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Abstract

Modern High-Performance Computing systems are ever growing in scale. To better
manage and get more insights into these systems, HPC institutions have turned to
hardware performance data. The collection and utilization of this time series data can
help in understanding what these systems and their users are doing and how to make
them more efficient. Being able to measure similarity between jobs is a significant first
step in the direction of increasing an HPC cluster’s efficiency, as they are necessary to
understand behavior of users or to detect anomalous behavior.

In this work we discuss different approaches of generating and evaluating job repre-
sentations for job similarity scores on the example of existing data and infrastructure
from the RWTH Aachen University. To accomplish this, we utilize and evaluate two
dimensionality reduction techniques and two clustering algorithms. We propose a new
measure to score clustering results with regards to job similarity, using benchmark runs.
This score is then used to evaluate the different approaches.
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1. Introduction

Modern High-Performance Computing (HPC) systems are ever growing in scale. With
Folding@home haven broken the exascale barrier [fol20], it will not be long for dedicated
supercomputers to follow suit. The current world leader, Fugaku, is leading this race
with almost half an exa-Flop of double precision compute consuming around 28 MW
of power [Top20]. But with scale comes complexity: Thousands of users, hundreds
of thousands of jobs, potentially running on different hardware types. To efficiently
allocate and use available resources is a huge research field.

To combat this ever growing complexity, HPC institutions have turned to hardware
performance data. This time-series data characterizes the usage of hardware resources,
like CPU, memory, and I/O. Examples include Flop/s, measured memory bandwidth,
or the number of bytes read from disk. The collection and utilization of this data
can help in understanding what these systems and their users are doing and how to
make them more efficient. While this was realized as early as 2004 [Muc+05], most
HPC centers only use this data for health monitoring purposes or manual analysis of
single-job performance, and sometimes anomaly detection [Bor+19].

Being able to measure the similarity between jobs is the prerequisite for many further
approaches to making HPC clusters more efficient. They are necessary for identifying
shifts in general cluster usage, to understand behavior of user groups, and to detect
outliers and anomalous behavior.

This thesis aims to further research in the area of performance monitoring by laying
groundwork for and investigating job similarity based on hardware performance data.
It will first cover the existing systems used to capture this data and its shape. Next it
will scientifically approach the task of describing and reducing the dimensionality of
this expansive data set, laying a solid foundation for future research. Delving in further,
two dimensionality reduction and two clustering techniques are investigated. These
are evaluated in respect for their use in defining job similarity with a custom scoring
mechanism using benchmark runs. Lastly, this work describes in detail the applications
and limitations of this approach as well as possible future work.

These goals will be achieved through usage of the existing data and infrastructure
provided by the RWTH Aachen University. It currently maintains infrastructure to
continually capture hardware performance metrics on their HPC cluster Cluster Aix-la-
Chapelle (CLAIX) [RWT20b].
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2. Background

The following sections will describe the required background knowledge for the rest of
this thesis. The architecture of existing systems and their interplay is shown in sections
2.1 to 2.4. Next, this chapter will describe the contributions to the existing setup in the
form of Python code used for data analysis in section 2.5.

To place these systems and further research into context, related work is described in
section 2.6. Lastly, in section 2.7, we introduce a set of pre-existing benchmark runs,
which will be used to evaluate the distance measures and cluster analysis in chapters 4
and 5.

To guide the sections about architecture and place this works additions into visual
context, figure 2.1 illustrates the structure of all systems, as well as their dependencies.

Hardware Monitoring Stack

InfluxDB

CLAIX HPC System

Compute 
NodeSlurm 

Scheduler

Telegraf
(Metric Collection)

Python

CSV Scheduling Data
JobLists Jobs

DataFrame

Perf. (Node)
DataFrame

Perf. (Core)
DataFrame

Filtered & 
Aggregated
DataFrame

Clustering and 
Analysis

Existing Infrastructure

Existing Code

New Code

Figure 2.1.: Architecture of the Performance Data Collection Stack at the RWTH Aachen
University: Data from CLAIX’ scheduler Slurm and the hardware monitor-
ing stack is parsed, filtered, and combined for data analysis and clustering
purposes.
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2. Background

2.1. Hardware

The current computing hardware available in CLAIX is composed of two parts:
CLAIX2016 and CLAIX2018 [RWT20b]. They are named after their year of instal-
lation and can be further subdivided into different node types [RWT20a]. The core
data analysis in this work is restricted to CLAIX2016 nodes, even though it is likely
more relevant to analyze the newest node type on CLAIX2018. This is done to avoid
faulty data on CLAIX2018, further described in section 3.1. The CLAIX2016 cluster first
appeared on the Top500 list in November 2016, where it placed 310th [Top17].

Within CLAIX2016, the most prevalent node type, lnm (600 nodes), is chosen to
maximize available data with a single hardware configuration. These nodes contain
two Intel Broadwell EP (E5-2650v4) processors with 12 cores each, have 128 GB of
DDR4-2400 memory and are connected using an Intel Omni-Path network with a
bandwidth of 100 Gb/s. As shown in equation A.1, a single node can reach a peak
performance of 844.8 GFlop/s. All further benchmarks and data analysis, except for
the benchmark comparison in section 2.6, deal with data stemming from this type of
node.

2.2. Performance monitoring with Likwid

To collect all non I/O hardware performance data at the RWTH, Likwid [THW10] is
used. Likwid is a portable performance monitoring tool for the GNU Linux operating
system, that provides an API for reading CPU hardware performance counters. To
collect hardware performance metrics in CLAIX, a C program previously developed by
Jonas Hahnfeld is used.

While Likwid is usually invoked manually from the command line or using a script,
this program makes use of Likwid’s API directly and is remotely invoked, once a
minute, by the collection server (Telegraf, see section 2.3).

Every invocation, this application measures hardware performance in the following
five steps (in order of appearance), spending one second to measure each step:

1. Power per socket
2. Cache request and miss rate per core
3. Double precision Flop/s, clock rate, activity (boolean) per core
4. Single precision per core Flop/s
5. Memory bandwidth (read/write) per NUMA node

Here, a core is considered active when both the cycles per instruction and clock are
not nan. All core specific metrics are only reported if their core is considered active.

3



2. Background

This is taken into consideration in section 3.2, where this missing data is re-added
before analysis.

While this data collection is always running per default, it is possible for users to
explicitly turn off Likwid data collection (for example when wanting to profile their
application themselves). In this case, the measurements are skipped to not interfere
with the user. With no measurements available in later parts of the data processing,
these jobs are filtered automatically.

2.3. Data collection and storage using InfluxDB and Telegraf

To collect and store the data available, a collection agent and database are needed. In
the case of the RWTH, these roles are fulfilled by Telegraf [inf20a] and InfluxDB [inf20b]
respectively. InfluxDB is a time series database designed to handle large amounts of
sensor data and metrics. Telegraf is a server application that allows collection of metrics
through a plugin architecture.

Telegraf manages the collection of data through so called collectors. These are polled
exactly once every minute and the resulting data is inserted into InfluxDB. One of the
collectors used is the previously mentioned C application using Likwid to read out
hardware performance counters. Other scripts and publicly available plugins are used
to capture more system and I/O data (e.g. bytes written to disk, packets sent over the
network). A sizable collection of the available data is listed in section A.3.

Data for use in this thesis is limited in scope, as retention policies exist to delete core
and node specific data after 180 and 540 days respectively. These time windows and
the aforementioned recording frequency of once every minute were chosen to limit the
database storage requirements to roughly 1.5 TB.

Back when this data collection system was first installed, no noticeable overhead
on benchmark performance was measurable. While the measurement interval and
duration may have an effect on noisiness of the data, investigating these effects are out
of scope for this work.

2.4. Job scheduling data from Slurm

In order to define job similarity measures, the raw performance data must first be
joined up with job scheduling data. This data is produced and provided by the Slurm
Workload Manager [YJG03], the scheduling system used within CLAIX to efficiently
allocate resources to users who wish to run jobs.

Slurm’s scheduling data, which can be used to identify jobs with their runtimes and
hosts, exists in the form of CSVs ordered by month and day. As jobs sometimes run
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2. Background

over multiple days, causing data to be distributed among more than one CSV, these
files need be to merged before further analysis. This thesis makes use of pre-existing
scripts, developed by Severin Schüller, to access this scheduling data in the form of
JobLists as seen in figure 2.1.

2.5. Working with hardware performance metrics

In order to analyze and explore hardware performance data at the University IT Center,
the programming language Python is used. To not unnecessarily strain the database
infrastructure with constant re-querying of the same data, a data pipeline that saved
intermediate data representations was built.

Before this thesis, the data was queried and directly stored in an already aggregated
fashion. It was held in memory using NumPy [VCV11] arrays and Python objects,
which were then directly serialized to binary (".bin") files using of the pickle library.

During work on this thesis, the pre-existing data querying code was replaced by code
utilizing pandas [tea20] dataframes. This library enables the writing of idiomatic data
transformation and filtering code and interfaces well with machine learning libraries
like scikit-learn [Ped+11] and Keras [Cho+15]. Using this library also made it possible
to serialize data in the form of compressed parquet [Voh16] files (".parquet.gzip").
The immediate aggregation step was also removed to allow the custom aggregations
described in section 4.1, based on completely raw data.

The DataFrame objects in figure 2.1 show all steps of this new data pipeline.
The difference in performance characteristics between these two code bases can be

seen in 2.1. As each month of data only needs to be constructed once, the initial
construction time is insignificant, although this can certainly still be optimized. The
reduction in disk-size allowed for the storage and processing of raw node and core
data, which would have otherwise consumed significantly more storage resources.

Initial construction Disk Read Write Memory
existing 0.3h 31.2GB 378s 242s 104GB

new 2.82h 5.5GB 146s 1093s 36GB

Table 2.1.: Performance Comparison of Old and New Code, Node-Level data for 2020-07

2.6. Related work

In order to validate the chosen measurement interval and data collection methodology
described in sections 2.2 and 2.3, we draw on work done to measure node-level perfor-
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Figure 2.2.: Comparison of HPL and Likwid reported Flop/s on CLAIX2018

mance variability on the CLAIX2016 and CLAIX2018 clusters [Han19]. To continually
measure performance variability across its nodes, the RWTH Aachen IT Center employs
a periodically scheduled number of jobs executing High-Performance Linpack (HPL)
[A P18] five times per job across roughly 1000 nodes, collecting and analyzing the
resulting Flop/s measurement reported by HPL.

In figure 2.2, the distribution of these measurements for the month of July 2020
and CLAIX2018 is compared to the mean Flop/s measured and reported by Likwid
for the same jobs. The theoretical peak performance of 2150.4 GFlop/s, seen in this
plot, is calculated similarly to section A.1 using specifications from Intel [Inta], the
RWTH Aachen IT Center [RWT20a], and WikiChip [Wik20]. For these calculations, the
base AVX-512 clock of 1.4 GHz is used. Using AVX-512, an instruction set for single
instruction multiple data (SIMD) vector operations, allows for higher throughput than
normal operations, even at a lower guaranteed frequency. The measured Flop/s can be
slightly faster than the theoretical value because of Intel’s Turbo Boost Technology.

The mean of the distribution of average job Flop/s reported by Likwid initially
differs greatly from the mean of the distribution of actual HPL measurements. After
reviewing the reported Flop/s of a randomly picked node in these runs in figure 2.3 it
can be seen that there are periods in between HPL runs with drops in reported Flop/s.
Benchmark loading and verification times. As these are not factored into the mean
Flop/s that HPL itself reports, they should be excluded in the Likwid measurements to
accurately compare the two. After excluding all measured values below 10 GFlop/s,
the now filtered distribution of Flop/s means resembles the distribution of HPL Flop/s
measurements. Thus, the metric collection system described in the previous section
can accurately capture the overall nature of a given job with fairly high confidence.

To embed the performance monitoring system used at the RWTH Aachen in the
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Figure 2.3.: Measured Flop/s over time for HPL Job 15086360 on CLAIX2018

broader scope of research, the metric collection stacks employed at the Erlangen Re-
gional Computing Center (RRZE) and the Leibniz-Rechenzentrum (LRZ) in Munich are
highlighted. The RRZE, maintained by the Friedrich-Alexander-Universität, similarly
to CLAIX, also uses Likwid and InfluxDB [Röh+17]. They have recently developed
the front-end user interface ClusterCockpit [Eit+19] with the main focus of detecting
pathological jobs (e.g. user error in scheduling, severe load imbalances, idle jobs). The
Leibniz-Rechenzentrum (LRZ) in Munich employs a completely different data collec-
tion and storage system, the Datacenter Data Base (DCDB) [Net+19]. DCDB Wintermute
[Net+20], a system built on top of DCDB, was developed to enable online operational
data analytics. Similar to the work completed in this thesis, the developers of DCDB
Wintermute have applied Bayesian Gaussian mixture clustering on select performance
metrics (power, temperature, and CPU idle times)[Oze+20]. This was done to identify
non-optimal workload balancing across nodes and anomalous node power consump-
tion for one node to demonstrate the capabilities of their system. Work in Munich also
includes significant research into knowledge based methods for detecting performance
bottlenecks and inefficiencies like load imbalance [Gui15].

While specific machine learning methods have been proposed in the context of the
motivation of this thesis, to the best of our knowledge no attempt has been made at
defining and evaluating general job similarity scores on a plethora of performance
metrics. To give specific examples, others have predicted power consumption [YTU18]
using clustering, detected known I/O patterns with supervised machine learning
[Tun+17] and detected unseen general performance anomalies [Bor+19] using unsu-
pervised learning with autoencoders. During the work on this thesis, an attempt
to cluster HPC jobs, similar to the methodology of this thesis, has been published
[HDF20]. This other work differs from this thesis with regards to the the methodology
used for evaluation: Halawa et al. evaluate their clustering results using cohesion and
separation measures. In contrast, this thesis first defines desirable characteristics of a
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2. Background

Keyword SPEC MPIM2007 SPEC MPIL2007
GemsFDTD 113.GemsFDTD 145.lGemsFDTD

TF 129.tera_tf 129.tera_tf
leslie 107.leslie3d 143.dleslie

lu 137.lu 137.lu
su3imp 104.milc 142.dmilc
tachyon 122.tachyon 122.tachyon
zeusmp 132.zeusmp2 132.zeusmp2

wrf2 127.wrf2 147.l2wrf2
idle n.a. n.a

Table 2.2.: Used SPEC MPI R© 2007 Benchmarks and Naming

good similarity score and then using these to construct a scoring method for clustering
results across chapters 4 and 5.

2.7. Benchmarks

To evaluate the consistency of job similarity scores and different unsupervised clustering
method in later sections, we make use of pre-existing labeled benchmark runs. Specifi-
cally this work makes use of the existing runs listed in table 2.2. These benchmarks
are all part of the SPEC MPI R© 2007 benchmark suite, which consists of two separate
classes: MPIM2007 and MPIL2007 - containing a total of 18 benchmarks [SPE07].

The runs used in this work do not include all benchmarks in the benchmark suite.
Each row in the aforementioned table matches a benchmark from the medium or large
category with its respective counterpart. All MPIM2007 and MPIL2007 jobs were run
on a single and four nodes respectively. The number of nodes a benchmark was run
on, as well as the keyword column in table 2.2 will from here on be used to identify
a specific benchmark in the form of the labels: 1_<Keyword> and 4_<Keyword>. All
individually identifiable benchmarks were run 5 times.

Additionally to these benchmarks, ten minute idle runs on one and four nodes will
be used. These will be referred to as 1_Idle and 2_Idle.

8



3. Data preparation

After previously describing the setting of this work, the following section will start
working with the collected data. Before further analyzing existing hardware perfor-
mance data, filtering, cleaning, and feature engineering is required. First, the raw data
needs to be filtered down to a consistent yet maximal set. Next, any missing data needs
to be dealt with. Lastly, new columns are derived from the existing ones to better
capture the properties of a single job.

3.1. Filtering

As the recorded double precision Flop/s data on CLAIX2018 sometimes contains
faulty values, CLAIX2018 is excluded from any further analysis. These erroneous
measurements first started appearing on the 16.05.2019, when Intel used the Flop
hardware performance counter as a spare register to patch a bug in microcode relating
to transactional memory (TM). As a result, this counter does not contain valid data when
AVX-512 is used in conjunction with TM. Efforts have since been made to continually
disable TM on CLAIX18. This has not been completely successful, as it turns back on
when an application uses it and there exists no BIOS setting to force this feature to stay
disabled.

In order to guarantee homogeneous measurement data while ensuring maximal data,
we further restrict ourselves to a single hardware type in CLAIX2016. The main node
type: lnm (600 nodes), described in section 2.1, is chosen.

Because of the retention policies mentioned in section 2.3, per core data was only
available starting the middle of March 2020. With the most recent query being com-
pleted in the middle of September 2020, the data used for this thesis spans the time
frame from the 15.03.2020 until the 15.09.2020. While it would have been preferable
to include cache request and miss rates, these are not included in further analysis, as
these measurements have only been active since 23.06.2020. Including them implies
removing half of the available data. This amount of data was valued higher than the
additional information that the cache metrics provide.

9



3. Data preparation

3.2. Missing data

As mentioned in section 2.2, per core data is only recorded for active cores. In order to
correctly calculate aggregations, the values for inactive cores are padded with zeroes.

3.3. Derived columns

All I/O and InfiniBand metrics listed in the appended table A.1 can be used to extract
further information about performance behavior. The transmit, receive, read, or write
speed and amount of packets, reads, or writes can be combined to calculate average
packet/read/write size. For example, average disk write size is computed taking the
ratio of the disk_write_bytes with the disk_writes column.

To correctly capture the statistical properties of these derived columns, it is necessary
to compute them before further aggregation in section 4.1. This is the case as the
mean of a ratios µ(a/b) does not necessarily equal the ratio of means µa/µb. The same
holds true for the standard deviation of ratios σ(a/b), which is not equal to the ratio of
standard deviations σa/σb. This is further illustrated with an example in section A.2.

10



4. Dimensionality reduction

After all of the data preparation steps, the data set consists of the following dimensions:

• jobs (59714 total)
• nodes (ranging from 1 to a max of 256)
• cores (24 cores per node)
• time (varying from a few minutes to a max of 10 days, one data point per minute)
• features (27 per node + 3 per core)

The time-series data for a given job is highly dimensional with varying shape and
length. Defining a distance measure using this data directly is nearly impossible, as
two jobs can have different runtimes and amounts of nodes.

In section 4.1 this data set is reduced down to a single row of data per job. An effort
is made to preserve statistical properties of the different dimensions. Given the vast
variety of distributions across aggregated features, in section 4.2 two scaling approaches
are introduced. These aim to scale features, such that no one feature dominates the
others. Afterwards, in sections 4.3 and 4.4 the number of features is further reduced
through the use of PCA and autoencoders. This is done to both address the curse of
dimensionality and to keep clustering runtimes low. Lastly, in section 4.5 the previously
defined distance measures are interpreted and analyzed.

4.1. Aggregation

To transform the data for a given job to a consistent shape and length, statistical
aggregations over the different dimensions are completed. The mean and standard
deviation (std) are applied to the time, cores, and nodes dimensions in the given order.

Table 4.1 shows a general overview of the aggregations applied. Here Core-Level-
Metrics and Node-Level-Metrics refers to the different metrics listed in A.1. The derived
Node-Level-Metrics from section 3.3 are also included here. The different aggregations in
the table are chosen to reflect metric properties that differentiate jobs from one another.
If they are not extracted here, this information would be lost and not accessible to
further dimensionality reduction and clustering. The standard deviation of the time,

11



4. Dimensionality reduction

core, and node dimensions are taken to represent what can be interpreted as imbalance.
This information would be lost if data was only aggregated using the mean.

While other methods of aggregating time-series data are proposed in section 6.2, this
work focuses only on extracting general statistical properties through aggregation. A
more detailed analysis of possible statistical aggregations (e.g. the mean core imbalance
of time imbalances) or the detection and use of different code sections (e.g. data loading
or check-pointing) for aggregation is out of scope for this work.

Time Cores Node Meaning
Core-Level Metrics

mean mean mean global mean
mean mean std node imbalance
mean std mean mean core imbalance

std mean mean mean time imbalance
Node-Level Metrics

mean - mean global mean
mean - std node imbalance

std - mean mean time imbalance

Table 4.1.: Aggregations and their Representations

Through the process of aggregation some duplicate (when scaled) columns are
produced. This is the case because some data (e.g. DP-Flop/s) is present in both the
per-core and per-node data. These duplicates are simply removed.

At the end of aggregation, every job has the same shape of only 108 feature columns.

4.2. Standardization and Normalization

Next it is necessary to scale the aggregated data. The features produced through
the aggregation steps described in the previous section all have widely differing
distributions. The aim of standardization and normalization is to transform features
such that no single feature dominates others in further approaches and evaluations.

Standardization transforms the data of a feature such that its distribution has a mean
of zero and standard deviation of one.

Normalization scales data linearly so that the minimum and maximum data points
map to zero and one, respectively.

Both can be useful, depending on the data at hands and methods used. To empirically
test which method is better suited for the problems in this thesis, both are used.
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4. Dimensionality reduction

4.3. Principal component analysis

To achieve reasonable runtimes in later clustering approaches and to avoid the curse of
dimensionality, the 108 features per job are further reduced. This is done using PCA,
described in this section and autoencoders, described in section 4.4.

Principal component analysis (PCA) is a widely used dimensionality reduction
technique. It estimates the original data through a linear transformation into the
basis of so-called principal components. These components are calculated, sorted,
to maximize the captured variance in data. This approach is often used in cluster
analysis with the assumption that components containing the most variance, capture
the most informative features of a given data set. For this reason, and its simplicity and
availability, this method is applied in this thesis.

4.4. Autoencoders

Autoencoders [Kra91; Cho15] are a type of neural network, which aim to learn efficient
data encodings through unsupervised learning.

The typical architecture of an autoencoders, displayed in figure 4.1, and used through-
out this thesis is very simple. They are fully connected, feed-forward neural networks
consisting of an encoder and decoder section. The encoding part is made up of an input
layer with the dimensionality of the input data (108 features) and several (optional)
hidden layers to learn and encode correlations and dependencies of different features.
Additionally, it contains the bottleneck layer, which is also shared as an input to the
decoder. This has the desired reduced dimensions. The decoder further contains the
reverse set up of the encoding stack, finally outputting data in the original shape.

To perform dimensionality reduction, a given autoencoder is trained using the mean
squared error (MSE) as a loss function. After successfully training the network to
reproduce a given input on the output side, the bottleneck layer can be used as a
compressed representation of the original data.

ReLU is used as an activation function throughout the network, as it has been
shown to be very powerful and is the current state of the art. When data is scaled
using normalization, the last layer of the autoencoder has to use a different activation
function to account for this. Because during normalization data is scaled to values
between zero and one, the Sigmoid function is used, as it produces the same range of
values.

In order to achieve a sparser encoding of data, it is also possible to add a regularizer
constraint to the bottleneck layer. This can be desirable to avoid overfitting and learning
a model that is more complex than required. The regularization used here tries to
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ENCODER

DECODER

X b X'

Input / Output Layer

Hidden Layers (optional)

Bottleneck Layer

Figure 4.1.: Network Architecture of a Typical Autoencoder

achieve a more sparse encoding by constructing the loss function to additionally
minimize the L1 norm of the bottleneck layer.

In the next sections different network depths of hidden layers will be called simple,
shallow, and deep. These names refer to the configuration and size of the extra hidden
layers and the configurations can be seen in table 4.2.

Name Shape
Simple []
Shallow [64]

Deep [256, 128, 64, 32, 16]

Table 4.2.: Extra Hidden Layer Sizes

4.5. Evaluation using MSE

The number of components to reduce the original data down to is determined by using
the PCA rule of thumb of selecting as many components as needed for retaining 90%
of the variance. This threshold is reached at 16 components. This number was then
taken and applied across all other methods.

To evaluate how well different techniques capture the original data, the loss of
information is compared. To correctly estimate future performance, 20% of the shuffled
data is removed before training autoencoders and fitting PCA. These 20% are then used
exclusively for evaluation in this section. Alternatively the same could be accomplished

14



4. Dimensionality reduction

using cross validation. This was omitted because of time limitations.
The error for a given encoding is calculated using the MSE. This is achieved by

first decoding back to the original 108 dimensions. To not favor one feature over
another based on distribution, the original and reconstructed data are both transformed
using standardization (fitted on the original data). Standardization is chosen over
normalization to avoid the under representation of features with very large outliers.
Lastly, the MSE is calculated using these scaled representations.

Dim. Red. Scaler Reg. Depth MSE
deep 0.173488

shallow 0.21619none
simple 0.314946
deep 0.259047

shallow 0.249772

norm

applied
simple 0.393544
deep 0.339015

shallow 0.299305none
simple 0.300781
deep 0.388993

shallow 0.374349

autoencoder

std

applied
simple 0.328651

norm n.a. 0.608582
pca

std n.a. 0.570563

Table 4.3.: Mean Squared Error of Dimensionality Reduction Techniques

Table 4.3 shows the mean squared error for different dimensionality reduction
configurations. Note, that all autoencoding configurations were trained five times
and only the model with the least MSE is selected and used. The mean squared
error rate was overall lowest for the autoencoder trained on normalized data with no
regularization of the bottleneck layer and a deep network architecture. A potentially
non-expected result is that autoencoders minimizing MSE on normalized data perform
better than autoencoders minimizing MSE on standardized data. This is surprising as
the worse performing network is minimizing the exact metric they are being compared
with. This cannot be attributed to overfitting, as the models are evaluated on data
different from the data they are trained on. Overall it can be said that simple networks
achieve a lower MSE on standardized data, while deep networks synergize more with
normalized data. Autoencoders with regularization turned on perform generally worse
than their counterparts with it turned off. PCA performed worse than all autoencoders.
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4. Dimensionality reduction

4.6. Evaluation using pairwise benchmark distances

While a model with low MSE represents a high quality encoding of the original data,
it does not necessarily mean that said model is able to capture properties desirable
in a distance measure of jobs. To further evaluate these dimensionality reduction
techniques, specifically with regards to their value as distance measures, we fall back to
the benchmarks introduced in section 2.7. To illustrate job similarity properties of the
techniques, heatmaps of the euclidean distances between benchmarks are used. These
allow for quick visual identification of key features desirable in a job similarity score.

Figures 4.2 and 4.3 show the pairwise euclidean distances of benchmark runs and
mean benchmark runs using the best and worst performing methods from section 4.5.
These two models consist of an autoencoder (using normalized data, no regularization,
and a deep network architecture) and PCA (using standardized data). They are
selected to contrast the models’ MSE measures with their applicability to job similarity.
Heatmaps for other dimensionality reduction techniques are appended in section
A.4. For every benchmark type, the mean of benchmark runs is calculated using the
arithmetic mean. Note that for both the 1_idle and 4_idle jobs only one run is available.

One very intuitive characteristic of a good job similarity score is that an idle job
should be very different from high performance benchmarks. This is definitely the case
for the two dimensionality reduction techniques displayed. The 1_idle and 4_idle jobs
have, on average, the highest distances to all other jobs. On all heat maps, they are
visually distinguishable as dark red lines.

Another property that should definitely be present, is the similarity of benchmark
runs of the same benchmark type. As these all had the exact same hardware, code, and
environments the distance between any two runs of the same type should ideally be
zero. Optimally, the distance heat map of individual runs will look exactly the same
(except for the two idle runs) as the heat map for the run means. However, this is
not the case and a distinct level of noise between individual runs can be observed. In
general the autoencoder captured more of this noise than PCA did.

This noise is somewhat expected and could be caused by a multitude of reasons:
Firstly the operating system as well as the hardware can introduce variability in
performance [Han19]. Additionally, this noise could be due to the sampling nature of
the data collection systems described in sections 2.2 and 2.3. With a sampling interval of
only one second and a job changing job phases many times a second, some inaccuracy
and noise is to be expected.

Additionally, it might be desirable for a distance measure to show similarity between
single and multi node runs of the same benchmark type. If these distance measure
were able to capture this, it would show in the diagonals of the lower left and upper
right quarter. These should be lighter than other pairwise distances between single
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Figure 4.2.: Pairwise Benchmark Distances for Best Performing Dimensionality Reduc-
tion Technique (Autoencoder: normalized, deep, not regularized)

and multi node jobs. This cannot be observed for both of the dimensionality reduction
techniques, likely because of the large effect that cross node MPI communication and
synchronization has on the measured metrics.

While the cross node communication might obscure similarities to single node
workloads, it definitely helps to distinguish single and multi node benchmarks in
general. Both methods show an increase in distance measured between these two
categories of jobs. This effect is visualized by a significantly darker lower left and upper
right quarter in all heat maps.

Overall this visual analysis shows that measures like MSE, or the lossiness of dimen-
sionality reduction techniques, does not map well to desirable features of job similarity
measures. Thus, it is necessary to develop a new job similarity score to compare
different methods. One possible measure to gauge the quality of job similarity scores
through clustering is constructed and introduced in chapter 5.
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Figure 4.3.: Pairwise Benchmark Distances for Worst Performing Dimensionality Re-
duction Technique (PCA: normalized)
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5. Cluster Analysis

With the result of the dimensionality reduction in chapter 4, jobs can now be clustered.
This chapter’s main aim is to objectively evaluate the multitude of approaches that

can be taken to transform and cluster the available data. First, two clustering algorithms
and the motivations for choosing them are described in sections 5.1 and 5.2. These
are then applied to all distance measures described in chapter 4. Lastly, an approach
for scoring clustering results using benchmark runs from 2.7 is introduced. This is
consequently applied to all combinations of dimensionality reduction and clustering
algorithms to identify the best overall approach.

5.1. K-Means

K-Means [Mac67; Llo82] was selected as a clustering algorithm, as it is very well
established and easy to understand. This makes it a prime candidate for setting a
baseline for comparisons with other benchmarks in the future. K-Means is an iterative
algorithm. Each iteration consists of two steps:

1. All data points are assigned to the closest cluster center.
2. The cluster centers are recalculated using the new assignments.

Initially, cluster centers are randomly initialized.

5.2. Bayesian gaussian mixture model

A gaussian mixture model (GMM)[MB88] on the other hand, is a model used to
statistically represent sub-groupings of data through a mixture of Gaussian distributions.
These models are usually fitted to existing data using iterative expectation maximization
(EM). This algorithm fits parameters of distributions so that the mix of all most likely
to produces the data at hand.

One variant of the greater family of GMMs is the Bayesian gaussian mixture model
(BGMM) [Ped+11] used in this work. This model estimates an upper bound on the
number of components in a mixture. While the documentation states that the "ideal"
number of components is usually not well defined during data exploration, the use of
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5. Cluster Analysis

this algorithm guarantees that the number of components used is not forcibly bound to
the number of components specified, but can decrease to lower numbers.

These models were chosen, because of their advantage in statistically representing
data. They can represent clusters of wildly different, overlapping shapes, which is
not possible with K-Means. Additionally, their applicability to HPC data has success-
fully been demonstrated by Ozer et al. [Oze+20], who used these models to detect
performance anomalies of hardware nodes.

5.3. HD-Scoring

Having introduced different clustering algorithms, the results they are able to produce,
in conjunction with the dimensionality reduction techniques described in chapter 4,
need to be objectively evaluated.

While metrics like the silhouette score [Rou87] are able to assign a score to a cluster
result, these scores have no connection or relevance to job similarity, which is the
preferred metric in this work. For this reason, more desirable and directly quantifiable
clustering qualities are defined using the known benchmark runs introduced in section
2.7.

One desirable quality of a clustering result with respect to capturing job similarity
is the homogeneous grouping of known similar jobs. Secondly, known different jobs
should ideally be placed in diverse groupings. In this section we first define measures
to capture these properties mathematically using the Simpson index [Sim49] and then
propose an overall measure that combines these properties. In section 5.4 this new
measure will then be used to empirically evaluate clustering results.

5.3.1. Homogeneity

To evaluate homogeneity of a given clustering each type of SPEC benchmark, introduced
in section 2.7, will serve as a test grouping. All runs of a single benchmark should be
assigned the same label.

The Simpson index λ, defined in equation 5.1, when applied to the clustering result
of a specific benchmark, represents the probability that any two randomly selected runs
(with replacement) receive the same label. This measure has the advantage of being
a intuitively understandable quantity when applied to classification problems. Here,
λb is the Simpson index of a given benchmark b, n represents the number of unique
labels, and pib is defined as the probability of the label i being assigned to a benchmark
b. Optimally, all runs for a given benchmark receive the same label and λb is maximal
and equal to 1. In the worst case, all runs receive a different label and λb is minimal
and equal to (1/r)2 with r being the number of runs (assuming r ≤ n).
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λb =
n

∑
i=1

(pib)
2 (5.1)

(5.2)

To aggregate these scores across all benchmarks, we introduce a new measure α in
equation 5.3. It is defined as the mean of all Simpson indices λb, where m represents the
number of benchmark types. Given the same amount of runs r for each benchmark, the
minimum and maximum of this aggregate is the same as the minimum and maximum
of the Simpson index itself. It represents the probability of choosing, with replacement,
two runs with the same labels, given a random benchmark type.

α :=
1
m

m

∑
b=1

λb =
1
m

m

∑
b=1

n

∑
i=1

(pib)
2 (5.3)

5.3.2. Diversity

To measure the diversity of a clustering we use the probability of any two runs, with
replacement and regardless of benchmark type, receiving a different label. This value
β can be calculated as seen in equation 5.4. It is one minus the Simpson score for all
labels λall , not segregating by benchmark type.

β := 1− λall = 1−
n

∑
i=1

(pi)
2 (5.4)

5.3.3. Combined HD-Score

To combine these two measures, we can consider the probability of the combination of
the events described in sections 5.3.1 and 5.3.2. As both of these events are independent
from each other, the combined probability is simply the product of the individual
probabilities. This combined probability can be calculated as described in equation 5.5.
As the events described by this probability are desirable, a score closer to one is ideal
and a score close to zero is poor.

This score could further be weighted by calculating the probability that one of the
above mentioned events happens more than once. However, this works restricts itself
to the non-weighed probabilities to not further complicate the evaluation process.

γ = αβ (5.5)

This combined probability score is further used to evaluate the combinations of
different dimensionality reduction techniques and clustering algorithms.
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5.4. Evaluation

Having defined a scoring function that measures desired qualities related to job simi-
larity in the previous section 5.3, these scores are now applied to clustering results.

As both clustering algorithms described in sections 5.1 and 5.2 are dependent on
random initial conditions, they are run five times for each set of hyper-parameters
tested and the best scoring run is chosen.

The number of clusters and components range from two to nine. Because of runtime
constraints, larger numbers are not tested here.

First, we will asses which combinations of dimensionality reduction methods and
clustering algorithms, scored in table 5.1, perform the best. It is immediately obvious,
that, on average, BGMM performs much better than K-Means. This, of course, comes at
some cost: BGMMs implement a much more complex algorithm and take much longer
to fit. Looking at the results of BGMMs, an inverse correlation to the MSE performance
of the dimensionality reduction techniques can be observed. Techniques with a worse
MSE perform better than those with a better MSE. This demonstrates that measures
like MSE do not map well to desirable features of job similarity measures, as previously
suggested in section 4.6. Regularization in autoencoders seemed to slightly boost scores
of BGMMs. This is likely because regularization prevented some overfitting causing
the model to generalize better. Overall, PCA with standardization clearly out-performs
all other methods. This is surprising as it is the simplest method tested. It shows that
success in machine learning is not necessarily tied to the complexity of the model and
simple approaches should always be tried before moving on to more complex solutions.

Next, the effect of the number of clusters on scores in table 5.1 is investigated. On
average, score increases with an increasing amount of clusters. Homogeneity and
diversity as separate scores are appended in section A.5. When looking at these, it
becomes clear that the correlation of score and the number of clusters stems from
the diversity measure: While homogeneity only slightly decreases with the number
of clusters tested here, diversity increases. This effect seems to plateau for numbers
of clusters close to nine, suggesting that a higher number of clusters does not help
dividing the data into more sections.

Lastly, we take a closer look specifically at homogeneity for different amounts of
clusters. Homogeneity does not suffer significantly with an increasing amount of
clusters. Instead, it stays fairly constant at its initial divergence from the optimum. This
initial divergence is likely caused by the run-to-run variability of benchmarks, which
has a non insignificant effect on the aforementioned distance measures. This noise was
previously noted in section 4.6. To further improve the results of methods applied in
this thesis, investigation and reduction of this noise is very likely necessary.

To summarize the contents of this chapter and evaluate them on a grander scale, we
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first defined desirable properties that clustering results of jobs in HPC should have.
These were then used to introduce a scoring method for clustering results that can be
used to evaluate combinations of dimensionality reduction techniques and clustering
algorithms. This methodology was then successfully applied to identify the most
promising approach: PCA with standardization as scaler, 8 clusters, and a BGMM was
able to achieve an HD-Score of 0.7. As can be seen in the tables in section A.5, the result
of this approach guarantees that, on average, two benchmark runs of the same type
receive the same label approximately 95 percent of the time. This seems reasonable,
given the previously identified noise in job representations. With future work reducing
this noise, this score can likely be improved. Additionally, any two benchmark runs
have a 74 percent probability of being differently labeled. These scores show that this
dimensionality reduction technique, PCA, was able to capture underlying properties of
jobs that are essential to segregating jobs from one another in a meaningful way. The
clustering technique of BGMMs was identified to be well suited to this task.
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Number of Clusters
Dim R. Scaler Reg. Depth

2 3 4 5 6 7 8 9
K-Means

deep 0.37 0.55 0.48 0.49 0.55 0.55 0.54 0.54
shallow 0.00 0.49 0.49 0.51 0.49 0.49 0.49 0.53none
simple 0.00 0.00 0.04 0.04 0.44 0.44 0.58 0.59
deep 0.04 0.51 0.54 0.55 0.34 0.34 0.24 0.51

shallow 0.04 0.28 0.35 0.39 0.55 0.55 0.58 0.56

norm

applied
simple 0.00 0.04 0.51 0.53 0.48 0.47 0.58 0.58
deep 0.10 0.10 0.21 0.40 0.42 0.44 0.48 0.51

shallow 0.08 0.10 0.30 0.54 0.53 0.50 0.53 0.53none
simple 0.00 0.10 0.12 0.47 0.52 0.53 0.53 0.53
deep 0.00 0.10 0.31 0.42 0.42 0.42 0.42 0.48

shallow 0.06 0.12 0.14 0.28 0.40 0.39 0.39 0.38

autoenc

std

applied
simple 0.12 0.27 0.29 0.35 0.35 0.42 0.41 0.32

norm n.a. 0.04 0.24 0.42 0.38 0.54 0.54 0.54 0.53
pca

std n.a. 0.45 0.44 0.49 0.48 0.52 0.51 0.61 0.52
Bayesian Gaussian Mixture Model

deep 0.00 0.06 0.00 0.08 0.49 0.48 0.48 0.57
shallow 0.34 0.36 0.02 0.49 0.55 0.58 0.50 0.50none
simple 0.28 0.47 0.51 0.51 0.53 0.52 0.52 0.53
deep 0.28 0.02 0.43 0.48 0.54 0.54 0.53 0.59

shallow 0.30 0.32 0.53 0.42 0.48 0.54 0.56 0.42

norm

applied
simple 0.33 0.35 0.58 0.56 0.58 0.60 0.63 0.63
deep 0.30 0.48 0.46 0.51 0.49 0.52 0.55 0.45

shallow 0.40 0.45 0.45 0.59 0.59 0.54 0.64 0.66none
simple 0.41 0.50 0.47 0.53 0.54 0.58 0.58 0.62
deep 0.10 0.46 0.41 0.47 0.50 0.48 0.50 0.56

shallow 0.33 0.43 0.41 0.65 0.65 0.63 0.65 0.69

autoenc

std

applied
simple 0.44 0.49 0.67 0.55 0.54 0.62 0.65 0.60

norm n.a. 0.49 0.52 0.55 0.53 0.58 0.58 0.60 0.61
pca

std n.a. 0.49 0.64 0.66 0.67 0.65 0.70 0.70 0.68

Table 5.1.: HD-Scores of Dimensionality Reduction Techniques and Clustering Algo-
rithms
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This thesis aimed to lay groundwork for and to investigate job similarity based on
hardware performance data.

To achieve this, chapter 2 covered important background information, both on the
existing systems and data collected at the RWTH Aachen University used in this
thesis. To validate the data available, it is compared to data from previous work
measuring hardware performance through HPL benchmarks. Further, benchmarks
were introduced, which later helped with the definition of desirable properties of job
representations with which to define job similarity scores.

Chapter 3 dealt with necessary preparation of raw data. In two cleaning steps, this
data was then filtered and missing values of inactive core-data was filled in. Afterwards,
further information about performance behavior was derived from existing features
and added to the data set. This was necessary, as these features would have gotten
lost in further aggregations. At the end of this pre-processing step, data was clean, but
still highly dimensional and irregular in shape and length: Data for a two jobs could
span across different amounts nodes for different periods of time. Some data existed
for every core on a given node, some data was present only on the node-level.

A first approach to reduce this dimensionality to a more manageable level was
taken in chapter 4. Here, the irregularities in shape and length were removed through
aggregation of the different dimensions of the data with statistical measures. Once the
data shape was consistent, data was first scaled, as to not bias for or against certain
features in further analysis. Then two dimensionality reduction techniques, principal
component analysis and autoencoders were introduced and applied to reduce dimen-
sionality further. These approaches were then evaluated, both using the mean squared
error and visually using heatmaps of pairwise distances between the aforementioned
benchmarks. While the former captures goodness of fit for data encodings, when
compared to the latter, it was found to not translate well to properties one might seek
for job similarity measures.

Chapter 5 added cluster analysis to the set of tools that can be used for comparing
different job representations with regards to how well they represent job similarity.
After describing two algorithms that can be used to cluster the data at hand, a novel
approach at scoring different techniques using benchmark runs was introduced. This
combined both of the desirable properties of homogeneity within benchmark runs of
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the same type and diversity between runs overall to derive a combined metric, the
so called HD-Score. Through the use of this score, it was subsequently possible to
analyze different combinations of dimensionality reduction techniques and clustering
algorithms. Lastly, principal component analysis in combination with standardization
as a scaling method and Bayesian Gaussian mixture models as the clustering algorithm
was identified to best capture job similarity of the underlying data.

6.1. Engineering limitations

This section deals with the limitations imposed by the existing systems and data.
Any data analysis can only be as good as the data that is available. The data used

in this thesis is limited in scope due to several factors described in chapter 3: The
sampling rate and measurement intervals were given and chosen with performance
overhead and disk space in mind. The existing settings could likely be tuned to output
data at a higher frequency with larger measurement intervals, as the existing settings
were found to not introduce a measurable overhead at the time of installment. Further,
data concerning cache hit and request rates was excluded in this work. This was
done, as data from the first half of 2020 did not yet have the collection of these metrics
enabled. With time, enough data with cache metrics will amass to include these in
future analysis. Additionally, data from CLAIX2018 was discounted because of faulty
Flop/s measurements. With solid mitigations, it might be possible to use this data in
the future. Alternatively, it might be possible to detect jobs for which data is faulty
using statistical methods. These could then be excluded these from the data set. This
would open up analysis on newer hardware, making results of future work directly
applicable to cutting edge systems. Lastly, more hardware performance counters and
other metrics could be added to or derived from existing features. Specifically more
low-level data like instructions per cycle per core or memory bandwidth usage per
NUMA node could help better capture properties of HPC jobs.

Another limitation, the reason for this work’s problem statement itself is the non-
existence of labels that constitute a "good" job similarity score. While similar jobs could
theoretically be labeled manually, this process is very costly. This structural challenge
was tackled through the use of existing and labeled benchmark runs. With these, it
was possible to describe desirable properties of job similarity and ultimately define a
scoring system for different methodologies in section 5.5.
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6.2. Future work

This thesis showed novel and promising approaches to job similarity scores in HPC.
Still many further research avenues can be explored. In this section we aim to give
an overview of possible extensions and uses of the results of this work. Additionally,
we propose new lines of promising research in the realm of data science applied to
unlabeled hardware performance data.

The results gained in this thesis could be applied to save personnel and computing
costs. The distance metrics and clustering approaches can be used to detect abnormal
behavior for a given user. By making these measures and labels available to users, they
could self identify abnormal behavior in reoccurring jobs. This information, in addition
to pointing them to dashboards and other resources for profiling their jobs in more
detail, can decrease time to fault detection and unnecessary debugging runs. All of this
could increase HPC cluster efficiency.

Further, changes to the approach used in this thesis are proposed. In future work,
other dimensionality reduction techniques (e.g. T-SNE, self-organizing maps) and
clustering approaches (e.g. hierarchical or density based) could be applied. These can
potentially produce better job representations as they model data differently.

To further improve distance measures defined in this thesis, features that cause
run-to-run variability could be singled out and corrected for. In section 4.6, noise in
benchmark runs of the same type was identified. With variability being caused by
a multitude of factors such as turbo-boost [AMK16] and interference across nodes
caused by shared IO systems (e.g. file system)[Lof+10], this is is not an easy task.
Simply removing features with goal of minimizing distance between runs of the same
benchmark type can lead to the loss of separation between different benchmark types.
To avoid this problem, wrapper methods [KS95] for feature selection could be used in
conjunction with the scores defined in this thesis.

The results of this work can also serve as a starting point for further research. For
example, given job representations of the same job on two different hardware types, a
mapping from hardware type to another could be learned. This is desirable, as it would
allow the simple transfer of results from one architecture to another. It would also be a
significant step in the direction of defining a hardware agnostic job similarity score.

Using these transformations, energy efficiency of clusters could be improved. Models
that are able to predict power usage from hardware performance counters already
exist [Che+14]. Together with models transforming job representations from one node
type to another, models predicting total energy consumption on different hardware
configurations can be built. These predictions can then be provided to users, which in
turn can choose to run their job on the most energy efficient hardware available.

In order to easily interpret job representations, it is desirable to look at dimensions
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that capture programmatic differences in jobs. Without knowing how a program’s
properties map onto hardware performance counters, it can be difficult and time
consuming to manually define features that differentiate jobs in a desired manner.
Using labeled data of e.g. many benchmark runs or jobs that are purposefully altered
to induce these differences, it could be possible to extract dimensions or components of
special interest without expert knowledge. These dimensions could then be used to
define job representations that are easily interpreted using reference jobs.

This methodology could also be applied to gauge job optimization potential. Proper-
ties of badly optimized jobs, like node imbalance, and bad cache efficiency often have
effects on other metrics like MPI communication and memory bandwidth. However,
it can be fairly trivial to make optimized code less efficient, through e.g. the use of
non-optimal kernels or blocking sizes. Using many purposefully altered benchmarks,
the dimensions describing various inefficiencies could be extracted. These could then
be applied to other jobs to gauge their optimization potential.
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A. Appendix

A.1. CLAIX2016 lnm node peak performance calculation

The process and quantities needed to calculate a systems peak performance using
specifications from Intel [Intb] and the RWTH Aachen IT Center [RWT20a] is shown in
A.1. This equation calculates the peak performance of the lnm node type contained in
CLAIX2016

peak f lop/s = 2 [number of sockets]

∗ 12 [number of cores]

∗ 2 [AVX2 fused multiply-add (FMA) Units per chip]

∗ 4 [AVX2]

∗ 2 Flop [FMA]

∗ 2.2 GHz [base clock]

= 844.8 GFlop/s

(A.1)
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A. Appendix

A.2. Statistical quantities of ratios

To statically and accurately represent columns that are derived from the ratio of others,
it is necessary to calculate the values these column contain before reducing them to
their statistical properties such as means and standard deviations. In this work, this
knowledge is applied to derive columns such as packet size in 3.3 before aggregation
in section 4.1.

The need for this can be shown for both the mean and standard deviation. An
illustration for two columns a and b, as well as their ratio a/b is shown for rows of data
in figure A.1.

sample a b a/b
1 6 3 2
2 1 2 0.5

Mean:

µ(a/b) = (2 + 0.5)/2 = 1.25

6= µa/µb = ((6 + 1)/2)/((3 + 2)/2) = 3.5/2.5 = 1.4

Standard deviation:

σ(a/b) = std(2, 0.5) = 3/(2
√

2)

6= σa/σb = std(6, 1)/std(1, 2) = (5/
√

2)/(1/
√

2) = 5

Figure A.1.: Example showing the necessity of deriving columns before applying the
mean or standard deviation
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A.3. Queried metrics

Category Metric name Explanation Unit
Node-Level Metrics

CPU

clock CPU clock speed Hz
cores_active Number of active cores #
cpu_usage CPU usage %
cpu_usage_iowait I/O wait %
flops_dp_aggregated Summed double precision Flop/s MFlop/s
flops_sp_aggregated Summed single precision Flop/s MFlop/s

Memory
mem_active Memory consumption B
mem_bw_read Memory read speed MB/s
mem_bw_write Memory write speed MB/s

Socket power_draw Summed socket power draw W

System temperature
Average temperature readings
from various sensors

C

Infiniband
Interconnect

inf_rcv_data Data received B/s
inf_rcv_packets Packets received Hz
inf_xmit_data Data transmitted B/s
inf_xmit_packets Packets transmitted Hz

Network I/O

net_recv_bytes Data received B/s
net_recv_packets Packets received Hz
net_sent_bytes Data send B/s
net_sent_packets Packets sent Hz

Disk I/O

disk_read_bytes Data read B/s
disk_reads Number of reads Hz
disk_write_bytes Data written B/s
disk_writes Number of writes Hz

Lustre I/O

lustre_read_bytes Data read B/s
lustre_read_req Read requests Hz
lustre_write_bytes Data written B/s
lustre_write_req Write requests Hz

Core-Level Metrics

CPU
clock CPU clock speed Hz
flops_dp Double precision Flop/s MFlop/s
flops_sp Single precision Flop/s MFlop/s

Table A.1.: Metrics queried from InfluxDB
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A.4. Heatmaps of pairwise benchmark distances using
different dimensionality reduction techniques
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Figure A.2.: Pairwise Benchmark Distances (Autoencoder: normalized, deep, not regu-
larized)
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Figure A.3.: Pairwise Benchmark Distances (Autoencoder: normalized, shallow, not
regularized)
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Figure A.4.: Pairwise Benchmark Distances (Autoencoder: normalized, shallow, regu-
larized)
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Figure A.5.: Pairwise Benchmark Distances (Autoencoder: normalized, deep, regular-
ized)
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Figure A.6.: Pairwise Benchmark Distances (Autoencoder: standardized, shallow, not
regularized)

44



A. Appendix
1

id
le

1
ge

m
sf

d
td

1
le

sl
ie

1
lu

1
su

3
im

p

1
ta

ch
yo

n

1
tf

1
w

rf
2

1
ze

u
sm

p

4
id

le

4
ge

m
sf

d
td

4
le

sl
ie

4
lu

4
su

3
im

p

4
ta

ch
yo

n

4
tf

4
w

rf
2

4
ze

u
sm

p

Benchmark Type

1 idle

1 gemsfdtd

1 leslie

1 lu

1 su3imp

1 tachyon

1 tf

1 wrf2

1 zeusmp

4 idle

4 gemsfdtd

4 leslie

4 lu

4 su3imp

4 tachyon

4 tf

4 wrf2

4 zeusmp

B
e
n

ch
m

a
rk

T
y
p

e

0

2

4

6

8

10

12

(a) Distances of Mean Benchmark Runs

1
id

le

1
ge

m
sf

d
td

1
le

sl
ie

1
lu

1
su

3
im

p

1
ta

ch
yo

n

1
tf

1
w

rf
2

1
ze

u
sm

p

4
id

le

4
ge

m
sf

d
td

4
le

sl
ie

4
lu

4
su

3
im

p

4
ta

ch
yo

n

4
tf

4
w

rf
2

4
ze

u
sm

p

Benchmark Type

1 idle

1 gemsfdtd

1 leslie

1 lu

1 su3imp

1 tachyon

1 tf

1 wrf2

1 zeusmp

4 idle

4 gemsfdtd

4 leslie

4 lu

4 su3imp

4 tachyon

4 tf

4 wrf2

4 zeusmp

B
e
n

ch
m

a
rk

T
y
p

e

0

2

4

6

8

10

12

(b) Distances of Individual Benchmark Runs

Figure A.7.: Pairwise Benchmark Distances (Autoencoder: standardized, simple, not
regularized)
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Figure A.8.: Pairwise Benchmark Distances (Autoencoder: normalized, simple, not
regularized)
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Figure A.9.: Pairwise Benchmark Distances (Autoencoder: standardized, simple, regu-
larized)
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Figure A.10.: Pairwise Benchmark Distances (Autoencoder: standardized, deep, not
regularized)
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Figure A.11.: Pairwise Benchmark Distances (Autoencoder: standardized, shallow, reg-
ularized)
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Figure A.12.: Pairwise Benchmark Distances (Autoencoder: standardized, deep, regu-
larized)
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Figure A.13.: Pairwise Benchmark Distances (Autoencoder: normalized, simple, regu-
larized)
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Figure A.14.: Pairwise Benchmark Distances (PCA: standardized)
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Figure A.15.: Pairwise Benchmark Distances (PCA: normalized)
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A.5. Homogeneity and diversity scores

Number of Clusters
Dim R. Scaler Reg. Depth

2 3 4 5 6 7 8 9
K-Means

deep 0.94 0.90 0.96 0.94 0.88 0.87 0.86 0.85
shallow 1.00 0.98 0.98 0.98 0.94 0.94 0.94 0.94none
simple 1.00 1.00 1.00 1.00 0.94 0.92 0.94 0.89
deep 1.00 0.98 0.97 0.94 0.90 0.90 0.91 0.88

shallow 1.00 0.90 0.82 0.72 0.78 0.84 0.94 0.93

norm

applied
simple 1.00 1.00 0.98 0.88 0.94 0.95 0.89 0.88
deep 1.00 1.00 0.94 0.79 0.77 0.81 0.75 0.80

shallow 0.98 1.00 0.90 0.95 0.88 0.80 0.81 0.81none
simple 0.98 0.94 0.93 0.92 0.89 0.92 0.90 0.87
deep 1.00 1.00 0.87 0.86 0.86 0.86 0.86 0.88

shallow 0.98 0.98 0.97 0.92 0.88 0.90 0.90 0.86

autoenc

std

applied
simple 1.00 1.00 0.98 0.94 0.95 0.95 0.97 0.95

norm n.a. 1.00 0.95 0.94 0.97 0.88 0.88 0.88 0.82
pca

std n.a. 0.95 0.96 0.91 0.94 0.94 0.94 0.94 0.92
Bayesian Gaussian Mixture Model

deep 1.00 0.95 1.00 0.94 0.97 0.95 0.98 0.96
shallow 0.89 0.93 0.98 0.96 0.86 0.93 0.96 0.96none
simple 0.96 0.84 0.86 0.86 0.86 0.93 0.80 0.89
deep 0.93 1.00 0.86 0.90 0.87 0.87 0.91 0.85

shallow 0.85 0.80 0.88 0.86 0.85 0.84 0.84 0.89

norm

applied
simple 0.97 0.88 0.93 0.91 0.90 0.94 0.90 0.87
deep 0.90 0.94 0.94 0.96 0.86 0.84 0.78 0.85

shallow 0.89 0.86 0.94 0.88 0.84 0.88 0.87 0.87none
simple 0.90 0.94 0.89 0.82 0.88 0.85 0.93 0.83
deep 1.00 0.85 0.83 0.81 0.70 0.70 0.81 0.76

shallow 0.94 0.94 0.94 0.88 0.86 0.86 0.86 0.87

autoenc

std

applied
simple 0.92 0.92 0.94 0.89 0.92 0.89 0.91 0.90

norm n.a. 0.98 0.86 0.86 0.88 0.86 0.93 0.88 0.86
pca

std n.a. 1.00 0.98 0.98 0.93 0.90 0.95 0.95 0.93

Table A.2.: Homogeneity Scores of Dimensionality Reduction Techniques and Cluster-
ing Algorithms
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Number of Clusters
Dim R. Scaler Reg. Depth

2 3 4 5 6 7 8 9
K-Means

deep 0.40 0.61 0.50 0.52 0.62 0.63 0.63 0.63
shallow 0.00 0.50 0.49 0.52 0.52 0.52 0.52 0.57none
simple 0.00 0.00 0.04 0.04 0.47 0.48 0.62 0.66
deep 0.04 0.52 0.56 0.59 0.37 0.37 0.26 0.58

shallow 0.04 0.31 0.42 0.54 0.71 0.66 0.62 0.61

norm

applied
simple 0.00 0.04 0.52 0.61 0.51 0.49 0.65 0.65
deep 0.10 0.10 0.23 0.50 0.55 0.55 0.64 0.64

shallow 0.08 0.10 0.34 0.57 0.60 0.62 0.66 0.66none
simple 0.12 0.29 0.32 0.38 0.39 0.46 0.46 0.37
deep 0.00 0.10 0.36 0.49 0.49 0.49 0.49 0.55

shallow 0.06 0.12 0.14 0.30 0.45 0.44 0.44 0.44

autoenc

std

applied
simple 0.00 0.10 0.12 0.50 0.55 0.56 0.55 0.56

norm n.a. 0.04 0.25 0.44 0.40 0.61 0.61 0.61 0.64
pca

std n.a. 0.48 0.46 0.54 0.51 0.55 0.54 0.65 0.56
Bayesian Gaussian Mixture Model

deep 0.00 0.06 0.00 0.08 0.51 0.50 0.49 0.59
shallow 0.39 0.38 0.02 0.51 0.64 0.62 0.53 0.53none
simple 0.29 0.56 0.60 0.60 0.62 0.56 0.65 0.60
deep 0.30 0.02 0.50 0.53 0.62 0.62 0.58 0.69

shallow 0.35 0.41 0.60 0.49 0.57 0.64 0.66 0.47

norm

applied
simple 0.34 0.40 0.62 0.61 0.64 0.64 0.69 0.72
deep 0.34 0.51 0.48 0.53 0.57 0.63 0.70 0.53

shallow 0.45 0.53 0.48 0.67 0.70 0.61 0.73 0.76none
simple 0.48 0.52 0.75 0.67 0.61 0.73 0.70 0.73
deep 0.10 0.54 0.49 0.58 0.72 0.69 0.62 0.73

shallow 0.35 0.46 0.44 0.73 0.76 0.73 0.75 0.79

autoenc

std

applied
simple 0.45 0.54 0.51 0.60 0.59 0.66 0.63 0.69

norm n.a. 0.49 0.61 0.64 0.60 0.67 0.62 0.69 0.71
pca

std n.a. 0.49 0.65 0.67 0.72 0.73 0.73 0.74 0.73

Table A.3.: Diversity Scores of Dimensionality Reduction Techniques and Clustering
Algorithms
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