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Abstract

In regression analysis, prediction intervals give a range of values that is likely to contain
a new observation given the outcome of some predictor variables. A straightforward
approach to obtain estimates of such intervals is to predict conditional quantiles of the
response variable. In recent years, vine copula-based quantile regression has proven to
be a flexible and competitive method in the field of quantile regression. In this thesis,
we revisit D-vine copula-based quantile regression following Kraus and Czado (2017) to
obtain prediction intervals for next-day air temperatures in Seoul, South Korea, given
a set of predictor variables. In particular, we investigate the predictive ability of this
method compared to linear quantile regression as a reference method. Here, performance
is quantified as a scoring that rewards narrow intervals and adds a penalty if an observation
misses the interval. At first, we compare three different approaches to select the training
set for next-day predictions. In addition to an intuitive rolling window of successive
days prior to the next day, we use a refined rolling window including days from previous
years, and also a random selection of days. Overall, the refined rolling window showed
best prediction results. Secondly, we investigate an extension of the training horizon for
the refined rolling window and a threshold for the number of predictors included in the
model. Especially for a larger training horizon, the D-vine quantile regression slightly
outperforms the linear quantile regression.
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Zusammenfassung

In dieser Masterarbeit betrachten wir die D-vine-copula-basierte Quantilsregression wie
sie in Kraus and Czado (2017) vorgestellt wird. Mittels Quantilsregression können be-
liebige bedingte Quantile einer Zielvariablen in Abhängigkeit von einer Menge von Ko-
variablen vorhergesagt werden. Unser Ziel ist es, die Vorhersagefähigkeit von D-vine-
copula-basierter und linearer Quantilsregression anhand von Vorhersageintervallen für
Temperaturwerte zu vergleichen. Ein Vorhersageintervall gibt einen Bereich von Wer-
ten an, in dem ein zu vorhersagender Wert mit einer gewissen Wahrscheinlichkeit liegt.
Als die Endpunkte solcher Intervalle können wir vorhergesagte bedingte Quantile der
Zielvariablen festlegen. Die Güte der vorhergesagten Intervalle bemessen wir mit einem
Wert, der sich aus der durchschnittlichen Breite der Intervalle und einem Strafterm für
Beobachtungen, die nicht im vorhergesagten Intervall liegen, zusammensetzt. Zu Beginn
unserer Auswertung untersuchen wir, wie sich die Auswahl der Trainingsdaten auf die
Vorhersagefähigkeit auswirkt. Dabei vergleichen wir drei verschiedene Ansätze: ein an-
einanderhängendes Zeitfenster vorausgegangener Tage, ein verfeinertes Zeitfenster, das
sich aus vorausgegangenen Tagen des zu vorhersagenden Tages zusammensetzt und einer
zufälligen Auswahl vorausgegangener Tage. Insgesamt lieferte das verfeinerte Zeitfenster
die besten Vorhersageergebnisse. Im zweiten und dritten Schritt unserer Auswertung
vergrößern wir das verfeinerte Zeitfenster und reduzieren die Anzahl der Kovariablen in
den Modellen. Insbesondere für größere Zeitfenster beobachten wir leicht bessere Ergebn-
isse für die D-vine-copula-basierte Quantilsregression im Vergleich zur linearen Quantils-
regression.
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1 Introduction

Inferring causal relations from observable quantities has ever since attracted mankind.
Beyond doubt, it has induced substantial advancements in astrology, physics and other
sciences. From a mathematical perspective, regression analysis can provide appropriate
tools. At the core of regression analysis is estimating the relationship between a depend-
ent and one or several independent variables. Exploring such relations serves at least
two main purposes: statistical inference and prediction (Sen and Srivastava, 1990). A
type of regression analysis that has continually gained importance over the last decades is
quantile regression. The concept was introduced by Koenker and Bassett (1978) and aims
at estimating conditional quantiles of a response variable given several predictor variables.
It finds application in many areas where tail quantiles of conditional distributions are of
interest. For instance, Abrevaya (2002) utilize quantile regression techniques to estimate
the effects of demographics and maternal behavior during pregnancy particularly at the
lower end of the birthweight distribution.
More recently, quantile regression has been enhanced by using vine copula-based ap-
proaches as in Aas et al. (2009). Copulas are multivariate distribution functions with
uniform margins that establish a relationship between the joint distribution of random
variables and their marginal distributions. They serve as building blocks for vine copulas
which are multivariate distributions associated with a density construction from bivari-
ate copula and marginal densities. Thus, vine copulas can separate the estimation of
the marginals and the dependence structure among the random variables. Further, they
allow tail asymmetries and separate multivariate component modelling (Czado, 2019).
Especially in finance and economics, copula-based quantile regression has proven to be
a flexible and effective analysis and prediction tool. Applications include, for example,
financial stress testing (Kraus and Czado, 2017), modelling dependencies in a stock port-
folio (Nagler et al., 2019) or between crude oil prices and stock markets (Liao et al., 2019).

In this thesis, we will revisit the D-vine copula-based quantile regression following Kraus
and Czado (2017). D-vine copulas are a class of vine copulas that arise from a particular
density construction. The motivation of this thesis is a comparative application of D-vine
copula-based and linear quantile regression to sizeable real data. More precisely, we aim
at estimating prediction intervals for next-day air temperatures. We can readily use pre-
dicted conditional quantiles as the lower and upper end of central prediction intervals of
the response variable. We will quantify predictive ability by a scoring that rewards narrow
intervals and adds a penalty if an observation does not fall in the predicted interval. In
our application, we further examine three different training approaches as well as varying
training horizons. The data we process originates from Cho et al. (2020) and is available
for free download under https://archive.ics.uci.edu/ml/index.php. The data set comprises
7, 750 observations of different numerical weather quantities recorded in the urban area of
Seoul, capital of South Korea. It includes 21 predictive variables and next-day maximum
and minimum air temperatures as responses. With respect to numerical weather data,
vine copula-based quantile regression has already been applied in several contexts. For
example, Möller et al. (2018) use a D-vine copula-based quantile regression to post-process
ensemble temperature forecasts of a weather prediction model showing improvement over
benchmark models for larger forecast horizons. Latif and Mustafa (2020) use paramet-
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ric vine copulas to investigate the critical behavior of flood episodes at a river basin in
Malaysia.

All our data processing, model fitting and evaluation is done using R software. In par-
ticular, we employ the quantreg package (Koenker, 2013) to fit linear quantile regres-
sion models to our data. For the D-vine copula-based quantile regression we apply the
vinereg() function from the vinereg package (Nagler and Kraus, 2020). For visualiza-
tion of bivariate copulas we use tools from the VineCopula package (Nagler et al., 2020).

Since copulas represent a central element in copula-based quantile regression, we start
with a short introduction of the basic concept of copulas before outlining the course of
the thesis.

1.1 Concept of Copulas

A copula is a multivariate distribution function. In particular, a d-variate copula C is a
multivariate distribution function on the d-dimensional hypercube [0, 1]d with uniformly
distributed marginals (Czado, 2019). The corresponding copula density c for an absolutely
continuous copula can be obtained by partial differentiation, i.e.

c(u1, . . . , ud) :=
∂d

∂u1 . . . ∂ud
C(u1, . . . , ud) for all u in [0, 1]d.

Using the copula approach to multivariate data has a key advantage over conventional
multivariate data analysis. While we typically consider variables on their original scale and
employ pair plots to visualize possible dependence structure between pairs of variables,
this brings a critical shortfall. These scatter plots depend on the scale of the variables and
therefore the marginal behavior is mixed with the dependence structure of the variables
(Czado, 2019). The copula approach will compensate for this by individually modelling
the marginals and thus separating marginal effects from the dependence structure of the
variables. The marginals are standardized using the probability integral transform:

Definition 1.1 (Probability integral transform (Czado, 2019)). Let X ∼ F be a continu-
ous random variable and x an observed value of X. The transformation u := F (x) is then
called the probability integral transform (PIT) at x.

Remark 1.2 (Distribution of the probability integral transform (Czado, 2019)). The
transformed variable U := F (X) is uniformly distributed. This can be easily shown:

P (U ≤ u) = P (F (X) ≤ u) = P (X ≤ F−1(u)) = F (F−1(u)) = u.

Using the probability integral transform we can transform a set of random variables
(X1, . . . , Xd) from original scale (also x-scale) to so-called copula scale (also u-scale):

Definition 1.3 (PIT random variables). For a set of random variables (X1, . . . , Xd) with
marginal distribution functionsXj ∼ Fj, j = 1, . . . , d, we denote the transformed variables

Uj := Fj(Xj), j = 1, . . . , d
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as PIT random variables. Then, (U
(i)
1 , . . . , U

(i)
d ) = (F1(X

(i)
1 ), . . . , Fd(X

(i)
d )), i = 1, . . . , n,

is called a PIT random sample of size n. If we refer to PIT random variables, we also
speak of copula scale or u-scale.

Now, the relationship between multivariate distribution functions and their univariate
margins is unveiled by Sklar’s Theorem which was first published in Sklar (1959). His
theorem is central to the theory of copulas. It shows that we can express multivariate
distributions in terms of their marginal distributions and a corresponding copula.

Theorem 1.4 (Sklar’s Theorem (Czado, 2019)). Let X be a d-dimensional random vector
with joint distribution function F and marginal distribution functions Fi, i = 1, . . . , d, then
the joint distribution function can be expressed as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (1)

with associated density or probability mass function

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))f1(x1) . . . fd(xd) (2)

for some d-dimensional copula C with copula density c. For absolutely continuous distri-
butions, the copula C is unique. The inverse also holds: the copula corresponding to a mul-
tivariate distribution function F with marginal distribution functions Fi for i = 1, . . . , d
can be expressed as

C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F−1

d (ud)) (3)

and its copula density or probability mass function is determined by

c(u1, . . . , ud) =
f(F−1

1 (u1), . . . , F−1
d (ud))

f1(F−1
1 (u1)) · · · fd(F−1

d (ud))
. (4)

A proof of Sklar’s Theorem can be found in Nelson (2006). With Sklar’s Theorem, the
dependence structure between the standardised variables can now be characterised by
copulas. A comprehensive study of copulas is given in Nelson (2006), a more application-
oriented guide in Czado (2019). In the course of this thesis we will show that a multivariate
density can be constructed from a product of marginal densities and associated bivariate
copula densities. The distribution associated with this construction is called a vine.
Different constructions yield different classes of vines. In D-vine quantile regression, so-
called drawable vines (D-vines) are utilized. Therefore, we will discuss D-vines in detail.
Other classes of vines, such as regular and canonical vines are studied, amongst others,
in Czado (2019).

1.2 Outline

The remainder of the thesis is organized in two main parts. The first part, Chapter 2 and
3, provides the theoretical background of the regression methods that have been applied
to the Seoul weather data. In the second part, Chapter 4 and 5, we present and discuss
the results of the application study.
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The next chapter starts with a short introduction into quantile regression analysis by
recalling the method of linear quantile regression. In Chapter 3 we derive the D-vine
quantile regression method according to Kraus and Czado (2017) and provide necessary
theoretical results from Czado (2019). At the end of Chapter 3 we will give an outline of
the D-vine quantile regression algorithm implemented in the R package vinereg.

In Chapter 4, we briefly depict the characteristics of numerical weather prediction and
describe the Seoul weather data. We will then outline the methodology of our application
and present the results. Finally, Chapter 5 concludes our findings and gives an outlook
on further research.



5

2 Quantile Regression

This section briefly recalls the idea of linear quantile regression as a natural extension of
the ordinary least squares regression method. Astoundingly, it is quantile regression that
constitutes the first origins of regression analysis in the history books. Dating back to the
mid-18th century, R.J. Boscovich, a Croatian priest, was concerned with the estimation
of a median regression slope (Dodge, 2008). Some thirty years later, Laplace adopted
Boscovich’s ideas to establish an algebraic method. Meanwhile, towards the end of the
18th century, Gauss and Legendre have discovered, without conferring, the least squares
principle: fitting a line through the data such that the sum of squared distances is minim-
ized. Based upon their work, linear regression has since evolved into a powerful and widely
used tool in data analysis. Mainly due to its computational tractability, the least squares
method has happened to outshine quantile regression for many years. It was not until
the contributions of Koenker and Bassett (1978) that quantile regression has recurred to
continually attract interest in many fields. Finally, the emergence of computers has lever-
aged quantile regression into a popular counterpart of the least squares method making
parameter estimation efficiently feasible. However, both methods differ in an essential
point: while ordinary least squares estimates the mean of the response conditioned on the
predictor variables, quantile regression can be used to predict any conditional quantile
of the response. Through this, it can provide a more complete picture of the stochastic
dependencies among the variables. Besides linear quantile regression, there exist numer-
ous other quantile regression methods including local quantile regression (Spokoiny et al.,
2013) and semiparametric quantile regression (Noh et al., 2015) which also incorporates
a copula-based approach. Though, we will stick to the linear quantile regression as a ref-
erence method in our application. Complementary to the ordinary least squares method
in mean regression it is one of the most widely known methods in quantile regression. We
will now first attend to the ordinary least squares regression, setting up a framework to
then discuss the linear quantile regression.

2.1 Ordinary Least Squares Regression

Throughout this thesis, we will denote random variables by capital letters while we use
small letters for observed values. In either case, we indicate random vectors and vectors
of observed values in bold type. Further, in the regression setting we refer to the response
variable as Y and the predictor variables as X = (X1, . . . , Xd)

T . Corresponding data
observations are denoted as yi ∈ R and xi = (xi,1, . . . , xi,d)

T ∈ Rd for i = 1, . . . , n. In the
model formulation of the ordinary least squares (abbr. OLS) method we will additionally
use the matrix notation

X =



1 x1,1 x1,2 · · · x1,d

1 x2,1 x2,2 · · · x2,d

...
...

...
. . .

...

1 xn,1 xn,2 · · · xn,d


∈ Rn×p
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for the data, where p := d+ 1. Here, the rows of X correspond to augmented data vectors
xi. We have added a 1 to each vector to account for an intercept in the linear regression
model. The notation and derivation generally follows Olive (2017) which gives a detailed
review of linear regression. With the matrix notation from above, we can now specify the
model which has the following linear form

Y = Xβ + ε

where β = (β0, β1, . . . , βd)
T ∈ Rp is a set of unknown parameters and ε ∼ Nn (0, σ2I)

is a random error term which is assumed to be normally distributed (Groß, 2003). The
principle of least squares chooses the parameters such that the expected square loss

E[(Y − xTβ)2 |X = x]

is minimized. Minimizing the sample estimate of the square loss, that is the sum of
squared differences between the response and its predicted values, leads to the following
parameter estimate

β̂ = arg min
β∈Rp

‖y −Xβ‖2,

where we now used the matrix notation for the data. If we set the first derivative equal
to zero, we obtain the closed form solution

β̂ = (XTX)−1XTy

for the parameters of the linear regression model.

If we then use xTnewβ̂ to predict the response, we, in fact, obtain an estimate of the
conditional mean of the response variable E[Y | X = xnew] given the outcome of the
predictors (Koenker and Hallock, 2001). This is because the conditional mean is indeed
a minimizer of the expected square loss:

arg min
h(X)

E[(Y − h(X))2] = E[Y |X].

To show this, we can add and subtract E[Y |X] and resolve the resulting binomial:

E[(Y − h(X))2]

=E
[(

(Y − E[Y |X])− ((h(X)− E[Y |X])
)2]

=E
[(
Y − E[Y |X]

)2
+
(
h(X)− E[Y |X]

)2 − 2
(
Y − E[Y |X]

)(
h(X)− E[Y |X]

)]
(5)

Using E
[
E[Y |X]

]
= E[Y |X]|X = E[Y ] (Law of Total Expectation, (Weiss et al., 2005)),

we see that the last term in (5) resolves to 0:

E
[(
Y − E[Y |X]

)(
h(X)− E[Y |X]

)]
= E

[
E
[(
Y − E[Y |X]

)(
h(X)− E[Y |X]

)∣∣X]]
= E

[(
E[Y |X]− E[Y |X]︸ ︷︷ ︸

=0

)(
h(X)− E[Y |X]

)]
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Now, we conclude that

E[(Y − h(X))2] = E[(Y − E[Y |X])2] + E[(h(X)− E[Y |X])2]︸ ︷︷ ︸
≥0

≥ E[(Y − E[Y |X])2]

with strict equality if and only if h(X) = E[Y |X].

2.2 Linear Quantile Regression

In analogy to the ordinary least squares method, we will now derive the basic idea of
parameter estimation in linear quantile regression (abbr. LQR). As preliminaries, we
recall the definition of quantiles and the quantile function.

Definition 2.1 (The α-th quantile). For a random variable X with cumulative distribu-
tion function FX , a real number xα is called the α-th quantile of X if

FX(xα) ≥ α and lim
t↗xα

FX(t) ≤ α.

If FX is continuous, the limes coincides with the function value and thus, the α-th quantile
simplifies to a solution of

FX(xα) = α

which is not unique if FX is not strictly monotone. Otherwise the α-th quantile is xα =
F−1
X (α).

To account for the case where a solution would not be unique, we can define the quantile
function as a generalized inverse of the cumulative distribution function (abbr. cdf). It
chooses the smallest element of possible solutions to be the α-th quantile:

F−1
X (α) = inf{x : FX(x) ≥ α} =: qα(x).

In analogy, the conditional quantile function of a response variable Y conditioned on d
predictors X = (X1, . . . , Xd)

T can now be derived from its conditional cdf

FY |X(y | x1, . . . , xd) = P (Y ≤ y | X1 = x1, . . . , Xd = xd).

For α ∈ (0, 1) the conditional quantile function is then given as (Bernard and Czado,
2015)

F−1
Y |X(α | x1, . . . , xd) = inf{y ∈ R | FY |X(y | x1, . . . , xd) ≥ α} =: qα(x1, . . . , xd).

Like in OLS, where the conditional mean is assumed to be linear in the predictors, we
now assume linearity of the conditional quantiles (Handcock and Morris, 1999)

qα(x1, . . . , xd) = xTβ(α),

where α ∈ (0, 1). The unknown parameters are chosen such that the so-called expected
check loss

E[ρα(Y − xTβ) |X = x]
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is minimized (Yu et al., 2003), where

ρα(s) := s(α− 1s<0)

is the check function. Taking the sample estimate of the expected check loss leads to
the following minimization problem (Hui-Kuang Yu, 2014; Koenker and Bassett, 1978) to
determine the unknown parameters:

β̂ = arg min
β∈Rp

n∑
i=1

ρτ (yi − xTi β)

= arg min
β∈Rp

 ∑
i:yi≥xTi β

α|yi − xTi β|+
∑

i:yi<xTi β

(1− α)|yi − xTi β|

 .
This approach shows strong analogy to the least squares method. Generally, we solve

min
β∈Rp

n∑
i=1

f(yi − xTi β)

where f(·) is a loss function (Koenker and Hallock, 2001). In OLS, the quadratic loss
function leads to an estimate of the conditional mean, while for LQR the check loss leads
to an estimate of conditional quantiles. The latter arises from the fact that the check
function asymmetrically weighs the absolute residuals. This can be exemplified, if we
consider the check function as a generalisation of the absolute value function. In the case
of the conditional median, that is α = 0.5, the check function ρ0.5(·) = 0.5| · | corresponds
to the absolute value function. This symmetry ensures that the minimization equates the
number of positive and negative residuals and thus, yields the sample median (Koenker
and Hallock, 2001).

More formally, we can show that the quantile function qα(x) = inf{x : FX(x) ≥ α}
minimizes the expected check loss:

arg min
x̂

E[ρα(X − x̂)].

If we rewrite the expected check loss

E[ρα(X − x̂)] =

∫ ∞
−∞

(α(x− x̂)− 1x<x̂(x− x̂))fX(x)dx

=

∫ x̂

−∞
(α− 1)(x− x̂)fX(x)dx+

∫ ∞
x̂

α(x− x̂)fX(x)dx,

we can differentiate it with respect to x̂. Here, fX denotes the density function of the
random variable X. Under certain regularity conditions and using the formula for differ-
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entiation under the integral sign we obtain

∂

∂x̂
E[ρα(X − x̂)] =

∂

∂x̂

∫ x̂

−∞
(α− 1)(x− x̂)fX(x)dx+

∂

∂x̂

∫ ∞
x̂

α(x− x̂)fX(x)dx

=
∂

∂x̂
x̂(x̂− x̂)fX(x̂) +

∫ x̂

−∞

∂

∂x̂

(
(α− 1)(x− x̂)fX(x)

)
dx

− ∂

∂x̂
x̂(x̂− x̂)fX(x̂) +

∫ ∞
x̂

∂

∂x̂

(
α(x− x̂)fX(x)

)
dx

= (1− α)

∫ x̂

−∞
fX(x)dx− α

∫ ∞
x̂

fX(x)dx

= (1− α)

∫ x̂

−∞
dFX(x)− α

∫ ∞
x̂

dFX(x)

= (1− α)FX(x̂)− α(1− FX(x̂))

= FX(x̂)− α.

Now, we see that for x̂ = qα(x) the expected check loss is minimized. In the proof, we
followed Tepegjozova (2019). A more involved proof that the conditional quantile function
qα(x1, . . . , xd) indeed minimizes the expected check loss

arg min
h(X)

E[ρα(Y − h(X))] = qα(x1, . . . , xd)

can be found in Koenker (2005).

Contrary to parameter estimation in OLS, the optimization problem in LQR does not
have a closed form solution, but can be solved with standard linear programming tech-
niques, such as the simplex method.

Linear quantile regression has drawn criticism for involving a few drawbacks. Bernard and
Czado (2015) point out, that assuming linearity of the conditional quantiles poses a strong
assumption that is almost never fulfilled. Furthermore, they criticize linear quantile re-
gression for the possible occurrence of quantile crossing. If the regression lines of different
quantile levels have differing slopes, they may cross. At this point, we note that quantile
crossing is particularly problematic when using predicted quantiles as upper and lower
bounds of prediction intervals. For instance, we can use the predicted conditional 0.025-
and 0.975-quantiles to obtain a central 95% prediction interval. If these two quantiles
cross, i.e. q̂0.025 > q̂0.975, we do not obtain a reasonable and interpretable prediction in-
terval. Other typical issues include multicollinearity, necessary variable transformations
and interactions between variables that have to be accounted for. D-vine based quantile
regression automatically takes care of these issues and allows for a more flexible and less
restrictive modelling as will become clearer in the following chapter.
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3 D-vine Quantile Regression

We will now discuss the theory of D-vine copulas and outline the method of D-vine
copula-based quantile regression (abbr. DVQR). Kraus and Czado (2017) introduce D-
vine copula based quantile regression as a semi-parametric method that is designed for
continuous input data. It is semi-parametric in the sense that it estimates marginal dis-
tribution functions nonparametrically, while the associated copulas are estimated from
parametric families. Nagler et al. (2017) provide several methods to also estimate bivari-
ate copulas nonparametrically. In Schallhorn et al. (2017) the D-vine quantile regression
approach by Kraus and Czado (2017) has been extended to the case, where some of the
input variables are discrete. Panagiotelis et al. (2012) suggest pair copula constructions
for entirely discrete input data.

The central idea of D-vine copula based quantile regression is to derive an easily cal-
culable estimate of the conditional quantile function via copulas. The joint density of
the input variables can be expressed in terms of a D-vine, that is, a decomposition into
a product of bivariate copula densities and marginal densities. It allows to express the
conditional quantile function in terms of marginal distribution functions and so-called
h-functions which are associated with the bivariate copulas in the D-vine. In the course
of this section, we will revisit the theory behind the corresponding D-vine quantile re-
gression algorithm implemented in the R package vinereg. Its implementation is based
on Kraus and Czado (2017) and has been extended to allow for nonparametric copulas
and mixed discrete-continuous input data. Starting with bivariate copulas, the building
blocks of the D-vine, we will continue with the derivation of the D-vine copula based
quantile regression model. Where necessary we will provide more tools and results from
Czado (2019) to deepen the theory of D-vine copulas.

Instead of modelling the conditional quantile function as a linear function of the predictor
variables, we start off with its definition as the inverse conditional distribution function
of the response given the predictor variables. Formally, given a response variable Y and
some predictor variables X1, . . . , Xd, d ≥ 1 with marginal distribution functions FY and
Fj, j = 1, . . . , d, respectively, we can denote the conditional quantile function given a
quantile level α ∈ (0, 1) as

qα(x1, . . . , xd) := F−1
Y |X1,...,Xd

(α | x1, . . . , xd).

For the remainder of this chapter, we will relate to continuous random variables.

3.1 Bivariate Copulas

As we have mentioned above, bivariate copulas play a key role in the density construction
that specifies a D-vine. There are two different estimation approaches of bivariate copulas
that are applied in the D-vine regression method: parametric and nonparametric copula
estimation.

Before we present bivariate parametric and nonparametric copulas, we introduce a depend-
ence measure to quantify the dependence between two random variables. The Kendall’s
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τ is defined as the probability of concordance minus the probability of discordance of two
random variables. It captures the strength and direction of dependence.

Definition 3.1 (Kendall´s tau (Czado, 2019)). The Kendall´s τ between the continuous
random variables X1 and X2 is defined as

τ(X1, X2) = P ((X11 −X21)(X12 −X22) > 0︸ ︷︷ ︸
concordance

)− P ((X11 −X21)(X12 −X22) < 0︸ ︷︷ ︸
discordance

),

where (X11, X12) and (X21, X22) are independent and identically distributed copies of
(X1, X2).

Kendall’s τ values can range from −1 to 1, where a value of −1 describes perfect neg-
ative and a value of 1 perfect positive correlation. The Kendall’s τ for two random
variables (X1, X2) can be estimated from a random sample

(
(x1, x2)(i)

)
i=1,...,n

from their

joint distribution. We consider all
(
n
2

)
unordered pairs (xi,xj) :=

(
(x1, x2)(i), (x1, x2)(j)

)
,

i, j = 1, . . . , n, j 6= i and assign it to one of the following four cases:

� concordant if either x
(i)
1 < x

(j)
1 and x

(i)
2 < x

(j)
2 holds or x

(i)
1 > x

(j)
1 and x

(i)
2 > x

(j)
2 .

That is, the ordering of the two samples is the same for both variable positions.

� discordant if the ordering of the two sample is different at each position, i.e. either
x

(i)
1 < x

(j)
1 and x

(i)
2 > x

(j)
2 holds or x

(i)
1 > x

(j)
1 and x

(i)
2 < x

(j)
2 .

� extra x1 pair if x
(i)
1 < x

(j)
1 holds.

� extra x2 pair if x
(i)
2 < x

(j)
2 holds.

With the number of occurrences of each of the cases we can now determine an estimate
of Kendall’s tau.

Definition 3.2 (Estimate of Kendall’s τ allowing for ties (Czado, 2019)). Let Nc be the
number of concordant pairs, Nd be the number of discordant pairs, N1 be the number of ex-
tra x1 pairs, and N2 be the number of extra x2 pairs of a random sample

(
(x1, x2)(i)

)
i=1,...,n

of the joint distribution of (X1, X2). Then, an estimate of Kendall’s τ is given by

τ̂n :=
Nc −Nd√

Nc +Nd +N1 ×
√
Nc +Nd +N2

.

The Kendall’s τ can be expressed solely in terms of its associated copula. Its value is inde-
pendent of the marginal distributions. For parametric copulas, the relationship between
Kendall’s τ and the copula’s parameters or generator function can be expressed in closed
form (these terms will become clearer in the next section, cf. Equation (6) and (7)). In
the context of copulas, the Kendall’s τ is therefore a suitable and widely used dependence
measure.

In the data application, we will use the empirical Kendall’s τ as a first indication of
dependence to pre-select eligible predictors for our regression models.
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3.1.1 Parametric Copulas

Numerous bivariate parametric copulas have been classified according to their construc-
tion (Czado, 2019). As a first class, bivariate elliptical copulas emerge from applying
the probability integral transform to the margins of known elliptical distributions. We
illustrate this approach by constructing the bivariate Gaussian copula:

Example 3.3 (Bivariate Gaussian copula (Czado, 2019)). The bivariate Gaussian copula
can be constructed using a bivariate normal distribution with zero mean, unit variances,
and correlation ρ. Applying the inverse statement (3) of Sklar’s Theorem we obtain

C(u1, u2; ρ) = Φ2(Φ−1(u1),Φ−1(u2); ρ),

where Φ(·) is the distribution function of a standard normal N(0, 1) distribution and
Φ(·, ·; ρ) is the bivariate normal distribution function with zero means, unit variances,
and correlation ρ. The corresponding copula density can be expressed as

c(u1, u2; ρ) =
1

φ(x1)φ(x2)

1√
1− ρ2

exp

{
−ρ

2(x2
1 + x2

2)− 2ρx1x2

2(1− ρ2)

}
,

where x1 := Φ−1(u1) and x2 := Φ−1(u2). Here, Equation (4) of Sklar’s Theorem has been
utilized.

Similarly, the bivariate Student’s t copula can be derived as a second member of the
class of elliptical copulas. For elliptical copulas, the following relationship between the
association parameter ρ and Kendall’s τ

ρ = sin
(π

2
τ
)

(6)

holds (Czado, 2019). Another class of bivariate copulas is given by so-called Archimedean
copulas which are constructed from generator functions. For a continuous, strictly mono-
tone decreasing and convex function ϕ : I 7→ [0,∞] with ϕ(1) = 0, the copula given
by

C(u1, u2) = ϕ[−1](ϕ(u1) + ϕ(u2))

is called a bivariate Archimedean copula with generator ϕ. Here, ϕ[−1] is defined as:

ϕ[−1] : [0,∞] 7→ [0, 1] with ϕ[−1](t) :=

{
ϕ−1(t) , 0 ≤ t ≤ ϕ(0)

0 , ϕ(0) ≤ t ≤ ∞.

A member of the class of Archimedean copulas is the bivariate Clayton copula:

Example 3.4 (Bivariate Clayton copula (Czado, 2019)). The bivariate Clayton copula
arises from ϕ(t) := t−δ − 1, 0 < δ <∞ as a generator function:

C(u1, u2) = (u−δ1 + u−δ2 − 1)−
1
δ .

The parameter δ controls the degree of dependence. Full dependence is obtained when
δ →∞. Independence corresponds δ → 0.
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Other well-known members of the Archimedean copula class are the Gumbel, Frank, Joe,
BB1, BB6, BB7 and BB8 copula. For Archimedean copulas, we obtain a relationship
between the generator function ϕ and Kendall’s τ through the following equation (Czado,
2019)

τ = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt. (7)

From a third class of copulas, so-called extreme-value copulas, we solely mention the
Tawn copula, as it completes the list of copulas that are employed in the D-vine quantile
regression method from the vinereg package. It also allows for rotations of copulas that
only provide positive dependence (τ > 0). This is the case for the Gumbel, Clayton, Joe,
BB1, BB6, BB7, BB8 and Tawn copula. All of these copulas are implemented in the
R-package VineCopula. In Section 3.1.3 a visualization of some copula families will be
given.

3.1.2 Nonparametric Copulas

Estimating the bivariate copulas from parametric families bears the risk of misspecifica-
tion. Most parametric families only allow for highly symmetric and monotone relation-
ships between variables (Nagler et al., 2017) and are unable to capture other relationships.
The necessity to estimate pair copulas also nonparametrically is therefore obvious. Nagler
et al. (2017) present several approaches to nonparametric copula estimation. While they
compare these methods in an extensive simulation study, we will solely discuss kernel
estimators. Overall, these methods were found to perform best and are utilized in the
D-vine quantile regression method.

Given a random PIT sample (U
(i)
1 , U

(i)
2 ) = (F1(X

(i)
1 ), F2(X

(i)
2 )), i = 1, . . . , n, we wish to

estimate a corresponding copula density c. Copula density estimation poses the problem
of consistency issues at the boundaries of the support (Nagler et al., 2017). As a rem-
edy, the following transformation using the distribution function Φ of a standard normal
distribution can be applied:

(Z
(i)
1 , Z

(i)
2 ) =

(
Φ−1(U

(i)
1 ),Φ−1(U

(i)
2 )
)
.

These random vectors now have standard normally distributed margins and their domain
is R2. This is beneficial for kernel density estimators to work well. With Equation (2)

from Sklar’s Theorem the density of (Z
(i)
1 , Z

(i)
2 ) decomposes to

f(z1, z2) = c(Φ(z1),Φ(z2))φ(z1)φ(z2)

for all (z1, z2) ∈ R2. Here, φ denotes the density function of a standard normal distribu-
tion. If we set uj = Φ(zj) for j = 1, 2, we can rearrange the above equation to

c(u1, u2) =
f(Φ−1(u1),Φ−1(u2))

φ(Φ−1(u1))φ(Φ−1(u2))
.

Any kernel estimator f̂ of f can now be used to define a kernel estimator of the copula
density c:

ĉ(u1, u2) =
f̂(Φ−1(u1),Φ−1(u2))

φ(Φ−1(u1))φ(Φ−1(u2))
.
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Nagler et al. (2017) propose to estimate f̂ by local polynomial likelihood estimators.
Therefore, we locally approximate the log-density log f(z1, z2) using the log-quadratic
expansion

log f(z′1, z
′
2) ≈ Pa(z)

= a1 + a2(z1 − z′1) + a3(z2 − z′2)

+ a4(z1 − z′1)2 + a5(z1 − z′1)(z2 − z′2) + a6(z2 − z′2)2

for (z′1, z
′
2) in the neighborhood of z = (z1, z2). The coefficients a = (a1, . . . , a6)T of

the polynomial are then identified as the solution to the weighted maximum likelihood
problem

â = arg max
a∈R6

{
n∑
i=1

K(B−1
(
z −Z(i))

)
Pa(z −Z(i))

− n
∫
R2

K
(
B−1(z − s)

)
exp (Pa(z − s)) ds

}
,

where K(z) = K(z1)K(z2) and K is a symmetric probability density function. B ∈ R2×2

is the bandwidth matrix with det(B) > 0. Nagler et al. (2017) suggest the following rule
of thumb bandwidth matrix for a polynomial order of 2:

Brot = 5n−1/10Σ̂
1/2
Z ,

where Σ̂Z is the empirical covariance matrix of (Z
(i)
1 , Z

(i)
2 ), i = 1, . . . , n. An estimate for

f(z1, z2) is then given by exp(â). Finally, the density estimate needs to be normalized
to ensure that it actually yields a copula density. This is necessary since the margins
may not be uniform in the first place (Nagler, 2016a). The estimator, as shown here, is
implemented in the R-package kdecopula (Nagler, 2016b) and utilized for nonparametric
copula estimation in the vinereg package.

3.1.3 Visualization

A suitable exploratory visualization tool for bivariate copula-based data analysis is a so-
called normalized bivariate contour plot (Czado, 2019). Therefore, we consider a new
normalized variable scale, the z-scale:

(Zi, Zj) = (Φ−1(Ui),Φ
−1(Uj)) = ((Φ−1(Fi(Xi)),Φ

−1(Fj(Xj))).

Then, (Zi, Zj) features standard normal margins Zi, Z, j ∼ N(0, 1) and density

g(zi, zj) = c(Φ(zi),Φ(zj))φ(zi)φ(zj).

Here, Φ(·) and φ(·) denote the distribution and density function of a N(0, 1) distributed
random variable. Table 1 gives a summary of the different variable scales and their
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Variable scale Transformation Density

x-scale
(original scale)

(X1, X2) f(x1, x2)

u-scale
(copula scale)

(U1, U2) = (F1(X1), F2(X2))
copula density
c(u1, u2)

z-scale (marginal
normalized scale)

(Z1, Z2) = (Φ−1(U1),Φ−1(U2))
= ((Φ−1(F1(X1)),Φ−1(F2(X2)))

g(z1, z2)
= c(Φ(z1),Φ(z2))φ(z1)φ(z2)

Table 1: Variable scales and their associated densities (Czado, 2019)

associated densities. In a normalized bivariate contour plot, contours of g(z1, z2), i.e.
g(z1, z2) = k for different values of k, are displayed. This transformation to z-scale
decisively enhances the interpretability of the contour plots. For example, a Gaussian
copula would be recognized as elliptical contours with a center at (0, 0) in the normalized
contour plot. Other parametric copula families also assume characteristic shapes in the
normalized contour plots.
In Figure 1 we display exemplary contour plots of different parametric copulas. For each
copula, the top row of the plot shows the normalized bivariate copula contours (on the z-
scale) and in the bottom row corresponding random samples on the copula scale (u-scale)
are displayed.

Figure 1: First column: Gaussian copula with τ = 0.3, second column: Student’s t copula
with τ = −0.5 and ν = 4, third column: Clayton copula with τ = 0.7 and fourth column:
Gumbel copula with τ = 0.2. Top row: Normalized bivariate copula contours, bottom
row: pairs plot of random samples (u1, u2) on the copula scale.

In practical data applications, empirical normalized contour plots can be compared to
the contour shapes of the parametric copula families to give a first visual indication for
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an appropriate family selection. Therefore, the data sample needs to be transformed to
copula scale and normalized scale. Since the true marginals are usually unknown, the
marginal distribution functions have to be estimated first. We can then transform a data
sample into so-called pseudo-copula data. In Section 3.5.1, we discuss how the marginal
densities are estimated in the D-vine regression setting.

Definition 3.5 (Pseudo-copula data). For an independent and identically distributed

(i.i.d.) data sample y(i), x
(i)
j , j = 1, . . . , d and i = 1, . . . , n and estimated marginals F̂Y

and F̂j, j = 1, . . . , d, the pseudo-copula data is given by the PIT values

F̂Y (y(i)) = v̂(i) and

F̂j(x
(i)
j ) = û

(i)
j .

We can now transform the pseudo-copula data to the z-scale and estimate corresponding
contours through bivariate kernel density smoothing (Czado, 2019). In Section 3.5.2, we
describe how the bivariate copulas are estimated in the D-vine quantile regression method.

3.1.4 h-functions Associated with Bivariate Copulas

As Sklar’s Theorem (see Theorem 1.4) shows, we can express a multivariate distribution
function in terms of its marginal distributions and a corresponding copula. The following
Lemma links conditional densities and distribution functions with their marginals and an
associated bivariate copula for d = 2, respectively.

Lemma 3.6. (Czado, 2019) The conditional density and distribution function can be
rewritten as

f1|2(x1 | x2) = c12(F1(x1), F2(x2))f1(x1)

F1|2(x1 | x2) =
∂

∂u2

C12(F1(x1), u2)|u2=F2(x2)

=:
∂

∂F2(x2)
C12(F1(x1), F2(x2)).

Proof. Using Sklar’s Theorem and the definition of a conditional density we obtain

f1|2(x1 | x2) =
f12(x1, x2)

f2(x2)

=
c12(F1(x1), F2(x2))f1(x1)f2(x2)

f2(x2)

= c12(F1(x1), F2(x2))f1(x1)

=
∂2C12(u1, u2)

∂u1∂u2

|u1=F1(x1),u2=F2(x2)
∂u1

∂x1

=
∂

∂u2

(
∂

∂x1

C12(F1(x1), u2)

)
|u2=F2(x2).
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Using this expression for f1|2(x1 | x2), we can now proof the second part of the Lemma:

F1|2(x1 | x2) =

∫ x1

−∞

∂

∂u2

(
∂

∂z1

C12(F1(z1), u2)

)
|u2=F2(x2)dz1

=
∂

∂u2

(∫ x1

−∞

∂

∂z1

C12(F1(z1), u2)dz1

)
|u2=F2(x2)

=
∂

∂u2

C12(F1(x1), u2)|u2=F2(x2).

Applying Lemma 3.6 to the bivariate copula distribution C12 yields

C1|2(u1 | u2) =
∂

∂u2

C12(u1, u2) ∀u1 ∈ [0, 1]. (8)

Through this, we obtain a link between the conditional distribution function F1|2 and the
conditional copula C1|2

F1|2(x1 | x2)
Lemma 3.6

=
∂

∂u2

C12(F1(x1), u2)|u2=F2(x2)

(8)
= C1|2(F1(x1) | F2(x2)).

(9)

Following the inversion rule for a composite function f ◦ g,

(f ◦ g)−1 = g−1 ◦ f−1,

we obtain

F−1
1|2 (u1 | x2) = F−1

1 (C−1
1|2(u1 | F2(x2))). (10)

The conditional distribution function C1|2 in Equation (8) is also denoted as h-function:

Definition 3.7 (h-functions of bivariate copulas (Czado, 2019)). The h-functions corres-
ponding to a bivariate copula C12 are defined for all (u1, u2) ∈ [0, 1]2 as

h1|2(u1 | u2) :=
∂

∂u2

C12(u1, u2),

h2|1(u2 | u1) :=
∂

∂u1

C12(u1, u2).

In the following, we will use the relationship in Lemma 3.6 to express the joint density
f of a random vector X = (X1, . . . , Xd)

T in terms of bivariate copula densities and its
marginal densities (Kraus and Czado, 2017). Since this approach uses bivariate copula
densities, it is also denoted as Pair-Copula Construction (PPC), the resulting density is
called a D-vine density with order X1 −X2 − · · · −Xd (Kraus and Czado, 2017; Czado,
2019). In case all margins are uniform, we speak of a D-vine copula.
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3.2 Pair-Copula Construction of a D-vine Density

We can now derive the D-vine density that is constructed from bivariate copulas which we
also refer to as pair-copulas. We adopt the following notations from (Czado, 2019; Kraus
and Czado, 2017) to differentiate between copulas associated with bivariate conditional
distribution functions and bivariate conditional distributions on the copula scale, i.e. the
distribution of the PIT random variables.

Definition 3.8. Let (X1, . . . , Xd) be a set of random variables and (U1, . . . , Ud) the
corresponding PIT random variables. For a set of indices D ⊂ {1, . . . , d} and i, j ∈
{1, . . . , d} \D,

� Cij;D(·, ·;xD) denotes the copula associated with the bivariate conditional distribu-
tion (Xi, Xj) given XD = xD. The corresponding copula density is denoted by
cij;D(·, ·;xD).

� the conditional distribution function of the PIT random variables (Ui, Uj) given
UD = uD is expressed as Cij|D(·, ·;uD) with bivariate density function cij|D(·, ·;uD).

� Fi|D(·, ·;xD) denotes the conditional distribution function of the random variable
Xi given XD = xD.

Finally, we use the following abbreviation to shorten notation

ci,j;D := ci,j;D(Fi|D(xi | xD), Fj|D(xj | xD);xD). (11)

A D-vine density is obtained through the following density decomposition:

Theorem 3.9 (Drawable vine (D-vine) density (Czado, 2019)). Every joint density f1,...,d

can be decomposed as

f1,...,d(x1, . . . , xd) =

[
d−1∏
j=1

d−j∏
i=1

ci,(i+j);(i+1),...,(i+j−1)

]
·

[
d∏

k=1

fk(xk)

]
, (12)

where we used the abbreviation given in (11). The distribution associated with this density
decomposition is called a drawable vine (D-vine).

Proof. We start with decomposing the joint density into products of conditional and
marginal densities:

f1,...,d(x1, . . . , xd) = fd|1,...,d−1(xd | x1, . . . , xd−1)f1,...,d−1(x1, . . . , xd−1)

= · · · =

[
d∏
t=2

ft|1,...,t−1(xt | x1, . . . , xt−1)

]
× f1(x1).

(13)

Then, applying Lemma 3.6 recursively to the conditional densities in (13) yields the
following:

ft|1,...,t−1(xt | x1, . . . , xt−1) = c1,t|2,...,t−1 · ft|2,...,t−1(xt | x2, . . . , xt−1)

= c1,t|2,...,t−1 · c2,t|3,...,t−1 · ft|3,...,t−1(xt | x3, . . . , xt−1)

= · · · =

[
t−2∏
s=1

cs,t;s+1,...,t−1

]
· ct−1,t · ft(xt).
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Inserting this decomposition into (13) completes the proof:

f1,...,d(x1, . . . , xd) =

[
d∏
t=2

t−2∏
s=1

cs,t;s+1,...,t−1

]
·

[
d∏
t=2

ct−1,t

]
·

[
d∏

k=1

fk(xk)

]

s=i,t=i+j
=

[
d−1∏
j=1

d−j∏
i=1

ci,(i+j);(i+1),...,(i+j−1)

]
·

[
d∏

k=1

fk(xk)

]
.

In DVQR, it is commonly assumed that the copulas associated with conditional distribu-
tions do not depend on the values of xD. This assumption is referred to as simplifying
assumption (Kraus and Czado, 2017):

Definition 3.10 (Simplifying assumption (Czado, 2019)). If in the context of Theorem
3.9 the following

ci,j;D(Fi|D(xi | xD), Fj|D(xj | xD);xD) = ci,j;D(Fi|D(xi | xD), Fj|D(xj | xD))

holds for all xD and i, j and D, the corresponding D-vine distribution is called simplified.

In order to visualize the concept of the pair-copula construction, Kraus and Czado (2017)
have adopted the graph theoretic representation of a D-vine density which was first estab-
lished by Bedford and Cooke (2002). For d variables, a D-vine density can be represented
as a nested set of d− 1 trees, where edges in the first tree represent pairwise dependence
and edges in subsequent trees represent conditional dependence (Gneiting and Raftery,
2007). Example 3.11 demonstrates this correspondence between pair copulas in the D-
vine density and edges in the nested set of trees. The sequence in which the variables
appear in the first tree of the D-vine is referred to as the order of the D-vine.

Example 3.11. The following density decomposition shows an exemplary 4-dimensional
D-vine density with orderX1−X2−X3−X4. In Figure 2, its graph theoretic representation
is illustrated. Each edge of the nested set of trees corresponds to a pair-copula in the
D-vine density.

f(x1, x2, x3, x4) =f1(x1)f2(x2)f3(x3)f4(x4)

· c12

(
F1(x1), F2(x2)

)
· c23

(
F2(x2), F3(x3)

)
· c34

(
F3(x3), F4(x4)

)
(T1)

· c13;2

(
F1|2(x1|x2), F3|2(x3|x2)

)
· c24;3

(
F2|3(x2|x3), F4|3(x4|x3)

)
(T2)

· c14;23

(
F1|23(x1|x2, x3), F4|23(x4|x2, x3)

)
(T3)

3.3 Estimate of the Conditional Quantile Function

Back to our initial problem of estimating the conditional quantile function

F−1
Y |X1,...,Xd

(α | x1, . . . , xd) (14)
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T1 :

T2 :

T3 :

2 3 41

12 23 34

13 | 2 24 | 3

12 23 34

13 | 2 24 | 3

14 | 23

Figure 2: Graph theoretic representation of a 4-dimensional D-vine

via copulas, we can now rewrite (14) in terms of its associated copula. If we use the PIT
variables V := FY (Y ) and Uj := Fj(Xj), j = 1, . . . , d, we can express the conditional
distribution function on the original scale as a conditional distribution function on the
copula scale (cf. Definition 1.1 and 1.3). With PIT values v := FY (y) and uj := Fj(xj)
for all j = 1, . . . , d we obtain the following:

FY |X1,...,Xd(y | x1, . . . , xd) = P (Y ≤ y | X1 = x1, . . . , Xd = xd)

= P (FY (Y ) ≤ v | F1(X1) = u1, . . . , Fd(Xd) = ud)

= CV |U1,...,Ud(v | u1, . . . , ud).

Inversion yields the following expression for the conditional quantile function:

F−1
Y |X1,...,Xd

(α | x1, . . . , xd) = F−1
Y

(
C−1
V |U1,...,Ud

(α | u1, . . . , ud)
)
.

That is, we can express the conditional quantile function in terms of the inverse marginal
distribution function F−1

Y and the conditional copula quantile function C−1
V |U1,...,Ud

. An
estimate of the conditional quantile function can therefore be obtained through estimating
the marginals FY and Fj for j = 1, . . . , d as well as the conditional distribution function
CV |U1,...,Ud :

q̂α(x1, . . . , xd) := F̂−1
Y

(
Ĉ−1
V |U1,...,Ud

(α | û1, . . . , ûd)
)
,

where ûj := F̂j(xj) is the estimated PIT value of xj, for j = 1, . . . , d respectively. What
remains in question is how the conditional distribution CV |U1,...,Ud can be estimated. The
following section will show how this can be achieved.

3.4 Evaluating the Conditional Copula Quantile Function

Kraus and Czado (2017) suggest to fit a D-vine copula to (V, U1, . . . , Ud)
T . In Section

3.5 we enlarge on how the D-vine copula is sequentially fitted to the data. Through this,
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we obtain pair copulas from the PCC associated with bivariate conditional distribution
functions of the data. Yet, the values of the pair-copulas are not easily calculable since
they still have conditional distributions Fi|D(xi | xD) as their arguments. To overcome
this, Kraus and Czado (2017) suggest to recursively apply the following formula by Joe
(1997) which, for l ∈ D and D−l := D \ {l}, links the argument of a pair-copula to the
h-functions associated with pair-copulas from lower trees:

Fi|D(xi | xD) = hi|l;D−l(Fi|D−l(xi | xD−l) | Fl|D−l(xl | xD−l)). (15)

Having fitted a D-vine to the data, we can then use the recursion to express the conditional
copula quantile function in terms of inverse h-functions. The following example will
demonstrate this.

Example 3.12. Let us assume we have fitted a D-vine with order V − U1 − U2 − U3

to the data. Then, the conditional distribution function of V given (U1, U2, U3)T can be
expressed as

CV |U1,U2,U3(v | u1, u2, u3) = hV |U3;U1,U2(CV |U1,U2(v | u1, u2) | CU3|U1,U2(u3 | u1, u2))

= hV |U3;U1,U2(hV |U2;U1(CV |U1(v | u1) | CU2|U1(u2 | u1)) |

hU3|U1;U2(CU3|U2(u3 | u2) | CU1|U2(u1 | u2)))

= hV |U3;U1,U2(hV |U2;U1(hV |U1(v | u1) | hU2|U1(u2 | u1)) |

hU3|U1;U2(hU3|U2(u3 | u2) | hU1|U2(u1 | u2))),

where the h-functions are associated with the bivariate pair-copulas of the D-vine.

Eventually, we arrive at the conditional copula quantile function through inversion:

C−1
V |U1,U2,U3

(α|u1, u2, u3) = (16)

h−1
V |U1

[
h−1
V |U2;U1

{
h−1
V |U3;U1,U2

(
α
∣∣hU3|U1;U2

(
hU3|U2(u3|u2)|hU1|U2(u1|u2)

))∣∣hU2|U1(u2|u1)
}∣∣∣u1

]
.

Extending these calculations to the case of d predictor variables, the determination of the

conditional quantile function F−1
Y

(
C−1
V |U1,...,Ud

(α | u1, . . . , ud)
)

is easily feasible.

3.5 Outline of the DVQR Algorithm

We have now derived all necessary ingredients to outline the DVQR algorithm that is
implemented in the vinereg() method. The method is built up of two main estimation
processes:

1. Estimate the marginal distribution functions in order to transform input data from
original scale to u-scale data (pseudo-copula data)
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2. Fit a D-vine copula to the pseudo-copula data

In particular, the second task implies the estimation of bivariate pair-copulas. Having
fitted a D-vine copula to the data, we have seen above how we can arrive at an estimate
of the conditional quantile function through the h-functions of associated pair-copulas
from the pair-copula construction of the vine.

3.5.1 Estimating the Marginal Distributions

In the first step, all marginal distribution functions of the input variables are estimated.
Hence, we can transform the input data to pseudo-copula data (cf. Definition 3.5). The
vinereg-method estimates the marginals nonparametrically (Kraus and Czado, 2017) via
the following continuous kernel smoothing estimator

F̂ (x) =
1

n

n∑
i=1

K

(
x− x(i)

h

)
, x ∈ R,

where (x(i))i=1,...,n are the observed values of variable Xj and

K(x) :=

∫ x

−∞
ϕ(t)dt

is the Gaussian kernel. The bandwidth parameter h > 0 is chosen such that the asymptotic
mean integrated squared error is minimized (see Duong (2016) for details). The pseudo-
copula data

v̂ =
(
F̂Y (y(i))

)
i=1,...,n

=
(
v̂(i)
)
i=1,...,n

Û =
(
F̂j(x

(i)
j )
)
j=1,...,d,i=1,...,n

=
(
û

(i)
j

)
j=1,...,d,i=1,...,n

is then an approximately i.i.d. sample from the PIT random vector (V, U1, . . . , Ud)
T . In

the second step, a D-vine copula is fitted to the pseudo-copula data.

3.5.2 Fitting a D-vine Copula to the Data

The ordering of the variables in the D-vine significantly controls the explanatory power
of the resulting model. As the number of predictor variables increases, comparing all
d! possible orderings is soon infeasible. Therefore, Kraus and Czado (2017) present a
greedy approach to identify the order of the D-vine. In the order, V is defined to be
the first node, whereas the sequence of the predictor variables U1, . . . , Ud is allowed to
be arbitrary and is assigned on the fly by the algorithm. It sequentially selects the most
influential predictor from all predictors yet not appearing in the D-vine to be next in
the ordering. The most influential predictor is considered to be the predictor which
would most increase the conditional log-likelihood of the resulting D-vine. If none of
the remaining predictors is able to increase the conditional log-likelihood of the model,
the algorithm stops and returns the current D-vine. This automatic forward covariate
selection results in parsimonious models (Kraus and Czado, 2017). The conditional log-
likelihood of an estimated D-vine copula is given as follows:
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Definition 3.13 (Conditional log-likelihood of an estimated D-vine copula (Kraus and
Czado, 2017)). Let us assume, a D-vine with order V − Ul1 − · · · − Uld has been estim-
ated, where l = (l1, . . . , ld)

T is the corresponding permutation of {1, . . . , d}. Then, the
conditional log-likelihood (cll) of the D-vine is defined as

cll
(
l; v̂, Û

)
:=

n∑
i=1

ln cV |U
(
v̂(i) | û(i); l

)
.

The conditional copula density cV |U can be expressed as the product over all pair-copulas
of the D-vine that contain V :

cV |U
(
v̂(i) | û(i); l

)
= cV Ul1

(
v̂(i), û

(i)
l1

)
×

d∏
j=2

cV Ulj ;Ul1 ,...,Ulj−1

(
ĈV |Ul1 ,...,Ulj−1

(v̂(i)|û(i)
l1
, . . . , û

(i)
lj−1

), ĈUlj |Ul1 ,...,Ulj−1
(û

(i)
lj
|û(i)
l1
, . . . , û

(i)
lj−1

)
.

A proof of this can be found in Tepegjozova (2019). However, the conditional log-
likelihood does not incorporate the model complexity. Therefore, Kraus and Czado (2017)
suggest the AIC- and BIC-corrected log-likelihood to use as a selection criterion to achieve
even more parsimonious models. Since the resulting D-vine may also contain nonparamet-
ric pair copulas, we do not have a number of parameters readily available. As a substitute,
the degrees of freedom for a density estimation fit, as proposed in Loader (1999), is used
as an effective number of parameters. Let |θ̂| be the number of parameters (including the
effective number of parameters) used for the construction of the D-vine, the AIC- and
BIC-corrected log-likelihood is defined as

cllAIC
(
l; v̂, Û

)
:= −2cll

(
l; v̂, Û

)
+ 2|θ̂| and

cllBIC
(
l; v̂, Û

)
:= −2cll

(
l; v̂, Û

)
+ log(n)|θ̂|.

(17)

For a demonstration of the DVQR algorithm, we point out the k-th step in the model fit.
Let us assume, the method has so far selected k − 1 predictors and the current D-vine
has the ordering V −Ul1 − · · · −Ulk−1

, where (l1, . . . , lk−1) ⊂ (1, . . . , d). For all predictors
Uj, j ∈ (1, . . . , d)\(l1, . . . , lk−1) not yet in the D-vine, the necessary pair-copulas to extend
the current D-vine to V −Ul1−· · ·−Ulk−1

−Uj are estimated. Figure 3 illustrates this pro-
cedure. In each step of the DVQR method, AIC-optimal pair-copulas are chosen. More
precisely, in case of parametric copulas, we minimize the AIC over all possible copula
families and their corresponding parameter spaces to estimate the copula. Additionally,
the AIC of an estimated nonparametric pair-copula is compared, where again, the effect-
ive number of parameters is applied in the definition of the AIC. The DVQR method
also integrates an independence test at level 0.05 to check whether the two variables are
independent of each other. In this case, the independence copula C(ui, uj) = ui · uj with
constant copula density c(ui, uj) = 1 is assigned. It can be considered as a special case of
the Gaussian copula where the correlation matrix equals the identity matrix I2.

Having estimated the necessary pair-copulas to extend the current D-vine for each of the
Uj, we can now compute the conditional log-likelihood of the model containing Uj. If none
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V Ul1 · · · Ulk−1 Uj

V Ul1 · · · Ulk−2
Ulk−1

Ulk−1
Uj

V Ulk−1
| Ul1 , . . . , Ulk−2

Ul1Uj | Ul2 , . . . , Ulk−1

V Uj | Ul1 , . . . , Ulk−1

...
...

Figure 3: Illustration of the k-th step in the DVQR algorithm, where the current D-vine
is extended with another predictor variable

of the resulting models achieves an increase of the conditional likelihood, the algorithm
stops. Otherwise it updates the model by adding the variable corresponding to the highest
conditional log-likelihood (or the lowest AIC- or BIC-corrected version thereof).

Through the construction of the D-vine quantile regression the typical shortfalls that
linear quantile regression involves are obviated. For example, the conditional copula
quantile function in Equation (16) is monotonically increasing in α. Therefore, a cross-
ing of quantiles functions for different α levels cannot occur (Kraus and Czado, 2017).
Furthermore, DVQR poses less restrictive model assumptions since it allows for a more
flexible modelling of the dependence structure. It does not assume linearity of the con-
ditional quantiles as in linear quantile regression. If we, for instance, assume normal
margins, the Gaussian copula is the only copula that would result in linear conditional
quantiles.

3.6 Performance Measures

In order to assess the quality of predicted quantiles and prediction intervals we employ
two different performance measures. The interval score by Gneiting and Raftery (2007)
is a suitable scoring rule for (1 − α) × 100% prediction intervals in terms of narrowness
and accuracy of the intervals. It rewards narrow intervals and, at the same time adds a
penalty, the size of which depends on α, if an observation does not fall into the interval.
The smaller the interval score the better.

Definition 3.14 (Interval score (Gneiting and Raftery, 2007)). Let ûMi and ˆ̀M
i be the

upper and lower predictive quantiles at level α/2 by model M for the i-th observation.
For the central (1−α)×100% prediction interval, the interval score of modelM is defined
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as

IS(M) =
1

ntest

ntest∑
i=1

[
(ûMi − ˆ̀M

i ) +
2

α
(ˆ̀M
i − yi)1yi<ˆ̀M

i
+

2

α
(yi − ûMi )1yi>ûMi

]
.

The interval score considers a central prediction interval and therefore, incorporates two
predicted quantiles. In case of linear quantile regression, quantile crossing poses a problem
that the above definition does not address. Accordingly, we customize the definition of
the interval score by adding a penalty if quantile crossing occurs:

IS(M) =
1

ntest

ntest∑
i=1

[
(ûMi − ˆ̀M

i )1ûMi >ˆ̀M
i

+
2

α
(ˆ̀M
i − ûMi )1ˆ̀M

i >ûMi

+
2

α
(ˆ̀M
i − yi)1yi<ˆ̀M

i
+

2

α
(yi − ûMi )1yi>ûMi

]
.

(18)

The second performance measure is based on the check loss of a predicted quantile. The
check loss function has also been applied as a loss function in the derivation of the linear
quantile regression method (see Section 2.2). It asymmetrically weighs observations that
lie above and below the predicted quantile. Observations that lie on the ”smaller” side of
the quantile receive larger weights and vice versa.

Definition 3.15 (Check loss). Let q̂Mα,i be the predictive quantile at level α by modelM
for the i-th observation. The check loss of a model M and a α-quantile is then given as

CLα(M) :=
1

ntest

ntest∑
i=1

ρα(yi − q̂Mα,i)

=
1

ntest

ntest∑
i=1

(yi − q̂Mα,i)(α− 1yi−q̂Mα,i<0).

Again, smaller values are better.

Having revisited the theory behind the D-vine copula-based and linear quantile regression
method, we will now continue with the application of these two methods to the Seoul
weather data. At first, we will describe the data. Then, we will explicate the models and
the training process. Finally, the results will be compared and evaluated.
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4 Application

We now attend to the Seoul weather data and the estimation of prediction intervals for
next-day air temperatures. The data in our analysis originates from the UCI machine
learning repository (https://archive.ics.uci.edu/ml/index.php) and was first studied by
Cho et al. (2020). They shared their data for free download. It contains weather data of
25 different weather stations in the urban area of Seoul. For a location of the weather
stations see Figure 4. From 2013 to 2017, data has been collected between June 30 and
August 30, which makes a total of 62 days of recorded weather data per year. In total
the dataset consists of 5× 25× 62 = 7, 750 observations, remaining 7, 588 when excluding
missing values. Originally, Cho et al. (2020) aim at enhancing next-day maximum and
minimum air temperature forecasts of a local weather model over Seoul, the so-called
LDAPS model*. The LDAPS model outputs next-day predictions of several weather
quantities, such as maximum and minimum air temperature, average wind speed and
cloud cover. Cho et al. (2020) use these predictions as input variables in their post-

Figure 4: Location of weather stations

processing models. Additionally, they include the present-day maximum and minimum
air temperature as predictors as well as a few geographical and topological variables which
describe the location of the different weather stations. In the following section, we will
give a short insight into numerical weather prediction, its challenges and the common
practice to post-process NWP models.

4.1 Numerical Weather Prediction Models

In times of climate change and considerable accumulation of extreme weather events
all across the globe, the need for accurate weather predictions is self-evident. Extreme

*The LDAPS model (Local Data Assimilation and Prediction System) is a local NWP (Numerical
Weather Prediction) model over South Korea.
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weather events can cause economic, social and environmental problems such as health
issues, bush fires or flooding. In particular, precise air temperature forecasts are essential
in order to take appropriate precautions against the health-related risks of heat waves
and cold spells. In the early years of the 20th century, well before the first computer
existed, Lewis F. Richardson was the first to formulate the problem of weather prediction
numerically (Lynch, 2006). He provided a fundamental basis for all further research in
numerical weather prediction models.
Numerical weather prediction attempts to predict measurable weather quantities through
solving complex sets of partial differential equations that describe the dynamics of the
atmosphere and the oceans (Bacmeister, 2012). It was not until the emergence of power-
ful computers that NWP models could produce reasonable predictions. However, these
models are highly sensitive to the initial conditions of the atmosphere which are modelled
based on observed quantities. The uncertainty of physical parametrizations in the NWP
model further limits its prediction power (Cho et al., 2020; Bacmeister, 2012). Therefore,
various post-processing methods are utilized to increase forecasting accuracy.

Cho et al. (2020) have developed and evaluated four different machine-learning-based
methods to post-process the output of the LDAPS model. The LDAPS model was de-
signed by the Korea Meteorological Administration (KMA) and is based on the United
Model of the UK Met Office (Cho et al., 2020). Initially, it was constructed to overcome
the limitations of two other NWP models that the KMA has been operating, the Global
and Regional Data Assimilation and Prediction models (GDAPS and RDAPS). Due to
their coarse grid resolution these models fail to capture extreme weather events. Still, the
LDAPS model output typically suffers a systemic bias. With their post-processing meth-
ods, Cho et al. (2020) could successfully reduce the bias of the LDAPS model’s next-day
maximum and minimum air temperature forecast. In the following, we will draw our at-
tention to estimate prediction intervals rather than exact temperature values. We utilize
the data to comparatively investigate prediction ability of D-vine copula-based and linear
quantile regression on a sizeable dataset.

4.2 Inspection and Pre-Processing of the Seoul Weather Data

We will now take a closer look at the data. It consists of summer data of five years, ranging
from 2013 to 2017, with 21 predictor variables and next-day maximum and minimum air
temperature as response variables. Cho et al. (2020) divide the predictors into three
groups. There are

� 14 predictor variables originating from the LDAPS model output,

� 5 variables that describe topological and geographical properties of the weather
stations and

� 2 in-situ variables, i.e. maximum and minimum air temperature between 0-21 h of
the present day.

More precisely, the first set of predictor variables consist of the LDAPS model forecasts
of several next-day weather measures such as maximum and minimum air temperature,
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maximum and minimum relative humidity, average wind speed and latent heat flux. In
addition, average cloud cover and average precipitation are forecasted. For that matter,
each day is split into four time sections — (0-5 h), (6-11 h), (12-17 h), (18-23 h) — where
average cloud cover and average precipitation is predicted for each of these 6-hour splits
separately. All of these variables take on a wide range of values and are therefore con-
sidered continuous.

As a second set of predictor variables, there are station-specific factors. Latitude and
longitude describe the exact geographical coordinates of the weather station. The variables
Slope and DEM indicate the slope and elevation of the respective weather station. Lastly,
the daily incoming solar radiation is measured and stored for each weather station. Since
the first four variables only depend on the respective weather station and not on time, each
of these variables take on a maximum of 25 different values. This does not apply to solar
radiation as it depends on the specific day. However, we also consider all of these variables
to be continuous. This will potentially affect performance of the D-vine regression which
we will address later. As we have mentioned in the beginning of Chapter 3, Schallhorn
et al. (2017) have adapted the D-vine quantile regression approach of Kraus and Czado
(2017) to also allow for discrete or factor variables as input. This is also implemented in
the vinereg() method. However, it would not be reasonable to use the station-specific
variables as factors since then, the scale of the variables would be lost.
Furthermore, present-day maximum and minimum air temperature also serve as predictor
variables. These quantities are only measured between 0-21 h of the present day in order
to give time to the necessary computation of next-day predictions.

In the following, we will provide a more detailed description of the predictor variables and
introduce new predictor variables which we create by aggregating or modifying some of
the existing ones. At first, let us inspect the response variables. Naturally, we have next-
day Tmin ≤ next-day Tmax. This would require restrictions of the resulting copula. This
particularly poses a problem if the two response variables are modelled simultaneously (cf.
notes on further research in Section 5). As a remedy, we introduce a new response variable
by taking the difference between the next-day maximum and minimum air temperature
instead of choosing next-day maximum air temperature as a response:

next-day Tdiff := next-day Tmax − next-day Tmin.

Now, next-day Tmin and next-day Tdiff do not have any obvious relationship. Estimat-
ing prediction intervals for next-day minimum and difference air temperature is now the
objective of our application. To get a first glimpse of the temperature profile, we con-
sider the temperature values over time. We choose weather station 25 for an exemplary
temperature profile, which is located centrally in the urban area of Seoul.
From the plot we see that the developing of temperature values does not reveal any exact
patterns that occur in each year’s temperature profile alike. Though, for the next-day
minimum temperature the rough course of values shows slight analogies for 2013 and 2016
as well as for the remaining years. Nevertheless, we will not specifically take account of
seasonal effects in the regression analysis, but indirectly through a training set selection
(cf. Section 4.4.1).
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Figure 5: Yearly temperature profile of weather station 25

For the in-situ variables present-day maximum and minimum air temperature and the
LDAPS model forecasts maximum and minimum air temperature and maximum and
minimum relative humidity, we likewise generate difference values:

Present-day Tdiff := Present-day Tmax − Present-day Tmin

LDAPS Tdiff := LDAPS Tmax − LDAPS Tmin

LDAPS RHdiff := LDAPS RHmax − LDAPS RHmin

Regarding units of these variables, we have degree Celsius (◦C) for all variables which
represent temperature values. Relative humidity values range from 0 to 100 representing
percentage. On the Earth’s surface, insolation leads to the evaporation of water. Since it
does not result in a temperature rise, the expended energy is stored in the gaseous water.
Once the ascending water condensates in the atmosphere, the energy is released in terms
of heat. The average latent heat flux describes the average flux of this latent energy and
is measured in Watt per square metre (W/m2). Similarly, solar radiation describes the
energy per unit area that reaches the Earth’s surface in form of electromagnetic radiation
from the sun. Since it is measured over the course of the day, it is expressed in watt-hour
per square metre (wh/m2). The average wind speed is measured in metre per second
(m/s). All of these variables enter our regression analysis as they are. Next, we aggregate
the LDAPS 6-hour split variables regarding cloud cover and precipitation in order to
reduce model complexity. The average cloud cover is given as a ratio where 0 implies a
clear sky with no clouds at all and 1 a completely overcast sky. At first, we transform the
cloud cover variables using the logit transform:

logit(c) := ln

(
c

1− c

)
, for c ∈ (0, 1).

To avoid any issues at the boundaries, the values of the cloud cover variables are mapped
to [0.005, 0.995] prior to transforming. Through the logit transformation the cloud cover
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variables are now supported on full R, which is advantageous for the kernel density estim-
ation of the marginals. Secondly, we merge the four 6-hour split variables into a day-time
(6-17 h) and a night-time (18-5 h) cloud cover variable:

CCnight :=
(

logit
(
CC0-5 h

)
− logit

(
CC18-23 h

))/
2,

CCday :=
(

logit
(
CC6-11 h

)
− logit

(
CC12-17 h

))/
2.

The night-time cloud cover and next-day difference temperature appear to have a fairly
strong negative correlation. This seems reasonable since temperatures usually drop com-
paratively lower in starlit nights than during overcast nights. The precipitation variables
are measured in litre per square metre (l/m2). The measure of precipitation involves the
issue of quite a few zero entries in the data. This poses a problem for the estimation of the
marginals and we would not obtain uniformly distributed marginals for the pseudo-copula
data. On 36% of the recorded days, there was no precipitation at all. Additionally, on
many days, rainfall was only observed for one or two 6-hour splits. Instead of using the
original precipitation variables we create a variable PPTavg that takes the average over
the four 6-hour splits and PPTmax that takes the maximum 6-hour split. To account for
the duration of the rainfall, we also create two new variables that consider the number
of rainy 6-hour splits. As a binary variable, seq.rain≥3 indicates if there were at least 3
rainy 6-hour splits in a row:

seq.rain≥3 :=


1 ,PPT0-5 h,PPT6-11 h,PPT12-17 h > 0

1 ,PPT6-11 h,PPT12-17 h,PPT18-23 h > 0

1 ,PPT0-5 h,PPT6-11 h,PPT12-17 h,PPT18-23 h > 0

0 , else

As we have mentioned before, the vinereg() method can also handle binary predictor
variables. However, in the following, we will see that seq.rain≥3 does not play a role in the
DVQR models. Therefore, we did not explicitly address the case of binary input variables
in the theoretical part of this thesis. Further explanation of how discrete variables are
handled in DVQR can be found in Schallhorn et al. (2017). As a last variable regarding
precipitation, we introduce rain× sections which multiplies the daily sum of precipitation
by the number of rainy 6-hour splits:

rain× sections :=
[ ∑
i∈{0-5 h,6-11 h,
12-17 h,18-23 h}

PPTi

]
×
[ ∑
i∈{0-5 h,6-11 h,
12-17 h,18-23 h}

1PPTi>0

]
.

Thus, this variable gives more weight to continuous rain which might have a greater ef-
fect on temperature than a short rain shower. On the left panel of Figure 6, the daily
precipitation at weather station 25 is depicted. The right panel shows the distribution of
the number of rainy 6-hour splits, partitioned by years.

For a first visual exploration of the dependence structure among the response variables
and the predictors, we have produced empirical normalized pair contour plots of the Seoul
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Figure 6: Daily precipitation and number of rainy 6-hour splits at station 25

weather data (see Figure 7) by applying the generic pairs() function to a copuladata

object (see Section 3.1.3 for a detailed introduction of normalized bivariate contour plots).
Such an object contains our input data transformed into pseudo-copula data. Therefore,
we first have to estimate marginal densities using the continuous kernel smoothing estim-
ator from Section 3.5.1. The pairs() function then generates a matrix of plots where
on the upper triangle we have pairs plots of the pseudo-copula data. On the diagonal,
marginal histograms of the pseudo-copula data are displayed. On the lower triangle, we
have empirical contour plots of the normalized pseudo-copula data.
For better presentability, we have split the pair contour plots into two parts. Further,
we have excluded the four station-dependent location variables that describe elevation,
slope, longitude and latitude of the stations. Since they only take 25 different values
each, the normalized pair contour plots would not produce any interpretable results. This
also applies to the precipitation variables due to their large number of zero values. We
can already observe some interesting contour shapes and deviations from the Gaussian
copula including asymmetries and tail dependencies. For example, the contours of present-
day Tmin and present-day Tdiff indicate a Clayton copula. The dependence structure
between next-day Tdiff and CCnight or CCday could be represented by a Frank copula,
while for next-day Tmin and CCnight or CCday it rather looks like a nonparametric copula
shape. Especially the pair contours of solar radiation with other variables also reveal
nonparametric copula shapes. Some pairs of variables seem to exhibit tail dependence, for
instance next-day Tmin and present-day Tmin. As expected, we observe strong dependence
between next-day Tmin and LDAPS Tmin showing approximately a Gaussian copula shape.
Similarly, next-day Tdiff and LDAPS Tdiff have a strong relationship that also exhibits
approximately Gaussian copula shape.
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(a) (b)

Figure 7: Empirical normalized pair contour plots of Seoul weather data including all
summer periods from 2013 to 2017

4.3 Model Building and Selection

Performing DVQR on large data with numerous predictor variables is fairly time-consuming
due to the large number of pair copulas that have to be estimated. In the context of
temperature predictions, we will separately train a model for each day that we want to
predict. Therefore, we aim at finding parsimonious models and in particular, a threshold
for the number of predictors such that the model’s explanatory power does not signific-
antly change beyond that number. Prior to training models for next-day predictions, we
perform a model selection where we try to identify the most influential predictor variables.
Our model selection will be based on the first four years of the given data, thus, excluding
2017 which will be used for validating our predictions (see Section 4.4 for estimation of
prediction intervals). For the two response variables, we fit distinct models. Since we
have introduced new predictor variables which represent differences of other variables,
these variables are no longer linearly independent. In each case, we will choose two out
of three linearly dependent predictors according to their highest pairwise empirical Kend-
all’s τ values with the response. These values are given in Figure 8. Furthermore, we
reduce the number of cloud cover variables by replacing the four 6-hour split variables
by the aggregated day-time and night-time variables. We also replace the four precip-
itation 6-hour split variables with our newly generated variables. Lastly, we include for
each response the most influential 6-hour split precipitation variable according to their
empirical Kendall’s τ values (cf. Figure 8). For each response variable, we end up with a
set of 20 eligible predictor variables that enter the model. Table 4 in Appendix A.1 gives
a list of these variables. For the vinereg() method, we set the selection criterion to ”bic”
(see Equation (17)). Thus, variables are selected based on the BIC-corrected conditional
log-likelihood resulting in more parsimonious models compared to the ”aic” and ”cll”
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selection criterion. Since we like to allow for nonparametric copulas in the D-vine density,
we set the family set argument to ”all”. As described in Section 3.5, the algorithm will
automatically discard predictors according to the BIC selection criterion. All remaining
predictors appear in the order of the fitted D-vine and we readily obtain an ordering of the
predictors according to their explanatory power. One at a time, we will then remove the

Figure 8: Empirical pairwise Kendall’s τ values

last predictor in the order of the D-vine and again fit a new model. Thereby, we obtain
a set of nested models. At the same time, we fit a set of nested LQR models. Analogue
to the automated forward selection of variables in the D-vine regression, we establish
a BIC-based forward selection for LQR. Starting with zero predictors in the model, in
each step, we add the predictor variable that would most lower the BIC of the resulting
model. If none of the remaining predictors results in a lower BIC, we stop. We use the
same pool of eligible predictors as for DVQR. A detailed list of these variables and their
corresponding ordering in the DVQR and LQR can respectively be found in Table 4 from
Appendix A.1.
In the upper panel of Figure 9, the BIC for the sets of nested models is displayed. The
horizontal axis shows the number of included predictors. For next-day Tmin, the LQR
already stops at a number of 11 predictors. The BIC cannot be reduced by any of the
remaining predictors. The DVQR, in contrast, takes almost all predictors into the model.
For next-day Tdiff, both DVQR and LQR already eliminate a few predictors from the
model. LQR stops at 13 predictors, DVQR at 14. At first, we will use a threshold of 10
for the model size in our prediction models. The model fit does not significantly increase
beyond that number and we can rigorously reduce computation time. At the same time,
reducing the number of predictors lowers the risk of overfitting. Later in our application,
we will also examine a more restrictive threshold of five for the number of predictor vari-
ables in the model. In the lower panel of Figure 9, the in-sample interval score for the
central 99%, 95% and 90% prediction interval is displayed. For the 95% and 90% predic-
tion intervals, we observe that the DVQR achieves slightly lower interval scores compared
to LQR.

Finally, we will look at the first 10 predictors in the LQR and DVQR order, respectively.
We will use these predictors in our prediction models in the next section. Table 2 lists these
variables in the corresponding orders of the fitted D-vine and linear quantile regression
model for next-day Tmin and next-day Tdiff, respectively. As expected, we observe that in
all cases the LDAPS model’s prediction of the next-day temperature value seem to be the
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Figure 9: BIC and in-sample interval score for three different prediction intervals with
respect to the number of predictors included in the model

most influential predictor. Interestingly, in the DVQR, the dependence between next-day
Tmin and LDAPS Tmin is modelled by a Gaussian copula, while the dependence between
next-day Tdiff and LDAPS Tdiff is estimated through a nonparametric copula. Since the
LQR also assumes the dependence structure between the response and the predictors to
be Gaussian, we do not expect DVQR to outperform LQR in this one predictor case.
For a DVQR model with 10 predictors, we have

∑10
i=1 i = 55 pair copulas in the D-vine

density. For next-day Tmin, roughly one third of these pair copulas were estimated to be
nonparametric and Archimedean copulas, respectively. For next-day Tdiff, also one third
of the pair copulas were estimated nonparametrically, while almost every second pair
copula was modelled as an Archimedean copula. This indicates that, in general, using
only Gaussian or elliptical copulas would not provide reasonable fits.

While for next-day Tmin only the first two predictors coincide for the DVQR and LQR
model, the orders of predictors equal up to the seventh position for next-day Tdiff. We
also ascertain the large influence of CCnight on next-day Tdiff as it appears at the second
position for both DVQR and LQR.
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order DVQR LQR

1 LDAPS Tmin LDAPS Tmin

2 Present-day Tmin Present-day Tmin

3 Present-day Tmax Elevation

4 Longitude Slope

5 LDAPS WS rain × sections

6 Slope LDAPS RHmax

7 Elevation seq.rain≥3

8 rain × sections LDAPS RHdiff

9 LDAPS RHmax LDAPS Tmax

10 CCday LDAPS WS

(a) Response: Next-day Tmin

order DVQR LQR

1 LDAPS Tdiff LDAPS Tdiff

2 CCnight CCnight

3 Present-day Tdiff Present-day Tdiff

4 LDAPS WS LDAPS WS

5 LDAPS LH LDAPS LH

6 Elevation Elevation

7 Solar radiation CCday

8 CCday rain × sections

9 Longitude Longitude

10 Slope PPTmax

(b) Response: Next-day Tdiff

Table 2: Selected predictors for a threshold of 10 predictors

4.4 Prediction

Based on data from 2013-2016, we have now identified for each response and regression
model seemingly the 10 most influential predictor variables (cf. Table 2). With this, we
will now investigate the predictive ability of the D-vine and linear quantile regression on
2017’s data. Therefore, for each regression method and response, we predict conditional
quantiles for next-day temperatures. For each day that we predict, we train a separate
model.

4.4.1 Training Approaches

For next-day temperature quantile predictions, we examine three different training ap-
proaches. For comparability, we adapt the design of the training approaches such that we
obtain equally sized training sets. In each case, the training set consists of 31 days, adding
up to 31× 25 = 775 observations. The first two approaches use a rolling training window
which moves according to the day that we want to predict. The third approach randomly
picks past days to include in the training set. Due to the limited availability of data and
the design of the training approaches we can only comparably predict 28 successive days
in 2017, ranging from July 31 to August 27.

1. Simple rolling window: This approach uses the past 31 successive days prior to the
predicted day. Hence, the training set hardly changes from one day to another exchanging
only one day at a time. Since we have data available only between June 30 and August
30 of each year, we initialize the rolling window training set with data from June 30, 2017
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- July 30, 2017. Therefore, the first day that can be forecast like this is July 31.

2. Refined rolling window: In the context of temperature forecasting, this approach
has been proposed by Möller et al. (2018). Instead of using a continuous rolling window
as before, we now consider also several narrower windows around the predicted day from
previous years. In particular, let us assume, we wish to forecast temperatures on day t
in 2017. Then, for a natural number n, the refined rolling window will be composed of
{t − n, . . . , t − 2, t − 1} in 2017, and {t − n, . . . , t − 2, t − 1, t, t + 1, t + 2, . . . , t + n} in
each of the previous four years. The number n controls the size of the training set. We
use a refined rolling window with n = 3, such that the training set adds up to 31 days,
the same size as for the simple rolling window. Due to this training approach, prediction
is only feasible up to August 27.

3. Random drawing: In accordance to the training set size of the previous two ap-
proaches, we randomly draw 31 days from all past days prior to the predicted day to
obtain a training set. That may also include days from previous years.

Figure 10: Visualization of the three different training approaches

Thus, for each training approach we train 28 separate models. The three different training
approaches are visualized in Figure 10. Not only do we apply different training approaches
but also consider two separate adjustments in the model fit.

4.4.2 Model Types

For each training approach, we now fit both D-vine and linear quantile regression models.
In doing so, we allow for two different kind of model fits. As a first variant, we take each
10 predictors (from Table 2) into the model and do not allow for an automated variable
selection. In particular, we preset the order of the D-vine as the same order that has been
specified through the model selection (cf. Table 2). As a second variant, we allow for an
automated BIC-based variable selection from the pre-chosen 10 predictors as described in
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Section 3.5. In this case, it is also possible that the resulting model contains less than 10
predictors. In the following, we list the four different model notations:

� full DVQR: D-vine regression model that allows for both parametric and nonpara-
metric copula estimation. The order of the D-vine is preset. It is the same order as
the one that has been specified through the model selection process for the DVQR
models.

� dynamic DVQR: Same as full DVQR, but now we do not preset the order of the
D-vine. It is determined by the automated BIC-based forward selection for each
training instance anew.

� full LQR: Linear quantile regression model including 10 preset predictor variables
that have been specified through the model selection process for the LQR models.

� dynamic LQR: Analogue to dynamic DVQR. The linear quantile regression model
allows for an automated BIC-based variable selection from the 10 pre-chosen pre-
dictors.

For each training approach and model type, we predict conditional quantiles at the fol-
lowing nine α-levels: {0.005, 0.025, 0.05, 0.25, 0.5, 0.75, 0.95, 0.975, 0.995}. With this, we
can particularly estimate the 99%, 95% and 90% prediction interval. In total, we have 28
predicted days while in all instances the training set has a constant size of 31 days.

4.5 Results

4.5.1 Different Training Approaches with Fixed Training Horizon

At first, we juxtapose the interval scores of each model type and training approach for
the 99%, 95% and 90% prediction interval in Figure 11. In addition to the interval score,
we explicitly show the percentage of observations that fall into the predicted interval (cf.
Figure 12). Since missed observations are accounted for in the definition of the interval
score through a penalization, the results correlate. However, observations that lie far
from the predicted interval as well as very broad intervals can also cause a relatively high
interval score. In this case, the percentage of hits can still be high. Therefore, to have
a more complete picture of the quality of the prediction intervals, we additionally look
at the average width of the predicted intervals. In the computation of the width, we
also have to take care of quantile crossing. A straightforward subtraction of the lower
quantile from the upper quantile would yield a negative width for theses instances. Hence,
we simply assign the maximal width of all predicted intervals to these instances which,
in this way, imposes a form of penalty for quantile crossing. The average width of the
intervals is shown in Figure 13. However, in our application, quantile crossing does not
seem to be a great issue since it rarely occurs. For the simple rolling window, quantile
crossing appeared in approx. 1.2% of all prediction instances and in approx. 0.4% for the
random drawing. It did not at all occur for the refined rolling window.

First of all, we note that predictions for next-day Tmin are generally more accurate than
for next-day Tdiff, thus resulting in lower interval score values. We will now separately
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Figure 11: 99%, 95% and 90% prediction interval score for the simple rolling window,
refined rolling window and random drawing training approach

look at each training approach and point out a few aspects of the results. For the simple
rolling window approach, the dynamic LQR seems to work best since it achieves lowest
interval scores for almost all intervals. Interestingly, we observe differences for the two
response variables. While for next-day Tmin, the average width of the prediction intervals
is the smallest for the dynamic LQR, this is not the case for next-day Tdiff. Instead, the
percentages of hits are highest leading to overall low interval scores. On the contrary, the
full LQR yields highest interval score values especially for the 99% prediction interval.
This is mainly caused by relatively many observations that do not lie in the predicted
interval. Unlike the LQR, the DVQR achieves lower interval scores for the full variant
where the order of variables is pre-specified. This is also reflected in the percentages of
hits. Though, this comes along with slightly broader prediction intervals. In summary,
the two LQR variants yield narrowest intervals for next-day Tmin, in return, the intervals
obtained from the DVQR methods show a higher percentage of hits. For next-day Tdiff, we
observe the inverse. The dynamic DVQR yields narrowest intervals, whereas the dynamic
LQR achieves highest relative numbers of hits.

In case of the refined rolling window approach, we observe overall lowest interval score
values of all three training approaches. Similar to the simple rolling window, the dynamic
LQR performs best in terms of the interval score. Again, we have different results for
the two response variables. For next-day Tmin, both variants of the DVQR show very
similar results across the three prediction intervals regarding interval score, average width
and percentages of hits. For next-day Tdiff, the interval scores also resemble, though the
predicted intervals obtained by the dynamic DVQR are narrower, while the full DVQR
results in higher percentages of hits. Generally, the two LQR methods yield narrower
intervals than the DVQR methods for next-day Tmin, whereas it changes from interval to
interval for next-day Tdiff.
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Figure 12: Percentage of observations that fall into the 99%, 95% and 90% prediction in-
terval, for the simple rolling window, refined rolling window and random drawing training
approach

For the random drawing approach, we record that the full DVQR without adjusting the
order of the D-vine achieves lowest interval scores for all three prediction intervals and
both responses. This arises from widest intervals and, for this reason, high percentages
of hits. The dynamic DVQR, on the contrary, yields worst interval scores for almost all
intervals. Altogether, both DVQR methods outperform the LQR regarding percentages
of hits, while it is vice versa with respect to the average width of the intervals.

All in all, we can state some general findings of the plots. For next-day Tmin, the two
DVQR variants achieve highest percentages of hits for all three training approaches. This
comes at the cost of slightly broader prediction intervals. Regarding differences between
the full and dynamic variant of each method, we observe that the full DVQR achieves
lower interval score values than the dynamic DVQR. In particular, the full DVQR yields
higher percentages of hits whereas the dynamic DVQR leads to narrower prediction in-
tervals. For the LQR, it is nearly the other way round. The dynamic LQR overall bears
lower interval scores than the full LQR. More precisely, the dynamic LQR gives higher
percentages of hits, while in most cases showing a similar average width of the predicted
intervals compared to the full LQR. Lastly, we also recorded from which copula classes
the pair copulas in the D-vine were estimated. We witness different shares of copula
classes for the two responses. While for next-day Tmin, both elliptical and nonparametric
copulas each have a share of approximately 15% of all estimated pair copulas, we observe
less elliptical (7%) and more nonparametric (25%) pair copulas for next-day Tdiff. For
both responses, between 40% and 50% of the copulas were chosen from the Archimedean
class. The remaining pair copulas were estimated as independence copulas. There are no
apparent differences among the three different training approaches.
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Figure 13: Average width of the 99%, 95% and 90% prediction interval, for the simple
rolling window, refined rolling window and random drawing training approach

As a key finding of the shown figures, we conclude that overall, the refined rolling window
approach yields best predictive ability. Therefore, we will now concentrate our further
examination on this training approach only. First, we take a closer look at the predic-
tions for separate weather stations. This offers some hints to why in many cases the linear
quantile regression yields lower interval scores compared to the D-vine regression. Exem-
plarily, we consider the 95% prediction interval and the scores for the dynamic DVQR
and LQR. For the 95% prediction interval of the refined rolling window approach, we do
not have any significant differences between the full and dynamic variant anyway. Figure
14 shows for each station, the interval score of the 95% prediction interval. For next-day
Tmin, the LQR yields fairly constant interval scores over all 25 stations while the DVQR
shows a few spikes, particularly for Station 14 and 15. A reasonable explanation for this
behavior might be that the D-vine regression struggles to handle the station-dependent
geographical and topological predictor variables. They only take on 25 different values
each, which violates the assumption of an i.i.d. sample. It hampers the proper estimation
of the marginal distributions. The situation is similar for next-day Tdiff, yet we observe
more variability in general.

From our observations so far, we can identify two possibilities to potentially improve
predictive ability: Improve fit through a larger training set and reduce the number of
predictors to countervail potential overfitting and have less station-specific predictors in
the model. In the following we will investigate these two approaches.
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Figure 14: 95% prediction interval score for each station separately, using the refined
rolling window approach

4.5.2 Refined Rolling Window Approach with Larger Training Horizon

Since we now solely consider the refined rolling window approach, we can investigate an
extension of the training horizon to n = 7, i.e. roughly doubling the size of the training set
in each instance. Now, the week prior to the predicted day in 2017, as well as two weeks
around the predicted day from previous years (2013-2016) enter the training set. This adds
up to 67 days compared to 31 days as before. In addition, we can now also train models
for more days than before. Due to the training set design, only for the first seven and
last seven days of the recorded period in 2017, we cannot train models, still remaining 48
days to predict. First of all, Figure 15 reveals that we obtain overall lower interval scores
through the expansion of the training set. Especially, the percentages of hits increased
compared to a smaller training horizon (see Figure 16). For next-day Tmin, we could
also reduce the average width of the predicted intervals (see Figure 17), while it slightly
increased for next-day Tdiff. Compared to a smaller training horizon, the performance
of the DVQR particularly improved. Due to the larger number of training samples, the
marginal distribution in the DVQR can be estimated more accurately resulting in better
predictions (cf. Figure 23 in Appendix A.2 for a comparison of estimated marginals for
the smaller and larger training horizon). In the following, we will keep the same training
horizon, i.e. using the refined rolling window with n = 7. In addition, we will investigate,
if we can further improve prediction when reducing the number of predictor variables
that enter the model. A lower number of predictor variables is especially desirable for the
DVQR in order to reduce complexity and thus runtime of the model fit.
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Figure 15: 99%, 95% and 90% prediction interval score for the refined rolling window
training approach for n = 7

Figure 16: Percentage of observations that fall into the 99%, 95% and 90% prediction
interval, for the refined rolling window training approach with n = 7

Figure 17: Average width of the 99%, 95% and 90% prediction interval, for the refined
rolling window training approach with n = 7
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4.5.3 Refined Rolling Window Approach with Larger Training Horizon and
Less Predictors

When we take a closer look at the respective ordering of the predictors in the dynamic
DVQR and LQR model, we, first of all, assert that in most cases not all 10 predictors
enter the model.

(a) Predictor selection for next-day Tmin (b) Predictor selection for next-day Tdiff

Figure 18: Predictor selection for refined rolling window
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Hence, the threshold for the number of predictors can justifiably be reduced. Figure
18 displays how often each predictor variable occurs at each position in the D-vine and
LQR order, respectively. If, in each training instance, all 10 predictor variables would
have been chosen by the DVQR or LQR method, then the sum of frequencies over each
position would equal 48, the total number of training instances. This is clearly not the
case. The plot reveals another interesting fact. While the first two predictors keep their
position in most training instances, we observe some variability in the ordering for the
remaining predictors. In many training instances, the order of the predictors deviates
from the order that was identified in the model selection process when we fitted a model
to the whole data from 2013-2016 (cf. Section 4.3). This particularly applies to the pre-
dictor longitude in the DVQR model for next-day Tmin. While it appeared at the fourth
position in the ordering when fitting a model on 2013-2016, it does not appear at any front
position now. Furthermore, for next-day Tdiff, the predictor CCday took almost every posi-
tion in the ordering of the DVQR and LQR, even first position in a few training instances.

order DVQR LQR

1 LDAPS Tmin LDAPS Tmin

2 Present-day Tmin Present-day Tmin

3 Present-day Tmax Elevation

4 Elevation Slope

5 LDAPS RHmax seq.rain≥3

(a) Response: next-day Tmin

order DVQR LQR

1 LDAPS Tdiff LDAPS Tdiff

2 CCnight CCnight

3 Present-day Tdiff Present-day Tdiff

4 LDAPS WS LDAPS WS

5 CCday LDAPS LH

(b) Response: next-day Tdiff

Table 3: Selected predictors in the reduced models

These findings justify a more restrictive threshold on the number of predictors. We will
now train models for each day again, allowing for five predictor variables only. Therefore,
for each response and method, we want to select those five predictors that most often
appeared at one of the first five positions in the ordering. We add up the occurrences of
each predictor variable at one of the first five positions, giving ascending weight to the
positions. For example, let X be one of the predictor variables and posX = (22, 13, 8, 4, 1)T

its number of occurrences at each of the first five positions in the ordering. Then, we
multiply posX by the weight vector w = (5, 4, 3, 2, 1)T resulting in a score

sX := wTposX

for each predictor variable. For each response variable and method, we rank the predictor
variables by this score giving us the orderings in Table 3. We will use the same enlarged
training horizon for the refined rolling window approach as before (n = 7 as in Section
4.5.2). In each instance, we have a training set size of 67 days. In total, 48 days will be
predicted. The resulting interval scores are shown in Figure 19, the percentages of hits in



46 4 APPLICATION

Figure 20 and the average width of the predicted intervals in Figure 21.

Figure 19: 99%, 95% and 90% prediction interval score for the refined rolling window
training approach for n = 7 and five predictor variables

Figure 20: Percentage of observations that fall into the 99%, 95% and 90% prediction
interval, for the refined rolling window training approach with n = 7 and five predictor
variables

Figure 21: Average width of the 99%, 95% and 90% prediction interval, for the refined
rolling window training approach with n = 7 and five predictor variables
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First and foremost, we could rigorously reduce runtime using only five predictor variables
in the model. Compared to the models with 10 predictor variables, we even observe a little
improvement of the interval score values. This is mainly due to a larger number of obser-
vations that fall into the predicted intervals. The average width of the prediction intervals
slightly increase compared to the models with 10 predictor variables. Altogether, we now
have less variability between the different regression methods and variants. Remarkably,
the dynamic DVQR yields lowest interval scores for all intervals, except for the 90% pre-
diction interval for next-day Tmin. The greater improvement of the DVQR compared to
the LQR, could be due to the absence of most topological and geographical predictors.
In the reduced model setting with five predictors, any of these variables appears in the
D-vine for next-day Tdiff and Elevation is the only one that was selected for next-day
Tmin. The differences between the full and dynamic variant of the regression methods are
marginal. In Appendix A.2, the estimated 95% prediction intervals of the dynamic DVQR
and LQR are explicitly shown, separately for each response variable and station. At last,
we look at the copula classes from which the pair copulas in the D-vine were estimated.
Figure 22 shows the shares of each copula class, separately for each training instance and
in total. As we have mentioned before, the share of elliptical copulas is larger for next-day
Tmin than for next-day Tdiff, while for next-day Tdiff more pair copulas were estimated
as nonparametric copulas. In most training instances, the majority of pair copulas were
estimated from the Archimedean copula class thus accounting for asymmetries and tail
dependencies between the variables.

Figure 22: Share of different copula classes in the D-vine of each training instance

4.5.4 Notes on Runtime

Regarding runtime of the two methods, the DVQR took considerably longer to fit a model
than the LQR. For example, the runtime for fitting a LQR model with 10 predictor vari-
ables to a training instance containing approximately 1, 600 observations lied within a few
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seconds. On the contrary, fitting a DVQR model to the same data took several minutes.
Expectedly, the DVQR with a fixed ordering of the predictors and the DVQR allowing for
an automated forward selection of the predictors differed noticeably in runtime. While,
on average, it took 4 min to fit a DVQR model with a fixed ordering of the 10 predictors,
allowing for a dynamic selection of the predictors resulted in a mean runtime of 15 min per
training instance. Reducing the number of predictors included in the model to five, could
clearly decrease runtime of the DVQR. Now, fitting a DVQR model with fixed ordering
took approximately 1 min per training instance, a dynamic DVQR model roughly 2.5
min. In particular, the estimation of the pair copulas for the D-vine density is costly and
the number of pair copulas that need to be estimated obviously depends on the number of
predictors: quadratically in case of a DVQR model with fixed ordering of the predictors
and cubically for a dynamic DVQR model. More precisely, given d predictors, a DVQR
model with fixed ordering needs to estimate

d∑
i=1

i = d(d+ 1)/2

pair copulas. In the first tree of the D-vine we have d pair copulas, in the second tree
d− 1, and so on. When we allow for an automated predictor selection, in each step, the
DVQR method needs to identify from all remaining predictors the one that would most
increase the model’s fit. Therefore, in step k, this requires the estimation of k pair copulas
for all predictors not yet in the model (cf. Figure 3 for an illustration). Hence, the total
number of estimated pair copulas adds up to

d∑
i=1

i(d+ 1− i) = d(d+ 1)(d+ 2)/6.

The relationship between the number of predictors and the runtime conforms to our recor-
ded runtimes. Another factor that decisively controls runtime of the DVQR model fit is
the variety of copula classes from which the DVQR can choose. In our application, we did
not set any restrictions, thus allowing for all possible copula classes that are implemented
in the VineCopula package. Additionally, we included nonparametric copulas. Of course,
the larger the number of possible copula families, the longer the estimation of the pair
copulas takes. Therefore, in practical applications, one could reduce runtime by trying
to isolate a small number of appropriate copula families for the dependence structure of
specific variable pairs. This could also be done in a pre-processing step.
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5 Conclusion

In this master’s thesis, we compared predictive ability of the D-vine copula-based and
linear quantile regression method on sizeable real data. Therefore, we revisited the un-
derlying theory in the first part of the thesis. The data we have chosen for this application
originates from the UCI machine learning repository and contains numerical weather data
that was recorded in Seoul, South Korea. In our application, we aimed at estimating 99%,
95% and 90% prediction intervals for next-day minimum and difference temperature val-
ues using predicted conditional quantiles. We evaluated predictive ability quantified by
the interval scoring and the check loss. Further, we looked at the relative number of
observations that indeed fell into the predicted interval as well as the average width of
the intervals. In a first step, we investigated three different approaches for a training set
selection: a simple rolling window, a refined rolling window and a random training set
composition. To compare these three approaches, we used a training horizon of 31 days
in each case. From these three approaches, we identified the refined rolling window to
work best with respect to predictive ability, though observing slightly better interval score
values for the LQR method. Focussing solely on the refined rolling window approach, we
roughly doubled the size of the training horizon in a second step. Expectedly, predict-
ive ability increased for both methods, yet the DVQR achieved comparatively greater
improvement. We observed that for most training instances, the BIC-based automated
forward-selection of predictor variables eliminated a few predictors from the model. Thus,
we set a restrictive threshold of five predictor variables in a third step. This threshold
could increase the relative number of observations in the predicted intervals while reas-
onably, the average width of the intervals also slightly increased by 7% on average. Still,
the interval scores could be further reduced. Regarding the estimated pair copulas in the
D-vine density, we observed that for both response variables half of the pair copulas were
estimated as archimedean copulas. For next-day Tmin, approximately 25% of all pair cop-
ulas were estimated as elliptical copulas and 20% as nonparametric. For next-day Tdiff, we
witnessed a shift towards nonparametric copulas now amounting to 35% of all estimated
pair copulas while only 10% of the copulas were selected from the elliptical family. This
clearly implies that using Gaussian copulas only, would not provide appropriate model
fits. Yet, the benefits of flexibly modelling the dependence structures in the DVQR come
at the cost of considerably longer runtimes compared to the LQR.

To further improve predictive ability one could consider previous temperature values of
the response variables as predictors, i.e. incorporating autoregressive models to account
for potential time series effects. Marginal time series structures might also be present
for the time-dependent predictor variables. One approach to handle this would be fitting
autoregressive models to each of the margins and using standardized residuals to transform
to pseudo-copula data. The standardized residuals are then approximately i.i.d. data.
Another interesting consideration would be a forecast of several days in advance. While
we focussed on one-step-ahead predictions, one could also study n-steps-ahead predictions.
Though, this would also require n-steps-ahead predictions of the LDAPS model in real-
time applications. Another open research topic, for which this application and data could
serve as a starting point, is the simultaneous modelling of two response variables in the
D-vine quantile regression.
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A Further Results and Plots

A.1 Selected Predictors in the Model Selection Process

pool of predictors
Position

DVQR LQR

LDAPS Tmin 1 1

LDAPS Tmax 12 9

Present-day Tmin 2 2

Present-day Tmax 3 -

LDAPS RHmax 9 6

LDAPS RHdiff 11 8

LDAPS WS 5 10

LDAPS LH 13 -

Solar radiation 18 -

CCday 10 -

CCnight 15 -

Elevation 7 3

Slope 6 4

Latitude 17 -

Longitude 4 11

seq.rain≥3 - 7

rain × sections 8 5

PPTmax 16 -

PPTavg 19 -

PPT18-23 h 14 -

(a) Response: next-day Tmin

pool of predictors
Position

DVQR LQR

LDAPS Tdiff 1 1

LDAPS Tmax - -

Present-day Tmin - 13

Present-day Tdiff 3 3

LDAPS RHmin - -

LDAPS RHdiff 11 -

LDAPS WS 4 4

LDAPS LH 5 5

Solar radiation 7 11

CCday 8 7

CCnight 2 2

Elevation 6 6

Slope 10 -

Latitude - -

Longitude 9 9

seq.rain≥3 - 12

rain × sections 13 8

PPTmax 14 10

PPTavg - -

PPT6-11 h 12 -

(b) Response: next-day Tdiff

Table 4: Set of eligible and selected predictors for each model type and response



56 A FURTHER RESULTS AND PLOTS

A.2 Marginal Fits, Prediction Intervals and Check Loss

For the DVQR, Figure 23 compares the marginal fits of the predictors in the reduced
model setting (cf. Section 4.5.3) and the two response variables for the smaller and larger
training horizon. The figure exemplarily shows the marginal fits of one training instance.
The histograms represent the whole data from 2013-2017 in order to tell how well the
estimated marginals fit the ”true” distribution of the particular variables. As expected,
the larger training horizon leads to a more appropriate fit of the marginals.

Figure 23: Comparison of marginal fits for the smaller and larger training horizon of the
refined rolling window approach

Figure 24 - 26 show the estimated 95% prediction intervals for the refined rolling window
training approach with n = 7 and five predictor variables (cf. Section 4.5.3). The left
column shows the predicted intervals for the response next-day Tmin and the right column
for next-day Tdiff. For next-day Tmin, most of the predicted intervals are very similar for
the DVQR and LQR method. For the 35th predicted day, which corresponds to August
10, the DVQR predicts a remarkably large interval across all weather stations. Especially
the lower end of the interval is much smaller than for the LQR. Still, for all 25 stations,
the true minimum temperature lies within the predicted interval. Overall, the results
differ for each station. For some stations, e.g. station 7, the LQR usually yields smaller
values for the lower endpoints of the predicted intervals while the DVQR yields larger
values for the higher endpoints of the intervals. For other stations it is vice versa, e.g.



A.2 Marginal Fits, Prediction Intervals and Check Loss 57

station 4. Also the position of the true temperature value within the intervals changes
from station to station. While in many instances, the true temperature value lies nearly
in the middle of the predicted interval, we can observe a shift towards the upper or lower
end of the intervals for some stations. For next-day Tdiff, comparatively more observations
do not lie in the predicted intervals. Also, for predicted intervals that do not include the
true temperature value, the true value lies relatively far from the interval in some cases.
This both reflects the higher interval scores for next-day Tdiff compared to next-day Tmin.
Differences between the predicted intervals of the DVQR and LQR method are slightly
more present than for next-day Tmin.

Figure 27 compares the check loss at nine different alpha levels of all three training
approaches with a fixed training horizon of 31 days. For most training approaches and
alpha levels, the LQR yields lower check loss values. Figure 28 shows the check loss at the
different alpha levels for the refined rolling window with a larger training horizon of 67
days. Here, we observe very similar results for the DVQR and LQR method. While the
DVQR achieves slightly lower check loss values for larger quantiles, the LQR outperforms
the DVQR for smaller quantiles. Lastly, Figure 29 displays the check loss at the different
alpha levels for the refined rolling window with a larger training horizon of 67 days and a
threshold of five on the number of predictors in the model. For next-day Tmin, the DVQR
again obtains lower values for larger quantiles while it is vice versa for the 0.05, 0.25 and
0.5 quantile. The check loss for the 0.005 and 0.025 quantile hardly differ. For next-day
Tdiff, the LQR also yields lower check loss values for quantiles towards the center of the
distribution (i.e. the 0.25, 0.5 and 0.75 quantile) while the DVQR achieves lower values
towards the tails of the distribution. This conforms to our expectation since the DVQR
method is able to particularly capture tail dependencies due to its design.
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Figure 24: Predicted 95% intervals and actual temperature values for the refined rolling
window training approach with n = 7 and five predictor variables — Stations 1-8
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Figure 25: Predicted 95% intervals and actual temperature values for the refined rolling
window training approach with n = 7 and five predictor variables — Stations 9-16
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Figure 26: Predicted 95% intervals and actual temperature values for the refined rolling
window training approach with n = 7 and five predictor variables — Stations 17-25
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Figure 27: Check loss of next-day predictions at alpha levels 0.005, 0.025, 0.05, 0.25, 0.5,
0.75, 0.95, 0.975 and 0.995, for the simple rolling window, refined rolling window and
random drawing training approach

Figure 28: Check loss of next-day predictions at alpha levels 0.005, 0.025, 0.05, 0.25, 0.5,
0.75, 0.95, 0.975 and 0.995, for the refined rolling window training approach with n = 7
and 10 predictor variables

Figure 29: Check loss of next-day predictions at alpha levels 0.005, 0.025, 0.05, 0.25, 0.5,
0.75, 0.95, 0.975 and 0.995, for the refined rolling window training approach with n = 7
and five predictor variables


