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(is article presents a staggered approach to couple the interaction of very flexible tension structures with large deformations,
described with the finite element method (FEM), and objects undergoing large, complex, and arbitrary motions discretized with
particle methods, in this case the discrete element method (DEM). (e quantitative solution quality and convergence rate of this
partitioned approach is highly time step dependent. (us, the strong coupling approach is presented here, where the convergence
is achieved in an iterative manner within each time step.(is approach helps increase the time step size significantly, decreases the
overall computational costs, and improves the numerical stability. Moreover, the proposed algorithm enables the application of
two independent, standalone codes for simulating DEM and structural FEM as blackbox solvers. Systematic evaluations of the
newly proposed iterative coupling scheme with respect to accuracy, robustness, and efficiency as well as cross comparisons
between strong and weak FEM-DEM coupling approaches are performed. Additionally, the approach is validated against the rest
position of an impacting object, and further examples with objects impacting highly flexible protection structures are presented.
Here, the protection nets are described with nonlinear structural finite elements and the impacting objects as DEM elements. To
allow the interested reader to independently reproduce the results, detailed code and algorithm descriptions are included in
the appendix.

1. Introduction

(e simulation of lightweight structures impacted by
heavy objects can be a challenging problem if numerical
methods are used, as both sides have highly different
masses. Some of the applications can be as follows:
rockfall in protection net structures [1–3], racecourse
protection structures to secure both spectators and drivers
at the same time, suicide protection nets on bridges or
towers, and many more.

(e examples in this work are mainly directed towards
natural hazards, such as rockfall events which often cause
destruction, especially in mountainous or populated areas.

As it is hard to prevent those events, protection structures
are built along settlements and roads. In particular, light-
weight flexible structures come into operation, as they are
able to undergo large deformations and thus are capable of
absorbing large amounts of energy with a smooth and
comparably slow load transmission, reducing peak loads and
maximum stresses. In principle, flexible structures are built
to exploit the possibility to reduce stress peaks by their
ability to tolerate large deformations. (e interaction be-
tween the impacting object and very flexible structures calls
for an advanced computational approach, as real scale tests
are expensive, complex, and not suitable for a quick as-
sessment of such structures.
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(e abovementioned problems can be divided into two
separate problems: the highly deforming fixed protection
structures and the freely moving impact objects. Based upon
both solutions, an interaction and equilibrium between both
need to be found. (e net structures can typically show high
deflections. However, the topology usually does not change
and thus the net can be described with finite element for-
mulations having a meshed discretization. Furthermore,
multiple kinematic formulations can be applied within the
analyses. Approaches range, e.g., from shell or membrane
structures [2, 3] up to cable or beam models [4] or special
formulations, such as ring elements [1]. In the following, the
decision was made to use cable net models, discretized with
cable element formulations (follow Section 2.2), as those
provide accurate results for the given problems with com-
paratively small computational costs. Additionally, this
approach allows contact at the correct position and thus
allows small objects to pass through the structure.

Furthermore, the impact objects can also be discretized
with different methodologies. (e current state-of-the-art
rockfall impact simulations is to use rigid bodies to simulate
impacting rocks on highly flexible structures [1] where
damage and deformation of the impacting objects are
neglected. (e approaches include finite element methods
(FEMs [1]), discrete element methods- (DEM-) described
structures, or more flexible structures with material point
methods (MPMs [5]), and others. Using the FEM makes it
possible to accurately describe the continuum of impacting
objects. However, the approach can be very costly, as the
contact detection can become very complex. DEM provides
much optimized contact detection and thus an efficient
multiphysics simulation. (e drawback is that the contin-
uous expression is complex and dependent upon difficult
parameter calibration. Furthermore, the use of MPM might
show similar properties as the FEM with fewer contact
difficulties.(is method can be quite complex in terms of the
setup and smears the contact due to its numerical properties.
In the following, DEM is chosen to discretize the impact
objects used herein, as an efficient algorithm is needed, and
no further attention is focused on its continuum description.

Coupling the DEM and the FEM is a common way to
simulate various multiphysics problems [6, 7]. In particular,
in problems where the interaction between granular ma-
terials or rigid objects with large motions and continuous
systems is of interest, this combination of discretization
methods is frequently used. Various applications, such as the
thermomechanical behaviour [8] of contact between fric-
tional bodies [9, 10], assessment of strains in the simulation
of shot peening [11, 12], races and balls in ball bearings
[13–15], general tribological systems [16, 17] such as the
simulation of rail tracks [18], and more advanced investi-
gations, including fracture due to blast loads [19], are studied
using DEM-FEM coupling.(eDEM is also used to simulate
production processes such as rotating machinery [10] and
particulate flows [20].

(e coupling between DEM and FEM is done in a
partitioned manner, which allows the combination of the
respective best-suited solution strategies for each subprob-
lem and the transfer of information in-between.

Accordingly, the user is not restricted to a code which in-
cludes both participants but instead can couple any existing
DEM and FEM software by creating a suitable interface.(is
publication concentrates on the discussion of spatial map-
ping with cable structures. (e coupling ultimately also
allows the use of blackbox solvers for each participant (e.g.,
symplectic Euler [21] for the DEM and generalized alpha
method [22] for the FEM). In order to advance the state of
the art, a strong coupling algorithm is developed for the
DEM-FEM impact problems.

To investigate its potential and superior performance in
the underlying application case, a weak coupling algorithm
is presented and used for comparison. It is known from the
field of fluid-structure interaction [23, 24] that a strong
coupling algorithm typically allows larger time steps com-
pared to a weak coupling approach. (e aim of this work is
to investigate the properties of a strong coupling algorithm
for DEM-FEM coupling and assess its usability in this setup.

From a formal point of view, the structure of the paper is
as follows:

(i) Section 2 describes the FEM notation including an
introduction to the applied cable formulation

(ii) Section 3 gives an overview of DEM
(iii) Section 4 introduces the equilibrium required for

the coupling and depicts the spatial mapping
(iv) Section 5 explains the staggered weak coupling

approach
(v) Section 6 depicts the strong coupling approach,

which adds additional complexity
(vi) Section 7 demonstrates the advantages of the

proposed coupling algorithm and investigates the
influence of a variety of different input parameters

(vii) Sections 7.1 and 7.2 show and investigate the novel
coupling approaches

(viii) Sections 7.3 and 7.4 present sensitivity analyses of
the important parameters

(ix) Sections 7.5 and 7.7 demonstrate large-scale
problems

(x) Section 8 gives a conclusion and outlook on future
research

(xi) Appendix A provides a more detailed discussion of
the calculation of contact forces for the DEM

(xii) Appendix B provides references to the software
used in this study and provides scripts for re-
production of results

2. The Finite Element Method

(e finite element method (FEM) [25] is used to numerically
solve partial differential equations. For this purpose, a do-
main is discretized into finite elements for which an ap-
proximated solution is known.

As described in [22, 26–28], kinematic relations describe
the possible movement of such elements. (e current
configuration x can be described with the help of a time-
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dependent map (noted as t) from the reference configuration
X, which can be obtained from the displacement vector u
(additionally see Figure 1):

x(t) � X + u(t), (1)

the bold letters indicate tensors and vectors.

2.1. Virtual Work. (e momentum equation can be de-
scribed by applying the divergence theorem [22, 27, 29, 30]:

di v(σ) + b � ρ€u , (2)

with σ being the first Cauchy stress, the body forces b, the
acceleration €u, and the density ρ. Multiplying the mo-
mentum equation (2) with the virtual displacement field δu
and integrating over the physical domainΩ leads to the weak
form, respectively:

δWint − δWext + δWkin � 0. (3)

(e three virtual work contributions: the internal work
(equations (4), respectively (5)), the external work (equation
(6)), and the kinetic work (equation (7)), are obtained by the
partial integration:

δWint � 􏽚
Ω
σ: δe dΩ, (4)

δWint � 􏽚
Ω0
S: δE dΩ0, (5)

δWext � 􏽚
Ω
b · δu dΩ + 􏽚

Γσ
σn · δu dΓσ , (6)

δWkin � 􏽚
Ω
ρ€u · δu dΩ, (7)

with the Almansi strain e, the normal direction of Ω, n, and
the Neumann boundary Γσ . From equation (4), one can
obtain equation (5) (for detailed information, see [22, 27]),
which describes the internal virtual work with the use of the
Piola–Kirchhoff 2 (PK2) stress tensor S and the Green-
–Lagrange strain tensor E within the initial domain Ω0.

2.2.Cable Element. With regard to the cable element, a cable
or a “truss element formulation” having two nodes (nk and
nl) considering geometrical nonlinear behaviour is used.(e
kinematics is outlined in Figure 1. Each node requires three
(or for 2D, two) displacement degrees of freedom (dofs), but
no further dofs are required.

As the bases for the structural analysis and to introduce
relevant notations, the internal forces and the tangent
stiffness matrix are briefly noted.

Due to the one-dimensional nature of the element, only
one parametric coordinate ξ [−1≤ ξ ≤ + 1] is used to de-
scribe the geometry [25] with linear shape functions.

By virtue of equation (5), the internal forces Fint read for
each degree of freedom r as follows:

Fr,int � A 􏽚
L

0
S + Spre􏼐 􏼑:

zE
zur

dX􏽼√􏽻􏽺√􏽽
(L/2)·dξ

, (8)

for the constant crosssection A, the reference length L, and a
given prestress Spre. (e tangent stiffness matrix K can be
expressed as

Krs � A ·
L

2
􏽚

+1

−1

z S + Spre􏼐 􏼑

zus

:
zE
zur

+ S + Spre􏼐 􏼑:
z
2E

zurzus

⎛⎝ ⎞⎠dξ,

Krs � A ·
L

2
􏽚

+1

−1
D:

zE
zur

:
zE
zus

+ S + Spre􏼐 􏼑:
z
2E

zurzus

􏼠 􏼡dξ.

(9)

(e constitutive law used in this work is the St. Ven-
ant–Kirchhoff hyperelastic material model [29, 30] de-
scribed by the strain-energy functional Ψsv. Its first and
second derivatives w.r.t. E describe the PK2-stress S and the
material tangent modulus D, respectively [30]:

S �
zΨsv
zE

,

D �
z
2Ψsv

zEzE
.

(10)

(e prestress Spre is a stress, which is initially applied and
added to the internal forces of the structure. It is a second-
order tensor; however, for the truss kinematics, only a scalar
is required. If a stress state, in equilibrium to the initial
prestress, is required within a complex structure, form-
finding procedures need to be applied beforehand. In
contrast to standard structural analysis, form-finding solves
an inverse engineering problem. (is inverse problem is to
find a geometry which corresponds to an equilibrium
configuration, whose stress state is identical to the given
prestress. (e force density method is one approach used to
realize this [24, 31]. (e described kinematic relation is
capable to model either a cable or a truss formulation. To
model a realistic behaviour of cable structures, it needs to be
ensured that no compression stresses are carried by the
structure. With an additional check if a cable is under
compression, stiffness contributions and internal forces are
avoided. In the following, using the applied naming, trusses
would allow compression stresses, whereas cables do not.

(e element mass matrix M for a dynamic simulation
results from the virtual kinetic work as depicted in equation
(7). With N(ξ) being the shape functions and the reference
density ρ0, M is defined as follows:

M � A ·
L

2
· ρ0 􏽚

+1

−1
N(ξ)

TN(ξ)dξ. (11)

(e damping matrix C is expressed via the Rayleigh
damping as a linear combination of the mass matrix M and
the stiffness matrix K (for more information, see [32]):

C � τM + κK, (12)

with τ and κ as the scaling factors.
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3. The Discrete Element Method

(is section describes the fundamentals of the discrete el-
ement method (DEM), with a focus towards the DEM-FEM
coupling (following Sections 4–7).

(e DEM used within this scope models the dynamics of
spherical particles, considering external forces such as
gravity and contact with other particles or contact with
differently described objects. DEM can be used for many
different particle shapes such as rectangles, cones, spheres,
and more. However, only spherical particles are considered
in this publication. To describe more complex shapes, a set of
spheres is connected within clusters. A cluster consists of
multiple particles which are used for contact detection and
force evaluation. (e mass and centre of gravity are de-
scribed within the cluster shape and independent of the
masses of the particles (for further information, see [33]).

(e basic steps in a DEM simulation are as follows (also
[21]):

(i) Contact detection
(ii) Evaluation of contact forces
(iii) Integration of motion

(ese steps will be briefly described in the following.

3.1. Contact Detection. Within the scope of this publication,
certain contact scenarios are of interest. (e centre of spheres
is described with Ci, and their respective radius is Ri. (e
distance to contacted edges is deciphered with di (Figure 2).

Two spheres Ci and Cj:

Ci − Cj

�����

�����<Ri + Rj. (13)

Sphere Ci and vertex nk:

Ci − nk

����
����<Ri. (14)

Sphere Ci and di to edge:

di <Ri. (15)

3.2. Evaluation of Contact Forces. (e contact forces can be
evaluated using different contact laws and rheological
models. For a detailed description of contact models, see
[6, 21, 34, 35]. A more detailed description of the evaluation
of contact forces is included in Appendix A. (e coefficient
of restitution (COR), ε⊥ (see equation (A.7)), is an essential
part in the contact and is further investigated in Section 7.4.

3.3. Integration of Motion. (e integration of motion is
described by Newton’s second law of motion. (e transla-
tional acceleration €u is described via the force F and the mass
of the particle m. (e angular acceleration _ω is expressed by
the moments T and the tensor of rotational inertia I [21]:

m €u � F,

I _ω � T.
(16)

(e forces and torques at each particle i are described as
follows [6, 19, 21]:

Fi � Fexti + 􏽘
n

j�1
Fij
􏽺􏽽􏽼􏽻

Fij�Fnnij+Fttij

+ Fdamp
i ,

Ti � Text
i + 􏽘

n

j�1
rij

c × Fij
+ Tdamp

i .

(17)

(e resulting forces and torques depend on the following
components:

Fexti ,Text
i : external loads (e.g., gravity)

Fij: contact interactions between neighbouring particles
or boundaries as the contact Fcontact (see Appendix A for
description of the components Fn and Ft)

nk

y

z
x

nl

X l

X k

uk (t)

ξ

ul (t)

xl (t)

x k (
t)

Figure 1: Spatial mapping of cable element kinematics between the nodes nk and nl.
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Fdamp
i ,Tdamp

i : external damping boundaries
nij, tij: normal and tangential vectors at the respective
contact point
rij

c : vector connecting the particle centre and the re-
spective contact point

4. Staggered Coupling of DEM and FEM

To couple two standalone physically independent interacting
numerical problems such as the simulation of particles and
structures, a suitable interface condition to achieve equi-
librium is needed to be found.

4.1. Structure-Particle Equilibrium. To put the two inde-
pendent physics, the DEM and the FEM, into an equilibrium
state, the following force equilibrium at the structure needs
to be achieved:

Fcontact uΩS,Γ(t), _uΩS,Γ(t), uP
(t), _uP

(t)􏼐 􏼑

− FΩS,Γ
int uΩS,Γ(t), _uΩS,Γ(t), €uΩS,Γ(t)􏼐 􏼑 � 0,

(18)

where u describes the displacements, _u represents the ve-
locities, ΩS represents the structural domain, while Γ of ΩS

includes all nodes which are in interaction with the DEM
particles, P.

With respect to equation (18), the contact forces Fcontact
of the particles, which are dependent on its displacements
and the velocities, need to be in equilibrium with the internal
forces FΩS,Γ

int of the structure, which are dependent on its
displacements, velocities, and accelerations (equation (8)
and additional including inertia effects). (e equilibrium of
both DEM and FEM simulation is graphically depicted in
Figure 3.

(e basic idea of the proposed partitioned coupling
simulation is the interchange of primary (such as the dis-
placement) and secondary (e.g., forces) interface variables
which are obtained as the solution of the respective com-
ponents of the simulation.

4.2. Spatial Mapping. In the following, the DEM problem is
solved independently from the structural problem. To do

this, the displacements and velocities of the structure at the
given time step are transferred to DEM, and this structure is
further seen as the DEM wall, described by the domain ΩD.
(e wall is used to calculate contact forces with the DEM
particles P, which are depending on its displacements and
velocities (see Appendix A for contact laws and force cal-
culations). After solving the DEM problem, the resulting
contact forces are transferred to the structural analysis
problem. With the contact forces, seen as external forces, the
dynamic structural problem is solved, resulting in new
displacements and velocities on the domain ΩS. (is pro-
cedure is outlined in Figure 4.

Following this, the contact forces Fcontact are now de-
pendent on the displacements and velocities of ΩD and not
directly on ΩS and are defined as the external forces coming
from the DEM:

FΩS,Γ
ext � Fcontact uΩD,Γ(t), _uΩD,Γ(t), uP

(t), _uP
(t)􏼐 􏼑. (19)

(e equilibrium within the structural mechanics prob-
lem is given as follows:

FΩS,Γ
ext − FΩS,Γ

int uΩS,Γ(t), _uΩS,Γ(t), €uΩS,Γ(t)􏼐 􏼑 � 0. (20)

After solving both domains, the two interface conditions,
for the displacements and the velocities between both fields,
are not fulfilled anymore:

uΩD,Γ(t) − uΩS,Γ(t) � 0, (21)

_uΩD,Γ(t) − _uΩS,Γ(t) � 0. (22)

Resulting from this, the contact forces Fcontact computed
within ΩD and the contact forces which would be computed
within ΩS are not the same anymore, and thus, the equi-
librium expression is not fulfilled:

Fcontact uΩD,Γ(t), _uΩD,Γ(t), uP
(t), _uP

(t)􏼐 􏼑

− Fcontact uΩS,Γ(t), _uΩS,Γ(t), uP
(t), _uP

(t)􏼐 􏼑 � 0.
(23)

For small time steps, resulting into smaller contact
forces, the tracking of the interface equilibrium can be
negligible. However, for ill-conditioned systems and large
time steps, the resulting difference will lead to inaccuracies

nk

nl

di

Fi

Ti

Ri

Ci

Fi,contact

z
yx

Figure 2: Spherical DEM particle i in contact with cable structure between the nodes nk and nl.
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and makes the solution unstable. To solve this problem, a
possible approach is presented in Section 6.

4.3. Influence of Coefficient of Restitution (COR). Large
contact forces will result in difficult fulfilment of interface
conditions (equations (21)–(23)). Section 6 proposes a
remedy for that problem. One major factor influencing the
magnitude of the contact forces is the DEM particle property
COR. (is value must be defined by the user and heavily
influences the stability of the coupled simulation (see ex-
ample in Section 7.4).

(e coefficient represents the ratio of initial speed and
final speed after impact [21] (equation (A.6)) and is further
discussed in Appendix A. Since this coefficient is determined

manually for each simulation, it is important to be careful
when doing the calibration.

4.4. Mesh Dependency for Cable Structures. For the specific
application of highly flexible cable structures in this study,
such as rockfall protection nets or any other kind of cable-
like structures, the DEM wall condition ΩD discretization
and the FEM ΩS discretization on Γ must exactly coincide
(conforming meshes). (e respective meshes represent a
physical mesh which must be correctly described in order to
model the exact contact positions. To demonstrate this
behaviour, Figure 5(a) visualizes the DEM part of the
simulation. A cable net is modelled and impacted by two
spheres. A large sphere finds contact and deforms the
boundary, while a smaller sphere penetrates an opening. In

ΩD

ΩS

nk
Fi,contact

ΩD,Г

nlΩD,Г

nlΩS,Г

nkΩS,Г

Fint ΩS,Г

Fint ΩS,Г

FextΩS,Г

Figure 3: Domain definition and force equilibrium in DEM and FEM simulation.

FEM: structure, ΩS

ForcesDisplacement
and velocity

DEM: particles, PDEM: contact wall, ΩD

Figure 4: Transfer of forces and displacements and velocities between different applications.
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addition, Figure 5(b) represents the respective FEM struc-
ture which is used to calculate the adequate structural
response.

If surface elements such as shells or membranes, which
do not possess physically the predetermined discrete contact
positions, are used within a coupled simulation, arbitrary
meshes can be used. In that case, a mapper [36] will be
responsible for the correct data transfer.

5. Staggered Weak Coupling

(e fundamental idea of the weak coupling (sometimes also
called explicit coupling [24]) follows a single exchange of
coupling data in each time step. (e communication pattern
is depicted in Figure 6. (e important steps at each time,
including this communication pattern, can be summarized
as follows:

(1) Solve DEM (results: uP, _uP, andFcontact)
(2) Map Fcontact from DEM to Structure
(3) Solve Structure (results: uΩS,Γ , _uΩS,Γ , and €uΩS,Γ)
(4) Map displacements and velocities from Structure to

DEM
(5) Advance in time (not explicitly shown)

(e interface variables are accordingly updated (see
Steps (2) and (4)):

Displacement:

k+1u
ΩD,Γ

�
ku
ΩS,Γ

. (24)

Velocity:

k+1
_u
ΩD,Γ

�
k

_u
ΩS,Γ

. (25)

Contact force:

k+1F
ΩS,Γ

ext �
kFcontact.. (26)

(is algorithm is comparatively easy to implement and
typically does not require any deep interaction. Standard
DEM and FEM simulation environments provide the ex-
change data as an output. (erefore, different software can

also be efficiently applied here. Furthermore, it was shown
that the algorithm can be applied if the time steps do not
become too large (see examples in Sections 7.1 and 7.2).
However, the behaviour of this procedure can become
unstable as soon as the differences in stiffness, mass, and
velocity between the two physics become very high. (e
procedure is then very prone to the time step size used.
Decreasing the time step size will lead to inefficient and
numerically costly simulations.

To gain a deeper understanding of the underlying
procedure, this approach is further detailed in Algorithm 1.
In order to facilitate the reproduction of the results, the
Python script used, including all comments, is provided in
Appendix B.

In this procedure, two additional features will be dis-
cussed. (ey are independent of the coupling approach used
but improve the performance significantly. (ey are added
in Algorithm 1 and highlighted as follows:

(i) particle_near_wall (line 3–6): if the respective par-
ticles are in the vicinity of the structural model to
adjust the time step is checked. A particle moving
freely in space can be simulated with a time step
larger than it would be required for the simulation of
the DEM-FEM interaction.

(ii) forces ≠0.0 (line 12–15): this is an additional check
used only to solve the structure when contact forces
are present. (is is only valid if the self-weight of the
structure or any other loads (except impact loads)
are neglected. Otherwise, a preliminary simulation
or a form finding [24, 31] of the structure is needed.

6. Staggered Strong Coupling

As known from other coupled multiphysics problems, such
as fluid-structure interaction (FSI) [24, 37], the direct ex-
plicit transfer of the interface data (forces, velocities, and
displacements) can lead to divergence problems in the
staggered simulation. (is problem is caused by large
contact forces due to differences in velocities, acceleration,
and highly different masses on both sides. In contrast to the
weak coupling approach, the strong coupling (in the liter-
ature also called implicit coupling [24] or a conventional
serial staggered approach within the context of loose cou-
pling [38, 39]) adds an additional iteration loop in each time
step, which solves for the equilibrium between both nu-
merical physics. (is requires a Gauss–Seidel loop between
DEM and FEM, which might need to be solved multiple

(a) (b)

Figure 5: Modelling of impact with cable-structured boundaries. (a) Discretized ΩD. (b) Discretized ΩS.
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times within one time step [23, 24, 38, 39]. (is strategy
enforces the coupling conditions (equations (4)–(6)) to be
fulfilled. Convergence is considered to be achieved, as soon
as the interface residual is below a user-defined tolerance
ε. (e residual formulation is defined by using equation (27)

(e steps of this approach are shown in Figure 7 and
summarized in the following, using the respective num-
bering in the abovementioned Figure 7:

(1) Solve DEM (results: uP, _uP, andFcontact)
(2) Map Fcontact from DEM to Structure
(3) Solve Structure (results: uΩS,Γ , _uΩS,Γ , and €uΩS,Γ)
(4) Map displacements and velocities from Structure to

DEM
(5) Calculate interface residual ϵ (equation (27))

(6) Repeat Steps 1–5 until the interface residual reaches a
given tolerance

(7) Advance in time

(e weak coupling algorithm, described in the preceding
Section 5 expresses single iteration in the strong coupling
scheme (Steps (1)–(4)). (e additional interface loop (Step
(6), being controlled by the breaking criteria in Step (5))
which adds complexity to the solution procedure and sig-
nificantly increases the computation costs as the system now
needs to be solved multiple times within one time step.
However, it allows more accurate results and higher sim-
ulation stability. It can be noted that the number of solving
iterations is typically still lower than if the time step would be
reduced to a value where the weak coupling approach would
still be applicable. (is is especially due to the property that

DEM

FEM

t t + ∆t

Forces
Displacement & velocity

t + 2∆t

1. 1.

3. 3.

4. 4. 4.
2. 2.

Figure 6: Staggered weak coupling procedure, between DEM and FEM.

(1) Initialize
(2) While time< end_time do
(3) If particle _ near _ wall then
(4) use predefined time step
(5) Else
(6) use increased time step
(7) t � t + Δt
(8) Search nearest neighbours and find contact⟶ equations (13)–(15)
(9) Calculate contact forces⟶ equation (A.5)
(10) Time integration of DEM part⟶ equation (16)
(11) Map forces on Γ from ΩD to ΩS

(12) If forces ≠0.0 then
(13) Solve structure (FEM)
(14) Map velocity and displacement on Γ from ΩS to ΩD

(15) Update position of ΩD to ΩS⟶ equation (1)
(16) Finalize

ALGORITHM 1: Weak coupling.
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many coupling iterations are typically not required
throughout the simulation, but only at specific time steps.
(e comparison of the two procedures, including a view on
the performance, is outlined in Section 7.

(e residual criteria within the strong coupling loop are
defined by

ϵ<
‖kr‖

���
neq

√ , (27)

where ϵ is the user-defined breaking tolerance. It is checked
after each iteration k by scaling the norm of the residuum kr
with the square root of the number of degrees of freedom neq
at the interface Γ [40]. It is important to note that the in-
terface tolerance should be larger than the convergence
tolerances of the respective individual solvers within the
coupled system; otherwise the convergence criteria cannot
be reached. (e residuum can either be obtained by the
displacements, the velocities, or the contact forces. By
subtracting the current solutions on the boundary Γ from the
previous solutions of Step k − 1, the residuum of each
variable can be noted as follows:

Displacement residuum:

kru �
ku
ΩS,Γ

−
k−1u
ΩS,Γ

. (28)

Velocity residuum:

kr _u �
k

_u
ΩS,Γ

−
k−1

_u
ΩS,Γ

. (29)

Contact force residuum:

krF �
kFcontact −

k−1Fcontact. (30)

Furthermore, large time steps typically lead to large
differences in the interface velocities and displacements, and
thus the result can be nonphysical large contact forces. If
those forces are too high, small time steps still can lead to
unstable simulations, even with the use of the proposed
strong coupling algorithm. As a remedy, the transferred data
can be gradually applied, which is also called relaxation. (e
outcome is that this permits a faster interface convergence.
(e so-called convergence acceleration [24] can be achieved
by numerous methods and is discussed in the following.

Two different strategies can be chosen for the relaxation:
either the relaxation of the displacements and velocities or
the relaxation of the contact forces. (e relaxation is done
w.r.t. the residual (equations (28)–(30)), respectively:

Relaxed displacements:

ku
ΩS,Γ

rel �
k−1u
ΩS,Γ

rel +
kαu

kru. (31)

Relaxed velocities:

k
_u
ΩS,Γ

rel �
k−1

_u
ΩS,Γ

rel +
kα _u

kr _u. (32)

Relaxed contact forces:

kFcontact,rel �
k−1Fcontact,rel +

kαF
krF. (33)

Each variable is subsequently updated from the previous
solution (Step k − 1) using the respective interface residuum
scaled by relaxation factor α.

(ere are different approaches to obtain the scaling
factor α [39]. (e relaxation factor can be set to a user-
defined constant value, which is very simple and helps to

DEM

FEM

t

1. 1.6.

6.

6.

6.

7. 7.

7. 7.3. 3.

2. 2.

4. 4.

t + ∆t t + 2∆t

Forces
Displacement & velocity

Figure 7: Strong coupling communication diagram.
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improve the quality of the simulation. Another approach is
to use the Aitkenmethod [41]. (e Aitkenmethod optimizes
α in every iteration w.r.t. the current residuum kr and the
previous residuum k−1r:

kα(r) � −
k−1α

k−1r · (kr − k−1r)
‖kr − k−1r‖

, (34)

respectively, αu � α(ru), α _u � α(r _u), and αF � α(rF). (e
influence of the relaxation factor α is studied in the example
in Section 7.3.

In this study, either the displacement and the velocity
field or the contact forces are independently relaxed and
subsequently mapped. However, in the case of displace-
ments and velocities, both residua have to be achieved to
ensure that both solution fields still coincide on both sides.
(us, the resulting residuum for both relaxing procedures is
given as follows:

Displacement and velocity residua:

kr � max kru,
kr _u􏼐 􏼑. (35)

Contact force residuum:

kr �
krF. (36)

(e interface variables are updated accordingly (see
Steps 2 and 4 in Figure 7). (e following variables are ex-
changed within the interface:

Without relaxation
Displacements:

k+1u
ΩD,Γ

�
ku
ΩS,Γ

. (37)

Velocities:

k+1
_u
ΩD,Γ

�
k

_u
ΩS,Γ

. (38)

Contact forces:

k+1F
ΩS,Γ

ext �
kFcontact. (39)

With relaxation
Displacements:

k+1u
ΩD,Γ

�
ku
ΩS,Γ

rel . (40)

Velocities:

k+1
_u
ΩD,Γ

�
k

_u
ΩS,Γ

rel . (41)

Contact forces:

k+1F
ΩS,Γ

ext �
kFcontact,rel. (42)

In summary, both solution strategies are described
within Algorithms 2 and 3 in pseudocode. (ey are both
further elaborated on in Appendix B.3.

7. Systematic Assessment of the DEM-
FEM Coupling

(is section presents some examples which systematically
analyse the difference between the herein introduced cou-
pling approaches and their application within the simulation
of relevant industrial applications. (e examples show
problems of impacting objects on highly flexible lightweight
cable structures, such as protection nets. (ese interaction
problems typically have numerical stability issues within the
simulations, as the net structures have a low mass, whereas
the rocks are typically heavy. (is instability leads to the
problem that especially when the first impact occurs, the
forces might become very large. (us, due to the different
masses, this may lead to convergence problems, especially if
the chosen time step is large, which can lead to inaccuracies
in the simulation.

In the first academic problem 7.1, a cable structure is
modelled to evaluate the influence of different time step
values. Section 7.2 subsequently uses a cable structure with a
large prestress while also showing the influence of the COR
in order to analyse the influence of larger contact forces on
the required time step. Section 7.2 investigates the difference
between relaxing forces (Algorithm 3) and relaxing dis-
placements and velocities (Algorithm 2). (e proper choice
of a relaxation factor is further discussed in the example in
7.3. (e influence of the COR, which scales the contact
forces, is then analysed in Section 7.4. Finally, a practical
application of a rockfall into a cable net, using the herein
explained approaches, is presented in Section 7.5.

7.1. Impact on a Compliant Cable: Large Deformations. In
this example, a single DEM particle with perfect spherical
dimensions impacts on a prestressed cable, which is dis-
cretized with three finite elements. Here, the contact point
on the structure is known, and thus it can be focused on the
performance of the coupling algorithms. (e setup of this
academic example can be found in Figure 8(a), with E as
Young’s Modulus and Poisson’s ratio ]. It demonstrates the
necessity of a strong coupling algorithm; since for larger
time steps, the phenomena of artificial contact loss, due to
large initial contact forces, occur.

Within empirical tests, the time step Δt � 10− 3 s is found
to be the highest possible time step for which the weak
coupling algorithm can resolve to an appropriate solution.
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(1) Initialize
(2) While time< end_time do
(3) While interface _ res≥ tolerance _ interface do
(4) Search nearest neighbours and find contact⟶ equations (13)–(15)
(5) Calculate contact forces⟶ equation (A.5)
(6) Time integration of DEM part⟶ equation (16)
(7) Map forces on Γ from ΩD to ΩS

(8) Solve structure (FEM)
(9) Map velocity and displacement on Γ from ΩS to ΩD

(10) Calculate residuals for velocity and displacement⟶ equations (28) and (29)
(11) Relax velocity and displacement⟶ equations (31) and (32)
(12) Update position ofΩD⟶ equation (1)
(13) interface_res�max(displacement_residual, velocity_residual)
(14) Update position of ΩS⟶ equation (1)
(15) Finalize

ALGORITHM 2: Strong coupling: relaxed displacement and velocity.

(1) Initialize
(2) While time< end_time do
(3) While interface _ res≥ tolerance _ interface do
(4) Search nearest neighbours and find contact⟶ equations (13)–(15)
(5) Calculate contact forces⟶ equation (A.5)
(6) Time integration of DEM part⟶ equation (16)
(7) Map forces on Γ from ΩD to ΩS

(8) Calculate residuals for forces⟶ equation (30)
(9) Relax forces⟶ equation (33)
(10) Solve structure (FEM)
(11) Map velocity and displacement on Γ from Ωsto ΩD

(12) Update position of ΩD⟶ equation (1)
(13) interface_res� force_residual
(14) Update position of ΩS⟶ equation (1)
(15) Finalize

ALGORITHM 3: Strong coupling: relaxed forces.

Gravity = 9.81 m
s2

Particle

E =

R = 0.4m

N
N

kg

106
m2

m2

m3ρ = 2 ∙ 104

ν = 0.2
ε = 1.0

Structure

Eoutercable

Einnercable

= 105

N

N

kg

m2

m2

m3

109=

A = 1.26 ∙ 10–4 m2

ρ = 7.85 ∙ 103

Spre = 104

τ = 5
κ = 0Point A

1m 1m 1m

u0 = 0·

(a)

(b) (c)

Figure 8: Problem setup, including all geometrical and physical input parameters for the simulation. Results after impact with time step of
Δt � 10− 2 s. (a) Problem setup. (b) Weak coupling after impact. (c) Strong coupling after impact.
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Here, the coefficient of restitution (COR) is set to be 1.0.
Implicit time integration is used for the structure, as the
chosen time step is too large for an appropriate solution with
an explicit time integration scheme. Figures 8(b) and 8(c)
show the behaviour of the cable after impact, for the time
step size of Δt � 10− 2 s. Using the weak coupling approach, a
“jump” can be outlined as shown in Figure 8(b). Due to the
large time step, a greater indentation and higher velocities
occur. Consequently, the interacting force is too large, so
that the sphere and cable do not continuously stay in contact
during the entire time.(is leads to a nonphysical behaviour
of the coupled problem, as shown in Figure 9.

By adding the additional interface loop to solve for the
contact force, the convergence of the problem can be
achieved for a larger time step of Δt � 10− 2 s.

In the following, the time step of the first contact is
discussed in detail. It can be seen (Figure 10(d)) that the
contact force is relatively large in the first inner iteration
(coming from the relatively large time step) and decreases
within the interface iteration to a converged solution, due to
the application of the Aitken relaxation, introduced in
equation (34).(is exemplarily demonstrates the advantages
of the strong coupling scheme, presented in this article. (e
large discrepancy in the contact force would lead to an
unstable coupled simulation when using a standard weak
coupling algorithm.(e same accounts for the deflections of
the impacting sphere as shown in Figures 10(a)–10(c)
presenting a visual description of the interface condition
in equations (21) and (22) It can be seen that the positions of
ΩD and ΩS do converge to a common value to fulfil the
interface displacement/velocity equilibrium (equations (21)
and (22)).

As an example, the converging contact force for each
iteration in time step t � 1.2 s and the total number of inner
iterations for each time step are shown in Figures 11(a) and
11(b). It shows that the force at the first iteration is almost 4
times higher than it is after the converged solution.
Figure 11(b) shows that the number of inner iterations can
vary greatly (between 1, if there is no contact, and 9 it-
erations) within each time step. However, it can be noted
that the number of contact simulations is still lower than if
the time step would be decreased to Δt � 10− 3 s, which is
the limit for which the weak coupling approach still
converges.

7.2. Comparison to Position of Rest with Different Time Steps.
In this section, a setup similar to the previous example
(Section 7.1 and Figure 8(a)) with an increased prestress
(Spre � 106 N/m2) and a homogeneous Young’s Modulus
(E � 109 N/m2) in the cable structure is used with the fol-
lowing changes for the impacting sphere:
R � 0.12m and ρ � 3.5 · 104 kg/m3. (e result of the tran-
sient analysis will be compared to the static solution, con-
sidering the particle as an external force. (is static force is
defined as follows:

Fstatic �
4
3
πR

3
sphere

􏽼√√√􏽻􏽺√√√􏽽
Vsphere

·ρsphere

􏽺√√√√√√√􏽽􏽼√√√√√√√􏽻
msphere

· 9.81
m

s2􏽼√√􏽻􏽺√√􏽽
gravity

. (43)

(e resulting static deflection of Point A (Figure 8(a)) is
shown in Figure 12. (is comparison proves that the
transient analysis approaches the static solution after a
certain time.

Furthermore, the sensitivity of the time step within each
coupling algorithm is also studied in this example. (e
results of all solutions are presented and compared in
Figure 12. It shows that the weak coupling approach pro-
vides an accurate performance for a time step of Δt � 10− 3 s,
whereas the solution for Δt � 10− 2 s is very unstable. It turns
out that for large time steps, the result oscillates around the
expected solutions.

(e measured solutions for time steps of Δt � 10− 2 s and
Δt � 3 · 10− 2 s show that the strong coupling algorithm still
allows for good convergence for rather large time steps.
However, by increasing the time steps, the number of in-
terface iterations subsequently increase, which is shown in
Figures 13(a) and 13(b). Especially when the impact occurs,
the large difference in interface velocities leads to an in-
creased number of interface iterations (Figure 13(b)).
Within the scope of coupled simulations, this difference is
decreased by the proposed algorithm leading to a smaller
number of iterations.

(e influence if either displacements and velocities or
forces are relaxed is examined in the following. Both options
are described in Algorithms 2 and 3, respectively.

Comparing Figures 13(a) and 13(b), it can be noted that
relaxing the forces facilitates slightly faster convergence than
relaxing displacements and velocities.

In this specific case at hand, clear and marked off points
of load application (impact position) do exist. In different
cases, for example in the following Section 7.5, where a
variety of possible impact nodes exist, relaxing displace-
ments and velocities are shown to be the better choice. In
those cases, which appear more frequently, the impacting
spheres can rapidly change the impacting position and thus
lead to a slow converging force residual.

7.3. Influence of the Relaxation Factor. In this example, the
influence of the relaxation factor α in the case of relaxed
displacements and velocities is investigated by comparing
the Aitken relaxation (equation (34)) and a set of constant
relaxation factors. For this purpose, the COR is set to 1.0
(which physically describes a perfectly elastic impact on a
rigid obstacle) to neglect the influence of the wall velocity
and thus concentrate solely on the relaxation factor. (e
same problem setup as in Section 7.2 is used.

As Figure 14 shows, a constant relaxation factor can be
used as long as it is smaller than 1.0. α � 1.0 describes a
nonrelaxed system and does not find a proper solution for
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Figure 10: Simulation results within one time step over inner coupling iterations. (a) Interface displacement. (b) Interface velocity.
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this given example. Manually finding a suitable constant
relaxation factor is cumbersome and is dependent on the
system setup. In addition, it heavily influences the solving
time, as Table 1 demonstrates. For a constant α and the
Aitken α (equation (34)), the comparison is performed
with respect to computation time. It can be noted that al-
though constant relaxation factors provide good results, the
optimized Aitken relaxation factor facilitates faster con-
vergence to the residual.

7.4. Influence of the Coefficient of Restitution. Another im-
portant entity within the multiphysics problem is the COR
ε⊥ (Section 3). As Figure 15(b) shows, the COR directly
influences the contribution of the DEM rigid wall velocity to
the contact force. Current state-of-the-art publications such
as [42–44] express the importance of the COR value for

impact simulations. For a case study, different COR values
are used, while the time step is kept constant.

As can be seen in Figure 16(a) (zoomed in Figure 16(b)),
the interface coupling becomes unstable as soon as the COR
reaches a small value. (is instability can be overcome by
using the strong coupling algorithm presented in Section 6
and is a result of the increased contact force in the system
[34]. Additionally, Figure 16(a) describes another important
feature: the choice of COR does not influence the final
damped solution of the structure (see “static” in the graph in
Figure 12) but only the maximum transient solution. Fig-
ure 17 visualizes the progression of the maximum interface
iterations over the simulation time and indicates the ad-
vantages of the proposed coupling algorithm. (e large
number of iterations at the time of first contact (t ≈ 0.25 s)
calls for a small time step due to the increased difference in
interface velocities. (is can be overcome with the help of
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Figure 11: Interface simulation results. (a) Contact force at t � 1.2 s. (b) Number of interface iterations per time step.
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additionally introduced interface iterations. As the simu-
lation proceeds and the initial velocity difference is properly
controlled, fewer iterations are needed to enforce the in-
terface conditions.

7.5. Practical Application: Angled Protection Net. One
prominent practical application case of highly flexible
structures can be found in mountainous regions. As an
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Figure 13: Number of interface iterations per time step, for either (a) relaxed displacements and velocities or (b) relaxed forces.
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after the first contact is detected. Underrelaxation of α< 1.0 leads to stable simulations too. However, this is more computationally costly
than using the optimized Aitken relaxation factor.

Table 1: Comparison of computation time with different relaxa-
tions and the Aitken relaxation.

Relaxation factor α Relative computation time (%)
0.1 100.0
0.2 54.1
0.5 20.4
0.7 28.5
Aitken 18.7
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alternative to protection nets used to catch rocks, angled nets
can also be spanned over roads to direct impacting objects to
a safe spot, as shown in Figure 18(a).

To test the limits of the presented algorithms, in this
study, the same system as shown in Figure 18(b) is modelled
without prestressing the cable structure, leading to a very
compliant structure (compare Table 2). Additionally, a small
COR of ε⊥ � 0.2 and a high impact velocity are chosen to
introduce even more difficulties due to an increased contact
force.

Using a time step of 2 · 10− 4 s, the different behaviours
after impact are presented in the incidental Figures 19(a) and
19(b).

Similar to the example from Section 7.1, the weakly
coupled problem experiences too large contact forces and
loses contact between the impacting object and the structure,
whereas the strong coupling algorithm manages to keep the
contact for the given time step (Figure 20(a)).

(e considerably large number of interface iterations
(Figure 20(b)) is a result of the system setup. (is example
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tries to push the time step to a maximum and represents the
largest possible time step, which cannot even be used for
weak coupling anymore, describing a complex problem.

7.6. Arbitrary Boundary Conditions. Another advantage of
this procedure is the possibility to use arbitrary boundary
conditions for the problem. As can be seen in Figures 21(a)–
22(e), the arbitrary triangular and quadrilateral meshes can
be used to simulate any boundary condition, for instance, a
mountainous region. As it is the state of the art in industrial
applications, ∗.stl files can be used. If only point clouds are

available, standard tools can be used to create a triangulated
mesh. (e structural part can be subsequently put into this
domain to easily capture the interaction of different terrain
models and loading scenarios.

As an example, Figures 21(a)–21(i) demonstrate a plane
boundary with a curtain-like structure in the middle and a
cable net protection net at the end of the slope.

In contrast to the plane boundary, Figures 22(a)–22(e)
show the use of an arbitrarily shaped boundary, obtained
from a ∗.stl mesh. (e effortless integration of a deformable
FEM structure into the arbitrary boundary is indicated in
this example.

(a) (b)

Figure 18: Picture of protection net and corresponding numerical model, including the net as cable structure and two impacting rocks
modelled as single DEM particles. (e one particle is chosen to be so small that it falls through the net, to verify the correct coupling
detection. (a) Route Chalais-Vercorin, Valais [45]. (b) Numerical DEM-FEM coupled model.

Table 2: Properties of FEM and DEM parts of example in Section 7.5.

FEM DEM
E [N/m2] 7 · 105 E [N/m2] 1 · 105
A [m2] 1.26 · 10− 5 _u0[m/s] [0.0, −5.54, −5.54]

ρ [kg/m3] 7.85 · 103 ρ [kg/m3] 2.5 · 103
Spre 0 Ri [m] [0.21, 0.05]

τ 20 ] 2 · 10− 1

κ 0 ε⊥ 2 · 10− 1

(a) (b)

Figure 19: Comparison of the (a) weak coupling to the (b) strong coupling approach with the same time step Δt � 2 · 10− 4 s.
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Figure 20: Simulation results. (a) Weak vs. strong coupling-displacement of centre node. (b) Interface iterations over simulation time.

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i)

Figure 21: Plane boundary rigid with one impacting sphere and two protection nets.(e first net (right) is not connected on the lower edge,
and the other is coupled to the ground. (a) t � 1.3 s. (b) t � 1.5 s. (c) t � 1.9 s. (d) t � 2.2 s. (e) t � 2.4 s. (f ) t � 2.5 s. (g) t � 3.6 s. (h) t � 4.4 s.
(i) t � 4.7 s.

(a) (b) (c)

(d) (e)

Figure 22: Triangulated terrain model, showing the downward rolling of the rocks, which are being slowed and stopped by the protection
net. (a) t � 1.2 s. (b) t � 4.5 s. (c) t � 6.8 s. (d) Net impact t � 6.8 s. (e) Net impact: side view t � 6.8 s.
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(a) (b) (c)

Figure 23: Sliding node within the FEM model. It allows us to model a more accurate behaviour of the cable structure nets. (a) t � 0.0 s.
(b) t � 2.7 s. (c) t � 4.5 s.

(a) (b) (c) (d)

Figure 24: Impact problem with more complex shape of impacting objects. Moving impact rocks are discretized as particles which are
clustered to allow any arbitrary shapes. (a) t � 0.0 s. (b) t � 1.3 s. (c) t � 3.0 s. (d) Impact of DEM clusters, t � 1.3 s.

(a)

(d) (e)

(b) (c)

Figure 25: Small particle is penetrating and falling through the coarse cable net. Big particle collides with cable structure and is stopped and
thrown back by the protection structure. (a) t � 0.0 s. (b) t � 0.05 s. (c) t � 0.1 s. (d) t � 0.15 s. (e) t � 0.2 s.

(a) (b)

Figure 26: Protection net test setup in Walenstadt, Switzerland. (a) Testing area in Walenstadt, St. Gallen, Switzerland [45]. (b) FEMmesh.
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7.7. Special Modelling Possibilities. Using two standalone
solution techniques, such as the DEM and structural me-
chanics FEM, enables the user to benefit from the full range
of capabilities and strengths of both participants, such as
sliding nodes on cable elements (including friction) [1, 4]
(Figures 23(a)–23(c)), custom ring elements [1, 4, 46],
plasticity laws to model energy dissipation elements, choice
of multiple time integration schemes, and clusters of par-
ticles (Figures 24(a)–24(d)) to model arbitrarily shaped
objects such as rocks, which is an advantage over state-of-
the-art rockfall protection simulations as discussed in [1, 47].

Using rigid bodies to model impacting objects has the
disadvantage of neglecting damage and deformation of the
object itself and adding additional complexity when han-
dling arbitrarily shaped objects. (e DEM offers the pos-
sibility to simulate breakup of impacting objects [21];
however, the simulation of the continuum with DEM
particles can be very costly, and calibration can be elaborate.

(e possibility to model ΩD with line wall conditions
suitable to the FEMmesh additionally allows for small rocks
to penetrate the protection net (Figures 25(a)–25(e)). In
summary, the combination of the DEM and the FEM allows
the user to model any possible object impacting in a highly
flexible structure modelled by any suitable structural finite
element types. Any conceivable combination (Figure 26) is
possible as long as a suitable algorithm, as presented in this
paper, is available.

8. Conclusions and Outlook

(e numerical analysis of lightweight structures coupled
with impacting heavy objects proves to be a complex
problem and leads to instabilities within the simulation,
especially due to the different masses of the participants. To
overcome this problem, this publication presents several
staggered coupling approaches and presents a sensitivity
study with respect to certain crucial parameters.

(e procedure suggested herein uses FEM with cable
element formulations for flexible lightweight structures
(Section 2) and DEM for the interacting objects (Section 3).
Furthermore, Section 4 shows the procedure for reaching the
equilibrium between both physics. First, the procedure is
explained with a single interface calculation within each time
step (Section 5). In many examples, this approach proved to
be unstable, specifically at initial contacts (indicating large
velocity differences). Additionally, the simulation needs
small time steps, which might be required only at certain
steps. (us, to overcome this problem, an additional iter-
ation between the physics was explained in Section 6. (is
allows time steps to be increased significantly and improves
the efficiency of the simulation (see examples in 7.1, 7.2, and
7.3). Additionally, the sensitivity of the quality of the sim-
ulation is tested by varying the relaxation factor (equation
(34) in combination with example in 7.3) and the coefficient
of restitution (COR) (see Appendix A in combination with
example in 7.4). While the underlying algorithms are ab-
stractly presented in the preceding sections, more detailed
versions can be found in the following appendix to allow the
interested reader to independently reproduce the results.

(e novel approaches make it possible to efficiently
simulate the correct behaviour of complex existing struc-
tures. (e example in 7.5 shows net structures interacted
with rocks which are based on existing structures in the
Austrian and Swiss Alps. (e stability is heavily influenced
by a restricting time step (Figures 19(a) and 20(a)) if the
interface is not controlled by a suitable algorithm as pre-
sented in this study.

In addition, the use of two standalone applications in this
study, the so-called “blackbox solvers” allows for a variety of
advantageous features. As described in Section 7.6, any given
terrain model can be integrated into the simulation process
to efficiently capture environmental influences on the results
(Figures 22(a)–22(e)). Furthermore, Section 7.7 demon-
strates the advantages of an independent FEM application
which is capable of modelling numerous structural details,
such as energy dissipation elements or sliding nodes on cable
elements. Accordingly, DEM can be used to model arbi-
trarily shaped impacting objects (Figures 24(a)–24(d)). (is
allows for independent work in the respective application
without changing the coupling strategy, which especially
proves beneficial in an open-source software environment
such as KRATOS [48].

In future research, different FEM formulations [2, 3] can
be tested for the simulation of the protection nets. Fur-
thermore, if rocks cannot be explicitly described, other
particle approaches such as the material point method
(MPM [5]) could be applied with the proposed coupling
approach. By the way of example, conceivable application
cases include the simulation of mud-flow barriers as well as
avalanche barriers. Furthermore, the influence of the time
integration scheme is additionally a significant factor which
will require deeper investigations.

Abbreviations

FEM: Finite element method
DEM: Discrete element method
COR: Coefficient of restitution
MPM: Material point method
FSI: Fluid-structure interaction.

Appendix

A. DEM Force Derivation

A detailed description of the evaluation of forces described
in Section 3 is provided in order to further discuss the
necessary quantities in the underlying coupling scheme. As
soon as a contact is detected, the forces can be evaluated
using various contact laws and rheological models in which
the normal indentation δn [21] is as follows:

δn � Ri + Rj − Cj − Ci􏼐 􏼑 · nij
, withnij

�
Cj − Ci

Cj − Ci

�����

�����
,

(A.1)

and its time derivative _δn, the normal vector nij, and the
increment of tangential displacement Δs are used.
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In order to obtain Δs, the tangent unit vector tij must be
derived by splitting the velocity at the contact point vij

c into
normal vij

c,n and tangential vij
c,t components. First, the contact

point velocity is expressed with the aid of the respective el-
ement velocity vi, element angular velocity ωi, and the vector
rij

c connecting the particle centre and the contact point:

vij
c � ωj × rji

c + vj􏼐 􏼑 − ωi × rij
c + vi􏼐 􏼑, (A.2)

and then, split up
vij

c,n � vij
c · nij

􏼐 􏼑nij
,

vij
c,t � vij

c − vij
c,n,

(A.3)

which allows us to express Δs using the tangent unit vector,
the element displacement ui, and the element rotation Θi:

Δs � uij
· tij

����
����,

tij �
vij

c,t

vij
c,t

����
����
,

uij
� Θj × rji

c + uj􏼐 􏼑 − Θi × rij
c + ui􏼐 􏼑.

(A.4)

For a Hertz–Mindlin spring-dashpot contact model
(denominated as HM+D in [34]), as shown in Figures 27(a)
and 27(b), the normal Fn and tangential Ft contact forces
[21, 34] for the case of two spheres colliding,

Fn � knδn + cn
_δn,

F
n
te � F

n−1
te + k

n
tΔs

n
, ifΔFn ≥ 0,

F
n
te � F

n−1
te

k
n
t

k
n−1
t

+ k
n
tΔs

n
, ifΔFn < 0,

F
n
t � min F

n
te + ctv

ij
c,t, μFn􏽨 􏽩.

(A.5)

are calculated with the aid of the normal and tangential
stiffness kn and kt, respectively, and the damping coefficients
cn and ct [21], considering the maximum tangential force
restricted to the Coulomb’s friction limit [34] with the
coefficient of friction μ. (e tangential forces are conse-
quently updated from the last step, indicated by the su-
perscript n.

(e material parameters in Table 3 (Young’s modulus E,
particle mass m, shear modulus G, and Poisson’s ratio ]) are
typically obtained by calibration from experiments [49].

As a scaling factor in Table 3, the dashpot coefficient ζ
[21, 34] is frequently expressed using the normal coeffi-
cient of restitution (COR) ε⊥ as shown in the following
equation:

ε⊥ � −
_δ
after
n

_δ
before
n

, (A.6)

ζ � −
ln ε⊥����������

π2 + ln ε⊥( 􏼁
2

􏽱 . (A.7)

Based on our experience, which is as well as supported by
[34, 35], a more realistic modelling of the dashpot coefficient
ζ is given by the following equation [34, 35]:

ζ �

���������������������
1.0

1.0 − 1.0 + ε⊥( 􏼁
2

· e
Λ − 1.0

􏽳

, (A.8)

Λ � ε⊥ · h1 + ε⊥ · h2 + ε⊥ · h3 + ε⊥ · h4 + ε⊥ · h5 + ε⊥(((((

· h6 + ε⊥ · h7 + ε⊥ · h8 + ε⊥ · h9 + ε⊥ · h10( 􏼁( 􏼁( 􏼁( 􏼁􏼁􏼁􏼁􏼁􏼁,

(A.9)

+ +
Ci Cj
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µcn
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kt

µ

(b)

Figure 27: DEM-DEM and DEM-FEM rheological models. (a) DEM-DEM [21]. (b) DEM-FEM [21].

Table 3: Stiffness values for sphere-sphere and sphere-wall contact [21].

Sphere i-Sphere j Sphere i-Wall j
kn (4/(3(((1 − ]2i )/Ei) + ((1 − ]2j)/Ej))))

����������������
(RiRj/(Ri + Rj))δn

􏽱
(4/(3(((1 − ]2i )/Ei) + ((1 − ]2j)/Ej))))

����
Riδn

􏽰

kt (8/(((2 − ]i)/Gi) + ((2 − ]j)/Gj)))
����������������
(RiRj/(Ri + Rj))δn

􏽱
(8Gi/(2 − ]i))

����
Riδn

􏽰

cn (2(ζ i + ζj)/2)
������������������
((mimj)/(mi + mj))kn

􏽱
2ζi

����
mikn

􏽰

ct (2(ζ i + ζj)/2)
������������������
((mimj)/(mi + mj))kt

􏽱
2ζ i

����
mikt

􏽰
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(1) ### Import Applications ####
(2) # Structural Mechanics Application is for FEM analysis, in this scope used for the cable structures.
(3) from KratosMultiphysics.StructuralMechanicsApplication import structural_mechanics_analysis as structural_analysis
(4) # DEM Application is for DEM analysis; in this scope, it holds certain expressions for walls and can also deal with clustered

particles.
(5) from KratosMultiphysics.DEMApplication import KratosDEMAnalysis as dem_analysis
(6) #Mapping Application is to allow amapping between certain spaces; it is used to handle certain interfaces tomake the procedures

more generic.
(7) import KratosMultiphysics.MappingApplication as KratosMapping
(8) ### Define Problem Setup ####
(9) # model part for all faces/boundary walls
(10) mp_dem� dem_analysis.rigid_face_model_part
(11) # model part for all DEM particles
(12) mp_dem_particle� dem_analysis.spheres_model_part
(13) # Analysis model and model part for structural elements
(14) model�KratosMultiphysics.Model()
(15) mp_struct�model[“Structure.computing_domain”]
(16) # Create mapper and define relations. It relates the model parts of the walls in DEM to the cable structures in FEM
(17) mapper�KratosMapping.MapperFactory.CreateMapper(mp_dem, mp_struct, mapper_settings)
(18) # Create utility to optimize contact detection
(19) dem_mesh_moving_utility�DEMApplication.MoveMeshUtility()
(20) ### Initialize Application Setup ####
(21) # Initialize all necessary variables within the applications
(22) structural_analysis.Initialize()
(23) dem_analysis.Initialize()

ALGORITHM 4: Problem setup.

(1) ### Start Time Loop ####
(2) while dem_analysis.time< dem_analysis.end_time:
(3) # increase time step if particles are not near to the interface
(4) if not dem_mesh_moving_utility. CheckIsNearToWall(mp_dem_particle.Nodes):
(5) dem_analysis.SetDeltaTime(multiply� 100.0)
(6) # reset time step if particles are near to the interface
(7) else:
(8) dem_analysis.SetDeltaTime(multiply� 1.0)
(9) ### Solve DEM Problem ####
(10) # update time parameters
(11) dem_analysis._UpdateTimeParameters()
(12) # search and find neighbouring elements/particles which are in contact
(13) dem_analysis.SearchOperations()
(14) # calculate contact forces
(15) dem_analysis.ForceOperations()
(16) # integrate in time to obtain new position and velocity of DEM particles
(17) dem_analysis.IntegrationOfMotion()
(18) # finalize time step by updating state variables
(19) dem_analysis.FinalizeSingleTimeStep()
(20) # check for contact forces and solve FEM part if contact forces exist
(21) if dem_mesh_moving_utility.CheckContact(mp_dem.Nodes):
(22) ### Map Contact Forces ####
(23) # DEM to Structure
(24) mapper.Map(DEMApplication.CONTACT_FORCES, StructuralMechanicsApplication.POINT_LOAD)
(25) ### Solve Structural Mechanics Problem ####
(26) structural_analysis.AdvanceInTime()
(27) # set the previous configuration as the current configuration
(28) structural_analysis.InitializeSolutionStep()
(29) # prediction step for solution scheme if necessary

ALGORITHM 5: Continued.
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(30) structural_analysis.Predict()
(31) # solve the FEM system of equations or explicitly integrate in time
(32) structural_analysis.SolveSolutionStep()
(33) # finalize time step by updating state variables and spatial position
(34) structural_analysis.FinalizeSolutionStep()
(35) ### Map Velocity and Displacement ####
(36) # Structure to DEM
(37) mapper.InverseMap(VELOCITY)
(38) mapper.InverseMap(DISPLACEMENT)
(39) # update position of DEM wall condition
(40) dem_analysis.MoveMesh()
(41) ### Finalize Applications ####
(42) # e.g., free memory, make output, ...
(43) dem_analysis.Finalize()
(44) structural_analysis.Finalize()

ALGORITHM 5: Weak coupling.

(1) ### Start Time Loop ####
(2) while dem_analysis.time< dem_analysis.end_time:
(3) # update time parameters
(4) dem_analysis.AdvanceInTime()
(5) structural_analysis.AdvanceInTime()
(6) # save the current position, forces, velocity, etc., of the DEM wall condition and particles
(7) dem_analysis.SaveCurrentData()
(8) # initialize time step
(9) structural_analysis.InitializeSolutionStep()
(10) # initial interface residuals
(11) InitializeResiduals()
(12) while interface_residual> interface_tolerance:
(13) ### Solve DEM Problem ####
(14) # reset the previous saved data of the particle to keep it at the same reference position in each inner loop step
(15) dem_analysis.SetOldDataParticles()
(16) # search and find neighbouring elements/particles which are in contact
(17) dem_analysis.SearchOperations()
(18) # calculate contact forces
(19) dem_analysis.ForceOperations()
(20) # integrate in time to obtain new position and velocity of DEM particles
(21) dem_analysis.IntegrationOfMotion()
(22) ### Map Contact Forces ####
(23) # DEM to Structure
(24) mapper.Map(DEMApplication.CONTACT_FORCES, StructuralMechanicsApplication.POINT_LOAD)
(25) ### Solve Structural Mechanics Problem ####
(26) # prediction step for solution scheme (if necessary)
(27) structural_analysis.Predict()
(28) # solve the FEM system of equations or explicitly integrate in time
(29) structural_analysis.SolveSolutionStep()
(30) ### Map Velocity and Displacement ####
(31) # Structure to DEM
(32) mapper.InverseMap(VELOCITY)
(33) mapper.InverseMap(DISPLACEMENT)
(34) ### Calculate Interface Residuals ####
(35) calculate_displacement_residual()
(36) calculate_velocity_residual()
(37) # use the maximum residual for the convergence check
(38) interface_residual�max(displacement_residual, velocity_residual)
(39) ### Relax Exchange Data ####
(40) dem_analysis.RelaxDisplacementAndVelocity()

ALGORITHM 6: Continued.
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(41) dem_analysis.SetRelaxedDisplacementAndVelocity()
(42) ### Update DEM ####
(43) # update position of DEM wall
(44) dem_analysis.MoveMesh()
(45) # use the current position of the DEM wall condition and the last converged position to calculate the difference in

displacement, which is used to calculate contact force
(46) dem_analysis.CalculateDeltaDispFromIntermediatePos()
(47) # finalize time step by updating state variables and spatial position
(48) structural_analysis.FinalizeSolutionStep()
(49) dem_analysis.FinalizeSingleTimeStep()
(50) ### Finalize Applications ####
(51) dem_analysis.Finalize()
(52) structural_analysis.Finalize()

ALGORITHM 6: Strong coupling: relax displacements and velocities.

(1) ### Start Time Loop ####
(2) while dem_analysis.time< dem_analysis.end_time:
(3) # update time parameters
(4) dem_analysis.AdvanceInTime()
(5) structural_analysis.AdvanceInTime()
(6) # save the current position, forces, velocity, etc., of the DEM wall condition and particles
(7) dem_analysis.SaveCurrentData()
(8) # initialize time step
(9) structural_analysis.InitializeSolutionStep()
(10) # initial interface residuals
(11) InitializeResiduals()
(12) while interface_residual> interface_tolerance:
(13) ### Solve DEM Problem ####
(14) # reset the previous saved data of the particle to keep it at the same reference position in each inner loop step
(15) dem_analysis.SetOldDataParticles()
(16) # search and find neighbouring elements/particles which are in contact
(17) dem_analysis.SearchOperations()
(18) # calculate contact forces
(19) dem_analysis.ForceOperations()
(20) # integrate in time to obtain new position and velocity of DEM particles
(21) dem_analysis.IntegrationOfMotion()
(22) ### Map Contact Forces ####
(23) # DEM to Structure
(24) mapper.Map(DEMApplication.CONTACT_FORCES, StructuralMechanicsApplication.POINT_LOAD)
(25) ### Calculate Interface Residual ####
(26) interface_residual� calculate_force_residual()
(27) ### Relax Exchange Data ####
(28) dem_analysis.RelaxForces()
(29) dem_analysis.SetRelaxedForces()
(30) # prediction step for solution scheme (if necessary)
(31) structural_analysis.Predict()
(32) # solve the FEM system of equations or explicitly integrate in time
(33) structural_analysis.SolveSolutionStep()
(34) ### Map Velocity and Displacement ####
(35) # Structure to DEM
(36) mapper.InverseMap(VELOCITY)
(37) mapper.InverseMap(DISPLACEMENT)
(38) ### Update DEM ####
(39) # update position of DEM wall
(40) dem_analysis.MoveMesh()

ALGORITHM 7: Continued.
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h � [−6.918798, −16.41105, 146.8049, −796.4559, 2928.711,

− 7206.864, 11494.29, − 11342.18, 6276.757, −1489.915].

(A.10)

(e difference can be observed in Figures 15(a) and
15(b). For further information about this topic, the reader is
redirected to [21, 34, 35].

With respect to [21, 35], the COR expresses the ratio
between the velocity after _δ

after
n

and the velocity before _δ
before
n

impact. Amaximum of ε⊥ � 1.0 will model a perfectly elastic
impact, whereas ε⊥ � 0.0models a perfectly plastic impact. A
smaller COR increases the influence of the impact velocity in
the contact force calculation [21, 34] (equation (A.5)) and is
thus critical for the coupled simulation in this study, in
which a Hertz–viscous–Coulomb contact law is used [21].

For frictional cohesion-less contact as used in this study,
the normal force must be constrained to always be ≥0.0 [21],
since no traction in normal direction is allowed. To correctly
capture this behaviour, Cummins et al. [34] describe how to
modify the contact duration calculation by using the dashpot
coefficient as described by equation (A.8). For further dis-
cussion on the contact forces, additional contact laws, and
specific DEM-related topics such as contact duration, etc.,
see [21, 34, 35, 50, 51].

B. Code Scripts and Development Environment

To give the interested reader a better understanding and the
possibility to reproduce the results, the algorithms are
presented with the notation used. (e open-source multi-
physics softwareKRATOS [48] was used for this study. It can
be downloaded [52]. An installation guideline is provided
there, too. KRATOS is designed in C++ and includes a
Python interface to facilitate the advanced development and
simulation. Documentation for the Python scripts used in
this study is provided in the following. To run the simu-
lation, the structural mechanics application, the discrete
element application, and the mapping application are
required.

B.1. Problem Setup. (e script to define the problem setup is
shown in the following. (is initialization script is for both
the weak and the strong coupling approach, which are
described in the following appendices (Algorithm 4).

B.2. Weak Coupling Algorithm. First, the Python script to
run the weak coupling algorithm (Section 5) is provided.
(is code sequence describes two possibilities to improve the
efficiency of the simulation: one by increasing the time step if
particles are far away from the interface and the other by
solving the FEM part only if contact forces have been de-
tected. (ese two features are omitted in Appendix B.3 for
simplicity purposes. However, they can be used to optimize
computation time (Algorithm 5).

B.3. Strong Coupling Algorithm. (e two strong coupling
approaches described in Section 6 are depicted in the fol-
lowing algorithms. First, the procedure to relax displace-
ments and velocities is explained, followed by the procedure
to relax the transferred forces (Algorithms 6 and 7).

B.3.1. Relax Displacements and Velocities algorithm 7
B.3.2. Relax Forces
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