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Abstract

The understanding and prevention of catastrophes at large-scale events are of utmost societal
importance. For that, pedestrian simulation has proven to be a potent tool. Using microscopic
pedestrian simulations, researchers and practitioners investigate the mechanisms and precondi-
tions that lead to dangerous situations such as harmful crowd pressures. Simulations reveal the
behaviors and characteristics of human crowds and suggest practical ways to prevent catastro-
phes.

However, microscopic pedestrian simulations are computationally expensive. Yet, it is neces-
sary to model each individual to predict crucial phenomena. Despite their computational cost,
real-time simulations are required to make reliable predictions during ongoing events and to
enhance a research �eld that integrates more and more data-driven methods. To achieve this
temporal requirement, we have to introduce and exploit e�cient and parallel algorithms.

In this thesis, I follow the call for e�cient and scalable simulations by analyzing existing and
introducing new parallel algorithms. I introduce parallelism to a class of microscopic models, i.e.,
optimal steps models, and show that real-time simulations of half a million participants are possi-
ble. In addition, I develop e�cient and parallel algorithms to construct navigation �elds: a robust
technique to model pedestrian way�nding. A new meshing algorithm reduces the problem size
and a novel numerical method exploits similarities of consecutively solved eikonal equations. In
combination, real-time dynamic navigation �eld computation becomes possible for many large-
scale scenarios.





Zusammenfassung

Katastrophen inmitten von Großveranstaltungen verstehen und verhindern ist von größter ge-
sellschaftlicher Bedeutung. Für diese Aufgabe haben sich Fußgängersimulationen als wirksames
Werkzeug erwiesen. Mit ihrer Hilfe untersuchen Forscher und unmittelbare Anwender die Vor-
aussetzungen und Zusammenhänge, die zu gefährlichen Situationen, wie kritischen Personen-
dichten, führen. Aus den gewonnenen Erkenntnissen über das Verhalten und der Bewegung von
Fußgängern können wir praktische Maßnahmen ableiten und dadurch Katastrophen verhindern.

Mikroskopische Fußgängersimulationen sind jedoch rechenintensiv. Um aussagekräftige Vor-
hersagen zu erzielen, ist, bis heute, die Modellierung jedes einzelnen Individuums erforderlich.
Trotz des dadurch entstehenden Rechenaufwands, wird der Ruf nach Echtzeitsimulationen immer
lauter. Einerseits sollen sie die Anwender mit Vorhersagen während einer laufenden Veranstal-
tung unterstützen. Andererseits würden sie ein Forschungsfeld bereichern, welches immer mehr
datengetriebene Methoden integriert. Um diese zeitliche Anforderung zu erfüllen, müssen wir
e�ziente und parallele Algorithmen für die Berechnung von Personenströmen entwickeln und
nutzen.

In dieser Arbeit folge ich dem Ruf nach e�zienten und skalierbaren Simulationen, indem ich
vorhandene Algorithmen analysiere und neue parallele Algorithmen entwickle. Zunächst führe
ich die Parallelität in die sogenannten Optimal Steps Modelle, eine Klasse mikroskopischer Mo-
delle, ein. Ich zeige, dass dadurch die Simulation einer halben Million (virtueller) Fußgänger in
Echtzeit möglich wird. Darüber hinaus entwickle ich e�ziente und parallele Algorithmen zur
Berechnung von Navigationsfeldern. Diese haben sich in der Vergangenheit als robuste Technik
zur Modellierung der Weg�ndung von Fußgängern etabliert. Ein neuer Algorithmus zur Netz-
generierung reduziert die Größe des zu berechnenden Problems und eine neuartige numerische
Methode nutzt die Ähnlichkeit aufeinanderfolgend gelöster Eikonalgleichungen aus. In Kombi-
nation wird der Einsatz dynamischer Navigationsfelder für Echtzeitsimulationen für viele große
Szenarien ermöglicht.





Preface

“The struggle itself towards the heights is enough to �ll a man’s heart. One must imagine

Sisyphus happy.”

– Albert Camus

My personal journey

I can pinpoint the exact moment when I decided to start my academic journey. At that time, my
life was harshly disrupted by my own physical illness and the death of my father. Consequently,
my family struggled on many levels. Despite, and probably because of the unfortunate circum-
stances and with my family’s blessing, I quit my job and rejoined school to get my (technical)
A level. I wanted to comprehend the world more than ever and escape the meaningless play
of presenting. At that di�cult time, there was a �nancial intensive to graduate as fast as pos-
sible. Therefore, I did not join the university but the computer science program at the Munich
University of Applied Sciences.

During my undergraduate study, my former naive belief was crushed. I realized that I would
never �nd any de�nitive objective truth about the physical world. It was a rather pessimistic but
also liberating philosophical revelation that there is no de�nitive rule to follow and no absolute
meaning to ful�ll. My search was no longer aimed to �nd an objective meaning but a personal
cause to follow. I still admired studying but for other more aesthetic reasons. I loved the clarity
and usefulness of formal systems, the beauty of proofs, the elegance of algorithms, and the stu-
dent’s lifestyle. I observed a transforming world where computer science spread out into many
branches of science, economics, and society. It was a time of playful experimentation and the
deconstruction of personal barriers.

After I got my bachelor’s degree, I �nally joined a master program at the Technical University
of Munich. This continuation was enabled by the individual and �nancial support I received from
the Studienstiftung des deutschen Volkes & the Max Weber-Programm. I followed my aesthetic
taste and visited rather unpopular formal lectures. At that time, I realized that the source of my
personal cause to move on has to be bound to someone else. Beauty and aesthetic theories were
a pleasant enjoyment, but they could no longer be the primary reason to live for.

Surprisingly my academic journey should not stop there, since Prof. Dr. Köster invited me into
her research group. There are multiple reasons why I happily accepted her invitation. The desire
to understand the world was reduced to the desire to understand at least one little part of it.
Furthermore, I believed that simulations would in�uence science, economics, and society for
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decades to come. And if I could make the world a little bit safer, it might be the cause I was
looking for.

During my PhD, the wish to be useful and to help others was always a source of inner con�ict
and self-doubt. I started the whole journey to escape a world that I perceived to be shallow, empty,
and driven by pro�t. From time to time, the scienti�c research project felt like this meaningless
business world that came back to haunt me. Luckily I was in a superb position. Everyone tried
to reduce this aspect of the scienti�c environment to a minimum, for which I am very grateful.

I think every PhD candidate has to deal with uncertainties and self-doubt – the uncertainty
within science and the uncertainty of the journey’s path. There is no guaranteed progress or
graduation and one is constantly confronted with his or her own limitations. These factors and
the ever-present questioning voice in my head acted as a catalyst for an unavoidable existential
crisis. I looked into many philosophical ideas and rearranged, and possibly reinforced, my world
view and many important values – the chapter’s introductory quotes tell the tale. In my opinion,
this process was only possible, because during my academic journey I received the tools to engage
with di�cult ideas. On the one hand, this crisis was unpleasant but on the other hand it enriched
my life – a trade-o� I am certainly willing to repeat. In the end, I had supportive companions
that helped me to deal with all these issues.

It was not easy, and I guess it rarely ever is, but the struggle is part of the charm – as Camus said,
“we must imagine Sisyphus happy”. For me, to study is to train thoughtful thinking, perception,
awareness, and tolerance. It sharpens the mind and opens up a little less ignorant new world.
The ability to enjoy thinking and to share this enjoyment with other thoughtful people provides
freedom and independence. It might be the greatest gift I received during my journey. Because of
it and the people I met, it is a success story, and I am deeply thankful that I could have experienced
it.
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CHAPTER 1
Introduction

“When one has once fully entered the realm of love, the world — no matter how imperfect

— becomes rich and beautiful, it consists solely of opportunities for love.”

– Søren Kierkegaard

1.1 Motivation: a call for real-time large-scale microscopic

pedestrian simulations

In pedestrian dynamics, we study human motion mainly in urban environments. The interaction
of multiple individuals is of special interest. Historically, pedestrian dynamics is motivated by
the urbanization of human settlement and an increase in large-scale events. In the past, horrible
accidents took place during the gathering of large crowds: 21 people died at the Loveparade
in Duisburg (2010), many more were injured, an estimate of 717 pilgrims died during the Haji
in Mina (2015), 36 people died at the New Year’s Eve celebration in Shanghai (2015), and the
list goes on. We must learn from these accidents, �nd their cause, and develop mechanisms to
prevent them. Preventing harm to humans is our duty and most important goal of research.

Researchers in pedestrian dynamics study human behavior on a microscopic level to prevent
dangerous crowded situations. They come from many di�erent �elds, which is re�ected in a
multitude of competing models, each of which stresses di�erent characteristics of crowd motion.
Even though the community will discuss novel models, there are many, such as cellular automata
[31, 245, 155, 172, 19, 115], optimal steps models [257, 165, 300, 260, 327, 168, 158], and social
force models [118, 326, 137, 190, 49, 167], that already reproduce important phenomena. They
predict pedestrian behaviors and support practitioners in evaluating the e�ciency of evacuation
strategies and the safety design of facilities in buildings [72, 75].

New possibilities inspire new objectives, and each given answer provides additional questions.
Today, I observe an increasing demand for large-scale real-time simulations. By the term large-

scale, I refer to the number of simulated pedestrians and the area in which they move. In practice,
simulations are part of the planning phase of large events. Nowadays, they should also serve as
arti�cial intelligence that event managers can consult during an event – they should support the
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Chapter 1 Introduction

ongoing decision-making process. Multiple calls for research projects promoting such systems
were made. For example, the research contract of the S2UCRE project [8] includes the study of
rescue and safety technology in the context of large-scale events, such as the Hafengeburtstag
Hamburg, the Cannstatter Wasen, or the Oktoberfest in Munich. Within the project, pedestrian
simulations that are initialized by extracted, aggregated, and analyzed video footage, predict the
future in an online setting. For data-driven modeling, online parameter learning [24, 25] also
gained popularity.

There are many pedestrian simulation models. And before we, as a community, move on to
introduce yet another model, I believe we have to better understand the existing ones. It is time
to stop for a moment and to look around at what we have in front of us. There is a gap between
the number of models and the e�ort to calibrate, validate, and analyze them. Quoting Duives
et al. [76]:

“Even though calibration and validation are considered to be essential to determine the

reliability and validity of simulation models, researchers currently apply inconsistent

procedures or only partially test the simulation tools due to the lack of international

standards for veri�cation and validation of pedestrian �ow and crowd dynamic simu-

lation tools for general use.” – Duives et al. [76]

Recent studies [319, 138, 252, 303, 99, 98] point in the right direction. Uncertainty quanti�ca-
tion (UQ) was introduced to pedestrian dynamics to support model analysis [175, 303]. It is a
mathematical tool to reveal the relation of the behavior of a system to uncertainties in its pa-
rameters [70]. For more information about uncertainty quanti�cation, I refer to [93]. Because
of the high computational cost of quantifying the uncertainty of pedestrian dynamics, surrogate
models proposed by, for example [70, 176], o�er a data-driven solution. Dietrich et al. [69] stated
concisely: “Surrogate models extract the most important features of a computationally intensive
model from data produced by that model.” Unfortunately, the construction of accurate surrogate
models requires multiple sample points. For example, the authors in [69] used 1800 simulation
runs for a rather simplistic bottleneck scenario. To my best knowledge, surrogate models for
more complex large-scale scenarios have yet to be constructed. Aside from these sophisticated
methods, plain calibration can also lead to a heavy workload, especially for large-scale scenarios.

In summary, large-scale pedestrian simulations are important, because most critical real-world
situations emerge in a large-scale setting. The need for predictive online simulations impose
temporal requirements with respect to the simulation run time – a simulation that runs slower
than real-time can never predict the future. Additionally, I claim that the research community
bene�ts from faster large-scale simulations. They open the door to new data-driven methods,
intensi�ed calibration, and more simulations in general. Therefore, an acceleration of simulations
might translate into an acceleration of the research in pedestrian dynamics.

One open question remains: why should we use microscopic instead of multiscale or macro-

scopic simulations for large-scale pedestrian simulation? Microscopic approaches model each
pedestrian as an individual agent with personalized properties such as its desired walking speed.
The state of each agent is described by position and velocity, and other time-dependent variables
[23, p. 4]. Contrary to this, macroscopic approaches model the stream of pedestrians as an ag-
gregation of individuals. They can match the overall behavior characteristics, but the interaction
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between individuals and individual behavior habits are ignored [72]. They are less computational
expensive but

“even though these models are e�cient and fast, [most of them] can generally not be

used to assess large crowdmovements within a complex infrastructure (i. e., train station,

festival terrain, large square).” – Duives et al. [76]

Examples for macroscopic models can be found in [120, 117, 129, 130, 291, 128]. Multiscale mod-
els in pedestrian dynamics, such as [283, 23, 179, 22, 29, 290, 270] have two scales: a microscopic
and macroscopic scale. On the microscopic scale, pedestrians and their interactions are modeled
explicitly. Information about the spatial local and inhomogeneous pedestrian behavior is trans-
ferred to the macroscopic scale. On that scale, the aggregated stream of pedestrians (globally)
�ows homogeneously with respect to local information. A more general and extensive descrip-
tion of multiscale models can be found in [56]. In [75], Duives et al. argue that microscopic models
are “highly precise” but slow and macroscopic modeling attempts seem “behaviorally question-
able”.

“Both models have their use, which is highly dependent on the application the model

has originally been developed for. Yet, for practical applications that need both precision

and speed, the current pedestrian simulation models are inadequate.”

– Duives et al. [75]

In my opinion, this statement from 2013 has aged well and poorly at the same time.
It is still true that the model of my choice depends on its application, including the phenomena

of interest. Secondly, most microscopic models are more precise than most macroscopic models.
Inhomogeneous pedestrian behavior disquali�es most macro- and multiscale models if inhomo-
geneity should be preserved. I argue that using either micro- or macroscopic models has less
to do with the actual scenario scale (number of agents and domain size) but with the degree of
homogeneity. One de�nes an airport with a hundred thousand passengers to be a large-scale sce-
nario. On the other hand, a unidirectional corridor inside a building is undoubtedly a small-scale
scenario. However, if we consider the degree of homogeneity, a microscopic model is needed
for the airport to reproduce microscopic phenomena. On the contrary, a macroscopic model suf-
�ces in the much less populated corridor if we are only interested in macroscopic measures. In
general, there is no ‘correct’ model or scale. Modeling is a question of complexity, or cost and ac-
curacy [39, p. 11]. There is a relation between phenomena and scale, for example, self-organizing
movements (lane formation, stop-and-go waves) take place at the microscopic scale.

The second part of the above statement aged rather poorly since there is a lot of progress in
fast large-scale microscopic simulation, including this thesis and other contributions discussed
in Section 4.3.

Overall, I conclude that there is a need for large-scale microscopic simulations.

1.2 Scope and overview of this work

In this thesis, I develop e�cient parallel algorithms to accelerate navigation �eld-based micro-
scopic pedestrian simulation. Thematically, I discuss three distinct topics: parallel large-scale
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Figure 1.1: Overview of the content of the thesis.
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locomotion models, mesh generation for pedestrian dynamics, and e�cient solution of the eikonal

equation in the context of pedestrian dynamics. By combining mesh generation for pedestrian dy-

namics, and e�cient solution of the eikonal equation in the context of pedestrian dynamics, I enter
the realm of large-scale navigation �eld computation. In the big picture, illustrated in Fig. 1.1, all
three topics come together. I introduce the necessary foundation to keep the required background
knowledge at a minimum. Consequently, this leads to a lot of explanatory content. I advise the
hurried reader to skip introductory sections if he or she feels comfortable with the subject. I split
the development of e�cient parallel algorithms for microscopic pedestrian dynamics into three
parts:

Part I: In Part I, I give an overview of microscopic locomotion models (Chapter 2) and way�nd-
ing based on navigation �elds (Chapter 3).

I analyze locomotion models algorithmically and evaluate their suitability for a large-scale
setting. I identify optimal steps models to be especially important because their foundation is
motivated by social psychology and biomechanics. Aside from my modeling perspective, optimal
steps models are attractive with respect to computational costs.

In Chapter 3, I discuss the (neuroscienti�c) justi�cation, interpretation, usage, and importance
of navigation �elds in the context of large-scale simulations. I show that many models rely on
navigation �elds, and others can bene�t from them. Consequently, e�cient navigation �eld com-
putation a�ects the computational performance of many pedestrian models. Models can not ne-
glect large- and medium-scale way�nding, and dynamic navigation �elds can serve as a robust
model.

Part II: In Part II, I change the focus from modeling to large-scale simulations. Since clock fre-
quencies of single central processing units (CPUs) no longer increase signi�cantly, introducing
parallelism is essential. In Chapter 4, I identify pedestrian dynamics as a partly complex (many
homogeneous objects) and partly complicated (inhomogeneous subjects) problem. To accelerate
large-scale simulations, we have to focus on the computationally expensive and complex part of
the problem: the operational level, i. e., microscopic locomotion. However, I �rmly believe we
should not compromise our modeling ideas for the sake of computational e�ciency. And we do
not have to, since pedestrian dynamics is a naturally parallel process. Therefore, locomotion mod-
els should promote data independence without any compromise. In Section 4.3, I review di�erent
parallel locomotion models and extract algorithms and data structures of their implementation.
This overview should be helpful for developers that want to accelerate their model.

In Chapter 5, I exploit the agents’ independence e�ciently to accelerate optimal steps models. I
advocate against parallelization via model changes, because the model would lose essential prop-
erties. My algorithm (ParallelEventDrivenUpdate) introduces parallelism to optimal steps
models and is especially suitable for single instruction multiple data architectures. I present the
degree of parallelism ParallelEventDrivenUpdate achieves. Additionally, I compare computa-
tion times of ParallelUpdate and ParallelEventDrivenUpdate, both executed on a graphics
processing unit (GPU). ParallelUpdate in a former attempt that compromises optimal steps
models for the sake of parallelism and acts as a baseline for the performance evaluation.
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Part III: In Part III, the last part, I discuss the e�cient computation of large-scale static and
dynamic navigation �elds. Navigation �elds are the solution of eikonal equations computed on
some space discretization. Therefore, this part of my thesis might also be interesting for readers
outside of the pedestrian community interested in eikonal equation solvers or mesh generation.
I identify two ways to reduce the computation time required to compute navigation �elds: First,
I enter the area of computational geometry and consider di�erent space discretizations.

In the introductory chapter, Chapter 6, I discuss state-of-the-art mesh generation methods for
pedestrian dynamics. I advocate unstructured triangular meshes because they conform to any
desired geometry with localized resolutions – an important property for accuracy (of simulation
results) and the reduction of discretization points to improve performance.

In Chapter 7, I introduce and analyze the meshing algorithm DistMesh which was designed
by Persson and Strang [221]. DistMesh generates high-quality unstructured meshes but requires
some adaptation to work robustly for geometries used in large-scale pedestrian dynamics.

Therefore, I develop an extension called EikMesh (Chapter 8). EikMesh inherits the force-
based mesh improvement technique from DistMesh but avoids computationally expensive com-
putations of Delaunay triangulations to improve the run time of the mesh generation process
in a large-scale setting. Additionally, I introduce new mesh operations to deal with complex
geometries de�ned by planar straight-line graphs.

Chapter 9 �nally combines mesh generation and numerical methods to solve the eikonal equa-
tion, and thus to compute static and dynamic navigation �elds. The chapter starts with an-
other introductory part, where I discuss state-of-the-art methods (Sections 9.1 to 9.3) to solve
the eikonal equation on Cartesian grids and unstructured triangular meshes. I evaluate the ef-
�ciencies of techniques concerning the spatial domain and travel speed function of the eikonal
equation. This deep dive into numerical methods o�ers me and, hopefully, the reader a funda-
mental understanding of the problem on an algorithmic level. In the remaining sections, I show
the importance of a localized mesh resolution. I develop a novel iterative eikonal solver that uses
adaptive mesh re�nement to achieve accurate results while keeping the number of mesh points
small. In Section 9.5, I develop the InformedFastIterativeMethod, another eikonal solver that
is specialized to compute dynamic navigation �elds. It exploits similarities of consecutive solu-
tions of eikonal equations, requires a minimal amount of workload, and still promotes parallelism.

In the last chapter, I conclude my thesis and discuss future works.

1.3 What is new?

This thesis focuses on e�cient algorithms to enhance simulations based on existing microscopic
simulation models. No new model is proposed, but I suggest improvements for optimal steps
models at the end of Section 2.2.6 and introduce navigation �elds for the Behavioral Heuristics
Model (Section 3.4). I analyze the importance and suitability of di�erent models in a large-scale
context (Part I). The novel algorithms contained in this thesis incorporate known techniques.
Whenever I integrate a well-known algorithm or idea from another contribution, it is indicated
in the text and highlighted by its reference.

I analyze which level of the hierarchical modeling approach o�ers the most potential to im-
prove simulations’ e�ciency (Sections 4.1 and 4.2). I review existing parallelization techniques
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(Section 4.3) and combine and adapt well-known data structures and algorithms to parallelize
optimal steps models by ParallelEventDrivenUpdate (Chapter 5). Subroutines of the algo-
rithm are based on existing techniques. In combination, I establish a new parallel algorithm

for large-scale microscopic simulation using optimal steps models.
In Part III, my main contributions are a new meshing algorithm called EikMesh, an iter-

ative eikonal solver based on mesh re�nement, and the InformedFastIterativeMethod,
that is, a new numerical method to solve consecutive and similar eikonal equations. The
new meshing algorithm EikMesh (Chapter 8) combines existing techniques. Its force-based im-
provement strategy is borrowed from DistMesh [221] (Chapter 7). The construction of the el-
ement size (Section 8.6.1) and distance functions (Section 8.7) and the mesh element ordering
based on a space-�lling curve (Section 8.5) are known methods integrated into EikMesh. New
is the smoothing of element size functions accomplished by ElementSizeConstruction (Algo-
rithm 13) and, most notably, a combination of local mesh operations for mesh improve-

ments. Consequently, EikMesh supports geometrical constraints (Section 8.4), avoids Delaunay
triangulation computations (Section 8.2), and o�ers a localized memory order of mesh elements
(Section 8.5). Compared to DistMesh, the time complexity is reduced, and its parallel potential
increased. Additionally, EikMesh generates meshes of higher quality for all test cases.

The iterative eikonal solver developed in Section 9.4 is a novel approach suitable for reduc-
ing the mesh size while achieving accurate approximations of the eikonal equation’s solution.
Furthermore, InformedFastIterativeMethod (Section 9.5) is a new adaptation of the well-
known FastIterativeMethod designed to compute dynamic navigation �elds. Informed-
FastIterativeMethod executes well-known subroutines to solve the eikonal equation on an
unstructured mesh (Sections 9.2 and 9.3).

1.4 Advise to the reader

Whenever I use the �rst person “I”, I refer to myself and give colleagues credit by referring to
their publications. In the explanatory parts of my work, I use the personal pronoun “we” to refer
to myself and the reader to include the reader into my thoughts. Sometimes I use “we” to refer
to the research community, but it should be clear from the context which of the two meanings I
use. By the term agent, I refer to a simulated pedestrian, and whenever I talk about pedestrians, I
refer to real human beings.

I expect to confront readers with diverse knowledge bases and motivations. Therefore, I sum-
marize each chapter at the end. Readers familiar with the chapter’s topic might want to read the

2

1

3

4 5

6 7 8 9

10PART I

PART II

PART III

j CHAPTER j

Figure 1.2:Dependencies among all chapters: black arrows indicate strong and gray arrows weak
dependencies.
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summary before they decide to continue. Readers from pedestrian dynamics might want to skip
familiar sections of Part I. Readers interested in mesh generation for pedestrian dynamics might
focus on Part III. Those interested in the large-scale aspect of pedestrian locomotion might want
to concentrate on Part II. And researchers searching for new methods to solve the eikonal equa-
tion might �nd interesting new ideas in Chapter 9. Figure 1.2 illustrate the dependencies among
all chapters. I choose a level of detail for the algorithm descriptions that facilitates implementa-
tion. Developers should be able to extract and use ideas for their own needs. In sections titled
“Source code”, I refer to my implementation.

1.5 Infrastructure

My research required extensive programming to implement novel and state-of-the-art algorithms
and to generate, analyze, and visualize results. Implemented algorithms can be found in the Git
[97] repository of the open-source Vadere project [7, 294]:

https://gitlab.lrz.de/vadere/vadere.

The repository also contains code to measure mesh element qualities, and to transform Vadere
scenarios and unstructured meshes into TikZ [281] code. Via the TexStudio [5], TikZ [281] code
is compiled into vector graphics. As a development environment, I used the community edition
of IntelliJ IDEA [1], a customizable editor written in and for the development of Java projects. I
also used Java libraries such as the Lightweight Java Gaming Library [195]. These libraries and
other software-speci�c information are listed in the Maven [4] project �les of the Vadere project.
For the purpose of visualization, I made use of popular Python libraries including Pandas [314],
NumPy [113], SciPy [296], Matplotlib [131], and Seaborn [310]. All other �gures are generated
by hand using the Ipe extensible drawing editor [2]. For the document itself, I used TexStudio
combined with the software system for document preparation called LATEX using the MacTex
[3] distribution. Without these excellent software packages, my research would not have been
possible. We often take these beautiful technologies for granted, but behind the million high-
quality code lines are people who value the free spirit of creative work. I am deeply grateful for
the e�ort they put into their work.

If not indicated otherwise, computations are carried out on my workstation: Intel i5-7400
Quad-Core (3.50 GHz), 8 GB DDR4 SDRAM, and a graphics card NVIDIA GeForce GTX 1050
Ti / 4 GB GDDR5 VRAM.
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CHAPTER 2
Microscopic pedestrian modeling

“Men must live and create. Live to the point of tears.”

– Albert Camus

Modelers take into account a large variety of in�uences on pedestrian behavior. This becomes
evident if one lists some of the principles modelers used in the past and will continue to apply.
From social forces, Newtonian mechanics, queuing and game theory, computational geometry,
velocity obstacles, fuzzy logic, social identity, to the personal space theory, ideas, and techniques
in�uence the development of modern microscopic pedestrian models. The wide variety of pub-
lication areas, depicted in Fig. 2.1, is another indicator of the �eld’s complexity. Thus, the exact
nature of microscopic pedestrian behavior is open to debate, and the scienti�c discourse will con-
tinue. I expect that the number of models will further diversify. However, it is possible to �lter
and analyze some core concepts. This chapter is my attempt to do so.

I give an introduction to the landscape of microscopic pedestrian models. I start by explain-
ing the well-established hierarchic model approach. It structures di�erent aspects of decision
making into di�erent levels and is well-accepted by the overwhelming majority of the pedes-
trian dynamics community. After discussing the hierarchic model approach, I review di�erent
locomotion models that are of high relevance in microscopic crowd simulation. The aim is to
give the reader an overview of the concepts and techniques and how modelers realize them al-
gorithmically. The review is neither complete nor extensive but includes all major milestones of
the development. I bypass minor model di�erences and details in favor of a well-rounded and
compact discussion.

Since I am especially interested in large-scale pedestrian simulation, I discuss the computa-
tional complexities of the models. Insights from this analysis reveal the main leverage to accel-
erate large-scale pedestrian simulations and motivate my contribution. An experimental study
would require access to all model implementations. Instead, I base my analysis solely on model
de�nitions. Even if I had access to each model implementation, a comparison based on simulation
times could be misleading. A fair comparison would require a highly optimized code base and the
usage of e�cient algorithms and data structures. Furthermore, it would be desirable that each
implementation uses the same programming language and is compiled by the same compiler. In
the end, such an experimental study requires a lot of e�ort and knowledge, mistakes can be easily
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Figure 2.1: Scopus search result for the term “pedestrian dynamics” on the 22nd of November
in 2020; overall 2,876 documents are listed: (i) publications per year and (ii) publications per
subject [157].

made, and results give minimal insights. Therefore, I focus on the model de�nition and di�erent
model types.

2.1 The hierarchic model approach

Blumberg and Galyean [32] suggested to model the decision-making process and behavior of
pedestrians (and other behavior-based autonomous creatures) by a layered architecture. The
concept of a hierarchically structured decision-making process was incorporated and further
developed by the pedestrian dynamics community. To my best knowledge, every microscopic
pedestrian model supports or at least motivates a hierarchical decision-making approach. Blum-
berg’s and Galyean’s concept was motivated by a software architectural perspective. Later, it was
used and further popularized by Reynolds [234]. Within the pedestrian dynamics community,
Hoogendoorn and Bovy [126] suggested a similar hierarchical approach to model the decision-
making process and behavior of pedestrians. Figure 2.2 illustrates this three level approach. It
may or may not be inspired by Reynolds.

Hoogendoorn and Bovy suggested that, at the strategic level, pedestrians decide what and when
they want to achieve a particular goal. These long-term goals range from visiting the toilet,
buying some food, or leaving a building as fast as possible. The goals of pedestrians comprise
their motivation. They might visit a concert and want to listen to music. Maybe pedestrians want
to stroll around, or they are in a more organized setting like a demonstration. A model of the
strategic level prioritizes a set of activities over another set. Examples are listed in [265, 316, 149].

At the tactical level, models split goals of the strategic level into an ordered set of necessary
actions. Because researchers are interested in pedestrian movement, a speci�c logic translates
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Figure 2.2: The three-level model approach suggested by Hoogendoorn and Bovy [126].

these actions to a set of immediate spatial destinations. Some models apply routing algorithms,
such as [92, 123, 161, 162, 160], others introduce non-graph concepts, such as the application
of the �oor-�eld method introduced by [156, 115, 174, 116, 165]. To leave a building as fast as
possibles – a strategic decision – one might have to leave a room �rst. Then, one might go to
the staircase, which leads the person down to the ground �oor, where he or she can exit the
building using the closest door. One might also consider avoiding crowded areas by using faster
detours. A father or mother may want to �nd a missing child before leaving [304]. Sometimes
pedestrians might even conform to a speci�c socially expected behavior like queuing. Apart
from the pedestrians’ motivation, external motivations can also in�uence the behavior of crowds.
Such external motivations range from authorities like the police or the service sta� of large-scale
events to signs and other noti�cations pedestrians receive. Furthermore, the knowledge base and
awareness of pedestrians di�er. They may or may not be familiar with their surroundings. And
when intermediate destinations are not in sight, the diversity of knowledge and awareness is
especially in�uential [15].

The actual walking from a start to an endpoint is part of the operational level. Distances for
which agents operate according to the operational level vary from hundreds of meters to less
than one meter. Models on the operational level range from cellular automata [40, 323, 255, 307,
81, 239], force-based models [118, 178, 48, 187], velocity-based models [142, 288, 68], heuristic
approaches [59, 261] and optimal steps models [257, 258, 260, 300, 301]. At this lowest level,
pedestrians make in-the-moment decisions. For example, they already know the �oor or street
to go through, but they adapt their navigation on the �y. Di�erent motivations drive pedestrians’
decisions, such as collision avoidance with other pedestrians and obstacles, following others, and
moving as a group.

Hoogendoorn and Bovy model pedestrians as homo economicus, that is, they assume pedestri-
ans maximize some utility. The expected utilities at lower levels in�uence choices at higher levels.
Furthermore, choices at higher levels, condition choices at lower levels [126]. The information
available to pedestrians might be imperfect, wrong, or incomplete.

In the past, modelers considered the decision-making process at the strategic and tactical level
to be exogenous to pedestrian simulation. Research from the social science community (sociol-
ogy & psychology) was required [247]. Therefore, it is no surprise that many of the early mi-
croscopic pedestrian models, such as [118, 16, 257, 68], are only concerned with the operational
level. They only include physical aspects of the navigation process. Note that I follow the no-
tation of [256] and distinguish between walking as a physical process and mental activities, like
decision making, even if all thought can be traced back to chemical reactions. Since modelers �rst
excluded the strategic and tactical level, they designed simple laboratory experiments to validate
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Figure 2.3: The hierarchical model approach suggested by Kleinmeier et al. [158]: Seitz [256]
transformed the tactical and operational levels of Hoogendoorn and Bovy [126] into the social,
psychological and physical layer. Kleinmeier et al. [158] give a more accurate de�nition of the
psychological layer. They introduce three sub-layers: perception, cognition and behavior.

the operational level, that is, locomotion models. Therefore, their design eliminated or at least
reduced the decision making required by participants. In such a design, the experiment setup
de�nes all the next intermediate destinations. Compare, for example, experiments described in
[328, 329]. The simplicity of laboratory experiment setups is not necessarily a drawback. Since
pedestrian dynamics deal with the most sophisticated organism on earth, the human being, re-
searchers have to reduce complexity to test hypotheses e�ectively. Nowadays, many authors
such as [157, 148, 261, 303, 305, 262, 166, 302, 158, 273, 284, 285] argue for an invitation of the
social sciences to help to understand and model human behavior at all levels. Currently, modelers
are beginning to shift their focus to the strategic and tactical levels. Di�erent informal de�nitions
of the three-level hierarchy are listed in the literature. Therefore, it is debatable which model or
model part is strategic, tactical, or operational. For example, it is not obvious what counts as a
chosen intermediate destination and what becomes an intermediate destination due to the path
that emerges from the decisions made by the operational level.

Seitz [256] expanded on the three-level hierarchy of Hoogendoorn and Bovy by splitting the
tactical and operational levels into three di�erent layers, compare Fig. 2.3. He was more concerned
with the di�erent spheres of human nature: the social layer covers various aspects that build on
the psychological and physical layer. As humans, we are social, psychological as well as physical
beings. Seitz argues that our social “body” in�uences our behavior, including our movement
patterns. For example, the well-documented phenomena of sub-groups [134, 50, 17, 274, 202] is
a social behavior. Therefore, models for sub-groups are part of the social layer. Note, however,
that the social layer covers various aspects that build on the psychological and physical layer
[256]. The psychological layer is responsible for the generation of movement decisions. These
decisions determine the position where the agent wants to step next. The physical layer models
how pedestrians move physically, that is, how physical forces move the human body towards the
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next position. This layer is closely related to the operational level of [126] but emphasizes that
physical motion is a biomechanical process that includes the whole three-dimensional human
body. Seitz describes two locomotion models of the physical layer.

Kleinmeier et al. [157] further expanded on the ideas of Seitz. They reconsidered Seitz’s psy-
chological layer. The authors argue that on this layer, there should be more than the generation
of movement decisions. In the end, researchers in the �eld of pedestrian dynamics are mainly
interested in the movement pattern of pedestrians and not their mental status or process. There-
fore, we tend to overlook the fact that mental processes of perception and cognition a�ect the
behavior of pedestrians, and consequently, their movement pattern. One might argue that our
abstract models should not consider the mental process because the level of detail would be to
high. I think that we should not model each muscle of a person, because it is too computationally
expensive, we would require unavailable information (the exact muscle structure of a person),
and it contributes very little to the actual question we ask. This argument is also valid for the
mental process if our goal is to model each thought of a person – it is just not possible. Instead,
choosing the right abstraction of the mental process should be our goal to achieve realistic sim-
ulations for complex situations. The authors in [157] show that many well-established models
fail to reproduce even simple scenarios because agents lack collective cooperation – an ability at
which humans excel. They integrate three additional layers into Seitz’s psychological layer:

(1) perception sub-layer : models the human perception, for example, vision,

(2) cognition sub-layer : models the processing of the information from the perception sub-layer
and additional information about the vicinity like other agents. This process might lead to
a change in behavior,

(3) behavior sub-layer : models the actual behavior by choosing an ordered set of actions which
are realized by the locomotion model, that is, the operational level.

Figure 2.3 illustrates the hierarchic approach suggested by Kleinmeier et al. [157]. I should note
that in 1995 Blumberg and Galyean [32] already considered to model perception and cognition.
Furthermore, the idea is well-known in the �eld of robotics. Seitz notes:

“[Robots] perceive the environment through sensors, make decisions according to some

rules, and the robot’s mechanic carries out actions.” – Seitz [256]

The idea that agents move according to di�erent behaviors furthered the development of each
hierarchical structure. Early models on the tactical and strategic levels solely modeled the path
planning of pedestrians. For each development step, the hierarchy became more and more con-
crete to �t the need for a broader set of di�erent behaviors. Because pedestrian dynamics is a
research area that attracts and needs scientists from many di�erent research areas [157], hierar-
chical model approaches not only re�ect the human decision-making process but also improve
collaborative and interdisciplinary work. Since modular software architectures also re�ect the
hierarchical structure of the model, experts in, for example, psychology can implement their
models at a speci�c layer without worrying about other parts of the software [158]. In the future,
we, as the pedestrian dynamics community, might be able to reach a consensus for one speci�c
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standardized hierarchical approach. Such a standard would undoubtedly improve collaboration
further and would enable researchers to use their expertise e�ectively. Moreover, comparing dif-
ferent models would become more comfortable, e�cient, and convincing. I conclude that the
hierarchical approach is well-established and accepted by the majority of the pedestrian dynam-
ics community. And I expect it will dominate the modeling and software development in the
future.

2.2 Locomotion models

In this section, I discuss di�erent well-known model approaches of microscopic locomotion mod-
els. They are all part of the operational level introduced in the previous section. One important
characteristic they all share is that agents are driven by their spatial next intermediate destina-
tion. This seems obvious, because we want to model crowd movement but nonetheless, we have
to keep in mind that the choice of the destination and how the driving factor is modeled in�u-
ences the agent’s movement fundamentally. For this review, I exclude specialized model parts
such as how to model doors, elevators or stairs and focus on the basics, that is, obstacles, agents
and spatial destinations. Listing every single model would lead to a repetitive and uninspiring
discussion. Instead, I review models that have a speci�c set of distinct characteristics and are
the pillars of the modeling process. Furthermore, I analyze the computational complexity of the
model based on its de�nition.

2.2.1 Cellular automata

One of the well-known and well-studied models are cellular automata (CA) models [317, 318].
Their name originates from the principle of automata occupying cells according to localized
neighborhood rules of occupancy. Blue and Adler [31] �ttingly lay out the motivation to use
CA models:

“The attractiveness of using CA is that the interactions of the entities are based on intu-

itively understandable behavioral rules, rather than performance functions.”

– Blue and Adler [31]

If we interpret the above statement in the context of pedestrian dynamics, it suggests that complex
crowd behavior emerges from simple rules that each individual follows. In this sense, CA models
are complex systems. Complex behaviors are challenging to understand, but CA models promise
that we can observe a simple (and �nite) set of rules that reproduce real-world complex human
behavior.

CA models are discrete in time and space. Their domain is a possibly in�nite grid of equally
shaped and sized cells. Therefore, the domain is represented by a highly regular structure. The
geometry de�nition partitions the cells into reachable and unreachable cells. Unreachable cells
model obstacles. A cell can be in one of a �nite number of states. This state is updated for each
cell and for each discrete time step. State changes of cells also model the movement of agents.
If for time step k , an agent l moves from cell i to cell j, cell i changes its state from occupied
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to unoccupied. Cell j becomes occupied. For most CAs, cell j has to be unoccupied at time step
k − 1 because a cell can only contain one agent. Many CA models are probabilistic. They use
randomness as a shortcut to resolve con�icts – multiple agents competing for the same cell – or
a probabilistic state transition function.

The development of CA models in pedestrian dynamics began with Gipps and Marksjö [96].
They proposed a model very similar to cellular automata. It uses reverse gravity-based rules to
move agents over a grid of cells. Blue and Adler [31] introduced the �rst CA model for crowd
simulation. CA models for tra�c simulation, such as [249, 244] inspired the model. But instead
of streets, the CA models corridors. Like in tra�c simulations, agents move on lanes. Each time
step consists of three sub-steps, each executed in parallel for all agents: (1) change lane, (2) step
forward, and (3) compute gap. Agents can step forward up to m cells, where m relates to the
agent’s free-�ow velocity. If they are blocked, they can also sidestep to another lane. The model
de�nes the cell length to be 0.457 m, such that an agent occupies approximately 0.21 m2.

Schadschneider [245] introduced a CA model that uses a �oor �eld as a memory to add long-
ranged interactions. Probabilistic transition functions guide agents. They can move to any cell of
their current Moore neighborhood. The CA resolves con�icts probabilistically. A �oor �eld – the
second grid of cells containing real values – modi�es the transition probability of local transition
rules, such that, moves towards the direction of large �eld values are preferred [245, 155]. A
static �oor �eld, which does not evolve with time, is used to de�ne more attractive regions. The
second, dynamic �oor �eld, represents the virtual trace left by agents. Similar to chemotaxis,
virtual traces guide agents through the spatial domain. After an agent leaves a cell (i, j ) the �eld
value is increased by ∆Di,j . A di�usion and decay process, de�ned by

∂D

∂t
= λ · ∆D − δ · D, (2.1)

reduces the values of the �oor �eld. In the equation, λ is the di�usion and δ the decay constant
[245, 20]. In [40], the model is used to simulate the evacuation of a room and a lane formation
scenario. Kirchner et al. [152] extended this concept to support a probability factor in the di�usion
and decay functions to model di�erent behaviors what they call “regular”, “panic”, or “herding”.
Later Bandini et al. [19] used the �oor �eld to model the action-at-a-distance behavior and [172,
169] extended the model and introduce agents that move according to di�erent velocities.

Kirik et al. [156] presented another model approach of long-range interactions. Instead of using
an additional dynamic �oor �eld, they suggested dynamics should in�uence the �oor �eld that
directly navigates agents towards their destination. The new dynamic �eld no longer represents
the distance but the travel time required. Crowded areas require more time to travel through, and
agents choose the fastest instead of the shortest path. One year later, Hartmann [115] suggested
a similar approach that was based on the solution of the eikonal equation. Using the eikonal
equation as a mathematical framework for navigation was introduced by Treuille et al. [291] four
years earlier. The technique gained attraction and was explored by many modelers, for exam-
ple, [173, 174, 165]. In Chapter 3, I discuss this technique in more detail. Part III of this thesis,
introduces e�cient algorithms to compute navigation �elds for microscopic continuous space
models.

Since their introduction, static �oor �elds have been a common technique to navigate agents
towards a destination. They depend on the scenario and have to be initialized accordingly. Since
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they in�uence the agents’ behavior fundamentally, one might argue that static (and dynamic)
�oor �elds contradict the statement made by Blue and Adler. Interactions are not only based
on “understandable behavioral rules” but also on �oor �elds, modeling the geometry (static) and
long-range interactions (dynamic).

Many additions to the standard concept of CA models were made, adding more and more
complexity. In fact, many CA simulation models are cellular network models (CN) (compare
[33, Chapter 7]) rather than cellular automata in the strict sense. Bandini et al. [20] modeled the
vision of pedestrians by introducing the observation fan. Sequential and other update schemes,
di�erent from the parallel update, were introduced to take speci�c interactions into account. Was
et al. [307] introduced social forces according to the personal spaces theory of Hall [111, 112].
These forces push standing agents away from the social space of others. Furthermore, they use
smaller cell sizes and a di�erent grid topology. High-resolution grids allow agents to occupy
more than one cell [243, 307, 308]. This technique allows for smoother agent movement and
higher maximal capable densities. Kirchner et al. [154] concluded that by choosing a high grid
resolution, the models fall, not only in another model category but macroscopic measures of
the simulation outcomes, like density and �ow, are di�erent. They noted that in the limit (cell
size→ 0), the discrete space of the model becomes continuous. Therefore, it might be possible to
compare the model with continuous models, which I describe below. Their investigation revealed
that: on the one hand, the �ow increases with a higher grid resolution. On the other hand, agents
tend to block each other more frequently [154]. In summary, simulation outcomes are in�uenced
by the cell size, the shape of cells, and the topology of the grid. The shape size and topology
determine the number of neighbors (3, 4, 6, 8) of each cell. Maniccam et al. [196] found that,
when the drift of moving objects is high, the critical density of transition between freely moving
and jamming is higher for hexagonal cells than for squares. Sarmady et al. [243] introduced an
even higher grid resolution. They decide to use a cell size of 0.025 m2.

CA models have been successfully applied to modeling and simulation of single-, bi-, and four-
directional pedestrian �ows [31, 40] as well as collective phenomena [246, 153]. The list of models
in this section is not complete but captures the main features and di�erences of cellular automaton
models. Some CAs are deterministic, some stochastic; some use �oor �elds to guide their agents
and to introduce long-term interactions, and some rely only on local interactions. Cells are either
rectangular, triangular or hexagonal.

(i) (ii) (iii)

Figure 2.4: Cell shapes and CA topologies: (i) a rectangular grid with a four- or eight-
neighborhood, (ii) a triangular and (iii) a hexagonal grid a three- and six-neighborhood, respec-
tively.
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They have in common that they consist of many identical components, each simple, but to-
gether capable of complex behavior [318]. The basic rules of cellular automata are simple, thus
easily understandable. There is no specialized knowledge required. Implementing them requires
not much e�ort because they mostly rely on highly regular data structures. One can represent the
grid of cells, the static and dynamic �oor �elds by multiple two-dimensional arrays of primitive
data types. Compared to continuous space models, CAs are signi�cantly less computationally
expensive, because many calculations, such as collision tests, are inexpensive. Due to their regu-
larity, many CAs scale very well. For example, [309] executed their CA on the GPU (a massively
parallel architecture). If computational power is an issue, they o�er excellent results for many
scenarios, even for slow hardware systems. However, the spatial discretization of cellular au-
tomata leads to unwanted artifacts [96, 115]. High-density scenarios, which are of great interest,
are di�cult to reproduce using CA models. Continuous motion is, by de�nition, not observable.
By using higher grid resolutions, one reduces these unwanted e�ects but also increases the com-
putational power needed. Consequently, instead of using higher and higher resolutions to �x the
downside of space discretization, one might switch to a continuous space model.

2.2.2 Force-based models

Force-based models are continuous in time and space. They change the position of their agents
by applying forces to their bodies. This concept assumes that a force �eld guides changes in the
movement of pedestrians. As Chraibi et al. stated:

“[Force-based models] are motivated by the observation that motion of pedestrians de-

viates from a straight path in the presence of other pedestrians. Therefore, their mo-

tion is accelerated which, according to Newton’s law, implies the existence of a force.”

– Chraibi et al. [49]

In general, force-based models follow Newton’s second law

m · ẍ = F , (2.2)

where m is the mass of an object positioned at x accelerated by a force F . The force F is the
superposition of attractive and repulsive e�ects. LetW be the set of obstacles and A be the set
of agents. Then the following equation of motion formally de�nes the movement of each agent

ml · ẍl = Fl ,Γ +
∑

j∈W
Fl ,j +

∑

k∈A
Fl ,k , (2.3)

where ml is the mass of agent l , xl its position, Fl ,Γ the force driving it towards its destination Γ,
and repulsive forces Fl ,j pushing it away from obstacle j and Fl ,k pushing it away from agentk [49].
The smooth acceleration and deceleration translate to continuous and smooth motion. Where CA
models allow agents to change their direction abruptly, force-based acceleration prohibits sharp
turns and sudden changes of the agents’ velocity vector.

The �uid crowd modeling method introduced by Henderson [120] was the starting point of
force-based models. He presented a theory of the �ow of pedestrians along a channel. However,
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F0,Γ

F0
F0,3

Obstacle 3

F0,1

F0,2

Agent 1

Agent 2

Destination Γ

Figure 2.5: Force-based model concept: the obstacle 3, agents 1 and 2 repulse the left agent 0
while the destination on the right attract it. The net force F0 pointing to the bottom right.

the development of actual force-based models started in Japan in 1975, inspired by the motion
of a shoal [122]. Four years later, Okazaki [212] proposed a model inspired by forces between
magnets.

If we discuss force-based models today, we usually refer to social force models. Their name em-
phasizes that forces are caused not by physical but “social” phenomena. The concept is inspired
by Lewin’s idea [185] to explain crowd motion by “social �elds” and is strongly connected to �oor
�elds introduced in the �eld of cellular automata. For example, in 1985, Gipps and Marksjö [96]
already mentioned the concept of repulsive forces between pedestrians. In the gaming and ani-
mation �eld, force �elds were also known and applied to simulate �ocks of birds [233]. However,
Helbing and Molnar [118] introduced the �rst social force model in 1995, and they called it Social
Force Model. As a side remark, in 2010, Löhner et al. [190] presented a very similar force-based
model, which I will not discuss separately. The model of Helbing and Molnar de�nes a primary
force

FΓ =
1
τ
(v0 · eΓ − ẋ) , (2.4)

that drives agents towards their next (spatial) destination. v0 is the agent’s free-�ow velocity, x
its position, e the unit vector representing the direction pointing towards the destination, and τ
the agent’s reaction time. Acceleration is de�ned by

v̇ = F + Fϵ (2.5)

where v is the unrestricted velocity induced by the sum of all forces F acting on the agent [118].
Some force �uctuation term Fϵ takes random variations into account. The actual velocity ẋ is
limited to some maximum speed vmax

ẋ = v (v) =



v, if ‖v‖ ≤ vmax

v · vmax
‖v‖ , otherwise.

(2.6)

Several problems become evident when one observes motion in social force models. Some of
them can be mitigated. The following fundamental observation made by Seitz explains the source
of most problems. He argues that

“in the end, the model’s behavior is validated through its outcomes, that is, the crowd’s

movement. However, they lack a meaningful interpretation as a psychological process:
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social force models neglect the transition from decision making to actual pedestrian mo-

tion because they translate the psychological tension directly to physical motion.”

– Seitz [256]

I agree with this view. The problem originates from mixing the mental process with its physical
realization – there is no distinction between thinking and acting. At �rst glance, social forces
model social and psychological aspects. For example, repulsive forces that act between agents,
model the pedestrians’ personal spaces. Or attractive forces model sub-grouping of pedestrians.
However, agents do not evaluate the e�ect of these forces to make a decision. Instead, they act as
if social forces are real. They decide nothing at all but passively realize the movement imposed
by social forces as if they are physical. If we consider Newton’s law, that is, acceleration implies
the existence of a force, we fall into the trap of using social forces for acceleration. But the forces
that move the human body are fundamentally di�erent from the forces of social force models.
Individuals use muscle power to step forward. There is no real attraction and repulsion e�ect
induced by the destination and other pedestrians, respectively. I step towards my desired desti-
nation by muscle power because I want to – because I’m driven by social ‘forces’ but not because
of social forces. A mental-biomechanic process controls my muscles while social motivations
drive my decision making.

Chraibi et al. [49] listed some of the problems of the original Social Force Model and �xed or
mitigated them by an extension: the Generalized Centrifugal Force Model (GCFM) which is a
generalization of the Centrifugal Force Model (CFM) introduced by [326]. Problems can be un-
derstood if we consider Newton’s laws of motion. By his third law, two particles interact by
forces of equal magnitudes and opposite directions. This symmetry causes unrealistic symmet-
ric behavior. Pedestrians are unable to evaluate the distance between them and others behind
them. Therefore, a pedestrian is more repulsed by others in front compared to the ones behind.
Therefore, Johansson et al. [326, 137] suggested a weighted force

w (θl ,k ) · Fl ,k (2.7)

which replaces Fl ,k in Eq. (2.4). θl ,k is the angle between the normalized distance vector between
agent l and k and the walking direction el of agent l . Johansson et al. [137] also noted that in
reality, in addition to the angle θl ,k , the distance pedestrian keep from each other depends on
their step size. And because the step size translates to speed, they introduce velocity-dependent
anisotropic agent forces. This idea was further developed in the works of Chraibi et al. [49].
Another problem emerges due to of the superposition principle, that is, the assumption forces are
additive. In dense situations, this leads to unnatural backward movement or high velocities [49].

Since the Social Force Model in [118] does not take the solidity of bodies into account, unre-
alistic excessive overlaps of agent bodies occur. The shell of the human body is, to some degree,
elastic, and humans can adjust their skeleton, but this should only contribute to slight overlaps.
Choosing a high value for the elasticity constant helps to avoid overlaps but introduces forces
larger than 6000 N [178]. Lakoba et al. [178] also pointed out that even for simple scenarios, one
has to choose unrealistic physical parameters to achieve a visually realistic behavior. They im-
proved simulation results by using an explicit numerical integration scheme. They came closer to
be able to use realistic parameters, but there was still a discrepancy. To avoid signi�cant overlaps,
they changed the parameters suggested by [119]. However, to achieve good results for a scenario
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with many participants, they made social forces density-dependent. Köster et al. [167] introduced
the Molli�ed Social Force Model, which allows the use of high order fast converging numerical
solvers to increase the computational speed. The authors pointed out numerical pitfalls caused
by discontinuity introduced by, for example, Eq. (2.6), and how to overcome them.

The last problem observed by [49] is that agents do not stop and keep moving independently
of the actual situation. As a consequence, sharp directional changes are impossible. Because
acceleration governs the velocity of agents, the movement of pedestrians tends to oscillate un-
naturally. The GCFM mitigates oscillations and unnatural backward movement by varying space
requirements of agents while in motion – faster-moving agents require more space. Pelechano
et al. [219] avoided overlaps by a separated collision detection mechanism. Their background
in computer graphics and animation motivated them to introduce a model (High-Density Au-
tonomous Crowds) that generates realistic-looking movement patterns. Likewise, [217] proposed
a self-stopping mechanism to prevent agents from continuously pushing over each other.

Force-based models successfully simulate pedestrian evacuation under stress [119], dynamic
route choice [174], pedestrians walking in groups [202] and waiting pedestrians [139]. However,
given one speci�c set of parameters, no force-based model can model all these scenarios. My
experiences lead me to the conclusion that the more mental activity pedestrians invest in their
movement, the less appropriate Newton’s laws become. Therefore, forced-based models are ap-
propriate to reproduce evacuations through a single bottleneck but challenging to use for more
complicated situations. An unsolved problem of all force-based models is the multiple roles of the
relaxation time τ in Eq. (2.5). It a�ects how precisely agents follow their preferred path, and at the
same time, how they avoid collisions [138]. These two behaviors may not be correlated. Johans-
son et al. [138] suggests that it is up to the scientists to decide which artifacts can be tolerated
given their speci�c research questions. I agree with that.

2.2.3 Velocity-based models

In this section, I discuss the second type of continuous space models: velocity-based models.
Similar to force-based models, velocity-based models are continuous in space and time, and agents
move according to a velocity vector. But in contrast, the velocity is not based on acceleration.
Instead, velocity-based models change the agent’s velocity vector more directly.

For velocity-based models, the �rst derivative of the agent’s position ẋl relates to some speed

x1

x2

Destination Γxl
ẋl x3

ẋ3

ẋ2

ẋ1

Figure 2.6: Velocity-based model concept: agent at position xl adapts its velocity ẋl to avoid
collision. Agent 2 and 3 only slightly disrupt agent l while agent 1 cause agent l to choose a
detour to its destination t .
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function v which depends on the positions (and possibly velocities) of the other n agents:

ẋl = v (xl , x1, . . . , xn ) · e (xl , x1, . . . , xn ), (2.8)

where e returns a unit vector pointing towards the walking direction of agent l [289]. Note that
v and/or e depend on the desired direction towards the agent’s destination given by a strategic
or tactical model.

One velocity-based approach relies on the so-called optimal-velocity. This concept was �rst
introduced and studied in car tra�c simulations [210, 315, 207, 288]. Tordeux et al. [289] brought
it into the pedestrian dynamics community and proposed a collision-free minimal speed-based
pedestrian model. In their model, agents adjust their velocity using the optimal velocity function
v , which depends on the minimum spacing in front. Their model reproduces phenomena of
self-organization observed in force-based models and �eld studies but requires less computation
power.

The computer graphics community has proposed another type of model that implements a
vision-based collision avoidance [216, 214, 142]. Karamouzas et al. [142] build on the idea of
velocity obstacles [83, 295] and bears also some resemblance to the model proposed by Pettré
et al. [222]. Agents of their model actively seek a free path through a crowd by calculating the
required velocity changes to avoid collisions with other agents or obstacles. First, the set of the
�rst n agents that are on a collision course of a speci�c agent is computed. In the second step,
orientations and speeds, which lead to collision avoidance, are calculated. Then an optimal ve-
locity is picked. There are some restrictions on the change of the velocity, but it can change more
directly compared to force-based approaches – a distinct feature of all velocity-based models.

Shiller et al. [271] generalize the concept of velocity obstacles [83] to obstacles moving along
arbitrary trajectories. Berg et al. [26] developed a collision avoidance method for multiple mobile
robots by reducing the problem to solving a low-dimensional linear program. They called the
model Optimal Reciprocal Collision Avoidance Model. Based on these ideas, Curtis and Manocha
[57] developed extensions to model human behavior. They consider the idea that agents adapt
their intent (chosen at the strategic or tactical level) to local conditions. As a side remark, Mous-
saïd et al. [203] use the concept of collision avoidance by actively changing the velocity and in-
tegrate it into a force-based model. The velocity is still adjusted smoothly by acceleration, but
heuristic rules are used to choose the desired direction and speed of agents.

Dietrich et al. [68] introduced the Gradient Navigation Model (GNM), which is not mainly in-
�uenced by Newtonian physics. Instead, humans navigate freely based on internally driven mo-
tives. Similar to force-based approaches, the GNM is an ODE-based model. However, like for
many �oor �eld based CA models, agents steer directly towards the direction of steepest descent
on a given navigation function. More precisely, the direction is de�ned at �rst order while the
speed is of second order. Since the magnitude of the velocity relies on acceleration, the Gradi-
ent Navigation Model is not purely velocity-based but shares some mathematical aspects with
force-based models.

2.2.4 Data-driven modeling and calibration

CAs, force-based, and velocity-based models are analytic approaches. Some combine analytical
methods with heuristics and other decision-making techniques. The mathematical equations,
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parameters, and rules are based on logical principles observed in physics, psychology, and soci-
ology. Some model parameters might not be observable in the real world. However, these models
can be calibrated by real-world data. Modelers apply the classical modeling framework:

(1) observation: observe the real world,

(2) modeling: use our observations to deduce an abstract model,

(3) calibration: calibrate your model based on real-world data,

(4) validation: validate your model, for example, �nd new phenomena in your simulations
which you can also observe in the real-world.

However, some try a di�erent path: the data-driven approach. They change their focus from
logical principles and cause and e�ect to the data. Models are learned by using a massive amount
of data, mainly video footage.

Lerner et al. [184] proposed a data-driven modeling approach based on real-word trajectory
segments. They extract these segments from video data. During the simulation, agents query
these real-world trajectory examples to extend their virtual trajectory. Zhao et al. [332] also re-
lied on video data. But instead of using trajectories, they use the positions of pedestrians, their
neighbors of the last 2 seconds, and their velocities. They trained a neural network classi�er that
selects a suitable real-world example to updates the agent’s velocity. Musse and Thalmann [206]
used a data-driven approach for pedestrian behavior in non-dense scenarios. They automatically
extract trajectories and use them to learn the desired velocity of agents. To increase the realism
of animated crowds, Eunjung et al. [141] use a database of formations and trajectory segments.
Each animated agent selects a trajectory segment from the database to extend its moving tra-
jectory. Their selection algorithms ensure that no collisions occur. Zhong et al. [334] presented
a data-driven crowd modeling framework. They aimed to learn and reproduce macroscopic be-
havior patterns by learning the velocity �eld, which guides pedestrians towards their destination
region. Their model is based on a dual-layer modeling architecture. They also learned behavior
patterns from video data. Bera et al. [24, 25] presented a method to extract the dynamic behavior
features of real-world pedestrians. They use the extracted footage to learn movement character-
istics on the �y.

To this day, data-driven approaches are not yet competitive compared to classical models. They
are not yet capable of dealing with the variety of scenarios that classic models successfully cap-
ture. However, this might change in the future. Furthermore, they are not only used to learn
a model but also to calibrate it. In fact, calibration is always data-driven, but there are simple
approaches, such as calibration against fundamental diagrams, and more sophisticated methods.
One might argue that each distinct set of input parameters is in and of itself a di�erent model. The
area between data-driven modeling and (data-driven) calibration is gray. Therefore, I also want
to mention more sophisticated calibration methods. Johansson et al. [137] were one of the �rst
that proposed an evolutionary algorithm to calibrate the parameters of the Social Force Model. In
[220, 251], the authors introduced optimization algorithms, such as genetic algorithms, to apply
video-based calibration. Yamaguchi et al. [321] applied machine learning techniques to estimate
model speci�cs and parameters of a force-based model. Wolinski et al. [319] compared three dif-
ferent microscopic pedestrian simulations models: the Social Force Model [119], Reynold’s boids
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step or wait

(i)

tangential evasion

(ii)

sideways evasion

(iii)

following

(iv)

Figure 2.7: Behavior with four simple heuristics introduced by [261].

model [233, 234] and the Optimal Reciprocal Collision Avoidance Model [26]. Combining macro-
and microscopic metrics with an evolutionary algorithm, the authors established a general frame-
work for model calibration and comparison. Before comparing the models, they calibrate each
model based on video data. Seer [252] also calibrated di�erent models (di�erent social force mod-
els, the Optimal Reciprocal Collision Avoidance Model, and di�erent optimal steps models) based
on trajectories recorded by the Microsoft Kinetic. Seer also developed a framework for evaluat-
ing microscopic pedestrian models. For calibration, he used two approaches. The �rst one called
model estimation by nonlinear least square methods [127, 163] and the second one comparison of

real and simulated trajectories [201]. The authors base their estimation method on an objective
function ξ (ω), which compares the acceleration of multiple pedestrians and simulated agents at
many points in time for a speci�c set of parameters ω. The method minimizes ξ to �nd suitable
parameters ω. The second approach is similar to [319]. But instead of simulating all pedes-
trians, each individual is simulated separately. The remaining agents move on their observed
(real-world) trajectory. Zhong et al. [333] proposed di�erential evolutions to calibrate parame-
ters of pedestrian simulation models based on video data. Gödel et al. [99] introduced Bayesian
inversion as a systematic method for the calibration of input parameters for microscopic pedes-
trian simulation models. One crucial input parameter of all the mentioned models is the set of
spatial destinations of the agents. The choice crucially in�uences the simulation outcomes. The
authors in [100] tried to learn this critical parameter, which can often not be observed directly
by the video footage or other sensors. They use density heatmaps, which indicate the pedestrian
density within a given camera cutout.

2.2.5 Cognitive heuristics models

This section discusses important microscopic models that do not �t in any of the previous cat-
egories but follow another idea: simple cognitive heuristics. These models are motivated by
�ndings in cognitive science made by Gigerenzer et al. [95]. Antonini et al. [16] introduced a dis-
crete choice framework for pedestrian walking behaviors. Agents choose their velocity direction
according to several radial cones. They (1) slow down, (2) keep some speed, or (3) accelerate.
Seitz et al. [261, 256] introduced a model that uses simple heuristics rooted in cognitive psychol-
ogy, which I call Behavioral Heuristics Model (BHM). Moussaïd et al. [203, 200] motivated the
work by suggesting a rule based approach. However, Seitz et al. argue against the required com-
plicated numerical calculations because humans use e�cient and straightforward rules that do
not necessarily lead to the global optimum but yield good-enough results [261]. The authors
point out that many models use expensive computational techniques like optimization, proba-
bility distributions evaluation, or force integration that are inadequate descriptions of cognitive
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Figure 2.8:Direction choice heuristic introduced by [320]: green arrows indicate following direc-
tions while orange arrows indicate detour directions. Note that there may exist a detour direction
that is identical to a following-direction.

processes. Instead, they suggest 4 simple heuristic behaviors that determine the movement of
agents: (i) agents step forward or wait, (ii) they can evade tangentially if they are blocked, (iii)
evade sideways, or (iv) follow others, compare Fig. 2.7. They emphasize that heuristics can help
explain the cognitive e�ort connected to moving in a social environment. And they encourage
the community to �nd and introduce new or better heuristics in the future. Xiao et al. [320] an-
swered that call and extended the works of [261]. They re�ned the directional choices of agents.
Based on the Voronoi diagram of all agents’ positions, they introduced three heuristics for the
choice of agent directions: (1) towards the destination, (2) to follow another agent, (3) to make a
detour. Figure 2.8 illustrate this concept. On the one hand, the direction pointing to the Voronoi
node corresponds to the intermediate space of two neighboring agents. Therefore, it is a possi-
ble detour. On the other hand, the direction perpendicular to the Voronoi edge corresponds to
the neighboring agent and de�nes a possible following-direction. An optimization mechanism
evaluates all possible detours and following-directions.

Cognitive heuristics should and will play a role in future model developments. However, sepa-
rated from other techniques, they are not used to simulate complex scenarios. For example, Seitz
introduced them on the psychological layer [256] and proposed the realization of the physical

layer by optimal steps models or a force-based model that does not model the decision making
with forces.

2.2.6 Optimal steps models

Optimal steps models de�ne discrete and instantaneously executed footsteps that model the phys-
ical movement of pedestrians while “repulsive” and “attractive” potentials model the decision-
making process. Even though Seitz and Köster [257] de�ne repulsive and attractive potentials,
there are no forces present. Instead, an optimization problem is solved to compute the next
position of an agent [257]. Seitz and Köster used the term “potential” to enrich the reader’s un-
derstanding but already cultivated the term utility to draw a line between optimal steps models
and social force models. Optimal steps models all share the optimal step principle:

(1) agents move by a series of discrete footsteps
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(2) to increase their utility de�ned by a utility �eld u.

Seitz and Köster [257] introduced the original Optimal Steps Model (OSM) in 2012. On that ba-
sis, the pedestrian dynamics group at the Munich University of Applied Sciences developed it
further. Two years later, Köster and Zönnchen [165] introduced long- and medium-range inter-
action via dynamic navigation �elds into the model. In [300], von Sivers and Köster re�ned the
model by integrating the theory of (inter-) personal space. Simultaneously, Seitz et al. [260] were
more concerned with walking as a biomechanical process and studied the stepping behavior of
pedestrians. Zeng et al. [327] and Köster et al. [168] extended the optimal step principle for motion
on stairs. Recently, Kleinmeier and Köster [158] investigated collective human behavior. Based
on the optimal steps model introduced in [300], they showed how an existing locomotion model
could be extended to model these behaviors.

In this section, I explain why optimal steps models are suitable for large-scale microscopic
simulations. For the introduction of a parallel implementation in Chapter 5, I have to go into the
details of the models. The aim is not to examine the content of each paper but to extract presented
ideas and �ndings and show how researchers realized them algorithmically.

The natural stepping behavior

In contrast to many other models, optimal steps models capture the principle of human locomo-
tion: bipedalism. As Seitz et al. remarked:

“The principle of human locomotion is bipedalism. Although this seems a trivial state-

ment, it has largely been ignored in pedestrian and crowd simulations.” – Seitz et al. [256]

The spatial discretization of agents’ motion de�ned by optimal steps models, re�ects the natu-
ral stepwise movement of pedestrians. While in cellular automata, pedestrians are represented
by cells and limited to move from cell to cell, optimal steps models represent pedestrians by the
agents’ position and extension in space. Like humans, agents move by performing discrete foot-
steps in the continuous space. Therefore, they adjust their movement direction only between
each footstep. For each individual l , the most valued position contained in Pl determines its next
position. Importantly, Pl ⊂ R2 is a subset of the space covered by the agent’s step circle. The util-
ity u models the pedestrian’s assessment of locations. Areas close to other agents and obstacles
are undesirable, while positions close to the agent’s destination are desirable. Note that since the
two feet of humans are not modeled explicitly, a footstep moves the center of the agent’s body
to the next best position. The concept of a region of interest situated in front of pedestrians and
discrete choices is similar to the approach introduced by Antonini et al. [16]. Before we move on,
I add some essential terms to avoid confusion:

(i) The free-�ow speed vl is the speed of pedestrian l in an open space with no incentives other
than reaching a spatial destination.

(ii) The desired speed is the speed of pedestrian l in an open space, including all incentives, for
example, slowing down for a friend to catch up.
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(iii) The desired step length rl is the step length of pedestrian l if its speed is equal to its desired
speed.

(iv) The step length is the length of a performed footstep.

The vast majority of models assume that free-�ow speed equals desired speed, and optimal steps
models are no exception. In the following, I explain how the desired step length rl of agent l is
computed.

Agents draw their free-�ow speed from a normal distribution truncated at −σvλσ and +σvλσ :

vl ∼ Ntr (µv ,σv ,−σvλσ ,+σvλσ ) . (2.9)

Seitz et al. [257] follow the results found by Weidmann [312], who suggested µv = 1.34 m
s and a

standard deviation of σv = 0.26 m
s . The authors choose λσ = 2, such that the cuto� σvλσ = 0.52

is twice the standard deviation. Therefore, free-�ow speeds are in between 0.82 m
s and 1.86 m

s .
µv ,σv and λσ depends on the modeled population and have to be calibrated for each speci�c
scenario. Seitz et al. [257] derive the desired step length rl of agent l by its established relation to
the agent’s free-�ow speed. Experiments revealed a linear relation of the individual desired step
length to the free-�ow speed:

µl (vl ) = λ0 + λ1 · vl , (2.10)

with λ0 = 0.462 and λ1 = 0.235. Slightly di�erent coe�cients (λ0 = 0.38, λ1 = 0.27) have
been found in [259]. Seitz et al. [257] proposed a quadratic term for faster speeds, for example,
if pedestrians start jogging. Each agent l draws its desired step length rl from another truncted
normal distribution

rl ∼ Ntr
(
µl (vl ),σrl ,−σrlλσ ,+σrlλσ

)
. (2.11)

Given its desired step length rl and the current position xl ,k of an agent, the choice for the next
agent’s position follows the principle of the homo economicus: the next position xl ,k+1 maximizes
the agent’s utility

xl ,k+1 = arg max
y ∈ Pl+xl,k

ul (y). (2.12)

Restricted stepping

Di�erent choices for the set of possible next positions Pl were introduced, each satisfying the
following condition

y ∈ Pl ⇒ ‖y‖ ≤ rl . (2.13)

One can di�erentiate between a connected in�nite and discrete and �nite set of positions. Strictly
speaking, if the set is �nite, the model is not only discrete in time but also in space, but in contrast
to cellular automata, there is no global grid. Assuming Pl is �nite and �xed for each individual
for the whole simulation, each agent l moves on a speci�c grid de�ned by its initial position xl ,0
and Pl . In [301] von Sivers and Köster proposed to use a connected in�nite set

Pl =
{
y : ‖y‖ ≤ rl

}
, (2.14)
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(i) (ii) (iii) (iv) (v)

Figure 2.9: Di�erent possible next positions Pl of an agent l at the center: while the step circle (i),
multiple circles (ii) and the speed dependent restricted step circles (iii) are �nite discrete sets, the
step disc (iv) and the speed dependent step disc (a step circle segment) (v) are connected in�nite
sets.

such that agents adjust their step length accordingly. If Pl is in�nite, the optimization problem
is solved by the NelderAndMead algorithm [209], or evolutionary algorithms [297, 145]. Other
gradient-free methods are applicable as well. I tested a particle swarm optimization (PSO) method,
which achieved similar results compared to the NelderAndMead algorithm.

Instead of using a connected in�nite set, modelers also considered a �nite number of positions.
In the introduction of the optimal steps models [257] the authors proposed a set ofm+1 positions
that lie on a circle of radius equal to the desired step length of the agent:

Pl =
{
(cos(θ ), sin(θ )) · rl , θ = 2π

m
(i + ϵθ )

���� i = 0, . . . ,m
}
∪ {(0, 0)}. (2.15)

To eliminate unwanted discretization artifacts, they shift positions by ϵθ ∼ U (0, 1) each time an
agent steps forward. The authors showed that by using a speci�c �nite set Pl , the model could
emulate a cellular automaton [257]. Seitz et al. [260] extended this concept to multiple circles to
allow di�erent step lengths. In [300], von Sivers and Köster used this construction to approximate
the in�nite set. I identi�ed two arguments to use �nite discrete over in�nite connected sets:

(1) computational perspective: it reduces the computational burden while results are still accu-
rate,

(2) modelers perspective: heuristics drives the cognitive process, therefore, �nding “good-
enough” values is realistic.

Since evaluating the utility function is one of the primary sources for the overall computational
load, it is reasonable to use a small number of possible positions such that results are still accu-
rate. Seitz [256] showed experimentally that, at some point, increasing the number of possible
positions does not in�uence the measured (macroscopic) outcomes. From the modeler’s perspec-
tive, researchers argue that people use heuristics to solve complicated problems, such as catching
a ball [95, 101, 94]. Modelers such as Seitz [261, 256], Moussaïd [203, 200] and Xiao [320] argue
that heuristics are also used to decide where to go next. Consequently, even though pedestrians
may follow the principle of the homo economicus, it is reasonable to assume they �nd the best
next position within a small margin.

Regardless of using a �nite discrete or in�nite connected set, Pl is also used to model physical
restrictions, such as the desired step length rl . Another restriction is the relation between turning
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(i) (ii)

Figure 2.10: Di�erent stepping behaviors: by using one step circle, agents move with a con-
stant velocity or stop completely (i). By using a step disc, allows agents to use smaller steps and
therefore smaller speeds than their free-�ow speed (ii).

angle and walking speed, which was examined by Seitz et al. [260]. They suggest restricting the
turning angle of the agent by its walking speed such that

turning angle ≤ π − waling speed, (2.16)

holds.

Slower stepping

If the agent’s desired speed remains unchanged, the footstep duration is �xed at rl/vl . Since
condition 2.13 ensures

‖xl ,k+1 − xl ,k ‖ ≤ rl , (2.17)

agents slow down by stepping on a position that is less desirable to reach their destination but is
overall the best possible option. The free-�ow speed vl is the maximal achievable speed of agent
l . Since the speed of an agent does not in�uence its desired step length rl , there is no acceleration
modeled. Instead, an agent l can adjust its speed to any value that is not greater than its free-�ow
speed vl . In that sense, optimal steps models are velocity-based.

Instantaneous stepping

Since a footstep
((tl ,k , xl ,k ), (tl ,k+1, xl ,k+1)), (2.18)

from xl ,k to xl ,k+1 requires tl ,k+1 − tl ,k seconds, one has to decide at which point in time it is
executed. During the development of optimal steps models, researchers made two suggestions.
At �rst, Seitz et al. [257] proposed that agents perform their footsteps at the time they end (tl ,k+1).
Later in [258], the authors reconsidered this questions more deeply and proposed the time they
start (tl ,k ). They justify their decision by arguing that pedestrians can anticipate the movement
of others.

In the same contribution, the authors concluded that di�erent update schemes in�uence the
simulation outcomes. They compared a parallel and event-driven update scheme. The parallel
update scheme relies on a global clock that increases the simulation time t iteratively by ∆t while
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Figure 2.11: Contour plot of the overall utility �eld −ul of agent l : at the center of each of the
four bells other agents are positioned. The destination utility −uΓ is indicated by the tilted plane
and drives agent l towards the right.

the event-driven update scheme is clock-free. It executes footsteps when they start while the
other update scheme might violate this condition by ∆t seconds. I will explain these update
schemes and their role in the acceleration of optimal steps models in Chapter 5.

Continuous utility �elds

In all optimal steps models, the utility ul of an agent is the superposition of three sub-utilities:

(1) The global destination utility uΓ drives the agent towards its next intermediate destination.

(2) The local obstacle utility uW ensures that agents stay away from obstacles.

(3) The local pedestrian/agent utility uA,j ensures that agents stay away from agent j.

The net utility ul for an agent l at y is de�ned by

ul (y) = uΓ (y) + uW (y) +
∑

j ∈A
j , l

uA,j (y). (2.19)

Pedestrian/agent and obstacle utilities are local, that is, agents far enough away from other agents
and obstacles navigate solely based on the destination utility. Therefore, the destination utility
uΓ is responsible for the long- and medium-range navigation. It shares many similarities with
�oor �elds of cellular automata. I refer to it as a (continuous) navigation �eld to distinguish it
from �oor �elds. For example, to model evacuations, modelers use a navigation �eld that encodes
the negated shortest travel time from an exit Γ ⊂ R2 to any position in the simulation domain
Ω. Even though e�cient algorithms for its calculation exist, its computation cost a�ects large-
scale simulations. In Chapter 3, I discuss navigation �elds as a modeling tool, and in Chapters 6,
8 and 9, I present my contribution to accelerate continuous navigation �eld computation for
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δw δtor 0 δtor δw

(i)

δw δtor 0 δtor δw

(ii)

δper δint δtor 0 δtor δint δper

(iii)

Figure 2.12: The obstacle and agent utilities introduced by Seitz and Köster [257] (i), by Seitz
et al. [260] (ii) and by von Sivers and Köster [300] (iii).

pedestrian dynamics. However, in the following, I continue with the presentation of di�erent
types of obstacle and pedestrian utilities introduced in [257, 300, 260].

To avoid collisions with other agents or (static) obstacles, repulsive functions based on the
Euclidean distance are introduced. The utility of agent j a�ecting other agents at position x is
given by uA,j (x). Seitz et al. [257, 260] propose the following form

uA,j (x) =




−µA, if 0 ≤ dj (x) ≤ δtor

−hA · дA (x), if δtor < dj (x) < δw
0 else,

(2.20)

where dj (x) is the Euclidean distance from x to the center of agent j and δtor is the agents’ torso
diameter. The obstacle utility uW is de�ned in a similar way with the di�erence that it depends
on dΩ (x), that is, the distance from x to the closest obstacle. Seitz and Köster [257] introduced
the utility depicted in Fig. 2.12i, which uses дA = д1

A with

д1
A (x) = exp(−aA · dl (x)bA ). (2.21)

Later, in [260] the authors used compact support utility function de�ned by

д2
A (x) = exp *.

,

1
( [
dj (x) − δtor

]
/δw

)2 − 1
+/
-

(2.22)

instead. Positions closer than the diameter of the agent’s torso δtor are of low utility, preventing
agents from overlapping. The utility depicted in Fig. 2.12ii increases more signi�cantly for δtor <
dj (x). It also introduces in�nite di�erentiability for all x with δtor < dj (x). Furthermore, д2

A
vanishes outside of δw , such that numerical cut-o� errors can be avoided. Another advantage
of function д2

A is that uA,j introduces only two new parameters hA and δw , which simpli�es
calibration. While δw can be estimated by using experimental data, hA is di�cult to measure and
di�cult to interpret.

In [300], von Sivers et al. introduced more complex utilities that translate the theory of (inter-)
personal space [112] into mathematical formulas. Each space is modeled as a disc around the
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agent. The contact space (dj (x) < δtor) de�nes the area for which pedestrian bodies physically
touch. This space does not originate from Hall [112] but is a straightforward extension of the
concept of personal spaces. Hall described the intimate space (dj (x) < δint) to be the area where
the sensory inputs (body head, smell, sound etc.) of another person become notable, and body
contact is nearly unavoidable [300]. If the distance between agents increases further, that is if
dj (x) < δper, they reach the personal space. Pedestrians more than δper meters away from each
other step into the social space of one another and if they are far apart they are in the others
public space, respectively. Von Sivers et al. did not model Hall’s social and public space because
their in�uence on pedestrian dynamics is insigni�cant [300]. For each of the other spaces, the
authors introduce a function of compact support, that is,uj,con,uj,int, anduj,per, respectively. They
are of similar form as the function of Eq. (2.22). The agent utility of an agent j a�ecting others at
position x is de�ned by

uA,j (x) =




−uj,con(x) − uj,int(x) − uj,per(x) if dj (x) < δtor

−uj,int(x) − uj,per(x) if δtor ≤ dj (x) < δint

−uj,per(x) if δint ≤ dj (x) < δper

0 else.

(2.23)

Aside from a di�erent resulting behavior, the advantage of these utilities is that the parameters
δtor, δint and δper can be observed in the real world. They are di�cult to measure and certainly
di�erent for each pedestrian, but they are based on a well-established social theory. All addition-
ally introduced parameters of uj,con, uj,int, and uj,per (compare [300]), are as di�cult to measure
as the parameter hA of the previously discussed utilities. I also want to stress that the e�ect of
the pedestrian, obstacle, and destination utilities can only be analyzed in combination because of
the superposition principle. For example, doubling the destination utility has the same e�ect as
multiplying all other utilities by one-half. Increasing or decreasing the gradient of the destination
utility ∇uΓ strongly in�uences the outcome of the simulation as well. On the other side, adding
or subtracting some constant from uΓ has no e�ect at all. Therefore, especially the heights of
utilities controlled by, for example, hA , can only be calibrated as a whole. If utilities are de�ned
unreasonably, agents can get stuck. For example, we can imagine an agent attempting to walk
through a corridor, but inside the corridor, the obstacle utility decreases faster than the destina-
tion utility increases. Consequently, the agent will stop moving. One interpretation is that the
claustrophobic feeling imposed by the corridor outweighs the bene�t of moving closer towards
the destination.

Optimal steps models for large-scale simulations

Even though optimal steps models are continuous models, they share many similarities with
cellular automata. They assume pedestrians optimize their positions in space according to a
balance of goals: reaching a destination, avoiding obstacles, and other pedestrians. They reject
force-based navigation and introduce an optimization method that operates on the superposition
of multiple scalar utility �elds instead. Moreover, they reject continuous movement and intro-
duce discrete footsteps, similar to the cell hopping mechanism of cellular automata. However, in
contrast to cellular automata, time is discretized not by a global ticking clock but by individual

33



Chapter 2 Microscopic pedestrian modeling

Figure 2.13: Elliptic pedestrian utility and body shape: the blue shape represents the pedestrian
body, while the purple area indicates its utility function.

footstep events. Furthermore, optimal steps models use a continuous space, or the underlying
grid is dynamically changing, according to the agent’s position and speed. Consequently, opti-
mal steps models do not su�er from the same unwanted artifacts and can reproduce high-density
situations.

Despite the introduction of multiple utility functions, there is much room for improvement.
For example, as suggested in [49] it is reasonable to assume that pedestrians are more a�ected
by pedestrians in front than by others at their side. This asymmetric intensity can be modeled
by using an elliptical-shaped pedestrian utility function. Another extension that could be intro-
duced is to model the agent body by another elliptical utility. The idea is shown in Fig. 2.13.
Finding suitable pedestrian and obstacle utilities is challenging, but many of their parameters are
observable in the real world. Measuring the distance agents tend to keep to each other in certain
situations is di�cult, but measuring the social forces they impose on each other is impossible.

The lack of acceleration tends to lead to a too optimal stepping behavior, in the sense that
agents competitively overtake others instead of embracing a follower behavior. As a consequence,
agents in high-density situations walk faster than real-world pedestrians [339]. I suggest intro-
ducing discrete acceleration by imposing additional restrictions on the set of possible next posi-
tions Pl . Changing the shape of the step disc to a dynamic ring, ensures that the step length falls
in some interval. Depending on the agent’s velocity, the ring grows (acceleration) and shrinks
(deceleration). Compare Fig. 2.14. Consequently, the velocity during one footstep can not change
too much. This strategy could lead to a stepping behavior observed by [306].

Integrating dynamics into the navigation �eld ul ,Γ is one way to model long- and medium-range
interactions. A �rst continuous dynamic navigation �eld was proposed by [291, 174]. Köster and
Zönnchen [165, 166] introduced a continuous dynamic navigation �eld to optimal steps models.
Since the space of the spatial domain is continuous, dynamic navigation �elds are computation-
ally expensive.

Excluding the computation cost for the navigation �eld, the rest of the computational burden

Figure 2.14: The concept of discrete acceleration: the stepping ring restricts the agent’s step
length to be in a speci�ed interval. While an agent accelerates, this interval shifts to higher values.
The ring can be even more restricted to allow only small turning angles for large velocities.
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consists of evaluating local agent and obstacle utility functions. On the downside, multiple ex-
ponential functions have to be evaluated – dependent on the utility de�nition, the set of possible
next positions Pl , and the used optimization method. Furthermore, the distance between some
position y and nearby agents, as well as the closest obstacle, is needed. However, these computa-
tions are also required using a force-based or velocity-based model. Another algorithmic problem
comes into play if the event-driven update scheme is used. Since it imposes a strict order on the
performed footsteps, parallelization becomes di�cult. On the upside, the optimal step principle
allows large (individualized) time steps. In dense situations, the evaluation of the agent utilities
becomes more expensive, because the number of agents in�uencing each other increases, but
the time step length stays the same. Especially the execution time of force-based models su�ers
from the requirement of small time steps in dense situations. Therefore, optimal steps models
are computationally more expensive than cellular automata but have the potential to outperform
social force models and ODE-based velocity models such as the Gradient Navigation Model.

In conclusion, from my modeler’s perspective, optimal steps models are attractive. Their
decision-making process is not based on Newtonian mechanics, car tra�c models, or velocity
obstacles, but on social and psychological �ndings. Besides, the stepping behavior they model
is a simpli�ed version of the biomechanic stepping progress of real-world pedestrians. I think
optimal steps models will further in�uence the discourse in the pedestrian dynamics community.
Moreover, since there is still room for improvement, new optimal steps models will be introduced
in the future. From my computer science perspective, they are attractive as well. Compared to
ODE-based models, large (individualized) time steps lead to less computational work, and the
locality of pedestrian and obstacle utilities are bene�cial for parallelization. For all these reasons,
I decided to focus on optimal steps models for large-scale simulations.

2.3 Summary

In this chapter, I gave an overview of the diverse landscape of microscopic pedestrian simulation
models.

I discussed the introduction and re�nement of the hierarchic model approach. It structures the
pedestrian behavior into multiple levels and is the basis for most well-known models.

In Section 2.2 of this chapter, I reviewed di�erent types of locomotion models. To this day,
cognitive heuristics (Section 2.2.5) alone can not de�ne a valid locomotion model since the op-

erational layer is missing. However, they should be considered for the decision-making process.
Cellular automata are computational e�cient since they rely on highly regular data structures and
often support a parallel update scheme (Section 2.2.1). However, their regularity imposes restric-
tions that lead to unwanted artifacts and a limited range of reproducible densities. Force-based
models operate in continuous space and time (Section 2.2.2). They are motivated by Newtonian
mechanics. Social forces accelerate agents towards their destination and away from other agents.
They can model many situations but the lack of distinction between thinking and acting, that is,
the confusion of the mental process with the physical motion of the pedestrian’s body, leads to
many problems. Many extensions mitigate those problems, but I think they can never be fully
resolved if we do not change the model’s underlying basis. Velocity-based models avoid acceler-
ation by forces (Section 2.2.3). Combined with a decision-making strategy, they are a promising
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alternative. In my opinion, optimal steps models fall into this category (Section 2.2.6). They
model the decision-making process of the homo economicus. Furthermore, optimal steps models
are motivated by the biomechanical process and �ndings from psychology rather than physical
laws of moving particles. I also argued that from an e�ciency perspective, optimal steps mod-
els are attractive. They are more computationally expensive than cellular automata but impose
less computational costs than force-based models. In Chapter 5, I develop parallel algorithms for
optimal steps models. Therefore, I gave a detailed and preparing description. In Section 2.2.4,
I shortly discussed another path to build a model: data-driven modeling. Data-driven models
learn the pedestrians’ behavior by data, mainly video footage. Since there is a lot of process in
the development of learning algorithms, they will in�uence the pedestrian dynamics community
in the future. However, to this day, they are not yet competitive compared to classical model
approaches since they cannot deal with the variety of scenarios that classic models successfully
capture.
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CHAPTER 3
Navigation �elds

“The world is not comprehensible, but it is embraceable: through the embracing of one of

its beings.”

– Martin Buber

Researchers often use the terms navigation �eld, �oor �eld, scalar �eld, and potential �eld syn-
onymously. In the discrete (Ω ⊂ Z2, Γ ⊂ Ω) as well as in the continuous (non-discrete connected)
space (Ω ⊂ R2, Γ ⊂ Ω) these �elds are scalar �elds

uΓ : Ω → R (3.1)

that assign to each position x ∈ Ω a real value uΓ (x), which is sometimes interpreted as utility,
potential, or probability. Ω is the spatial simulation domain and Γ the spatial destination of
interest. I distinguish between �oor �elds of cellular automata and continuous navigation �elds.
Although there are other methods to generate a navigation �eld, such as �ood �ll methods [174],
I focus on solving the eikonal equation because it is widely and successfully employed. Therefore,
if I refer to navigation �elds, I mean solutions of this equation, which I introduce in the following
section.

3.1 Large-scale human navigation

Regardless of their name, these �elds “guide” agents from any position to a spatial destination Γ.
They combine attraction and repulsion. The idea of navigation guided by �oor �elds was �rst in-
troduced in the �eld of robotics [146, 147, 180]. However, in robotics, the environment is usually
unknown to the robot, while in pedestrian dynamics, modelers often assume that pedestrians
have comprehensive knowledge about the spatial structure of their environment [173]. Naviga-
tion �elds model multiple aspects of the way�nding process and are based on the psychological
concept of the so-called cognitive map, �rstly mentioned by [287], and the visual perception of
pedestrians.

“Cognitive maps are the internal representation of experienced external environments,

including spatial relations among features and objects.” – Golledgel et al. [102]
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Neuroscientists know that the hippocampal formation, which is part of the limbic system of the
human brain, is mainly responsible for storing and retrieving spatial memories [213]. In their
book The hippocampus as a cognitive map, O’Keefe and Nadel connect the hippocampus with the
mental representation of space and context-dependent memory. They argue that

“the hippocampus is the core of a neural memory system providing an objective spatial

framework within which the items and events of an organism’s experience are located

and interrelated.” – O’Keefe and Nadel et al. [213]

In [199], Moser et al. discovered place cells and grid cells in rats’ brains involved in the formation
of the cognitive map. Ekstorm et al. [78] made similar discoveries. They observed place cells that
increase their �ring rates when the animal traverses speci�c regions of its surroundings, provid-
ing a context-dependent map of the environment. The ongoing research indicates that similar
cells contribute to the way�nding decision-making process of humans. It is unclear if the cogni-
tive map takes a cartographic form. There is more evidence for randomly distributed place cells
[102]. Golledge et al. [102] explored the connection between environmental learning and cogni-
tive maps in the context of learning a route. They compared blind, vision-impaired, and sighted
volunteers and concluded that blind and vision-impaired participants require additional trials.
However, after enough learning, the way�nding abilities of the three groups were equivalent.
The authors suggest that the lack of sight interfered with putting knowledge into action [102].
Apart from learning the environments, humans classify their environment and assume particular
properties of it. For example, after visiting multiple underground stations of a city, humans can
infer how an unknown station will be structured. Therefore, pedestrians might use the cognitive
map of some environments to navigate through another unknown environment. There is still
much research required to understand the structure and impact of the cognitive map. However,
there is strong evidence that it helps us to �nd our way in many situations, especially in en-
vironments visited multiple times before. Nonetheless, it is also known that people get lost in
several situations because of human errors, that is, inaccurate, incomplete, and wrong cognitive
maps [79].

3.2 Optimal path navigation

Following the notion of the homo economicus, we can argue that pedestrians are motivated to
choose the optimal path based on some metric. One of the most suggested and applied metrics is
the shortest and quickest path. In their contribution from 2011, Kretz et al. [174] summarized:

“Usually, models of pedestrian dynamics are (implicitly) built on the assumption that

pedestrians walk along the shortest path. [...] There are, however, situations in which

travel time matters a lot for pedestrians, which is why they must base their movement

decisions on the criterion which direction at some given point in time appears to promise

the smallest remaining travel time.” – Kretz et al. [174]

However, there are more criteria a pedestrian might consider, and further research is required. For
example, pedestrians might follow the path of fewest turns, minimal e�ort, or the most familiar,
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most secure, and most aesthetic path. Despite this research gap, we could model other criteria by
using the notion of the quickest path. For example, we can arti�cially reduce the travel speed for
insecure streets. Nonetheless, there are criteria, such as the path of fewest turn, that are di�cult
to model by navigation �elds – a topic of another thesis.

The simplest ansatz to encode proximity is to calculate the Euclidean distance from a destina-
tion to each point in the domain. The closer an agent is to the destination, the better its position.
However, this approach is not suitable for large-scale simulations since obstacles such as walls
or buildings might be in the pedestrian’s line of sight. Therefore, modelers suggest using an
approximation of the geodesic distance.

Aside from the walking distance, the time required to reach a destination is another important
metric for the homo economicus. Therefore, many modelers such as [291, 156, 115, 174, 165]
suggest that navigation �elds and �oor �elds should encode the time instead of the distance
required to reach a destination.

The �eld is constructed for a speci�c destination Γ. For multiple destinations, multiple �elds
have to be computed. Note that Γ can be the set of multiple disconnected sub-regions. Modelers
introduced di�erent approaches in order to construct a �oor �eld. They use Dijkstra’s algorithm
[71] on a visibility graph [211, 169], the FloodFillMethod [173], RayCasting [173] or the Fast-
MarchingMethod [130, 291, 115] introduced by Tsitsiklis [292] and later by Kimmel and Sethian
[151]. Even though navigation �elds are continuous, they are usually constructed by solving a
discrete problem on a discretization of the domain Ω. Therefore, partly the same algorithms are
used to compute �oor �elds and navigation �elds.

3.3 The eikonal equation

Most navigation �eld based models rely on the solution of the eikonal equation

‖∇ΦΓ (x)‖ = f (x)−1, x ∈ Ω
ΦΓ (x) = 0, x ∈ Γ
f (x) ≥ 0, x ∈ Ω,

(3.2)

It is a non-linear boundary value problem for a partial di�erential equation. In my interpretation,
f : Ω → R+ is a scalar �eld of the traveling speed for the propagating wave. The wavefront
propagation starts at x ∈ Γ at Φ0(x) seconds. Equation (3.2) states that the rate of change of the
travel time (in space) is equal to the inverse travel speed. The eikonal equation’s solution gives
us the minimum time-of-arrival ΦΓ (x) from x to Γ. In one dimension, Eq. (3.2) translates to

dt

dx
= f (x )−1 ⇒ dx

dt
= f (x ). (3.3)

The wavefront propagates information from the boundary Γ along the characteristics. Because
of non-linearity, characteristics may intersect which results in the formation of shocks. The
viscosity solution is continuous but may not be di�erentiable everywhere, compare Fig. 3.1. The
existence and uniqueness of the viscosity solution are shown in [54]. In Chapter 9, I discuss the
equation in more detail and show how it is solved.
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(i) (ii) (iii)

Figure 3.1: Solutions of the eikonal equation for f = 1,Φ0 = 0: Ω is de�ned by a 2 × 2 square
centered at (0, 0): there are no shocks present for Γ = {(0, 0)} and the solution is equal to the
Euclidean distance (i). However, even for a simple example Γ = ∂Ω (ii) or Γ = {(x ,y) | x =
1 ∨ x = −1} (iii), Φ is not di�erentiable at positions x = (x ,y), where x = 0 (ii) and x = y (iii),
respectively.

The equation has many applications in optimal control, computer vision, medicine, geometric
optics, and path planning. Especially the special case of a constant travel speed f = 1, that gives
us the geodesic distance ΦΓ (x) from x to Γ, is solved to compute distance �elds and curvatures of
three-dimensional surfaces in the �eld of computer vision. For optimal steps models, the solution
of the eikonal equation is equal to the negated destination utility, that is,

uΓ (x) = −ΦΓ (x). (3.4)

Each microscopic continuous space model I discussed so far, assumes that the direction towards
the destination is known. Especially in early publications, modelers simplify the problem to
the gradient of the Euclidean distance. Compare, for example, the �rst publication of the Social
Force Model [118]. For large-scale simulations, the geometry is complex and optimal paths are no
longer straight. Using the negated and normalized gradient of the travel time to be the destination
direction nΓ of an agent, that is,

nΓ (x) = − ∇ΦΓ (x)‖∇ΦΓ (x)‖ (3.5)

is a robust robust technique. Note that in Eq. (3.5) we assume the agent wants to move towards
Γ and is positioned at x. This de�nition is used by, for example, [291, 174, 257, 68, 165, 293].

All continuous space models discussed in Section 2.2 rely on either ΦΓ or some speci�c destina-
tion direction vector. Looking at the introduction of new models, for example, [118, 326, 222, 190,
261, 320], there is a lack of discussion on how to de�ne and compute the destination direction. In
the end it fundamentally in�uences the motion of all agents and is therefore of great importance.
Models are calibrated and validated for a small-scale setting such that nΓ can be computed by
using the Euclidean metric. If obstacles disrupt the line of sight, modelers tend to introduce ar-
ti�cial intermediate destinations [49] which leads us to graph-based models on the tactical level.
However, the location and shape of intermediate destinations is a new non-trivial problem one
has to solve. Note that even graph-based models can use nΓ (x) as the negated gradient of the
traveling time [160]. If we instead use navigation �elds by solving the eikonal equation, we fol-
low the logic of the homo economicus for all sorts of geometries because optimal paths follow
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(i) (ii) (iii)

Figure 3.2: The trajectory of a single agent walking from a source (green) to a destination (or-
ange) using an optimal steps model with the default obstacle utility and funit (i) and without an
obstacle utility but the travel speed function fρ (ii) and flin (iii), respectively.

the gradient of ΦΓ [150]. Therefore, navigation �elds are a modeling technique integrated into
microscopic continuous space models and a robust method to compute nΓ in general.

3.4 Static navigation �elds

Static navigation �elds result from the eikonal equation for which the traveling speed function f
does not change during the simulation. Therefore, the traveling speed function does not depend
on any dynamics. Consequently, we have to solve ΦΓ only once. The equation is commonly used
to compute the distance in the Euclidean metric under consideration of obstacles, that is, the
geodesic distance. Let us assume Ω ⊂ R2 is the simulation domain where we exclude the space
covered by obstacles. To compute the geodesic distance, we choose Φ0 = 0 and a traveling speed
that is equal to 1 everywhere except at the domain boundary, that is,

funit(x) =



0 if x ∈ ∂Ω,
1 else.

(3.6)

Agents following the gradient of uΓ = −ΦΓ use the shortest path towards their destination Γ.
If there are certain areas where pedestrians slow down or speed up, for example, if they move
uphill, on stairs, or if they tend to avoid regions such as positions very close to walls, this can and
is modeled by choosing a di�erent traveling speed function f . For example, in [165] I propose to
use

fρ (x) =



0 if x ∈ ∂Ω,
1/(1 + hW · ρW (x)) else,

(3.7)

where ρW (x) is the obstacle density de�ned in [257] and hW > 0 is some constant that we have
to calibrate. By using Eq. (3.7) or Eq. (3.8) we lift the obstacle avoidance from a local mechanism
to a global one. If obstacle avoidance is a local mechanism, agents adjust their path locally which
leads to a sub-optimal path. If avoidance is a global mechanism, the path is shorter. Figure 3.2
illustrates this e�ect.

To compare the Behavioral Heuristics Model (BHM) presented by Seitz et al. [261] and one of
the optimal steps models (see [339]), I chose the vector of Eq. (3.5) to be the destination direction
of the BHM. Furthermore, I integrated obstacle avoidance into the Behavioral Heuristics Model
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(i) BHM (ii) BHM (iii) BHM

(iv) OSM (v) OSM (vi) OSM

(vii) GNM (viii) GNM (ix) GNM

(x) FSM (xi) FSM (xii) FSM

Figure 3.3: The trajectory of a single agent walking from a source (green) to a destination (or-
ange) using the Behavioral Heuristics Model with nΓ = ∇ΦΓ (x)/‖∇ΦΓ (x)‖ (i to iii), a optimal
steps model with uW = 0 (iv to vi), the Gradient Navigation Model (vii to ix) and the Social Force
Model without obstacle forces (x to xii). I chose flin (see Eq. (3.8)) with hW = 1.0. For the �rst
column δW = 0.2, for the second δW = 0.5, and for the third δW = 1.0. Regardless of using the
BHM, OSM or GNM, the distance the agent keeps from obstacles is approximately the same. In
the case of the SFM, we can observe the e�ect of acceleration. For δW = 1.0 the agent oscillates.

by using

flin(x) =




0 if x ∈ ∂Ω,
1/(1 + hW · [1 − (d (x)/δW )]) if d (x) < δW , x ∈ Ω \ ∂Ω
1 else.

(3.8)

A similar speed function was independently suggested by [104] to add obstacle avoidance into
social force models. Figure 3.3 shows di�erent trajectories for di�erent travel speed functions
and di�erent microscopic pedestrian models.

In summary, even though the model de�nitions do not include nΓ de�ned as the gradient of
the travel time ΦΓ , I think many existing and future models can bene�t from it.

3.5 Dynamic navigation �elds

In [116], Hartmann et al. di�erentiate between short-, medium-, and large-scale interactions. The
authors did not de�ne these terms formally but connected them to the hierarchical structure of
the modeled decision making process of Section 2.1. Following this notion, short- and medium-
range interactions belong to the operational level while some tactical model realizes long-range
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(i) (ii) (iii)

(iv) (v) (vi)

Figure 3.4: Simulation using the dynamic navigation �eld of [165]: the simulation at 0 (i), 6 (ii),
and 32 (iii) seconds and the respective dynamic navigation �eld (iv, v, vi) of the orange destina-
tion.

interactions. I de�ne the interaction range to be the geodesic distance within which the agent
is in�uenced by other agents. For example, short-range interactions are modeled by repulsion
and attraction forces [118], utility functions [257] or simple heuristics [261]. Short ranges are
usually limited to a couple of meters. I think of the medium-range as the range within pedestri-
ans can perceive others. Therefore, the term perception-range might be more appropriate. Since
humans can anticipate, as well as inter- and extrapolate, the perception-range goes beyond what
pedestrians can see.

Modelers use dynamic navigation �elds to model interaction within the perception-range of
agents. They rely on a dynamic recalculation of the navigation �eld that takes other pedestri-
ans into account and yields signi�cantly more realistic simulation results [116]. The idea, �rst
introduced by Treuille et al. [291], is to de�ne a travel speed function f that depends on local
properties such as the pedestrian density, �ow, or speed. For example,

f (x) =
1

1 + hA · ρA (x) , (3.9)

where ρA is a measure of the local density of pedestrians, and hA > 0 is a constant that has to
be calibrated, generates signi�cant more realistic behavior [116].

Hartmann et al. extended this to

fΓ (x) =
1

1 + hA,Γ · ρA,Γ (x) + hA,,Γ · ρA,,Γ (x) , (3.10)

where ρA,Γ is the density with respect to all agents of the current destination equal to Γ and ρA,,Γ
is the density with respect to all other agents. Using hA,,Γ > hA,Γ they assume that following
pedestrians with a di�erent destination is signi�cantly less attractive than following pedestrians
with the same destination.

In [165], Köster and I extended this binary categorization to a �uent one by introducing a
weight for each agent l . The weight depends on the speed vl ,Γ towards the destination of the
dynamic navigation �eld. To compute vl ,Γ we use a static navigation �eld, that is,

vl ,Γ =
ΦΓ (xl ,k−1) − ΦΓ (xl ,k )

tk−1 − tk , (3.11)
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where xl ,k is the position of agent l at tk . If the agent moves away from Γ,vl ,Γ is negative and it is
regarded as in�uential. If it is positive, the agent moves towards Γ and its in�uence is negligible.

Kretz et al. [174] also used the eikonal equation as a mathematical framework to extend social
force models. The authors observed that the travel time is heavily in�uenced by the distribution
of all the other participants of tra�c, be it vehicular or pedestrian tra�c. They argue that, in
contrast to tra�c simulation, in pedestrian dynamics, researchers are much less aware of this
issue, because pedestrians do not move on a network as vehicles do, but freely in two spatial
dimensions [174]. They solve the eikonal equation on a regular grid of side length between 15 cm
and 20 cm. In order to integrate dynamics they manipulate f by the agent velocity v:

f (x) =
1

1 +max
{
0,hA ·

(
1 + hθ · v

v0
· ∇ΦΓ (x)‖∇ΦΓ (x)‖

)} , (3.12)

wherev0 is the free-�ow velocity (of all agents), v is the current velocity of the agent that occupies
the grid point andhA , hθ are free parameters of the method. hA controls the impact of an agent in
general while hθ controls the impact of its moving direction. If the grid point is not occupied, the
travel speed stays unchanged, that is, f = 1. The idea is similar to the previous approach: agents
that move towards Γ have a smaller impact than agents that walk in the opposite direction. In
the former case

v
v0
· ∇ΦΓ (x)‖∇ΦΓ (x)‖ = −

v
v0

(3.13)

holds and in the latter
v
v0
· ∇ΦΓ (x)‖∇ΦΓ (x)‖ = +

v
v0
. (3.14)

At this point, the reader might think that connecting the agent speed directly with the travel
speed (de�ned on the grid), for example, by using

f (x) =




0 if x ∈ ∂Ω
‖vl ‖ if there is an agent l present at the grid point
v0 else,

(3.15)

might be the most straightforward approach. However, as Kretz et al. [174] point out, if ‖vl ‖
is 0, the wavefront stops at the respective grid point. In front of bottlenecks, waiting agents
would completely stop the wavefront from moving through it and motion would come to an end.
Therefore, f (x) cannot be equal to the actual agent speed at x.

Aside from reducing the travel speed at occupied areas, Köster and I used the opposite e�ect
to model queuing in front of bottlenecks and a follower behavior [165]. To achieve a global
attraction towards other agents and repulsion of areas close to obstacles we suggested

fqueue(x) =
1

1 −min{hA · ρA (x), 1 − ϵ } + hW · ρW (x)
, (3.16)

where ρob is the obstacle density de�ned in [257], ϵ > 0 is a small threshold and hA , hW are free
parameters of the technique. Ignoring the obstacle density we get

f → 1
ϵ

for (hA · ρA ) → 1. (3.17)
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The wavefront moves with rapid speed over occupied areas. Therefore, optimal paths lead through
these areas, and agents follow other agents. If hA is large enough, they even stop overtaking oth-
ers [165].

3.6 Summary

In this chapter, I described the origin and application of navigation �elds in microscopic pedes-
trian simulation. I started by presenting the neuroscienti�c background of large-scale human
navigation called cognitive maps. Furthermore, I argued that navigation �elds model multiple
aspects of the way�nding process, including cognitive maps.

In Section 3.2, I discussed the term “optimal path” under the assumption of the homo economi-

cus. What is optimal is debatable and depends on the individual, its needs and the situation it is
exposed to. First, modelers considered the length of the path. But soon after, the travel time was
introduced as another essential criterion for the homo economicus.

In Section 3.3, I introduced the eikonal equation – the mathematical framework of navigation
�elds. I stressed the often forgotten importance of the destination direction nΓ . It can, and often
is derived from the eikonal equation’s solution and fundamentally in�uences simulation results
for all discussed models.

In the following two sections (Sections 3.4 and 3.5), I discussed di�erent de�nitions for nΓ
by presenting di�erent travel speed functions f . First, I presented static travel speed functions.
They do not change over time. Consequently, static navigation �elds do not change during the
whole simulation run. Researchers of the listed publications argue that if medium-scale naviga-
tion is required, dynamic navigation �elds achieve realistic results. In this case, f depends on
the dynamics of the simulation and changes over time. Therefore, navigation �elds must be re-
computed, usually, after some time step ∆t . I presented di�erent dynamic travel speed functions
from the literature.
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Large-scale microscopic locomotion





CHAPTER 4
Large-scale simulations

“Our life always expresses the result of our dominant thoughts.”

– Søren Kierkegaard

The term large-scale, in large-scale microscopic simulations, refers to two properties of a simu-
lation: (1) the size and complexity of the simulation domain Ω, and (2) the number of simulated
agentsnA = |A|. To enable real-time large-scale simulations one has to deal with both. The same
is true for many other problems from other areas, such as the simulation of car tra�c, molecules,
and galaxies. However, if one asks me what the di�erence between simulating a large number of
pedestrians and a galaxy system is, I always answer:

“In pedestrian dynamics we deal with complex systems consisting of intelligent inhomo-

geneous subjects, while in physics, chemistry, and other areas, the entities we are looking

at are lifeless objects.”

Like the n-body problem [226], we are dealing with many components that behave similarly on
the operational level. But in addition, they behave di�erently and make complicated decisions
on higher levels. Therefore, it is no surprise that physical analogies inspire pedestrian models on
the operational level, but psychology and sociology play an important role as well, especially at
higher levels. It is also no coincidence that one of the most important conferences for pedestrian
dynamics, the Conference on Tra�c and Granular Flow, covers topics from granular �ow.

Pedestrian dynamics is a complicated problem: by the term complicated, I refer to the level
of di�culty, the degree of di�erence in decision-making, and the inhomogeneity of pedestrians.
Models or model parts on the strategic and tactical level describe a complicated process. Finding
the way to a particular location, deciding in which order one wants to visit speci�c intermediate
destinations, or when to change one’s behavior from competitive to cooperative is complicated.
The di�erent decisions an agent can make is revealed if we analyze strategic or tactical models.
One can argue that the purpose of the strategic and tactical level is to increase the set of possible
behaviors of agents. The decision-making process on that level is some arti�cial intelligence.
Most models use a reasoning system to generate conclusions from available knowledge utilizing
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logic or heuristics. For example, Seitz [256] describes heuristics to decide if an agent should wait,
step forward, or evade sideways. Kleinmeier et al. [158] introduce a simple reasoning system
to determine if agents should start cooperating to resolve a situation where they got stuck. In
[86], fuzzy inference systems resemble human reasoning and determine the agent’s movement
direction. Kielar et al. [149] introduce a state machine to model the strategic level. Later, Kielar
et al. [148] presented a pedestrian destination choice model that implements the decision making
for picking the next destination of an agent.

Thinking and decision making in itself is a stepwise sequential process which is re�ected by
arti�cial intelligence code – it is often branch-heavy and, therefore, unsuitable for paralleliza-
tion. Consequently, for a set of agents, many di�erent execution paths are traversed. Exploiting
vectorization or single instruction multiple data (SIMD) architectures, such as GPUs, require a
low execution path divergence. Therefore, branch-heavy code should be avoided. Besides, the
evaluation of each condition is, in many cases, computationally inexpensive. Often it consists of
picking a speci�c next target from a list of targets by some condition. For example, in [304] von
Sivers et al. studied di�erent search strategies which they implemented on the tactical level of an
optimal steps model. The strategies require O (m · nA ) time for the whole simulation, where m
is the number of doors inside a building and nA the number of agents. If we compare this to the
optimization which requires O ( |Pl |) time for each footstep of a single agent l , the computational
cost is small. Most of the computational burden is part of the operational level. Additionally, the
execution path divergence weakens the bene�t of parallel execution.

In conclusion, if we want to accelerate simulations to enable real-time large-scale pedestrian
simulations, I suggest to introduce parallelism �rst and foremost to the operational level. Addi-
tionally, code optimization should start at the operational level as well.

Pedestrian dynamics is a complex problem: by complex, I refer to the number of compo-
nents (agents) in the simulation and their homogeneity with respect to the operational level. At
the operational level, the next intermediate spatial destination of all agents is known, and com-
puting the following agents’ position is similar for every agent. In some sense, agents behave
more like lifeless particles after making their decisions on the higher levels. Some authors even
refer to them as “particles” [245]. Therefore, models on the operational level are more closely
related to models investigating physical phenomena such as �uid and molecular dynamics.

Concrete implementations reveal that the processing units execute the same code for each
agent. In a relevant real-world scenario, pedestrians spend most of their time with walking.
Coincidentally, most of the simulation run time is spent on the operational level, and its high
computational costs are critical. For example, for the Social Forces Model [118] (see Section 2.2.2),
we compute the next position by applying a force Fl to each agent l . In the case of the Optimal
Steps Model [257, 298] (see Section 2.2.6) we compute the next position by solving an optimization
problem for each agent. Cellular automata are inherently regular and adapt the state of each
cell for each update phase. In each case, some operation such as integration, optimization or
evaluation of a state transition function is executed for all agents for many points in time resulting
in an overall heavy workload.
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4.1 The parallel nature of pedestrian dynamics

If we assume the model implementation is highly optimized, the only way to reduce computation
times is to add more and more computation power to the hardware system in use. However, with
the breakdown of Dennard scaling, clock frequencies of single central processing units (CPUs)
no longer increase signi�cantly. As a consequence, manufacturers turned their attention towards
multi-core processors. Consequently, parallel implementations of microscopic simulation models
are required to enable large-scale simulations. I argue that parallelism is a natural property of
pedestrian dynamics that should be exploited by developers of model implementations.

Watching people walking through streets, an airport, or other facilities reveals a simple truth:
pedestrians think, make decisions, and move in parallel. We can think of each person as a phys-
ically movable processing unit, which computes at every point in time its next position – con-
sciously or unconsciously. Another observation is that pedestrians act independently from one
another if (1) they are unaware of each other or (2) their interest do not con�ict. In my eyes, the
key to successfully simulating large-scale scenarios using a microscopic model is to exploit these
two observations.

To simulate thousands of individuals, the model should be computationally inexpensive, but
more importantly, it should scale well. Two factors are essential:

(1) How well does it scale with an increasing spatial domain / simulation area?

(2) How well does it scale with an increasing number of agents?

Even for computationally expensive models, scalability makes large-scale simulations possible by
adding more hardware, especially processing units. Assuming p is the portion of the simulation
that can be parallelized, and 1 − p is the fraction that can not, then Amdahl’s Law [237]

1
(p − 1) + p

nP

(4.1)

gives us the maximal possible speedup using nP processors. If nP → ∞, Amdahl’s Law reveals an
upper bound of the speedup equal to 1/(1 − p). Amdahl’s Law makes some strong assumptions,
such that either one or nP processors execute the code or that the overhead of thread creation is
negligible. In some high-performance computation settings, these assumptions are valid but not
in general. Therefore, Amdahl’s Law can only serve as a benchmark.

4.2 Algorithmic structure

Operational models

Looking at many operational models, one can break down their computation into several parts.
In the initialization phase, domain-speci�c data structures are constructed, and agents are ini-
tialized. For example, the static �oor �eld of cellular automata, the navigation �eld of optimal
steps models, and navigation graphs are initialized. Then the simulation loop, which basically
consists of two sub-routines, begins. The �st method StrategyAndTactic realizes the strategic
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Algorithm 1: SimulationRun
1 Initialization();
2 while simulation is running do

3 StrategyAndTactic(∆t );
4 Locomotion(∆t );

and tactical decision-making of the agent. It includes the update of dynamic navigation or �oor
�elds. Then Locomotion updates all agents’ positions. Usually, a global clock controls how often
the strategic and tactical models can interfere. Compare Algorithm 1. There are other methods
that, for example, initialize new agents or delete agents from the simulation. Often agents spawn
during a simulation run. However, for the sake of simplicity, they are not listed. How often the
tactical and strategic levels interfere depends on the model. For example, a dynamic �oor �eld
requires a small ∆t , and for each call, computation is necessary. This is also true for dynamic
navigation �elds. If a purely graph-based approach is used, ∆t can be large, and for many calls,
there is nothing to compute. Note that ∆t is not the time step used to solve ODE-based models –
it is usually larger.

Locomotion

For Locomotion, it is crucial which update scheme is used. Can we update each agent in parallel,
or does the model impose some speci�c order? As argued, it seems reasonable that for large-scale
simulations, there is some space for parallel motion and decision making. However, discrete-time
models, such as cellular automata and optimal steps models, often impose an order to avoid col-
lisions, that is, overlapping agents. In Chapter 5, I show how to introduce parallelism without
violating these restrictions for optimal steps models. If discrete-time models use a parallel update
scheme, they introduce some con�ict resolution mechanism. For example, if two or more agents
compete for the same cell of a cellular automaton, all but one randomly chosen agent have to
step back to their last cell. In the case of ODE-based models such as social force models and the
Gradient Navigation Model, integration is a parallel update scheme using a tiny time step [167].
Therefore, parallelization for these models is straightforward. Because there are no restrictions,
they scale well. In summary, ODE-based models highly bene�t from parallelism at the cost of a
tiny time step. Especially in dense situations, the time step size has to be small to avoid inac-
curate results and unrealistic behavior. In contrast, cellular automata and optimal steps models
use larger time steps of approximately the duration of a footstep (∆t = 0.5 seconds). Cellular
automata often impose a parallel update scheme while parallelization of optimal steps models
requires more sophisticated strategies.
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4.3 Review of parallel locomotion

The parallelization of the locomotion model enables large-scale simulations. Therefore, the Lo-
comotion method in Algorithm 1 should be realized by multiple processing units. In general,
a partition of independent agents is required such that a set of agents can be updated in paral-
lel. Since it is reasonable to assume that spatially far apart agents behave independently, spatial
domain decompositions generate these partitions. There are two types of domain decomposi-
tion. Static domain decompositions use a �xed decomposition of the simulation domain, while
dynamic decompositions change during the simulation. In the dynamic case, load balancing strate-
gies distribute the work evenly to all processors such that the speedup is maximized. Besides the
computational cost of the load balancing algorithm itself, higher communication costs between
processors are introduced. Therefore, one has to balance costs against gains. The goal of most
load balancing strategies is to decompose the space such that each processing unit updates ap-
proximately the same number of agents. The strategy assumes that the computational load per
entity is the same. In the case of large-scale pedestrian simulation, this is not necessarily the case.
If the density is high, the computation cost per entity is higher than if agents are far apart.

Regardless of the implemented decomposition and load balancing strategy, the most suitable
parallelization technique for an application is usually coupled to the underlying hardware archi-
tecture. Researchers implemented their models for di�erent hardware architectures from shared
and distributed memory clusters, GPUs to specialized hardware like the PLAYSTATION 3. Even
though hardware speci�cs, such as GPUs’ memory structure, in�uence the implementation, we
can still extract abstract techniques from concrete implementations.

In the following, I extract these techniques by looking at the contribution of the past. Since
modelers are more interested in simulation outcomes than execution times and performance, I
look beyond results from pedestrian dynamics. Especially in computer graphics and animations,
researchers are less concerned with the correctness of the model and more concerned with real-
istic looking and fast simulations.

4.3.1 Large-scale agent-based animation

Steed et al. [279] compared di�erent density-dependent domain decompositions for the anima-
tion of a large virtual urban environment. They experimented with a quadtree partitioning, k-d
trees, and a growing region approach, a variation of an image partitioning algorithm. For the
quadtree and k-d tree partitioning, the space covered by a set does not align with the domain,
compare Figs. 4.1i and 4.1ii. If the pedestrian density in a set of the partition exceeds a certain
maximum, it is split into multiple sets. Their growing region approach divides the domain into
small, equally sized cells. Then it chooses some seed cells. For each seed cell, it adds adjacent
cells until a threshold is reached. The authors found that the region growing approach works
best. They hypothesized that the growing region approach tends to follow the likely connection
between dense areas by the nature of its construction mechanism. The crowd navigation is based
on the model introduced by Tecchia [282], which does not model realistic pedestrian behavior.

Zhou et al. [335] used a dynamic column-wise block-striped decomposition to partition the
simulated space. They divide the domain at one dimension and adjust the width of the constructed
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(i) (ii) (iii)

Figure 4.1: Three domain decomposition techniques: the quadtree approach splits each set for
which the maximum pedestrian density is reached into four equally sized regions (i). The kd-tree
approach allows a more irregular subdivision (ii). For the column-wise block-striped decomposi-
tion, a processor must communicate to at most two neighbors (iii). For each example, the regions
are subdivided if they contain more than three pedestrians.

columns dynamically, compare Fig. 4.1iii.
Reynolds [234], introduced a model for autonomous agents. Two years later, he used the

PLAYSTATION 3 to simulate 15,000 individuals and achieved a performance of 60 frames per
second. He developed a static domain decomposition that divides the three-dimensional space
into equally sized buckets. Each agent inside a speci�c bucket is updated by the same Synergistic
Processor Units (SPUs). There are many more buckets than processors, such that no dynamic
load balancing is required.

Cosenza et al. [51] used the �ocking model, introduced by Reynolds [233], to simulate �ocks
of birds. They split the domain along one speci�c dimension. The authors tried to balance the
size of each partition set and the number of agents in the bu�er zone. They report being able to
simulate up to one million birds.

Guy et al. [110] present a collision avoidance algorithm based on velocity obstacles. The colli-
sion avoidance is realized by solving multiple optimization problems. Using parallel computation,
the authors report that the algorithm is highly e�cient.

Richmond et al. [235] introduced a high-performance framework for agent-based pedestrian
dynamics and animation on the GPU. Agent variables are stored in the OpenGL texture. A linked
cell approach decomposes the domain. It is split into several equally sized cells. The authors use
a combination of the steering model [234] and the Social Force Model.

Another linked cell-based �sh simulation implementation was introduced by Erra et al. [80].
To achieve fast execution times, they implement their model in CUDA. A similar mixture of
models was used in [143]. Karmakharm et al. [143] use the Flexible Large-scale Agent Modeling
Environment (FLAME) [10], a GPU framework to simulate up to 10,000 agents.

In [325], Yilmaz gave insights into the potential of using GPU for crowd simulation. Their fuzzy
logic approach implemented with CUDA can be used to simulate one million agents in real-time.
They report a speedup of simulation runs by 100 using a GPU.

In [228], Rahman et al. accelerated the well-known agent-based simulator OpenSteer by using
CUDA. OpenSteer is a C++ library to help construct steering behaviors for autonomous characters
in games and animation [6].

54



4.3 Review of parallel locomotion

rL
rS

(i) (ii) (iii)

Figure 4.2: Nearest-neighbor data structures: the verlet list (i) stores for each agent all neighbors
inside the circle de�ned by rL, that is larger than the in�uence radius rS . After some simulation
time, the list is updated. The linked cell data structure (ii) consists of equally sized cells. Each
cell contains the agents of the space it represents. Finding all neighbors of an agent is solved by
iterating over neighboring cells in the breadth-�rst order. Another data structure that supports
the nearest-neighbor search is the Delaunay triangulation (iii). To �nd the nearest-neighbors
closer than some threshold, one can use a breath-�rst search strategy.

4.3.2 Large-scale force-based simulation

Interestingly, one of the �rst large-scale implementations of a pedestrian model was already pre-
sented by Quinn et al. [227] at the second International Conference in Pedestrian and Evacuation
Dynamics in 2003. The authors introduced a parallel distributed memory implementation of the
Social Force Model [118], making use of the well-known Message Passing Interface (MPI). Quinn
et al. parallelized the Social Force Model by a primary-and-secondary-approach. The primary
process reads in the domain and population and sends this information to the appropriate sec-
ondary processes. The primary process gathers data from the secondary processes at each time
step and passes this information to the rendering engine. The whole spatial domain is split into
squared sub-domains. Secondary processors are interconnected on a two-dimensional virtual
grid. As long as agents move inside the sub-domain controlled by one processor and are not in-
side any ghost area near the sub-domain boundary, no communication to other worker processes
is necessary. If agents reach the domain boundary, it is necessary to communicate details to the
neighboring processes. If an agent moves to another sub-domain, its processor must hand over
that agent to the processor of this sub-domain. To update an agent inside a sub-domain by its
processor, the authors cut all long-range forces. That is, they only consider social forces from
agents inside the same or neighboring square cells. The authors report a simulation of 10,000
pedestrians, which can be updated 50 times per second. They use a Linux-based multicomputer
at Oregon State University consisting of 2.4 GHz Intel Xeon CPUs connected by a gigabit Ethernet
switch.

In 2014, Mroz and Was [204] used a similar decomposition for a GPU implementation of the
Social Force Model. They divided the domain into 15 m times 15 m sub-regions. For 100,000
agents, they measured a speedup of 5 compared to their CPU implementation. Their hardware
setup consisted of a GeForce GTS 250 with 512 MB RAM and a Dual-Core AMD Athlon II 250
(3.00 GHz), 4 GB of RAM.

Kemloh [144] presented another large-scale implementation of a force-based model. He par-
allelized the Generalized Centrifugal Force Model by developing a distributed memory imple-
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p1

p2

p1

Figure 4.3: Linked cell-based domain decomposition: gray cells represent the linked cell data
structure distributed among three processors. The di�erent colors indicate the set of cells of each
processor. Ghost cells are highlighted in white.

mentation based on the linked cell algorithm. The linked cell data structure is combined with a
verlet list, compare Figs. 4.2i and 4.2ii. Both data structures and similar techniques are commonly
used in molecular dynamics [280, 12]. To enable domain decomposition, Kemloh also assumes
some cut-o� radius of the obstacle and pedestrian forces. He suggested using a cut-o� radius of
2 m. Therefore, the entire spatial domain is divided into cells of 2 m times 2 m. Each processor
is responsible for a set of connected cells. If a neighboring cell belongs to another computing
node, the cell is part of the ghost area. Ghost areas are copied to multiple processors and re-
quire communication to be consistent. To achieve real-time simulations, the Message Passing
Interface is used to exploit multiple computing nodes. The simulation code on each node is run
in a multi-threaded environment using Open Multi-Processing. Kemloh reported a speedup of 9
using 12 processors simulating a scenario of 10,000 uniformly distributed agents in a 50 m times
50 m room.

Löhner et al. [192] introduced a parallel implementation of his PEDFLOW model [190], another
force-based model. In their publication we �nd an interesting strategy to compute the nearest-
neighbors relation di�erent from the linked cell approach. Given the set of agents A, Löhner
et al. suggest constructing the constrained Delaunay triangulation of nA = |A| positions. They
use the triangulation as the basis of the nearest neighbors search, compare Fig. 4.2iii. Dickerson
and Drysdale [65, 67, 66] introduced the idea of searching for nearest neighbors using the Delau-
nay triangulation. Löhner et al. [192] also presented a technique to store spatial domain-speci�c
and dynamic information on a background mesh. The mesh can be partitioned and distributed
among multiple processors. Shared and distributed memory parallelism is introduced with Open
Multi-Processing and the Message Passing Interface, respectively. At �rst, the authors imple-
mented a static domain decomposition. They report being able to compute the movement of a
million pedestrians in real-time. Later, Löhner et al. [193] added a simple dynamic load balancing
strategy.
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Algorithm 2: ParallelCASimulationRun
1 Initialization();
2 while simulation is running do

3 foreach cell j of the grid of cells in parallel do

4 compute di�usion and decay of j for ∆t ;
5 foreach agent l ∈ A in parallel do

6 compute next cell of l for ∆t ;
7 foreach agent l ∈ A in parallel do

8 if there is no con�ict for l then
9 move l ;

4.3.3 Large-scale cellular automata simulation

Since one can use much larger time steps, cellular automata are usually more e�cient than any
other type of microscopic pedestrian model. Therefore, it is no surprise that researchers use
cellular automata for large-scale simulations. If the cellular automaton uses a parallel update
scheme and the �oor �eld technique described in Section 2.2.1, the simulation can be parallelized
on a cell level. Algorithm 1 can be rewritten as Algorithm 2.

In 2009, Kretz [170] used a cellular automaton to simulate up to 182,000 agents in real-time
on an eight-core machine (2 Xeon E5320 quadcore processors and 20 GB RAM). The model [171]
developed by him and Schreckenberg is based on a parallel update scheme. Agents can only move
to their next position if their path does not intersect with any other agent.

Since cellular automata are based on the grid of cells, an inherently regular matrix-like data
structure, GPUs are suitable for accelerate cellular automata. They o�er thousands of processing
cores at an a�ordable price.

In [205, 204], Mróz et al. discussed the potential of GPUs and introduced a CUDA implementa-
tion of their Social Dinstance Model [307]. They initialize their �oor �elds, geometry and other
objects using the CPU. In the second step, data is transferred to the GPU’s global memory. The
update phase of Algorithm 2 runs entirely on the GPU. Their GPU implementation outperforms
a CPU implementation of the Social Force Model. In a follow-up work [309], the authors included
some hardware-speci�c topics such as avoiding branch instructions.

In 2018, Kłusek et al. [159] extended their implementation to support multiple GPUs using a
domain decomposition similar to the one depicted in Fig. 4.3. Instead of cells of a linked cell
data structure, the decomposition is based on the cellular automaton cells. Ghost cells require
communication across multiple GPUs. In addition to the data parallelism, the author introduced
task parallelism using a speci�c GPU that computes the �oor �eld.

Lately, Renc et al. [232] adapted the Social Dinstance Model to integrate it into the Xinuk frame-
work. Xinuk is a high-performance computing framework with desynchronized information
propagation for large-scale simulations [38].
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4.4 Summary

In this chapter, I discussed the pedestrian dynamics as an algorithmic problem. First, I established
pedestrian dynamics as a complicated and complex problem. I argued that on higher levels, with
respect to the hierarchical model approach discussed in Section 4.1, problems get more compli-
cated. In contrast, on the operational level, we deal with a complex system, consisting of many but
homogeneous entities. Based on my di�erentiation of complex and complicated parts, it follows
that operational models o�er the most parallel potential and computational workload.

In Section 4.2, I emphasized the importance of parallelism to enable large-scale real-time sim-
ulations. Furthermore, I argued that one can �nd natural parallelism in pedestrian dynamics.
My claim relies on independent acting pedestrians that is similar to data independence required
for parallelization. I gave an abstraction of implementations of operational models and a more
concrete assessment of how we can �nd and exploit parallelism for a speci�c model types.

In Section 4.3, I became even more concrete by presenting existing large-scale implementa-
tions. I looked into agent-based animation to �nd data structures that one can use in pedestrian
simulation. There is also a lot of work with respect to large-scale force-based simulations and
large-scale cellular automata simulation. I highlighted data structures and algorithms that estab-
lish data independence, because they play the most crucial role to establish parallelism.
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CHAPTER 5
Parallel optimal steps models

“Play is the exultation of the possible.”

– Martin Buber

In this chapter, I use the parallel nature of pedestrian behavior and introduce parallelism to op-
timal steps models to make acceleration possible. In Section 4.3, I discussed parallelization tech-
niques introduced by numerous researchers. Parallelism was brought to cellular automata, ODE-
based and other models. I argued that computational costs of optimal steps models are in between
cellular automata and force-based models. And that they o�er the potential for fast large-scale
simulations. The optimal steps principle of optimal steps models gifted us large (individualized)
time steps. But �nding the next optimal position via optimization requires multiple evaluations
of exponential functions. Additionally, optimal steps models operate inherently sequential since
they rely on an event-driven update scheme.

If model implementations enforce a sequential update of agents, they do not scale with the
number of agents, and we eventually run into performance issues. Today, clock frequencies of
single central processing units no longer increase signi�cantly. Therefore, the computational
burden has to be divided amongst multiple CPUs, and parallelism becomes mandatory. With-
out it, increasing the number of simulated pedestrians leads eventually to lengthy unbearable
simulation times even for high-performance computing (HPC) hardware systems.

In the following, I show that even the inherently sequential update order of optimal steps mod-
els feature parallelism. The key problem of parallelism is to reduce data dependencies in order
to be able to perform computations on independent computation units. In the case of optimal
steps models we have to deal with dependencies between di�erent footstep events. Footsteps that
are processed spatially distant but temporally close are likely to be independent of one another.
I introduce (Section 5.2) and analyze (Section 5.3) a parallel version of the event-driven update
scheme called ParallelEventDrivenUpdate. To enable future implementations by other re-
searchers and developers, the algorithm description is technical. The algorithm’s underlying
idea is to identify independent events without introducing noticeable additional computational
costs. I designed the algorithm to run on single-instruction multiple date hardware systems. In
Section 5.4, I examine its potential using an OpenCL implementation executed on a graphics pro-
cessing unit (GPU). Before introducing the parallelism, I shed light on why the update order of
agents matters (Section 5.1).
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5.1 Update schemes

5.1.1 The event-driven update scheme

Let us �rst look at the event-driven update scheme more closely in order to understand what
restrictions it imposes and what behavior it evokes. The scheme processes events in their natural
order, that is, the way they occur. Let t be the simulation time. Each agent l performs a series of
footstep events

((tl ,0, xl ,0), (tl ,1, xl ,1))l ,0, . . . , ((tl ,k , xl ,k ), (tl ,k+1, xl ,k+1))l ,k . (5.1)

De�nition 5.1 (footstep). Let l be an agent of a simulation using a optimal steps model. Then

(el ,i , el ,i+1)l ,i = ((tl ,i , xl ,i ), (tl ,i+1, xl ,i+1))l ,i ∈ R+ × R2 × R+ × R2 (5.2)

is the i-th footstep event of agent l , if and only if it moves at tl ,i seconds from xl ,i to xl ,i+1 and is
able to move again at tl ,i+1 seconds (simulation time). The footstep event occurs at time tl ,i and
position xl ,i . I call el ,i = (tl ,i , xl ,i ) the event start and tl ,i event (start) time.

Optimal steps models ensure that for the choice of the next footstep at t , all footstep events

that start at tl ,i < t have already been processed. In the simulation software framework Vadere
[157, 294] the order is enforced by a priority event queue Q that contains the next event start
for each agent. Whenever a new agent spawns its �rst event start is added to Q. The queue is
sorted by the event (start) time. After executing one footstep, the start of the next one is known,
compare Algorithm 3. Events are executed in an instant, one after another. If agents do not adjust
their desired speed, their stepping frequency remains the same for the whole simulation thus we
can compute the event (start) time for future footsteps in advance. However, we only know the
time. The place, on the other hand, is determined by the dynamics of the simulation. The event
time line of an example for three agents is depicted in Fig. 5.1. Note that, because of the time
discretization and update scheme, optimal steps models are, in fact, discrete event simulation
(DES) models.

From a modeling perspective, the natural order combined with instantaneous updates leads to
deliberate anticipation – agents anticipate currently processed footsteps of others nearby, because
the agent utility uA,l depends on the agents’ position of the very near future. On the one hand,
the anticipation of others is an essential property of the model. On the other hand, the strict
event order imposes a signi�cant obstacle to parallelism.

Algorithm 3: SeqentialEventDrivenUpdate
1 while Q.min() < t + ∆t do
2 el ,i = (tl ,i , xl ,i )l ,i ← Q.min();
3 el ,i+1 ← Execute(el ,i );
4 Q ← Q \ {el ,i };
5 Q ← Q ∪ {el ,i+1};
6 t ← t + ∆t ;
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5.1.2 The parallel update scheme

One way to introduce parallelism is to violate the order of the event-driven update scheme. Seitz
et al. [258] experimented with such a violation by implementing and evaluating a parallel update
scheme. The globally synchronizing clock mainly determines its footstep event oder, compare
Algorithm 1. After an increase of the clock by a �xed time step ∆t , the parallel update processes
all footstep events within [t ; t + ∆t ) in parallel. Anticipation is reduced, and, for large enough ∆t ,
it vanishes completely. Agents are blind for the other’s behavior during [t ; t + ∆t ). Consequently,
one has to deal with collisions since multiple agents might compete for the same area. To

Algorithm 4: ParallelUpdate
1 do

2 Et ← Seek(A) for each agent in parallel;
3 A ←Move(A,Et ) for each agent in parallel;
4 t ← t + ∆t ;
5 while Et , ∅;

resolve this con�ict, the parallel update scheme (Algorithm 4) consists of the following steps:
Seek computes the next desired position for all agents in parallel. In the second step, Move moves
the agent if its event time is the smallest among all competing agents. Agents are competing if
and only if their bodies overlap. Seek and Move are called as long as there are competing agents.

5.1.3 The loss of anticipation

The parallel update scheme

“has the objective of improving computational performance and should not in�uence

the model’s behavior and macroscopic simulation outcome, such as evacuation times.”

– Seitz et al. [258]

It produces the same result as the event-driven update scheme if Move only a�ects one agent,
that is, if ∆t is su�ciently small. However, in that case, it has no computational advantages over

t

agent 1
agent 2

agent 3

step duration of agent 1

t3,0 t3,1 t3,2 t3,3

Figure 5.1: Event processing time line: at the top three individual timelines, one for each agent,
are displayed. At the bottom, the overall event processing time line for the simulation is illus-
trated.
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the event-driven update scheme. In [258], the authors showed that even for a small time step
(∆t = 0.2 seconds), the parallel update scheme produces signi�cantly larger evacuation times.

“Therefore, update schemes change the model in a way that has an impact on macro-

scopic measures.” – Seitz et al. [258]

Agents tend to require more time to walk from one place to the other. This indicates that they
use sub-optimal paths or interrupt their motion because they lose some of their ability to antici-
pate others’ behavior. At �rst glance, it seems that the combination of Seek and Move imposes
similar anticipation since the event with the earliest event time is processed �rst. However, non-
competing agents are partially blind to others. They might move far more close to others than
intended, and consequently, disrupt personal spaces of others. This blind spot leads to unwanted
oscillations that were not mentioned in [258]: at time t an agent l might move far too close to an-
other agent l′. For its next footstep, agent l is pushed away from l′ since it is no longer blind for l′
– its utility function has changed accordingly. This combination of actions is repeated. I observed
a back and forth motion for a signi�cant portion of agents for di�erent scenarios, especially in
crowded areas.

Seitz et al. suggests that

“one can use the parallel update scheme for scenarios with high performance require-

ments, [... but] it might be necessary to further calibrate the model to obtain the same

results as for the event-driven update. [... One should use] either the event-driven scheme

(for accuracy) or the parallel scheme (for computational e�ciency) depending on the re-

quirements.” – Seitz et al. [258]

In my opinion, this suggestion is a valid assessment. Still, we have to keep in mind that agent be-
havior does not necessarily converge towards the event-driven update’s motion if we use smaller
and smaller ∆t . Even a few agents updated in parallel can impact microscopic simulation out-
comes, that is, the overall set of processed footstep events. For many scenarios, this would not lead
to signi�cant changes in macroscopic outcomes. However, the observation made in [258] does
not lead to a generalization of this assumption. The anticipation imposed by optimal steps models
is a vital model property – anticipation was discovered in [74] for pedestrians moving towards a
bottleneck. Dismantling it transforms optimal steps models into something else. Therefore, it is
not apparent that calibration will �x the gap between parallel and event-driven update schemes
for all possible scenarios.

5.2 Algorithm design

Instead of relying on a parallel update scheme, I propose to parallelize the event-driven update
scheme. We published parts of this contribution in [337]. My approach relies on the critical
observation that the in�uence range of agents is limited. Aside from the medium-scale navigation
realized by dynamic navigation �elds, agents are in�uenced by others due to short-range agent
utilities uA,l , compare Eq. (2.23) in Section 2.2.6. If two agents are distant from each other, they
do not a�ect each other locally. Consequently, it is most likely but not certain that many agents
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in a large-scale simulation act independently from another, primarily if they are spread evenly
across the domain Ω. The challenge is to identify independent agents e�ciently to update them
in parallel without introducing any new signi�cant computational bottlenecks. Therefore, the
identi�cation has to be a cheap parallel process.
class Agent {

float x;
float y;
float eventTime;
float speed;
float strideLength;

}

Listing 5.1: Entry of the array of structures.

class Agents {
float[] x;
float[] y;
float[] eventTime;
float[] speed;
float[] strideLength;

}

Listing 5.2: The agent’s structure of arrays.

5.2.1 The parallel linked cell data structure

Imagine the next event of agent l′ occurs after the event of some other agent l . We have to process
agent l in advance of l′ if the update of agent l changes the agent utilityuA,l ′ within the step circle
or disc of agent l′. Letvl be the maximum desired speed of agent l ,A be the set of all agents, and
let tl ,i+1 − tl ,i be its step duration. Then

γl ,max = vl · (tl ,i+1 − tl ,i ) · ⌈∆t/(tl ,i+1 − tl ,i )⌉ (5.3)

is the maximum distance γl ,max agent l can move by executing events occurring between t and
t + ∆t . Furthermore, let

γmax = max
l∈A

γl ,max (5.4)

be the maximum distance any agent can be moved within a time step. And let δw be the width of
the utility function of our optimal steps model. If two agents are more than

δc = (2 · γmax + δw ), (5.5)

meters apart, they do not in�uence each others behavior locally. I multiply γmax by two because
agents might move directly towards each other.

To decide if agents act independently, I test if nearby agents move earlier. This requires distance
comparison of nearby agents. To avoid a quadratic time complexity of O ( |A|2), I decided to base
my implementation on the linked cell data structure. It is one of the data structure mentioned in
Section 4.3 and enables e�cient nearest neighbor requests [313]. It is highly regular, thus suitable
for single instruction multiple data (SIMD) hardware architectures. Let wΩ,hΩ be the width and
height of a tight bounding rectangle enclosing the whole simulation domain Ω and let δc be the
cell size of the linked cell data structure. I divide the space into

nc = dwΩ/δce · dhΩ/δce = wc · hc (5.6)

cells, uniquely numbered from 0 to nc−1. I choose δc so that for a given cell, it su�ces to consider
only agents in its Moore neighborhood to compute the next position of any agent within the cell.
If a cell size

δc = (2 · γmax + δw ) (5.7)
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is used and we update the data structure every ∆t seconds, we can identify dependent agents of
agent l by only looking at the Moore neighborhood of the cell containing agent l . In the worst
case, two agents move directly towards each other, closing a gap of at most 2 ·γmax meters. If they
were still at least δw meters apart, their moves would not be in�uenced by each other locally.

Constructing the linked cell data structure on SIMD hardware architectures requires more
sophisticated techniques than just managing an array of lists since one relies on highly regular,
that is, indexable structures. I implemented the technique presented in [80, 105]: let nA = |A|
be the number of agents. Multiple arrays realize the linked cell data structure. An integer array I
of size nA containing all agent ids 0, . . . ,nA − 1. Ids are sorted according to the agent’s cell. For
example, ids of agents contained in cell 0 are at the front of the array, while at its tail, we �nd ids
of agents contained in the last cell. A second array of structures (AoS) contains the actual agents’
data. Later I will discuss a GPU implementation that uses a structure of arrays (SoA) instead,
compare Listings 5.1 and 5.2. Each array of the structure is sorted in the same way. Accessing
all agents contained in a cell requires two additional arrays Cstart, Cend of size nc . Cstart[i] is the
smallest index of I, such that I[Cstart[i]] is part of cell i . Similarly Cend[i] − 1 is the largest index
for that the agent, identi�ed by I[Cstart[i]], is part of cell i . To access all of the Cend[i] − Cstart[i]
agents in cell i , I access I[Cstart[i]], . . . , I[Cend[i] − 1]. I set Cstart[i] and Cend[i] to −1, if cell i
is empty. To construct and sort I, Cstart, Cend and either the array of structures or structure of
arrays, the following steps are necessary:

Hash: computes the cell id wc · by/δcc + bx/δcc for each agent positioned at x = (x ,y) in
parallel and stores it in C,

Sort: sorts cell ids C applying the parallel bitonic sort algorithm. At the same time, agent
ids I are sorted in the same way,

Ordering: rearranges agent properties, that is, the AoS or SoA according to I in parallel,

Find: constructs Cstart and Cend by detecting unequal consecutive cell ids in C in parallel.

The construction is depicted in Fig. 5.2. The reordering of agent properties does not only simplify
the access to nearby agents but additionally increases the cache hit rate during the following
computation steps of the cycle.
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Figure 5.2: Construction of the linked cell data structure with 4 × 4 cells and nA = 7 agents:
the square on the left covers the spatial domain. Agents numbered from 0 to 6 are depicted in
blue. After Hash computes cell ids based on the agent’s position, Sort sorts them. Finally, Find
detects consecutive changing cell numbers in C and constructs Cstart and Cend.
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Constructing the linked cell data structure sequentially by using an array of dynamic lists
requires O (nA ) time. Using only arrays and primitive data types as presented requires sorted
agent ids. The sorting is the dominant factor and requiresO (nA ·log(nA )) sequential time but only
O (log2(nA )) parallel time. Therefore, the described construction requires overall O (log2(nA ))
parallel time.

5.2.2 Identi�cation of independent events

After the linked cell data structure is constructed, I use it to identify independent footstep events
applying a two-phase parallel �ltering technique.

Cell�lter

First, I invoke Cellfilter for each cell of the linked cell data structure. It iterates over all agents
of a speci�c cell and �lters the agent with the earliest event time tl ,i ≤ t +∆t . Its id is written into
an array E′ of size nc . If no agent was found, which happens if the cell is empty, −1 is written
instead, compare Fig. 5.3.

Cellfilter requires O (nA,c ) parallel time where nA,c is the number of agents of the most pop-
ulated cell. nA,c is bounded by some constant since optimal steps models avoid overlaps of agent
bodies. Therefore, the parallel time complexity of Cellfilter is theoretically independent of the
overall number of agents nA . It is known that the density of a maximum packed arrangement of
agent bodies (circles) is

π
√

3
6 ≈ 0.9069. (5.8)

If we multiply the area of a cell by this number, we get the space that can be occupied by an agent
body. Consequently,

nA,c ≤ maximal space occupied by agents
area of the agent body =

√
3π · (δc + δtor/2) · (δc + δtor/2)

6π (δtor/2)2
(5.9)

holds, where δc is the cell size (width and height of a cell) and δtor the diameter of the agent’s
torso. For example, if one uses the potential function proposed in [260] with a width of δw = 0.5,
the torso diameter of δtor = 0.4 and a maximum step length of γmax = 1.1 (compare [257]) we get
δc = (2 · 1.1 + 0.5) = 2.7. Then the number of agents contained in a cell is bounded by

√
3π · (2.7 + 0.2) · (2.7 + 0.2)

6π0.22 ≈ 60.69, (5.10)

if ∆t is smaller than the step duration of any agent. In that case, the pedestrian density would be
approximately 8.33 agents per square meter.

Grid�lter

After applying Cellfilter, I invoke the second �lter, called Gridfilter, for each cell in parallel.
It �lters left-over con�icting footstep events. It replaces the agent ids in E′ by −1 if there is an
agent in the Moore neighborhood with a smaller event (start) time.
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Figure 5.3: Construction of E′ using the situation depicted in Fig. 5.2 by invoking Cellfilter and
Gridfilter consecutively: white highlighted numbers represent the agent ids. The �rst array is
constructed by Cellfilter. For each cell, the agent with the earliest event time (blue) is written
into the array. In this example, Gridfilter �lters agent 5 because the event of agent 0 starts
earlier.

Due to the �rst �lter phase, each thread has to test 8 footstep events. Thus its parallel time
complexity is O (1).

Align

After applying Cellfilter and Gridfilter, a large integer array E′ of size nc contains the agent
ids for independent agents and many entries are equal to −1. The Align procedure computes an
array E that only contains ids of agents that can be updated in parallel.

To compute the array size |E|, I use a modi�ed pre�x sum adapting the parallel algorithm
presented by Harris et al. [114]. Instead of summing everything up, I only add 1 if the array value
is non-negative. Additionally, I compute a second pre�x sum array E− ignoring all positive values.
Since all agent ids are non-negative and all other array entries are set to −1, the integer −E−[j]
is equal to the number of cells with an id smaller than j that do not participate in any movement
update. It follows that j +E−[j] is equal to the number of cells with an id smaller than j which are
a�ected by changes. Let i be the id of some of the nc threads. Then by executing the following
assignment for all threads in parallel generates the desired array E:

E[i + E−[i]]← E′[i], if E′[i] ≥ 0, (5.11)

compare Fig. 5.4.
The parallel time complexity of Align is dominated by the computation of pre�x sums and

thus equal to O (log(nc )).

5.2.3 Update of independent agents

After having identi�ed independent agents, we can solve the optimization stated in Eq. (2.12)
for each agent in E in parallel. However, to increase parallelism further, I propose a simple brute
force strategy that is especially suitable for SIMD hardware. It relies on a �nite set of possible next
positions. Therefore, if the optimal steps model optimizes on a connected in�nite set of points
(for example a disc), the set is approximated. In case of a disc, it is approximated by multiple step
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5.2 Algorithm design

Algorithm 5: ParallelBruteForceOptimization
/* evaluate utilities */

1 j ← thread group id (and event id);
2 i ← thread id (and possible next position id);
3 l ← E[i] // agent id
4 X[j][i]← xl + P[i] · rl ;
5 U[j][i]← ul (X[j][i]);
6 thread group barrier // wait for all |P | threads
/* find maxima */

7 X[j][0]← ReduceMax(X[j], U[j]) // executed by |P |/2 threads
8 if i = 0 then

/* update the agent position and event time */
9 UpdateAgent(A[l], X[j][0], E[j])

circles: let R be the number of step circles and K be the number of points we want to use for the
largest circle step circle. Then in case of a disc,

P =
{
r ′ · (cos(θ ), sin(θ ))

���� r
′ = 0, 1

R
, . . . , 1,k = 0, . . . , dR/(r ′ · K )e,θ = 2π

k
,
}
, (5.12)

is the general set of possible positions, compare Fig. 2.9ii in Section 2.2.6. Let rl be the radius of the
step circle of agent l and xl its current position, then I de�ne

Pl = xl + P · rl = {
xl + y · rl : y ∈ P } (5.13)

to be the set of next possible positions of agent l . Let P be an array containing all positions of P , then
Algorithm 5 solves the optimization problem and executes all |E| events. The pseudo-code gives
the perspective of one particular thread. The thread computes one utility value and takes part
in �nding the maximum. ParallelBruteForceOptimization is executed by |E| · |P | threads
grouped into |E| thread groups. In line Line 7, the parallel reduction ReduceMax(X[j],U[j])
returns the position for that the utility is maximal. It requires O (log( |P |)) parallel time which is
the dominant factor. Therefore, the overall parallel time complexity to solve the optimization is
also O (log( |P |)).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15index

E′

E−

E

4 0-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

0 -1 -4 -5 -6 -7 -8 -9 -9 -10 -11 -12 -13-1 -2 -3 -13

1

4 0 1

E[j + E−[j]] = E[10 + E−[10]] = E[10 − 9] = E[1]

Figure 5.4: Construction of E using the situation depicted in Fig. 5.3 by invoking Align after the
kernel function Gridfilter has �nished: blue highlighted numbers represent agent ids.
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Algorithm 6: ParallelEventDrivenUpdate
1 C← Hash(A, I) for agent in parallel;
2 C, I← Sort(C, I) in parallel;
3 A ← Ordering(A, I) in parallel;
4 Cstart, Cend ← Find(I) for agent in parallel;
5 do

6 E′ ← Cellfilter(A, t + ∆t ) for each cell in parallel;
7 E′ ← Gridfilter(A, E′) for each cell in parallel;
8 E← Align(E′) for each cell in parallel;
9 A ← ParallelBruteForceOptimization(A, E, P) in parallel;

10 while E , ∅;
11 t ← t + ∆t

To exploit fast shared memory, ParallelBruteForceOptimization is executed by |E| · |P |
threads grouped into |E| (distributed) processors (thread groups). The i-th thread of the j-th
thread group computes uE[j](xi ) where xi is the i-th possible next position. All intermediate
results are saved into shared memory. Therefore, each thread group requires ( |P | · 3 · 4) bytes of
local memory: (2 ·4) bytes for each point in P and four bytes to save each utility evaluation. After
all threads completed their task, the �nal next position is computed by a parallel reduction using
d|P |/2e threads (Line 7 of Algorithm 5) that �nally solves the optimization de�ned in Eq. (2.12).

The identi�cation and update of independent footstep events are repeated until E is empty. The
ParallelEventDrivenUpdate is depicted in Algorithm 6.

5.3 Algorithm analysis

Let E be footstep events occurring within [t ; t + ∆t ) and let Ej ⊆ E be the events ParallelEvent-
DrivenUpdate updates in parallel for one update cycle (Line 6 to Line 9 in Algorithm 6) j =
1, . . .k . If |E | > 0,

1 ≤ |Ej | ≤ nc/4 (5.14)

holds for all j, where nc is the number of cells. We can easily construct an example of agent and
event arrangement for that the parallelized event-driven update scheme falls back to a sequential
update. One such example is a queue where each agent steps forward after the person in front
moved ahead. The upper bound of nc/4 parallel executable events is shown by the optimal tessel-
lation pattern in Fig. 5.5. How much work can be done in parallel depends on the distribution of
agents (spatially) and event times (temporally). Large and sparsely populated scenarios o�er the
most parallel potential, and dense areas reduce it since more agents con�ict with one another. In
the following, I estimate the expected parallelism for the proposed algorithm.
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5.3 Algorithm analysis

5.3.1 Theoretical considerations

In the following, I build a model to estimate how many agents can be updated in parallel for a
disadvantageous crowded situation. More precisely, I compute the expected number of updates
and reveal the proposed algorithm’s parallel potential.

Let us look at the simulation state at some point in a simulation run. Let us assume all start
event times are uniformly distributed, and each cell containsm events (agents) such that

|E | =m ·wc · hc =m · nc , (5.15)

where nc is the number of cells, wc is the number of cells in x-direction (columns) and hc the
number of cells in y-direction (rows). Additionally, let us ignore cells at the boundary – I assume
each cell has eight neighbors in its Moore neighborhood. Let

Ax ,y,j =
{an event at cell (x ,y) is processed in cycle j

} (5.16)

be a random event, IAx,y, j be its indicator function, andXx ,y,j be the random variable for the earliest
event time for cell (x ,y). The probability that an event in cell (x ,y) is executed in the �rst cycle

Pr
(
Ax ,y,1

)
= Pr

*....
,

⋂

∆x=−1,0,1,
∆y=−1,0,1

{
Xx ,y,1 ≤ Xx+∆x ,y+∆y,1

}+////
-

=
1
9 (5.17)

is independent of x ,y. For this model, the expected number of events that we can update in
parallel for the �rst cycle is

∑

x=0,...,wc−1,
y=0,...,hc−1

Ex
(
IAx,y,1

)
=

∑

x=0,...,wc−1,
y=0,...,hc−1

Pr
(
IAx,y,1

)
=
nc
9 . (5.18)

For the upcoming cycles (j > 1) probabilities change because there are no longerm events in each
cell. I compute these probabilities by sampling the situation for di�erent numbers of events m
and cells nc . Figure 5.6 illustrates the simulation results. I repeated the experiment 100 times and
averaged over the results. The number of events processed in each cycle on average is indepen-
dent of the number of eventsm and the number of cells nc . For nc = 10×10, on average 8.3 events

Figure 5.5: A grid tessellated (left) by following the optimal tessellated pattern where one out
of four cells take part in an update cycle. Blue cells take part in the update, while white cells are
excluded because of dependency restrictions.
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Figure 5.6: Parallel processed events: the average number of events processed in parallel for any
cycle stays between 8 and 9 forwc = hc =

√
nc = 10 cells. For a constant number of eventsm = 10,

and a changing number of cells nc = wc · hc , with wc = hc , the required number of cycles k stays
below 150 (ii).

are processed for each cycle, that is, approximately 8.3 % of cells participate, compare Fig. 5.6i.
For a �xed number of events (m = 10) and an increasing number of cells, Fig. 5.6ii reveals that
the number of cycles k stays below 150, that is, approximately m/k = 10/150 ≈ 6.7 % cells are
updated.

In summary, the overall parallel time complexity of ParallelEventDrivenUpdate is

O (log2(nA ) + k · (nA,c + log(nc ) + log( |P |)), (5.19)

where k is the number of cycles, nA the number of simulated agents, nA,c the maximal number of
agents within a cell and P the discrete set of possible next positions. Since the percentage of cells
that can be updated on average seems to be constant for my pessimistic model, k depends only
on the maximum number of agents within a cell nA,c , which is bounded by another constant (see
Section 5.2.2). In theory, this leads to

O (log2(nA ) + log(nc ) + log( |P |)). (5.20)

However, the hidden constant can be large and depends on the agent utility de�nition of the
optimal steps model.

5.3.2 Experimental observations

In the following, I conduct two crowd simulations to test the parallelism using the optimal steps
model presented in [260]. The �rst benchmark scenario is a 10×100 square meter corridor. Every
∆t · 2 = 0.8 seconds, 5 new agents spawn at a random position. They walk from left to right until
they get teleported back to the left. Therefore, I emulate a cyclic corridor. Over time, the corridor
becomes more and more crowded. Agents are distributed uniformly over the complete domain.
The resulting cell size is δc = 2.61 meter. Consequently, the linked data structure consists of
nc = 10 × 100/(2.61 × 2.61) = 146 cells. As expected, the number of cycles k required linearly
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Figure 5.7: Parallel processed events (corridor): the number of cycles k required to process all
events E increases linearly with the number of events |E | occurred within ∆t (ii). The average
number of events processed for each cycle �uctuates between 12 and 17 (i). Therefore, on average
between 8 % and 11, 6 % of cells can be updated in parallel in each cycle.

increases with the number of events |E |. The average number of events processed for each cycle

�uctuates between 12 and 17. Importantly, there is no decreasing trend recognizable. On average
more than 8 % of all cells and 100/1500 · 100 = 6, 67 % of all events E are updated in parallel.
Furthermore, 1 ≤ k ≤ 150. Consequently, for a proper hardware setup, a speedup of an order of
magnitude for Locomotion(∆t ) can be expected.

The second scenario is the Richard-Wagner-Straße in Kaiserslautern �ooded with 10,000 agents
walking from top to the bottom, compare Fig. 5.8. The domain is 228 × 560 square meters large.
This scenario is inspired by demonstration marches that often take place in this part of Kaiser-
slautern. Every second, 20 agents spawn at random positions inside the green rectangle. Each
agent walks towards the orange rectangle Γ at the bottom. The simulation reveals that the par-
allelism of ParallelEventDrivenUpdate depends on agents’ spatial distribution, including the
number of non-empty cells. At the start of the simulation, agents only occupy a tiny region.
Therefore, the number of required cycles k is large, compare Fig. 5.9. As expected, as soon as
agents are more spread out more events can be processed in parallel. The portion of parallel pro-
cessed events lies between 1 % and 3.3 % (if 10,000 agents are present). Therefore, 30 ≤ k ≤ 100
follows, compare Fig. 5.9ii. Consequently, for a proper hardware setup, a speedup of an order of
magnitude for Locomotion(∆t ) can be expected.

Figures 5.7i and 5.9ii illustrate the number of events that can be processed averaging over
the number of required cycles k . To estimate the number of threads suitable for the problem, I
compare the number of events that can be processed in each cycle. Instead of averaging over the
cycles of the time step, I average over the time steps with respect to each cycle number. Figure 5.10
shows the absolute and cumulative portion of events processed in a cycle. For both scenarios,
parallelism decreases with the cycle number j = 1, . . . ,k . If agents are distributed evenly, the
only reason for this e�ect is that the number of remaining unprocessed events decreases with
each cycle. Otherwise the slope in Fig. 5.10iii would be constant. For the Richard-Wagner-Straße
scenario 50 % of events are processed after approximately 10 cycles. For the corridor scenario, it
takes ru�y 43 cycles. The di�erence re�ects the di�erences in spatial agent distributions. The
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(i) (ii) (iii) (iv)

Figure 5.8: Snapshots of agent trajectories 125 s (i), 196 s (ii), 280 s (iii), and 363 s (iv) into the
simulation of the Richard-Wagner-Straße scenario using a dynamic navigation �eld.
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Figure 5.9: Parallel processed events (Richard-Wagner-Straße): the number of cycles k required
to process all events �uctuates but stays below 100 (i). The same is true for the number of events
processed on average in each cycle (ii). For any cycle, at least 1 % of events can be processed
in parallel. At the start of the simulation parallelism decreases until approximately time step
ti = 500. Then it increases since agents cover more and more cells (iii).
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Figure 5.10: Average portion of events executed in parallel in cycle j = 1, . . . ,k for the corridor
(i) and Richard-Wagner-Straße (ii) and the cumulative portion below. I average over all time steps
of the simulation.

corridor is evenly populated, while for the Richard-Wagner-Straße we have crowded and low-
density areas. Early cycles update all agents in those low-density areas while late cycles deal with
events occurring in crowded areas. This explains the di�erent slopes of the cumulative number
of processed events illustrated in Fig. 5.10. If we would use 0.025 · 4000 = 100 threads for the
Richard-Wagner-Straße simulation and each thread would be responsible for the computation of
only one event (in each cycle), then after on average the 12th

cycle some threads would idle and
after the 25th

cycle ru�y 50 % of threads would idle, compare Fig. 5.9ii. Therefore, it is important
that more than |E| threads contribute work in ParallelBruteForceOptimization (Line 9 in
Algorithm 6). More precisely, the computation of one footstep event must be parallelized as well.
Otherwise, we can not utilize computing resources properly.

5.4 GPGPU implementations

In contrast to CPUs, the hardware architecture of graphics processing units (GPU) is designed for
massive parallelism. Since GPUs are part of many current and upcoming supercomputers, e�-
cient exploitation of GPUs has become essential in scienti�c computing. Additionally, GPUs o�er
thousands of cores inside a�ordable o�-the-shelf workstations making general-purpose graphics
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processing units (GPGPUs) a source of cheap and e�cient computational power. Consequently,
I consider how to exploit GPUs for large-scale crowd simulations. I use a GPU to demonstrate
acceleration achieved by the introduced parallelism experimentally.

I base my implementations on OpenCL to support a broad range of hardware accelerators.
I integrated it into our Java-based open-source framework Vadere [157]. To call the OpenCL
kernels within Java, I use the Lightweight Java Game Library 3.2.3 [195]. One important factor to
successfully transform an algorithm into a GPU implementation is to use the fast local memory.

Since I want to show the performance e�ect of the dependencies enforced by the event-driven
update, I also developed an OpenCL implementation of the parallel update scheme. After all, the
parallel update scheme (ParallelUpdate) might still be a valid alternative for many scenarios. I
use the measured run time of ParallelUpdate as a baseline for ParallelEventDrivenUpdate
– we can not expect it to be faster.

5.4.1 Navigation �eld transfer

In my implementation, navigation �elds are computed by the CPU and I copy them onto the
GPU. If the navigation �eld is dynamic, I would have to copy a lot of data after each ∆t simulated
seconds. This leads to a signi�cant performance drop. Enabling simulations based on dynamic
navigation �elds carried out by the GPU requires future work. In Section 9.3, I will show that mul-
tiple GPU-based eikonal solvers exist. Integrating them or transforming my solver (Section 9.4.4)
into a GPU-version goes beyond this thesis. However, to show achievable performance improve-
ments for Locomotion(∆t ) (Algorithm 1) in practice it is reasonable to ignore navigation �eld
computation.

To compute target and obstacle utilities on the GPU, solutions of the eikonal equations ΦΓi
and the distance function dΩ are required. dΩ is approximated by another solution of an eikonal
equation, that is, Φ∂Ω, see Section 8.7. Each eikonal equation is solved on the host device (CPU).
Before the simulation starts, I sample the solutions on regular grids and transfer each from the
host to the global memory of the GPU. Values in between grid points are bi-linearly interpolated.
Furthermore, an approximation of the possible next footstep positions P (de�ned by Eq. (5.12))
is computed and transferred to the GPU. Therefore, at the start of the simulation, one massive
memory transfer is necessary.

5.4.2 The parallel update scheme

Implementing the parallel update scheme (Algorithm 4) for the GPU is straightforward. OpenCL
kernel methods realize Seek and Move. Agent properties such as the start and end position of
its next position are saved in structures of arrays (SoA). To test for con�icts, I use the linked
data structure described in Section 5.2.1. Therefore, before updating the agents’ position for one
time step, I construct the linked cell data structure beforehand. Instead of threads and thread
groups, the GPU uses OpenCL work-items and work-groups. After the linked cell date struc-
ture is constructed, Seek computes the agents’ next possible positions in parallel. Since there is
enough work to do, each agent is assigned to a di�erent work-item (thread) executing the Seek
kernel. Thereby I increase the amount of work for each work-item compared to the event-driven
update implementation. If the agents’ next footstep happens within [t ; t + ∆t ), the next possible

74



5.4 GPGPU implementations

(i) Bottleneck scneario. (ii) Open space scenario.

Figure 5.11: Snapshots of benchmark scenarios: all agents are uniformly distributed inside the
green 400×1900 square meter rectangle at t = 0 seconds. They walk towards their orange destina-
tion Γ at the top. The blue trajectories reveal the agents’ movement through the 6 bottlenecks (i).
They move towards each other. Without bottlenecks, agents stay away from each other during
the whole simulation (ii).

best position is computed. Work-items reduces all possible positions to the best one by solving
Eq. (2.12). Finally, the resulting position is saved to global memory. For each agent, the Move
kernel is executed by a di�erent work-item (thread). This kernel tests if there are any collisions
for the possible next positions (calculated by the Seek kernel) agents within the Moore neigh-
borhood of the linked cell data structure. If there is none, I update the agent’s event time and
position accordingly. Otherwise, I mark the cycle as con�icted. Seek and Move calls are repeated
until there is no collision detected and all event times are greater than t + ∆t . For e�ciency rea-
sons, I choose |P | = 2z discretization points for step disc, where z ∈ N, because the number of
processing units in GPU-groups is equalt to 2y for some y ∈ N.

5.4.3 The event-driven update scheme

Since I developed ParallelEventDrivenUpdate for SIMD hardware an OpenCL implementa-
tion is obtained by transforming each procedure in Algorithm 6 into a kernel function. Because
at most nc/4 agents can be updated in parallel (see Section 5.3) and because parallelism decreases
with each cycle and depends on the spatial distribution of agents, I use multiple work-items for
computing the next position of a speci�c agent. Whenever some task is assigned to a thread group
(an OpenCL work-group), intermediate results are stored in fast local memory. For example, all
utility evaluations of one speci�c agent or the event times required for the Cellfilter kernel.
Pre�x sums and the bitonic sort algorithm also use fast local memory whenever possible.

5.4.4 Comparison of Computation Times

To compare computation times, I carry out a series of tests. The analysis above showed that
ParllelEventDrivenUpdate performs best for evenly distributed and well-separated agents
because, in this case, footstep events are likely to be independent of each other. It performs worst
if cells are either empty or highly populated. To control the spatial distribution of agents, I use
two arti�cial benchmark scenarios.

The �rst multi-bottleneck scenario consists of 6 bottlenecks. The domain size is 1000 × 2000
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ParallelUpdate ParallelEvent-
DrivenUpdate EventDrivenUpdate

Number of agents |A| OpenCL
(GPU)

OpenCL
(CPU

Java
(CPU)

OpenCL
(GPU)

OpenCL
(CPU)

Java
(CPU)

10 · 103 3 15 80 20 99 140
100 · 103 13 119 1,190 60 546 2,100
500 · 103 74 1,348 12,137 160 2,875 30,096

Table 5.1: Average computation time in milliseconds of ∆t = 0.4 seconds simulation time of the
open-space scenario for 10 · 103, 100 · 103 and 500 · 103 agents.

square meters. Agents spawn at t = 0 seconds at random positions in a large 400×1900 squareme-
ter area. They all pass through the 6 bottlenecks. Even though the multi-bottleneck scenario is
simple, it imitates more complex geometries and situations by generating a wide range of den-
sities. The simulation starts with low densities until congestions begin to occur - the density
increases because all agents have to move to 6 speci�c spots. The second open-space scenario is
equal to the �rst one but without bottlenecks. Both scenarios are depicted in Fig. 5.11.

For all tests |P | is approximated by 32 points and ∆t is set to 0.4 seconds. My OpenCL imple-
mentation uses single precision and the existing (single-threaded) Java implementation double
precision. Tests were carried out on the following hardware platform: Intel i5-7400 Quad-Core
(3.50 GHz), 8 GB DDR4 SDRAM, and a graphics card NVIDIA GeForce GTX 1050 Ti / 4 GB GDDR5
VRAM.

In open space, using GPGPU computation over the existing Java implementation speeds up
the simulation by multiple orders of magnitude – the simulation runs more than 100 times faster.
However, this comparison is not very meaningful since I compare run times based on imple-
mentations realized by di�erent programming languages and executed on di�erent machines.
To eliminate at least one factor, I compare the OpenCL implementation using the CPU and the
GPU. Running the same OpenCL code on the CPU is 5 up to 18 times slower than on the GPU.
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Figure 5.12:Comparison of computation times over a simulation run of the multi-bottleneck sce-
nario for 100,000 and 500,000 agents A using ParallelUpdate and ParallelEventDrivenUp-
date. The computation time is required to simulate ∆t = 0.4 seconds.
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Furthermore, the GPU scales better for a growing number of agents, compare table 5.1. During
the simulation, the computation times do not signi�cantly �uctuate.

The multi-bottleneck scenario benchmark reveals that computation times �uctuate during the
simulation run if the ParallelEventDrivenUpdate is used. As expected, the computation slows
down when agents approach the bottlenecks and thus move closer together. After approximately
100 simulated seconds, the computation time reaches a plateau. Figure 5.12 illustrated this phe-
nomenon.

5.5 Source code

The source code realizing the OpenCL implementation of ParallelEventDrivenUpdate and
ParallelUpdate is part of the open source simulation framework Vadere [294, 157]. Together
the following �les belong to the implementation of ParallelEventDrivenUpdate:

• CLAbstractOSM.java,

• ICLOptimalStepsModel.java,

• CLParallelEventDrivenOSM.java,

• CLUpdateSchemeEventDriven.java, and

• ParallelEventDrivenOSM.cl.

And

• CLAbstractOSM.java,

• ICLOptimalStepsModel.java,

• CLUpdateSchemeParallel.java,

• CLParallelOSM.java, and

• ParallelOSM.cl.

belong to the implementation of ParallelUpdate.

5.6 Summary

In this chapter, I introduced parallelism to optimal steps models. In Section 5.1, I discussed the im-
portance of preserving the intended update order of models. By changing the order, one creates a
new model. In the modeling process, we should not limit ourselves by computational restrictions.
Instead, proper algorithms should free us from those restrictions.
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Therefore, I presented ParallelEventDrivenUpdate in Section 5.2. It introduces parallelism
without changing the model. I gave a detailed and technical description that focuses on single-
instruction multiple data architectures such that other researchers and developers can imple-
ment ParallelEventDrivenUpdate for their hardware setup. Extensions to support distributed
memory systems or to make use of other (hardware) accelerators belongs to future works.

Because the event-driven update scheme imposes event dependencies that reduce parallelism,
I gave a theoretical and experimental analysis of the parallelism achieved by ParallelEvent-
DrivenUpdate in Section 5.3. The average portion of events that can be processed in parallel is
relatively small if cells are either empty or highly populated. However, if we simulate thousands
of agents, even a small portion is enough to utilize multiple processors e�ciently. The reason
for that is that �nding independent events is not time-consuming if there are enough processors
available.

In the last part of this chapter (Section 5.4), I compared execution times for a GPU. To get a
sense of how much performance we lose by the imposed restrictions, I use the ParallelUpdate
as a baseline. ParallelUpdate outperformed ParallelEventDrivenUpdate but in case of half
a million agents it was only 3 times faster. I was able to simulate up to half a million agents in
real-time without changing the model(s). I also compared the parallel execution of the CPU and
GPU. Simulations on the GPU ran up to 18 times faster. The single-threaded Java implementation
could not keep up at all.

The described parallel linked cell technique can be carried over to other models if the agents’
in�uence remains local, a valid property for many models. It opens the door for microscopic
pedestrian simulation on the GPU. And as I showed, GPGPU can be bene�cial for pedestrian
dynamics beyond CA models or ODE-based models.
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PART III

Large-scale navigation �elds





Introduction

Navigation �elds realize robust way�nding to facilitate simulations with complex and large ge-
ometries, compare Chapter 3. Static navigation �elds do not change during a simulation run.
They are computed in the Initialization of Algorithm 1 before the simulation loop starts. Dy-
namic navigation �elds have to be recomputed frequently. This computation is part of Strategi-
cAndTactic. In the past, frequent computation of the eikonal equation’s solution imposed high
computational costs that made real-time simulations for large-scale scenarios impossible.

For general spatial domains Ω ⊂ R2, destinations Γ ⊂ Ω and travel speed functions f the
eikonal equation Eq. (3.2) is solved by numerical methods such as the FastMarchingMethod.
The development of new numerical methods was driven by many authors outside of the pedes-
trian dynamics community. Over the decade, they designed e�cient and parallel methods to
achieve accurate results while keeping the computation time at a minimum. I give an extensive
review in Section 9.3. For each method, a particular space discretization T is part of its input,
and they compute an approximation of the travel time ΦΓ (v) for a �nite number of vertices v.
A typical discretization, also used in pedestrian dynamics, is the (structured) Cartesian grid. In
that case, elements of T are unit squares. Each grid point has at most four neighbors at a dis-
tance of h meters. Using small elements, Cartesian grids are a save option to achieve accurate
approximations. However, they consist of a large number of vertices. And since the execution
time of numerical methods depends on the number of grid points, Cartesian grids lead to a heavy
workload.

I identify two strategies to reduce the computation time required to compute navigation �elds:
the �rst one is to design a novel method that outperforms state-of-the-art solvers – a rather
ambitious project, because there already exists e�cient solvers. The second way to combat the

Figure 5.13: An example of a navigation �eld where the destination Γ is on the right.
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problem is to reduce the number of discretization points without losing too much accuracy.
In Part III, I follow both strategies. In Section 9.5, I design a new eikonal solver (for unstructured

meshes and Cartesian grids) to compute dynamic navigation �elds. My approach exploits the fact
that the dynamic navigation �eld does not change too much over time. Therefore, the method
outperforms other methods if multiple ‘similar’ eikonal equations had to be solved.

Secondly, I change the discretization from Cartesian grids to unstructured meshes. I develop
EikMesh (Chapter 8) an adaptation of the meshing algorithm DistMesh (Chapter 7) to generate
high-quality adaptive unstructured triangular meshes for pedestrian dynamics. Meshes gener-
ated by EikMesh conform to the geometry and adapt to localized resolutions – important prop-
erties for accuracy (of simulation results) and the reduction of discretization points to improve
performance.

In Chapter 6, I introduce mesh generation for pedestrian dynamics. I discuss the state-of-art-
techniques and algorithms with a focus on two-dimensional unstructured meshes. Furthermore,
I establish a metric to evaluate the mesh quality and discuss point location algorithms that are
important for using unstructured meshes in a pedestrian simulation. In Chapter 7, I give a de-
scription of DistMesh that is important to understand the EikMesh algorithm. EikMesh’s de-
scription follows in Chapter 8. Finally, in Chapter 9, I discuss the computation of navigation
�elds for unstructured meshes. I start by an algorithmic description of numerical methods (Sec-
tions 9.1 to 9.3). The consecutive section, Section 9.4, focuses on the adaptive aspect of unstruc-
tured meshes – the section belongs to the second way. In the subsequent section, I introduce the
InformedFastIterativeMethod – a novel eikonal solver specialized for dynamic navigation
�eld computation.

From the Delaunay triangulation, walks on triangulations, Ruppert’s algorithm to DistMesh,
a lot of work from other authors in the �eld of computational geometry went into EikMesh. To
facilitate a deep understanding, I describe the required algorithms in detail. Therefore, the reader
familiar with unstructured triangular mesh generation might want to skip Chapters 6 to 8.
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CHAPTER 6
Mesh generation for pedestrian dynamics

“The only way to deal with an unfree world is to become so absolutely free that your very

existence is an act of rebellion.”

– Albert Camus

Mesh generation and (adaptive) re�nement have their application in many di�erent areas ranging
from computer graphics, animation, and complex numerical simulations of physical phenomena,
such as �uid dynamics to robotics and, of course, pedestrian dynamics. In each area, many com-
putational techniques are based on a discrete representation of the underlying geometry. Objects
and domains of interest are tessellated into a mesh of simple elements. Quoting Joe F. Thompson:

“An essential element of the numerical solution of partial di�erential equations (PDEs)

on general regions is the construction of a grid (mesh) on which to represent the equations

in �ne form. At present it can take orders of magnitude more man-hours to construct

the grid than it does to perform and analyze the PDE solution on the grid. This is essen-

tially true now that PDE codes of wide applicability are becoming available, and grid

generation has been cited repeatedly as being a major pacing item. The PDE codes now

available typically require much less esoteric expertise of the knowledgeable user than

do the grid generation codes.” – Thompson in 1992

Two decades later, meshes are still a recurring bottleneck [275].
Everything started in the 70’s decade when researchers and engineers were interested in the

application of the �nite-element method. Rapidly more and more researchers became involved,
among other computer scientists. Around 1975, they established a new discipline called compu-
tational geometry, which was and still is interested in the computational complexity of geometric
problems. Research in mesh generation is concerned with developing e�cient, robust, and auto-
matic algorithms to construct, adapt, and maintain high-quality meshes for complex geometries
and objects. Meshes are expected to conform to several, sometimes contradictory, requirements.
They must accurately represent the geometry, that is, adhere to complex geometrical features,
and support a high spatial resolution in areas of interest while maximizing sparsity elsewhere
to reduce computational costs. Additionally, meshes should consist of high-quality elements,
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promote local, adaptive, and incremental re�nement techniques, and they should be e�ciently
computable.

While applications such as pedestrian dynamics use meshes as an ingredient, computational
geometry is concerned with mesh generation itself, especially the amount of time and space
it takes to generate a mesh and the properties it has. These properties range from lower and
upper bounds of the largest θ∞ and smallest θ0 angle to quality bounds based on a particular
measurement ρ. I establish quality measures for this task in Section 6.6.

In this chapter, I lay the foundation for EikMesh, a new mesh generator for unstructured two-
dimensional meshes. Its detailed description will follow in Chapter 8. The discourse starts with
mesh requirements for microscopic navigation �eld-based pedestrian simulation. I introduce and
discuss di�erent mesh types and mesh generation methods. Furthermore, I give a more detailed
description of all algorithms and data structured EikMesh is based on, including the DistMesh
algorithm.

6.1 Requirements for pedestrian dynamics

Even if pedestrians move in a three-dimensional space, pedestrian simulators model their spatial
domain as a two dimensional abstraction of the real world, ignoring the z-coordinate, and with
it the height of objects. This simpli�cation disregards obstacles, which are barely passable like
fences, desks, chairs and architectural features such as stairs, escalators and elevators. Models,
which include the in�uence of such ‘soft obstacles’, avoid to model their three-dimensional body.
For example, optimal steps models decrease the attractiveness of areas close to obstacles [257].

Undoubtedly, the motion and path planning of pedestrians is fundamentally in�uenced by the
given architectural environment. Furthermore, small changes in the geometry can have a great
impact on the behavior of pedestrians. For example, a passage just a little too narrow might only
be passable by one pedestrian at a time. A wider passage might double the �ow of pedestrians.
Realistic models reproduce these e�ects. In Fig. 6.1 we can observe the e�ect of small geometrical
changes. I deduce that the �rst important core mesh requirement is an accurate representation
of the given two-dimensional geometry.

Pedestrians do not only navigate around obstacles but keep a certain distance to them, com-
pare the experiment conducted in [260]. Modelers introduce this natural obstacle avoidance by
di�erent techniques that depend on the distance dW to obstacles W . In case of force-based
models [118, 48, 49], a force pointing away from obstacles has a repulsive e�ect. Optimal steps
models [257, 299, 300, 305] achieve a similar e�ect through a reduced utility for positions close

(i) (ii)

Figure 6.1: E�ect of small geometrical changes: for a 10 cm wider corridor (ii) the �ow of a
simulation increases signi�cantly. For both simulations I used the Gradient Navigation Model
[68] and, except for the corridor width, the exact same con�guration.
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to obstacles. From an implementation perspective, the computation of dW can be expensive. In
Section 8.7 I propose to use a so called background mesh to save computation time. Before the
simulation starts I construct a coarse unstructured background mesh and compute dW for each
vertex. During the simulation the distance dW (x) is approximated by interpolating based on the
vertices and values of a triangle τ containing x. The approximation has to be accurate, especially
for small values of dW because important phenomena such as congestion occur at bottlenecks,
that is, positions close to obstacles. In Section 9.4.4 I explain why the underlying mesh of navi-
gation �elds should be �ne at these areas. Intuitively, at these bottlenecks most important parts
of the dynamics take place.

In this work, I focus on pedestrian simulation models for which the cognitive map of a person
is represented by a navigation �eld – the solution of one (static) or multiple (dynamic) eikonal
equations. In section Section 9.4, I discuss di�erent solvers and their extensions. For all these
solvers, the computation time depends on the number of mesh points. Using a Cartesian grid
for space discretization causes either large errors or long computation times. For large spatial
domains the computation time becomes prohibitive, especially for dynamic navigation �elds for
which frequent re-computations are necessary. This is one of the big computational bottlenecks
we have to overcome to enable real-time large-scale simulations. To do so, I propose to reduce
the number of mesh elements drastically. For this reason I designed EikMesh in order to generate
conforming meshes with localized resolutions.

I conclude that meshes that represent the underlying geometry in large-scale navigation �eld-
based pedestrian simulation have to

(1) adhere to complex geometrical features,

(2) support high spatial resolution where needed, notably near obstacles, and

(3) have a low spatial resolution everywhere else.

6.2 Mesh types

In the following section I give an introduction to meshing, the di�erent mesh types, and what
property they impose. Most de�nitions and terms are listed in [275, Chapter 1]. A mesh (grid) is a
collection of simple geometrical objects that tessellate the spatial domain and can be represented
by a planar undirected graph. Based on their topology, meshes can be classi�ed in several ways.
Like many meshing algorithms, EikMesh constructs meshes that are

(i) unstructured,

(ii) conforming,

(iii) homogeneous and

(iv) triangular.
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Properties can be arbitrarily combined, but some combinations make more sense than others.
For example, unstructured meshes (Section 6.2.1) are often triangular. Structured meshes that do
not adhere to the domain boundary are mostly conforming (Section 6.2.2), whereas rectangular

structured meshes which align with the boundary are not.

6.2.1 Regularity

First of all, a mesh is either structured or unstructured. These terms refer to the regularity of the
mesh. Structured means highly regular. The topology of structured meshes is usually given im-
plicitly. For example, accessing a triangle containing a given point x is trivial for a 2-d structured
triangular mesh. It requires only a few simple arithmetic operations. One of the most regular 2-d
structured mesh is the so-called structured rectangular grid. I use the term grid instead of mesh to
emphasize its regularity. If the structured rectangular grid consists of squares, I call it a Cartesian

grid. For a Cartesian grid with side length h and its origin at 0

(i, j ) = (bx/hc, by/hc) (6.1)

is the column and row of the cell containing x = (x ,y). Consequently, a simple array su�ces to
store data for each vertex of the Cartesian grid.

Unstructured meshes, on the other hand, require explicit storage of their topology information.
Therefore, a more sophisticated and memory-hungry data structure (see Section 6.8) is required
to represent the mesh. Furthermore, point locations (Section 6.7) are non-trivial and require more
computational e�ort – point location is the problem of �nding the (one) triangle τ containing
some given point x. However, unstructured meshes are much more versatile because of their
ability to combine good element shapes with odd domain shapes and element sizes that grade
from very small to very large [275, p. 3].

Comparing unstructured and structured meshes in general, is di�cult and goes beyond my
work. However, we can identify some trends. For an equal mesh size, structured meshes require
only a fraction of the memory of their counterparts [27, p. 300]. As showcased by the example
above, their regularity enables fast index-like access to arbitrary mesh elements. Consecutive
accesses to neighboring elements can often be implemented in a cache-friendly manner. Addi-
tionally, global re�nement and coarsening can be easily implemented. However, the regularity
requirement comes at a high price: dealing with complex spatial domains is di�cult, because
vertices do not necessarily align with the boundary or any other geometrical constraints. Fur-
thermore, many local re�nement and coarsening techniques introduce irregularity. Therefore,
structured grids are suitable primarily for domains that have tractable geometries and do not
require a strongly graded mesh [275, p. 3]. Despite of a computational more expensive point loca-
tion, unstructured meshes o�er more geometrical �exibility. This leads to fewer elements and the
additional computational and memory costs per element may still result in overall computational
savings.

An attempt to get the best from both types is to build so-called hybrid or block-structured

meshes. As their name suggests, meshing algorithms of that type build an unstructured mesh and
re�ne its faces in a structural manner. The generated meshes are the result of merging multiple
structured grids in an unstructured way together. Unfortunately, their generation is rarely fully
automatic [27].
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6.2.2 Conformity

EikMesh constructs conforming meshes. Hereby I am not referring to the adherence to geome-
try but to the conformity with respect to the mesh topology. Adjacent elements of conforming

meshes must intersect along a common edge or face – there are no hanging nodes or overlapping
faces allowed. This lack of fractional element connectivities is desirable because most e�cient
numerical methods, including many solvers for the eikonal equation (Section 9.2), rely on it.
Hanging nodes introduce special cases handled by special code, often leading to a performance
drop. Non-conforming meshes allow hanging nodes and gain additional geometrical �exibility, but
they exhibit edges and faces, that do not match perfectly between neighboring elements [189].

6.2.3 Element type

Structured grids are mostly homogeneous – they consist of a single element type. The most com-
mon types are triangles, quadrilaterals for 2-d domains and tetrahedra, hexahedrons for 3-d do-
mains. Triangles and tetrahedra are the simplest of all ordinary convex polygons and polyhedra,
respectively. Quadrilaterals and hexahedrons are typically used for structural meshing, while the
simplest objects are used for unstructured meshing.

6.3 Meshing algorithms

There exists a vast range of meshing algorithms, and some are a composition or conglomerate
of others. For example, a coarse background mesh is a common construct that supports meshing
algorithms. Some of them use the constructed background mesh as an initial mesh that is re�ned
and improved.

This section organizes meshing algorithms into the four categories under which all modern
meshing algorithms for unstructured meshes fall: grid-overlay methods, advancing-front methods,
Delaunay-based algorithms and mesh-improvement approaches. An excellent source for many
aspects of mesh generation not covered in my work, for example generation of structured grids, is
the Handbook of Grid Generation by Thompson et al. [286] and Grid Generation by Löhner [189].

(i) (ii)

Figure 6.2: Depiction of a conforming (i) and non-conforming (ii) triangular mesh: red vertices
indicate non-conformity.
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6.3.1 Grid-overlay techniques

Grid-overlay techniques are based on structured grids, but they introduce irregularity and some-
times non-conformity to adhere to the geometrical features. Some meshing algorithms use a
Cartesian grid, but more sophisticated methods use quadtrees [28, 194] in 2-d and octrees [198,
177, 133] in 3-d. An axis-aligned square covers the complete boundary Ω. Each square is split re-
cursively into four new squares until some element size condition is satis�ed. After the quadtree

is constructed, squares are warped and cut to conform to the boundary. Finally, a triangulation
based on the quadtree is constructed.

The strength of grid-overlay techniques is their simplicity and e�ciency. On the downside, their
close relation to structured grids translates to high regularity. This lack of geometrical �exibility
causes problems near geometrical constraints. Elements in those areas are often poorly shaped.
Combating the problem by re�nement schemes often leads to over-re�nement [186]. Furthermore,
mesh edges tend to align in a few preferred directions, which may in�uence results of numerical
computations [275, p. 9].

Interestingly, the �rst algorithm, which achieved some quality guarantees, was a quadtree grid-
overlay technique introduced by [28]. Excluding angles de�ned solely by the domain boundary,
the algorithm designed by Bern et al. guarantees

18.4◦ ≤ θ0 ∧ θ∞ ≤ 153.2◦ (6.2)
for a connected planar region bounded by a union of disjoint polygons [28].

6.3.2 Advancing-front methods

The advancing-front method starts from the domain boundary. It initializes a front that marches
towards the interior. One-by-one, new elements are introduced whenever the front moves for-
ward. This process terminates when the region is �lled. A more detailed description is given
by [286, Chapter 17]. New elements are created by carefully positioning new vertices that are
adjacent to the triangles in the front. The front is updated accordingly.

Especially in 2-d, the method generates high-quality meshes. Since the front starts at the
boundary, the resulting mesh adheres to complex geometrical features. The freedom of choice
at the start of the march leads to high-quality elements close to the boundary. However, this
freedom and with it the element quality drops at regions where advancing-fronts merge. Despite
its practical success, conventional advancing-front methods are heuristic in nature, therefore, no
meaningful guarantees have been proven yet [275]. For arbitrary inputs, it is possible that a valid
tessellation can not be constructed at some iteration.

Early methods for two- and three-dimensional domains were introduced by [91, Chapter 2]
and [191], and extended to surfaces and volumetric problems by [30, 248, 47, 132]. Schreiner et
al. [250] developed a re-meshing method for surfaces based on the advancing-front paradigm,
which can also be used to re-mesh a portion of the spatial domain.

6.3.3 Delaunay-based approaches

Delaunay-based approaches construct the topology utilizing the Delaunay-criterion. The criterion
guarantees that no vertex is contained in the circumcircle (2-d) or circumsphere (3-d) of any
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triangle (2-d) or tetrahedra (3-d) of the mesh. It is also called empty-circle (2-d) or empty-sphere
property (3-d). The Delaunay triangulation [60] was named after Boris Delaunay, who introduced
it around 1930. It is the dual graph of the Voronoi Diagram and can also be de�ned as the set of
lines joining a set of points together such that each point is joined to its nearest neighbors. In
two-dimensions, a Delaunay triangulation is unique if and only if there are exactly three points
on any circumcircle.

There are many di�erent algorithms to construct the Delaunay triangulation directly, ranging
from incremental methods [181, 182, 35, 311, 108] to divide and conquer algorithms [264, 183] and
computations of the convex hull [276, 41, 253, 136, 254, 37]. Another possibility is to compute
the triangulation indirectly by its dual, that is, the Voronoi diagram [85], which is computed
beforehand. With respect to mesh generation for which new vertices are introduced one-by-one
or moved around, incremental methods give the necessary �exibility.

Delaunay-based approaches [191, 231, 242, 42, 221, 43, 44] consist of two tasks: the �rst one
addresses the placement of vertices, and the second creates the mesh topology de�ned by the
Delaunay triangulation. In general, a sequence is established in which these tasks are carried out.
The �rst possibility is to create all vertices before computing the Delaunay triangulation in one
pass. More prominent incremental methods, such as [45, 242, 241], �rst compute the Delaunay
triangulation for boundary vertices. New internal vertices are inserted incrementally while main-
taining the Delaunay criterion for all elements. To enforce geometric constraints, the Delaunay

triangulation is replaced by the constrained or conforming Delaunay triangulation. EikMesh is
based on the (constrained) Delaunay triangulation and exploits its properties. Therefore, I discuss
it in Section 6.5 in more detail. The Delaunay triangulation has some theoretical properties. In
the two-dimensional case it is provable optimal. As a consequence, Delaunay-based mesh gener-
ators are in many cases robust and produce provable good meshes [46, 267]. For di�cult inputs,
heuristic methods, like the advancing-front method, might fail to construct a high-quality mesh.
These properties made them popular in the computational geometry community as well as in the
�eld of numerical mathematics. Nonetheless, it is also known that advancing-front methods often
outperform Delaunay-based approaches if the input is su�ciently simple.

6.3.4 Mesh improvement

Mesh improvement manipulates a given mesh to improve its elements. The mesh had to be
constructed in the �rst place. Therefore, mesh improvement relies on other meshing algorithms.
The most common mesh improvement methods rely on �ipping and smoothing [27]. In 2-d,
�ipping exchanges the diagonal of a quadrilateral formed by two neighboring triangles, compare
Fig. 6.5.

While �ipping changes the mesh connectivity, smoothing adjusts the location of mesh vertices
– the topology remains invariant. One of the most commonly used smoothing technique is the
Laplacian smoothing [27]. It iteratively repositions a vertex vi to

vi =
1
m

m∑

j=1
uj , (6.3)

wherem is the number of adjacent vertices u1, . . . , um of vi . Other types of smoothing algorithms
use optimization to determine new vertex positions. Global optimization considers all vertices at
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once while the local optimizer adjusts vertex positions one by one. The former is computationally
expensive while the computation costs of local optimizations are comparable to the Laplacian
smoothing [27].

EikMesh implements a �ipping and a force-based improvement technique similar to Dist-
Mesh [221]. Strictly speaking, they do not smooth the mesh because topological changes are
possible. Furthermore, EikMesh and DistMesh employ both: a mesh generation and a mesh
improvement.

6.4 Triangulations

De�nitions of this section follow the description in [275, Chapter 1]. Elements of a triangular
mesh are vertices, edges, and faces. They are the convex hull of some �nite point set X ∈ Rd .

De�nition 6.1 (convex hull). Let X ⊆ Rd be a �nite point set, and |X | = k be the number of
points in X then

con(X ) =



k∑

i=1
λixi

�������
k > 0, xi ∈ X , λi ∈ R+,

k∑

j=1
λi = 1




(6.4)

is the convex hull of X .

If we drop the requirement that all weights λi have to be positive, we get a superset of con(X )
which is the a�ne hull of X . If three points are not part of one line, their a�ne hull is the plane
that contains them. Consequently, the a�ne hull of X translated by some point in X is a vector
space spanned by X .

De�nition 6.2 (a�ne hull). The a�ne hull a� (X ) of a �nite set X ⊆ Rd , |X | = k is the set of all
a�ne combinations of elements of X , that is,

a� (X ) =



k∑

i=1
λixi

�������
k > 0, xi ∈ X , λi ∈ R,

k∑

j=1
λi = 1



. (6.5)

Furthermore, a point y is said to be a�ne independent with respect toX if it is not contained in
the a�ne hull of X , that is, it is not an a�ne combination of the points/vectors in X . Going back
to the perspective of a displaced vector space, points in X are a�nely independent if all vectors
v = xi − xj with xi , xj ∈ X and xi , xj are linear independent. Therefore, only n + 1 points of the
n-dimensional space can be a�ne independent.

De�nition 6.3 (k-�at). A k-�at, also known as an a�ne subspace, is the a�ne hull of k+1 a�ne
independent points. A 0-�at is a vertex, a 1-�at is a line, a 2-�at is a plane etc. A (d − 1)-�at in
Rd is called a hyperplane.

Each mesh element (vertex, edge, triangle) of a triangular mesh is a convex hull and called
k-simplex.
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De�nition 6.4 (k-simplex). A k-simplex τ is the convex hull of a set of k + 1 a�ne independent
points in Rd where k ≤ d . A vertex is a 0-simplex, edges are 1- and triangles 2-simplices.

Note that a quadrilateral is not a simplex. The boundary of a k-simplex can be decomposed
into lower-dimensional simplices. For example, the boundary of a triangle can be decomposed
into three edges and three vertices. The boundary of an edge can be further decomposed into
two vertices. Regardless of the dimensionality of the simplex, its 0-simplices are its vertices; its
1-simplices are its edges, and so on. Gluing simplices in the right way together gives a triangular
mesh called a homogeneous simplicial complex.

De�nition 6.5 (homogeneous simplicial complex (triangulation) [275]). A homogeneous simpli-

cial complex, also known as triangulation, T of Rd is a �nite set of simplices if

(i) for each τ ∈ T all simplices of τ are also contained in T ,

(ii) for all pairs of the simplices τi ,τj ∈ T , their intersection τi ∩τj is either empty, or a simplex
common to both τi and τj and

(iii) all simplices of dimension smaller than d are simplices of a d-simplex.

If the intersection of two di�erent simplices τi ∩ τj is not empty, they are adjacent to each
other. In this case, they are also called neighbors. Otherwise, they are disjoint. The last constraint
in De�nition 6.5 ensures homogeneity. That is, it enforces a valid triangulation with no hanging
or isolated vertices and edges, respectively. To di�erentiate between elements of the mesh and
points which are inside the underlying space of the mesh, I use the following de�nition:

De�nition 6.6 (underlying space of a simplicial complex). Let τ ∈ T be an element of the
homogeneous simplicial complex T , then

|τ | = con(X ) (6.6)

is the underlying space of τ , where X contains all 0-simplices of τ . Furthermore,

|T | =
⋃

τ∈T
|τ | (6.7)

is the underlying space of T .

Furthermore, I use the following notion:

(i) τ ∈ T if and only if τ is an element of the mesh T ,

(ii) x ∈ |τ | if and only if x is contained in the underlying space |τ |.
Let us now de�ne a triangulation of a point set.

De�nition 6.7 (triangulation of a point set [275]). Let V be a �nite set of points in the plane.
A triangulation of V is a simplicial complex T such that V is the set of vertices in T , and the
union of all the simplices in T is the convex hull ofV , that is, |T | = con(V ).
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In pedestrian dynamics we are mostly dealing with linear geometrical objects. The spatial
domains consist of lines and simple polygons. In other words, the geometry can be de�ned by a
planar straight-line graph (PSLG).

De�nition 6.8 (convex polyhedron). A convex polyhedron is the convex hull of a �nite point set.

De�nition 6.9 (linear cell). A linear k-cell is the union of a �nite number of convex k-polyhedra,
all included in some common k-�at. A linear 0-cell is a vertex, a linear 2-cell is sometimes called
a polygon.

De�nition 6.10 (2-d planar straight-line graph (PSLG)). A planar straight-line graph (PSLG) P
is a �nite set of linear cells, for which

(i) vertices and edges in P form a simplicial complex,

(ii) for each polygon C ∈ P, the boundary of C is a union of edges in P, and

(iii) if two polygons in P intersect, their intersection is a union of edges and vertices in P.

A PSLG is segment-bounded if there is one polygon C ∈ P such that |C | contains all vertices,
edges and polygons in P.

In Fig. 6.3 a PSLG of a typical urban simulation scenario is illustrated. Finally, we are ready to
de�ne the simplicial tessellation of a planar straight-line graph (PSLG), in other words, a triangu-
lation of P. In fact, I de�ne a triangulation to conform to the spatial domain it tessellates.

De�nition 6.11 (Steiner triangulation of a PSLG). Let P be an arbitrary PSGL, then a simplicial
complex T is called Steiner triangulation of P if

(i) every cell in P can be written as a union of cells in T (conformity),

(ii) |T | = |P | and

(iii) T contains all vertices in P.

Additional vertices in T which are not contained in P are called Steiner vertices.

Figure 6.3: The planar straight-line graph of an urban simulation scenario.
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I di�erentiate between a triangulation with and without Steiner vertices.

De�nition 6.12 (triangulation of a PSLG). Let P be an arbitrary PSGL, then a Steiner triangula-

tion T of P is a triangulation if there are no Steiner vertices in T .

Every PSLGP supports a triangulationT (without introducing Steiner vertices) – a well-known
fact that can not be generalized for higher dimensions. In unstructured mesh generation, the goal
is to compute a (conforming) Steiner triangulation by carefully chosen and placed Steiner vertices.
So far I have discussed di�erent meshing methods and established some necessary de�nitions for
the discourse. In the following, I focus on the required algorithms EikMesh is based on. These
methods are Delaunay-based approaches.

6.5 Triangulation computation

6.5.1 The orientation and in-circle certi�cate

Mesh algorithms combine combinatorial and numerical computations. Those numeric compu-
tations performed on geometric objects are called certi�cates. A certi�cate reveals speci�c geo-
metric properties of geometrical structures and is used to decide what combinatorial operation
should be executed.

The implementation of EikMesh requires two well-known certi�cates: the orientation certi�-

cate Orientation and the in-circle certi�cate InCircle. I use the in-circle certi�cate to test if
the given structure represents a Delaunay triangulation. The orientation certi�cate tells us if a
point is on the right or left side of a directed line de�ned by two other points. I use it exten-
sively, not only to test the orientation of a triangle, but also to test for line intersections. Let
v0 = (v0x ,v0y ), v1 = (v1x ,v1y ), v2 = (v2x ,v2y ) be consecutive vertices of a triangle τ , then the
orientation certi�cate in R2 is the sign of the determinant

Orientation(v0, v1, v2) =

�������

v0x v0y 1
v1x v1y 1
v2x v2y 1

�������
.

Orientation(v0, v1, v2) returns a positive value if the vertices v0, v1, and v2 are arranged in
counterclockwise order, a negative value if points are in clockwise oder, and zero if the points
are collinear [275, Section 3.1]. Based on Orientation, I de�ne the following predicates

IsLeft(v0, v1, x) = Orientation(v0, v1, v2) > 0
IsRight(v0, v1, x) = Orientation(v0, v1, v2) < 0.

IsLeft(v0, v1, x) is true if and only if x is on the left side of the directed line from v0 to v1. From
now on, I assume that vertices of triangles are arranged in counterclockwise order.

De�nition 6.13. A triangulation T is valid if and only if the Orientation is either negative for
all its triangles or positive for all its triangles.
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Assuming vertices of triangles are arranged in counterclockwise order, we can test if some
point x is contained in a triangle by using the IsLeft predicate:

IsContained(v0, v1, v2, x) = IsLeft(v0, v1, x) ∧ IsLeft(v1, v2, x) ∧ IsLeft(v2, v0, x).

IsContained(v0, v1, v2, x) is true if x is on the left side of each line de�ned by an edge of the
triangle, which is only the case if and only if x lies inside the triangle. Additionally, I use the ori-
entation certi�cate to test if a line-segment de�ned by {v0, v1} intersects a line de�ned by {u0, u1}.
In that case, v0 is on the right and v1 on the left of the line or vise versa:

Intersects(v0, v1, u0, u1) = [IsLeft(u0, u1, v0) ∧ IsRight(u0, u1, v1)]∨
[IsRight(u0, u1, v0) ∧ IsLeft(u0, u1, v1)] .

Now let v3 = (v3x ,v3y ) be some other vertex which is not part of the triangle τ = {v0, v1, v2}.
Then the empty-circle certi�cate is the sign of the determinant

InCircle(v0, v1, v2, v3) =

�����������

v0x v0y v2
0x +v

2
0y 1

v1x v1y v2
1x +v

2
1y 1

v2x v2y v2
2x +v

2
2y 1

v3x v3y v2
3x +v

2
3y 1

�����������

. (6.8)

If we assume a counterclockwise arrangement of vertices, InCircle(v0, v1, v2, v3) is positive if v3
is not contained in the circumcircle of the triangle τ and negative otherwise. Therefore, if

InCircle(v0, v1, v2, v3) ≥ 0

is true for vertices of any triangle τ = {v0, v1, v2} and any other vertex v3 < |τ |, the triangulation
is a Delaunay triangulation.

6.5.2 The Delaunay triangulation

The Delaunay triangulation (DT ) is one of the essential structures in computational geometry
and the base for a whole set of algorithms that generate unstructured meshes, see Section 6.3.3.
It is not my intention to give an extensive analysis of the Delaunay triangulation’s properties

Twin(eh)

v0

v1
v2

ux

τ

Figure 6.4: The orientation certi�cate for v0, v1, v2 is positive while for v0, v1, u it is negative,
thus u is not contained in τ . x is contained in τ because it is left of each of the counterclockwise
oriented edges. In that case, all three certi�cates are positive.
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and all the algorithms that compute it. For a more detailed discussion, I refer to [275, Chap-
ter 2]. However, EikMesh is a Delaunay-based mesh generator. Later on, I will introduce back-
ground meshes computed by Ruppert’s algorithm, which is another Delaunay-based approach.
Therefore, I shortly introduce the Delaunay triangulation and its extensions: the constrained and
conforming Delaunay triangulation.

De�nition 6.14 (Delaunay triangulation). LetV be a set of vertices in the plane. A triangulation
T is a Delaunay triangulation ofV if for each edge e of T there exist a circle C with the following
properties:

(i) the endpoints of edge e are on the boundary of C, and

(ii) no other vertex ofV is in the interior of C.

I de�ne DT (V ) to be a Delaunay triangulation ofV .

In the previous section, I established the criterion the Delaunay triangulation is based on, that
is, the empty-circle certi�cate. In other words, a triangulation is a Delaunay triangulation if and
only if the empty-circle certi�cate is greater or equals zero for each triangle and any vertex which
is not part of the triangle.

One of the most important results concerning the Delaunay triangulation is the Delaunay
Lemma, proved by Boris Delaunay himself. It provides an alternative and local characterization
of the Delaunay triangulation, that is, locally Delaunay edges:

De�nition 6.15 ((locally) Delaunay edge [275]). Let e be an edge of a triangulation T in the
plane. Then e is locally Delaunay if

(i) it is an edge of only one triangle, or

(ii) the open circumcircle of both triangles neighboring e do not contain the (two) vertices that
are opposite of e .

Lemma 6.1 (Delaunay Lemma [60]). A triangulation is a Delaunay triangulation if and only if

every edge is locally Delaunay.

Twin(eh)

v0

v1v2

u

v0

v1v2

u

FlipEdge(e)e

Figure 6.5: A violated empty-circle certi�cate: the circumcircle of the triangle de�ned by
v0, v1, v2 is not a Delaunay triangle because it contains another vertex u of the triangulation
T . Flipping the edge resolves the problem.
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Consequently, to test if a triangulation in the plane is Delaunay, one can evaluate the empty-
circle certi�cate for each edge, compare Fig. 6.5.

The Delaunay triangulation is unique if there are no four vertices in V that are cocircular. It
has a unique property in two dimensions: the Delaunay triangulation maximizes the minimum
angle amongst all possible triangulations of a �xed set of points [275]. This property is especially
nice because it leads to well-shaped triangles, thus to a high element quality. A more extensive
discussion of the mesh quality can be found in Section 6.6.

Let d be the dimension of the Euclidean space and let n be the number of points in Rd . Then
for d = 2, the Delaunay triangulation of those n points can be computed in O (n log(n)) time and
O (n) space. Many construction algorithms achieve such an optimal time and space complexity.
They can be classi�ed in the following way:

(i) sweep line methods [84, 277, 268]: computation of the Voronoi diagram by sweeping
through the domain Ω in O (n log(n)) time,

(ii) duality approaches [276, 41, 253, 136, 254, 37]: computation of the convex hull of the
lifted points into dimension d + 1 gives the Delaunay triangulation for dimension d in
O (n log(n) + nbd/2c ) time,

(iii) divide-and-conquer algorithms [264, 183]: computation of the Delaunay triangulation
by computing multiple Delaunay triangulations of close points and merging results in over-
all O (n log(n)) time,

(iv) �ip algorithms [181, 77, 275]: �ipping of edges to make them locally Delaunay until the
triangulation is a Delaunay triangulation. Requires O (n2) time for d = 2,

(v) incremental methods [62, 34, 108, 107, 183]: computation of the Delaunay triangulation
by insertion of one point after another in O (ndd/2e+1) deterministic and O (n log(n)+ndd/2e )
expected time.

Some methods are appropriate in the static setting [84, 277, 268, 264, 183], where vertices are
�xed and known in advance. Some are more suitable for a dynamic or online setting [62, 34, 108,
107, 183], where vertices are �xed, but the triangulation is maintained under vertex insertions
and deletions. EikMesh can deal with a dynamic setting; additionally, vertices move around. In
the following, I describe the two algorithms EikMesh uses: FlipAlgorithm and an incremental
approach.

(i) point setV (ii) DT (V ) (iii) Empty circumcircles

Figure 6.6: The Delaunay triangulation (ii) of a point set (i): all circumcircles are empty (iii).

96



6.5 Triangulation computation

Algorithm 7: FlipAll
Input: a triangulation T
Output: a Delaunay triangulation T

1 while ∃ edge e ∈ T not locally Delaunay do

2 T ← FlipEdge(e);
3 return T ;

The �ip algorithm

The �ip algorithm introduced by [181] takes some given triangulation T0 and transforms it into
a Delaunay triangulation by �ipping edges that are not locally Delaunay. A �ip of an edge might
remove the locally Delaunay property from any of its four surrounding edges. But a �ipped edge,
which was not locally Delaunay, can never reappear [275]. Therefore, the following algorithm
terminates after at most n(n − 1)/2 �ips and generates a Delaunay triangulation.

In Section 8.2, I explain how a slight adaptation of FlipAll converts almost all edges into locally
Delaunay edges in the improvement phase of EikMesh. The basic idea is that with an increasing
number of Delaunay edges, Algorithm 7 terminates after a few �ips. In other words, the more
‘Delaunay’ a triangulation is, the less work has to be done.

Incremental construction

Incremental approaches do not require an initial triangulation of the whole point set but can start
from scratch. LetV with |V | = n be our point set andVi the point set of iteration i . We start with
a (virtual) large triangle {u1, u2, u3} that contains all points T0 = DT (V0),withV0 = {u1, u2, u3}.
I implement Lawson’s algorithm [182] to add vertices vi ∈ V one by one to the triangulation
such that

Vi+1 = Vi ∪ vi+1

Ti+1 = DT (Vi+1).
(6.9)

To insert a new vertex vi+1, three steps are necessary: �rst, I search for the enclosing triangle
τi with vi+1 ∈ |τi |. I discuss e�cient traversal methods to locate τi in Section 6.7. In the second
step, I insert vi+1 into Ti by SplitFace(τi ,vi+1). This local operation splits τi into three triangles
by connecting vi+1 with each of the vertices of τi . Due to the new vertex, multiple edges may no
longer be Delaunay edges. To reestablish the Delaunay criterion for all edges, I apply the FlipAll
algorithm from the previous section in a breadth-�rst fashion until all edges are locally Delaunay

SplitFace() FlipEdges() FlipEdges()

Figure 6.7: Vertex insertion into a given Delaunay triangulation.
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– the last two steps are depicted in Fig. 6.7. After all vertices are inserted, I remove u1, u2, u3, and
all neighboring triangles from the triangulation, thus

Vn+1 = V = Vn \ V0

Tn+1 = DT (Vn+1) = DT (V )
(6.10)

is the �nalized triangulation. Additional points can still be inserted if they lie inside some triangle
of the current triangulation.

Guibas et al. [108] proved that using a random insertion order, O (n) connectivity changes are
required. In that case, the point location problem requires O (log(n)) expected time such that the
construction requires overall O (n log(n) + n) = O (n log(n)) expected time.

EikMesh relies on a small number of local mesh operations, amongst others

(i) InsertVertex(v),

(ii) RemoveVertex(v),

(iii) FlipEdge(e ) and

(iv) Move(v,∆x).

Lawson’s algorithm shares this reliability and uses the exact same operations – one can replace
Move by combining RemoveVertex and InsertVertex. In addition, the algorithm is suitable
for the dynamic setting. Therefore, EikMesh uses the incremental method of Lawson [182], also
presented in [77].

6.5.3 The constrained Delaunay triangulation

The Delaunay triangulation is a useful geometric structure. Still, without geometric constraints
in the form of line-segments, the Delaunay triangulation often fails to conform to planar straight-
line graphs (PSLGs). A mesh T of a planar straight-line graph P should conform to P, therefore,

(i) all vertices of P have to be contained in T , and

(ii) each line-segment l ∈ P has to be the union of edges e in T .

(i) (ii) (iii) (iv)

Figure 6.8: Di�erent triangulations of a planar straight-line graph (i): its Delaunay triangula-
tion (ii) is not conforming while its constrained Delaunay triangulation (iii) is not a Delaunay
triangulation. Only a conforming Delaunay triangulation (iv) is Delaunay as well as conforming.
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Figure 6.9: Establishment of a constraint of the constrained Delaunay triangulation: the trian-
gulation before the insertion of the constraint (i) and after the insertion has �nished (vii). First,
all intersecting edges are identi�ed (ii) and �ipped (iii)-(v). Illegal edges are �ipped again (vi),
compare [278].

The constrained Delaunay triangulation is a triangulation that is ‘almost Delaunay’, i. e., the De-
launay criterion is only violated for the inserted line-segments called constraints.

De�nition 6.16 (constrained Delaunay triangulation of a planar straight-line graph). Let P be
a planar straight-line graph. A triangulation T is a constrained Delaunay triangulation (CDT) of
P if each line-segment of P is an edge of T and for each remaining edge e of T , there exists a
circle C with the following properties:

(i) the endpoints of edge e are on the boundary of C, and

(ii) if any vertex v of P is in the interior of C, then it cannot be ‘seen’ from at least one of the
endpoints of e , that is, if you draw the line segments from v to each endpoint of e , then at
least one of the line segments crosses an edge of P.

I implemented Sloan’s algorithm [278] to construct the constrained Delaunay triangulation
for a given planar straight-line graph P. It starts with an initial Delaunay triangulation of the
points set V of P. After DT (V ) has been computed by Lawson’s algorithm [182], constraint
line-segments are recovered: Sloan’s algorithm �ips edges that cross line-segments. An edge is
only �ipped if its two neighboring triangles form a strictly convex quadrilateral. Otherwise, the
�ip is postponed. After the constraint is established, all �ipped edges are �ipped again until all
of them are locally Delaunay ignoring points on the other side of the constraint. The process is
depicted in Fig. 6.9. Sloan’s algorithm requires O (n log(n)) time, where n is the number of points
in P.

Since the constrained Delaunay triangulation is not a Delaunay triangulation, we lose some of
its properties. To reduce the size of triangles inT , a Steiner triangulation ofP is usually desirable.
However, Steiner points can also be used to transform a constrained Delaunay triangulation into
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a conforming Delaunay triangulation. This transformation requires edge splits of non-Delaunay
edges and is depicted in Fig. 6.10.

De�nition 6.17 (conforming Delaunay triangulation of a planar straight-line graph). Let P be a
planar straight-line graph. A triangulation T is a conforming Delaunay triangulation of P if each
line-segment of P is the union of edges of T and T is a Delaunay triangulation.

6.5.4 Ruppert’s algorithm

Ruppert’s algorithm [241, 242] was the �rst provable-good Delaunay-based re�nement tech-
nique. It transforms a PSLG P into a conforming Delaunay triangulation such that all triangle
angles α are larger than some minimum angle αmin. In [241], Ruppert showed that his algorithm
is guaranteed to terminate if αmin ≤ 20.7◦. If we choose the maximum, i. e., αmin = 20.7◦, the
angles of the triangulation are in between 20.7 and 138.6 degrees. Ruppert’s algorithm requires
that adjacent edges of the PSLG P meet at non-acute angles. However, there are multiple tech-
niques, such as protecting discs [229], to deal with acute angles determined by P. Obviously, we
can never get rid of small angles de�ned by the edges of the PSLG.

I use Ruppert’s algorithm to generate background meshes to construct an element size func-
tion (Section 8.6) and the distance function (Section 8.7) that support the mesh generation of
EikMesh.

De�nition 6.18 (encroached edges). Let e be an edge of a triangulation T then e is encroached
if and only if any vertex v ∈ V with v < e lies within the closed diametric circle of e .

Ruppert’s algorithm re�nes triangles if the triangle’s angles do not satisfy the minimum an-
gle condition. Let c be the circumcenter of the triangle τ , then Ruppert’s algorithm re�nes τ
by inserting c into the Delaunay triangulation if the insertion will not lead to an edge e being
encroached. Otherwise, e is split at its midpoint, compare Fig. 6.10. During the re�nement, the
Delaunay criterion is always enforced – after each modi�cation, the result is a Delaunay triangu-
lation. If the minimum angle condition is satis�ed for all angles, Ruppert’s algorithm terminates.
Typically, an element size function h can be used as an additional input to enforce element size
constraints. For an extensive description, I refer to [275, Chapter 6].

v1

v3

v2

v4

u2

u1

(i)

v1

v3

v2

v4

u2

u1

(ii)

v1

v3

v2

v4

u2

u1

(iii)

Figure 6.10: Computation of the conforming Delaunay triangulation: in (i), multiple vertices are
enclosed by the circle de�ned by v1, v3, and u1, leading to a split of the red constrained edge. Red
circles indicate an edge that is not locally Delaunay. After the second split (iii), the result is a
Delaunay triangulation.
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6.6 Triangulation quality

In this section, I introduce well-known quality measures, which I use to evaluate the performance
of DistMesh and EikMesh. Furthermore, I discuss the e�ects of, and the relation between small
and large angles.

Meshes can be categorized by many di�erent properties such as their regularity, their underline
base elements, how computationally expensive their generations is, and what kind of geometries
they can represent. The established and �ourishing branch of computational geometry brought
many interesting results, including meshing algorithms that guarantee speci�c quality require-
ments such as the smallest and largest possible angles. Despite this theoretical breakthrough, the
development of meshing algorithms that lack theoretical guarantees has not been stopped, since
they are often superior in practice. EikMesh falls into this category. Therefore, a theoretical
quality comparison is pointless. Instead, I compare the output under a fair and useful quality
measure.

6.6.1 Why mesh quality matters

First of all, re�ning triangulations without dropping too much in quality is simple compared to the
reverse operation. For example, splitting each triangle into 4 children by introducing a new vertex
at the midpoint of each edge will preserve the mesh’s quality, compare Fig. 6.11. Coarsening a
�ne mesh while keeping the mesh quality high is much more challenging. Therefore, the goal of
most mesh generators is to compute high-quality meshes using as few mesh elements as possible.
EikMesh is no exception.

I am interested in isotropic triangulations, for which the edge length does not depend on its
orientation. Consequently, equilateral triangles are desirable. They are perfectly regular and
produce the best results in most applications. In general, well-shaped elements are preferable
because of the following two restrictions: (1) avoidance of large angles and (2) avoidance of small
angles.

Avoidance of large angles: elements with large angles introduce large errors in numerical
approximations of di�erential operators. More precisely, the error in the gradients computed
using piece-wise linear interpolation becomes unbounded if the angle of a triangle approaches
π [269, p. 23]. An example is illustrated in [275, Chapter 1]. These large errors are critical for
solving the eikonal equation since numerical solvers rely on a numerical approximation of ‖∇Φ‖,
see Section 9.2. Secondly, due to the causality condition of the numerical solvers introduced in
Section 9.2.3, one must avoid non-acute angles to compute such an approximation. We can deal

Refine

Figure 6.11: Simple mesh re�nement: each edge is split at its midpoint. Each child triangle is
congruent to its parent.
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with those large angles but only by losing some accuracy in the approximation of the eikonal
equation’s solution.

Avoidance of small angles: elements with very small angles lead to poorly conditioned nu-
merical integration schemes. Some methods require that the circumcenter lies within the element
which is only true if and only if no angle is greater than 1/2π [28]. Even though small angles
are less of an issue in my application, where we do not rely on integration schemes, there is an
obvious connection between small and large angles: small angles lead to large angles, compare
Eq. (6.13) and Eq. (6.15) below.

To simplify the remaining part of this section, I consider a non-degenerated triangle τ =
{a, b, c} with the area |τ |, perimeter p (τ ), edges of length a = ‖b− c‖, b = ‖a− c‖ and c = ‖a−b‖,
and denote the angle at vertex a (resp. b, c) as α (resp. β,γ ) and the radius of the inscribed
(resp. circumscribed) circle of τ as rin (resp. rout). Additionally, I use the following notation:

(i) |τ |0 = min{a,b, c},
(ii) |τ |2 =

√
a2 + b2 + c2,

(iii) |τ |∞ = max{a,b, c},
(iv) θ0 = min{α , β,γ },
(v) θ∞ = max{α , β ,γ }.

6.6.2 Relation between small and large angles

Let me shortly analyze the relation between the smallest and largest angle of an element. The
trivial fact π = α + β +γ yields a connection between the minimal θ0 and maximal θ∞ angel of a
triangle. By de�nition

0 < θ0 ≤ π

3 ≤ θ∞ (6.11)

holds for a non-degenerated triangle. Using the pigeonhole principle θ0 ≤ π
3 and

π − θ0 ≤ 2θ∞ ∧ θ∞ ≤ π − 2θ0 (6.12)

follows. It gives us the bounds for the maximal angle that depends on the θ0:
π − θ0

2 ≤ θ∞ ≤ π − 2θ0 with θ0 ∈
]
0, π3

]
. (6.13)

We can establish similar bounds for the minimal angle by

0 < θ0 ≤ π − θ∞
2 with θ∞ ∈

[π
3 ,π

[
, (6.14)

receptively. If θ∞ is small, more precisly, if θ∞ < π/2 we get a tighter bound

π − 2θ∞ < θ0 ≤ π − θ∞
2 with θ∞ ∈

[π
3 ,
π

2

[
. (6.15)

Combining Eq. (6.15) and Eq. (6.13), it follows that a small largest angle implies a large smallest
angle and vise verse.
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6.6.3 Common quality measures

The relation between the incircle radius rin and the circumscribed circle radius rout of a triangle
gives us the �rst useful quality measure (De�nition 6.19). For a equiliteral triangle 2rin = rout
holds. Furthermore, the relation between smallest and largest angle is given by the following
transformation:

ρ1(τ ) =
2rin
rout
=

2 sin(α ) sin(β ) sin(γ )
sin(α ) + sin(β ) + sin(γ )

=
2 sin(α ) sin(β ) sin(α + β )

sin(α ) + sin(β ) + sin(α + β )

=
2 sin(θ0) sin(θ∞) sin(θ0 + θ∞)

sin(θ0) + sin(θ∞) + sin(θ0 + θ∞)
.

(6.16)

The second useful measure (De�nition 6.20) is given by the longest edge to incircle radius ratio.

De�nition 6.19 (radius-ratio [82]). Let rin be the incircle radius and rout be the circumscribed
circle radius of τ . Then

ρ1(τ ) =
2rin
rout

(6.17)

is the radius-ratio of τ .

De�nition 6.20 (longest edge to incircle raduis ratio [82]). Let |τ |∞ be the edge length of the
longest edge. Then

ρ2(τ ) = 2
√

3 rin
|τ |∞ (6.18)

is longest edge to incircle raduis ratio of τ .

The radius-ratio as well as the longest edge to incircle raduis ratio possess all four important
properties of a measure ρ discussed in [82]:

(1) detection: it detects all degenerated elements,

(2) non-dimensionality: congruent triangles have the same quality,

(3) boundedness: the quality can not be arbitrarily large or small,

(4) normalized: ∀τ : ρ (τ ) ∈ [0; 1].

Most importantly (1) ensures that
ρ1(τ ) = ρ2(τ ) = 0 (6.19)

holds, if and only if τ is degenerated, i. e., if all three points are co-linear. Furthermore, it ensures
that

ρ1(τ ) = ρ2(τ ) = 1 (6.20)

holds, if and only if τ is a equilateral triangle. To compare di�erent meshes I use the (overall)mesh

quality (De�nition 6.21), the quality per element ρ1, ρ2 and the minimal quality (De�nition 6.22).
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Figure 6.12: Di�erent meshes and the quality and angles of their elements: the �rst row shows
a histogram of ρ1 and the second row of quality ρ2, respectively. Histograms in the third row
display triangle angles. Each histogram is normalized. The black vertical lines mark minimal,
mean and maximal values.

De�nition 6.21 (mesh quality). Let T be a triangular mesh and ρ ∈ {ρ1, ρ2} be the trianlge
quality measure of our choice. Then

ρ (T ) =
1
m

∑

τ∈T
ρ (τ ) (6.21)

is the quality of the mesh, wherem is the number of triangles of T .

De�nition 6.22 (minimal triangle quality). Let T be a triangular mesh and ρ ∈ {
ρ1, ρ2

} be the
triangle quality measure of our choice. Then

ρmin(T ) = min
τ∈T

ρ (τ ) (6.22)

is the minimal triangle quality, i. e. the quality of the ‘worst’ element.
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6.7 Point location algorithms

Given a triangular unstructured 2-d mesh T of n vertices and a point q ∈ |T |, a fundamental
problem in computational geometry is to �nd the triangle or face τ such that q ∈ |τ |. How one
solves the problem does not in�uence the �nal mesh generated, but the operation determines the
generator’s computational cost. Additionally, evaluating the navigation �eld Φ(q) or the distance
functiondΩ (q) at an arbitrary point q ∈ Ω, whereΦ anddΩ are only de�ned for vertices of a mesh,
requires interpolation. And to interpolate, we have to know neighboring vertices of the triangle τ
that contains q. Therefore, evaluating Φ(q) consists of a point location. It is also an essential part
of incremental Delaunay-based meshing algorithms, such as [311, 35]. They require the location
of τ containing v for each v of the �nal triangulation.

In general, mesh generation and the usage of unstructured meshes requires point location
regularly. Since point location is not trivial for unstructured meshes, an e�cient implementation
is bene�cial for both. Before moving on to a more detailed discussion of solving the point location
problem, I introduce the following de�nition:

De�nition 6.23 (k-ring). Given an undirected graph G = (V, E), the k-ring of a vertex v ∈ V
is the set of vertices for which the shortest path to v is smaller or equal to k .

6.7.1 Walk strategies

One can solve the point location by testing all triangles one-by-one. This naive approach requires
O (n) time, where n is the number of triangles in T . More sophisticated so-called walking strate-

gies achieve much better run times in practice. Devillers et al. [63] described and analyzed four
of them:

(i) StraightWalk,

(ii) OrthogonalWalk,

(iii) VisibilityWalk,

(iv) StochasticWalk.

p

q

(i) StraightWalk
p

q

(ii) OrthogonalWalk
p

q

(iii) StochasticWalk

Figure 6.13: A straight (i), orthogonal (ii) and stochastic (iii) walk through a Delaunay triangu-
lation of a random point set.
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Algorithm 8: StraightWalk
Input: start triangle τ0, querry point q
Output: a triangle τi containing q

1 p← midpoint of τ0, e0 ← ∅, i ← 0;
2 while ¬IsContained(τi , q) do
3 foreach e = {v0, v1} edge in τi do

/* treatment of the degenerated case is missing */
4 if e , ei ∧ Intersects(v0, v1, p, q) then
5 ei+1 ← e;
6 τi+1 ← triangle τ with τ ∩ τi = ei+1;

7 i ← i + 1;
8 return τi ;

Walking strategies operate directly on the mesh T without any additional data structure. They
walk from a starting point p to the query point q by following a sequence τ0, . . . ,τk of neighboring
faces. They only di�er from the choice of the next visited face. If there is no prede�ned starting
triangle τ0, it is commonly chosen at random, and the starting point p is de�ned such that it lies
within τ , e. g., the triangle’s midpoint.

A StraightWalk is displayed in Fig. 6.13i. It traverses triangles by choosing the face that has
an edge intersecting the line (p, q).

The VisibilityWalk chooses one of at most two edges, which separates the currently visited
face from q. More precisely, if we split R2 by the line de�ned by the two points of the edge into
two parts Ω1,Ω2 with q ∈ Ω1, then we continue the walk by its neighboring triangle τ if |τ | ⊂ Ω1.
By its de�nition, the walk does not require the handling of degenerated cases. However, for an
arbitrary triangulation, the VisibilityWalk may cycle and therefore does not necessarily termi-
nate. It is still popular since it terminates for any Delaunay triangulation. Furthermore, randomly
choosing one of the two possible next edges guarantees termination [63]. This probabilistic ex-
tension is called StochasticWalk depicted in Fig. 6.13iii.

The OrthogonalWalk, illustrated in Fig. 6.13ii, visits triangles along an isothetic path from
p to q by changing one coordinate at a time. The cost of evaluating an intersection predicate
increases with the dimension. Decomposing the walk into pieces parallel to the coordinate axis
simpli�es this evaluation. For example, to test if an edge ((ux ,uy ), (vx ,vy )) intersects the ray
y = c we only have to test if

(uy < c ∧ vy > c ) ∨ (uy > c ∧ vy < c ) (6.23)

is satis�ed. However, this strategy can lead to an increase in required tests [63].

Handling degenerated cases

When using the StraightWalk or the OrthogonalWalk, we may have to deal with degener-
ated cases, meaning that an edge might be part of the ray (p, q). As stated by Devillers et al. [63]
and experienced by myself, handling degenerated cases leads to intricate code.
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I solve the problem by the following strategy: Let us assume the ray goes precisely through
some edge {v, u}, as seen in Fig. 6.14. Now let u0, . . . , um be the counterclockwise arranged
vertices of the 1-ring of v. I test for line intersection between the ray and the line segments

(u0, u2), (u1, u3), . . . (um−1, u0), (um, u1), (6.24)

excluding the entering segment of the walk. Suppose (ui , ui+2) is the segment intersecting the
ray. Then we know that the ray goes precisely through ui+1 = u, and I continue the walk with
either (ui , ui+1) or (ui+1, ui+2).

In the worst case, this algorithm requires O (d ) steps where d is the degree of v. However, the
described situation rarely occurs in practice.

6.7.2 Accelerated point location

Point location algorithms accelerate walking strategies by supportive data structures or some addi-
tional method that computes a bene�cial starting face τ0. I implemented and tested four di�erent
point location algorithms:

(i) JumpAndWalk [64],

(ii) Delaunay-Tree [108],

(iii) Delaunay-Hierarchy [62], and

(iv) PlainWalk (no additional data structure or method).

For a random insertion order of n points, using the Delaunay-Tree or the Delaunay-Hierar-
chy leads to a time complexity of O (log(n)) for each point location [108, 62]. The Delaunay-
Tree is used by incremental methods to compute the Delaunay triangulation. It is a bookkeeping
tree. Each node in the tree represents one of two operations required to construct the Delaunay
triangulation: SplitFace or FlipEdge. The root is the virtual all-enclosing triangle. Its children
are the three triangles generated by the �rst SplitFace operation. Locating a triangle is realized
by a depth-�rst traversal of the tree. Therefore, the Delaunay-Tree does not depend on any
walking strategy. However, removing or repositioning already inserted vertices is not supported
by the Delaunay-Tree. It would require the adjustment of large parts of the history, possibly
the whole tree, which is too computationally expensive.

u0
u1 = u

u2

u3

u4

u5

p

q

v

Figure 6.14: Dealing with degenerated cases: if the ray (p, q) goes through an edge {v, u1}, the
walk continues with either the edge {u2, u1} or {u1, u0}.
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JumpAndWalk picks a random sample of n1/3 vertices and starts the walk from the sample
point, which is closest to the query point q. It requires O (n1/3) time [64]. Therefore, it per-
forms theoretically worse than the Delaunay-Tree and the Delaunay-Hierarchy but is very
e�ective in practice. Furthermore, JumpAndWalk does not require any additional data structure.
Therefore, it o�ers the most �exibility, and its implementation is straightforward.

The Delaunay-Hierarchy supports removing or repositioning of already inserted vertices
and performs well in theory and practice. However, its implementation is much more com-
plicated, and in practice, I did not achieve a better performance compared to JumpAndWalk.
Therefore, I choose JumpAndWalk to be my default point location algorithm.

Furthermore, consecutive point location queries are accelerated by a cache. I call this strategy
CachedLocation. Let o be some object and q be the query point, then CachedLocation(q,o)
executes JumpAndWalk if there is no result already available for the object o. Otherwise, it starts
the walk from the last located triangle τ related to o. This cached point location strategy performs
well if consecutive query points for the same object o are close together. Since agents move on a
connected path across the underlying mesh, CachedLocation performs exceptionally well.

6.8 Mesh data structure

Several data structures can represent unstructured meshes, see [266, 188, 58]. In this thesis, I
use the so-called half-edge data structure, also known as doubly-connected edge list (DCEL) [58,
Chapter 2]. The components of the data structure are depicted in Fig. 6.15. A DCEL can manage
not only triangulations but also planar straight-line graphs (PSLGs) in general. It contains a
record for each face, half-edge, and vertex and incorporates structural and topological information
such as the set of edges bounding a face and the adjacency relation of k-simplices. A face of a
DCEL is a polygonal region whose boundary is formed by half-edges and vertices. In other words,
a face is either a 2-simplex, that is, a triangle, the spatial domainR2\Ω (which I refer to as border),
or a hole, that is, a simple polygon surrounded by 2-simplices. Each edge of the mesh or the PSLG
is represented by two counterclockwise (CCW) arranged half-edges (one for each neighboring

Twin(eh)
Next(eh)

Prev(eh)

Face(eh)=τ

eh

Twin(eh)
v = Vertex(eh)

(i) eh

eh=Edge(v)

Twin(eh)

v

(ii) v

τ

eh=Edge(τ )

Twin(eh)

(iii) τ

Figure 6.15: The doubly-connected edge list data structure: given a half-edge eh (i) one can access
its Twin(eh), predecessor Prev(eh), successor Next(eh), Vertex(eh) and Face(eh) in constant time.
One can access some half-edge which end in the vertex v in constant time (ii), and given a face τ
one can access some of its half-edges in constant time as well (iii).
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Algorithm 9: Degree
Input: vertex v
Output: degree d of vertex v

1 eh,s ← Edge(v), eh,n ← eh,s ,d ← 0;
2 do

3 eh,n ← Twin(Next(eh,n ));
4 d ← d + 1;
5 while eh,n , eh,s ;
6 return d ;

face). Both are twins of each other.
Accessing the Next(e ), Previous(e ) or Twin(e ) half-edge of a given half-edge e and accessing

its Vertex(e ) or Face(e ) requires O (1) time. Each half-edge ends in its vertex. One can access
some half-edge of the DCEL that ends in some given vertex v in O (1) time. Iterating over adjacent
mesh elements is supported. One example request might be to compute the degree of a given
vertex v, which is solved by Algorithm 9. Since faces are always to the left of their half-edges,
one can implement the algorithm for testing whether a point x is contained in a convex polygon,
like a 2-simplex, by testing if it is to the left of all half-edges of the face, see Algorithm 10.

Besides the geometric and topological information, each record of the data structure can store
additional information. For example, I store the three angles of a triangle at its three half-edges.
Solving the eikonal equation involves the computation of these angles. Other stored values are
the approximated solution of the equation Φ or the distance to the closest obstacle dΩ.

I refer to half-edges and vertices at the domain boundary ∂Ω as boundary half-edges and bound-

ary vertices, respectively. Often these elements have to be treated as special cases. For example,
to accelerate the test IsAtBoundary(v), which returns true if v is a boundary vertex, it is good
practice that Edge(v) always returns the boundary half-edge. In that case IsAtBoundary(v) re-
quires O (1) time. Any topological change adjusts the half-edge of a boundary vertex accordingly.
Otherwise, the request would lead to an iteration similar to Algorithm 9 and Algorithm 10.

EikMesh o�ers two di�erent implementations of the DCEL. The �rst one is pointer-based, the
second one array-based. The pointer-based implementation is straightforward and is mostly used

Algorithm 10: Contains
Input: a triangle τ , a querry point x
Output: true if and only if x ∈ τ

1 eh,s ← Edge(τ ), eh,n ← eh,s ;
2 do

3 eh,n ← Twin(Next(eh,n ));
4 if eh,n is to the right of x then

5 return false;
6 while eh,n , eh,s ;
7 return true;
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for testing and debugging. The array-based implementation gives more control over memory
usage and its location. It is similar to a structure of arrays (SoA) where each array contains all
mesh elements of one type. Array indices replace pointers such as the pointer from a half-edge
to its face. In Section 8.5, I show how this data structure can organize mesh elements in a cache-
friendly manner according to a space-�lling curve.

6.9 Source code

The source code for all discussed algorithms and data structures is part of the open-source sim-
ulation framework Vadere [294]. More speci�cally, it is contained in the VadereMeshing sub-
project. VadereMeshing is an independent software library that can be used without the
simulation software. Class names indicate the parts of algorithms a class implements. For ex-
ample, AFace.java, AHalfEdge.java, AVertex.java, AMesh.java realize the array-
based doubly-connected edge list (DCEL). Walking strategies can be found in ITryConnec-
tifity.java, and point location algorithms in DelaunayTree.java, DelaunayHier-
archy.java, JumAndWalk.java, and CachedPointLocation.java. GenDelaunay-
Triangulator.java can be used to compute a Delaunay triangulation, andGenConstrain-
edDelaunayTriangulator.java to compute a constrained or conforming Delaunay trian-
gulation. GenRuppertsTriangulator.java implements Ruppert’s algorithm.

6.10 Summary

In this chapter, I presented and discussed unstructured two-dimensional mesh generation – a
topic that is not restricted to pedestrian dynamics, but of great importance for it.

In Section 6.1, I identi�ed the adherence to the spatial simulation domain, high-quality ele-
ments, and localized mesh resolution as important properties the mesh should ful�ll. Conse-
quently, the meshing algorithm must pursue these contradictory goals.

The chapter also contained an introduction to well-known algorithms for unstructured mesh
generation. Most of these basics are required for the upcoming discourse and are the foundation
of the developed mesh generator introduced in Chapter 8. In Section 6.2, I discussed di�erent
mesh types, their properties, advantages, and disadvantages. I decided to use unstructured trian-
gular conforming meshes for the generation of navigation �elds.

There are multiple unstructured mesh generators, but they all follow similar strategies de-
scribed in Section 6.3. Because of the excellent properties that the Delaunay triangulation o�ers
and the dynamic setting I am in, EikMesh is a Delaunay-based mesh-improver for unstructured
conforming two-dimensional triangular meshes.

The rest of Chapter 6 introduced all ingredients and tools needed to develop a new meshing
algorithm and to analyze the quality of its output. In Section 6.4, I introduced de�nitions, such
as the homogeneous simplicial complex, its underlying space, and the triangulation of a planar
straight-line graph.

Section 6.5 introduces the required numeric computations required for Delaunay-based mesh
generators: the orientation and empty-circle certi�cate. I further elaborated on their application.
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To evaluate the performance of EikMesh (and other methods), I picked two quality measures.
Section 6.6 contains their description. Furthermore, I established the connection between the
largest and smallest angle of a triangle. The connection shows that a triangulation’s large smallest
angles lead to small largest angles, one of the desirable properties listed in the �rst section of this
chapter.

Because unstructured meshes entail the point location problem, I explored di�erent well-known
point location algorithms in Section 6.7. Since EikMesh inserts and removes vertices during its
improvement phase (see Chapter 8), the approach requires a point location strategy that supports
such a dynamic setting. Therefore, I decided to use and implement the so-called JumpAndWalk
algorithm. Additionally, I developed CachePointLocation, a point location algorithm that per-
forms best if multiple point locations for the same (moving) object are required.

In Section 6.8, I brie�y described the doubly-connected edge list (DCEL). It is the data structure
EikMesh is based on. The DCEL o�ers everything EikMesh requires, from access to adjacent
mesh elements in constant time to e�cient iteration over all boundary edges and vertices.

In the last section, I referred to the source code of the implemented algorithms of this chapter.
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CHAPTER 7
The DistMesh algorithm

“Between stimulus and response, there is a space. In that space is our power to choose our

response. In our response lies our growth and our freedom.”

– Victor Emil Frankl

Most modern meshing algorithms are complex with respect to their code and handling. Some of
them even require a speci�c language to describe the spatial domain and support the user by a
graphical user interface to simplify their usage. Therefore, their code is di�cult to integrate with
other codes like Vadere, and their use entails learning its speci�cs. In contrast to this, Persson and
Strang provide DistMesh, an accessible and �exible meshing algorithm for unstructured high-
quality meshes [221]. DistMesh is freely available as MATLAB code. Aside from its accessibility,
DistMesh is based on a simple physical analogy. It performs very well and o�ers the �exibility
necessary to support adaptive meshing. Most importantly, it meets many of the requirements
discussed in Section 6.1. Therefore, DistMesh serves as a starting point for the development of
EikMesh.

Similar to the well-known Laplacian smoothing, DistMesh improves the mesh quality in every
iteration by repositioning its vertices locally. It starts with some initial triangulation T0. For each
iteration k a new triangulation Tk is constructed based on the previous one. The hope is that the
quality improves with k such that

∀k > 0 : ρ (Tk ) > ρ (Tk−1) (7.1)

holds. One signi�cant di�erence to Laplacian smoothing is that vertices move more freely. They
can leave the convex hull de�ned by their 1-ring neighborhood. This freedom can cause con-
nectivity changes such that the topology does not necessarily remain invariant. However, it is
one crucial reason why DistMesh outperforms the Laplacian smoothing with respect to mesh
qualities [221].

Aside from being a mesh improver, DistMesh supports spatial adaptive meshing. Like many
other meshing algorithms, it gives the user control over the edge length by an element size func-
tion

h : R2 → R+. (7.2)
In Section 8.6, I discuss how one can construct a reasonable element size function automatically.
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7.1 Geometry descriptions

The name DistMesh emphasizes one important property: it is designed to work with an implicit
description of the spatial domain and its boundary given by a signed distance function dΩ. The
spatial domain Ω is de�ned by Ω = {x | dΩ (x) ≤ 0} and its boundary by ∂Ω = {x | dΩ (x) = 0}.
Furthermore, |dΩ (x) | is the geodesic distance to ∂Ω. For example, the distance function

dcirc(x) = ‖x‖ − 1 (7.3)

de�nes a circle of radius one centered at (0, 0). The ability to work with distance functions gives
DistMesh �exibility, because we can transform an explicit geometry representation such as a
planar straight-line graph into a signed distance function. For example, let

{(−1/2,−1/2), (1/2,−1/2), (1/2, 1/2), (−1/2, 1/2)}

be the set of points de�ning a square, then

drect(x) = drect(x ,y) = max {|x | , ��y��
} − 1/2 (7.4)

is the distance function de�ning the square. Furthermore, Persson and Strang described in [221]
how to construct such a function by combining multiple functions each representing a geomet-
rical object. For example,

dsub(x) = max {dcirc(x),−drect(x)} (7.5)

de�nes the subtraction of drect(x) from dcirc(x). The result is illustrated in Fig. 7.1iii. Even though
an implicit geometry representation is powerful, I show that it also imposes some limitations (see
Sections 7.5 and 8.3).

7.2 The truss analogy

The best starting point for discussing DistMesh is a change in perspective. Instead of focusing
on the process of mesh construction, we look at the result. Instead of asking: how do we get
there? We ask: what conditions are ful�lled? To answer the second question, which leads to an

(i) dcirc (ii) drect (iii) dsub

Figure 7.1: De�nition of a spatial domain by combining multiple distance function. In this ex-
ample dsub (iii) de�nes a domain which equal is to the subtraction of the domain de�ned by drect
(ii) from the one de�ned by dcirc (i).
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answer to the �rst one, the authors in [221] use a physical analogy between a triangular mesh
and a simpli�cation of a simple truss structure. This analogy stems from engineering.

For engineers, a truss structure consists of so-called two-force members. For these objects,
forces are applied to precisely two points. For this model, only compression and tension forces
are considered leaving out the weight of truss elements and the transmitted moments. Since all
shear and bending moments and other more complex stresses are approximately zero, they are
neglected as well.

Engineers know that a well-designed truss structure can distribute expected external forces so
that no member of the truss breaks under the exerted compression or tension. For example, a
bridge’s truss distributes the force caused by a heavy load to its strongest elements. Since a truss
is a solid structure, each member is in a mechanical equilibrium – the net force at each node is
zero.

Figure 7.2: Example of a triangular truss structure of a bridge consisting of bars and nodes.

Following the analogy, a high-quality mesh represents a very stable truss structure. Persson
and Strang imagined external forces of equal magnitude pulling orthogonal at the boundary of a
mesh as depicted in Fig. 7.3ii. Meshes of high quality distribute the emerging pressure, compres-
sion, and tension evenly amongst all elements. On the one hand, a stable truss distributes forces
evenly amongst bars. On the other hand, a high-quality mesh consists of evenly sized edges. The
idea behind DistMesh is to connect both properties and to use bar forces to generate a mesh
with well-sized edges iteratively.

7.3 Improving

Persson and Strang [221] achieve this connection by de�ning tension forces F (v1, v2) and F (v2, v1)
for each edge e = {v1, v2} of the mesh. Edges behave like two-force members. F (v2, v1) is applied
to v1 and F (v1, v2) to v2, compare Fig. 7.3iii. Additionally,

F (v1, v2) = −F (v2, v1) (7.6)

holds. The magnitude of these internal forces depends on the current and desired edge length, ‖e‖
and h(e ), respectively. DistMesh simulates an external force that acts normal to the boundary

vertices. This force stretches the whole mesh such that it expands towards the boundary. To
keep vertices from leaving Ω, they are projected back if they cross ∂Ω, compare Fig. 7.3iv. More
precisely, those pushing forces Fext(v) counteract the pulling e�ect by acting in the opposite
direction, that is, in the direction of

− ∇dΩ (v). (7.7)

The magnitudes of Fext are just large enough to keep nodes from moving outside [221]. Without
Fext the underlying space of the mesh |T | would grow inde�nitely. Going back to the truss
analogy, the net compression or tension of an edge e = {v2, v1} is de�ned by the net forces of its
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Ω

∂Ω

∂Ω

(i)

Ω

(ii)

Ω

v1

v2
F (v1, v2)

F (v2, v1)

(iii)

Ω

−∇d (v)

(iv)

Figure 7.3: The translation of the physical analogy into the model of DistMesh for an example
domain (i) and an initial mesh (ii) to (iv): external forces of the analogy (ii) are modeled by in-
ternal forces F (v1, v2) (iii) and the back projection of vertices outside of Ω (iv). Internal forces
(iii) applied to two-force members (edges). An improvement step of DistMesh moves vertices
according to the net force at each vertex (iv).

end points F (v1) and F (v2). Therefore, even if F (v1, v2) is a tension force, e might be either under
tension or compression.

The DistMesh algorithm starts with a suboptimal initial mesh, for which the force equilibrium
is violated. Over an arti�cial time t those forces displace mesh vertices until an equilibrium is
reached. Algorithmically, the continuous time t , and with it, the continuous vertex displacement,
is discretized. Consequently, DistMesh can be classi�ed as an iterative mesh improver.

Let Ω ⊂ R2 be the domain of interest. Furthermore, letVk be the set of vertices of improvement
step k and Ek the set of edges of its Delaunay triangulation Tk . At any step k , forces F (Vk ) act
between the mesh points. To �nd an equilibrium

F (Vk ) = 0, (7.8)

the following arti�cial time-dependence is introduced:

dV
dt
= F (V ), t ≥ 0. (7.9)

Any stationary solution of this ODE also satis�es Eq. (7.8). This stationary solution is found
numerically using the forward Euler method

Vk+1 = Vk + ∆t · F (Vk ). (7.10)

In each Euler improvement step, points Vk move according to F (Vk ). After the vertex dis-
placement, topological changes are required to reestablish the Delaunay criterion. In fact, after
large movements, the mesh may not even be a valid triangulation since points may have escaped
the convex hull of their neighborhood. The empty-circle, and the orientation certi�cate may be
violated (see Section 6.5.1). Therefore, it is essential to recompute the mesh topology. In [221],
Persson and Strang suggest to recompute the Delaunay triangulation when a point moves further
than a certain tolerance ϵtol · h0, where h0 is an approximation of the smallest edge length. They
suggest to use ϵtol = 0.1. Constructing the Delaunay triangulation for a large number of points is
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computationally expensive. It requires O (n log(n)) time (see Section 6.5.2) and does not exploit
the fact that the topology of two consecutive meshes is similar. Since points move according
to F (Vk ), the key to a high-quality mesh lies in the de�nition of F , which is controlled by two
user-de�ned functions.

The �rst is the already mentioned signed distance function dΩ. It is the geodesic distance to the
boundary of ∂Ω:

dΩ (x) = signΩ (x) · min
y ∈ ∂Ω

‖x − y‖. (7.11)

A negative sign indicates that the point is inside Ω, a positive sign that it is not. Of course, dΩ
depends on the geometry.

The second is a desired edge length function, also known as element size functionh. In Section 8.6,
I give a more detailed discussion. For now, it is enough to know that h controls the spatial mesh
resolution. Let e = (v1, v2) be an edge and xe = (v1 + v2)/2 its midpoint. For each iteration k ,
DistMesh transforms h into an actual desired edge length

hk (e ) = ψ (Ek ) · ω · h(e ), (7.12)

which is scaled by

ψ (E) =
( ∑

e∈E ‖e ‖2∑
e∈E h(xe )2

)1/2
(7.13)

and ω. Similar to [164], I de�ne
λk (e ) =

‖e ‖
hk (e )

(7.14)

to be the ratio of the edge length and the desired edge length of e ∈ Ek . Clearly, we want

∀e ∈ Ek : λk (e ) ≈ 1. (7.15)

The force F (v1, v2) acting between v1, v2 is given by

F (v1, v2) =
v1 − v2
‖v1 − v2‖ · ηk (e ), (7.16)

where e = {v1, v2} and ηk is de�ned the following way

ηk (e ) = η̂(λk (e )) · hk (e ). (7.17)

ηk (e ) gives the magnitude of the force and η̂ de�nes, based on λk (e ), the amount of tension or
compression applied. Note that η̂ is independent of the improvement step k . It makes sense to
de�ne η̂ such that

λk (e ) < 1⇒ η̂(λk (e )) > 0 ∧ λk (e ) ≥ 1⇒ η̂(λk (e )) ≤ 0. (7.18)

Persson and Stang suggested

η̂(λk (e )) = max {1 − λk (e ), 0} . (7.19)
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They avoid compression for internal edge forces. Another option which includes compression is
the Bosson-Heckbert smoothing function

η̂(λk (e )) = (1 − λk (e )4) · exp(−λk (e )4) (7.20)

suggested by [164]. Both functions are depicted in Fig. 7.4. I stick with the function proposed by
Persson and Strang because its computation is cheaper, and I could not achieve better results by
using the Bosson-Heckbert smoothing function. The net force acting on v1 is equal to the sum
of forces of its incident edges

F (v1) =
∑

e ∈ E
e = {v1,v2}

F (v1, v2). (7.21)

Vertices crossing the boundary are projected back into Ω. They can move freely along the
boundary ∂Ω but cannot distance themselves from the meshing domain Ω. If a vertex v ends up
outside of Ω it is moved back to v∗, de�ned by

v∗ = v − dΩ (v)∇dΩ (v), (7.22)

where the gradient ∇dΩ (v) is computed numerically by a �nite di�erence scheme. Note that
DistMesh assumes that ∇dΩ (v) is well-de�ned everywhere.

According to Strang and Persson, F (v1, v2) should be larger than zero, when ‖v1 − v2‖ is ap-
proximately equal to its desired length. This increased tension helps to spread out vertices across
Ω and is achieved by choosing the scaling factor in Eq. (7.12) to be greater than 1, that is,ω > 1. If
ω is too small, vertices move too slowly or do not move at all. However, if it is too large, vertices
tend to move back and forth inde�nitely. Persson and Strang suggested to use ω = 1.2, which I
can con�rm to work very well.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
λk (e )

0.0

0.5

1.0

η̂
(λ

k
(e

))

Persson and Strang
Bossen and Heckbert

Figure 7.4: η̂ chosen by Persson & Strang and Bossen & Heckbert: the �rst one is never negative.
Thus it does not lead to (direct) compression. The The Bosson-Heckbert smoothing function
leads to compression for λk (e ) > 1.0.
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7.4 Initialization

The improvement phase can only start after an initial triangular mesh T0 was constructed. Dist-
Mesh creates T0 by removing vertices v with a probability of

1
h(v)2

(7.23)

from a uniform triangulation of side length h0. T0 is the Delaunay triangulation of the remaining
vertices, compare Fig. 7.7i.

7.5 Examples and discussion

I conclude the discussion of DistMesh by analyzing the result of two examples. The purpose of
the �rst one is to strengthen the intuition of the forces-based smoothing process and to give an
extensive analysis of DistMesh’s performance. The second example showcases that the meshing
algorithm might construct a mesh that has undesirable properties.

To evaluate performance, I use the quality measures introduced in Section 6.6. To give con-
densed information and to visualize the improvement progress properly, I use the kernel density
estimation. For each intermediate result Tk , I compute the normalized histogram for the two qual-
ity measures ρ1, ρ1 and the angles θ of each mesh element. Compare Figs. 7.7i to 7.7vi. To visu-
ally compare the whole series of histograms, I compute a series of kernel estimation distributions
(KDEs) – for each intermediate result, one distribution is estimated. Therefore, I imagine ρ1, ρ2,
and θ to be random distributions – which is not the case but gives a helpful data visualization.
Each curve in Fig. 7.5 represents a KDE. The darkness of each curve encodes the improvement
step k – darker colors indicate later steps.

Example 1

I consider the circle with a rectangular hole de�ned by the distance function dsub of Eq. (7.5)
illustrated in Fig. 7.1. Furthermore, I use a desired edge length function

h1(x) = 0.05 + 0.2 · |dsub(x) | , (7.24)

which depends on the distance function. Therefore, the element size h1 increases with −dsub,
that is, with the distance to ∂Ω. For this example, I use exactly 150 improvement steps. Because
∇dsub is not uniquely de�ned everywhere, I also insert �x points at each corner of the rectangle
de�ning the hole. An extensive discussion explaining the requirement for �x points, follows in
Section 8.3. Fig. 7.7vi depicts the end and Figs. 7.7i to 7.7v intermediate results.

The element quality with respect to ρ1(τ ) and ρ2(τ ) with τ ∈ T0 ranges from approximately
zero to approximately one, compare Fig. 7.7i. Therefore, T0 consists of almost arbitrarily poor but
also very rich elements. The improvement starts with ρ1(T0) = 0.78, ρ2(T0) = 0.72 and converges
towards 0.93 and 0.86 respectively, compare Fig. 7.6i. The overall mesh quality jumps whenever
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0 0.2 0.4 0.6 0.8 1.0 1.2
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0 30 60 90 120 150 180

θ

(iii)

Figure 7.5: Plot of the series of estimation distributions ρ1 (i), ρ2 (ii) and θ (iii): each distribution
is estimated using a speci�c mesh Tk with k = 1, 2, 3, 4, 5, 10, 15, . . . , 145, 150. The larger k is, the
darker the plotted curve becomes.

the Delaunay triangulation is recomputed and deteriorates between two consecutive computa-
tions of the Delaunay triangulation. Note that after the last improvement step has �nished, the
Delaunay triangulation is always recomputed.

The improvement starts with a minimal quality ρ1,min(T0) = ρ2,min(T0) ≈ 0.0 which jumps up
and down, compare Fig. 7.6ii. It never goes above 0.4. For the �nal mesh, the minimum is 0.04
and 0.13, respectively, compare Fig. 7.7vi. The quality of the ‘best’ element stays at approximately
1.0 during the whole improvement, compare Fig. 7.6iii.

The kernel density estimation of the histogram of qualities and angles of T0 reveals the in�u-
ence of the Delaunay criterion. We can observe a peak around quality one and peaks at 30◦, 60◦,
90◦, and 120◦, compare Fig. 7.5. These peaks transform into a single growing peak at a quality
equal to 1.0 and angle equal to 60◦. As desired, the quality of each element tends to 1.0, and its
angles tend to 60◦.

One can observe that some of the initially best elements �rst drop in quality such that others,
very poorly shaped triangles, can be improved. At �rst, the element quality gets more evenly
distributed. Then, after each re-computation of the Delaunay triangulation, it is increased for all
non-boundary elements. ρ1(Tk ) and ρ2(Tk ) increase with k , and their distributions move towards
one.

0 50 100 150
Iteration k

0.71
0.780.8

0.9

1.0
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ρ2 (Tk )

(i)

0 50 100 150
Iteration k

0.0
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ρ1,min (Tk )

ρ2,min (Tk )
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Iteration k

0.0

0.5
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ρ1,max (Tk )

ρ2,max (Tk )

(iii)

Figure 7.6: Plots of the mean quality ρ1(Tk ), ρ2(Tk ) (i) minimal quality ρ1,min(Tk ), ρ2,min(Tk ) (ii)
and maximum quality ρ1,max(Tk ), ρ2,max(Tk ) (iii): the mean quality ρ1 approaches 0.93 while the
minimum quality stays low and does never go above 0.4.
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Figure 7.7: Intermediate results of the DistMesh algorithm: for iteration k = 0, 4, 7, 50, 100, 150
a histogram of qualities ρ1, ρ2 and the angles θ of each triangle of Tk is displayed. The algorithm
starts with a Delaunay triangulation of randomly selected points (i). Points move around such
that qualities are �rst harmonized (ii)-(iii) and then increase for all internal triangles (iv)-(vi).
Minimum, maximum and mean values are highlighted by a vertical black line.
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(i) (ii)

Figure 7.8: Two undesirable results constructed by DistMesh: by using h1 (i), the constructed
mesh seems to represent the geometry well but it does not fully adhere to the boundary at the
top center of the hole. By using a slightly di�erent but reasonable element size function h2 (ii),
the constructed mesh does no longer represent the geometry accurately.

However, the minimal quality plot reveals the existence of some poorly shaped outliers. These
low-quality elements can be found near the boundary domain ∂Ω, compare Figs. 7.7ii to 7.7vi. In
Section 8.4, I explain that unwanted local force equilibriums are responsible for these low quality
elements. Additionally, I show di�erent strategies to �x the issue.

Example 2

For the second example, I replace the rectangle hole with another narrower rectangle of height
0.05. If one uses the edge length function from the previous example, everything seems to work.
But if we look closely, the mesh does not entirely adhere to the boundary. Compare the narrow
rectangle of Fig. 7.8i, especially at the top center.

The problem gets revealed if we replace h1 with another element size function

h2(x) = 0.05 + 0.2 · dcorner(x), (7.25)

that de�nes a high resolution imposed by the geometry (see Section 8.6). In Eq. (7.25), dcorner(x) is
the distance to the closest corner of the rectangle. h2 should lead to a high-quality mesh because
it de�nes a small element size where needed, that is, at positions close to the left and right vertical
line of the rectangle. The problem is that triangles might intersect with the rectangle, but their
midpoint is not contained in it. Therefore, these triangles will not be removed. Without an explicit
representation of the rectangle, testing for intersection is di�cult. One could evaluate some
sample points but choosing the right one seems to be hard. And even if an explicit representation
is available, testing for intersection is still much more expensive than evaluating dΩ one single
time. One could use another element size function to ensure that elements close to the boundary
are small enough. But this could lead to an unacceptable amount of elements.

In Section 8.3.2, I present a simple solution by including explicit de�ned geometrical objects
into the meshing process.
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7.6 Source code

There are existing DistMesh implementations for di�erent programming languages. The origi-
nal algorithm is freely available at

http://persson.berkeley.edu/distmesh/.

An alternative Python implementation is available at

https://github.com/bfroehle/pydistmesh

and my own Java implementation is contained in Distmesh.java �le of the VadereMeshing
subproject that is part of open-source simulation framework Vadere [294].

7.7 Summary

In this chapter, I gave a detailed description of DistMesh, the meshing algorithm I adapted and
extended. Therefore, I lay the ground for the upcoming chapter, in which I �nally describe Eik-
Mesh.

At the beginning of this chapter, I explained why I looked at DistMesh to design a proper
meshing algorithm. Apart from its accessibility, DistMesh is a useful mesh-improver, especially
for the dynamic setting of my application. Secondly, DistMesh is known to generate high-quality
meshes and outperforms many other mesh-improvers, such as the Laplacian smoothing.

In Section 7.1, I explained the di�erence between an implicit and explicit representation of the
spatial domain Ω – a di�erence which is important because, as I showed, DistMesh relies on the
gradient ∇dΩ of an implicit representation. Later on, I explain how explicitly de�ned geometric
objects can improve the mesh generation process (see Section 8.3). I also explained how one
could combine distance functions of simple geometries to construct distance functions of more
complex geometries.

To deepen my own and the reader’s understanding, I shed light on the connection between
the physical analogy of a truss structure and the DistMesh algorithm (see Section 7.2). This
understanding led me to some algorithmic improvements that I introduce in the next chapter.

After describing the analogy, I looked into DistMesh in detail, including its improvement
phase (Section 7.3) and its probabilistic initialization phase (Section 7.4).

By using two examples (see Section 7.5), I highlighted the strength of DistMesh, that is, the
generation of high-quality meshes based on an implicit domain representation. But I also dis-
cussed its weaknesses: an arbitrarily small minimal quality, an unnecessarily restricted element
size function h, and elements that might not adhere to the boundary. I showed that the mesh
quality decreases between consecutive Delaunay triangulation computations. Furthermore, I es-
tablished a method to visualize the change in the quality and angle distribution with respect to
the improvement step k , which can be used to analyze other mesh improvement methods.
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CHAPTER 8
The EikMesh algorithm

“The kind of freedom you will not hear much talked about in the great outside world of

winning and achieving and displaying involves attention and awareness and discipline,

and e�ort and being able truly to care about other people and to sacri�ce for them [...].

That is real freedom. That is being educated.”

– David Forster Wallace

In this chapter, I describe EikMesh in full detail. I introduce all adaptations of the DistMesh
algorithm to enhance its usability in the context of microscopic pedestrian simulation. Its core,
the forced-based vertex displacement, remains untouched while its initialization phase is im-
proved and additional topological operators are added. By using a new initialization phase, the
smoothing starts with a high-quality mesh. I show that in combination with a non-recursive

�ipping algorithm, inspired by FlipAll, EikMesh performs better than DistMesh for important
examples. Since I get rid of the computation of Delaunay triangulations, I increase parallelism.
The non-recursive �ipping algorithm FlipEdges establishes the mesh topology after each point
displacement. Special local topological changes improve the quality of boundary elements. I
also show how a constrained version of EikMesh is advantageous for geometries represented by
planar straight-line graphs (PSLGs). Afterwards, I discuss the local feature size function h, its
importance, in�uence, and automatic computation. Finally, I show how each adaptation leads to
parallelism, a property that can be exploited to accelerate EikMesh by executing the improve-
ment phase on single instruction multiple data (SIMD) hardware architectures. In Section 8.8, I
give results and comparisons between EikMesh and DistMesh.

The original MATLAB implementation [221] of DistMesh is only suitable for simple geome-
tries. Reasonable element size functions h have to be provided by the user, and the execution
time becomes intolerable for complicated geometries. The reason for this is the computation of
multiple Delaunay triangulations and the frequent evaluation of dΩ. Another problem, pointed
out by Koko [164], is that boundary vertices may, in fact, not align with the boundary and that
element qualities can drop suddenly at any point in the smoothing phase. See the plot in Fig. 7.6ii
of Chapter 7.

EikMesh is an extension of DistMesh. It implements the same force-based vertex displace-
ment strategy, takes special care of boundary elements, and avoids all computations of the De-
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launay triangulation. It relies entirely on local mesh operations that bene�t parallelism and fast
memory-e�cient data access. In summary, EikMesh improves DistMesh in three major areas:

(1) robustness: while meshes generated by DistMesh have an overall high quality the mini-
mal element quality ρmin is often small. EikMesh resolves this problem,

(2) alignment: EikMesh, other than DistMesh, guarantees that boundary vertices are located
at the boundary of the spatial domain Ω,

(3) computational cost: compared to DistMesh, EikMesh requires reasonable computation
costs even for large scale meshes. In addition, EikMesh scales well.

Additionally, EikMesh is implemented based on the doubly-connected edge list (DCEL) de-
scribed in Section 6.8. Mesh elements are stored in a cache-friendly manner, and the DCEL allows
the exploitation of the actual mesh topology. Therefore, the DCEL supports local operations re-
quired for the special treatment of boundary elements. A new initialization phase, see Section 8.5,
distributes mesh points deterministically according to h. Except for boundary elements, the ini-
tial constructed mesh T0 consists of well-shaped triangles. The last two ingredients I introduce is
a strategy to automatically compute an element size function h and an approximation of distance
function dΩ for any given planar straight-line graph.

8.1 Local operations

Before discussing EikMesh in more detail, I give an overview of all local mesh operations. These
operations implement all topological changes required by the algorithm. Local means that each
operation only changes a small number of neighboring mesh elements. Because EikMesh com-
putes the topology of Tk+1 based on the topology of the previously generated mesh Tk , all inter-
mediate results have to be homogeneous simplicial complexes. Therefore, each local operation
has to be valid.

De�nition 8.1 (valid mesh operation). Let Tk be a homogeneous simplicial complex. Then a
(local) mesh operation is valid if and only if the change it causes leads to a homogeneous simplicial
complex.

The most essential local operation, called FlipEdge(e), changes the connectivity of neighboring
triangles of an edge e , compare Fig. 8.1iii. A �ip is legal if and only if an edge is locally Delaunay
after its execution. Inserting new points into a given triangulation is done by SplitFace(τ , x). It
inserts x into T by splitting τ into three new triangles τ1,τ2,τ3 such that

|τ | = |τ1 | ∪ |τ2 | ∪ |τ3 |. (8.1)

The operation assumes that x IsContained(τ , x) in τ , compare Fig. 8.1i. The last obvious basic
operation, Move(v,∆x) is almost completely adopted from DistMesh [221], compare Fig. 8.1ii.
An additional validity test ensures that vertex displacements are valid. The following additional
local operations realize the special treatment of boundary elements, see Sections 8.2.2 and 8.4:
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(i) RemoveFace(τ ): removes a boundary triangle,

(ii) CreateFace(v): assumes that the angle αv at v is acute and creates a new boundary triangle
by connecting the two boundary neighbors of v by an edge, compare Fig. 8.2ii,

(iii) CollapseVertex(v): assumes that v is a three degree boundary vertex, It removes v and
merges the two neighboring triangles,

(iv) SplitEdge(e): splits an edge e into two new edges by inserting a vertex at its midpoint xe ,

(v) CreateHole(τ ): converts τ into a hole, i. e., a face that is not part of |T |,
(vi) CollapseEdge(e): removes an edge e by merging its endpoints into its midpoint xe . Its

endpoints are removed. All former neighbors of those endpoints are connected to xe ,

(vii) CollapseFace(τ ): combines RemoveFace and Move to remove a triangle τ ∈ T without
changing the underlying space |T |. First RemoveFace(τ ) is executed. Then Move(v, xe−v)
moves the vertex v opposite from the former boundary edge e to the midpoint xe of e .

All these operations are depicted in Fig. 8.2.
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SplitFace(τ , x)

τ Ω Ω
x τ1

τ2 τ3
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Move(v,∆x)
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u v0
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u

FlipEdge(e)
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Figure 8.1: Basic local mesh operations.
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Figure 8.2: Special local mesh operations.
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8.2 Non-recursive �ips

In this section, I describe the non-recursive �ipping algorithm, which strives for a Delaunay tri-
angulation without computing it from scratch. The method demands a valid mesh at all times. I
explain how the method avoids any illegal point displacements.

Algorithm 11: FlipEdges
Input: triangulation T
Output: triangulation T

1 for e edge in Tk do
2 if e is not Delaunay then

3 T ← FlipEdge(e);

4 return T ;

While analyzing DistMesh, one observes the following: during its improvement phase, the
topology of consecutively generated meshes Tk ,Tk+1 is very similar, especially for large k . The
plot displayed in Fig. 8.3 underpins this observation. Additionally, the mesh quality ρ (Tk ) contains
jumps, and even for simple geometries, the minimal quality ρmin(Tk ) can be arbitrarily low for
all k . This phenomenon is described in Section 7.5 and presented by Koko [164].

Instead of computing the Delaunay triangulation from scratch, I use the edge �ip method
adapted from Lawson [181]: for each iteration, an edge in Ek is �ipped if it is not locally Delaunay,
i. e., IsInCircle is true. Flipping until all edges are locally Delaunay requires O ( |Ek |2) = O (n2)
time. However, if only a few topological changes are necessary, which is the case if ρ (T ) is high,
very little work has to be done. When analyzing multiple experiments, it turned out that �ip-
ping each edge at most once for every iteration step (Algorithm 11), was enough to establish a
Delaunay triangulation for the �nal mesh. As a consequence, the theoretical time complexity for
each iteration step of the improvement phase is reduced from O (n log(n)) to O (n) compared to
DistMesh. There is no guarantee that the �nal mesh is, in fact, a Delaunay triangulation. How-

0 20 40 60 80 100 120 140
k

0

100

200

Number of illegal triangles

DistMesh
mod. DistMesh

Figure 8.3: Number of non-Delaunay triangles after each point displacement of DistMesh (blue)
and a modi�ed version (orange) for which the Delaunay triangulation is computed for each im-
provement step. I use the �rst example of Section 7.5
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Figure 8.4: An illegal (i) and legal (ii) vertex displacement: the resulting mesh of an illegal vertex
displacement is not a (valid) simplicial complex. If a vertex gets close to an edge e , it will be
�ipped eventually.

ever, since the algorithm requires multiple iterations, non-Delaunay edges are �ipped eventually.
I observed that the �nal result is a Delaunay or constrained Delaunay triangulation for all test
cases. As a side remark, the number of required �ips depends on the initial triangulation T0 and
the element size function h, i. e., the distance vertices move to get a “good” position.

Non-recursive �ips FlipEdges introduces an important restriction, because we no longer re-
construct the complete mesh topology. Therefore, after each mesh operation, the mesh has to
be a (valid) triangulation. If a vertex moves outside of the convex hull of its 1-ring neighbor-
hood, FlipEdges does not necessarily su�ce to reestablish validity. Since EikMesh �ips edges
after they are displaced by calling MoveVertices (Line 5 in Algorithm 12), the resulting mesh
has to be valid. However, this is not necessarily guaranteed, compare Fig. 8.4. FlipEdge, IsIn-
Circle, IsInside, and many more operations lead to unexpected results if they operate on an
invalid mesh. Since IsInside, IsLeft, and IsRight might return false values, the point location
might also fail. Therefore, almost every operation involving the mesh ends unexpectedly if the
orientation certi�cate is invalid. DistMesh does not run into this problem because the topology
computation does not rely on the previously constructed mesh. As a consequence, EikMesh has
to avoid any illegal vertex displacement. Two possible illegal displacements may occur: an edge
crossing vertex and a boundary collision. Below I describe how I deal with them.

8.2.1 The edge crossing vertex

The �rst kind of illegal displacement, which might occur, is a vertex that crosses the convex hull
of its 1-ring, as depicted in Fig. 8.4i. In the following, I argue that this can not happen if ∆t is
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su�ciently small.
Let us assume that ∆t is su�ciently small and let e = {u1, u2} be the edge it crosses. Further-

more, let αv be the angle at v of the triangle u1vu2 and d (v, e ) be the distance between v and e . At
some point, v has to be very close to e . For this situation, let us look at the circumcenter radius
of the triangle u1vu2. There are two cases depicted in Fig. 8.5.

Large circumcircle radius

If v does not move towards a vertex of e , we get

αv → π for d (v, e ) → 0. (8.2)

It implies that the circumradius of the triangle u1vu2 becomes in�nitely large. If e is not at the
boundary, the circumradius will eventually contain some other vertex, and e will be �ipped by
FlipEdges before it crosses e , compare Fig. 8.4ii. I show how one deals with the boundary case
later on.

Small circumcircle radius

Let us look at the other case, for which v moves towards a vertex u1 of e . The force

F (u1, v) =
u1 − v
‖u1 − v‖ · fk (u1, v) (8.3)

pushes v away from u1. Since
‖v − u1‖ → 0, (8.4)

the magnitude of F (u1, v) approaches its maximum

η̂k (0) · hk (v) = 1 · hkv) = hk (v) (8.5)

de�ned by Eq. (7.17), while all other forces acting on v become weaker. For a reasonable element
size function h, F (u1, v) should become strong enough to prevent v from collapsing into u1. This
is not a formal proof, but it explains why such a collapse never occurs for all my examples.

In summary, vertices distant from the boundary, i. e., their one 1-ring neighborhood consists
of non-boundary vertices, do not cross any edge if ∆t is su�ciently small. Because for tiny ∆t ,

v

u1

u2

(i)

v
u1

u2

(ii)

Figure 8.5: The two cases of an edge crossing vertex: the vertex does not move towards u1 or
u2 (i). In that case, a large circumradius eventually leads to an edge �ip. In the second case, the
vertex moves towards u1 (ii). This leads to a strong repulsive force between u1 and v, preventing
v from collapsing into u1.
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Algorithm 12: EikMeshSmoothing
Input: initial triangulation T0, element size function h, distance function dΩ
Output: a high-quality triangulation Tk

1 k ← 0;
2 do

3 ψk ← computeψ (Ek ) in parallel;
4 F (Vk ) ← ComputeVertexForces(Tk+1,h,dΩ,ψk ) in parallel;
5 Tk+1 ←MoveVertices(Tk+1, F (Vk )) in parallel;
6 Tk+1 ← UpdateBoundaryElements(Tk+1,h,dΩ, F (Vk )) in parallel;
7 Tk+1 ← FlipEdges(Tk ) in parallel;
8 k ← k + 1;
9 while F (Vk ) ≈ 0;

10 return Tk ;

the convergence rate decreases, ∆t should not be arbitrarily small, and vertices might be pushed
outside their surrounding convex hull. However, since

lim
k→∞

F (Vk ) → 0 (8.6)

and the mesh quality ρ (Tk ) increases withk , such illegal displacements only appear in practice for
early improvement steps, i. e., for small k . Remember, if the quality of each simplex τ neighboring
a vertex is high, the vertex is distant from any opposite edge and, therefore, close to the center
of the convex hull of all neighboring vertices, compare Fig. 8.7.

To guarantee legal vertex movements, EikMesh halves the magnitude of F (v) until the dis-
placement of v becomes legal.

8.2.2 Boundary collision

The second kind of illegal displacement can occur at the mesh boundary. Since �ips can never
be executed for a boundary edge, the mesh boundary might collapse into itself. Such a situation
is illustrated in Fig. 8.6. In that case, the mesh T does not represent a homogeneous simplicial
complex (De�nition 6.5) any longer because there are overlapping triangles.

Detecting these overlaps is computationally expensive. It would drain a lot of resources such
that the run time would become unacceptable. Furthermore, even if we found these illegal sim-
plexes, �xing the mesh would be complicated. We could remove and re-insert all vertices close
to the overlapping region or re-compute the whole Delaunay triangulation DT (Vk ). I want to
avoid this computation, therefore, EikMesh makes sure that the boundary never collapses into
itself.

For this reason, it implements the following smoothing technique: let us assume v is a bound-
ary vertex and u1, u2 are its adjacent boundary vertices. Then a new edge {u1, u2} is introduced
by CreateFace if

(i) the angle ^u1vu2 = αv is acute, that is, if αv < 1
2π , and
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Move(
)

SmoothBoundary() Move()

Figure 8.6: The smoothing of unwanted acute boundary angles: by eliminating these angles,
EikMesh prevents the boundary from collapsing into itself.

(ii) the midpoint xτ of the triangle u1vu2 is inside the domain Ω (dΩ (xτ ) < 0).

By this additional step within each improvement iteration, EikMesh prevents boundary colli-
sions because it eliminates unwanted acute angles at the boundary by introducing new edges
and triangles, as depicted in Fig. 8.6.

8.3 Boundary adherence

One of the most signi�cant challenges in mesh generation is the treatment of the domain bound-
ary ∂Ω. In 2-d, generating a regular triangulation containing only equilateral triangles is trivial if
one ignores the boundary, compare Fig. 8.7. The problem gets delicate because of the restrictions
the boundary imposes. I already discussed how di�erent approaches deal with the challenge.
For example, advancing-front methods start the mesh generation at the boundary to pro�t from
‘the freedom of choice’ to insert new Steiner vertices. Delaunay-based approaches, on the other
hand, start with a constrained Delaunay triangulation, which perfectly aligns with the bound-
ary if a planar straight-line graph de�nes it. Both strategies use an explicit representation of the
geometry.

DistMesh, on the other hand, is based on an implicit representation of Ω, realized by a signed
distance function. It does not make use of explicit geometric information. Instead, it achieves
alignment by a combination of back projection, using ∇dΩ, and the deletion of triangles, which
are outside of Ω. In general, the underlying space of an initial mesh T0 is unequal to the domain,
i. e., |T0 | , Ω. The hope is that it changes with respect to dΩ until |Tk | = Ω holds. For many

v

Figure 8.7: A vertex v surrounded by high-quality triangles.
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examples, this treatment of the boundary results in high-quality meshes which adhere to the
boundary. However, this is not true for all tested geometries [164]. Sometimes it is also handy to
ensure that speci�c line-segments (constraints that are not part of the boundary) are present in
the �nal result.

In this section, I discuss why the gradient dependent projection can lead to a mesh, that does
not adhere to ∂Ω and how we can solve the issue. Besides, I show how EikMesh uses the ad-
ditional information given by an explicit representation of the geometry to improve the mesh
construction.

8.3.1 Fix points

Let us assume a domain Ω de�ned by the following distance function:

dΩ (x) = d (x1,x2) = |x1 | − |x2 |. (8.7)

dΩ (0) = 0, therefore, 0 is part of the domain boundary ∂Ω. However, the gradient ∇dΩ at 0 is
not uniquely de�ned, compare Fig. 8.8. In fact, there are in�nitely many subgradients. The two
limiting ones are

∇d+Ω (0) =
(

1/
√

2
−1
√

2

)
, and ∇d−Ω (0) =

(−1/
√

2
−1
√

2

)
. (8.8)

The mesh T only aligns with the boundary if 0 ∈ T , but projecting points like v towards ∂Ω
using either ∇d+Ω (0) or ∇d−Ω (0), will most certainly not su�ce. It leads to dΩ (v) = 0, but there
is no guaranteed force pressuring v towards 0, and even if there is one, v might converge very
slowly towards 0.

Instead of using ∇dΩ, one should use (0 − v) for the projection. Consequently, EikMesh in-
serts a �x point vf = 0. Fix points are part of the mesh and will never be displaced or removed.
Inserting them requires additional explicit knowledge about the given geometry. However, to
guarantee perfect alignment, some explicit geometrical information is needed. To guarantee per-
fect adherence, �x points have to be inserted at all positions x, for which dΩ (x) = 0 and ∇dΩ (x)
is not uniquely de�ned.

8.3.2 Geometric constraints

So far the input for EikMesh is identical to DistMesh, that is,

v
∇d+Ω (0)∇d−Ω (0) 0

Ω
∂Ω

d < 0

d > 0

(i)

Ω
∂Ω

d < 0

d > 0

vf = 0

(ii)

Figure 8.8: A problematic boundary which is di�cult to adhere to since ∇dΩ (0) is not uniquely
de�ned (i). A �x point inserted at 0 resolves the issue (ii).
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SplitEdge(e1) SplitEdge(e2)e1 e2 e2

Figure 8.9: Edges of the initial mesh are split if they intersect with a constrained line-segment.

(1) a distance function dΩ,

(2) an element size / edge length function h and

(3) an optional set of �x points.

In this section, I add another component to the input: a segment-bounded planar straight-line
graph P. Furthermore, I describe how EikMesh uses P to enhance the meshing process.

First, let us illustrate the di�erence between both geometrical representations given by dΩ and
P, respectively. For example, let Ω be a square

Sin = {(−1/2,−1/2), (1/2,−1/2), (1/2, 1/2), (−1/2, 1/2)} (8.9)

subtracted by another square

Sout = {(−1,−1), (1,−1), (1, 1), (−1, 1)}. (8.10)

Its explicit representation is given by Sout and Sin, while its implicit representation is given by dΩ
de�ned in the following way:

dout(x) = dout(x1,x2) = max{|x1 |, |x2 |} − 1,
din(x) = din(x1,x2) = max{|x1 |, |x2 |} − 1/2,

dΩ (x) = max{dout(x),−din(x)}.
(8.11)

Each of the 8 line-segments of P, such as l = {(−1/2,−1/2), (1/2,−1/2)}, are treated like con-

straints of a conforming Delaunay triangulation.
Let L be the set of all constrained line-segments. Similar to DistMesh, EikMesh starts by

constructing an initial triangulation. Afterwards, it inserts each given constrained line-segment
l ∈ L by the following strategy: �rst, both end points p1, p2 of l are inserted and marked as �x
points. Then all triangles that intersect l are gathered by using a straight triangle walk from p1
to p2, see Section 6.7. EikMesh splits each edge of the gathered triangles intersecting l at the
respective intersection point. After this process, l is represented by constrained edges – these
edges will never be �ipped.

This line-segment insertion is very similar to constructing a conforming Delaunay triangula-
tion discussed in Section 6.5.3, but EikMesh omits all edge �ips because non-Delaunay edges are
�ipped eventually during the improvement phase. Each vertex that is part of a constraint lies on
a line-segment l and is marked as slide point of l .

De�nition 8.2 (slide point of a line-segment). Let l be a line-segment inserted into a mesh T .
Then a vertex vl ∈ V is a slide point of l if and only if vl ∈ |l |.
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A slide point vl is also a �x point if it is an endpoint of l . Essentially, vl is only allowed to move
on l . This is realized by projecting its net force F (vl ) onto l , compare Fig. 8.11.

Whenever EikMesh splits a constrained edge of T executing SplitEdge(e), the newly intro-
duced vertex becomes a slide point. Di�erent from �x points, EikMesh might remove slide points

during the improvement phase.
To provide a reasonable performance, I maintain a mapping ` : V → L to access the speci�c

line-segment l = `(vl ) for any slide point vl in O (1) time.
If the geometry is completely de�ned by P, slide points replace the projection method, which

relies on ∇dΩ. Additionally, EikMesh can deal with a geometry that is fully de�ned by dΩ and
only partly de�ned by P. For example, let us change din to

din(x1,x2) = din(x) = ‖x ‖ − 1. (8.12)

Then EikMesh can deal with an input PSLG that only contains Sout because ∇din is uniquely
de�ned everywhere.

8.4 Boundary elements

Boundary restrictions do not only make the mesh alignment di�cult, but many meshing algo-
rithms produce low-quality elements near ∂Ω. As demonstrated in Section 7.5, DistMesh is no
exception. In this section, we discover the root cause of these low-quality triangles and how spe-
cial local operations can improve their quality. Inspired by the truss analogy, I develop di�erent
solutions leading to an overall increased minimal element quality ρmin.

The forced-based smoothing introduced by Persson and Strang runs into problems if, for some
triangle τ de�ned by vertices v1, v2, v3, there is a force-equilibrium, that is,

F (v1) ≤ ϵ ∧ F (v2) ≤ ϵ ∧ F (v3) ≤ ϵ (8.13)

for some small threshold ϵ > 0, but τ is poorly shaped. In other words, the equilibrium is un-
wanted. For internal triangles such a force-equilibrium might occur but will eventually disappear
due to the displacement of nearby vertices. For boundary elements, this is not necessarily the case,
but why? Two properties are causing the appearance of unwanted local force-equilibriums:

(i) boundary edges can never be �ipped, and

(i) dout (ii) din (iii) dsub

Figure 8.10: De�nition of a spatial domain combining multiple distance functions: the domain
dout (i) is subtracted by din (ii) to construct dsub (iii).
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F (vl )
Fl (vl )

Fl (vf ix ) = 0

vl
vf ix

Figure 8.11: A slide point vl (blue) can only move on a line-segment l , i. e., between two �x
points (red). This is realized by projecting F (vl ) onto l .

(ii) the movement of boundary vertices is restricted.

The �rst property causes long and the second one short boundary edges.

8.4.1 Long boundary edges

Let us look at the �rst case, i. e., long boundary edges. In Section 8.2.1, I showed how edge �ips
prevent vertices from crossing edges. However, for boundary edges, this is not possible. There-
fore, a vertex might move arbitrarily close to a boundary edge and might cross it. Consequently,
the quality of boundary triangles can drop arbitrarily low at any point in the smoothing phase.
This situation is depicted in Fig. 8.12. The root cause of the problem is that there is no force push-
ing v away from the boundary. The boundary edge becomes the longest edge of the low-quality
element τ . If we look closely, the force-based smoothing might move v very slowly towards e
– it might never reach e and thus might never leave Ω. Consequently, neither v nor the poorly
shaped triangle u2vu1 will ever be removed by the approach suggested by Persson and Strang.
Because each single edge force acts only repulsively, e is not necessarily compressed, and since
e can not �ip, there is no force pushing v away from e . Let us look at three strategies, which all
signi�cantly increase ρmin compared to DistMesh.

Vertex projection

One solution to the problem, which I suggested in [336, 338], is to remove low-quality triangles by
removing e and projecting v onto ∂Ω. Projection can be realized by a combination of RemoveFace
and Move, see Fig. 8.2vii. Instead of projecting only outside vertices back in, EikMesh projects
all boundary vertices. It removes a boundary face τ only if its (single) boundary edge is its longest
edge and ρ (τ ) is below some quality minimum. Going back to the truss analogy, one can imagine
a bar e breaks under the applied tension.

v

eu1
u2

F (v) ≈ 0

F (u1, u2) ≈ F (u2, u1) ≈ 0

τ

Ω

Figure 8.12: A low quality boundary triangle u2vu1.
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v

e

vvir

evirτ

Ω

(i)

v

e evir

vvir

τ

Ω

(ii)

Figure 8.13: The concept of virtual edges: the virtual edge evir helps to push v away from ∂Ω (i).
The triangle τ is perfectly shaped for ‖evir‖ =

√
3‖e‖ (ii).

Edge split

Another technique I propose is to split e at its midpoint xe by executing SplitEdge(e), compare
Fig. 8.2iv. Again we can imagine e to almost break under the tension applied, but instead of letting
it break, we strengthen the structure by introducing new bars and a new node. EikMesh decides
by the same quality minimum if an edge should be split.

Virtual edges

The last technique I propose is to introduce virtual edges, that is, edges that are not part of the
mesh T but part of the force computation. The idea is to compensate for the ‘missing’ triangle
neighboring e . Let us imagine a perfectly shaped copy of τ mirrored at e . If v moves towards e ,
it will be �ipped. Let us call the �ipped edge evir and its second end point vvir. Furthermore, let
xe be the midpoint of e , then

evir = {v, v + 2(xe − v)} = {v, 2xe − v} (8.14)

is the virtual edge of e . τ would be perfectly shaped if it would be an equilateral triangle of side
length ‖e ‖. Since the side length of e might change according to h, I choose

λk (evir) =
‖evir‖√
3h(e )

=
‖evir‖
h(evir)

. (8.15)

Therefore, the desired edge length of the virtual edge evir is
√

3h(e ). Consequently,

Fint(v, vvir) =
v − xe
‖v − xe ‖ · η̂(λk (evir)) ·

√
3h(e ) = v − xe

‖v − xe ‖ · η̂(λk (evir)) · h(evir) (8.16)

is the virtual force that acts on v. The technique does neither introduce new mesh elements nor
removes any. The advantage of using virtual edges over the other two techniques is a more stable
number of mesh points and an even smoother vertex movement. Furthermore, no additional
parameter, such as a minimum quality, has to be introduced. It naturally extends the forced-
based approach. Therefore, it is the default method used by EikMesh.
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8.4.2 Short boundary edges

Besides long edges, too short edges are the second reason for poorly shaped boundary triangles.
The movement restriction at the boundary causes these short edges. Again, the root cause is
a local force equilibrium that hinders the mesh improvement process. This time the pressure
applied is high.

Let us imagine such a short boundary edge e = {v, u1}. By its de�nition, F (v, u1) is rather large
thus e should become longer during the improvement phase. The only reason why this might
not happen is a force equilibrium at v and u1, that is,

F (v) ≤ ϵ ∧ F (u1) ≤ ϵ

for some threshold ϵ > 0. Consequently, there has to be a strong force acting in the opposite
direction of F (v, u1) and F (u1, v) at v and u1, respectively. I observed that this situation only oc-
curs at three-degree vertices, as depicted in Fig. 8.14. For any other situation, a force equilibrium
can either not be established or eventually vanishes after some improvement steps.

My solution to overcome this problem stems from the truss analogy: in combination, a small
net force F (v) and a large absolute force

Fabs(v) =
∑

e ∈ E
e = {v,u}

‖F (v, u)‖ (8.17)

indicate high unavoidable pressure at v. Consequently, the node breaks and CollapseVertex(v)
is executed. For estimating the breaking point, I approximate the maximal possible force by

Fmax(v) = 3 · ηk (v, v) = 3 · η̂(0) · hk (v) = 3 · 1 · hk (v) = hk (v). (8.18)

Note that hk (v) is the magnitude of an internal edge force at v, if the length of the edge is zero.
Since v is a three-degree vertex, everything is multiplied by 3. The condition for executing Col-
lapseVertex(v) is given by

‖F (v)‖ < λ1 · Fmax(v) (8.19)

and
Fabs(v) > λ2 · Fmax(v) (8.20)

with 0 ≤ λ1, λ2 ≤ 1. I propose to use λ1 = 0.1 and λ2 = 0.4, compare Fig. 8.14.

F (v) ≈ 0

Fint(u1, u2) = Fint(u2, u1) ≈ 0Fint(v, u1) = Fint(v, u2) >> 0

Ω

CollapseVertex()

u1

u2
v

u1

u2

Figure 8.14: Collapse of vertices: it improves the quality of boundary triangles by eliminating
short edges.
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8.5 Initialization

So far, I have assumed that some initial mesh T0 is given, and I have omitted its construction.
One could use the initialization phase of DistMesh. It is easy to implement and leads to high-
quality meshes for geometries, for which the ∇dΩ is uniquely de�ned everywhere. However,
since DistMesh rejects points randomly, the overall quality of the initial mesh is low. Poorly
shaped elements might be present anywhere, and the quality of the “worst” triangle ρmin can
be arbitrarily low. Therefore, much work is required. Some points move a considerable distance
which triggers several topological changes. Furthermore, the method may generate many unused
vertices that will be inserted to be rejected right afterward – a tedious and wasteful process,
especially when using a more sophisticated mesh data structure like the doubly connected edge
list (DCEL). Since the rejection is probabilistic, one has less control over the spatial resolution of
T0. Moreover, the process requires to compute the Delaunay triangulation, which I want to avoid.

Therefore, I developed a new initialization strategy. The goal was to replace the probabilistic
method of Persson and Strang [221] with one that

(i) is deterministic,

(ii) generates a mesh consisting of mostly high-quality elements,

(iii) does not rely on the computation of the Delaunay triangulation,

(iv) and is stored in a cache-friendly manner.

In the following sections, I provide an in-depth speci�cation of the implemented initialization
phase.

8.5.1 Re�nement strategy

EikMesh constructs an initial high-quality mesh by applying the hierarchical mesh re�nement
strategy described in [21, 336]. The starting point is a square with side length hΩ containing
the whole domain Ω. This square is split into two triangles τ1,τ2 by connecting two of its non-
adjacent vertices. The longest, which is also the only internal edge, is marked. Triangles are split
by inserting a new vertex at the midpoint of their longest edge using SplitEdge(e). EikMesh
splits an edge e only if it is the longest edge of both neighboring triangles. It inserts the vertex
at the midpoint of the edge and connects it to the two opposite vertices. Figure 8.15 depicts the
situation.

Splitting internal triangles creates four child triangles while splitting a boundary element re-
turns only two new children. By construction, marked edges are the longest edge of their respec-
tive triangle. This procedure is repeated recursively until marked edges are su�ciently short,

SplitEdge(e)e

Figure 8.15: SplitEdge(e) of the longest edge of two triangles.
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that is, they satisfy
∀x ∈ |e | : ‖e ‖ ≤ h(x). (8.21)

Despite {x ∈ |e |} being an in�nite set of points, we can use the following minimum

hmin(e ) = min
x∈e h(x) (8.22)

to evaluate Eq. (8.21) for �nitely many sample points. hmin has to be provided. In Section 8.6, I
explain how one can compute it.

Following this re�nement strategy, the constructed isosceles triangles are congruent to each
other. Let us assume h is constant, andm = 2k ≤ 2n is the number of triangles of T0, then

2k ·
k∑

i=0

1
2i = 2k+1 − 1 = 2m − 1 (8.23)

is the total number of constructed triangles. The construction requires O (2m) = O (n) time and
O (k ) = O (log(n)) parallel time. The length of the longest edge of each triangle is 2−k+(3/2)hΩ.
Its short edges have a length equal to 2−k+(1/2)hΩ. The quality of each constructed triangle is
ρ1(τ ) = 2

√
2 − 2 ≈ 0.83. Note that the quality estimation is accurate for arbitrary element

size functions h. If no constrained line-segments are inserted, the initial quality of the mesh
is ρ1(T0) ≈ 0.83 as well. Otherwise, triangles neighboring those line-segments can be poorly
shaped. Consequently, most movement and, therefore, most topological changes occur at regions
close to geometrical constraints.

8.5.2 Construction of the Sierpinski list

During the recursive creation, I maintain a (linear) list containing all triangles in an order based
on a space-�lling curve called the Sierpinski curve. From now on, I call this list Sierpinski list.
The planar curve goes through the midpoint of each triangle one by one. Thereby, it sorts two-
dimensional objects in a one-dimensional fashion. As Behrens and Bader states:

“It can be shown that neighborhood relations in the mesh are preserved to a large extent

on the curve. In other words, if elements are neighbors in the mesh, they are also most

likely to be close to each other in the consecutive sequence of the SFC.”

– Behrens and Bader [21]

Consequently, spatially close triangles are likely to be close in the maintained Sierpinski list.
It is bene�cial for modern CPUs if consecutive memory accesses are close together in the

address space of the memory. Since all operations of EikMesh are local, their execution can be
improved on cache-sensitive hardware, like CPUs, by placing neighboring mesh elements close
in memory. Like pearls on a string, I order these mesh elements along the Sierpinski curve in
the main memory. Since the ordering is mapped into the hardware memory, one bene�ts from
the cache-e�ect: in short, if a mesh element is accessed, a whole cache-line is loaded from the
main memory into the much more e�cient cache. Therefore, accessing another mesh element
that is part of the cache-line does not require this memory transfer; hence, it is much faster. If the
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(i) depth 1 (ii) depth 2 (iii) depth 3

(iv) depth 4 (v) depth 5 (vi) depth 6

Figure 8.16: Recursive construction of the Sierpinski list indicated by the green arrows and the
orange path. The blue arrows indicate elements of the Sierpinski list of the next depth. For each
consecutive recursion depth, the orientation of the Sierpinski list changes.

CPU has to fetch a cache line, it might run out of work and stall while waiting for the slow main
memory. Stalls due to cache misses delay potential computation since modern CPUs can execute
hundreds of instructions in the time taken to fetch a single cache line from the main memory.
The performance of algorithms, which successively access spatially close mesh elements bene�ts
this memory arrangement. Many algorithms, such as numerical eikonal solvers, which I discuss
in Chapter 9, fall into this category. In the following, I describe the construction of the Sierpinski
list based on the doubly-connected edge list (DCEL).

I do not maintain a list of triangles but a list of longest (half-)edges of the respective triangles.
After splitting the square containing Ω, the Sierpinski list contains two half-edges. In Fig. 8.16 list
elements are represented by purple arrows. Note that the arrows’ orientation in Fig. 8.16 indicate
the order of the elements in the Sierpinski list, which is di�erent from the orientation of the actual
half-edge. To di�erentiate, I call these arrows Sierpinski edges.

After splitting a half-edge eh , it is replaced by eh,prev =Previous(eh) and eh,next =Next(eh) in the
Sierpinski list. Figure 8.16 shows these half-edges as blue arrows. The orientation of half-edges is
counterclockwise, but in the case of a Sierpinski edge, it changes back and forth. In Fig. 8.16i it is
counterclockwise, in Fig. 8.16ii clockwise, changing back to counterclockwise in Fig. 8.16iii, and
so on. This orientation gives the order in which the split half-edge is replaced, that is, either by
eh,prev, eh,next or eh,next, eh,prev. Therefore, I also maintain a mapping that gives the orientation of
the Sierpinski edges of the respective half-edge.

During the splitting process, I ensure that the triangulation remains conforming – a split of
a half-edge always results in the split of its twin. The only topological requirement is that both

142



8.6 Element size function

(i) initial mesh (ii) �nal result

(iii) initial mesh (iv) �nal result

Figure 8.17: The ordering of triangles according to the Sierpinski list: colors code the index of the
triangle in the list. For the initial mesh T0 the Sierpinski list increases the chance that triangles,
which are spatially close, are also close in memory (i). This property remains for the �nal mesh
(ii). A partition (iii) - (iv) can be constructed by splitting the Sierpinski list.

triangles participating in the split have the same size. Therefore, these splits are local opera-
tions that can be processed in parallel. Furthermore, splitting multiple di�erent sized triangles in
parallel is possible. In Fig. 8.16vi the resulting mesh consists of triangles of di�erent sizes.

After the re�nement has �nished, EikMesh inserts constrained line-segments as described in
Section 8.3. This requires extra edge splits and the four newly generated child triangles replace
their parents in the Sierpinski list.

After this process has �nished, all mesh elements are sorted according to the constructed list
of triangles. Fig. 8.17i displays an initial mesh T0 where triangles are colored according to their
order in the Sierpinski list. Because EikMesh displaces vertices and changes the topology, trian-
gles that are neighbors in the main memory might no longer share a common edge. But since
most triangles of the initial mesh are well-shaped, only a few topological changes are required.
Therefore, most of the neighboring relationships de�ned by the Sierpinski list are either invari-
ant or two consecutive triangles contained in the list are still spatially close together, compare
Fig. 8.17ii.

If we store all information necessary to compute the next position of an agent on the mesh
elements, a distributed implementation is possible for many models. Such decomposition enables
distributed memory parallelization for various problems, including pedestrian simulations. For
future work, workload distributing is a source for acceleration since we can use more processors
and, therefore, potentially achieve run times for large-scale simulations. One such decomposition
results from splitting the Sierpinski list into p equally sized sub-lists, where p is the number of
processors available, compare Fig. 8.17iv.
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8.6 Element size function

Like many other meshing algorithms, EikMesh expects an element size function h, which con-
trols the localized mesh resolution. More precisely, h(x) is the (desired) edge length for elements
at x ∈ Ω. This function incorporates sizing constraints imposed by two sources: the user (or
application) and the geometry of the meshed domain Ω. The application might require a certain
mesh resolution at important areas. At the same time, a narrow geometry imposes small elements
to be accurately represented. For now, I assume the user-speci�c requirements are speci�ed by
an element size function hu . Later, in Section 9.4, I come back to this topic. hΩ is the element size
function imposing geometric constraints. Overall, an element size function h must satisfy

h(x) ≤ hΩ (x) ∧ h(x) ≤ hu (x) (8.24)

for all x ∈ Ω. To construct h we require

(1) a user/application de�ned element size function hu ,

(2) an element size function which captures all geometric constrains hΩ,

(3) and a construction method.

In this section, I describe the construction of hΩ and h. I assume hu and the domain Ω is given.

8.6.1 The local feature size

The curvature of Ω and the so-called local feature size lfs imposes geometric size constraints.
The local feature size de�ned by Ruppert captures local thickness and separation of geometric
objects. It is de�ned for planar straight-line graphs and thus does not consider curved objects.

De�nition 8.3 (local feature size of a planar straight-line graph [241]). The local feature size

lfsP : R2 → R of a planar straight-line graph P is the radius lfsP (x) of the smallest circle centered
at x which intersects any two disjoint mesh vertices or line-segments.

Another general de�nition that captures local thickness, separation, and curvature was later
introduced by Amenta and Bern [14]. They de�ned the local feature size of a manifold at x to
be the distance from x to the manifold’s medial axis. To extrapolate this function to the interior
Alliez et al. [13] incorporate the distance function dΩ into its de�nition.

De�nition 8.4 (local feature size of a manifold). Let Ω be some manifold and SΩ its medial axis.
Then its local feature size lfsΩ : R2 → R for any point x ∈ R2 is de�ned by

lfsΩ (x) = |dΩ (x) | + d (x, SΩ ), (8.25)

where d (x, SΩ ) is the distance between x and the medial axis SΩ.

In the following, I describe algorithms in order to compute the local feature size for a manifold
and a planar straight-line graph. Since for urban environments or buildings, curved objects are
either not present or approximated by multiple line-segments, I focus on lfsP .
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Local feature size for arbitrary objects

Interestingly, one way to compute the local feature size for arbitrary objects is to solving the
eikonal equation twice. The idea is that the medial axis of Ω is given by the singularity points
of geodesic distance from ∂Ω to any point in Ω. Rumpf and Telea [240] described a procedure to
�nd these singularity points, and this concept was also used by Koko [164]. In the �rst step, the
authors of [240] solve the following equation

‖Φ∂Ω (x)‖ = 1,
∀x ∈ ∂Ω : Φ∂Ω (x) = 0.

(8.26)

Φ∂Ω (x) gives the geodesic distance between x and the closest of the boundary ∂Ω and therefore,
replaces |dΩ (x) | in Eq. (8.25) of De�nition 8.4. In the second step one can construct an approxi-
mation of the medial axis SΩ by

SΩ =
{
x ∈ Ω | ∀y ∈ Bϵ (x) : Φ∂Ω (x) ≥ Φ∂Ω (y)} , (8.27)

whereBϵ (x) is a ball around x of some small radius ϵ . The solution of the second eikonal equation

‖ΦSΩ (x)‖ = 1,
∀x ∈ SΩ : ΦSΩ (x) = 0

(8.28)

computes the geodesic distance from any point x to the medial axis SΩ. Therefore, one can replace
d (x, SΩ ) by ΦSΩ (x) in Eq. (8.25). For a more detailed description of �nding a good approximations
of SΩ after solving Eq. (8.26), I refer to [240].

Local feature size for planar straight-line graphs

I compute the local feature size of a domain de�ned by a planar straight-line graph. To do so, I use
Ruppert’s algorithm, see Section 6.5.4. As observed by Pav and Walkington [218], Ruppert devel-
oped not only a Delaunay-based meshing algorithm but a method to compute an approximation
of the local feature size of a planar straight-line graph. Theorem 8.1 gives the connection.

Theorem 8.1 (local feature size of a planar straight-line graph [218]). Given any planar straight-
line graph P, then Ruppert(P) terminates and upon termination for any vertex v of the resulting

triangulation

1
2 lfsP (v) ≤ min

e ∈ E
e = {v,u}

‖v − u‖ ≤ √2 lfsP (v) (8.29)

holds.

It states that the edge length of the shortest edge incident to the vertex v is a good estimation
for the local feature size at v. Therefore, in order to compute a good approximation of lfsP for a
planar straight-line graph P, I construct a background mesh using Ruppert(P). Then

min
e ∈ E

e = {v,u}
‖v − u‖ · 1√

2
(8.30)
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Figure 8.18: Quality of a isosceles triangle τ depending on the length of its legs c (i) and ∇h = δ
(ii): the length of the base is �xed at 1 while the length of c varies. ρ1 drops below 0.9 for c < 0.75
or c > 1.5 . For c = b/2 = 1/2, τ is degenerated (i). If δ ≥ 2, the construction of an isosceles
triangle becomes impossible. The quality of τ based on δ is depicted in (ii).

is a good approximation for lfsP (v), where v is an arbitrary vertex of the background mesh. I use
the same values for hΩ (v) because it is also a good approximation for hΩ. In order to compute
values for arbitrary points x, I use the barycentric interpolation for the triangle τ containing x.
Note that �nding τ requires a point location (see Section 6.7), but the location is fast, because
background meshes are coarse.

8.6.2 δ-Lipschitz element size function

Good element size functions balance coarseness and quality of the mesh and, therefore, two di-
vergent requirements. If a certain quality has to be reached, it is essential to limit the gradient
of h but not too much to keep the element number low. Let me illustrate this by a simple model,
which I use to estimate this limit δ :

let τ be an isosceles triangle, b = 1 be the length of its base, and c be the length of its legs.
If h is constant, c should approximately be equal to b resulting in a well-shaped triangle τ . If
h is not constant and c increases or decreases, the quality of τ drops. Figure 8.18i shows the
quality of τ depending on the length of c . For this model, achieving a quality ρ1(τ ) ≥ 0.9 implies
0.75 ≤ c ≤ 1.5. In the following, I connect c to an actual edge length function h.

Let xb , xc be the midpoint of the base and the left leg of τ . First we �x h(xb ) = 1. Furthermore,
let us assume h is linear (and δ -Lipschitz), that is,

∀x : ∇h(x) = δ for some δ > 0. (8.31)

These requirements imply
h(x) = 1 + ‖x − xb ‖ · δ . (8.32)

Because the triangle τ is isosceles, ‖xc − xb ‖ is equal to c/2 and we get

h(xc ) = 1 + c/2 · δ . (8.33)
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Assuming h(xc ) = c and solving for c gives

c =
2

2 − δ . (8.34)

Substituting 2/(2 − δ ) for c in the de�nition of ρ1 gives

ρ1(δ ) = −1
4 (δ − 2) (δ + 2) (8.35)

and solving for δ leads to
δ1(ρ) = 2

√
1 − ρ. (8.36)

Note that δ ≥ 2 makes the construction of the isosceles triangle impossible because h(xc ) grows
faster than c – in other words, we ask for h(xc ) > c which is a contradiction. The described
model is optimistic, because it disregards all geometric constraints. Consequently, if one chooses
δ = δ1(0.95) ≈ 0.45 one expects the quality ρ1 of the resulting mesh to be at most 0.95. I propose
that h should be δ -Lipschitz for

δ1(0.98) ≤ δ ≤ δ1(0.90) ⇒ 0.28 ≤ δ ≤ 0.63. (8.37)

Remember, h combines both geometric constraints (hΩ) and constraints de�ned by the user/ap-
plication (hu).

Aside fromh to be linear and δ -Lipschitz, I needh to be de�ned not only for the meshed domain
Ω but for the whole Euclidean space. During the meshing process, points move outside of Ω.
This requirement ensures that we can deal with these outside points. The following de�nition
emerges.

De�nition 8.5 (element size function). A function h : R2 → R+ is an element size function if h
is stepwise linear and δ -Lipschitz, that is, for all xi , xj ∈ R2

h(xj ) ≤ h(xi ) + δ · ‖xi − xj ‖ (8.38)

holds, where δ is some constant.

I already used and extended this de�nition to edges of a mesh E such that h(e ) = h(xe ) with
e = {v1, v2} ∈ E, xe = (v1 + v2)/2. As a side note, lfsP as well as lfsΩ are 1-Lipschitz.

To limit the gradient of h, I propose a construction of an ‘almost’ δ -Lipschitz element size
function h, that is,

h(vj ) ≤ h(vi ) + δ · dT (vi , vj ), (8.39)
where dT (vi , vj ) is the length of the shortest path between vi and vj on the mesh T . Since

dT (vi , vj ) ≥ ‖vi − vj ‖, (8.40)

it makes sense to choose δ to be slightly smaller than the suggested values above. However, if vi
is adjacent to vj , Eq. (8.40) matches Eq. (8.38) because the nearest-neighbor graph is a subgraph of
the Delaunay triangulation. To ensure h to be approximately δ -Lipschitz, I propose Algorithm 13
for its construction. It uses a background mesh T constructed by Ruppert(P) and an element
size function hu de�ned by the user. The heapH contains tuples (hv, v) where hv represents h(v)
and v is a vertex of the background mesh. H is sorted by hv and H .min() (Line 7) returns the
smallest element inH .
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Algorithm 13: ElementSizeConstruction
Input: background mesh T , user-de�ned element size function hu , a constant δ
Output: δ -Liptschitz element size function h

1 foreach v ∈ T do

2 hv ← hu (v);
3 foreach w adjacent to v do

4 hv ← min{hv, ‖v −w‖/
√

2};
5 H ← H ∪ {(hv, v)};
6 whileH , ∅ do
7 (hv, v) ← H .min();
8 H ← H \ {(hv, v)};
9 foreach w adjacent to v do

10 H ← H \ {(hw,w)};
11 hw ← min {hw,hv + δ · ‖v −w‖};
12 H ← H ∪ {(hw,w)};
13 ∀v ∈ T : h(v) ← hv;
14 return h;

Lemma 8.1 (element size construction termination). ElementSizeConstruction terminates af-

ter n steps and requires O (n log(n)) time, where n is the number of vertices of T .

Proof. Since after each iteration H contains one less element, ElementSizeConstruction ter-
minates after n steps, where n is the number of vertices of T . Updating an element ofH requires
O (log(n)) time. Therefore, the overall construction requires O (n · log(n)) time. �

Lemma 8.2 (element size construction). ElementSizeConstruction ensures that for

∀v,w : hw ≤ hv + δ · dT (w, v) (8.41)

holds.

Proof. I prove the following invariant: let v,w be any two vertices that have already been removed
from the heap, then

hw ≤ hv + δ · dT (w, v). (8.42)

After ElementSizeConstruction terminates, the heap is empty. Therefore, we can prove the
statement if we prove this invariant.

After removing the �rst element, this equation is satis�ed. Now let us assume the invariant
holds for some amount of vertices, and we remove another one; let’s say v. Let us pick some
arbitrary vertex w that already got removed. And let us look at the shortest path v, u1, . . . , uk ,w
between v and w with respect to T . Since v was removed after w, we get

hw ≤ hv (8.43)
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and
hw ≤ hv + δ · dT (w, v) (8.44)

follows.
Let us now assume all vertices u1, . . . , uk on the shortest path have already been removed from

the heap. In that case the invariant implies
hu1 ≤ hw + δ · dT (u1,w) (8.45)

and by construction (Line 11 in Algorithm 13)
hv ≤ hu1 + δ · ‖v − u1‖ = hu1 + δ · dT (v, u1) (8.46)

holds. By substituting hu1 in Eq. (8.46)
hv ≤ hw + δ · dT (u1,w) + δ · dT (v, u1) = hw + dT (v,w) (8.47)

follows.
Now let us assume that ui is some vertex such that u1, . . . , ui already got removed from the

heap. Since w and ui have already been removed from the heap, we can use the invariant. There-
fore,

hui ≤ hw + δ · dT (ui ,w) (8.48)
follows. Furthermore, by using the above argument, we get

hv ≤ hui + δ · dT (v, ui ). (8.49)
By substituting hui in Eq. (8.49)

hv ≤ hw + δ · dT (ui ,w) + δ · dT (v, ui ) = hw + dT (v,w) (8.50)
follows.

Finally, let us assume that u1 has not already been removed. Then, we can traverse the path
backwards from w to v and pick uj such that uk , . . . , uj−1 already have been removed from the
heap. In this case,

hv ≤ huj (8.51)
follows. Furthermore, by the above argument

huj ≤ hw + δ · dT (uj ,w) (8.52)
and we can substitute again to get

hv ≤ huj ≤ hw + δ · dT (uj ,w)

≤ hw + δ · dT (uj ,w) + δ · dT (uj , v) = hw + δ · dT (v,w).
(8.53)

Therefore, for all cases the invariant de�ned by Eq. (8.42) follows. �

We could replace the iteration over adjacent vertices (Line 9, Algorithm 13) with an iteration
over all vertices. This brute force approach would return a truly δ -Lipschitz function. How-
ever, we would introduce a quadratic time complexity. Figure 8.19 depicts the construction of an
element size function for an urban environment given by a planar straight-line graph P. The con-
tour plot in Fig. 8.19ii shows the local feature size constructed by using Ruppert(P). Figure 8.19ii
shows the gradient limited element size function after applying Algorithm 13 with hu (x) = ∞
and δ = 0.4. Applying EikMesh using the constructed element size function generates the mesh
depicted in Fig. 8.19iv.
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(i) (ii) (iii) (iv)

Figure 8.19: The local feature size lfsP of the planar straight-line graph from Section 6.4: the
background mesh (i) consists of 193 vertices. The approximation of the local feature size (ii) is
limited by ElementSizeConstruction (iii). On the right (iv), the results of EikMesh is displayed
using the limited version of the element size function.

8.7 Distance function

The last ingredient worth discussing is the signed distance function d . During the execution
of EikMesh, dΩ has to be evaluated many times for the following reasons: (1) to spot triangles
outside of the domain, (2) to compute ∇dΩ, and if the element size function h depends on dΩ,
(3) we also have to evaluate dΩ whenever h is evaluated. If we are not careful, dΩ becomes the
computational bottleneck of the meshing algorithm. Therefore, dΩ must be computed e�ciently
while maintaining su�cient accuracy. In general, dΩ can be de�ned by

dΩ (x) = signΩ (x) · min
y ∈ ∂Ω

‖x − y‖ (8.54)

with

signΩ (x) =



−1, if x ∈ Ω
+1, otherwise.

(8.55)

LetP be a segment-bounded planar straight-line graph consisting of the segment-bounding poly-
gon P0 and holes P1, . . . , Pk . Furthermore, let dPi be the signed distance function of the polygon
Pi , then

dΩ (x) = max
{
dP0 (x),− min

i = 1,...k
dPi (x)

}
(8.56)

is the implicit representation of the domain. Algorithmically, one could evaluatedΩ by evaluating
all distance functionsdPi whenever a distance has to be computed. In practice, this naive approach
is computationally expensive, especially for complex geometries. If the element size function h
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(i) (ii)

Figure 8.20: Approximation of dΩ (Fig. 8.19iv) of the planar straight-line graph from Section 6.4:
the background mesh (white lines) consist of 193 vertices. The black lines highlight the level
set dΩ = 0. Blue colors indicate a positive and red colors a negative distance. The brute force
approximation (i) is more accurate than using the Fast Marching Method (ii), but for all positions
near the boundary ∂Ω, both methods achieve accurate results.

depends on dΩ, O ( |Ek |) distance evaluations are required for each EikMesh-iteration. Therefore,
the distance computation becomes the dominant factor with respect to the run time of EikMesh
(and DistMesh).

EikMesh evaluates ∇dΩ only for boundary vertices. For all other required evaluations of dΩ,
accuracy is less important. Therefore, I evaluatedΩ for all vertices of the coarse background mesh
introduced in the previous section. Furthermore, I use the same interpolation to get approximated
values for points enclosed by some triangle τ of the background mesh. The approximated signed
distance function for an urban environment is depicted in Fig. 8.20i. This brute force approach
still requires n evaluations of dΩ, where n is the number of vertices of the background mesh.

There are many ways to reduce the required work further. One way is to sort geometric objects
like points, line-segments, and polygons in some spatial data structures such as an r-tree [109].
These data structures reduce the number of polygons, which we have to consider. Furthermore,
they simplify the evaluation of dΩ.

Another approach is to reduce the problem to the eikonal equation. Because constrained edges
of the background mesh represent all line-segments of the planar straight-line graph, we can
identify all vertices v, for which

dΩ (v) = 0. (8.57)
These vertices are precisely the set of vertices present in the planar straight-line graph P and its
background mesh. LetV0 be this set. Then the solution Φ∂Ω (x) of the eikonal equation

‖Φ∂Ω (x)‖ = 1,
∀x ∈ ∂Ω : Φ∂Ω (x) = 0.

(8.58)

is equal to −dΩ (x) for x in Ω. If x < Ω, then Φ∂Ω (x) = dΩ (x) holds. One can compute an ap-
proximation by applying the FastMarchingMethod or some other method on the background
mesh, compare Section 9.3. In that case, the propagating wavefront starts atV0 and merge at the
medial axis of Ω. Figure 8.20ii depicts the approximation of Φ∂Ω using the previously constructed
background mesh. If one uses a very coarse background mesh, the approximation can be far o�.
In these cases, the brute force strategy is preferable.
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8.8 Examples and discussion

In this section, I show EikMesh’s ability to generate high-quality meshes for di�erent arti�cially
and practical domains – I investigate its capability experimentally. Furthermore, I compare Eik-
Mesh’s generated mesh and intermediate results to those generated by DistMesh introduced
in Chapter 7. Additionally, I use one speci�c example to compare run times between EikMesh
and DistMesh. I also want to emphasize that for the more complex geometries of this section,
DistMesh fails to construct a mesh that adheres to the domain boundary. Quality measurements
are based on the metrics introduced in Section 6.6. One of the arti�cial test domain is similar to
the one I used in Section 7.5, such that a comparison of both algorithms becomes possible. In
order to compare run times, I choose another arti�cial domain such that the performance costs
of evaluating dΩ and h are approximately the same for both algorithms.

I demonstrate the e�ectiveness and usability of EikMesh by using real-world domains, includ-
ing domains from the �eld of interest, that is, pedestrian simulations. For all meshes generated
by EikMesh, short boundary edges collapse as described in Section 8.4.2. I stick to λ1 = 0.1 and
λ2 = 0.4. To avoid long boundary edges, I use edge splits (see Section 8.4.1) and virtual edges (see
Section 8.4.1). Edges are split if ρ1(τ ) < 0.5.

Generated meshes are depicted in Figs. 8.21xii, 8.25 to 8.28, 8.29iii and 8.30. Note that Eik-
Mesh and DistMesh are implemented in Java using (double precision) standard �oating-point
arithmetic. For each depicted mesh, slide points and �x points are highlighted in blue and red,
respectively. Any other vertex is black.

(i) (ii) (iii) (iv) (v) (vi)

(vii) (viii) (ix) (x) (xi) (xii)

Figure 8.21: The immediate results of EikMesh: the recursive initialization phase (i)-(x), the
mesh after removing triangles outside Ω (xi), and after 150 iterations of the smoothing phase
have been executed (xii).

8.8.1 Quality comparison

In order to compare the meshes generated by EikMesh and DistMesh, I use the arti�cial domain
used in Section 7.5. The following distance function

dsub(x) = max {dcirc(x),−drect(x)} (8.59)
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Figure 8.22: Plots of the mean ρ1(Tk ), ρ2(Tk ) (i), minimal ρ1,min(Tk ), ρ2,min(Tk ) (ii), and maximum
quality ρ1,max(Tk ), ρ2,max(Tk ) (iii): solid lines represent qualities achieved by EikMesh. Dashed
lines represent qualities achieved by DistMesh. The mean quality ρ1 of the series of meshes
generated by EikMesh approaches 0.96, while the minimum quality stays above 0.48 for k ≥ 5
and above 0.69 for k ≥ 100.

de�nes the domain. It is a circle subtracted by a smaller square, compare Fig. 7.1. Furthermore, I
use a 0.2-Lipschitz element size function

h(x) = 0.05 + 0.2 · |dsub(x) | . (8.60)

h should lead to high-quality mesh for both, EikMesh and DistMesh. In order to guarantee
a fair comparison, I also make sure that both generated meshes consist of approximately the
same number of vertices. Additionally, I abandon any approximation of dΩ and h, and I use 150
improvement iterations. Figure 8.21 depicts immediate results of the initialization phase and the
�nal result of EikMesh.

After 10 recursive re�nement steps, EikMesh inserts four constrained line-segments and re-
moves all triangles outside of Ω. Inserted constraints hurt the quality of elements intersecting
with those constraints, compare Fig. 8.25i. After EikMesh removes elements outside of Ω, there
are some critical acute angles at the mesh boundary, that is, acute angles at vertices, which are
not �xed points. Those are eliminated by the strategy described in Section 8.2.2.

After 4 improvement iterations, EikMesh increases the minimal quality of the mesh signi�-
cantly, compare Fig. 8.25ii. Figure 8.25 displays the immediate results of the improvement phase.
I picked iteration steps equal to the example in Section 7.5 so that the reader can compare imme-
diate results between both meshing algorithms.

The minimal quality ρ1,min stays above 0.48 for all iterations k ≥ 5 and above 0.69 for all
iterations k ≥ 100. EikMesh achieves this improvement using the special treatment of boundary
elements discussed in Section 8.4. This can also be observed in Fig. 8.22ii. Maximal element
qualities are equal to 1, which is identical to the results of DistMesh. However, the mean qualities
ρ1, ρ2 stay above the quality values achieved by DistMesh, compare Fig. 8.22i. The convergence
is smoother and for almost all consecutive meshes Tk ,Tk+1

ρ1(Tk ) < ρ1(Tk+1) ∧ ρ2(Tk ) < ρ2(Tk+1) (8.61)

holds. As I discussed in Chapter 7, this is not true for DistMesh since qualities drop in between
two consecutive computation of the Delaunay triangulation, compare Fig. 8.22i.

153



Chapter 8 The EikMesh algorithm

0 0.2 0.4 0.6 0.8 1.0 1.2

ρ1

(i) EikMesh

0 0.2 0.4 0.6 0.8 1.0 1.2

ρ1

(ii) DistMesh

Figure 8.23: Plot of the series of estimation distributions ρ1, comparing EikMesh (i)
with DistMesh (ii): each distribution is estimated using a speci�c mesh Tk for k =

1, 2, 3, 4, 5, 10, 15, . . . , 145, 150. A darker curve indicate later iterations, i. e., larger k .

Comparing the series of estimation distributions depicted in Fig. 8.23 reveals that EikMesh
starts with a large number of elements τ that satisfy ρ1(τ ) ≈ 0.83. Most importantly, the peak
for EikMesh (Fig. 8.23i) is higher than the peak for DistMesh (Fig. 8.23ii). Consequently, the
proportion of high-quality elements is higher.

The plots of the series of estimation distributions displayed in Fig. 8.24 reveal a similar quality
progression during the improvement phase as we observed for DistMesh. However, the peak at
0.96 is higher than the one at 0.94 achieved by DistMesh, compare also Fig. 8.23. In addition to
the peak at 0.83 for ρ1(τ ),τ ∈ T0, we can also observe two peaks at 90◦ and 45◦. The second peak
is twice as high. This re�ects the new initialization phase of EikMesh. It generates congruent
triangle with angles equal to 45◦, 90◦ and 45◦. As desired, those two peaks merge step by step
into a single peak at 60◦. I conclude that EikMesh outperforms DistMesh for this example. The
algorithm is e�ective in eliminating low-quality boundary elements, and it converges fast and
smoothly. After 150 improvement iterations, the �nal mesh consists of overall better elements.
At any point in time, the mean quality for the respective mesh is greater than the one achieved
by DistMesh.
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ρ1
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0 0.2 0.4 0.6 0.8 1.0 1.2

ρ2
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(iii)

Figure 8.24: Series of estimation distributions ρ1 (i), ρ2 (ii) and θ (iii) achieved by EikMesh: each
distribution is estimated using a speci�c mesh Tk for k = 1, 2, 3, 4, 5, 10, 15, . . . , 145, 150. A darker
curve indicate later iterations, i. e., larger k .
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Figure 8.25: The intermediate results of the EikMesh algorithm after its initialization: for iter-
ation k = 0, 4, 7, 50, 100, 150 a histogram of qualities ρ1, ρ2 and the angles θ of each triangle of
Tk is displayed. The algorithm starts with an initial triangulation constructed by the recursive
re�nement technique (i). Points move around so that qualities are �rst harmonized at the bound-
ary (ii)-(iii) and increased for all internal triangles (ii)-(vi). Fix points are highlighted in red, slide
points in blue. Minimum, maximum and mean values are highlighted by a vertical black line.
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8.8.2 Generated meshes

Airfoil

The airfoil domain is a problem instance from the �eld of �uid dynamics. It represents the cross-
sectional shape of a wing, blade, or sail. Ω is represented by a planar straight-line graph generated
by the NACA 4 digit airfoil generator using 100 vertices. The tool can be found on the following
website:

http://airfoiltools.com/airfoil/naca4digit.

The mesh is generated by using the distance dΩ, which gives the distance to the polygon de�ning
the airfoil shape and

h(x) = 0.005 + |dΩ (x) | · 0.2. (8.62)

Additionally, the enclosing rectangle is de�ned by

{(−0.3,−0.4), (1.3,−0.4), (1.3, 0.4), (−0.3, 0.4)} . (8.63)

As expected, the mean quality (ρ1(T ) ≈ 0.96) is high, compare Fig. 8.26. The smallest angle of the
mesh (θ0 ≈ 29.15◦) is approximately 30 degrees apart from the optimal angle of 60 degrees. There
is some large angle (θ∞ ≈ 107.14), that can be found near the rectangular boundary. However,
most of the angle elements are approximately optimal.
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Figure 8.26: The mesh generated by EikMesh using an airfoil domain represented by a planar
straight-line graph P of 100 points: the input is P andh(x) = 0.005+ |dΩ (x) | ·0.2. The histograms
of ρ1, ρ2 and θ of the generated result are also displayed.
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Figure 8.27: The mesh generated by EikMesh (ii) using a Delaunay triangulation of 100 random
points (i): EikMesh uses h(x) = 1.0. The histograms of ρ1, ρ2 and θ of the generated result are
also displayed.

Random Delaunay triangulation

The next example illustrates that EikMesh can also improve a given initial triangulation. In this
case, the initialization phase is skipped. Figure 8.27i depicts T0, which is the Delaunay triangu-
lation of 100 randomly chosen points uniformly distributed inside a 10 × 10 square. Each point
of the convex hull of T0 is marked as a �x point. Because the initialization phase of EikMesh is
essential for the resulting mesh resolution, the used edge length function

h(x) = 1.0 (8.64)

gives an edge length relative to the smallest current edge length. Only boundary vertices are
added due to the edge splitting of long boundary edges. During the improvement phase, 19
sliding vertices are inserted. They slide between two �xed points. Because there is no gradient
dependent point projection required, EikMesh works without a distance function dΩ. The mean
quality ρ1(T ) ≈ 0.97 of the generated mesh is surprisingly high.

This example also illustrates that we can improve the mesh quality for speci�c areas of a given
mesh. We can imagine that the random Delaunay triangulation is a part of a much larger mesh. If
the surrounding elements are of high quality, we can �x all vertices of the boundary of a subdo-
main. Disabling the splitting mechanism for boundary edges ensures that only the part we want
to improve will be changed. Combining this local improvement technique with a partition of the
mesh, such as the one presented in Section 8.5, leads to a distributed memory implementation
of EikMesh. Each processor can improve its assigned part of the partition in parallel without
worrying about the other parts. However, the improvement phase is hindered by the introduced
unwanted arti�cial constraints. To resolve the issue, one could use two or more distinct parti-
tions such that for any vertex or edge, at least for one partition the respective element is not
constrained.
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Supermarket

The meshed domain of a supermarket, depicted in Fig. 8.28, is the �rst example that relies on
the insertion of constrained line-segments (see Section 8.3.2). It is also a characteristic domain of
microscopic pedestrian simulations. Because of the narrow parts of the domain, triangles would
overlap with R2 \ Ω if we do not use explicit geometry information. Therefore, DistMesh fails
to mesh the domain if the element size close to the boundary is too large. It can even fail if h is
much smaller than the local feature size. I discussed this problem in Section 7.5. For this more
complex geometry, I approximate the distance function dΩ. The approximation is based on the
background mesh introduced in Sections 8.6 and 8.7. I choose a user-de�ned edge length function

hu (x) = 0.25 + 0.4 · |dΩ (x) | (8.65)

and the construction of h described in Section 8.6. Other than DistMesh, EikMesh is able to
generate a much more coarse mesh. Using the given edge length function ρ1(T ) ≈ 0.96 is almost
optimal.

Urban environment

The last example that illustrates the capability of EikMesh is a large-scale domain of a micro-
scopic pedestrian simulation. It is a real-world urban environment (a part of Kaiserslautern in
Germany) extracted from Open Street Maps and converted to a planar straight-line graph. For
this example, I make use of the background mesh depicted in Figs. 8.29i and 8.29ii. The domain
consists of streets surrounded by buildings and narrow passages represented by concave poly-
gons, but there is also much open space. The edge length function is constructed by Algorithm 13
introduced in Section 8.6 using

hu (x) = ∞ (8.66)

and δ = 0.4. Therefore, I do not de�ne any user speci�c requirements but limit the gradient of h
such that

max
x∈R2
|∇h(x) | ≈ 0.4. (8.67)

The mean quality ρ1(T ) of the result T is approximately 0.92. Due to the geometry’s complexity,
ρ1(T ) is worse than the value 0.96 estimated by the established optimistic model (see Section 8.6).
However, the value is still acceptable. As expected, open areas lead to a coarse mesh resolution
and narrow passages to the opposite. Fix points, constrained line-segments, and slide points
ensure perfect alignment.
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Figure 8.28: A meshed supermarket domain represented by a planar straight-line graph: the
mesh is generated by EikMesh. Its histograms of ρ1, ρ2 and θ are also depicted. A user speci�c
edge length function hu (x) = 0.25 + 0.4 · |dΩ (x) | is used and combined by the local feature size
lfs and the gradient limiting procedure presented in Section 8.6.
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(i) (ii) (iii)
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Figure 8.29: A meshed large-scale urban environment: the mesh generated by EikMesh for a
large-scale scenario (iii) and its histograms of ρ1, ρ2 and θ . dΩ (i) and h (ii) is approximated by
using a coarse background mesh generated by Ruppert. No user speci�c edge length function is
de�ned.

8.8.3 Execution time comparison

In the last part of this section, I compare the execution times of EikMesh with DistMesh. To do
so, I choose a simple geometry de�ned by

dΩ (x) = abs(0.7 − ‖x ‖) − 0.3 (8.68)

and edge length functions

h(x) = hmin + 0.4 ·max {−dΩ (x), 0} (8.69)

with 0.2 ≥ hmin ≥ 0.02. I use 100 improvement iterations. The exact speedup factors of such
comparisons are not very meaningful, but it reveals the transfer of the reduced theoretical com-
plexity to practical examples. Both algorithms are executed on my default workstation: Intel
i5-7400 Quad-Core (3.50 GHz), 8 GB DDR4 SDRAM, and a graphics card NVIDIA GeForce GTX
1050 Ti / 4 GB GDDR5 VRAM. I use the Java version 11.0.2.
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If we look at the qualities achieved by EikMesh, the �rst notable observation is that the mean
quality ρ1 is almost independent of hmin. If the set of vertices is too small (because hmin is too
large) the quality is below 0.95, but for |V | ≥ 2500, the quality is approximately the same for all
generated meshes, compare Fig. 8.30vi.

For DistMesh, the quality decreases with an increasing number of vertices which seems coun-
terintuitive. However, this can be explained by the �xed number of improvement iterations. In
my observation, DistMesh also achieves higher qualities if one increases the number of vertices,
but it converges slower than EikMesh. For the tested examples, EikMesh achieves a similar
quality without increasing the number of vertices. Again EikMesh achieves better qualities and
far better minimum qualities, which stay above 0.5, compare Fig. 8.30vii.

The execution time of my EikMesh implementation is smaller than the execution time of my
DistMesh implementation, because the sequential part, the Delaunay triangulation computation,
is eliminated. Note that parallel algorithms for computing the Delaunay triangulation exist. Still,
non-recursive �ips (Section 8.2) can exploit parallelism without any complicated synchronization
mechanisms. Furthermore, its theoretical time complexity is O (n) instead of O (n log(n)), where
n is the number of vertices.

(i) |V | = 170 (ii) |V | = 470 (iii) |V | = 1161 (iv) |V | = 2719
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Figure 8.30: Performance comparison between EikMesh and DistMesh: di�erent edge length
functions lead to di�erent meshes: the meshes displayed are generated by EikMesh (i)-(iv). Due
to the parallel edge �ip method, EikMesh runs faster than DistMesh (v). The quality ρ1 achieved
by EikMesh is approximately 0.95 and independent from the number of vertices (vi). For Dist-
Mesh, the quality ρ1 slightly decreases with an increasing number of vertices. ρ1,min achieved
by EikMesh, stays above 0.5 and seems to be independent from the number of vertices. For
DistMesh, there is at least one very poorly shaped element for almost any generated mesh.
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8.9 Source code

The source code for all discussed algorithms and data structures is part of the open-source sim-
ulation framework Vadere [294]. More speci�cally, it is contained in the independent subproject
called VadereMeshing. The source code of EikMesh can be found in the eikmesh pack-
age. GenEikMesh.java realizes the improvement phase of EikMesh while GenUniformRe-
finementTriangulatorSFC.java realizes its initialization. EdgeLengthFunctionAp-
prox.java implements the element size function construction and DistanceFunctionAp-
proxBF.java the construction of the distance function dΩ.

8.10 Summary

In this chapter, I described EikMesh and all its ingredients. Since it is based on the forced-based
smoothing technique of DistMesh, this chapter relied on the previous description of DistMesh.

In Section 8.1, I introduced local mesh operations that are executed by EikMesh. These oper-
ations realize simple topological changes that in�uence a small neighborhood of mesh elements.

In the next section, I showed how a non-recursive edge �ip method replaces the computation of
the Delaunay triangulation enforcing a slightly constrained vertex movement. This replacement
decreases the time complexity of an improvement iteration by a factor of O (log(n)).

I also explained why explicit geometry information such as �x points and constrained line-
segments is bene�cial for both meshing algorithms. Section 8.3 shows this by an example and
explains how particular boundary points called slide points can replace the gradient dependent
projection. These slide points guarantee boundary adherence, which is an important property of
the constructed mesh, especially in the context of microscopic pedestrian dynamics.

A signi�cant drawback of DistMesh, which I resolved, is the appearance of poorly shaped
elements near the boundary. In Section 8.4, I described special local operations for boundary
elements. They keep the quality of boundary elements high. I proposed di�erent strategies which
emerged from the logic of truss structure analogy of DistMesh.

In Section 8.5, I concluded the description of the core algorithm by presenting a new initializa-
tion phase. This phase generates the initial triangulation deterministically. A given triangulation
consisting of two triangles is re�ned recursively. This strategy leads to a lot of high-quality
elements and, therefore, generates a good starting point of the improvement procedure. Further-
more, triangles are spatially ordered based on the Sierpinski curve. This ordering is exploited
so that objects of the data structure, which represent spatially close mesh elements, are likely
to be closely aligned in the main memory. This property reduces the number of CPU stalls and
translates to a shorter execution time for many algorithms executed on the mesh.

The following two sections discussed two of EikMesh’s required inputs: the element size func-
tion and the distance function. I discussed the property of a desirable element size function and
how one can compute such a function. I focused the discussion of the distance function on a pla-
nar straight-line graph (PLSG), because domains used in the context of microscopic pedestrian
simulations can all be represented by PLSGs. Because the evaluation of the distance function
dΩ is a major computational bottleneck for the EikMesh algorithm, I discussed two strategies to
approximate dΩ on a coarse background mesh in Section 8.7.
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8.10 Summary

In Section 8.8, I presented di�erent generated meshes and compared the quality of their ele-
ments. Some discussed domains are arti�cial, others real-world examples from the �eld of �uid
and pedestrian dynamics. I used the arti�cial examples to compare EikMesh with DistMesh. In
the �rst one, I compared qualities, in the second one execution times. The other examples show
EikMesh in practices. Each generated mesh consists of high-quality elements. Mainly the min-
imum quality stays above 0.4 for all examples, which illustrates the e�ectiveness of the special
treatment of boundary elements. Furthermore, elements align perfectly with the boundary. I also
gave an outlook into a distributed memory version of EikMesh by showing that it can be used
to improve only small portions of a given mesh.
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CHAPTER 9
Navigation �eld computation

“The secret for harvesting from existence the greatest fruitfulness and the greatest enjoy-

ment is: to live dangerously!”

– Friedrich Nietzsche

Computation of navigation �elds demands space discretization. A large number of discretization
points lead to high computational costs. Usually, in an o�ine setting all input parameters are
chosen before the simulation starts and they never change during the run. In that case, one can
compute static navigation �elds before the simulation starts, and their computational cost is less
critical. However, in an online setting, where one feeds the running simulation with observations
from the real world, new static �elds may be required during a run. Consequently, long compu-
tation times would slow down the whole simulation. For dynamic navigation �elds, a frequent
re-computation of navigation �elds demands e�cient computations for a series of eikonal equa-
tions. Using a �ne Cartesian grid for space discretization, the computational burden becomes
intolerable for large domains and a real-time simulation impossible.

I identi�ed two paths to accelerate the computation of navigation �elds. The �rst one is to �nd
a discretization of the spatial domain that requires a small number of vertices and gives a good
approximation of the eikonal equation’s solution. For a reasonable element size function hu , Eik-
Mesh provides a high-quality unstructured mesh as a starting point. In Section 9.4.4, I establish
a connection between hu and the curvature of the solution of the eikonal equation. By using this
connection, I introduce a new iterative eikonal solver that starts on a coarse mesh, which gets
successively re�ned where needed.

The second path leads to a faster computation of the solution given a speci�c mesh. One
can either choose the best possible solver or, if possible, introduce a new one. In Section 9.5,
I introduce the InformedFastIterativeMethod that is specialized to solve a series of similar
eikonal equations ΦΓ,0,ΦΓ,1, . . . ,ΦΓ,m, where two consecutive solutions ΦΓ,i ,ΦΓ,i+1 are similar. It
is, therefore, suitable to compute dynamic navigation �elds.

These paths require a deep understanding of the solving process on an algorithmic level. There-
fore, I start this chapter with the propagating wave analogy and a description of upwind �nite

di�erence schemes for Cartesian grids and unstructured meshes. The review in Section 9.3 com-
pletes the discussion of the algorithmic process. It includes ideas, strengths, and weaknesses of
existing numerical methods.
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9.1 The wavefront propagation analogy

In Section 3.3, I introduced the eikonal equation

‖∇ΦΓ (x)‖ = f (x)−1, x ∈ Ω
ΦΓ (x) = 0, x ∈ Γ
f (x) ≥ 0, x ∈ Ω,

(9.1)

which is a non-linear boundary value problem for a partial di�erential equation. Applications
of the eikonal equation are numerous. It occurs in the �eld of computer graphics, image pro-
cessing, computational geometry, physics, robotics, and medical image analysis. For example,
in Section 8.6 and Section 8.7, I described how one can compute the local feature size for arbi-
trary geometries and the distance function dΩ using the eikonal equation. In physics, the eikonal
equation models wavefront propagation.

The eikonal equation solution gives us the travel time ΦΓ of a wavefront propagating over the
travel speed �eld f . For the particular case f = 1, the travel timeΦΓ (x) is identical to the geodesic
distance from x to Γ. Because information �ows outwards following ∇ΦΓ on the optimal path,
larger travel times depend on smaller ones. Consider, for example, the one-dimensional case with
Ω = [−1, 1] , Γ = {0} and the one-dimensional eikonal equation

√
ΦΓ (x )2 = f (x )−1. (9.2)

Here information �ows from 0 towards 1 and −1, compare Fig. 9.1i. Therefore, travel times ΦΓ (x )
for x > 0 are independent from ΦΓ (x ) for x < 0. Regardless of the travel speed function f , these
values (ΦΓ (x ) for x > 0) depend on travel times of the left neighborhood, that is,

ΦΓ (x ) = lim
h→0+

(
ΦΓ (x − h) + h

f (x − h)
)
. (9.3)

Therefore, we can split the wavefront into two independent parts. In higher dimensions multiple
independent wave parts can be identi�ed.

−1 +1

1

x

ΦΓ (x )

0
(i)

ΦΓ = t2

Ω

ΦΓ = t1

(ii)

Figure 9.1: Wave propagation in one-dimensions with f = 1 (i), and two-dimensions (ii). One
can partition the wavefront into multiple independent parts indicated by the gray cuts.
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9.2 Finite di�erence schemes

For a two-dimensional case, let us imagine throwing a stone into a lake. Let’s say the stone hits
the water at t0 = 0 seconds. The wave created by the impact of the stone propagates outwards.
Now let us pause the propagation at two speci�c moments t1, t2 with t1 < t2. Let us partition the
wavefront at t2, that is,

{x ∈ Ω | ΦΓ (x) = t2} (9.4)

into multiple connected parts. LetC2 be some connected part of this partition. Clearly, the travel
time ΦΓ (x) is smaller than t2 for all positions x the wave already passed. Furthermore, for each
connected set of points of the partition C2, we can �nd a corresponding connected set of points
C1 of the wavefront at t1 so that its propagation (information �ow) covers C2. We only have
to backtrack the propagation. Consequently, we could compute the travel time for points in C2
using only a portion of the information available at t1. A sketch of the example is illustrated in
Fig. 9.1ii.

This dependency relation is the basis of most e�cient solvers. They try to emulate the (parallel)
wave propagation, exploit the information �ow, and introduce parallelism based on an indepen-
dent relation.

9.2 Finite di�erence schemes

Numerical methods utilize upwind �nite di�erence schemes to compute an approximation of eikonal
equation’s viscosity solution. Consider the one-dimensional case above.

9.2.1 Cartesian grid

In order to compute an approximation of the solution of Eq. (9.2), we partition the x-axis into a
collection of grid points xi = (∆x · i ) with i = −m,−(m−1), . . . , (m−1),m such that (m ·∆x ) = 1.
By using a Taylor expansion (neglecting the remainder), we obtain the following system:

ϕΓ (0) = 0
ϕΓ (xi+1) − ϕΓ (xi )

∆x
= f (xi )

−1 for i ≥ 0

ϕΓ (xi−1) − ϕΓ (xi )
∆x

= f (xi )
−1 for i ≤ 0,

(9.5)

where ϕΓ (xi ) approximates ΦΓ (xi ). This upwind scheme emulates the �ow of information. ϕΓ (x1)
can be computed if ϕΓ (x0) = ΦΓ (0) is known, and ϕΓ (x2) can be computed if we know ϕΓ (x1) and
so on. In one dimension, the wavefront can only approach xi from one of two possible directions.
The system above incorporates our knowledge about the direction. If we neglect this knowledge,
we can solve for ϕΓ (xi ) by computing the travel time assuming the front approaches xi from left
and right. The minimum gives us the correct answer:

ϕΓ (xi ) = min
{
ϕΓ (xi−1) +

∆x

f (xi )
,ϕΓ (xi+1) +

∆x

f (xi )

}
. (9.6)
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Therefore, the larger (approximated) gradient de�nes the value ϕΓ (xi ):

max
{
ϕΓ (xi ) − ϕΓ (xi−1)

∆x
,
ϕΓ (xi ) − ϕΓ (xi+1)

∆x

}2
=

1
f (xi,j )2

. (9.7)

In the two-dimensional case, a similar construction can be used: let xi,j = (i∆x , j∆y) with
∆x = ∆y be the points of a Cartesian grid, then we can derive an upwind-di�erence scheme that
approximates partial derivatives of ΦΓ (xi,j ) in two dimensions using a similar Taylor expansion:

∂ΦΓ (xi,j )
∂x

≈ D±xi,j x =
ϕΓ (xi±1,j ) − ϕΓ (xi,j )

±∆x
∂ΦΓ (xi,j )
∂y

≈ D
±y
i,j x =

ϕΓ (xi,j±1) − ϕΓ (xi,j )
±∆y .

(9.8)

We can solve the equation by using Godunov’s scheme [151]

max{D−xi,j x,−D+xi,j x}2 +max{D−yi,j x,−D+yi,j x}2 = f (xi,j )−2, (9.9)

or the scheme introduced by Osher and Sethian [215]:

max{D−xi,j x, 0}2 +min{D+xi,j x, 0}2 +max{D−yi,j x, 0}2 +min{D+yi,j x, 0}2 = f (xj,j )−2. (9.10)

9.2.2 Unstructured mesh

To derive an upwind-di�erence scheme on an unstructured mesh T , I follow the general ap-
proach presented by Sethian and Vladimirsky [263], that allows for a �rst- and second-order
scheme. Another more geometrically oriented �rst-order approach was proposed by Kimmel
et al. [151]. Since, for an unstructured mesh, there is no natural choice of the coordinate system,
Sethian and Vladimirsky proposed to compute the gradient as a linear combination of k direc-
tional derivatives, where Ω ⊂ Rk . Let us consider a vertex v ∈ τ of ak-simplex τ and its neighbors
v1, . . . , vk ∈ τ . I de�ne

pi =
v − vi
‖v − vi ‖ (9.11)

to be the unit vector pointing from vi to v. Let ui (v) be the directional derivatives towards pi ,
that is,

ui (v) = pi∇ϕΓ (v) ∈ R. (9.12)
Furthermore, let

u =
*..
,

u1(v)
...

uk (v)

+//
-
∈ Rk and P =

*..
,

p1
...
pk

+//
-
∈ Rk×k . (9.13)

Then we generalize Eq. (9.12) to
u = P∇ϕΓ (v), (9.14)

that leads to
P−1u = ∇ϕΓ (v). (9.15)
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Algorithm 14: SolveEikonal
Input: vertex v
Output: q new value of ϕΓ (v)

1 q ← ϕΓ (v);
2 if v < Γ then
3 foreach τ conncted to v do

4 q ← min{solution of Eq. (9.18) for v and τ ,q};
5 return q;

Following the de�nition of a k-simplex, P has to be a non-singular matrix. For example, in the
two-dimensional space, τ is a triangle. Therefore, P consists of two linear independent vectors
p1 and p2. Finally, we substitute ∇ϕΓ (v) by P−1u in Eq. (9.1) to get

uT (PPT )−1u = f (v)−2. (9.16)

To obtain the discretized equation, we replace each ui with the corresponding di�erence approx-
imation:

ui (v) ≈ aiϕΓ (v) + bi , (9.17)

where bi linearly depends on values of ϕΓ (and possibly of ∇ϕΓ (v) for higher order schemes) at
the vertex around v. Then, the discretized version of Eq. (9.16) for v is the quadratic equation:

(aTQa)ϕΓ (v)2 + (2aTQb)ϕΓ (v) + (bTQb) = f (v)−2, (9.18)

where Q = (PPT )−1, a = (a1, . . . ,ak )
T and b = (b1, . . . ,bk )

T . We derive a �rst-order scheme by
using

ui (v) =
ϕΓ (v) − ϕΓ (vi )
‖v − vi ‖ (9.19)

such that
ai =

1
‖v − vi ‖ , bi = − ϕΓ (vi )

‖v − vi ‖ . (9.20)

Sethian and Vladimirsky [263] proposed to use ∇ϕΓ (vi ) for a second order scheme, that is,

ui (v) = 2ϕΓ (v) − ϕΓ (vi )‖v − vi ‖ − pi∇ϕΓ (vi ), (9.21)

such that
ai =

2
‖v − vi ‖ , bi = −2 ϕΓ (vi )

‖v − vi ‖ − pi∇ϕΓ (vi ). (9.22)

∇ϕΓ (vi ) has to be known at the when ϕi (v) will be computed. If this is not the case, one can fall
back to the �rst-order scheme. One might argue that ΦΓ is not di�erentiable everywhere, and to
use higher-order schemes, ΦΓ has to be su�ciently smooth. However, the authors in [263] argue
that
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“the fact that at some points ∇ΦΓ is unde�ned does not prevent us from using this ap-

proach: ΦΓ is di�erentiable almost everywhere, and characteristics never emanate from

the shocks, i. e., no information is created at the shock.”

– Sethian and Vladimirsky et al. [263]

If ϕΓ (v1), . . . ,ϕΓ (vk ) are known, we can solve Eq. (9.18) that gives us ϕΓ (v) for a speci�c neigh-
boring simplex. I assume that the wavefront propagates with a constant travel speed f (v) through
the simplex τ . To satisfy the upwind criterion, one accepts the computed valueϕΓ (v) if the update
is coming from within τ . More precisely, −∇ϕΓ (v) has to lie inside the simplex [263]. This is the
case if and only if −∇ϕΓ (v) is a linear combination of vectors p1, . . . , pk , where each coe�cient
is positive.

Lemma 9.1 (gradient direction [263]). The negated gradient −∇ΦΓ (v) points inside the simplex if

and only if all components of Qu are positive.

Proof. This can be seen by substituting u by P∇ΦΓ (v) using Eq. (9.14):

Qu = QP∇ϕΓ (v) = (PPT )−1P∇ϕΓ (v)
= (PT )−1P−1P∇ϕΓ (v) = (PT )−1∇ϕΓ (v).

(9.23)

Therefore,
PTQu = PT (PT )−1∇ϕΓ (v) = ∇ϕΓ (v). (9.24)

Using Eq. (9.24), we can see that ∇ϕΓ (v) is a linear combination of p1, . . . , pk . Consequently
−∇ϕΓ (v) points inside the simplex if and only if all components of Qu are positive. �

The construction is used to compute the travel time if the wavefront comes from within a spe-
ci�c k-simplex. However, a vertex v is surrounded by multiple simplices. Like the previous one
dimensional case, we have to �nd the de�ning simplex, that is, the simplex from which the wave-
front arrives �rst at v. Therefore, one computes ϕΓ (v) for each simplex neighboring v and picks
the smallest value, compare Algorithm 14. This strategy is consistent with Godunov’s method on
the Cartesian grid.

9.2.3 Dealing with obtuse angles

A crucial assumption for most numerical solvers, which I discuss in the next section, is causality.
The update for ϕΓ (v) comes from some de�ning triangle τ connected to v assuming the wavefront
already reached v1, . . . , vk ∈ τ . If the wavefront moves with constant speed f (v) within τ , as
we assume, causality is guaranteed for acute triangles. In the extreme case of 90 degrees, the

v v v

Figure 9.2: Elimination of an obtuse angle at v: virtual simplices that are only used to compute
ΦΓ (v) are introduced to deal with obtuse angles.
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v

v2

v1
∇ΦΓ (v)

(i)
v

v2

v1∇ΦΓ (v)

(ii)

Figure 9.3: Causality violation caused by obtuse angles: for obtuse angles (i) it is possible that
the wavefront (approximation), indicated by the black line, reaches either v1 or v2 but not both
before it reaches v. For an acute triangulation this is impossible (ii).

wavefront might arrive at v and v1 at the same time, compare Fig. 9.3ii. For larger angles, causality
might be violated. In this case, it is possible that the wavefront reaches either v1 or v2 but not
both before it arrives at v. The situation is illustrated in Fig. 9.3i. To deal with an obtuse angle at
v, I replace the simplex τ that consists of an obtuse angle at v by a set of simplices τ1, . . . ,τm so
that

m⋃

i=1
|τi | = |τ | ∧ ∀i, j : i , j ⇐⇒ τi ∩ τj = ∅ (9.25)

holds. |τ | is the space covered by τ . Thereby, I follow the idea presented in [263]. Let τ = vv1v2
be the simplex with an obtuse angle at v and u be the vertex opposite of the edge {v1, v2}. Then
I replace τ by τ1 = vv1u and τ2 = vv2u. I repeat this splitting recursively until all angles at v are
acute, compare Algorithm 15 and Fig. 9.2. The resulting structure is saved so that I do not have
to repeat this process.

Algorithm 15: ConstructVirtualSimplices
Input: triangle τ = vv1v2, vertex v ∈ τ , list L
Output: L list of virtual simplices

1 if there is an obtuse angle at v then

2 τ1 ← vv1u, τ2 ← vv2u;
3 L ← L ∪ τ1, L ← L ∪ τ2;
4 ConstructVirtualSimplices(τ1,v,L);
5 ConstructVirtualSimplices(τ2,v,L);
6 return L;

9.3 Review of numerical methods

There are many di�erent numerical methods to compute the viscosity solution of the eikonal
equation 9.1. The most known ones are the RouyAndTourin algorithm [238], the FastMarch-
ingMethod (FMM) [292, 151], the FastSweepingMethod (FSM) [331], the FastIterativeMet-
hod (FIM) [135] and the HeatMethod (HM) [55].

The HeatMethod stands out, because it works inherently di�erently compared to the other
methods. Where the HeatMethod was developed without a speci�c discretization in mind, all
other methods were initially developed to operate on a Cartesian grid. The HeatMethod is based
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on a heat di�usion analogy and solves the eikonal equation indirectly by combining the heat
equation with the Poisson equation. In contrast, the other methods are based on the wavefront
analogy and use an upwind-di�erence scheme to solve the eikonal equation in a direct way.

In principle, direct methods only di�er in the order, in which the local solution of vertices is
computed. The order introduced by the FastMarchingMethod is optimal. But it comes at the
cost of an ordered data structure that hinders parallelization. The FastSweepingMethod and the
FastIterativeMethod disregard the strict order of the FMM in favor of an unsorted list. Thereby
they bene�t from parallelization. Because the relaxed order is most undoubtedly suboptimal, the
FIM might compute ϕΓ (v) multiple times before it converges. Therefore, we trade ‘more work’
for parallelism. Each of the direct methods were later extended to support unstructured meshes.
We will not �nd a clear overall winner since the solver’s performance depends on the input, that
is, the domain Ω and f . I did not conduct an experimental analysis to �nd the best solver for
each situation in this work. Instead, I looked at results in the literature and drew my conclusions
based on the domain Ω and travel speed functions f used in the context of pedestrian dynamics.

9.3.1 The Heat Method

Before presenting methods that rely on the upwind di�erence scheme and compute the solution
in a direct way, I review another approach: the HeatMethod. Crane et al. [55] proposed a very
di�erent technique to compute the geodesic distance indirectly. First, they solve the heat equation
to compute a vector �eld X that approximates ∇ΦΓ . In the second step, they solve the Poisson
equation to compute ΦΓ .

Let us imagine Γ ⊂ R2 to be a heat source that emits heat particles. Over time, heat particles
spread out over the whole domain. If we stop the process after a short amount of time t → 0,
particles at distant positions likely traveled on the shortest possible path. Consequently,

X =
−∇qΓ
‖∇qΓ ‖ ≈

∇ΦΓ
‖∇ΦΓ ‖ =

1
f
, (9.26)

where qΓ is the heat distribution after a short time t and f = 1. Then by solving the Euler-
Lagrange equation

∇2ΦΓ = ∇ · X , (9.27)

Crane et al. [55] suppose to �nd the closest scalar travel time ΦΓ .
In general, the vector �elds’ elements −∇qΓ and ∇ΦΓ point approximately in the same direc-

tion, but their magnitudes are di�erent. Therefore, the authors assume the particular case of the
eikonal equation for which

f = 1, (9.28)

so that
‖∇ΦΓ ‖ = 1. (9.29)

Consequently, we can normalize −∇qΓ to get an approximation of ∇ΦΓ .
Computing the geodesic distance on heat �ow is an interesting approach. It bene�ts from

well-studied and highly optimized solvers for the heat and Poisson equation, respectively. Crane
et al. [55] claims that
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“geodesic distance is updated an order of magnitude faster than with state-of-the-art

methods [such as the FMM], while maintaining a comparable level of accuracy.”

– Crane et al. [55]

However, the requirement of Eq. (9.28) disquali�es the method for all kind of static and dynamic
navigation �elds discussed in Chapter 3. Additionally, investigations by Mayr [197] revealed
problems with accuracy and robustness of the HeatMethod. The computed approximation of
the geodesic distance depends on the choice of many parameters. Mayr points out a missing or
unclear theoretical background of the method, especially for closed surfaces. Convergence for
non-smooth boundaries is only shown for “best-case examples [where] the impact of the bound-
ary condition is not present. [. . .] These examples do not replace a formal proof of convergence
which is missing” [197]. Mayr analyzed the convergence behavior and concluded that

“the numerical solution of the HeatMethod does not converge in general”.

– Mayr [197]

Therefore, the HeatMethod is not suitable to compute navigation �elds for pedestrian simula-
tions.

9.3.2 A Gauss-Jacobi method

In [238], Rouy and Tourin introduced a somewhat naive Jacobi-iteration to solve the eikonal
equation on a Cartesian grid – it also works on unstructured meshes. Basically, RouyAndTourin
solves Eq. (9.9) for iteration i at each grid point (or vertex) by using values computed in the
previous iteration. The algorithm stops if the solution converges. The method (Algorithm 16) is
slow since each vertex v has to be revisited several times before the numerical solution settles
down [106]. Furthermore, the method does not take advantage of the information propagation
of the problem. In the worst-case after each iteration only one vertex converges. Therefore, the

Algorithm 16: RouyAndTourin
Input: triangulation T , spatial destination Γ, spatial domain Ω
Output: ϕΓ solution of Eq. (9.1)

1 ϕ0
Γ (v) ← ϕ0(v) for all v ∈ Γ;

2 ϕ0
Γ (v) ← ∞ for all v < Γ;

3 i ← 0;
4 do

5 i ← i + 1;
6 foreach vertex v of the mesh T in parallel do

// use the values ϕi−1
Γ of the previous iteration

7 ϕiΓ (v) ← SolveEikonal(v);
8 while ∃v ∈ T : ϕiΓ (v) , ϕ

i−1
Γ (v);

9 ϕΓ (v) ← ϕiΓ (v) for all v ∈ T ;
10 return ϕΓ ;
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theoretical time complexity is O (n2), where n is the number of vertices. Because the computation
of a new value depends only on the values of the previous iteration, we can compute each value
in parallel. Even though the method can be implemented for massively parallel machines, it is
ine�cient in theory and practice.

9.3.3 The Fast Marching Method

The FastMarchingMethod might be one of the most widely applied methods in computational
science. One reason for its popularity is that its run time is independent of f and the domain.
It was independently developed by Tsitsiklis [292] and Kimmel and Sethian [151] and considers
vertices in an order consistent with the way the wavefront propagates, that is, consistent with the
Huygens principle. The FMM exploits the monotonicity of ΦΓ . During the algorithm execution,
vertices are divided into three sets:

(i) unreached: not yet considered vertices,

(ii) burning: vertices of the propagating front,

(iii) burned: considered vertices.

Together, burning vertices form the so-called narrow band. The FMM enforces the order by a heap
H sorted by the travel time of its elements. The heap represents the narrow band. Consequently,
the FMM changes the state of a vertex from burning to burn only if it is the smallest element inH .
When the wavefront reaches a vertex v, the vertex changes its state from unreached to burning

and becomes part of the narrow band H . While v is burning, its value can change whenever a
burning neighboring burns out, that is, becomes burned.

Inserting and removing elements to and fromH requires O (log(m)) time, wherem < n is the
number of elements in H . Since after each iteration of the while-loop (Line 5 in Algorithm 17)
one element is removed from the heapH and will not be added again, the time complexity of the
FMM is O (n log(n)).

Algorithmically, the FMM is very similar to Dijkstra’s algorithm [71]. It is inherently sequential
and depends on a heap data structure. However, the computation of ‘distances’ is di�erent. While
Dijkstra’s algorithm propagates information only across edges, the FMM propagates information
across simplices, in our case triangles. Even though other methods such as the FastSweeping-
Method are faster in theory, the FastMarchingMethod is still one of the most e�cient methods
for many practical problems, especially in a single core setup.

9.3.4 The Fast Sweeping Method

The next important method, the FastSweepingMethod (FSM) [331], introduced seven years
later, improves the Gauss-Jacobi method (RouyAndTourin algorithm) by using a Gauss-Seidel
update scheme. Instead of the parallel update order of RouyAndTourin algorithm or the strict
update order consistent with the wave propagation, the FastSweepingMethod uses prede�ned
sweeping directions. For example, in two-dimensions and a Cartesian grid, the update for a grid
point can come from top-right, top-left, bottom-left, and bottom-right. In that sense, it is the
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Algorithm 17: FastMarchingMethod
Input: triangulation T , spatial destination Γ, spatial domain Ω
Output: ϕΓ solution of Eq. (9.1)

1 ϕΓ (v) ← ϕ0(v) for all v ∈ Γ;
2 ϕΓ (v) ← ∞ for all v < Γ;
3 B ← ∅ // set of burned vertices
4 H ← {(v,ϕΓ (v)) | v ∈ Γ} // set of burning vertices
5 whileH , ∅ do
6 (v,ϕΓ (v)) ← min(H );
7 foreach neighbor u of v with u < B do

8 H ← H \ (u,ϕΓ (u));
9 ϕΓ (u) ← SolveEikonal(u);

10 H ← H ∪ (u,ϕΓ (u));
11 H ← H \ {(v,ϕΓ (v))};
12 B ← B ∪ {v};
13 return ϕΓ ;

middle ground between an arbitrary and strict update order. The method is motivated by the
observation that information propagates alongside a �nite number of characteristics (directions)
for a discrete mesh. The alternating Gauss-Seidel update speeds up convergence compared to
RouyAndTourin algorithm. Since it does not rely on a sorting data structure, it is, in theory,
faster than the FastMarchingMethod.

Let Ω be a square centered at Γ = (0, 0) and let f = 1 inside Ω, then four sweeps su�ce to
solve the eikonal equation. In that case, the FSM outperforms the FMM, because the wavefront
does not change its direction and each characteristic curve is a straight line, compare Fig. 9.4ii.

In general, the FSM performs well if the maximum curvature for any characteristic curve of
the eikonal equation is small. Lemma 9.2 connects this curvature to f . Therefore, for a speci�c
dimension, the number of iterations is independent of the number of vertices but depends on the
travel speed function f .

Lemma 9.2 (curvature bound [331]). The maximum curvature for any characteristic curve of the

eikonal equation is bounded by

max
x∈Ω

�����

�����
∇f (x)
f (x)

�����

�����
. (9.30)

Consequently, “the algorithm is optimal in the sense that a �nite number of iterations is
needed” [331]. The theoretical time complexity of the FSM is O (n). If we re�ne our mesh fur-
ther and further, the FSM will eventually be faster than the FMM. However, in practice, the FSM
performs poorly for complex geometries, because the hidden constant is large. Therefore, many
sweeps are required.

“The more complicated the domain is, the better FMM performs with respect to FSM.

Indeed, while FMM continually advances the wavefront, FSM has to do another set of

sweeps every time the direction of propagation changes.” – Gremaud and Kuster [106]
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Algorithm 18: FastSweepingMethod
Input: triangulation T , spatial destination Γ, spatial domain Ω
Output: ϕΓ solution of Eq. (9.1)

1 ϕ0
Γ (v) ← ϕ0(v) for all v ∈ Γ;

2 ϕ0
Γ (v) ← ∞ for all v < Γ;

3 i ← 0;
4 do

5 i ← i + 1;
6 foreach for all sweeping directions do
7 foreach vertex v in order of the sweeping direction do

8 ϕiΓ (v) ← SolveEikonal(v);
// use the values ϕiΓ of the current iteration

9 while ∃v ∈ T : |ϕiΓ (v) − Φi−1
Γ (v) | > ϵ ;

10 ϕΓ (v) ← ϕiΓ (v) for all v ∈ T ;
11 return ϕΓ ;

In [103], we �nd an excellent experimental study that reveals the method’s poor performance
for important practical examples. I suggest using the FSM only for speci�c problems for that we
know that the propagating wavefront changes directions only a few times.

9.3.5 The Fast Iterative Method

In [135], Jeong and Whitaker proposed the FastIterativeMethod (FIM) to solve the eikonal
equation e�ciently on parallel architectures. The FIM combines the advantages of the parallel
nature of the RouyAndTourin algorithm with the information propagation of the FastMarch-
ingMethod. The FIM’s main idea is to update burning vertices of the narrow band in parallel
without maintaining computationally expensive data structures. Jeong designed the method to
run on a GPU. Therefore, he aimed to increase parallelism rather than achieve algorithmic opti-
mality. Thus its worst-case performance may vary depending on the complexity of the input.

For the FIM, the heapH of the FMM representing the narrow band is replaced by an unsorted
list L. It utilizes a Gauss-Jacobi update scheme but only for vertices of the narrow band. For
each iteration, new values are computed for all vertices in L in parallel. If the value di�erence is
less than some small threshold ϵ , the neighbors are evaluated and added to the narrow band L, if
their value is improved (Line 14). Vertices are only removed from the narrow band, if they have
converged (Algorithm 19, Line 9).

If the angle between the wavefront direction and narrow band’s advancing direction is small,
vertices converge fast (possibly in a single update). If the angle is large, information propagates
through the narrow band, and multiple updates are required. Since new vertices are added during
the information propagation within the narrow band, the narrow band is in general thicker than
the narrow band of the FMM [135]. Furthermore, if the wavefront changes direction, vertices
that have already been converged may be added again into the narrow band L – they burn again
until new information propagates to them.
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Algorithm 19: FastIterativeMethod
Input: triangulation T , spatial destination Γ, spatial domain Ω
Output: ϕΓ solution of Eq. (9.1)

1 ϕΓ (v) ← ϕ0(v) for all v ∈ Γ;
2 ϕΓ (v) ← ∞ for all v < Γ;
3 L ← {(v,ϕΓ (v)) | v ∈ Γ} // set of burning vertices
4 while L , ∅ do
5 foreach (v,ϕΓ (v)) ∈ L in parallel do

6 p ← ϕΓ (v);
7 q ← SolveEikonal(v);
8 ϕΓ (v) ← q;
9 if

��p − q�� < ϵ then
10 foreach neighbor u of v do

11 if (u,ϕΓ (u)) < L then

12 p ← ϕΓ (u);
13 q ← SolveEikonal(u);
14 if p > q then

15 ϕΓ (u) ← q;
16 L ← L ∪ {(u,ϕΓ (u))};

17 L ← L \ {(v,ϕΓ (v))};

18 return ϕΓ ;
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Assuming the narrow band contains all the mesh vertices, the method transforms into the
RouyAndTourin algorithm. Therefore, the theoretical time complexity is at least O (n2). Jeong
and Whitaker [135] proved the method’s convergence but did only provide an experimental per-
formance analysis. Their analysis suggests that the (sequential) FIM outperforms the FSM for all
cases but can be slower than the FMM if the wavefront changes its direction several times. Later
Gómez et al. [103] reported the same tendency, that is, the FIM is only slower than the FSM for
the ideal case mentioned in Section 9.3.4. Similar to the number of sweeps of the FSM, the number
of times a vertex is added to the narrow band depends on f . It is independent of the number of
vertices. Therefore, the theoretical time complexity of FIM seems also to be O (n) as claimed by
[103]. However, to my best knowledge, there is no formal proof for this claim.

Especially for small dimensions, for many problem instances, the heap of the FMM contains
only a tiny portion of all vertices. More precisely, the thickness of the narrow band of the FMM
is approximately one. Consequently, the (sequential) FMM performs best if the front stays small
during the computation. That is the case if the ‘length’ of each level set

Lt = {x ∈ Ω | ΦΓ (x) = t } (9.31)

is small. Consider, for example, the multi-barrier domain depicted in Fig. 9.4i. For such cases the
FMM outperforms the FIM in a single core setup.

Jeong and Whitaker [135] give us some advice to decide when to use the FIM instead of the
FMM for a single-core setup: let c1 be the cost to solve Eq. (9.18), c2 be the cost for the heap update
operation,mFMM andmFIM be the average operations per node for the FMM and FIM respectively.
Furthermore, let sH be the average heap size, then if

mFMM < mFIM

(
1 + c2

c1
log2(sH )

)
(9.32)

the FIM should be chosen. We might predict upper bounds for all required values, but a tight
upper bound requires information we might only know after we already solved the equation.
Let us, for a moment, ignore the synchronization required whenever we manipulate L. Then, if
the number of processing units is larger than the maximal size of the narrow band L, the FIM
eventually outperforms the FMM. Therefore, I suggest considering the FIM in a multi-core setup.

(i) (ii)

Figure 9.4: A rather small wavefront scenario (i) and a large wavefront scenario (ii).
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9.3.6 Extensions

After their initial presentation, researchers extended the FMM, FSM, and FIM without changing
their underlying basis. The current research trend focuses mainly on

(1) supporting additional discretization types such as unstructured meshes or point clouds,

(2) developing parallel algorithms, and

(3) improving the e�ciency of solvers.

Supporting new discretization types requires new local solvers. Two years after the intro-
duction of the FastMarchingMethod [292, 151], Sethian and Vladimirsky [263] developed the
local solver on unstructured for k-dimensional meshes presented in the previous section. In [73],
Droske et al. extended the FMM to work on quadtrees. The quadtree is computed before solving
the equation. Covello and Rodrigue [53] proposed an adaptive mesh that is re�ned as the solution
is computed. The idea is to re�ne in areas where curvature κ of ΦΓ is large. To compute the local
curvature around some point x, the travel time in that region has to be known. Therefore, the
proposed algorithm

(1) rolls back the narrow band if the curvature is too high,

(2) re�nes the mesh,

(3) and continues the FMM.

Two years earlier the same authors developed a generalized front marching algorithm for vertices
located on highly distorted meshes or vertices that are randomly distributed [52]. In [224, 225],
Qian et al. extended the FastSweepingMethod to two- and three-dimensional unstructured tri-
angular meshes. Similarly, Fu et al. [87, 88] extended the FIM to support the same types of spatial
discretization. In the introduction of the FMM, Tsitsiklis [292] already proposed a O (n) approach
using a bucket data structure along with his O (n log(n)) Dijkstra-like method similar to [151].

Kim [150] introduced the GroupMarchingMethod (GMM) which can be seen as an extension
of the FMM. The algorithm was originally designed for Cartesian grids. Instead of only updating
one point of the narrow band, a subset G of points is updated. A two-pass update within G
ensures that information propagates through the subset. The GMM ensures that all points in G
are independent from all burning and unreached point not inG. If hmin is the smallest edge of the
mesh or Cartesian grid, we know that the distance between each pair of points is at least hmin.
Let ϕΓ (vmin) be is the smallest travel time within the narrow band, then

ϕΓ (v) ≥ ϕΓ (vmin) +
hmin
fmax

with fmax = max
x∈Ω

f (x) (9.33)

holds for all unreached points v. Consequently, we can update all points of following subsetG of
the narrow band

G =

{
v ∈ H

�����
ϕΓ (v) ≤ ϕΓ (vmin) +

hmin
fmax

with fmax

}
(9.34)
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without worrying about violating causality. The GMM updates in each iteration i = 0, 1, . . . a
group G of points (contained in the current narrow band) for that

i · hmin
fmax

≤ ϕΓ (v) ≤ (i + 1) · hmin
fmax

(9.35)

holds. Like the FIM, the GMM replaces the heap H by a linear list L. For each iteration, the
GMM traverses this list in reversed and normal order, and each point with a small enough current
travel time ϕΓ is updated (twice). This ensures that information within the group G propagates
to all members of the group. Kim [150] numerically veri�ed that the GMM performs with the
computation cost O (n). The author presented experimental results for (stepwise) linear travel
speed functions but, to the best of my knowledge, there is no formal proof. To �ndG, we have to
�lter L by iterating over it. In the worst case L contains O (n) elements. Therefore, it seems that
we get rid of the log(n) factor by introducing a new one, such that the time complexity is O (n2).
Even if the GMM is a O (n) method, for most travel speed functions, “it has a high overhead in
the form of keeping track of the group and determining which members of the group are to be
updated” [140].

Jones et al. [140] proposed the SimplifiedFastMarchingMethod (SFMM), a very simple but
nonetheless e�ective improvement of the FMM. Instead of removing and reinserting elements to
the narrow band if their value is updated (Lines 8 and 10 of Algorithm 17), the authors suggest to
just insert a new element. Therefore, they allow multiple elements for the same vertex contained
inH , and a vertex might be burning and burned at the same time. Since the smallest element will
be popped �rst, all consecutive elements can be ignored. In other words, if a vertex v is burned,
all elements (v,ϕΓ (v)) in H will be ignored. SFMM avoids the decrease key operation of the
heap and executes a push operation instead. Both have the same theoretical time complexity of
O (log(n)). However, the hidden constant for the decrease key operation is larger. In practice, the
SFMM runs faster even though its adaptation slightly increases the heap sizeH [103].

The UntidyFastMarchingMethod (UFMM) [324, 230] is equivalent to Algorithm 17 but the
heap is replaced by the untidy priority queue which reduces the time complexity to O (n). The
method assumes that f is bounded. The sorted untidy priority queue consists of multiple un-
sorted buckets. Each bucket contains an (unsorted) list but guarantees that all values ϕΓ (v) of its
elements v are within a narrow interval. Given a speci�c travel time, the corresponding bucket
can be addressed in O (1) time. The sorted queue is circular, meaning that the �rst bucket repre-
sents the last bucket if it becomes empty. Popping the smallest element from the queue is equal to
popping some arbitrary element from the �rst bucket. Since this element will most certainly not
be the smallest element, additional errors are introduced. Therefore, the result is not identical to
the one computed by the FMM. It accumulates additional errors. However, they are bounded by
the same order. Compared to the bucket based approach of Tsitsiklis, the UFMM does not require
a new type of discretization.

In 2003, Herrmann [121] introduced a domain decomposition parallelization of the FastMarch-
ingMethod. The idea is to assign each spatial sub-domain to a speci�c processing unit. Each
processor manages its own priority queue, which is essentially a set of the partitioned narrow
band. Vertices at the boundary of each sub-domain have to be copied and synchronized. Proces-
sors might idle if the wavefront had not reached a speci�c sub-domain yet or already propagated
completely over it. A rollback mechanism revokes all previously accepted vertices’ valid status
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whenever the value of a ghost vertex decreases. For large wavefronts, this approach achieves rea-
sonable speedups. On that basis, Yang and Stern [322] implemented a highly scalable massively
parallel FMM. They exploit the independence of front characteristics so that a newly accepted
point received from a neighboring sub-domain only causes a rollback for vertices in�uenced by
its characteristics. The authors achieved strong scalability using up to 65 536 processors. There
study does not include speed functions di�erent from f = 1 or complex geometries.

Another interesting approach to parallelize the FMM was suggested by Breuß et al. [36]. They
focused on a domain-decomposition-free parallelization. Their idea is to use multiple wavefronts
in parallel but instead of partitioning the space, they partition the set of initial vertices v ∈ Γ.
More precisely, the authors partition the initial narrow band into multiple sets (partial narrow
bands) so that the union of all sets gives us the set of the initial narrow band and the intersection
of all sets is empty. Then each processor executes the FMM by using one of these sets. Whenever
a processor recognizes that another wavefront computed a smaller valueϕΓ (v) it stops the front at
v. Compared to Herrmann’s approach, the authors report better speedups for multiple examples.

Zhao [330] introduced the �rst two parallel implementations of the FastSweepingMethod,
one for shared memory systems and the other for distributed memory systems. Their shared
memory implementation parallelizes the sweeps in di�erent directions. The distributed memory
approach uses domain decomposition to assign each domain to di�erent processors. The authors
balance the convergence of sub-domains and the number of information exchanges that causes a
restart of the sub-domain sweeping. The works of Detrixhe et al. [61] build on top of Zhao’s [330]
work. They use Cuthill-Mckee ordering to cluster grid points on diagonal lines for sweeping.
Since points on such clusters can be updated concurrently, they improve the performance of the
method. The performance of this method does not reach a plateau with an increase in the number
of threads. Therefore, it is suited for parallel architectures such as the GPU [272]. Recently,
Shrestha and Senocak [272] developed a multi-GPU implementation of this method using CUDA
and OpenACC.

Regarding parallelization, most work is done for the FastIterativeMethod. This is no sur-
prise, because compared to the FSM and FMM, the FIM has a higher parallel potential. In its
introduction, [135] a GPU implementation was already presented. Hong and Jeong [125] ex-
tended it to a multi-GPU implementation. In [9] the authors introduce a multi-level parallel
approach for heterogeneous and hierarchical architectures, thereby bringing the FIM from the
GPU back to multi-core shared-memory systems. They use a Cartesian grid for discretization.
Genellari and Haase [89, 90] introduced a CUDA implementation of the FIM that operates on
unstructured meshes in the three-dimensional space. Hong and Jeong’s [124] goal was to bring
the FIM to shared-memory systems with up to 32 threads. They extended the FIM in two ways:
their LockFreeFastIterativeMethod version minimizes the synchronization required, espe-
cially whenever the narrow band is manipulated. Therefore, it improves scalability in a shared
memory multi-core system. Their second approach GOFastIterativeMethod focuses on reduc-
ing the number of updates of the FIM, that is, the number of times SolveEikonal (Algorithm 14)
is called. In a �rst step, they solve the eikonal equation on a coarse Cartesian grid using the
standard FIM. Each grid point represents a block of the �ne Cartesian grid. Based on this solu-
tion, they construct a heuristic to control the membership of the narrow band, that is, the order
in which blocks are updated. In the second step, they solve the same equation on the �ne grid
using the constructed heuristic. They showed that for simple geometries and travel speed func-
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tions f LockFreeFastIterativeMethod is preferable over GOFastIterativeMethod. Their
lock-free version runs 80 times faster than a single-threaded FastMarchingMethod using 32
threads. In case of simple geometries and a complex travel speed functions f GOFastItera-
tiveMethod outperforms LockFreeFastIterativeMethod. Note that Hong and Jeong [124]
used a Cartesian grid. However, implementing GOFastIterativeMethod on an unstructured
mesh is straightforward.

9.3.7 Conclusion

This review of methods shows that it is not obvious which solver performs best in practice. First,
we have to assess our hardware con�guration. If we are only using a single thread, the Sim-
pliefiedFastMarchingMethod is a safe choice [103]. It performs well for all domains Ω and
travel speed functions f . If the geometry is simple, and f is constant, the FSM might be superior.
In a multi-core hardware setup, the FastIterativeMethod and its extensions seem to be most
promising. In pedestrian dynamics we have to deal with complex geometries and travel speed
functions f . Therefore, the curvature of characteristic curves can be high. Consequently, I de-
cided to stick to the narrow band based approaches, that is, the FastMarchingMethod and its
simple extension the SFMM as well as the FastIterativeMethod and its lock-free extension the
LockFreeFastIterativeMethod. The review also shows the importance of the order, in which
vertices are updated. Furthermore, I found little work concerning discretization – it is almost
always assumed as part of the input.

9.4 Mesh resolution control

To combat high computational costs, I introduce mesh resolution control techniques. Researchers
in pedestrian dynamics are interested in trajectories of agents rather than the solution of the
eikonal equation. Therefore, a sparse discretization is favorable to a �ne one if the simulation
yield similar trajectories. Since agents move to their next position evaluating the navigation �eld
locally, for example, by computing ∇ϕΓ , it is essential that the gradient of the travel time ∇ΦΓ is
accurately approximated by ∇ϕΓ . If its direction and magnitude does not change at all, a coarse
mesh leads to similar results compared to a �ne one, compare Fig. 9.5.

9.4.1 Curvature of the travel time

If we think of the eikonal equation’s solution as a two-dimensional surfaceS in three-dimensional
space, that is,ΦΓ (x) is the z-coordinate ofS, we require a mesh that can approximateS accurately.
Figure 9.8 illustrates such a surface. Intuitively, the mesh has to be �ne if the surface is curved.

De�nition 9.1 (curvature of a curve). Let д(z) = (x (z),y (z)) be a smooth curve in the plane,
then

κд (x) =
1
r

(9.36)

is the curvature of the curve at x, where x = (x (z),y (z)) for some z and r is the radius of the
circle, which ‘best’ approximates the curve at x.
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(i) (ii)

(iii) (iv)

Figure 9.5: Trajectory comparison for di�erent navigation �elds: on the left, the navigation �eld
(n = 549) is rather coarse, while on the right it is very �ne (n = 19898). However, the resulting
trajectory of the simulation using an optimal steps model is identical. The curvature κΦΓ in this
example is small almost everywhere.

De�nition 9.2 (normal curvature). Let S be a smooth surface and Π be a plane that contains
the unit normal vector nx at a point x ∈ S. Then κд (x) is the normal curvature, where the curve
д is the intersection of S and Π.

De�nition 9.3 (mean curvature). Let S be a smooth surface, then

HS (x) =
κд,max(x) + κд,min(x)

2 (9.37)

is the mean curvature of S at x, where κд,max(x) is the maximal and κд,min(x) the minimal curva-
ture.

One the one hand, if the mean curvature HS (x) at x is large, the mesh resolution at x should
be high. On the other hand, one can achieve accurate trajectories for coarse navigation �elds if
the curvature HS (x) is small. The example depicted in Fig. 9.5 con�rms this observation. For
both navigation �elds (iii) and (iv) the resulting trajectories of the simulations (i) and (ii) are
identical. A good approximation of ΦΓ gives us a good approximation of its curvature and vise
versa. Since we assume the wavefront propagates through a simplex with constant speed, a high
grid resolution is also required at areas where ∇f is large. Otherwise, f is poorly approximated
and thus ΦΓ .

Let us look at a point source example where Γ = (0, 0), the domain is a square Ω = [−1; 1] ×
[−1; 1] and f = 1 is constant. In that case, the mean curvature HS (x,ΦΓ (x)) at (x,ΦΓ (x)) is equal
to the curvature of the circle of radius divided by two:

HS (x,ΦΓ (x)) =
1

2 · ‖x‖ . (9.38)

Therefore, to increase our approximation accuracy, the mesh resolution should increase towards
(0, 0). Figure 9.6 illustrates how a mesh (iii) generated by EikMesh improves the solution while
keeping the number of vertices small. The relative error is smaller if we use a more sophisticated
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(i) (ii) (iii)

Figure 9.6: Solution of the point source example using the FMM on di�erent unstructured meshes
generated by EikMesh. I choose di�erent element size functionsh resulting in a di�erent amount
of vertices n: h = 0.1,n = 1086 (i), h = 0.05,n = 4217 (ii), h(x) = 0.025 + 0.3 · ‖x‖,n = 1259 (iii).

element size function while the mesh consists of n = 1086 vertices compared to the one with 4217
vertices, see Fig. 9.6.

For the point source example, I knew the mean curvature HS beforehand, and I could incor-
porate information into the element size function h of EikMesh. In Section 8.6, I showed how
one could construct a δ -Lipschitz element size function appropriate for any planar straight-line
graph by computing the local feature size, and I left out the user-de�ned part of the function hu .
In fact, for the example above, I used

hu (x) = 0.025 + 0.6 · HS (x,ΦΓ (x))−1. (9.39)

However, in general, we have no knowledge of HS . I want to introduce one solution to the
problem that relies on curvature estimations. The idea is to solve the eikonal equation on a coarse
mesh, estimates the curvature of its surface, and constructs a new mesh based on the estimated
curvature.

(i) (ii) (iii)

Figure 9.7: Relative errors |ϕΓ (v)−ΦΓ (v) |/ΦΓ (v) for meshes depicted in Fig. 9.6: h = 0.1,n = 1086
(i), h = 0.05,n = 4217 (ii), h(x) = 0.025 + 0.3 · ‖x‖,n = 1259 (iii).
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Figure 9.8: Surface of ϕΓ using the unstructured mesh illustrated in Fig. 9.6iii.
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9.4.2 Curvature estimation

Let vi = (x ,y,ϕΓ (x ,y)) ∈ R3 be the vertices of our lifted mesh T and eij = {vi , vj }, τ = vivjvk the
lifted edges and triangles respectively. Let us replace the sharp edge eij with a cylindrical bend of
radius r connecting the two neighboring triangles smoothly. The maximal curvature on this bend
is 1/r in the direction perpendicular to eij . It is zero in the direction of the edge. Consequently,
the mean curvature on the cylinder is

(1
r
+ 0

)
· 1

2 =
1
2r (9.40)

and its area is
αijr ‖vj − vj ‖, (9.41)

where αij is the angle (radian measure) between the two normals of the neighboring triangles –
it is also called dihedral angle [18]. An estimation of the mean curvature of the cylindrical bend
is de�ned by the integral over the entire cylindrical bend Bij , that is,

∫

Bi j

κ =
1
2αij ‖vj − vj ‖. (9.42)

Let v be the vertex of a triangle and let v1, . . . , vm be the ordered neighborhood vertices of v, then

H̃T (v) =
1
2

m∑

i=1
‖vj − vj ‖ · αij (9.43)

is the mean curvature at v. Note that other authors, such as Alboul et al. [11], already introduced
and used these formulas.

9.4.3 An iterative eikonal solver

In order to compute an accurate solution of ΦΓ without any knowledge of Ω, Γ and f , I introduce
the iterative Algorithm 20. Initially, I construct a mesh T0 using EikMesh with hu = ∞. Then, I
alternate between computing ϕΓ and re�ning the mesh based on

hu (x) = hmin + λ · 1
H̃Ti (x)

, (9.44)

where λ controls the in�uence of H̃Ti (x).
Multiple re�nement techniques, such as techniques provided by Rivara [236], are applicable. I

decided to use a modi�ed version of the RGB-Subdivision proposed by Puppo et al. [223] because
their subdivision scheme supports dynamic selective re�nement and coarsening. Furthermore,
it generates conforming meshes at all intermediate steps. The property to re�ne a mesh locally
and undo the re�nement dynamically can be especially useful for generating dynamic navigation
�elds, for which f and therefore HS changes over time, see Section 9.4.4. Since my underlying
data structure represents a conforming mesh, the second property simpli�es the implementation
based on my doubly-connected edge list. The presented RGB-Subdivision assigns a level L(e ) to
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Algorithm 20: IterativEikonalSolver
Input: triangulation T , planar straight-line graph P, spatial domain Ω
Output: ϕΓ solution of Eq. (9.1)

1 dΩ ← construct distance function (Section 8.7);
2 hΩ ← construct geometry dependent element size function (Section 8.6);
3 T0 ← EikMesh(dΩ,hΩ,P);
4 i ← 0;
5 do

6 ϕΓ,i ← solution of Eq. (9.1) on Ti ;
7 compute H̃Ti ;
8 construct hu based on H̃Ti ;
9 Ti+1 ← Refine(Ti ,hu);

10 i ← i + 1;
11 while Ti , Ti+1;
12 return ϕΓ,i ;

each edge of the mesh. For the initial mesh, the level is 0 for each edge. It increases by 1 whenever
an edge is split. In my version, an edge e is split only if L(e ) = i − 1, where i is the iteration index.
The reason for stopping the re�nement after one split is to avoid unnecessary splits, thus recom-
pute and integrate improvements as soon as possible. Furthermore, by restricting the number
of splits, I keep the number of green triangles high and mesh quality. A green triangle of the
RGB-Subdivision is the result of three splits of an original green triangle. It inherits the quality
of its parent (all triangles of T0 are green triangles), compare Fig. 9.9.

I chose two examples to demonstrate the algorithm, one with shocks and another with a com-
plex travel speed function f . Remember that shocks are created at positions where the wavefront
collapses on itself, that is, positions where ΦΓ is not di�erentiable. In the context of navigation
�elds, at shocks agents choose di�erent path to navigate to the same destination. The �rst do-
main is an L-shape planar straight-line graph P containing a hole with Γ = ∂Ω, such that the
wavefront moves with f = 1 speed from the domain boundary towards the medial axis. For the
second, I choose Ω = [−1; 1] × [−1; 1], Γ = (0, 0) and

f (x ,y) = 0.8 · sin(2π · x ) · sin(2π · y) + 1. (9.45)

For both examples, the parameter λ = 0.3 controls how much the curvature in�uences the ele-

τ1

τ4

Refine

Coarse

Refine

Coarse

Refine

Coarse

Refine

Coarse

Figure 9.9: RGB-Subdivision example: splitting a green triangle leads to two red triangles, and
splitting a red triangle results in a green and blue triangle. Two neighboring blue triangles at
the same level become green if the edge they share is �ipped. At any point, the mesh remains
conforming. SplitEdge and FlipEdge are the only mesh operations required to re�ne the mesh.
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(i) n = 1256 (ii) n = 2648 (iii) n = 5012 (iv) n = 7288

(v) n = 1086 (vi) n = 4217 (vii) n = 12202 (viii) n = 13504

Figure 9.10: Solution of the eikonal equation computed by IterativEikonalSolver: after four
iterations the algorithm terminates. Especially at shocks (i) and position where ∇f is large (v),
the solution ϕΓ,0 poorly approximates ΦΓ for the initial mesh. The �nal results (iv and viii) ϕΓ,3
are a much better approximations.

ment size. After 4 iterations IterativEikonalSolver terminates. For each iteration the accuracy
of the solution increases, compare Fig. 9.10. The mesh re�nement stops earlier, where the esti-
mated curvature is small.

9.4.4 Mesh resolution control in pedestrian dynamics

Algorithm 20 can deal with very little knowledge about Ω and f . It is a general way to achieve
accurate results while keeping the mesh number vertices small. However, solving the eikonal
equation and re�ning the mesh multiple times is computationally expensive. Since fast compu-
tation is one of my goals, it is preferable to use a suitable element length function hu , which
incorporates information about f . In that way, we keep the number of mesh manipulations at a
minimum. Consequently, one has to look at the concrete application more closely.

In the case of navigation �elds for pedestrian dynamics, most models use a travel speed func-
tion that, in the static case, depends on the obstacle density or distance to obstacles and, in the
dynamic case, on the density, speed, or �ow of pedestrians. The reader might want to revisit
Sections 3.4 and 3.5, where I listed di�erent travel speed functions. I assume sparsely distributed
pedestrians do not in�uence medium-scale navigation of pedestrians while a packed crowd does.
This assumption is consistent with the travel speed function used in pedestrian simulations to
this day. Since bottlenecks are the major source for congestion, ∇f might be large at jams but
will be approximately zero at open spaces. Therefore, the mesh has to be �ne at crowded areas
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(i) (ii)

Figure 9.11: The snapshot (i) and static �oor �eld (ii) of a two-path scenario of 14 m height:
agents of the top half enter the top entry while agents below navigate through the bottom entry.
The reason is that the propagating wavefront is �rst divided into two parts and merges the middle.

close to the domain boundary ∂Ω.
Shocks are the second reason for a high mesh resolution since, at those areas, agents ‘decide’

which way to go. For example, in the situation depicted in Fig. 9.11, the shock at the vertical
center of the domain divides agents into agents walking through the top and agents walking
through the bottom bottleneck. For dynamic navigation �elds shocks move and deform over the
simulation time. Re�ning the mesh computationally e�ectively at moving shocks in general is a
topic I am not covering in this thesis. In the discussion (Chapter 10), I give some ideas to tackle
this challenge.

I suggest two resolution control strategies. First of all, I propose a static global strategy using
EikMesh with a user-de�ned element size function which depends on the distance dΩ to the
domain boundary ∂Ω:

hu (x) = min{hmin + δ · |dΩ (x) |,hmax}. (9.46)
I construct the mesh once before the simulation starts. Therefore, the time required for the con-
struction of the mesh is not critical. hmin and δ control the mesh resolution and in�uence the mesh
quality. Note that I use the ElementSizeConstruction introduced in Section 8.6.2 to guarantee
a high mesh quality.

The second dynamic and local strategy is only useful to compute dynamic navigation �elds.
First, I construct a coarse mesh by applying EikMesh with hu (x) = ∞. During the simulation
run, I dynamically coarsen and re�ne the mesh based on the RGB-Subdivision proposed by Puppo
et al. [223]. I make sure that edges within a speci�c radius rh of an agent are smaller than some
threshold hmax. To reduce the computational cost, I choose rh larger than necessary such that the
mesh manipulation is only required after multiple eikonal equations have been solved.

Manipulating the mesh using the dynamic strategy comes at a cost. The coarsening and re�ne-
ment require additional computation time. We have to manipulate the mesh, but we also have
to re-compute speci�c geometrical measures to solve the eikonal equation, such as the triangle’s
angles. Note that I only compute those measures once to speed up the dynamic navigation �eld
computation in case of a �xed mesh. Furthermore, the local feature size (see Section 8.6) at bot-
tlenecks is already relatively small such that the mesh generated by EikMesh is �ne near jams
regardless of hu . Additionally, the element quality drops for blue and red triangles, thus the over-
all mesh quality, compare Fig. 9.9. However, for large domains, the dynamic strategy can lead to
a lower number of vertices. Furthermore, if future scenarios lead to islands of packed crowds in
open space, this approach might be required for accurate results.
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(i) (ii) (iii)

Figure 9.12: Two di�erent re�nement strategies: the static re�nement (i) computes a mesh once
while the dynamic re�nement (ii)-(iii) manipulates the mesh near agents everym time steps. For
the static mesh I use hu de�ned in Eq. (9.46) with hmin = 0.5, hmax = 2.0, and δ = 0.4. In case of
the dynamic re�nement, hu = ∞ and a triangle is re�ned if its midpoint is closer than rh = 7.0
and some of its edges is longer than 0.5

9.5 The Informed Fast Iterative Method

In Section 9.3 I, introduced and discussed state-of-the-art solvers for the eikonal equation. In this
section, I develop a new solver, the InformedFastIterativeMethod (IFIM), that is specialized
to solve a series of eikonal equations, for which the travel speed function f changes not too much.

Dynamic navigation �elds require frequent re-computation since the travel speed function f
changes over time and, therefore, the travel time ΦΓ . The time is discretized into discrete time
steps ti = i∆t and we have to compute ΦΓ,0, . . . ,ΦΓ,k consecutively using travel speed functions
f0, . . . , fk . Dynamic navigation �elds impose a heavy workload, and to enable real-time simu-
lations, the computation time of one solution of the eikonal equation has to be smaller than ∆t .
However, we enter new territory for dynamic navigation �elds since we compute a series of sim-
ilar solutions of eikonal equations. To my best knowledge, the ‘similarity property’ has not been
considered or exploited yet.

9.5.1 Informed wavefront propagation

Since fi depends on the dynamics of the simulation, that is, the agents’ position, consecutive
travel speed functions fi , fi+1 and, therefore, consecutive travel times ΦΓ,i ,ΦΓ,i+1 are “similar”.
The idea behind the InformedFastIterativeMethod is to incorporate information of ϕΓ,i into
the computation ofϕΓ,i+1, so that, the narrow band of the FastIterativeMethod stays as narrow
as possible and almost all vertices converge in one update. In that case, the resulting algorithm
combines the advantages of the FastFarchingMethod, that is, a minimal amount of updates,
and the FastIterativeMethod, that is, highly parallel propagation of the narrow band.

The similarity I am most interested in is the similarity of the wave propagation order, that is,
the order, in which the wave arrives at the vertices of the mesh. Let me de�ne this similarity
more formally.
De�nition 9.4 (de�ning simplex). Let ϕΓ,i+1 be the approximation of the solution of the (i + 1)th
eikonal equation and let v ∈ T be some vertex of the mesh. Then

τ = vu1u2

is the de�ning simplex of v if and only if v received its value ϕΓ,i+1(v) from u1 and u2. In other
words, the wavefront arrived at v coming from within τ .

190



9.5 The Informed Fast Iterative Method

De�nition 9.5 (de�ning vertex). LetV be the set of vertices of the underlying mesh T , then

πi : V → V ×V (9.47)

is the de�ning vertex relation of the ith eikonal equation, such that,

πi (v) = {u1, u2} (9.48)

if and only if τ = vu1u2 is the de�ning simplex of v.

De�nition 9.6 (de�ning vertex set). Let πi : V → V × V be the de�ning vertex relation and
v be a vertex in V . Then Vv,i is the de�ning vertex set of v (of the ith eikonal equation) de�ned
recursively by

v ∈ Vv,i ∧ u ∈ Vv,i ⇒ πi (u) ⊆ Vv,i . (9.49)

Lemma 9.3 (de�ning acyclic graph). Let πi be the de�ning vertex relation, then Gi = (V, Ei ) with
(v, u) ∈ Ei ⇐⇒ u ∈ πi (v) (9.50)

is the de�ning directed acyclic graph DAG (of the i th eikonal equation).

The de�ning simplex is the triangle or edge from within the wave arrives �rst at a vertex v. If it
is an edge, there is only one de�ning vertex such that |πi (v) | = 1 follows. Also note that πi+1(v) =
∅ if and only if v ∈ Γ. The de�ning graph Gi is acyclic by the nature of the wave propagation
– information �ows outwards, and therefore, never back and forth. Looking at two di�erent
wave propagations on the same mesh, I call the wave propagation order identical if the resulting
dependency graphs are identical. The following similarity metric counts the number of edges
di�erent in two de�ning graphs and gives us a measure of how similar the wave propagation
order is:

De�nition 9.7 (similarity metric). Let Gi = (V, Ei ), Gi+1 = (V,Ei+1) be two de�ning graphs,
then

D (Gi ,Gi+1) =
|Ei \ Ei+1 | + |Ei+1 \ Ei |
|Ei+1 | + |Ei+1 | (9.51)

gives us the similarity of two de�ning graphs.

For a moment, let us assume we know the solution ϕΓ,i+1 before we solve the equation. For
each vertex v of the underlying mesh T , we can identify its de�ning simplex. Furthermore, we
can construct the de�ning vertex relation πi+1 and the de�ning graph Gi+1. We know that nec-
essary information �ows from a vertex v to u if and only if there exists a path from v to u on
Gi+1. Therefore, we can compute ϕΓ,i+1(v) by solving the equation only for the de�ning vertex set
Vv,i+1 ⊆ V . More importantly, we can identify unnecessary computations, that is, any compu-
tation inconsistent with the wavefront propagation order given by Gi+1. Because we know that
we get the correct value ϕΓ,i+1(v) if and only if we already computed the values for vertices in
Vv,i+1 \ {v}, we can postpone the computation ϕΓ,i+1(v) until those vertices have their �nal value.

Algorithmically, the InformedFastIterativeMethod (IFIM) keeps its narrow band L as nar-
row as possible, by only adding vertices to L, if their de�ning vertices are already burned, com-
pare Line 16 of Algorithm 21. Remember, for the FIM, the same vertex can be added to, and
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Vv

v

Figure 9.13: Example of a de�ning graph: the wavefront propagates from left to right. Each
vertex color encodes a level starting from left (level 0) to the right (level 13). The arrows indicate
the edges of the de�ning graph. Red arrows belong to the subgraph that connects all vertices in
Vv.

removed from the narrow band multiple times. This happens whenever the propagating wave-
front changes its direction and might cause a chain reaction – vertices of L might be updated
which causes neighboring vertices to be added to the narrow band. Interestingly, this can only
happen if a vertex v is added to the narrow band L, before πi+1(v) received their �nal values. In
that case ϕΓ,i+1(v) is too large and will be decreased by its de�ning vertices πi+1(v) later on.

Now let us drop our assumption that we know the solution ϕΓ,i+1 before we actually solve the
equation. Since this is not the case and we neither know ϕΓ,i+1 nor πi+1, I approximate πi+1 by
πi . My assumption is that most edges present in Gi are also present in Gi+1, that is, D (Gi ,Gi+1) ≈
0. This is the case if gradients of two consecutive solutions point in a similar direction. It is
important to note that identical graphs do not imply identical gradient directions. Therefore,
even if gradients change, the graph might be una�ected.

One might look at the dynamic travel speed function to decide if this assumption is valid.
Instead, my argument looks at the pedestrian behavior researchers in the �eld want to model:
a change in the direction of the gradient at x means that agents close to x move in a di�erent
direction than the agents previously located around x. If the agents’ movement direction changed
strongly constantly at a certain area, it would mean that agents, moving towards Γ, constantly
change their medium-scale navigation. Therefore, they would constantly use very di�erent paths
towards their destination which would result in chaotic behavior which is a very questionable
situation.

Constructing πi+1 while solving for ϕΓ,i+1 does not introduce any substantial additional com-
putational costs. Each time ϕΓ,i+1(v) is decreased by an update coming from u1, u2, I update πi+1
accordingly so that

πi+1(v) = {u1, u2} . (9.52)

Testing if both de�ning vertices u1, u2 are already burned is implemented by comparing a �ag.
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9.5 The Informed Fast Iterative Method

Both operations require O (1) time and additional overall O (n) memory.
Jeong et al. [135] proved that the FIM is consistent with the corresponding Eq. (9.1). Their proof

is based on the assumption that each vertex is added to the narrow band at least once. Lemma 9.4
provides the same property for the InformedFastIterativeMethod.

Lemma 9.4. After the IFIM terminates, each vertex has been added to the narrow band at least once.

Proof. Let’s suppose that at some point during the computation, a vertex v has not been added
to the narrow band because its de�ning vertices has not been burned out yet. Therefore, there
is some neighbor u1 of v that has not been burned yet. Either it is burning, that is, it is part of
the narrow band, or it is unreached. If the neighbor u1 is part of the narrow band, it will burn
out eventually. The same happens for the second de�ning vertex u2 thus v will be considered
and added to the narrow band since both of its de�ning vertices burned. If u1 or u2 is unreached,
they have not yet been added to the narrow band. By induction over Gi , we eventually end up at
some vertex v′, for which one of the de�ning vertices is burned and one is burning. The burning

one is part of the narrow band, and when it changes from burning to burned, v′ will be added
to the narrow band eventually. Using this induction argument, it is clear that v will be added as
well. �

If two consecutive de�ning graphs di�er, the IFIM might add a vertex v too late to its narrow
band L. In that case, ϕΓ,i+1(v) already has its �nal value, but the wave propagation is stalled until
its de�ning vertices of the previous iteration burn out. The di�erence between adding vertices
too early and too late is that in the former case, wrong information propagates, while in the
latter case, correct information is held back. Since the wavefront propagates further without
integrating ϕΓ,i+1(v), it will lead to wrong values for all Vv,i+1 visited by the wavefront before
v will eventually be added to the narrow band. In that sense, some vertices in Vv,i+1 are added
too early to the narrow band. Therefore, adding vertices too late to the narrow band is similar to
adding vertices too early. Consequently, it is not guaranteed that IFIM outperforms the FIM in
any case.

The FIM can be seen as a special case of the IFIM where each de�ning graph is the same, and
each graph imposes the breadth-�rst wavefront propagation order of the FIM.

9.5.2 Partial wave propagation

So far, I only described how to incorporate the wavefront propagation order of the previous
computation into the next one. However, we can go one step further and incorporate travel times
as well. Let’s look at the simple scenario depicted in Fig. 9.5, and let’s imagine a group of agents
move from the left to the right destination. Since f does not change for all positions distant
from agents, consecutive wavefront propagations are identical to the point, where they arrive
at the crowd. The idea behind partial wave propagation is to exploit partially equal wavefront
propagations to reduce the number of required updates even further. More precisely, if Vv,i =

Vv,i+1 and fi (v) = fi+1(v) for all vertices inVv,i we know that ϕΓ,i (v) = ϕΓ,i+1(v) and we can save
computational costs.

Lemma 9.5. Let v ∈ T be a vertex of the underlying mesh and ϕΓ,i be the approximated solution of

the eikonal equation of the previous time step. Let ϕΓ,i+1 be the values computed before some update
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Algorithm 21: InformedFastIterativeMethod
Input: triangulation T , spatial destination Γ, spatial domain Ω, de�ning vertex relation πi

of iteration i , solution of the eikonal equation of iteration i ϕΓ,i
Output: ϕΓ,i+1 solution of Eq. (9.1), de�ning vertex relation πi+1 of iteration i + 1

1 ϕΓ,i+1(v) ← ϕ0(v) for all v ∈ Γ;
2 ϕΓ,i+1(v) ← ∞ for all v < Γ;
3 L ← {(v,ϕΓ,i+1(v)) | v ∈ Γ} // set of burning vertices
4 B ← V0 // set of burned vertices
5 while L , ∅ do
6 foreach (v,ϕΓ,i+1(v)) ∈ L in parallel do

7 p ← ϕΓ,i+1(v);
8 if v requires an update (Lemma 9.5) then
9 (q, u1, u2) ← SolveEikonal(v);

10 πi+1(v) ← {u1, u2};
11 else

12 q ← ϕΓ,i (v);
13 πi+1(v) ← πi (v);
14 ϕΓ,i+1(v) ← q;
15 if

��p − q�� < ϵ then
16 B ← B ∪ {v};
17 foreach neighbor u of v do

18 if (u,ϕΓ,i+1(u)) < L ∧ πi (u) ⊂ B then

19 p ← ϕΓ,i+1(u);
20 if u requires an update (Lemma 9.5) then
21 (q, v1, v2) ← SolveEikonal(u);
22 πi+1(v) ← {v1, v2};
23 else

24 q ← ϕΓ,i (u);
25 πi+1(u) ← πi (u);
26 if p > q then

27 ϕΓ,i+1(u) ← q;
28 L ← L ∪ {(u,ϕΓ,i+1(u))};
29 B ← B \ {u};

30 L ← L \ {(v,ϕΓ,i+1(v))};

31 return ϕΓ,i+1,πi+1;
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of v. Then this update will yield ϕΓ,i (v) if for all neighbors u of v

[
ϕΓ,i (u) < ϕΓ,i (v) ⇒ ϕΓ,i (u) = ϕΓ,i+1(u)

] ∧ (9.53)
[
ϕΓ,i (u) ≥ ϕΓ,i (v) ⇒ (ϕΓ,i (u) ≤ ϕΓ,i+1(u) ∨ ϕΓ,i+1(u) ≥ ϕΓ,i+1(v))

] (9.54)

holds.

Proof. Equation (9.53) ensures that values of the de�ning vertices πi (v) are identical for i and
i + 1. However, πi (v) , πi+1(v) is possible. This can happen if the travel time of some neighbor
u < πi (v) decreases, that is, if

ϕΓ,i+1(u) < ϕΓ,i (u). (9.55)

Equation (9.53) ensures that this is not the case for neighbors, for which the travel time was
already smaller than the travel time at v. Equation (9.54) ensures that for all other neighbors the
value increases or it decreases not too much. Even if the value decreases, if ϕΓ,i+1(u) ≥ ϕΓ,i+1(v)
holds, the wavefront arrived at v earlier than at u and therefore u < πi+1(v). �

Before updating the travel time at a vertex v by calling SolveEikonal(v), the IFIM tests if the
update is necessary by applying Lemma 9.5, compare Lines 8 and 20 of Algorithm 21. And if it is
not necessary, the IFIM copies the old value, compare Lines 12 and 24. The highlighted parts of
Algorithm 21 indicate the di�erence between FIM and IFIM.

If the de�ning vertex set of some vertex changes in any way, it is almost certain that we can
not use the old travel time value for this vertex. The reason is that any change will propagate
through the set and will only vanish due to numeric inaccuracy or if multiple changes cancel each
other out which is unlikely to happen. Therefore, if many values at vertices close to Γ change, it
is likely that we have to recompute everything.

Another strategy which saves computation time if we apply the FastMarchingMethod is to
burn all vertices which are una�ected before starting the wave propagation. Let

Vf ,i+1 = {v ∈ V : fi (v) , fi+1(v)} (9.56)

then we know that for each vertex u,

ϕΓ,i (u) ≤ min
v ∈Vf ,i+1

ϕΓ,i (v) ⇒ ϕΓ,i+1(u) = ϕΓ,i (u) (9.57)

holds. Therefore, we could copy all those values, initialize the narrow band by adding all neigh-
bors of burned vertices, and start the wave propagation from that point.

As mentioned in the review above, the LockFreeFastIterativeMethod requires less syn-
chronization compared to FastIterativeMethod and is especially suitable in a shared-memory
hardware setup. My proposed extensions also transform the LockFreeFastIterativeMethod
and other extensions of the FastIterativeMethod (FIM) into ‘informed’ versions. For the Lock-
FreeFastIterativeMethod the exact same code changes, depicted in Algorithm 21, were re-
quired.
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9.5.3 Natural wavefront propagation

In this subsection, I discuss an alternative approach for cases where consecutive de�ning graphs
are identical. Note that, other than the previous algorithm, I neither implemented nor tested the
following one. I want to look back to the water wave analogy, which was the starting point of
this chapter. In the real physical world, the wave moves perfectly with time through the water.
Let’s imagine nature is a computing machine with endless resources. Then, nature computes
each level set of travel time in parallel, and each computation requires the same amount of time.
In that sense, nature achieves perfect parallelism. At any point during the computation, there is
no vertex, for which the machine could additionally start the computation since information is
still missing.

Assuming we know the de�ning vertex relation πi , we can emulate the natural wavefront
propagation to achieve perfect parallelism for the discrete case. Continuous level sets translate
to de�ning levelsV0, . . . ,Vk of the de�ning acyclic graph Gi = (V, Ei ). The levels are a partition
ofV .

De�nition 9.8 (de�ning level). Let πi : V → V × V be the de�ning vertex relation of the ith

eikonal solution. Then v ∈ V is an element of the de�ning level V0 if and only if it is an element
of Γ. For l > 0 a vertex v ∈ V is an element of the de�ning level Vl if and only if

πi (v) ∩Vl−1 , ∅ ∧ πi (v) ⊆
l−1⋃

j=0
Vj (9.58)

holds.

We can compute the travel time of each vertex of a de�ning level Vl in parallel as soon as the
travel times of all vertices inVl−1 have been computed. Let χ : V → N0 be the level a vertex v.
We can construct the level partition by using πi , since the level χ (v) is inductively de�ned by

χ (v) = 0 ⇐⇒ v ∈ Γ,
χ (v) = max

u∈πi (v)
χ (u) + 1. (9.59)

Algorithm 22: NaturalMarchingMethod
Input: de�ning levelsV0, . . . ,Vk , triangulation T
Output: ϕΓ solution of Eq. (9.1)

1 ϕΓ (v) ← ϕ0(v) for all v ∈ V0;
2 ϕΓ (v) ← ∞ for all v < V0;
3 foreach level l = 1, . . . ,k do

4 foreach v ∈ Vl in parallel do

5 ϕΓ (v) ← SolveEikonal(v)

6 return ϕΓ ;
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The resulting NaturalMarchingMethod, illustrated in Algorithm 22, might be a powerful
alternative if many consecutive de�ning graphs are identical. It especially suits a single instruc-
tion multiple data (SIMD) hardware setup since the algorithm can be implemented such that the
execution path divergence is small. The parallel time complexity of the NaturalMarching-
Method is O (k ).

9.6 Experimental comparison

In this section, I analyze the performance of the InformedFastIterativeMethod (IFIM) and
show how dynamic navigation �elds can be e�ectively used for medium-scale navigation. To
do so, I compare the IFIM to the FastIterativeMethod (FIM) and the FastMarchingMethod
(FMM). Instead of measuring the run time, which highly depends on an optimal implementation
and the hardware setup, I measure the number of times a vertex is updated and removed from
the narrow band. Therefore, I compare workloads instead of computation times.

Letu be the overall number of times a vertex (that received a new value) has been removed from
the narrow band. The FastMarchingMethod (FMM) requires a minimal amount of updates
since each vertex is removed from the narrow band exactly once. Consequently, it requires

uFMM = |V \ V0 | (9.60)
updates. In general, one can expect a small number of updates if the imposed update order is
consistent with the natural wavefront propagation. In the case of the FIM, this is the case if the
natural wave propagation order is similar to a breath �rst-order. If the IFIM is able to consistently
‘learn’ and approximates the natural wavefront propagation order, it will require fewer updates
than the FIM.

9.6.1 Examples

For each of the following scenarios, I use the travel speed function

f (x) =



1/(1 + hW · ρW (x) + hA · ρA (x)) if x ∈ Ω
0 else,

(9.61)

which we introduced in [165]. This travel speed function depends on the obstacle and pedestrian
density. hA , hW control the in�uence of the pedestrian ρA and obstacle ρW density. I discussed
the e�ect in Section 3.5. It leads to the avoidance of crowded areas at the cost of longer travel
distances. Therefore, agents choose faster paths over shorter ones. For all simulations, I use a
time step size equal to ∆t = 0.4 seconds. Each dynamic navigation �eld is computed on a static
mesh making use of the static re�nement strategy discussed in Section 9.4. If not stated otherwise,
everything is executed sequentially.

Corridor

The �rst 35 × 10 square meter scenario is a shock free corridor. 50 agents walk from the left to
the right. They have to change directions multiple times. A snapshot and the navigation �eld as
it resulted 15 s into the simulation is depicted in Fig. 9.14.
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(i) (ii)

Figure 9.14: Snapshot (i) and dynamic �oor �eld (ii) 15 s into the simulation: blue agents walk
from left (the green source) to right (the orange destination Γ). Here I use an optimal steps model
a travel speed function that depends on the pedestrian density.

Although the wavefront changes direction multiple times, the FIM performs well since the
wavefront propagation order is similar to a breadth-�rst search on the mesh T because the mesh
aligns with the change in direction. If we look at the number of updates in Fig. 9.15i, it is evident
that the FIM performs almost optimally, since it requires approximately uFMM = 2,975 updates
for each time step.

However, the same is true for the IFIM. In addition, the IFIM requires fewer updates until the
agents come close to their destination. We can clearly see how the partial wave propagation
prevents almost all updates at the start of the simulation and after the �rst eikonal equation has
been solved. Figure 9.16i shows the narrow band size for each narrow band manipulation for the
75th time step. The narrow band size for the IFIM stays smaller at all times, but the di�erence is
not too large.

Bottlenecks

The second 35 × 15 square meter scenario consists of two bottlenecks. It was already introduced
in Section 9.4.4, compare Fig. 9.11. During the execution of solvers, the wavefront is divided
into two parts. These parts merge and consequently cause a shock. Therefore, the wavefront
propagation order diverges from the breath-�rst search.

We can observe the e�ect in the number of required updates illustrated in Fig. 9.15ii. At the
beginning of the simulation, the FIM performs almost optimally. But as soon as the shock moves
and deforms, its performance su�ers up to a point where the number of required updates is almost
doubled compared to uFMM = 5,812.

In comparison, the IFIM requires more or less the optimal amount of updates for all time steps
except the �rst one. While for the FIM, the number of updates increases after the 40th time step,
the IFIM ‘learns’ and adapts its update order accordingly.

The narrow band size of both methods for the 75th time step is depicted in Fig. 9.16ii. It shows
that the narrow band size of the FIM exceeds the narrow band size of the IFIM. At one point, L
is three times as large. Consequently, the IFIM requires fewer manipulations of its narrow band
data structure.

Richard-Wagner-Straße

The last scenario is a large-scale example. It is the Richard-Wagner-Straße in Kaiserslautern
�ooded with 10,000 agents walking from top to the bottom, compare Fig. 9.17. The domain is
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Figure 9.15: The number of times a vertex gets removed from the narrow band for each simula-
tion time step tj , tj · ∆t seconds into the simulation: for the corridor scenario (i), the bottleneck
scenario (ii), and the Richard-Wagner-Straße (iii) the IFIM requires less removals than the FIM,
that is, approximately the same amount as the FMM.

228 × 560 square meters large. This scenario is inspired by protest marches that often take place
in this part of Kaiserslautern. Every second, 20 agents spawn at random positions inside the green
rectangle. Each agent walks towards the orange rectangle Γ at the bottom. Note that I already
introduced its geometry in Chapter 6 (see Fig. 6.3) and displayed a mesh generated by EikMesh
(see Fig. 8.19) in Chapter 8. Since there are multiple combinations of streets leading to Γ, each
solution ϕΓ,0, . . . ,ϕΓ,k contains multiple shocks.

For each time step, the FIM requires between 75,000 and 193,000 updates. This is almost four
times the optimumuFMM = 53,888, compare Fig. 9.15iii. In contrast, the IFIM never requires more
than approximately uFMM number of updates.

The narrow band sizes at time step 2,000 match this trend. The maximum narrow band size of
the FIM is almost three times of the maximum narrow band size of the IFIM, compare Fig. 9.16iii.

On my default hardware setup using only one thread, the IFIM requires on average 139 mil-
liseconds to solve an eikonal equation. The average run time drops to 85 milliseconds using two
threads. With 150 milliseconds on average, the FMM performs almost equally well. The reason is
that the narrow band of the method remains relatively small and the heap operations are there-
fore computationally inexpensive. However, the execution time of the IFIM can be decreased
further by using additional processors.
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9.6.2 Conclusion

In summary, the IFIM outperforms the FIM for each example. The di�erence increases with the
number of shocks, that is, with the number of distinct detours to the destination. But even if this
number is rather low, the IFIM performs better, and since it does not introduce any signi�cant
computational work, the IFIM is preferable to the FIM for dynamic navigation �eld computation.
Furthermore, the narrow band sizes indicate that there is enough parallel potential. Since the
number of updates of the IFIM seems to be always close to the optimum uFMM, there is also no
reason to use the FMM over the IFIM. In the case of static navigation �elds, the FMM or some
of its extensions might be superior. One might want to apply the FMM to compute ϕΓ,0 to learn
the �rst de�ning graph and then apply the IFIM for all consecutive computations. Because the
number of updates required by the IFIM is close touFMM and its parallel potential is similar to the
FIM, the IFIM combines the advantages of the FIM and FMM.

The e�ect of using a dynamic navigation �eld over a static one can be observed in Fig. 9.18.
At �rst, agents choose the shortest path along the main street. After a while, the main street
becomes more and more crowded, and at some point in time, agents start to use a slightly longer
detour. Eventually, the detour becomes crowded as well, and agents start using even longer paths
to Γ. More and more side streets are �ooded with agents, compare Figs. 9.18i to 9.18iv. When
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Figure 9.16: Narrow band size comparison of the FIM and IFIM for speci�c time steps tj at time
tj · ∆t into the simulation: for t50 the narrow band sizes for the corridor scenario are similar (i).
For the bottleneck scenario (ii), and the Richard-Wagner-Straße (iii) this is no longer the case.
Overall, fewer manipulations of the narrow band data structure are necessary using the IFIM.
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using a static navigation �eld, agents only use the main street to reach Γ. Since agents avoid
each other only locally, they get stuck if a large crowd is in front, compare Fig. 9.18vi. And since
they stick to the shortest path, they tend to use only a small part of the street. This e�ect can
be observed in Fig. 9.18v. In comparison, the medium-scale navigation imposed by the dynamic
navigation �eld leads to a more even distribution of agents for all possible paths.

There is still a lot of work necessary to �nd and calibrate suitable travel speed functions. I think
there exists no function, which ideally models pedestrian behavior for all scenarios. However, in
the case of the Richard-Wagner-Straße, the dynamic navigation �eld computed with the travel
speed function presented in [165], results in more realistic pedestrian behavior than the static
one. Thus, this travel speed functions seems to be a reasonable start.

(i) (ii) (iii)

Figure 9.17: The scenario (i), the underlying mesh (ii), andϕΓ,0 (iii) of the Richard-Wagner-Straße
scenario: agents spawn inside the green rectangle and navigate to the orange area at the bottom.
Apart from using the main street, there are multiple detours an agent chooses from.

(i) (ii) (iii) (iv) (v) (vi)

Figure 9.18: Snapshots of agent trajectories 125 s (i), 196 s (ii), 280 s (iii), and 363 s (iv) into the
simulation of the Richard-Wagner-Straße scenario using a dynamic navigation �eld: trajectory
plots (v) and agents (vi) after 393 s into the simulation using a static navigation �eld for the same
scenario.
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9.7 Source code

The source code for all discussed algorithms and data structures is part of the open-source simu-
lation framework Vadere [294]. More speci�cally, numerical solvers are contained in the solver
package of the VadereSimulator subproject. Class names indicate the solver it implements.
For example, MeshEikonalSolverIFIM.java.java implements InformedFastIterative-
Method. I o�er implementations of the LockFreeInformedFastIterativeMethod and imple-
mentations for the FastMarchingMethod, FastIterativeMethod on Cartesian grids and un-
structured triangular meshes.

9.8 Summary

In this chapter, I discussed the computation of static and dynamic navigation �elds for micro-
scopic pedestrian simulation. I pursued two paths: (1) establish a connection between the mesh
resolution and the eikonal equation and (2) develop an e�ective solver for dynamic navigation
�eld computation. This required a deep understanding of the solving process on an algorithmic
level.

Therefore, in the �rst three sections, I presented and compared state-of-the-art solvers and
techniques to solve the eikonal equation. To deepen my and the reader’s understanding of the
problem, I started with a physical wave propagation analogy. In Section 9.2, I presented well-
known �nite di�erence schemes for Cartesian grids and unstructured meshes. In the following
section, I also discussed and compared numerical methods such as the FastMarchingMethod
and their extensions. This review establishes criteria to decide which numerical method �ts the
problem instance.

In Section 9.4, I established a connection between the mesh resolution and the curvature of
the travel time surface. I used a curvature estimation technique in order to develop an iterative
numerical method that solves the eikonal equation. The method starts with a coarse high-quality
mesh generated by EikMesh, computes the travel time, estimates its curvature, and re�nes the
mesh at highly curved areas. This process is repeated until no further mesh re�nements are
required. Besides this general approach, I connected ∇f to the mesh resolution and exploited the
application, in my case, pedestrian simulation, to generate one static mesh or multiple dynamic
meshes that change during a simulation run.

In Section 9.5, I developed an adaptation of the FastIterativeMethod (FIM), called Informed-
FastIterativeMethod (IFIM). It ‘learns’ and uses the wavefront propagation order to reduce
the workload of dynamic navigation �eld computations. It outperforms the FIM and the Fast-
MarchingMethod for the dynamic navigation �eld computation. The InformedFastItera-
tiveMethod performs exceptionally well if the travel speed function f does not change too
much over time. There might be many more applications outside of pedestrian dynamics that I
am willing to discover in the future. Apart from the IFIM, this section also discusses the natural
wavefront propagation and how it might lead to even more e�ective computations optimized for
single instruction multiple data hardware architectures.

Section 9.6 concludes the chapter by comparing the newly developed IFIM against other meth-
ods. Additionally, I showed the e�ect of using a dynamic over a static navigation �eld. Three
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di�erent scenarios revealed the strength of the IFIM. In conclusion, there is no reason to use any
other method for dynamic navigation �eld computation. The IFIM has the same parallel potential
as the FIM and has approximately the same workload compared to the FMM.

In Section 9.7 I gave references to my source code.
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CHAPTER 10
Discussion

“Attention is the rarest and purest form of generosity.”

– Simone Weil

This �nal chapter summarizes my thesis, reviews what has been accomplished, reveals open
questions, and gives an outlook on possible future directions.

10.1 Summary

This work aimed to enable realistic large-scale microscopic pedestrian simulations. Instead of
designing a new simulation model, I focused on e�cient algorithms to enhance the computa-
tion of existing ones. In the introduction (Chapter 1), I motivated my work and gave preparing
information and advice to the reader.

In the �rst chapter (Chapter 2) of Part I, I reviewed the principle of most known microscopic
models and the hierarchical structure they implement. I discussed the advantages and disad-
vantages and assessed the model’s potential for large-scale simulations. Furthermore, I argued
that many important models rely on either �oor �eld or navigation �elds and that medium- and
long-range navigation realized by dynamic navigation �elds is a robust way�nding technique,
especially for complex geometries. I suggested some improvements for optimal steps models at
the end of Section 2.2.6.

In Chapter 3, I established the assumed relation between the cognitive map of a person and an
agent’s navigation �eld. Many researchers assume that pedestrians navigate through the envi-
ronment by using an optimal path, but I pointed out that the term optimal is ambiguous. For many
essential scenarios, modelers assume that agents move on the shortest or least time-consuming
path. In that case, navigation �elds o�er a robust solution to the way�nding problem. I introduced
the mathematical framework of navigation �elds and presented examples of static and dynamic
navigation �elds established in the community. Using the navigation �eld for the Behavioral
Heuristics Model, I showcased that many models can bene�t from a sophisticated computation
of the destination direction using navigation �elds.

Part II starts (Chapter 4) by di�erentiating between the inhomogeneity of the decision-making
process and the homogeneous locomotion. I argued that the degree of homogeneity maps to the
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degree of execution path divergence of the model’s implementation. Consequently, I identi�ed
locomotion to be the model part that bene�ts the most from parallelism. The chapter ends with
a review of existing parallel implementations of locomotion models.

In Chapter 5, I combined and developed e�cient parallel algorithms to parallelize optimal
steps models. I advocated against model changes for the sake of parallelism, because the model
would lose essential properties. My algorithm (ParallelEventDrivenUpdate) introduces par-
allelism to optimal steps models and is especially suitable for single instruction multiple data ar-
chitectures. I presented the degree of parallelism ParallelEventDrivenUpdate achieves. Addi-
tionally, I compared computation times of ParallelUpdate and ParallelEventDrivenUpdate,
both executed on a graphics processing unit (GPU). ParallelUpdate is a former attempt to in-
troduce parallelism but compromises optimal steps models for the sake of it. It acted as a baseline
for the performance evaluation.

In Part III, I focused on the second computationally expensive part that has to be e�ciently
computed to enable large-scale simulations, i. e., navigation �elds. I followed two ways: (1) a
reduction of the problem size, i. e., the workload, and (2) the development of a new specialized
and more e�cient numerical method. To reduce the problem size, I proposed to discretize the
spatial domain by high-quality meshes with a localized resolution. Since pedestrian simulations
are sensitive to geometrical changes, I decided to use unstructured triangular meshes that adhere
to the boundary domain. In Chapters 6 and 7, I introduced known meshing algorithms to generate
these meshes and established metrics to compare them. Since DistMesh (Chapter 7) performs
exceptionally well and is based on a straightforward physical analogy, I decided to use it for
mesh generation. I showcased its performance and its �aws: an arbitrarily small minimal element
quality, elements that do not align with the geometry, and high computational costs.

I tackled all these issues by introducing an adaptation called EikMesh. It can deal with an
implicit geometry de�nition and with two-dimensional segment-bounded planar straight-line
graphs (Chapter 8). EikMesh supports geometrical constraints, avoids Delaunay triangulation
computations, and exploits a localized memory order of mesh elements. Compared to DistMesh,
the time complexity is reduced, and its parallel potential increased. Its output always adheres to
the boundary, and the quality of the worst mesh element is signi�cantly increased for all test
cases. Additionally, it generates meshes of higher quality and can deal with inputs, for which
DistMesh fails to construct a proper mesh.

In the last chapter (Chapter 9), I focused on the actual computation of navigation �elds and
a suitable user-de�ned element size function h. I described how the eikonal equation is solved
on Cartesian grids and triangular meshes. Furthermore, I proposed a localized mesh resolution
that depends on the curvature of the eikonal equation’s solution Φ. Since one has to compute
Φ before knowing its curvature, I introduced an iterative eikonal solver that solves the equa-
tion on a series of more and more re�ned meshes. Di�erent numerical methods promise e�-
ciency. In practice, their performance relies on the problem instance. For example, methods
inspired by the FastSweepingMethod only perform well for simple cases. The FastMarch-
ingMethod performs well for all instances but operates inherently sequential. Therefore, I de-
cided to look closer into the FastIterativeMethod, which is designed for massively parallel
hardware, but its performance also su�ers from turns of the propagating wavefront. Informed-
FastIterativeMethod eliminates the drawback of the FastIterativeMethod if consecutive
similar eikonal equations have to be computed. Therefore, it suits the requirements for dynamic
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navigation �eld computation. The new method ‘learns’ the propagation direction of the next
wavefront by analyzing the current one. I showed that for n vertices, the InformedFastIter-
ativeMethod requires almost exactly n updates, which is optimal. In addition, it inherits the
parallel potential of the FastIterativeMethod.

10.2 Conclusion and outlook

In this thesis, I presented essential algorithms and data structures to parallelize locomotion mod-
els and to compute eikonal equations e�ciently. Unstructured meshes with localized resolutions
and parallel identi�cation of independent agents led to e�cient large-scale navigation �eld-based
microscopic simulations. Despite their sequential nature, I was able to parallelize optimal steps
models by exploiting data independence in the form of “unaware” agents. Model compromises
were unnecessary, but it is also clear that reducing the agent’s in�uence radius increases the
number of agents that can be updated in parallel. This model modi�cation is worth studying in
future works.

In my experimental study, the portion of independent agents was relatively low. But since
the identi�cation of independent agents is computationally inexpensive, reasonable speedups
were achievable. The GPU implementation showcased the parallel potential of ParallelEvent-
DrivenUpdate for a system with many processing units. It achieved a massive speedup com-
pared to the single-threaded version. Additional experimental studies are required to analyze the
run time and scalability for di�erent hardware systems.

With EikMesh we can construct high-quality unstructured triangular meshes that adhere to
the domain boundary. I emphasized its parallel potential, because we got rid of the computation
of Delaunay triangulations. The force-based improvement step was already executed in parallel,
and edge �ips can even be executed on the GPU, compare [208]. What is missing is a distributed
memory implementation. One idea I had in mind was to partition the mesh into multiple con-
nected sub-meshes and perform the improvement phase of EikMesh for each sub-domain inde-
pendently. We could �x each sub-domain’s boundary vertices, but we would need to change the
partition during the phase to avoid artifacts. Alternatively, we can handle the boundary of each
sub-domain by communicating the required information. A partition could also limit the execu-
tion of the improvement phase to an area, where elements are poorly shaped. These concepts are
worth studying and might yield interesting results for the computational geometry community.

Using the proposed user-de�ned element size function, EikMesh increases the mesh resolution
at geometrically important areas such as bottlenecks. I showed that the curvature is a good esti-
mator for the mesh resolution and presented an iterative algorithm to solve the eikonal equation,
assuming we have no special knowledge about the travel speed function f . In the future, I want
to integrate this technique for dynamic navigation �eld computations. Because of the similarity
of consecutive eikonal equations, I estimate that only a few mesh adaptations between succes-
sive computations are required to guarantee good accuracy. I also presented an alternative: mesh
re�nement at crowded areas. It is a �rst consideration and future work is necessary to test its
potential. The method requires mesh coarsening and re�nement periodically. In my implemen-
tation, it still drains too many resources to be executed for each time step. Further investigations
and developments towards a dynamic mesh are required. The reader might ask why I did not
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use EikMesh for the dynamic mesh resolution adaptation? There is potential. One idea I had in
mind was to generate a �rst mesh with a higher resolution at crowded areas and then, from time
to time, only execute the improvement phase of EikMesh. Using an appropriate dynamically
changing element size h would lead to a mesh that ‘moves’ with the crowd. However, the devil
lies in the details, and I could not test this idea in the scope of my thesis.

Iteratively solving the eikonal equation on a more and more re�ned mesh is a robust method
to generate the initial mesh for dynamic navigation �eld computation. However, we have to
solve the equation multiple times. In future works, I aim to enhance the method such that the
re�nement is executed while the wavefront propagates through the domain. In that case, the
re�nement would take place near the current narrow band of the numerical solver. Instead of
solving the equation multiple times, we would solve it multiple times for some vertices but avoid
a complete re-computation. It is an open question if such a technique led to better performance.

The new InformedFastIterativeMethod is an improvement over existing methods if one
has to compute multiple similar eikonal equations. It is suitable to compute dynamic navigation
�elds since it exploits the similar direction of consecutive propagating wavefronts by ‘learning’
the (de�ning) vertices the wave comes from. In its current implementation, I assume that the
underlying mesh did not change and whenever it does, I ‘unlearn’ everything. Here is room for
improvement. Instead of de�ning vertices, we could ‘learn’ and remember directions, that is, ap-
proximations of ∇ΦΓ,i and identify the de�ning vertices (of ∇ΦΓ,i+1) based on ∇ΦΓ,i . Identifying
the de�ning vertices would require additional arithmetic operations but might still lead to a faster
computation overall. Furthermore, we could use this as a fall-back strategy, i. e., whenever de�n-
ing vertices are unavailable. A GPU implementation for the InformedFastIterativeMethod is
missing, but since it is very similar to the FastIterativeMethod it should be straightforward. If
f can also be computed on the GPU, we could eliminate most of the memory transfers between
the host (CPU) and the device (GPU) during pedestrian simulations. A more extensive perfor-
mance analysis comparing di�erent massively parallel solvers on di�erent hardware settings also
belongs to future works.

For a problem instance, where the wavefront direction stays similar for multiple consecutive
eikonal equations, the NaturalMarchingMethod should be considered. The development of
InformedFastIterativeMethod led me to this concept at the end of my work. There was no
time left to implement and test it, but in my opinion, it might be a powerful technique. It has the
potential to work exceptionally well on massively parallel hardware systems.

I showed the in�uence of the dynamic navigation �eld in a large-scale setting by an example. I
also showed that in some cases, a higher mesh resolution does not necessarily change the result,
that is, the agents’ trajectory. However, for a curvedΦ, the mesh resolution matters. My proposed
curvature dependent element size function is a step in the right direction. In the future, we have
to investigate in more detail what e�ect the mesh resolutions on the simulation output has.

As my last words, I want to stress that numerous �elds might �nd relevant ideas in my work.
Besides topics connected to large-scale pedestrian simulation, I looked closely into unstructured
two-dimensional mesh generation and numerical methods to solve the eikonal equation. I hope
that researchers outside of the pedestrian dynamics community dealing with these two topics
also �nd fruitful ideas in this thesis.
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