure shows that on average, Holu achieves
31% and 20% higher acceptance rate for Internet2, and 16.3% and 14.1% for
NobelEU topology compared to the CPVNF and BCSP, respectively.

the actual SFC path computed by the BCSP is longer than the
shortest-path which can lead to missing the delay requirement,
and rejecting the request. Also, we can see that the acceptance
rate for BCSP is higher than CPVNF for the Internet2 topology
and almost similar for the NobelEU. The Internet2 topology
contains high ranked nodes (according to PageRank metric) far
away from each other and edges with large lengths (i.e., higher
delay). As a result, the CPVNF algorithm performs poorly
as compared to the BCSP algorithm in meeting the delay
requirement, hence reducing the user request acceptance rate.
Therefore, it can be seen that the coordination of an efficient
VNF placement and a power and delay-aware routing can play
an important role in the acceptance delay. Thereby, Holu is
able to balance the power and delay requirement, achieving a
higher acceptance rate.

3) Path Stretch: The path stretch metric represents the
end-to-end delay difference between the path computed by
each algorithm and the actual shortest-path (based uniquely
on delay) between the source and destination request. This
metric is important because the lower path stretch can be
translated to lower network resource consumption, i.e., lower
OPEX costs. Fig. 7 shows the CDF of path stretch values
for ILP, Holu, CPVNF, and BCSP approaches for 25 user
requests. We omit to show these results for other numbers
of user requests, since their behavior is similar. It can be
seen that in both topologies, the proposed Holu heuristic
achieves the minimum-maximum path stretch compared to all
the approaches, followed by CPVNF, BCSP, and the ILP. The



12

(a) Internet2 (b) NobelEU

Fig. 7: Path stretch comparison in case of 25 user requests. It can be seen that
by outperforming the CPVNF and ILP, the average path stretch of Holu stands
higher than the BCSP algorithm (which places the VNFs on the shortest-path).
In both topologies, ILP produces the largest path stretch, since it focuses on
maximizing the reusing of resources, which can lead to taking longer paths.
Also, due to the properties of Internet2 topology, the maximum path stretch
value is higher for Internet2 compared to NobelEU.

reason is that the delay-aware routing algorithm can efficiently
balance the importance of the power vs. the delay metrics. That
is, the ILP shows an extreme high path stretch, due to focusing
on power minimization, while Holu causes a reasonable path
stretch, while having a lower power consumption compared
to the other heuristics. Also, the plots indicate that the ILP
solution has many instances with a high path stretch values.
The reason is that the ILP, in an effort to reduce the total
power, makes the requests to traverse through VNF hosting
nodes which are not necessarily close to the source and/or
destination of the request.

4) Delay Tolerance: This study aims to compare the ac-
ceptance rate of Holu, CPVNF, and BCSP algorithms for
user requests with varying delay requirements. The goal is
to explore how different algorithms can handle user requests
with tight or loose delay requirements. For this purpose, we
run the simulation for different sets of user requests, ranging
from 25 to 500. Each of these user requests are generated
with random source and destination pairs, 4 Mbps data rate,
and a specific SFC type (See Table III). Moreover, we select
the delay values of user requests from 80 to 150 ms in steps
of 10 ms. The goal is to check which algorithm is more
sensitive to the delay variations in terms of acceptance rate.
Fig. 8 shows the heatmap of the acceptance rate for a different
number of user requests with varying delay requirements for
both topologies. These plots exhibit that Holu has a generally
higher acceptance rate for all the delay ranges and for different
number of requests. This is because Holu puts emphasis on
the delay parameter during the selection of VNF hosting
nodes and routing process. Thereby, it succeeds in achieving a
greater acceptance rate even under strict delay conditions. The
CPVNF has the second-best performance after Holu and BCSP
has the worst performance. The reason is CPVNF applies a
more sophisticated ranking method and also explores a larger
solution space compared to the BCSP approach.

5) Runtime: In this subsection, we compare the runtime of
the algorithms. To do this, we record the computation time
of each algorithm at the end of processing of every 10% of
the user requests. Due to space limitations, we only show the
comparison of the runtime of different approaches for 100
user requests. We note that we omitted the ILP results from
the plot, because it runtime is in order of hours. Fig. 9 shows
that Holu can do the admission and solve the PD-VPR for

(a) Internet2

(b) NobelEU

Fig. 8: Comparison of acceptance rate of different algorithms with respect to
the number of user requests and the value of the delay constraint. This figure
indicates that compared to others, Holu accepts more requests, even the ones
with tight delay requirements. Also, due to the higher graph connectivity, more
requests can be embedded into the NobelEU topology, compared to Internet2.

(a) Internet2 (b) NobelEU

Fig. 9: The comparison of the runtime efficiency for Holu, CPVNF, and BCSP
for processing 100 user requests.

a given user request in 10 ms for NobelEU, and 15 ms for
Internet2 network topology. We note that the implementation
of Holu can be optimized e.g., by using more efficient data
structures to achieve even lower runtime for practical use-
cases. Besides, the results in Fig. 9 indicate that the BCSP
algorithm is the fastest approach. The main reason behind it
is the lower number of times that requires to run Dijkstra (only
once per user request compared with several times for the other
heuristics). For instance, Holu needs to compute the shortest-
path several times iterative for certain requests (depending on
the PM selection mechanism).

On the other hand, the CPVNF and Holu approaches require
to calculate PM ranking values before processing a user
request resulting in higher runtime. After processing some of
the initial 40-50% of the user requests, the CPVNF algorithm
requires more time to process the remaining user requests
compared to the other approaches. This is because it saturates
the the high ranked PMs for serving the initial requests. As
a result, it requires more iterations to find the VNF hosting
PMs which meets the delay requirements for remaining user
requests. Moreover, unlike our approach, the CPVNF needs to
recompute the node ranks at every iteration, which leads to a
higher runtime.
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VII. CONCLUSIONS AND FUTURE WORK

Motivating by low power-proportionality of both Physi-
cal Machines (PMs) and network switches, we formulate
the power-aware and delay-constrained joint VNF placement
and service function chain (SFC) routing problem (PD-
VPR). Since the resource are usually under-utilized and/or
over-provisioned, minimizing the number of online devices
can lead to improved resource utilization and more power-
proportionality. To achieve this goal, we first proposed an
Integer Linear Program (ILP) model. Due to its scalability
issues, we presented an online heuristic framework named
Holu which tackles the problem by breaking it into two sub-
problems which are solved sequentially: i) Virtual Network
Function (VNF) placement, and ii) routing. The VNF place-
ment suggests a set of candidate PMs to host the requested
SFC. It uses a PM ranking mechanism considering the cen-
trality of the PM and the power consumption impact by hosting
a VNF. We show that centrality is an important metric to
consider for PM ranking, since it can improve the resource
utilization and power-efficiency in long-term. Also, to find a
path traversing through the set of suggested candidate PMs
(returned by the VNF placement sub-problem), we employed
a complete algorithm based on Lagrange Relaxation based Ag-
gregated Cost (LARAC) heuristic to solve a Delay-Constrained
Least-Cost (DCLC) shortest-path routing problem. We showed
that our algorithm is able to efficiently split the delay budget
between two consecutive VNF in an SFC, leading to a high
acceptance ratio compared to state-of-the-art algorithms.

Our simulation results indicated that compared to existing
approaches, the end-to-end SFC placement and routing ap-
proach, employed by Holu, is able to determine the VNF to
PM mapping and also accurately split the delay budget among
the routing paths between the consecutive VNFs in the SFC,
improving its power consumption and acceptance rate up to
24.7% and 31%, respectively.

Future work. We believe there are many interesting open
challenges to be tackled, especially in improving the coor-
dination of the VNF placement and routing sub-problems.
For example, one can introduce a distance metric from the
source and/or destination to the PM ranking calculation (See
Eq. 18). Using that, similar to the A* algorithm [91], this
information can be used to prune the candidate PMs that are
far from source and/or destinations. This can improve the
completeness of Holu, hence, its performance, especially in
terms of acceptance rate. In addition, PM selection meth-
ods can be improved to generate better candidate PM sets.
For example, one can replace multiple PMs based on more
complex PM selection methods at each iteration to improve
the search space exploration. These improvements can also
lead to reducing the average number of VNF placement
iterations, thus, reducing the runtime. Finally, a resource (PM
and network) consolidation module can be added to Holu,
which can be triggered periodically or in case of resource
over/under-load. For example, in case of resource overload, it
can use live Virtual Machine (VM) migration to migrate the
workload away from the hot spots, thus, potentially improving
the acceptance rate. Also, in the case of under-load, it can

move the load away from an under-utilized region to further
improve the total power-efficiency.
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