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This article presents a novel computational model to
study the selective filtering of biological hydrogels
due to the surface charge and size of diffusing
particles. It is the first model that includes the
random 3D fiber orientation and connectivity of the
biopolymer network and that accounts for elastic
deformations of the fibers by means of beam theory.
As a key component of the model, novel formulations
are proposed both for the electrostatic and repulsive
steric interactions between a spherical particle and a
beam. In addition to providing a thorough validation
of the model, the presented computational studies
yield new insights into the underlying mechanisms
of hindered particle mobility, especially regarding
the influence of the aforementioned aspects that are
unique to this model. It is found that the precise
distribution of fiber and thus charge agglomerations
in the network have a crucial influence on the
mobility of oppositely charged particles and gives
rise to distinct motion patterns. Considering the
high practical significance for instance with respect
to targeted drug release or infection defense, the
provided proof of concept motivates further advances
of the model toward a truly predictive computational
tool that allows a case- and patient-specific assessment
for real (biological) systems.
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1. Introduction
The remarkable ability of hydrogel forming biopolymer networks to control the mobility of
different kinds of diffusing molecules and particles individually is of crucial importance for
numerous functions of the human body. See [1] for a recent review of this topic. On the one
hand, this selective permeability gives rise to the protection of the organism against pathogens
such as viruses that are effectively hindered from invading and traversing the organism. On the
other hand, it ensures the effective transport of a broad variety of substances that are useful
and important for the organism. Examples of such biological hydrogels include mucus, the
extracellular matrix (ECM), intracellular biopolymer networks (comprising, e.g., neurofilaments
or actin), the vitreous humor and the matrix of biofilms, and can thus be found throughout the
entire human body and in countless other places in nature. The high practical relevance of this
fundamental topic extends over multiple fields ranging from medical diagnosis to the therapy
of body malfunctions and targeted drug release. This creates yet unimagined possibilities in
technical applications such as filters used in chemical, mechanical or medical engineering.

A large number of experimental studies have investigated the origin of this selective filtering.
Meanwhile, there is strong evidence that – besides the most obvious mechanism to filter by
size – the surface properties of the particles also plays an important role (see e.g., [1–16]). This
new paradigm thus suggests filtering not (only) by size but also through a combination of other
particle properties such as charge, hydrophobicity or binding affinity and can thus be referred to
as interaction filtering. Despite considerable scientific effort in this field, many aspects concerning
the underlying mechanisms and specific conditions remain unknown. To a large extent, this
can be explained by the following three factors. First, there is a great complexity in the many
different biological systems both in number and diversity of components, e.g., with respect to
their molecular architecture. Second, there are big challenges and limitations with respect to
experimental preparation and measurement techniques when it comes to the required high spatial
and temporal resolution, especially over considerable time spans of several seconds. And third,
there is a fundamental lack of in-depth understanding of physical and chemical interactions on
the molecular scale. This lack of detailed, fundamental microscopic understanding prevents any
reliable prediction of the diffusive mobility of molecules and particles in other than the few
particle-hydrogel systems already studied in vitro. At this point, the development of accurate
and efficient computational models, which are capable of resolving small scales and covering
large spans in space and time, is expected to substantially contribute to scientific progress in this
field.

Compared to the large body of literature reporting on experimental work in this area, relatively
few computational studies have been published so far. Most of the early and also some of
the recent work focused solely on the excluded volume effect of the fibers, i.e., the repulsive
steric interactions with the network fibers that hindered the free diffusion of a (hard) spherical
particle (see e.g., [17–22]). In his Monte Carlo simulations, Saxton [23] was the first to include
and study other than steric interactions in the form of a binding model. Since the recognition
of the dominant role of electrostatic and possibly other types of molecular interactions as
outlined above, several computational studies have included electrostatic effects and confirmed
the trends observed in experiments and shed light on the underlying mechanisms [13,24–28].
Particularly the recent works published by Hansing et al. [27] and Hansing and Netz [28] were
very successful in analyzing the influences of particle size, fiber volume fraction, particle charge,
and the comparison of oppositely vs. similarly charged particles and networks. They also found
good agreement of the simulation results with several sets of experimental data, which confirms
the validity of such modeling approach.

The computational model proposed in this work aims to improve especially the modeling of
the fiber network, which has been modeled in a very simplified manner in all previous studies.
Either a square array of straight and parallel rigid fibers oriented along one spatial dimension
[25] or a cubic lattice consisting of either linearly aligned hard spheres [26] or consisting of
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straight rigid fibers [13,27] has been assumed. Zhou and Chen [24] likewise applied a cubic lattice
consisting of beads placed at the vertices and connected by linear spring elements. Hansing and
Netz [28] were the first to break the strong geometrical order in all of these models, they only
allowed, however, for a variation of the spacing of the still straight and infinitely long rigid fibers
with a mutually orthogonal orientation. Yet they found a significant and fundamental difference
in the trapping mechanism of ordered and disordered fiber lattices, which can be attributed to
locally denser regions of the network in the case of attractive particle-network interactions. This
is a strong motivation to work toward a more realistic modeling of the fiber network as a crucial
part of biological hydrogels as will be outlined in the following paragraphs.

In our approach, the individual fibers will be modeled by the geometrically exact 3D beam
theory, thus allowing for arbitrarily curved initial shapes of the fibers and possibly large
deformations, including all six modes of axial strain, (2x) shear, torsion and (2x) bending. In
addition, the initial spatial distribution, orientation and interconnection of fibers will be modeled
as a random 3D Voronoi network, thus mimicking several important geometrical features of real
biopolymer networks such as a random, spatially variable mesh size distribution, a random fiber
length distribution, random mutual orientations of the fibers, and arbitrary connectivity between
the fibers. Several of these attributes are expected to play an important role when it comes to both
purely steric interactions and the combination with electrostatic interactions and will be studied in
Section 3. A similar approach to network generation based on Voronoi tessellation has previously
been applied in a number of publications, e.g., to study cell-cell communication in a 2D network
of linearly elastic springs [29].

Applying such a sophisticated model to the individual fibers and the network they constitute
comes at the cost of an increased complexity and size of the system of equations to be solved in
the simulations. However, the same modeling strategy based on geometrically exact beam finite
elements describing the biopolymer fibers has previously been applied to model the Brownian
dynamics of individual semiflexible filaments [30,31] and has been proven to be accurate and also
efficient enough to study large-scale problems such as the process of self-assembly of (different
morphologies of) transiently cross-linked biopolymer networks [32,33] as well as their (high- and
low-frequency) rheology [34]. On the one hand, this confirms that the novel modeling approach
is suited to study the hindered mobility of particles in hydrogels and on the other hand, this
already outlines the long-term opportunities. Using the self-assembled network configurations,
e.g., for an actin bundle network, can readily replace the Voronoi-type network applied as a first
step in the present study. Moreover, the dynamics of the network, including the reorganization
of the transient cross-links could be included and would be highly interesting since there is
experimental evidence that particles larger than the mesh size can still diffuse through the
network by locally breaking inter-fiber links [6]. This has also been confirmed to be an effective
transport mechanism in a first computational model [35]. Another example for the dynamics of
hydrogel networks is given by the self-renewal process of a mucus layer [1,36].

In general, the mathematical description of the problem and therefore also the numerical
methods required to solve it as well as the code framework substantially differs from the ones
used by the previous computational studies listed above. This is an inevitable consequence
of the aforementioned modeling of individual biopolymer fibers as elastically deformable,
geometrically exact beams. In the present model, a set of well-established numerical formulations
for beams [37,38] is combined with novel beam-sphere interaction models, which are derived
as a special case of the more general approach to fiber-fiber interactions recently proposed in
[39]. The latter is the first 3D beam-beam interaction model for molecular interactions between
curved slender fibers undergoing large deformations and is thus an important prerequisite for
the beam-sphere interaction formulations to be applied in this article.

The remainder of this article is structured as follows. Section 2 presents all aspects of the
computational model and the required numerical methods. After the presentation and discussion
of the results in Section 3, this article will be concluded with a summary of the findings and an
outlook to promising aspects of future research in Section 4.
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2. Computational model and methods
Given the broad variety of biological hydrogels mentioned above, we chose the ECM gel(s) used
in the comprehensive experimental studies of particle mobility by Lieleg et al. [7] and Arends et
al. [12] to serve as the main reference for the specific setup and parametrization of the versatile
computational model. For these gels, an additional, subsequent characterization in terms of
their biophysical properties has been conducted [40], which shall prove useful in the following.
To reduce the complexity of this multi-component biological system, the computational model
considers only the following three key components, which are thought to mimic the crucial
influences of the studied problem: a fiber network, a diffusing particle, and their mutual
interactions. All three model components will be considered individually in the following and
selected further aspects of the simulation setup such as boundary conditions and post-processing
of the results will be discussed. The software package used for the simulations in this article is the
parallel, multi-physics, in-house research code BACI [41].

(a) Overall approach
Following up on the concept of modeling biopolymer fibers as elastically deformable,
geometrically exact beams as described above, the overall approach follows the one commonly
used in nonlinear finite element frameworks for structural dynamics. In short, this approach
consists of the following steps: According to the principle of virtual work, the weak form of the
mechanical balance equations is derived and subsequently discretized in space and time. Given a
proper set of initial and boundary conditions, an implicit load/time stepping scheme is applied
and in every step the solution of the resulting discrete system of nonlinear equations is found
iteratively by means of Newton’s method. Refer to Ref. [39] for a discussion of selected aspects of
the applied algorithms and libraries.

(b) Biopolymer fiber network
As outlined above, the initial, stress-free configuration of the fiber network is the result of a 3D
Voronoi tessellation of the cubic simulation box (size 10× 10× 10 µm) generated via the open
source library voro++ [42]. Figure 1(a) shows an example of the resulting network architecture.
The main input of this preprocessing step are the randomly chosen locations of a number nVP of
so-called Voronoi points1. The output are the vertices and edges of a random, irregular, polygonal
network that are used to define the position and orientation of the initially straight beam segments
as well as their interconnections. For Voronoi-based tessellation, the connectivity number, i.e., the
number of fibers branching off at each junction point, is 4, which agrees well with values of 3 to
4 reported for ECM gels [44]. In the future, this parameter could also be adapted by randomly
removing or adding fibers to match other hydrogel architectures. At each junction, the beam
endpoint positions and rotations are coupled, which corresponds to a model assumption based
on the expected mechanical behavior of the chemical binding between the fibers, and could be
once again adapted e.g., to hinged connections in a straightforward manner. Also, the binding
and unbinding of such connections at given rates could be included by following the approach
described e.g., in [34]. To be able to use the simulation box as a representative volume element
(RVE) with periodic boundary conditions (see Section (f) for details), the Voronoi tessellation
and thus the resulting network geometry is chosen to be periodic in space. Altogether, a simple
visual comparison with electron microscopy images of real biological hydrogels in Figure 1
reveals a high similarity both in terms of the random, irregular, polygonal structure as well
as its characteristic properties, such as the distribution of pore sizes, fiber segment length and
connectivity.

The individual fibers are modeled by (geometrically exact) 3D beam theory, assuming
undeformable cross-sections of circular shape and a hyperelastic material law. Specifically, we
1Note that the original term Voronoi particles from [42] is not used here to avoid confusion with the diffusing particle(s).



5

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

(a)

(b)

(c)

Figure 1. Network architectures: (a) The result of a random, periodic Voronoi tessellation, which is used as the initial,

stress-free configuration in the computational model (box size is 10 × 10 × 10 µm, rendered using Blender [43]). The

inset shows the scaled system (scale bar indicates 5 µm) used to ease the comparison with the other images. (b)–(c)

SEM images of four different basal lamina gels used in in vitro experiments (reprinted from [40], scale bars indicate (b)

5 µm and (c) 25 µm).

apply the Simo-Reissner beam theory [45–47], which accounts for 6 deformation modes of axial
tension, (2x) shear, torsion and (2x) bending. Further specifications such as the dimensional and
constitutive parameters are chosen to mimic collagen I as the key constituent of the targeted
class of ECM hydrogels, however, all these parameters can be easily adapted to study their
influences or to model other fiber species. In the present study, the cross-section diameter is
set to Df = 75 nm, Poisson’s ratio is set to ν = 0.3, and Young’s modulus is varied from as low
as E = 0.1 MPa up to the theoretical limit of rigid fibers to study the influence of the fiber



6

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

stiffness. Note that experimental measurements for collagen I suggest values in the wide range
of E = 1 MPa− 1 GPa [48,49], which are covered in this work as well. Based on the results
in Section (c), it will turn out that the influence of the fiber stiffness on the particle mobility
in the problem setup considered here is negligible for the realistic range of values for Young’s
modulus E, and a noticeable difference in results can only be observed below a threshold value
of E∗ = 1 MPa. It can therefore be assumed that the specific values for the fiber material are of
minor importance and that the deformation of fibers will only become important if the dynamics
of the network reorganization will be included as outlined above, or if much thinner and softer,
i.e., much more compliant fibers are considered e.g., in the context of a different kind of hydrogel
(e.g., mucin or F-actin) or a dysregulation of fiber stiffness.

In order to characterize the generated fiber networks, Figure 2 shows the resulting
values of the mean and standard deviation of the fiber volume fraction V̄f and the
minimum/average/maximum cell diameters2 as a function of the number of Voronoi points nVP.
For this statistical analysis of the random network geometries, a box size of 10× 10× 10 µm and
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(b)

Figure 2. (a) Mean and standard deviation of the fiber volume fraction (black circles with error bars, which are smaller than

the symbol size). (b) Mean and standard deviation of the minimum cell diameter (blue pluses with error bars) / average

cell diameter (black circles with error bars, again smaller than the symbol size) / maximum cell diameter (green diamonds

with error bars), obtained for three random network geometries for each of the considered numbers of Voronoi points nVP.

a fiber diameter Df = 75 nm as stated above is assumed. A number of nVP = 60 Voronoi points
result in a fiber volume fraction V̄f ≈ 0.4% and a range of cell diameters of approx. 2.7− 5.2 µm.
This turns out to match the typical mesh size of 2− 3 µm reported in [7] quite well and is thus
chosen as the default value for most of the simulations conducted in this work (once again
refer to Figure 1 for a visual comparison of model and real hydrogels). The densest network
to be considered in this work is given as nVP = 600 and thus results in a high fiber volume
fraction of V̄f ≈ 1.8% and cell diameters in the range of approx. 1.0− 2.5 µm. This second value
of the network parameter nVP = 600 is motivated by the example of the human amniotic basal
membrane [44], which appears to be much denser than the one considered above. One example
of the resulting model network is shown in Figure 3.

In order to investigate and average out the influence of the specific network geometry, 5
different realizations of the random network generation process will be considered as input
for the simulations for each – otherwise identical – set of input parameters in Sections (b) and
(c), respectively. In contrast to the spherical particle, which will be discussed next, the fibers
are assumed to be athermal because the lengths of the individual fiber segments are generally
much smaller than their persistence length `p ≈ 39 µm (resulting from the parameters for the
2Here, the cell diameter for each of the nVP cells in the network has been computed as an approximated inscribed sphere of
the irregular polyhedron based on the shortest distance of the Voronoi point to each of the cell edges.
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(a)

(b) (c)

Figure 3. (a) Image of an example network resulting for a second, very high value for the fiber volume fraction V̄f ≈
1.8% considered in the simulations (box size is 10 × 10 × 10 µm, rendered using Blender [43]). Comparison of (b) a

magnified part of this network with (c) a magnified part of the network with the default fiber volume fraction V̄f ≈ 0.4%

(shown in Figure 1(a)).

bending stiffness given above and the thermal energy at room temperature kBT ≈ 4× 10−3 aJ)
and thermal undulations will therefore be negligible. However, for another network architecture
with longer fiber segments or a different species of thinner and thus more flexible fibers such
as mucin or F-actin, this effect might become important and may be included in the novel
computational model by means of the formulation proposed in [30].

Finally, the spatial discretization of the fibers makes use of the geometrically exact
Hermitian Simo-Reissner beam elements proposed in [37], which are mainly based on the well-
established element formulation proposed by Crisfield and Jelenić [50,51]. The applied centerline
interpolation using cubic Hermite polynomials ensures both high accuracy in terms of spatial
approximation and a C1-continuous geometry representation. This is particularly important for
smooth contact kinematics and smooth interaction force distributions as has been shown in the
context of beam-beam interactions in [39,52]. When creating the finite element discretization for
each of the random network configurations, a default element length lele = 1 µm is used for each
straight fiber segment and one additional shorter beam element is created for the remainder of the
random segment length if needed. Based on the previous experience (from challenging scenarios
with large deformations such as presented in [39]) with this kind of beam finite element featuring
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fourth order spatial convergence, this is considered to be a sufficiently fine spatial resolution
for the magnitude of deformations observed throughout this computational study, such that
the influence of the spatial approximation error on the results is expected to be negligible. To
conclude, this strategy typically leads to a number of fiber segments nf ≈ 800, a number of beam
elements nele ≈ 1600, and a number of nodes nnode ≈ 4000 for nVP = 60. Likewise, for the densest
network with nVP = 600, we obtain nf ≈ 6200, nele ≈ 6200, and nnode ≈ 18700.

(c) Spherical particle
The particle is modeled as a rigid sphere and is therefore uniquely described by its midpoint
position rp(t)∈R3 as a function of the time t as well as its diameter Dp = 1 µm that is chosen
to comply with the experimental studies presented in [8,12]. As in several of the aforementioned
previous computational studies (e.g., [27,28]), the Brownian dynamics of the particle is modeled
by the Langevin equation (see e.g., [53]), including the stochastic thermal as well as viscous
drag forces that are repeated here for the reader’s convenience. The velocity-proportional drag
force f s,visc implicitly models a quiescent surrounding fluid and makes use of the friction
coefficient of a sphere γ = 3πηDp according to Stokes:

f s,visc = γI3×3 ṙp. (2.1)

Here, ṙp denotes the particle velocity, and the fluid viscosity is chosen as η= 1 mPa s, which
corresponds to the viscosity of water at room temperature and has been found to be in good
agreement with experimental tracer studies of freely diffusing particles [12]. Following the
consistent modeling of the Brownian dynamics of slender biopolymers within the space- and
time-discrete theoretical framework of the nonlinear finite element method according to [30], the
stochastic thermal forces acting on the sphere are given as:

f s,stoch =
√

2kBT γI3×3
∂2W(x, t)

∂ x ∂ t
. (2.2)

Here, the thermal energy is set to kBT = 4.1× 10−3 aJ corresponding to room temperature and
the last term describes the space-time white noise resulting from a two-dimensional Wiener
process W(x, t). Both contributions from viscous and stochastic forces on the spherical particle
are added to the total virtual work of the system, which other than that, includes the contributions
from internal elastic forces of the fibers and the contributions from the particle-fiber interactions
that will be discussed next. Afterward, the temporal discretization and time stepping scheme will
be presented in Section (e).

(d) Interactions between the particle and the fiber network
In view of the central research questions described above, the interactions between the
spherical particle and the fiber network are the key component of this computational model.
In accordance with the sophisticated modeling of elastic fibers, these interactions are modeled
at the level of individual particle-fiber pairs and are evaluated as a fully resolved, resulting
line force distribution on the fiber. At this point, it becomes clear that the sophisticated fiber
model, including potentially large 3D deformations, which is a unique feature of this novel
computational model, carries over to interaction modeling in the form of additional challenges
to accurately and efficiently describe the sphere-fiber interactions for arbitrarily deformed
fiber configurations and mutual orientations. Since the conclusion of previous experimental
as well as computational studies is that the combination of repulsive steric and (attractive)
electrostatic effects is the main reason for the effective selective filtering of biological hydrogels
(see e.g., [8,12,28]), both interaction types are accounted for in the present model.

To the best of the authors’ knowledge, the problem of a beam interacting with a rigid sphere
via both repulsive steric and (attractive) electrostatic effects has not been considered in the
literature before. The key idea of our modeling approaches is to consider the sphere-beam
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interaction as a special, simpler case of the beam-beam interaction. Starting from the formulation
for molecular interactions proposed in [39] and the contact formulation proposed in [54], the
following procedure basically replaces one of the beams of an interaction pair by a rigid sphere.
The resulting formulations, derived for both contact and electrostatic interactions between a
rigid sphere and a beam, are summarized below. Note that hydrophobic interactions are not
included here due to the lack of a proper fundamental understanding and modeling approach.
Assuming that this effect can be described by an effective interaction potential, it could however
be incorporated in a very similar manner as the electrostatic interactions and would be an
interesting future extension of the present model.

(i) Electrostatic interactions

Generally, the two-body interaction potential of a beam-sphere pair Πia shall be described as:

Πia =

l∫
0

π̃section-sphere(rb-s,ψb-s) ds, (2.3)

where a section-sphere interaction potential law π̃section-sphere has been introduced. Such a
reduced interaction law is an analytical description of the effective interaction of one cross-section
of the beam with the rigid sphere and will be further specified below. In general, π̃section-sphere
will depend on the relative distance vector rb-s of the section midpoint rb(s) and sphere
midpoint rs as well as the relative orientation expressed by the relative rotation vector ψb-s.
In order to arrive at the total two-body interaction potential Πia, the section-sphere interaction
potential π̃section-sphere is then numerically integrated along the arbitrarily deformed centerline
curve of the beam. Here, s∈ [0, l] denotes the arc-length parameter, which is defined in the stress-
free, initial configuration of the beam’s centerline curve. This general approach is in close analogy
to the concept of section-section interaction potential (SSIP) laws introduced in [39].

Since it is the most relevant specific example for this study, we now consider the case of
Coulomb interaction. Again in close analogy to the careful choice of the SSIP law for this kind of
interaction in [39], the following section-sphere interaction potential law π̃section-sphere is obtained:

π̃section-sphere = λb Qs Φ(d) with d= ‖rb − rs‖ . (2.4)

Here, λb denotes the line charge density of the beam, Qs denotes the total charge of the sphere,
and Φ(d) =Celstat d

−1 is the well-known Coulomb potential with its inverse distance dependency
and constant prefactor Celstat. Following the theoretical considerations in [39], the section-sphere
interaction potential law π̃section-sphere is expressed solely by the scalar separation of the section
and sphere midpoint positions. According to the detailed study of the accuracy of this simple
resulting interaction law in [39], the intentional neglect of the orientation dependenceψb-s turned
out to be a reasonable approximation in the case of circular, homogeneous cross-sections and
long-range interactions as considered here.

The required variation of Equation (2.3) for obtaining the corresponding virtual work
contribution, the subsequent spatial discretization of the beam centerline for arriving at the
discrete element force vector for both the beam and the sphere as well as the consistent
linearization of these terms will be omitted here for the sake of brevity. They follow directly from
substituting the respective expressions in the equations for the SSIP approach as presented in [39].

Note that arguably the most critical limitation of this computational model is the use of a
Coulomb interaction potential law, which neglects the presence of counterions in the electrolyte
solution and the associated screening of charges that in turn significantly reduces the range of
electrostatic interactions in biological hydrogels. This can be seen as a pragmatic, simplified
model chosen due to the current lack of a sphere-beam or beam-beam interaction formulation
for screened electrostatic interactions, and the implications will be discussed in the following
paragraph.
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Discussion of neglecting screening effects.
Regarding the impact of this model assumption on the results of this computational study, it
is expected that the effect of charges in general and the range of interaction in particular is
overestimated and that applying the simple Coulomb interaction model is thus inadequate for
predicting the particle mobility in a quantitatively correct manner. However, the qualitative
behavior of the particle and the trends in the statistical quantities of interest such as the mean
squared displacement (MSD) of the particle over time for varying charge density is expected to
be meaningful and thus allow for both valuable insights in the biophysical system behavior and
mechanisms as well as a first proof of principle for this novel computational modeling approach
in general. Based on the experimental observations and in anticipation of the obtained simulation
results, this reasoning is supported by the fact that the most effective trapping mechanism is the
one of a persistent, strongly adhesive contact between the particle and the oppositely charged
network fibers, which is a scenario with minimal surface separation and thus minimal screening
effect. Therefore, the behavior of a particle with medium to large distance to the nearest fibers
is thus expected not to be reproduced correctly by the Coulomb interaction model, whereas in
contrast, the practically much more important regime of small separations should be represented
with sufficient accuracy in order to allow for the aforementioned analysis of trends and basic
mechanisms. In order to still account for screening charges, the cutoff distance of the interaction is
set to rcutoff = 2 µm, which is defined via the separation of the sphere and fiber midpoint position
and thus effectively neglects any interaction forces beyond particle-fiber surface separations
of gcutoff ≈ 0.96 µm. Finally, despite the fact that the development of a screened electrostatic
interaction formulation for instance based on the Debye-Hückel approximation of the Poisson-
Boltzmann theory would go beyond the scope of this computational study, it is clearly considered
an important and promising future extension of the present model that should be used for both
subsequent verification of the drawn conclusions and specific analysis of the influence of salt
concentration as well as ion-specific effects observed in experiments [12].

The parametrization of the electrostatic interaction model used throughout this study is
given as follows. Based on assuming the dielectric permittivity of water (at room temperature)
for the surrounding fluid, the constant prefactor of the Coulomb interaction potential law is
obtained as Celstat ≈ 1.12× 102 aJ µm fC−2. As a first step and in accordance with all previous
computational studies, the surface charge density of the fibers as well as that of the particle
is assumed to be homogeneous and constant along the fibers. In view of the complex,
inhomogeneous molecular architecture and thus charge distribution of individual biopolymer
filaments and moreover the complex constitution of a real biological hydrogel, this model
assumption is once again expected to have a significant influence on the quantitative accuracy
of the results. However, it should still allow for qualitative analysis of trends and mechanisms,
as argued above in the context of the electrostatic interaction model. A potential improvement
on this point is rather a question of detailed experimental fiber characterization and model
parametrization than method development, because the sphere-beam interaction model proposed
above is capable of describing varying line charge distributions along the filaments. As a first
step, however, a constant, homogeneous line charge density of the fibers λf =−0.25 fC µm−1 is
assumed throughout this article and the positive surface charge of the particle will be varied in
Section (b) to study its influence on the particle mobility. Finally, a total of 10 integration points
per beam element are used to evaluate the contributions of the electrostatic line force distribution
along the fibers by means of Gaussian quadrature.

(ii) Repulsive steric interactions

The line-to-line contact formulation proposed in [54] effectively precludes any noticeable
penetration of fibers for arbitrary mutual orientations and deformations. It thus serves as the
starting point for the dimensionally reduced case of beam-to-rigid sphere contact, which is
outlined as follows: Postulating a beam-sphere penalty force law as a linear function of the
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minimal surface-surface separation (i.e. gap) gb-s with constant scalar prefactor (i.e. penalty
parameter) εb-s yields the two-body interaction potential:

Πcε,b-s =
1

2
εb-s

l∫
0

〈gb-s(s)〉
2 ds. (2.5)

Here, the crucial difference to the beam-beam scenario lies in the way the gap g is computed.
Whereas a unilateral closest-point projection is required in the beam-beam scenario, the problem
simplifies significantly in the case of a rigid sphere, because the minimal surface separation
between the current beam cross-section and the sphere may be expressed in good approximation
as:

gb-s(s) = ‖rb − rs‖ −Rb −Rs. (2.6)

As in the previous section, the required variation of Equation (2.5) for obtaining the
corresponding virtual work contribution and subsequent spatial discretization of the beam
centerline for arriving at the discrete element force vector for both the beam and the sphere as
well as the consistent linearization of these terms follows in close analogy to the beam-beam
scenario and will therefore not be presented here.

The parametrization of this contact model is chosen as follows: Throughout this study, a
constant penalty parameter εb-s = 100 pNµm−1 is chosen, which turned out to be sufficiently
large such that the maximum penetration of particle and fiber is smaller than 5% of the fiber
diameter Df even in the most challenging scenarios of strongly adhesive contact and sudden
stochastic forces on the particle in the direction toward the fiber. Finally, 15 collocation points per
beam element are used for the evaluation of the contact line force distribution along the fibers.

Remark on fiber-fiber interactions.
At the end of this section, note that contact and electrostatic interactions between fibers are not
considered here because it turns out that their mutual separations and orientations are almost
entirely determined by the rigid connections of their endpoints at the network vertices. As
mentioned earlier, beam-beam interaction formulations for both steric repulsive and electrostatic
interactions are readily available and could be directly added as a future extension of this model,
however, at the cost of an increased computational effort.

(e) Temporal discretization
In addition to the already discussed spatial discretization of the fibers via beam finite elements,
the problem is discretized in time via an implicit direct time stepping scheme. Specifically, the
resulting system of first-order stochastic3 partial differential equations in time is discretized by
means of a Backward Euler scheme, as proposed in [30]. Starting from a default time step size
of ∆t= 10−3s, an adaptive time stepping scheme is applied, which is especially important for
resolving the highly nonlinear dynamics during (adhesive) contact interactions and potentially
large sudden changes in the magnitude and direction of the thermal forces. The total simulation
time per run is set to tend = 20 s, which generally leads to a required number of time steps in
the range of nstep ∈ [2× 105, 3× 105]. In order to account for the stochastic nature of the thermal
forces driving the particle motion, generally two or more random realizations for each – otherwise
identical – set of input parameters (i.e., identical, random network geometry and interaction
parameters) are computed and considered in the analyses presented in Section 3.

3Recall that our Brownian dynamics model includes the stochastic thermal forces acting on the spherical particle as stated in
Equation 2.2.
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(f) Boundary conditions
As already mentioned in the context of the network modeling (Section (b)), the concept of a
representative volume element is used to limit the influence of artificial boundary effects. For
this purpose, periodic boundary conditions are applied at each side of the simulation box shown
in Figure 3(a). Thus, once the particle as well as (parts of) the fibers leave the representative
volume element at any side, they reenter it on the opposite side. Moreover, the steric as well
as electrostatic interactions are also evaluated across periodic boundaries. In the majority of the
simulations considered in Section 3, no other boundary conditions are applied. However, in a
certain batch of simulations, the entire network of fibers will be fixed by means of Dirichlet
boundary conditions in order to serve as a reference solution mimicking the limiting case of rigid
fibers.

(g) Postprocessing and quantities of interest
Since this study focuses on the (hindered) diffusive mobility of particles, the most important raw
data obtained from the simulations is the particle midpoint position in every time step. From
this point on, the postprocessing procedure is equivalent to experiments that track the motion
of individual fluorescent tracer particles (e.g., [7,8,12]). Based on the discrete time sequence
of particle positions, the mean squared displacement (MSD) <∆r2p(τ)> is computed for any
desired time interval (that can be observed in a given simulation run) τ ∈ [∆t, tend] as follows:

<∆r2p(τ)>=
1

Nτ

Nτ∑
i=0

(
rp(i∆t+ τ)− rp(i∆t)

)2
. (2.7)

Here, Nτ denotes the number of all distinct (but possibly overlapping) time intervals τ obtained
for one simulation run. Given that the number of independent samples obtained for large time
intervals is naturally limited, only the first 10% of the maximal possible time intervals, i.e., τ ∈
[∆t, 0.1 · tend], will be considered in the statistical analyses. However, the remaining data is
included and indicated by a gray background in all the MSD plots to be presented. Moreover,
the mean and standard deviation of the MSD obtained for several realizations of the random
network geometry as well as several realizations of the stochastic process of thermal forces will be
considered. As the majority of the considered scenarios shows a subdiffusive behavior, the MSD
curves over the time interval will be presented and discussed instead of the (apparent) diffusion
constant, which obviously depends on the considered time interval and could still be computed
from the MSD curves if desired. Other simulation results, such as the resulting axial strains of
the fibers, will be presented and discussed for a few specific investigations wherever needed for
interpreting the system behavior.

3. Results and discussion
The following discussion of simulation results is divided into three parts. First, in Section (a),
we study the influence of collisions between the particle and the fiber network on the particle
mobility. Second, the effect of additional attractive electrostatic interactions between the particle
and the fiber network will be investigated in Section (b). Lastly, Section (c) analyzes the special
role of fiber stiffness in the case of the most effective hindrance mechanism observed in the
simulations.

(a) The effect of solely repulsive steric interactions
To begin with, the double-logarithmic plot of the particle’s MSD <∆r2p > as a function of the
time interval τ shown in Figure 4(a) confirms the validity of the applied Brownian dynamics
model, because the results obtained for free diffusion of the particle (red line with circles and
error bars) excellently match the analytical reference solution (black dashed line). Moreover, the
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Figure 4. Analysis of the particle mobility in presence of solely repulsive steric interactions with the fiber network. (a) Mean

squared displacement (MSD) of the particle <∆r2p > as a function of the time interval τ : Mean and standard deviation

over ten random realizations for the case of free diffusion (red line with circles and error bars) and three individual random

realizations for a medium fiber volume fraction V̄f ≈ 0.4% (cyan lines). The analytical solution for the case of free diffusion

is plotted as a reference (black dashed line). In addition, two sets (I) and (II) of three individual random realizations each

for a very high fiber volume fraction V̄f ≈ 1.8% (green dotted lines) are included. To demonstrate the extreme effect of

caged particles, all fibers have been fixed in space for all realizations with V̄f ≈ 1.8%. The gray background indicates the

range of time intervals above 10% of the simulation time, where only few independent samples are available for computing

the MSD. (b) Network with very high fiber volume fraction V̄f ≈ 1.8% and overlay of all observed particle positions in one

simulation run corresponding to either the high MSD plateau value (I, blue) or the low value (II, orange). (c) Magnified

detail showing the two compartments with irregular polygonal shape that the particle cannot leave.

standard deviation of the mean over ten random realizations as indicated by the error bars is
negligible within the first 10% of the time interval range (indicated by the white background) that
is considered in the following analyses.

Steric hindrance is insignificant as long as particle diameters are smaller than the smallest
mesh sizes.
Turning to the influence of repulsive steric interactions, i.e., collisions between the particle and
the fiber network, Figure 4(a) shows that a medium fiber volume fraction V̄f ≈ 0.4% (cyan lines,
see Figure 1(a) for an example of the network) has almost no perceptible influence on the MSD.
Only above approximately τ = 0.5 s is a very subtle subdiffusive behavior observable for the
three individual realizations plotted here, which indicates the occurrence of a few collisions
if the particle travels over longer periods of time. On the one hand, this behavior of almost
free diffusion of the particle is expected from the range of cell diameters 2.7− 5.2 µm of this
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irregular polygonal network compared to the particle diameter Dp = 1 µm. Moreover, previous
experimental studies have made very similar observations for almost neutral particles or high
salt concentrations that effectively shield any electrostatic interactions [7,8,12]. However, this is
the first computational study with a realistic, irregular polygonal fiber network geometry and
thus an important confirmation that the effect of solely steric hindrance is indeed negligible in
this regime, where the ratio of network mesh size(s) and particle diameter is greater than one.

Particles with diameters in the range of the mesh sizes are caged in polygonal compartments
of random size and show confined diffusive behavior.
To push this to the limit where purely steric hindrance and thus filtering by particle size
will become significant, a ten times larger number of Voronoi points nVP = 600 corresponding
to a fiber volume fraction of V̄f ≈ 1.8% and cell diameters of 1.0− 2.5 µm, i.e., in the order
of the particle diameter Dp = 1 µm, have been applied. An example of the resulting network
architecture is illustrated in Figure 3(a). To probe the most extreme effect of steric hindrance,
the fibers are completely fixed in space for these two sets of three random realizations each.
The results are plotted in Figure 4(a) (green dotted lines). One of the sets (I) shows close to
normal diffusive behavior on very small time scales up to approximately τ = 0.05 s and eventually
reaches a plateau value of<∆r2p >≈ 0.7 µm2 beyond τ ≈ 1 s. The other set (II), which are random
realizations using the identical fiber network geometry, but a different initial position of the
particle, shows a significantly subdiffusive behavior already for the smallest considered time
intervals and quickly reaches a plateau value of <∆r2p >≈ 0.05 µm2 for any time interval longer
than τ ≈ 0.1 s.

This is an expected behavior for the diffusion of particles in an irregular network with
cell diameters of the same order as the particle diameter and therefore randomly connected
sufficiently large cells that together form a polygonal volume surrounding the initial position of
the particle, which the particle cannot leave under any circumstances. The specific compartments
that the particle is able to explore starting from either of the two initial positions in the
identical network are illustrated in Figure 4(b) and 4(c). Here, the overlay of all particle
positions throughout the entire simulation is shown in dark blue for the case of the higher MSD
plateau value (I) and in orange for the case of the lower MSD plateau value (II) observed in
Figure 4(a). This behavior is known as confined diffusion and has been theoretically described and
experimentally observed e.g., in the context of studying cadherin molecule mobility in plasma
membranes [55]. As discussed for instance in [1], such a filtering mechanism based on size clearly
has a very effective selectivity and is applied by organisms to strictly preclude the access of any
objects larger than the characteristic mesh size, e.g., of the nasal mucous membrane.

However, there are still open questions concerning the mobility of (medium to) large objects in
biological hydrogels taking into account the continuous reorganization of biopolymer networks
based on both (de-)polymerization and the transient nature of crosslinks. Such a transport
mechanism for relatively large particles has been observed in experiments [6] and recently
been investigated also in a theoretical and computational model [35], where crosslink binding
dynamics are influenced by the diffusing particle. It is also suggested that this kind of mechanism
could play a role in the selective permeability of the nuclear pore complex, for which the
governing principles are still under debate (see e.g., the review article [1]). Replacing the
Voronoi-type network in the present computational model by that of a transiently cross-linked,
self-assembled network driven by Brownian motion [32,33] is thus considered a promising future
step.

(b) The effect of additional attractive electrostatic interactions
In addition to repulsive steric interactions, attractive electrostatic interactions due to uniformly
distributed, opposite charges on the particle and the fibers will now be considered. This has been
confirmed to be the most effective hindrance mechanism for particles smaller than the mesh sizes
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both in experiments (e.g., [7,8,12]) and simulations (e.g., [27,28]). Throughout this section, we thus
keep the fiber volume fraction fixed at the medium value V̄f ≈ 0.4%, which has been shown to not
have a noticeable influence on the particle’s MSD in Figure 4(a) (cyan lines).

On average, the degree of subdiffusion increases with the strength of attraction.
The resulting MSD curves for a low (green), medium (cyan), and high (red) value of the particle’s
surface chargeQp are shown in Figure 5 and compared to the analytical reference solution for free
diffusion (black dashed line). As mentioned earlier, the fiber volume fraction V̄f ≈ 0.4% is identical
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Figure 5. Analysis of the hindrance of particle mobility due to attractive electrostatic interactions with the fiber network

(in addition to repulsive steric interactions). Mean squared displacement (MSD) of the particle<∆r2p > as a function of

the time interval τ : (a) Mean and standard deviation over five random network geometries and two random realizations

each for three different values of the particle’s surface charge: Low charge Qp = 0.125 × 10−3 fC (green), medium

charge Qp = 10−3 fC (cyan), and high charge Qp = 8 × 10−3 fC (red). (b) All corresponding individual realizations.

The medium fiber volume fraction V̄f ≈ 0.4% is identical for all of these realizations. The analytical solution for the case

of free diffusion is plotted as a reference (black dashed line). The gray background indicates the range of time intervals

above 10% of the simulation time, where only few independent samples are available for computing the MSD. The bottom

of the error bar is hidden for clarity wherever the corresponding value is negative.

for all simulation runs. In particular, 5 different random network geometries with 2 random
realizations of the stochastic forces each have been simulated for each of the three different
charge values. Figure 5(b) shows these 10 independent realizations for each particle charge value
and the corresponding mean values and standard deviations are plotted in Figure 5(a). On
average, the degree of subdiffusion increases with the strength of attractive interaction, which
has been suggested by previous experiments (e.g., [7,12]), and has been confirmed by previous
computational studies using ordered (e.g., [26,27]) and unordered [28] arrays of straight, rigid,
mutually orthogonal fibers. Here, the smallest charge value Qp = 0.125× 10−3 fC leads to a very
small degree of subdiffusion, which is in fact quite similar to the one observed in the limit of no
charge shown in Figure 4(a). In contrast, medium (cyan) and high charge values (red), which are
a factor of 8 and 64 higher than the smallest charge value, significantly hinder the diffusion of the
particles already on (very) small time scales τ < 0.1 s. In this regime, the slopes of the MSD curves
are however close to one, which suggests normal diffusive behavior with a decreased diffusion
constant.

The variability of MSD values and slopes increases for longer time intervals, which indicates
that particles randomly switch between distinct motion patterns.
This almost normal diffusive behavior with slope values close to one on very small time scales
changes drastically for longer time intervals τ > 0.1 s, where the individual realizations exhibit
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slopes in the broad range from zero to one, and even some examples for superdiffusive behavior
with a slope greater than one can be observed for medium charge values. Such a significant
increase in the variation of MSD values as well as slopes is in excellent agreement with the
experimental results from [12]. Their subsequent analysis of squared displacement values over
time revealed the existence of sudden trapping and escape events of a particle switching between
an almost free, a loosely bound, and a tightly bound state. This hypothesis is confirmed by the
simulation results shown in Figure 6(a), where very similar motion patterns can be observed.
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Figure 6. Simulation results for one realization with high charge Qp = 8 × 10−3 fC and medium fiber volume

fraction V̄f ≈ 0.4% that exhibits three distinct trapped states with sudden transitions (“jumps”) between them. (a) Squared

displacement of the particle ∆r2p over the simulation time t. (b) Particle trajectory with color (green, blue, pink, yellow,

cyan and red) indicating the characteristic intervals of simulation time where the particle is either trapped (blue, yellow

and red) or jumps between the trapped states (pink and cyan). (c) Detail view showing an overlay of the particle positions

in the three distinct trapped states (blue, yellow and red) and an overlay of the (oppositely charged) fiber aggregates that

are responsible for the effective trapping. The three colors (blue, yellow, and red) again match the corresponding time

intervals in (a) and (b).

(Strongly) charged particles jump between local aggregates of fibers, i.e., opposite charges.
While a causal link of trapped states and local aggregation of fibers, i.e., charge patches of
opposite sign, has already been suggested in several experimental studies (e.g., [7,12]), the limited
spatio-temporal resolution of single particle tracking and imaging has so far precluded a direct
proof. The particle trajectory shown in Figure 6(b) and the detail view of the fiber aggregates
corresponding to the three observed trapped states illustrated in Figure 6(c) clearly confirm
this causality. Related observations have been made in the recently published computational
study [28], which for the first time considered disorder in the still rigid, straight, mutually
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orthogonal fibers and described a resulting, so-called dense-region trapping. In the present study,
the random, irregular polygonal network structure, very similar to the one of real biological
hydrogels (cf. Figures 1 and 3), allows for a more detailed analysis of this trapping mechanism.
Particularly, these fiber aggregates are found at network vertices and small polygonal faces in
the network that have a lateral spatial extension smaller than the particle diameter. Figure 6
also suggests that the magnitude of the remaining thermal fluctuations observed in the squared
displacement of the particle is a measure for the strength of the trapping and that this strength
is proportional to the local fiber, i.e., charge density. Finally, the results suggest that the stronger
the particle is immobilized, i.e., the smaller the fluctuations in the squared displacement are, the
longer the particle will remain at this location.

The irregularity in the fiber/charge distribution gives rise to three distinct motion patterns, one
of which allows the particle to travel via successive jumps.
From a mechanical point of view, the spatially varying distribution of fibers and thus charges
gives rise to a random 3D potential field to be explored by the particle (similar to the one used in
our previous contribution [31] to study the effect of filament prestress in biopolymer networks).
The location and values of the (local) minima in the potential field as well as the potential barrier
and paths connecting them strongly depend on the characteristic geometrical properties of the
network such as connectivity, distribution of fiber segment lengths and the resulting distribution
of cell and mesh sizes. Considering real biological hydrogels further extends the list of crucial
influencing factors to the type and fractions of load-carrying components and their specific
surface charge distributions. All of these factors that shape the characteristic potential landscape
will determine whether and how the stochastic thermal excitation causes the particle to either
(1) remain at one location being completely immobilized, (2) cycle between neighboring minima
being restricted to a certain region, or (3) travel through the hydrogel via jumps – potentially also
over long distances.

All three motion patterns (1)–(3) can be identified among the realizations shown in Figure 5(b).
For long time intervals τ > 0.1 s, both patterns (1) and (2) lead to a similar behavior of confined
diffusion as obtained for the case of caged particles considered in the previous section4. The
plateau MSD value thus allows to draw conclusions with respect to the volume enclosed by the
particle’s initial position and the location(s) of the potential minimum/minima (i.e., fiber/charge
agglomerations) that the particle has visited. By looking at the sequence of snapshots over the
entire simulation time, it has been verified that those four (highly charged) particles with the
smallest MSD plateau values of <∆r2p >≈ 2× 10−2 µm2 are completely immobilized at one
single location in the network (cf. motion pattern (1)). In contrast, those medium and highly
charged particles with intermediate values for the MSD slopes jump or smoothly transit between
local fiber agglomerations in cycles (cf. motion pattern (2)) such as observed in the example
shown in Figure 7. Finally, also motion pattern (3) has been identified in the set of individual
realizations, as already shown in Figure 6 for a particle with high surface charge. This case can
easily be identified among the MSD curves plotted in Figure 5(b) as the one with the largest MSD
values for long time intervals.

To conclude this section it can be stated that strong attractive forces mostly lead to motion
patterns (1) and (2) that effectively immobilize the particles in a confined volume. However,
the motion pattern (3) allows – at least theoretically – for a travel of particles over considerable
distances by means of a series of successive jumps. The effectiveness of this transport mechanism
depends on the irregularity of the fiber/charge distribution in space and in particular the
(relative) height of the potential barriers between the fiber/charge agglomerations. While the
particle in the specific example shown in Figure 6 seems to be completely immobilized after two
consecutive jumps, one might think of another special design of the fiber/charge distribution
with a certain degree of periodicity that could lead to an effective transport of the particle also

4Note however the difference in the diffusive behavior for small time intervals τ < 0.1 s that allows to differentiate between
purely steric hindrance (cf. Figure 4(a)) and additional attractive interactions (cf. Figure 5(b)).
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Figure 7. Particle trajectory for one realization with medium charge Qp = 1 × 10−3 fC and medium fiber volume

fraction V̄f ≈ 0.4% that smoothly cycles around a region of fiber/charge agglomeration. The continuous color scheme

indicates the course of the simulation time t.

over large distances and in small time intervals. Such a directed motion would maximize the
mobility of a diffusing particle.

Altogether, the results of this section indicate that the irregularity of the potential landscape
exerts a crucial influence on the overall effectiveness of particle immobilization and therefore
on the selectivity of hydrogels. The aforementioned factors that shape the effective potential
field explored by the particle are known to vary substantially between the multitude of different
biological hydrogels (see e.g., [1]). Therefore, a systematic parametrization (and if required an
extension) of the present computational model with respect to other classes of gels is expected
to be a valuable means for studying the species-specific variations of the general behavior and
principles observed so far. In the long run, this might even lead to simulation-based prediction
tools enabling a case-specific choice or design of drug delivery vehicles. Being able to optimize
the properties of the carrier to effectively attach the drug to the carrier and yet effectively diffuse
through the body would clearly be invaluable in this context.

Brief discussion of computational aspects.
In total, 60 simulations with at least 2× 104 time steps each have been conducted and evaluated
for the results shown in this section (cf. Figure 5(b) for all realizations). One simulation typically
took 2-4 days if run in parallel on 16 cores5 on a Linux cluster. The main drivers for the
computational cost are the fiber volume fraction and the presence and strength of electrostatic
interactions leading to a complex interplay of repulsive steric and attractive electrostatic forces
that require a fine temporal resolution (i.e., smaller time steps) and make the nonlinear problem
more challenging to solve.

(c) The influence of fiber stiffness/compliance
Up to this point, we haven’t discussed the influence of the fiber stiffness, which mainly influences
the amount of fiber deformation and – besides the realistic network geometry – is the second
unique feature of the present computational model. In the problem setup considered here,
fiber deformations originate exclusively from contact and/or electrostatic interactions with the
Brownian particle. Thus, the highest particle charge Qp = 8× 10−3 fC will be considered in this
section, because the most frequent and strongest interactions can be expected in this case. To
determine the point where fiber deformations begin to change the results, the value for Young’s
modulus has been varied systematically starting from the theoretical limit of rigid fibers as
outlined already in Section (b). In this section, the results for rigid fibers will thus be compared to
5AMD Opteron 6128
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those obtained for a value of E = 0.1 MPa where the first differences can be observed, and to the
ones obtained for a ten times larger value E∗ = 10 · E = 1 MPa, which are basically identical to
the case of rigid fibers. Note that – just as in the previous section – the fiber volume fraction will
be kept constant at the medium value V̄f ≈ 0.4% throughout this section.

Figure 8 compares the MSD curves obtained for the low fiber stiffness resulting from Young’s
modulusE (red lines) with the ones obtained for a ten times higher value for Young’s modulusE∗

(yellow lines) and the ones obtained for the limit of rigid fibers (cyan dashed lines). Apart from the
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Figure 8. Analysis of the influence of the fiber stiffness on the (hindrance of) particle mobility (due to attractive electrostatic

and repulsive steric interactions with the fiber network). Mean squared displacement (MSD) of the particle <∆r2p > as

a function of the time interval τ : (a) Mean and standard deviation over five random network geometries and two random

realizations each for three different levels of the fiber stiffness: Low value for Young’s modulus E = 0.1 MPa (red, see

also Figure 5), medium value for Young’s modulus E∗ = 1 MPa (yellow), and the limit of rigid fibers (cyan). (b) All

corresponding individual realizations. The fiber volume fraction V̄f ≈ 0.4% and particle’s charge Qp = 8 × 10−3 fC

are identical for all these realizations. The analytical solution for the case of free diffusion is plotted as a reference (black

dashed line). The gray background indicates the range of time intervals above 10% of the simulation time, where only few

independent samples are available for computing the MSD. The bottom of the error bar is hidden for clarity wherever the

corresponding value is negative.

fiber stiffness, the compared sets of ten realizations each are identical, in particular with respect to
the 5 different random network geometries and the 2 different sequences of the random stochastic
forces each.

The influence of fiber stiffness on particle mobility is insignificant within the range of stiffness
values reported for ECM gels.
There is no perceptible difference between the results for the medium fiber stiffness using E∗ and
those for the limiting case of rigid fibers. Recall from Section (b) that the value E∗ = 1 MPa is
already the lower limit of the wide range E = 1 MPa− 1 GPa of values reported for experiments
with collagen gels [48,49].

For more flexible fibers, we observe and speculate about a few competing effects that seem to
cause an overall decrease of particle mobility.
First, let us look at the resulting overall effect in terms of the change in ensemble-averaged MSD
curves. For the lowest fiber stiffness E = 0.1 MPa considered in our simulations, the curves are
shifted towards smaller MSD values (see Figure 8). The difference is not significant due to the
considerable variability already observed in the results of the last section. However, these results
allow to conclude that – for the given set of parameters – a value belowE∗ will begin to influence
the simulation results. As an explanation for this behavior, we speculate that the softer fibers
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lead to an increased adhesive contact area because their shape adapts to the surface shape of the
particle and that this behavior in turn traps the oppositely charged particles more effectively. In
addition, the softer fibers will presumably follow the particle’s thermal excitation more closely
and thus lead to smaller peak values of particle accelerations and interaction forces that act
to separate the adhesive contact between fiber(s) and the particle, such that escape events will
become less likely. Both effects might contribute to the observed overall reduction of particle
mobility for fibers with a low stiffness. This reasoning is supported by the previously recognized
high importance of trapping and escape events as concluded from the results of the previous
Section (b).

Generally, there might be more mechanisms how very soft fibers can influence the particle
mobility, including some that increase particle mobility. In an effort to shed some light on
this, we look at the direct, pair-wise comparison of a pair of simulations with different fiber
stiffness values E and E∗ and an otherwise identical setup, i.e., in particular, with identical
network geometry, identical initial particle position, and identical sequence of stochastic forces
(see Figure 9). The first and second pair of realizations with otherwise identical parameters (first
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Figure 9. Detailed comparison between low fiber stiffness (red solid lines: E = 0.1 MPa) and medium fiber stiffness

(yellow dashed lines: E∗ = 1 MPa) for three individual random realizations (crosses, diamonds and circles). The plot

shows the mean squared displacement (MSD) of the particle<∆r2p > as a function of the time interval τ . The analytical

solution for the case of free diffusion is plotted as a reference (black dashed line).

pair marked with crosses and second pair marked with diamonds) show nearly identical MSD
curves for E (red) and E∗ (yellow), respectively. Conversely, the third pair of realizations with
otherwise identical parameters (marked with circles) leads to entirely different results for E (red)
and E∗ (yellow). This leads to the conclusion that small differences in the fiber behavior can
trigger entirely different particle trajectories in individual realizations of the stochastic process.
Given the already large variability in the results of individual random realizations for identical
fiber stiffness observed in the last section (see the right half of Figure 8(b)), this sensitivity is not
surprising. The stochastic nature of the problem impedes the direct investigation of differences
in particle behavior by means of a pair-wise comparison and underlines the importance of the
already analyzed ensemble-averaged results shown in Figure 8(a) and discussed above. However,
by taking a closer look at the second pair of realizations and watching the two resulting particle
motions as overlaying videos, we can still investigate a quite obvious mechanism that influences
the particle mobility providing, in this case, nearly identical MSD curves. Indeed, one would
intuitively argue that stiffer fibers constrain the motion of a particle more effectively as long
as it remains in the state of adhesive contact with the fiber, because the softer fibers deform due
to the thermal forces acting on the trapped particle. This situation is shown in Figures 10(b)
and 10(a), which show an overlay of fiber configurations over all time steps for these two
realizations. The two corresponding MSD curves in Figure 9 indeed confirm that the softer fibers
(red diamonds) allow for slightly higher MSD values than the stiffer fibers (yellow diamonds) on
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(a) (b) (c)

Figure 10. Comparison of the amount of fiber deformations visualized by an overlay of the configurations from all time

steps: (a) Medium fiber stiffnessE∗ preventing basically any deformations; (b) Ten times lower fiber stiffnessE = 0.1E∗

leading to noticeable, yet small fiber deformations. (c) Visualization of the magnitude and distribution of axial strains in the

fiber network resulting from the thermal excitation of the particle for a low fiber stiffness E.

time intervals τ ≥ 0.1 s. However, these MSD curves also show that this effect is rather negligible
in terms of overall mobility of the particles. This is also supported by recognizing the small
magnitude and localized extent of axial strains in the network (at an exemplarily chosen point
in time) in Figure 10(c).

To conclude this first brief study of how deformations of semiflexible fibers influence the
mobility of oppositely charged particles, it can thus be stated that our results indicate a – rather
counter-intuitive – overall decrease in particle mobility if compared to (almost) rigid fibers. We
suggest that this is the result of a decreased probability for escape events due to a) an increase
in the adhesive contact area between particle and fiber and b) a higher ability of the fibers to
follow the thermal excitation of a trapped particle, thus reducing the peak values of particle
accelerations and interaction forces that act to break the adhesive binding. It is important to note,
however, that this influence of the fiber stiffness on the particle mobility is negligible in the range
of stiffness values that have been reported for the collagen I fibers prevailing in ECM gels. Within
this range, the fibers do not show any noticeable deformations for the scenario considered here
and the associated influence on the particle trajectory thus vanishes. Nevertheless, the influence
of fiber deformations is likely to be observed for other types of (biological) hydrogels with very
thin or soft and therefore more flexible filaments such as mucin or F-actin, and maybe even for
ECM gels as a result of dysregulated fiber stiffness. A more detailed investigation of this aspect,
both in simulations and experiments, is thus considered a promising avenue of future research.

4. Conclusions and outlook
This article presents the first computational study of the diffusive mobility of particles in
hydrogels with a realistic fiber network model. It proposes a novel computational approach
based on, most notably, the modeling of individual, deformable fibers via the beam theory,
the Voronoi tessellation of the periodic simulation box to obtain random, irregular network
geometries, and the beam-sphere interaction model for contact and electrostatic interactions.
Following the validation of the model and the study of repulsive steric interactions only, the
particularly important effect of additional attractive electrostatic forces has been investigated.
Finally, we have studied the role of fiber deformations in the latter case by means of additional
computational experiments.
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In the case of only repulsive steric interactions, it is found that the hindrance of the particle
mobility is insignificant as long as the mesh sizes of the fiber network are larger than the particle
diameter. If, however, the mesh sizes are in the order of the particle diameter, the particle is
effectively caged in a polygonal fiber hull of random shape and size and shows a behavior known
as confined diffusion and is characterized by a plateau in the mean squared displacement (MSD)
curve for long time intervals. Within the given problem setup and the focus on relatively small
particles, these are expected results validating the novel approach. However, this effect of steric
hindrance will become highly relevant if the effective transport of relatively large particles as
observed in experiments [6] is considered. In this context, including the dynamics of the fiber
network such as its self-assembly driven by the Brownian motion and transient reorganization of
cross-links (as demonstrated for the directly compatible computational model applied in [32,33])
might be an important model component as suggested by recent findings in the context of the
nuclear pore complex [9,35] or the dynamic secretion and shedding of mucus layers [36].

Turning to the effect of additional electrostatic interactions between the fibers and the
oppositely charged particle, the prevailing notion that the degree of hindrance on average
increases with the strength of attraction has been confirmed by the numerical experiments with
five different network geometries and two random realizations each. Moreover, an increased
variability of the particle’s mean squared displacement values and slopes in the regime of long
time intervals has been observed and excellently agrees with previous experimental results [12].
A detailed look at the 3D particle trajectories within the fiber network provides a first direct proof
for the existence of distinct motion patterns of the particles, which explains the variability in the
MSD curves. As hypothesized in the previous work [12], the particles stick to oppositely charged
fiber/charge aggregations experiencing more or less strong trapping and eventually escape due to
the ongoing thermal excitation, only to be quickly attracted to another fiber/charge aggregation.
While some particles remain completely immobilized at one and the same location for the entire
20s of simulation time, others smoothly or rapidly cycle between two local minima in the potential
landscape. Both of these motion patterns lead to a behavior on longer time intervals that is very
similar to the confined diffusion for caged, uncharged particles as described above. However, the
diffusive mobility on short time intervals is significantly reduced as well due to sticking to the
fibers. The third motion pattern observed is the one of several successive jumps that – at least
theoretically – could serve as a transport mechanism also over longer distances if the potential
landscape is formed accordingly and e.g., shows some degree of periodicity and directional
preference.

Altogether, these findings indicate that the precise shape of the effective 3D potential field
explored by the particle has a crucial influence on its mobility. In view of the broad variety
of biopolymer hydrogels with diverse chemical compositions and biophysical properties, the
current computational model could thus be leveraged to study the individual selective filtering
behavior for a large number of particle-hydrogel property combinations. Based on the recognized
importance of the precise fiber/charge distribution in the system, two points seem to be of
particular importance to achieve a case-specific, highly accurate and reliable prediction. First,
the inhomogeneous charge distribution along the fiber should be both determined (e.g., by
experimentally analyzing the molecular architecture) and applied in the model. Second, the
specific composition and geometry of fiber networks should be determined (e.g., by processing
electron microscopy images) and applied in the model. Also the inclusion of the dynamic self-
assembly and reorganization of networks mentioned above would be worth considering in this
respect.

As a last particular aspect investigated in this study, fiber deformations have been found to
be negligible within the range of realistic values for the stiffness of collagen I fibers prevailing in
ECM gels. To be more precise, varying the value for the Young’s modulus over the broad range
of reported values for the considered ECM gels has led to identical results as obtained for the
theoretical limit of rigid fibers. If, however, more flexible fibers are considered, our simulation
results indicate an overall decrease of particle mobility if compared to (almost) rigid fibers –
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an outcome that is rather counter-intuitive. We suggest that this is the result of a decreased
probability for escape events due to a) an increase in the adhesive contact area between particle
and fiber and b) a higher ability of the fibers to follow the thermal excitation of a trapped
particle, thus reducing the peak values of particle accelerations and interaction forces that act
to break the adhesive binding. In real systems, these trends might be observed for other types of
(biological) hydrogels with very thin or soft and therefore more flexible filaments such as mucin or
F-actin, and maybe even for ECM gels as a result of dysregulated fiber stiffness. A more detailed
investigation of this aspect, both in simulations and experiments, is thus considered a promising
avenue of future research.

In addition to the presented simulation results and the gained insights, this study provides
an extensive proof of concept for the application of the novel computational model. As
outlined above, in the short to medium term many important findings especially for various
particle/hydrogel-specific behaviors and mechanisms can be expected from applying different
parametrizations and, additionally, from integrating the suggested model extensions. In the
long term, further validation and advances of the present computational model toward a truly
predictive tool could ultimately lead to a case- and patient-specific choice or even design of
pharmaceuticals and also to a case- and patient-specific assessment of infection risk.
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