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ABSTRACT
Reachability analysis is one of the most important methods for for-

mal verification of hybrid systems. The main difficulty for hybrid

system reachability analysis is to calculate the intersection between

reachable set and guard sets. While there exist several approaches

for guard sets defined by hyperplanes or polytopes, only few meth-

ods are able to handle nonlinear guard sets. In this work we present

a novel approach to tightly enclose the intersections of reachable

sets with nonlinear guard sets. One major advantage of our method

is its polynomial complexity with respect to the system dimension,

which makes it applicable for high-dimensional systems. Further-

more, our approach can be combined with different reachability

algorithms for continuous systems due to its modular design. We

demonstrate the advantages of our novel approach compared to

existing methods with numerical examples.
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1 INTRODUCTION
For many safety-critical systems like autonomous vehicles, robots

collaborating with humans, and automated medical systems, it is

often necessary to prove correct functionality using formal verifica-

tion techniques. In particular, formal verification of hybrid systems

has huge practical relevance since most systems exhibit mixed

discrete and continuous dynamics due to the interplay between

physical behavior and digital control. One commonly-used method

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7018-9/20/04. . . $15.00

https://doi.org/10.1145/3365365.3382194

for formal verification is reachability analysis, which computes the

states reachable by the system. In this work, we introduce a novel

technique for over-approximative reachability analysis of hybrid

systems with nonlinear guard sets. Our approach is applicable to

a broad class of systems, it enables the computation of tight over-

approximations of reachable sets, and it scales well with the number

of system dimensions.

1.1 State of the Art
Reachability analysis for hybrid systems typically relies on the com-

putation of reachable sets for continuous dynamics. Most reacha-

bility algorithms for linear continuous systems are based on the

propagation of sets [21, 23, 24, 32, 45]. Typical set representations

are polytopes [21], zonotopes [23], ellipsoids [32], support func-

tions [24], star sets [10], level sets [40], Taylor models [15], and

polynomial zonotopes [1]. Other approaches compute reachable

sets based on simulations [10, 20]. Reachability algorithms for non-

linear continuous systems can be categorized into four main groups:

invariant generation [31, 35, 39], optimization-based approaches

[17, 40], abstraction in solution space [15, 20, 42], and abstraction

in state space [1, 3, 7, 19].

The main challenge in reachability analysis for hybrid systems

is the computation of the intersection between the reachable set

and guard sets. For guards sets given by polyhedra or hyperplanes,

several methods for intersection computation have been developed.

A straightforward approach is to compute the intersection between

the reachable set and the guard set geometrically, which is done by

the tools Flow* [16], SpaceEx [21], HyDRA [44], and Julia Reach [12].

The method in [22] computes the intersection between reachable

sets represented by support functions and the guard set by solv-

ing several convex minimization problems. To avoid an explosion

in computation time, the sets resulting from partial intersections

are often unified by computing convex hulls [21, 22]. Since the

computation of convex hulls is computationally demanding, many

approaches unify partial intersections by simpler sets or completely

avoid the unification: In [4], the union of the partial intersections is

enclosed by bundles of parallelotopes. The work in [25] shows how

the intersection between multiple zonotopes and a hyperplane can

be efficiently enclosed by a template polyhedron. The tool Hylaa

[9] reduces the over-approximation resulting from the unification

by applying a backtracking scheme that splits previously computed

reachable sets. The method in [8] completely avoids the need for

unification by scaling the system dynamics in such a way that only

the reachable set for one time step intersects the guard set. For

high-dimensional systems not only the unification, but also the

computation of geometric intersections is computationally expen-

sive. The technique in [5] avoids both unification and geometric

intersection computation, by directly mapping the reachable set

https://doi.org/10.1145/3365365.3382194
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onto the guard set. The tool CORA [2] implements the methods

[4], [25], and [5]. The tool Isabelle/HOL [27] applies the method in

[25].

Currently, only a few approaches exist for a more general class of

hybrid systems which model guard sets as nonlinear level sets. For

some simple cases, nonlinear guard sets can be enclosed by multiple

polytopes, which makes it possible to use the approaches in [21]

and [4]. The method in [18], implemented in the tool Ariadne [11],

calculates the intersection by adding constraints to the initial set

when hitting a guard set. Similarly, the approach in [15] uses the

constraints imposed by the guard intersection to contract the set

of initial states, which then yields a Taylor model that encloses the

intersection with the guard set. Another strategy is to determine

the time interval in which the reachable set intersects the guard set,

and then take the whole reachable set for the time interval as an

over-approximation of the intersection with the guard set. While

this technique works well for guaranteed integration methods that

enclose only a single trajectory rather then a set of trajectories

[41], it is often too conservative for reachability analysis. To com-

pute tight enclosures of reachable sets, the approach in [43] uses a

technique similar to [41], but additionally creates partitions in time

until a user-defined precision is achieved; however, propagating

the reachable sets for all partitions is computationally expensive.

For this reason, [37] improves the approach in [43] by unifying the

resulting sets from all partitions with an enclosing box. Since box

enclosures result in large over-approximation errors, the approach

in [36] unifies parallel sets with an enclosing zonotope instead.

However, since [36] requires the computation of zonotope vertices,

the approach has exponential complexity with respect to the system

dimension.

1.2 Contribution
We present a novel approach to tightly enclose the intersection

between the reachable set and nonlinear guard sets. One major

advantage of our method compared to previous approaches is that

the computational complexity is only polynomial with respect to

the number of system dimensions, which enables the verification of

high-dimensional systems. Due to its modular design, our method

can be combined with different reachability algorithms for contin-

uous system. As we demonstrate with several numerical examples,

our novel method reduces the computation time and improves the

accuracy of the reachable set compared to previous approaches.

1.3 Notation
Sets are denoted by calligraphic letters, matrices by uppercase let-

ters, vectors by lowercase letters, lists by bold uppercase letters,

and set operations by typewriter font (e.g., center). Given a vector

b ∈ Rn , b(i ) refers to the i-th entry. Given a matrix A ∈ Rn×m ,

A(i, ·) represents the i-th matrix row, A( ·, j ) the j-th column, and

A(i, j ) the j-th entry of matrix row i . The concatenation of two

matrices C and D is denoted by [C D]. Vectors of zeros and ones

are denoted by 0n ∈ Rn and 1n ∈ Rn , and the empty matrix is

denoted by [ ]. The Minkowski addition of two sets S1 ⊂ R
n
and

S2 ⊂ R
n
is defined as S1 ⊕ S2 =

{
s1 + s2

��� s1 ∈ S1, s2 ∈ S2
}
,

and the Cartesian product of two sets S1 ⊂ R
n
and S2 ⊂ R

m

is defined as S1 × S2 =
{
[s1 s2]

T ��� s1 ∈ S1, s2 ∈ S2
}
. We intro-

duce an n-dimensional box as I := [l ,u], ∀i l(i ) ≤ u(i ) , l ,u ∈ R
n
,

and ∅ denotes the empty set. The Nabla operator is defined as

∇ =
∑n
i=1 ei

∂
∂x (i )

, with x ∈ Rn and ei ∈ R
n
being orthogonal unit

vectors.

2 PROBLEM FORMULATION
We present a novel technique to compute the reachable set for

a hybrid system with nonlinear guard sets. Hybrid systems are

modeled as hybrid automata in this work:

Definition 1. (Hybrid Automaton) A hybrid automaton H with
p discrete modes consists of:
• A list F = ( f1 (·), . . . , fp (·)) of differential equations ẋ (t ) =

fi (·) describing the continuous dynamics in each mode i =
1, . . . ,p.
• A list S = (S1, . . . ,Sp ) of invariant sets Si ⊂ Rn for each
mode i = 1, . . . ,p.
• A list T = (T1, . . . ,Tq ) of transitions Ti = ⟨Gi , ri (·), si ,di ⟩T ,
i = 1, . . . ,q between discrete modes, where Gi ⊂ Rn is a guard
set, ri : Rn → Rn is a reset function, and si ,di ∈ {1, . . . ,p}
are indices of the source and target modes, respectively.

□

The state of a hybrid automaton consists of the continuous state

x (t ) ∈ Rn and the discrete statem(t ) ∈ {1, . . . ,p}. The evolution of

a hybrid automaton is described informally as follows: Given an

initial continuous state x0 = x (0) and an initial discrete statem0 =

m(0) with x0 ∈ Sm0
, the continuous state x (t ) evolves according to

the flow function fm0
(·) of the modem0. If x (t ) is within the guard

set Gi of a transition Ti = ⟨Gi , ri (·), si ,di ⟩T ∈ T with si = m0,

the transition to the mode di is taken and the continuous state

x (t ) is updated according to the reset function ri (·). Afterward, the
evolution of the continuous state continues according to the flow

function fdi (·) of mode di until the next transition is taken. We

denote the trajectory of the continuous state for the evolution of

the hybrid automaton described above by ξ (t ,x0,m0,u (·)), where
u (·) ∈ Rm is an input trajectory.

Given the behavior of a hybrid automaton, we are interested in

the set of reachable states:

Definition 2. (Reachable Set) The reachable set at time t of a
hybrid automaton H for a set of initial continuous states X0 ⊂ Rn ,
an initial modem0, and a set of uncertain inputsU ⊂ Rm is

Re (t ) :=
{
ξ (t ,x0,m0,u (·))

��� x0 ∈ X0,

∀τ ∈ [0, t] : u (τ ) ∈ U
}
.

□

The superscript e onRe (t ) denotes the exact reachable set, which
can be computed for only a limited class of hybrid automata [33].

We therefore compute a tight over-approximation R (t ) ⊇ Re (t ).
In this work we consider hybrid automata for which the guard

sets G ⊂ Rn are given by nonlinear level sets defined as

G =
{
x ∈ Rn ��� д(x ) = 0

}
, (1)

where д : Rn → R is a Lipschitz continuous function. We use the

shorthand G = ⟨д(·)⟩G . The invariant sets S ⊂ R
n
are defined by
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an intersection of several nonlinear inequality constraints

S =
{
x ∈ Rn ��� s (x ) ≤ 0w

}
, (2)

where s : Rn → Rw is a Lipschitz continuous function and the oper-

ator ≤ in (2) denotes that all entries s(i ) (x ) of s (x ) satisfy s(i ) (x ) ≤ 0.

We use the shorthand S = ⟨s (·)⟩S . The reset functions r : Rn → Rn

are nonlinear, Lipschitz continuous functions.

To tightly enclose intersections with a nonlinear guard set, a

non-convex set representation is required. We therefore use Taylor

models or polynomial zonotopes for representing reachable sets,

which allows us to combine our approach with many different

reachability algorithms for continuous systems:

Definition 3. (Taylor Model) Given a polynomial vector field
p : Rn → Rn , a box domain I ⊂ Rn , and a box remainder B ⊂ Rn ,
a Taylor model T (x ) ⊂ Rn is defined as

∀x ∈ I : T (x ) :=
{
p (x ) + b ��� b ∈ B

}
.

□

We use the shorthand T (x ) = ⟨p (x ),B,I⟩TM . Taylor models

are often defined for a normalized domain I = [−1n , 1n]. We do

not use a normalized domain since this simplifies the proof of our

main theorem presented later.

For polynomial zonotopes, we use the sparse representation from

[30]:

Definition 4. (Polynomial Zonotope) Given a generator matrix
of dependent generators G ∈ Rn×h , a generator matrix of indepen-
dent generators GI ∈ R

n×l , and an exponent matrix E ∈ Zv×h
≥0

, a
polynomial zonotope is defined as

PZ :=

{ h∑
i=1

( v∏
k=1

α
E (k,i )
k

)
G ( ·,i ) +

l∑
j=1

βjGI ( ·, j )
�����

αk , βj ∈ [−1, 1]

}
.

□

We use the shorthand PZ = ⟨G,GI ,E⟩PZ . Any Taylor model

can be equivalently represented by a polynomial zonotope [30,

Prop. 4], but not every polynomial zonotope can be represented

by a Taylor model [30, Corrollary 1]. For instance, a polytope can

be represented by a polynomial zonotope [30, Thm. 1], but not

necessarily by a Taylor model.

3 BASIC PROCEDURE
We briefly explain the computation of the reachable set for the

continuous evolution, and then summarize the main steps of our

novel approach for handling discrete transitions.

3.1 Continuous Dynamics
One of themajor advantages of our novel approach is its modular de-

sign, which allows us to combine the approach with many different

reachability analysis algorithms for continuous systems. The only

requirement is that the used reachability algorithm can compute

with reachable sets represented as Taylor models or polynomial

zonotopes. Since polynomial zonotopes are closed under nearly

5 6

1 2

3 4

Figure 1: Visualization of the procedure applied to calculate
guard intersections.

all relevant set representations [30], most algorithms fulfill this re-

quirement. Themodularity allows one to consider linear continuous

dynamics using the algorithm in [23], nonlinear continuous dynam-

ics using the algorithms in [1], [3] or [15], and nonlinear continuous

dynamics with algebraic constraints using the algorithm in [6]. All

these algorithms compute the reachable set for consecutive time

intervals τs = [ts , ts+1] with ts+1 = ts + ∆t so that the reachable

set for a time horizon tf is given as R ([0, tf ]) =
⋃tf /∆t−1
s=0 R (τs ).

For the numerical examples in Sec. 6, we use the algorithm in [3].

3.2 Discrete Transitions
The difficulty in reachability analysis for hybrid systems is the

computation of reachable sets across discrete transitions. We follow

the steps visualized in Fig. 1:

1 We first compute the reachable set as described in Sec. 3.1

until the reachable set is completely located outside the cur-

rent invariant set or the final time tf is reached. In addition,

we determine the time steps for which the corresponding

reachable set intersects the guard set. Our approach also

works when only the reachable set within an invariant is

propagated, which in some cases significantly reduces the

conservatism, but is computationally more expensive.

2 To obtain a rough over-approximation of the guard intersec-

tion using computationally cheap methods, we first enclose
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each reachable set intersecting the guard set with a boxI. Af-

terward, we contract the obtained boxes so that they tightly

enclose the intersection with the guard set.

3 To avoid the computationally expensive parallel propagation

of reachable sets, we enclose the union of the contracted

boxes Î by a single box I. We introduce an upper bound

µ for the number of boxes that are unified to reduce the

conservatism. For the example shown in Fig. 1, a value of

µ = 2 is used.

4 We tightly enclose the intersection of the guard set with the

previously-obtained box I by a Taylor model or polynomial

zonotope F .

5 Afterward, we apply the reset function r (x ) to the previously
obtained Taylor model or polynomial zonotope F .

6 Due to the upper bound µ, we might obtain parallel sets,

which we unify by a single set to avoid propagating several

sets in parallel. The reason for using the upper bound µ in

Step 3 followed by the unification of parallel sets in Step 6

is that the unification in Step 6 significantly increases the

representation size of the resulting set if many parallel sets

are unified. With the early partial unification in Step 3, we

avoid this issue.

The steps of this procedure are explained in detail in the next

section. For the case that the reachable set intersects several guard

sets, we compute the intersection separately for each guard set

using the presented approach. If the computation of the contracted

boxes in step 2 is adapted appropriately, this does not lead to large

over-approximations.

4 GUARD INTERSECTION
In this section we present the steps for our novel computation of

guard intersections.

4.1 Intersection Detection
First, we describe Step 1 of the procedure from Sec. 3.2. We apply

range-bounding to detect intersections with invariant and guard

sets:

Definition 5. (Range Bounding) Given a function f : Rn → R
and a set X ∈ Rn , the range-bounding operation

bound
(
f (·),X

)
⊇

[
min

x ∈X
f (x ), max

x ∈X
f (x )

]

returns an over-approximation of the exact bounds. □

To check if the reachable set R (tk ) of the current time step k is

located outside of the current invariant set S = ⟨s (·)⟩S , we apply
the range-bounding operation to each subfunction s(i ) (·) of s (·) to
obtain the bounds

[li ,ui ] = bound
(
s(i ) (·),R (tk )

)
, i = 1, . . . ,w .

According to the definition of the invariant set in (2), it is guaranteed

that the reachable set is located outside the invariant set if ∀i ∈
{1, . . . ,w } : li > 0 holds.

To determine the time steps in which the reachable set intersects

a guard set G = ⟨д(·)⟩G , we iterate over R (τj ) for all time steps

j = 1, . . . ,k and compute

[l ,u] = bound
(
д(·),R (τj )

)
.

According to the definition of the guard set in (1), the reachable set

potentially intersects the guard set if l ≤ 0 ∧ u ≥ 0.

The conservatism of the intersection detection depends solely

on the range-bounding technique used. The simplest method is to

enclose the reachable set by a box I ⊇ R (tk ), and then use interval

arithmetic [29] for range-bounding. Another approach is to enclose

the reachable set by a Taylor model, and than apply the approach

in [38, Alg. 1] for range-bounding.

4.2 Box Contraction
Next, we consider Step 2 of the procedure from Sec. 3.2. The contrac-

tion of a box domain to tightly enclose the solutions of a nonlinear

constraint is a well-studied problem. A contractor is defined as

follows:

Definition 6. (Contractor) Given a box I ⊂ Rn and a nonlinear
function c : Rn → R which defines the constraint c (x ) = 0, the
operation contract returns a box that satisfies

contract(I) ⊆ I

and
∀x ∈ I, c (x ) = 0⇒ x ∈ contract(I).

□

Many different implementations of contractors exist: The Box
algorithm in [26] updates the bounds for each dimension using an

univariate interval Newton iterations. The work in [46] improves

the approach from [26] for polynomial constraints by consider-

ing extremal functions. The HC4revise algorithm in [34] applies

forward-backward traversion of the syntax tree to contract the

domains. An overview of contractor programming is provided in

[13]. For the numerical examples in Sec. 6 we use the HC4revise
algorithm since it is exact for single-use expressions.

4.3 Intersection Computation
We now describe step 4 of the procedure from Sec. 3.2. Our guard

intersection approach is based on the novel finding that a specific

type of polynomial level set intersected with a box can be repre-

sented as a Taylor model or polynomial zonotope. We demonstrate

this with an example:

Example 1. The intersection between the box I = [−1, 1] × [0, 2]

and the polynomial level set

LS =

{
x ∈ R2 | x (2) = 2x2(1)

}
can be equivalently represented by the Taylor model

I ∩ LS =
{
T (x ) ��� x ∈ I

}
, T (x ) =

〈 

x (1)
2x2

(1)


, ∅,I

〉
TM

or the polynomial zonotope

I ∩ LS =

{ [
1

0

]
α1 +

[
0

2

]
α2
1

�����
α1 ∈ [−1, 1]

}
.

This is generalized in the main theorem of our paper:
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Figure 2: Over-approximative Taylor model (red) calculated
according to Thm. 1 for the case that condition (4) is not ful-
filled.With a proper contraction ofI in x2-direction (see Sec.
4.2) the result would be exact.

Theorem 1. The intersection between a box I = [l ,u] ⊂ Rn and
a nonlinear level set

LS =
{
x ∈ Rn ��� x (k ) = pk (x )

}

with k ∈ {1, . . . ,n} can be tightly enclosed by the Taylor model

I ∩ LS ⊆
{
T (x ) ��� x ∈ I

}

with T (x ) =

〈 

[
x (1) . . . x (k−1)

]T

pk (x )[
x (k+1) . . . x (n)

]T

︸                           ︷︷                           ︸
h (x )

, ∅,I

〉
TM
. (3)

If the polynomial function pk (x ) defining the level set LS satisfies

min

x ∈[l,u]
pk (x ) ≥ l(k ) and max

x ∈[l,u]
pk (x ) ≤ u(k ) (4)

the calculated Taylor model T (x ) exactly represents the intersection
I ∩ LS; otherwise, T (x ) encloses the intersection I ∩ LS.

Proof. The idea of the proof is to replace variable x (k ) with
the function pk (x ), which defines the level set. If condition (4) is

fulfilled the intersection I ∩ LS can equivalently be expressed as

I ∩ LS =
{
x ∈ I ��� x (k ) = pk (x )

}
(4)

=






[
x (1) . . . x (k−1)

]T

pk (x )[
x (k+1) . . . x (n)

]T



������
x ∈ I




(3)

=
{
T (x ) | x ∈ I

}
.

If condition (4) is not fulfilled, the calculated Taylor model encloses

the intersection I ∩ LS since

{
pk (x )

��� x ∈ [l ,u]︸︷︷︸
I

}
⊇ [l(k ) ,u(k )].

A visualization of the over-approximation error is shown in Fig. 2.

□

For a concise notation, we introduce the shorthand h(x ) ←
intersect(I,LS) for the intersectionI∩LS according to Thm. 1,

where the function h(x ) is defined as in (3). Thm. 1 equally holds

for polynomial zonotopes since according to [30, Prop. 4] the set

defined by every Taylor model can equivalently be represented by

a polynomial zonotope.

Next, we introduce the taylor operator, which we will use in

subsequent derivations:

Definition 7. (Taylor Series) Given a Lipschitz continuous func-
tion f : Rn → R, a box I ⊂ Rn , and the Taylor order κ ∈ N, the
operator

a,b, c,v (·), l ,u ← taylor( f (·),I,κ)

returns the parameters a, c ∈ Rn , b, l ,u ∈ R, and the function
v : Rn → R of the Taylor series expansion with order κ of f (·)
around the expansion point c = center(I):

∀x ∈ I : f (x ) ∈ f (c )︸︷︷︸
b

+
∂ f (x̃ )

∂x̃

�����x̃=c︸       ︷︷       ︸
aT

(x − c )

+

κ∑
i=2

(
(x − c )T∇

)i
f (x̃ )

i!

�������x̃=c︸                               ︷︷                               ︸
v (x )

⊕ [l ,u],

where the interval [l ,u] ⊇ L results from the over-approximative
evaluation of the Lagrange remainder

L =

{ (
(x − c )T∇

)κ+1
f (x̃ )

(κ + 1)!

����x̃ ∈I
�����
x ∈ I

}
using interval arithmetics. □

Based on Thm. 1, we now show how the intersection between

a guard set G = ⟨д(·)⟩G defined by a non-polynomial function

д(·) and a box I can be tightly enclosed with a Taylor model or

polynomial zonotope. We distinguish the case where the equality

constraint д(x ) = 0 is symbolically solvable for one variable x (k )
from the case where it is not. The constraint д(x ) = 0 is symboli-

cally solvable for the variable x (k ) if the set {x | д(x ) = 0} can be

equivalently represented as

{
x ��� x (k ) = д̂(x )

}
with

∂д̂(x )

∂x (k )
= 0, (5)

where ∂д̂(x )/∂x (k ) = 0 implies that д̂(x ) does not depend on x (k )
for all x . We demonstrate this with an example:

Example 2. The guard set

G =

{
x ∈ R2

���� x (2)x (1) + sin(x (1) )︸                  ︷︷                  ︸
д (x )

= 0

}

can be equivalently represented as

G =

{
x ∈ R2

�����
x (2) = −

sin(x (1) )

x (1)︸       ︷︷       ︸
д̂ (x )

}

since the constraint д(x ) = 0 is symbolically solvable for x (2) .

We first consider the case where the equality constraint is sym-

bolically solvable for one variable:

Proposition 1. We consider a box I, a guard set G = ⟨д(·)⟩G ={
x ���д(x ) = 0

}
which can be equivalently represented asG =

{
x ���x (k ) =

д̂(x )
}
with ∂д̂(x )/∂x (k ) = 0, and the Taylor order κ ∈ N. To tightly
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enclose the intersection I ∩ G, we first compute the Talyor series
expansion of д̂(x ):

a,b, c,v (·), l ,u ← taylor(д̂(·),I,κ). (6)

Next, we compute the intersection

h(x ) ← intersect(I,LS), LS =
{
x ��� x (k ) = pk (x )

}
(7)

of I and LS according to Thm. 1, where the function

pk (x ) = b + a
T (x − c ) +v (x )

represents the polynomial part of the Taylor series expansion. Finally,
the intersection betweenI and G can be tightly enclosed by the Taylor
model

I ∩ G ⊆
{
T (x ) ��� x ∈ I

}

with T (x ) =

〈
h(x ),





0k−1
l

0n−k


,



0k−1
u

0n−k



︸                  ︷︷                  ︸
B

,I

〉
TM
. (8)

Proof. With the Taylor series expansion of д̂(·) in (6) the set{
x ∈ I ��� x (k ) = д̂(x )

}
can be tightly enclosed by

{
x ∈ I ��� x (k ) = д̂(x )

}
⊆

{
x ∈ I ��� x (k ) ∈ pk (x ) ⊕ [l ,u]

}
. (9)

Using (9), the intersection between the box I and the guard set G

can be formulated as

I ∩ G

=
{
x ∈ I ��� x (k ) = д̂(x )

} (9)

⊆
{
x ∈ I ��� x (k ) ∈ pk (x ) ⊕ [l ,u]

}

=





[
x (1) . . . x (k−1)

]T

x (k )[
x (k+1) . . . x (n)

]T



������
x ∈ I, x (k ) ∈ pk (x ) ⊕ [l ,u]




=





[
x (1) . . . x (k−1)

]T

pk (x )[
x (k+1) . . . x (n)

]T

︸                           ︷︷                           ︸
Thm. 1

= h (x )

+



0k−1
s

0n−k



������
x ∈ I, s ∈ [l ,u]




(8)

=
{
h(x ) + b ��� b ∈ B︸              ︷︷              ︸

Def . 3

= T (x )

, x ∈ I
}
=

{
T (x ) ��� x ∈ I

}
.

□

If the equality constrained is solvable for multiple variables we

choose the variable that results in the tightest enclosure of the

set I ∩ G. We demonstrate the computation of the intersection

according to Prop. 1 with an example:

Example 3. We consider the guard set

G =

{
x ∈ R2

���� e
x (1) + 0.2 x2(1) − x (2) − 1 = 0

}
and the box I = [−2,−1]× [−0.5, 0]. Computation of a Taylor model
enclosing the intersection according to Prop. 1 using a Taylor series of

Figure 3: Visualization of the computed intersection from
Example 3.

order κ = 2 yields

T (x ) =

〈 

x (1)
−0.1911 + 0.5579 x (1) + 0.3116 x

2

(1)


,

[ [
0

−0.0077

]
,

[
0

0.0077

] ]
,I

〉
TM
,

which can be equivalently represented by the polynomial zonotope

PZ =

{ [
−1.5

−0.3269

]
+

[
0.5

−0.1884

]
α1 +

[
0

0.0779

]
α2
1
+

[
0

0.0077

]
β1

�����
α1, β1 ∈ [−1, 1]

}
.

The resulting set is visualized in Fig. 3.

Next, we consider the case where the equality constraint is not

symbolically solvable for one variable:

Proposition 2. We consider a box I, a guard set G = ⟨д(·)⟩G ,
and the Taylor order κ ∈ N. To tightly enclose the intersection I ∩ G
we first compute the Taylor series expansion of д(·):

a,b, c,v (·), l ,u ← taylor(д(·),I,κ). (10)

Next, we compute the intersection

h(x ) ← intersect(I,LS), LS =
{
x ��� x (k ) = pk (x )

}

of I and LS according to Thm. 1, where the function pk (x ) results
from splitting the polynomial function

1

a(k )

(
− b + aT c −

n∑
i=1
i,k

a(i )x (i ) +v (x )

)

= pk (x ) + p̂ (x ), with
∂pk (x )

∂x (k )
= 0

(11)

into one part p̂ (x ) containing the variable x (k ) and one part pk (x )
that does not contain the variable x (k ) . Afterward, we calculate the
over-approximation

[̂l , û] ⊇
{
p̂ (x ) ��� x ∈ I

}
⊕
−[l ,u]

a(k )
. (12)
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using interval arithmetic. Lastly, the intersection between I and G
can be tightly enclosed by the Taylor model

I ∩ G ⊆
{
T (x ) ��� x ∈ I

}

with T (x ) =

〈
h(x ),





0k−1
l̂

0n−k


,



0k−1
û

0n−k




,I

〉
TM
.

Proof. Using the Taylor expansion of the function д(x ) in (10),

the equality constraint д(x ) = 0 can be represented as

x (k ) ∈
1

a(k )

(
− b + aT c −

n∑
i=1
i,k

a(i )x (i ) +v (x )

)
⊕
−[l ,u]

a(k )

(11)

= pk (x ) + p̂ (x ) ⊕
−[l ,u]

a(k )

(12)

⊆ pk (x ) ⊕ [̂l , û],

(13)

so that the intersection between the box I and the guard set G can

be formulated as

I ∩ G =
{
x ∈ I ��� д(x ) = 0

} (13)

⊆
{
x ∈ I ��� x (k ) ∈ pk (x ) ⊕ [̂l , û]

}
.

The remainder of the proof is identical to the proof of Prop. 1 and

therefore omitted. □

We demonstrate the computation of the intersection for the case

where the equality constraint is not solvable for one variable with

an example:

Example 4. We consider the guard set

G =

{
x ∈ R2

���� 0.2
(
sin(x (1) )x (2) + cos(x (2) )x (1)

)
− x (2) − 1 = 0

}
and the box I = [−3,−2] × [−1.3,−1]. Computation of a Taylor
model enclosing the intersection according to Prop. 2 using a Taylor
series of order κ = 2 yields

T (x ) =

〈 

x (1)
−0.9481 − 0.0496 x (1) − 0.0437 x

2

(1)


,

[ [
0

−0.0072

]
,

[
0

0.0087

] ]
,I

〉
TM
,

which can be equivalently represented by the polynomial zonotope

PZ =

{ [
−2.5

−1.0964

]
+

[
0.5

0.0844

]
α1 +

[
0

−0.0109

]
α2
1
+

[
0

0.0079

]
β1

�����
α1, β1 ∈ [−1, 1]

}
.

The resulting sets are visualized in Fig. 4.

In rare cases the computed Taylor model or polynomial zonotope

becomes very large. This is due to the obtained over-approximation.

To increase the robustness of our approach, we substitute each

dimension of the calculated Taylor model T (x ) = ⟨h(x ),B,I⟩TM
for which the width of the box remainder B of the Taylor model is

larger than the width of the box I with the box I.

Figure 4: Visualization of the computed intersection from
Example 4.

4.4 Reset Function and Unification
We first outline Step 5 of the procedure described in Sec. 3.2. In this

work we consider nonlinear reset functions r : Rn → Rn . Given
the previously calculated Taylor model or polynomial zonotope F

enclosing the intersection of the reachable set with the guard set,

we first abstract the reset function with a Taylor series expansion

of order γ around the expansion point c = center(F ):

∀x ∈ F : r (x ) ∈

γ∑
i=0

(
(x − c )T∇

)i
r (x̃ )

i!

�������x̃=c︸                              ︷︷                              ︸
p (x )

⊕ L,

with L =

{ (
(x − c )T∇

)γ+1
r (x̃ )

(γ + 1)!

����x̃ ∈F
�����
x ∈ F

}
.

(14)

Next, we evaluate (14) to obtain a tight enclosure of the nonlinear

map. For polynomial zonotopes the polynomial part p (x ) in (14) can
be evaluated exactly since polynomial zonotopes are closed under

quadratic and higher-order maps (see [30]). For Taylor models

we compute a tight over-approximation instead. To enclose the

Lagrange remainder L in (14), we first enclose F by a box, and

then apply interval arithmetics to obtain an over-approximation.

Methods to obtain tighter over-approximations of L exist (see [38]),

but are computationally expensive.

Lastly, we consider the unification in Step 6 of the procedure

described in Sec. 3.2. For polynomial zonotopes we unite the par-

allel sets with the convex hull according to [30, Prop. 13]. Since

polynomial zonotopes are closed under convex hulls, the over-

approximation from the unification is usually small. Taylor models

are first converted to polynomial zonotopes using [30, Prop. 4],

which enables the computation of the convex hull according to [30,

Prop. 13]. The resulting polynomial zonotope can then be over-

approximated by a Taylor model.



HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia Niklas Kochdumper and Matthias Althoff

5 COMPUTATIONAL COMPLEXITY
To demonstrate the scalability of our approach, we derive the com-

plexity with respect to the system dimension n. We make the as-

sumption that the evaluation of a nonlinear function with interval

arithmetics has complexity O (n).
The complexity for the computation of the reachable set for the

continuous dynamics depends on the algorithm used. For linear as

well as nonlinear continuous dynamics, algorithms with complexity

equal to O (n3) exist [3].
Next, we derive the complexity of the guard intersections step by

step. The complexity of detecting the intersecting sets as described

in Sec. 4.1 depends on the range bounding technique used. The

number of nonlinear functions that have to be evaluated by range

bounding does not depend on the system dimension. Therefore, the

complexity for intersection detection using interval arithmetic for

range bounding is O (n).
The complexity of the box contraction step in Sec. 4.2 depends

on the contractor used. The simplest method is to use no contractor

at all, which has complexity O (1). Furthermore, the computation

of a unified box has complexity O (n).
If we consider an order of κ = 2, which is in most cases suffi-

cient to achieve the required accuracy, computation of the Taylor

series enclosure according to Def. 7 has complexity O (n4) since it
is required to evaluate n3 nonlinear functions with interval arith-

metic to compute an enclosure of the Lagrange remainder. The

construction of the Taylor model representing I ∩ G according to

Thm. 1 has complexity O (1). The complexity for the intersection

computation step as described in Sec. 4.3 is therefore O (n4).
Computing the mapping of a Taylor model or polynomial zono-

tope by the reset function according to (14) has complexity O (n4)
if an order of γ = 2 is used since the evaluation of the Lagrange

remainder has complexity O (n4), and the computation of the qua-

dratic map for a polynomial zonotope has complexity O (n4) (see
[30, Prop. 11]). Furthermore, the unification of the parallel sets with

the convex hull has complexity O (n2) since this is the complexity

of the convex hull operation for polynomial zonotopes (see [30,

Prop. 13]).

In summary, the overall complexity for the computation of the

reachable set using our presented approach is therefore O (n4) with
respect to the system dimensionn if a suitable algorithm for the com-

putation of the continuous reachable set, a suitable range bounding

technique, and a suitable contractor is used.

6 NUMERICAL EXAMPLES
In this sectionwe demonstrate the performance of our novel method

on several benchmark systems. All computations are carried out in

MATLAB on a 2.9GHz quad-core i7 processor with 32GB memory.

We use polynomial zonotopes for the representation of reachable

sets. For the computation of the continuous reachable set we use

the algorithm in [3]. We apply interval arithmetic for intersection

detection and use our own implementation of the HC4revise al-

gorithm from [34] as a contractor. Furthermore, we use a Taylor

order of κ = 2 for computation of the guard intersection and a

Taylor order of γ = 1 for computation of the reset mapping. Unless

otherwise explicitly stated, we do not use an upper bound µ for the

maximum number of boxes that are united. The implementation of

Figure 5: Reachable set (top), reachable set for mode ren-
dezvous attempt (bottom, left), and polytope enclosure of
the guard set (bottom, right) for the spacecraft rendezvous
benchmark.

our approach will be made publicly available with the next release

of the CORA toolbox [2].

6.1 Spacecraft Rendezvous
First, we consider the spacecraft rendezvous benchmark described

in [14], which is part of the ARCH 2019 competition [28]. The

benchmark examines the maneuver of a spacecraft docking to a

space station. The four system states are the planar positions x ,y
and corresponding velocitiesvx ,vy of the spacecraft. There are two

discrete modes, approaching and rendezvous attempt. The system
starts in mode approaching from the initial set x ∈ [−925,−875],

y ∈ [−425,−375], vx = 0, and vy = 0. If the spacecraft is at a

distance of 100m from the space station, the system transitions into

mode rendezvous attempt where a different controller is applied.
This transition is modeled by the guard set

G =

{
[x y vx vy ]

T ∈ R4
���� x

2 + y2 − 1002 = 0

}
. (15)

The continuous dynamics for both discrete modes is nonlinear

(see [28]). The specifications for the benchmark are that in mode

rendezvous attempt the spacecraft stays inside the line-of-sight cone
C defined as

C =

{
[x y vx vy ]

T ∈ R4
���� (x ≥ −100) ∧ (y ≥ x tan(30◦))

∧ (−y ≥ x tan(30◦))
}

and the absolute velocity stays below 3.3:√
v2x +v

2

y ≤ 3.3.

The considered time horizon is tf = 200 min.
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[43]

Figure 6: Reachable set for the artificial hybrid system.

We compare our method to the approach in [4], which is imple-

mented in the CORA toolbox [2]. To handle discrete transitions, this

approach first computes the intersection geometrically, and then

encloses the union of all partial intersections with bundles of paral-

lelotopes. Since [4] is only applicable for guard sets represented by

polytopes or hyperplanes, we have to enclose the nonlinear guard

set in (15) with multiple polytopes (see Fig. 5, bottom right).

Since the equality constraint that defines the guard set in (15) is

not symbolically solvable for one variable we calculate the inter-

section with the guard set according to Prop. 2. Fig. 5 visualizes the

results from our approach. The reachable sets computed with our

approach and the approach in [4] both have similar precision, and

both satisfy the specifications. However, computing the guard in-

tersection with the approach in [4] takes 4.96 seconds, whereas the

computation of the guard intersection with our approach takes only

0.93 seconds. Furthermore, for high-dimensional systems the com-

putation time for enclosing nonlinear guards by polytopes might

already be very large.

6.2 Artificial Hybrid System
Next, we consider the 2-dimensional artificial hybrid system from

[43, Sec. 6.1]. The system has one nonlinear guard set

G =

{
[x1 x2]

T ∈ R2
���� cos(x1) − 0.1x2 − 0.7 = 0

}
(16)

and an uncertain reset function

r (x ) =

[
−x1
ν x2

]
, ν ∈ [−2.05,−2],

where x = [x1 x2]
T
.

We compare our novel method with the approach from [43].

Since the equality constraint that defines the guard set in (16) is

symbolically solvable for one variable, we calculate the intersection

with the guard set according to Prop. 1. The visualization of the

reachable set in Fig. 6 shows that the reachable set computed with

our method is much tighter. In addition, the computation time for

our method is only 0.87 seconds, while the computation time for

the approach in [43] is 26 seconds on their machine.

[36]

Figure 7: Reachable set for the transcriptional regulator net-
work with n = 12 states.

Figure 8: Reachable set for the transcriptional regulator net-
work with n = 24 states calculated with our approach. The
computation of the reachable set using the approach in [36]
resulted in a memory overflow.

6.3 Transcriptional Regulator Network
To demonstrate the scalability of our approach, we consider the

benchmark in [36, Sec. 8.D] describing a transcriptional regulator

network with N genes. For a network with N genes the system has

n = 2N dimensions. The benchmark has one nonlinear guard set

and two modes with nonlinear continuous dynamics. The parame-

ters and equations for this benchmark are listed in [36].

We consider the cases with N = 6 and N = 12 genes, which

correspond to n = 12 and n = 24 system states, respectively. For

the calculation of the reachable set with our novel approach, we

use an upper bound of µ = 5 for the case with N = 6 genes as well

as an upper bound µ = 7 for the case with N = 12 genes. Since the

equality constraint that defines the guard set is not symbolically

solvable for one variable we calculate the intersection with the

guard set according to Prop. 2.

We compare our method with the approach from [36]. The vi-

sualization of the results in Fig. 7 shows that the reachable set

computed with our approach is much tighter for the case with

N = 6 genes. In addition, the computation time for our approach is

only 9.2 seconds, while the computation time for the approach in

[36] is 130 seconds on their machine (see [36, Tab. 4]). For the case

with N = 12 genes the approach from [36] is not applicable due

to a memory overflow (see [36, Tab. 4]). However, with our novel
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approach we can calculate the reachable set in only 35.6 seconds

(see Fig. 8).

7 CONCLUSION
In this paper, we introduced a novel method for the calculation of

intersections with nonlinear guard sets in hybrid system reachabil-

ity analysis. In contrast to other approaches, our novel method is

applicable to high-dimensional systems because the computational

complexity grows only polynomially with respect to the system

dimension. Furthermore, the modular design allows us to combine

our guard intersection method with different algorithms for con-

tinuous reachability analysis, which makes it applicable to a very

broad class of hybrid systems. The evaluation of our novel method

on numerical examples demonstrated its scalability and superior

performance compared to other approaches.
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