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Abstract 

 

Psychiatric research is closely related to progress in the statistical field, mainly due to the etiologically 

heterogeneous, syndromal nature of psychiatric disease. Detecting stable patterns in high-

dimensional datasets using multivariate machine learning analysis techniques can help to model this 

complexity. In this work, such techniques were applied and combined for the purpose of complexity 

reduction, using clinical symptom observations and high-dimensional structural neuroimaging data as 

a source of biological information. 

Patients with major depressive disorder (MDD) differ with regard to the dynamics of their response to 

treatment, and early detection of difficult-to-treat depression is still a challenge. Yet, treatment 

response dynamics is mostly parametrized based on simple binary definitions of response and 

remission, likely missing intermediate classes. Here we suggest an alternative, data-based approach 

to identify treatment response clusters (TRC[s]) in MDD that could facilitate comparisons across 

cohorts and the development of treatment prediction algorithms. For this purpose, we analyzed a 

large, observational study (Munich Antidepressant Response Signature [MARS] study, 1017 patients) 

and a partly randomized interventional study (Genome-based Therapeutic Drugs for Depression 

[GENDEP], 809 patients). Symptoms in both studies were rated using the Hamilton Depression Rating 

scale (HRS) over 16 weeks or 12 weeks, respectively. We applied a finite mixture model with an 

integrated completed likelihood criterion for cluster stability evaluation to series of HRS sum scores 

of the MARS discovery sample (834 patients). This revealed seven TRCs ranging from fast and complete 

response (4.9 weeks to discharge, 94% remission) to a slow and incomplete response (10% remission 

at week 16). Even neighboured TRCs differed strongly with regard to established response and 

remission definitions. Internal validity and generalizability of the TRCs was investigated by applying 

the model coefficients to the MARS validation sample (236 patients) and the GENDEP sample where 

patients could be well assigned to the TRCs, with differences in the cluster sizes in GENDEP expectedly 

mirroring the different study design and sample. As external validation we used random forests as a 

regressor and classifier to relate the TRCs to predefined set clinical baseline items, identifying 

personality items, life events, episode duration, and specific psychopathological features as most 

contributing predictors. Prediction accuracy improved when cluster-derived slopes were used rather 

than individual slopes, supporting that a true complexity reduction has been achieved. Eventually, to 

integrate previous knowledge that single symptom items are co-correlated we clustered these using 

a parameterized finite Gaussian mixture model, breaking up the baseline HRS sum score into four sub-

scores that may serve as basis for a more differentiated longitudinal clustering. 
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In the second project, we aimed at developing an atlas-like brain parcellation based on the covariance 

structure of grey matter (GM) volume maps gained by segmentation and spatial normalization of 

structural magnetic resonance images, similarly as in voxel based morphometry (VBM). Preliminary 

work suggested that this covariance structure harbors spatial modules known from functional imaging 

or from fiber tracking experiments. The implication of such parcellation is that VBM data could then 

be broken down into ‘functional’ units that align, for example, with known neurodegenerative 

diseases but that are also sufficiently sparse for genetic association analyses or secondary machine 

learning applications. Advanced implementations of an Infomax type of independent component 

analysis (ICA) that also provide measures of component stability through iterations (ICASSO) were 

used. The dimensionality of the ICA was optimized by combining agglomerative hierarchical clustering 

(HC), systematic re-agglomeration to lower dimensions and similarity analyses of these re-

agglomerations. As discovery sample, a public repository dataset (563 healthy adults, age 20-83 years) 

and as replication sample a local (Max Planck Institute of Psychiatry) sample (566 healthy adults, age 

18-83 years) was available. After state-of-the-art VBM preprocessing, Combat-based removal of 

site/scanner effects, non-linear intersubject coregistration, Jacobian modulation and spatial 

smoothing of GM voxel maps (1.51.51.5 mm3, isometric Gaussian kernels FWHM 6 mm and 10 

mm), influences of age, squared age, sex and their interactions as well as total intracranial volume 

were regressed out on a voxel-basis. Respective concatenated multi-subject 4D datasets restricted to 

GM (479384 voxels) were forwarded to ICASSO. The requested ICA dimension k was varied between 

20 and 445 in steps of 25. The proportion of stable components for each k was explored, and a 

maximum Z value achieved per voxel (from all ICs or only stable/unstable ICs separately) was 

calculated, suggesting volatile anatomical location of unstable components. To determine which range 

of k delivered a stable parcellation and by this indirectly estimate the number of true data sources, 

we performed agglomerative HC of each ICA solution and secondarily re-agglomerated this solution 

to k' in steps of 5 between 10 and 540, for all k' < k. We then compared the similarity of all possible 

pairs of re-agglomerated component sets per k' and averaged these for each k'. As alternative, only 

re-agglomerations of neighbored ICA dimension k were compared. Both averaging techniques 

converged on about 150 components to which higher parcellations could be re-agglomerated with 

relatively highest spatial stability. This dimension estimate was confirmed in the replication dataset, 

with anatomical similarity of the respective optimal solutions. The dimension estimate was also stable 

for both smoothing settings that, however, differed slightly regarding their spatial pattern. Discrete 

versions of parcellations were visualized with and without consideration of component stability, and 

a fuzzy display of parcellation borders using the ambiguity of a voxels’ component membership was 

developed. Overall, ICA and HC allowed for stabilizing a solution with about 150 covariance-based GM 



 

vi 

 

components with a first indication of generalizability. In-depth assessment of smoothing strategies 

and exploration of a saturation effect with larger sample size may lead to a sample-independent, fully 

generalizable solution.  

In conclusion, model-based clustering of longitudinal clinical symptom observations, after appropriate 

feature engineering, proved effective for identifying treatment response subgroups in depression, 

with usefulness of the model for new samples and an additional potential lying in an extension to 

data-driven symptom clusters instead of the total symptom severity. Random forests as supervised 

classification and regression method supported the validation. Conceptually, model-based clustering 

followed by a supervised learning step for validation could be a useful framework for other 

longitudinal observations. In the neuroimaging project, a 3000:1 dimension reduction of voxel wise 

GM volume information to anatomically plausible, network-like volume modules was achieved by ICA 

whereby the dimensionality question was solved by HC, systematic re-agglomeration of components 

and similarity analyses. Here, the embedding of different unsupervised learning techniques into a 

novel framework proved effective for developing a data-driven atlas parcellation.  
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Zusammenfassung 

 
Psychiatrische Forschung ist inzwischen eng mit der Weiterentwicklung statischer Methoden 

verbunden, durch die überwiegend als Syndrome definierten, jedoch ätiologisch heterogenen 

psychiatrischen Erkrankungen abgebildet werden können. Für eine Modellierung solcher komplexen 

Muster sind multivariate Verfahren und maschinelles Lernen besonders geeignet, da sie latente 

Muster automatisch erkennen können. In der vorliegenden Arbeit wurden solche Techniken mit dem 

Hauptziel einer sinnvollen Reduktion von Datenkomplexität kombiniert und in zwei Projekten auf 

verschiedene Datenstrukturen angewendet: zum einen auf klinische (Verlaufs-)Beobachtungen und 

zum anderen hochaufgelöste anatomische Neuroimaging-Daten. 

Patienten mit einer Depression (major depressive disorder [MDD]) sprechen erfahrungsgemäß sehr 

heterogen auf eine Behandlung an, wobei die möglichst frühe Erkennung einer drohenden 

Therapieresistenz eine besondere klinisch Bedeutung hat. Die Therapieantwort wird hierbei in Studien 

bisher meist als binäre Variable (z. B. Teilansprache [Response], Remission) codiert, so dass 

Zwischenstufen nicht ausreichend abgebildet werden. Als Alternative können durch einen 

datengetriebenen Ansatz Therapie-Antwort-Cluster (treatment response clusters [TRC]) ermittelt 

werden, die dann wiederum den Vergleich zwischen Kohorten und die Entwicklung von Prädiktions-

Algorithmen erleichtern. Hierfür wurden eine klinische Beobachtungsstudie (Munich Antidepressant 

Response Signature [MARS] Studie, 1017 Patienten) und eine teilkontrollierte klinische 

Interventionsstudie (Genome-based Therapeutic Drugs for Depression [GENDEP], 809 Patienten) 

analysiert. Die Symptomschwere wurde in beiden Studien über 16 bzw. 12 Wochen durch die 

Hamilton Depressionsskala (Hamilton Depression Rating Scale, HRS) beurteilt. Auf den 

entsprechenden HRS Zeitreihen des MARS Discovery Samples (834 Patienten) wurde ein finite mixture 

model geschätzt, wobei die Anzahl der Cluster durch das integrated completed likelihood Kriterium 

ermittelt wurde. Es ergaben sich 7 abgrenzbare TRCs, die das gesamte Spektrum zwischen einer 

schnellen und meist vollständigen Therapieansprache (4.9 Wochen Klinikaufenthalt, Remission in 

94%) und einer sehr langsamen oder ausbleibenden Therapieansprache (Remission in 10% nach 16 

Wochen) abbildeten. Die TRCs, auch direkt benachbarte, unterschieden sich stark in Bezug auf 

herkömmliche Response- oder Remissionskriterien. Die Übertragung des Modells auf die MARS 

Validierungs-Stichprobe (236 Patienten) und das GENDEP-Validierungs-Stichprobe ergab, dass auch 

neue Fälle auf die TRCs projiziert werden konnten; andere relative Proportionen der TRCs bei GENDEP 

waren hierbei Ausdruck der unterschiedlichen Studienpopulationen bzw. -designs. Im Sinne einer 

externen Validierung wurden die TRCs durch einen Random Forests Algorithmus mit 50 klinischen 

Prädiktorvariablen vorhergesagt, wobei Persönlichkeitsmerkmale, Life Events, die Dauer der 

depressiven Episode und spezifische Einzelitems des HRS besonders beitrugen. Die 
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Prädiktionsgenauigkeit war bei Verwendung der modell-basierten Dynamik höher als bei Verwendung 

der individuellen Dynamik, was für eine echte Komplexitätsreduktion spricht. In einer 

Weiterentwicklung wurden die Gesamt-HRS-Scores wiederum durch modellbasiertes Clustering 

(parameterized finite Gaussian mixture model) in vier Symptomcluster aufgebrochen, durch die das 

longitudinale Clustering weiter differenziert werden kann. 

Im zweiten Projekt wurden anatomische Daten in Form von Volumenkarten der grauen Substanz (grey 

matter [GM]) analysiert, um eine Atlasparzellierung auf der Basis der strukturellen Kovarianz zu 

entwickeln. Derartige GM-Karten werden in der voxel-basierten Morphometrie (VBM) verwendet und 

basieren primär auf Segmentierung und exakter räumlicher Koregistrierung. In der Literatur 

bestanden Hinweise, dass die GM-Kovarianzstruktur Netzwerken aus dem funktionellen Imaging oder 

Fiber-Tracking-Daten ähnelt. Durch eine stabile Kompentenstruktur könnten, i. S. eines 

Anwendungsziels, VBM-Daten auf 'funktionelle' Volumenmodule heruntergebrochen werden, die 

neurodegenerative Prozesse abbilden oder als Input für genetische Assoziationsanalysen und andere 

Sekundäranalysen dienen. Primär wurden Unabhängigkeitsanalysen (Independent Component 

Analysis [ICA]) mit Infomax zur Komponentenextraktion und ICASSO zur Stabilitätsbestimmung 

durchgeführt. Um die optimale Zahl der Komponenten einzugrenzen, wurde jede ICA durch ein 

(agglomeratives) hierarchisches Clustering (HC) analysiert, durch gezielte Reagglomeration auf eine 

niedrigere Komponentenzahl zurückgeführt und diese durch eine Ähnlichkeitsanalyse verglichen. Zur 

Verfügung standen das Discovery Sample (Public repository, 563 Gesunde, 20-83 Jahre) und ein 

lokales (Max-Planck-Institut für Psychiatrie) Replikationssample (566 Gesunde, 20-83 Jahre). Nach 

VBM-Präprozessierung mit nicht-linearer Koregistrierung, Jacobian'scher Modulierung, und 

räumlicher Glättung der GM-Karten (1.51.51.5 mm3, isometrischer Gauß'scher Kernel FWHM 6 

mm bzw. 10 mm) wurde eine multiple Regression zur Entfernung von Kovariateneinflüssen (Alter, 

Geschlecht, Alter-Geschlecht-Interaktionen, Schädelvolumen) durchgeführt. ICAs wurden dann auf 

4D-Datensätzen (GM-Maske, 479384 Voxel) für 20 bis 445 Komponenten (Schrittweite 25) 

durchgeführt. Der Anteil der stabilen Komponenten wurde für jedes k ermitteln, außerdem pro Voxel 

der höchste durch eine Komponente erreichte Z-Wert, wobei sowohl alle Komponenten als auch nur 

stabile oder nur instabile Komponenten betrachtet wurden. Zur Bestimmung der optimalen 

Komponentenzahl, wurde ein agglomeratives HC, gefolgt von der gezielten Reagglomeration auf k' (10 

bis 540, Schrittweite 5, für alle k' < k) durchgeführt. Für jedes k' wurde die räumliche Ähnlichkeit der 

aus den verschiedenen Quell-ICAs stammenden Re-agglomerationen anhand von 7 

Ähnlichkeitsmaßen bestimmt, und für alle Permutationsmöglichkeiten oder nur für jeweils 

benachbarte ICAs gemittelt. Die Ähnlichkeit erreicht ein Maximum für circa 150 Komponenten in 

beiden Datensätze, bei auch hoher anatomischer Ähnlichkeit der Komponenten. Auch bei der höheren 
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Glättung (10 mm) blieb das Optimum stabil bei 150 Komponenten bei nur geringen anatomischen 

Verschiebungen. Die Komponentenlösungen wurden sowohl als diskrete Karten (exakt 1 Komponente 

pro Voxel, mit und ohne Gewichtung durch die Komponentenstabilität) als auch fuzzy dargestellt 

(hohe Ambivalenz der Komponentenzugehörigkeit als Trennlinie zwischen Modulen). Insgesamt 

konnte ein Kovarianz-basierter GM-Atlas erstellt werden, mit bereits akzeptabler Generalisierung. 

Weitere Analysen sollten auf den Einfluss der Glättungsstrategie oder der Sample-Größe fokussieren. 

Es lässt sich schlussfolgern, dass durch modell-basiertes Clustering auf longitudinalen Daten zur 

Symptomschwere während der Depressionsbehandlung unterschiedliche Therapieansprache-Cluster 

identifiziert werden konnten. Diese waren dahingehend stabil, dass auch unabhängige Patienten 

durch gut abgebildet werden konnten. Als weitere Entwicklung können ebenfalls datengetriebene 

Symptom-Cluster anstand der Symptom-Gesamtschwere verwendet werden. Eine externe 

Validierung gelang durch die Verknüpfung der Therapieansprache-Cluster mit klinischen Prädiktoren 

durch eine Random Forests Analyse, die hier sowohl als Klassifikations- als auch als 

Regressionsverfahren eingesetzt wurde. Die Kombination von modellbasiertem Clustering mit 

supervidiertem Lernen zur Validierung scheint übertragbar auf andere longitudinale 

Beobachtungsdaten. Im Neuroimaging-Projekt konnten voxelweise GM-Karten in ihrer 

Dimensionalität durch das ICA-Verfahren um einen Faktor 3000 reduziert und dabei anatomisch 

plausible, netzwerk-ähnliche Volumen¬module stabilisiert werden. Die optimale Komponentenzahl 

wurde hierbei durch hierarchisches Clustering, Re-agglomeration und räumliche Ähnlichkeitsanalysen 

ermittelt. Diese bisher nicht beschrieben Kombination aus unsupervidierten Lerntechniken 

ermöglichte die Generierung einer datenbasierten Atlasparzellierung. 
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1 Introduction 

1.1 Major depressive disorder (MDD) 

While major depressive disorder (MDD) is one of the leading causes of the disease's global burden. It 

is diagnosed as having an enduring low- or depressed-mood individual, anhedonia or reduced interest 

in enjoying life, a sentiment of guilt or worthlessness, lack of energy, poor concentration, appetite. In 

the 5th edition of the Diagnostic and Statistical Handbook (DSM-5) 1, a person must be diagnosed with 

MDD with five of the above symptoms, one of which must be a depressed mood or anhedonia, leading 

to social or occupational disability. To make an MDD diagnosis, the history of a manic and hypomanic 

episode should be omitted. 

Diagnostic and Statistical Manual of Mental Disorders (DSM) 

The Diagnostic and Statistical Manual of Mental Disorders (DSM) presents a common vocabulary in 

which physicians, experts and health authorities in the US communicate about psychiatric illness. The 

new DSM, 5th Review (DSM-5)1, was issued in May 2013, marking the first substantial overhaul to 

diagnostic standards and ratings since the DSM-IV in 19942 In chapter V of the International 

Classification of Diseases (ICD), the World Health Organization (WHO) provided its own method for 

classifying psychiatric illnesses, primarily used for compensation and collect national and international 

medical statistics. Nevertheless, the ICD settled on a global consensus to implement explicit standards 

for diagnosing psychiatric illnesses after the 1982 Classification International Conference in 

Copenhagen, after the 1980 DSM-III Models3. This was followed in a decade of collaboration between 

DSM-IV developers from the American Psychiatric Association (APA) and ICD-104 developers from the 

WHO which was supported by a joint partnership between the National Mental Health Institute and 

the WHO (Sartorius N Principal Investigator. The WHO/Alcohol, Drug Abuse, and Mental Health 

Administration Joint Project on Diagnosis and Classification. Cooperative agreement U01MH035883, 

from the National Institute of Mental Health to the World Health Organization, 1983-2001). Although 

DSM is a US method for diagnosing mental illnesses, international interest in the handbook has 

flourished since the publication of DSM-III in 1980, in accordance with the use of the official ICD 

statistic code numbers. The DSM-5 is focused on explicit condition definitions, along with a large 

explanational text which is first stated in electronic version of this DSM, which constitutes a 

nomenclature of mental disorders. 
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Multifactorial, including molecular genetics, environmental and psychosocial causes were thought to 

have been the etiology of major depressive disorders. MDD was previously considered mainly due to 

the abnormalities in neurotransmitter particularly serotonin, norepinephrine and dopamine. Different 

counteractants, such as serotonin receptor selective inhibitors, serotonin-norepinephrine receptor 

inhibitors, dopamine-norepinephrine receptor inhibitors have been demonstrated in the treatment of 

depression5. MDD has a lifetime prevalence of about 5 to 17%, with an average of 12%. The prevalence 

rate is almost double in women than men6. The disparity has been regarded due to hormonal changes, 

childbirth effects, multiple psychosocial stressors in men and women. While the average age of onset 

is about 40 years, new studies indicated that the prevalence is increasing in young population due to 

the use of alcohol and the other substances. 

Table 1.1: Diagnostic Criteria for Major Depressive Disorder (DSM) 

A. Over the same two-week period, 
five (or more) of the following 
symptoms were present and represent 
a change from previous functioning: at 
least one of the symptoms is either (1) 
depressed mood or (2) loss of interest 
or enjoyment.1 

1. Depressed mood most of the day, almost every day, as 
indicated by either a subjective report (e.g., feeling sad, empty, 
hopeless) or other observations (e.g., appearing tearful). (Note: 
An irritable mood can be present in children and adolescents.) 

2. Most of the day, almost every day (as indicated by either 
subjective account or observation), interest or pleasure in all, or 
almost all, activities decreased significantly. 

3. Significant weight loss in the absence of diet or weight gain 
(e.g., change in body weight by more than 5% in a month), or 
decrease or increase in appetite almost every day. 
4. Almost every day, insomnia or hypersomnia. 
5. Almost every day, psychomotor agitation or retardation 
(observable by others, not merely subjective feelings of 
restlessness or slowing down). 
 
6. Tiredness or loss of energy almost every day. 
7. Feelings of worthlessness (not just self-reproach or guilt about 
being sick) or excessive or inappropriate guilt (which may be 
delusional) almost every day. 
8. Almost every day, decreased ability to think or concentrate, 
or indecisiveness (either by subjective account or as others 
observe). 
9. Recurrent thoughts of death (not just fear of dying), recurrent 
ideation of suicide without a specific plan, or an attempted 
suicide or a specific suicide plan. 

B. In social, occupational, or other important areas of functioning, the symptoms cause clinically 
significant distress or impairment. 
C. The episode is not attributable to a substance's physiological effects or another medical condition. 
D. Schizoaffective disorder, schizophrenia, schizophrenic disorder, delusional disorder, or other specified 
and unspecified schizophrenia spectrum and other psychotic disorders do not explain the occurrence of 
the major depressive episode better. 
E. There has never been a manic episode or an episode of hypomania. Note: If all manic-like or 
hypomanic-like episodes are substance-induced or attributable to the physiological effects of another 
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medical condition, this exclusion shall not apply. 
 

 

Treatment for MDD 

Significant depressive symptoms can be managed by different types of treatment, including alteration 

of pharmacology, psychotherapy, intervention and life styles. Medications or/and psychotherapy are 

the initial treatment of MDD. Combination therapy, using both drugs and psychotherapy, is more 

effective than any medication alone 7,8. In contrast with any other form of extreme major depression, 

electroconvulsive therapy has been shown to be more effective. 

Table 1.2: Different types of FDA approved medication for the treatment of MDD 

FDA approved 
medication for the 
treatment of MDD 

Name Details 

Antidepressants Selective serotonin 
reuptake inhibitors (SSRIs) SSRI include fluoxetine, sertraline, citalopram, 

escitalopram, paroxetine, and fluvoxamine, the 
most widely prescribed antidepressants. 

Serotonin-norepinephrine 
reuptake inhibitors (SNRIs) SNRI include venlafaxine, duloxetine, 

desvenlafaxine, levomilnacipran, and milnacipran, 
frequently used for depressed patients with 
comorbid pain disorders. 

Serotonin modulators  trazodone, vilazodone, and vortioxetine 

Atypical antidepressants  
Atypical antidepressants include bupropion and 
mirtazapine. They are often prescribed as 
monotherapy or as augmenting agents when 
patients develop sexual side-effects due to SSRIs or 
SNRIs. 

Tricyclic 
antidepressants (TCAs)  amitriptyline, imipramine, clomipramine, doxepin, 

nortriptyline, and desipramine. 

Monoamine oxidase 
inhibitors (MAOIs)  tranylcypromine, phenelzine, selegiline, and 

isocarboxazid. 

Psychotherapy 
Cognitive-behavioral 
therapy, Interpersonal 
therapy  

 

Electroconvulsive 
therapy (ECT) 

Acute suicidality, Severe 
depression during 
pregnancy, Refusal to 
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eat/drink, Catatonia, 
Severe psychosis 

Transcranial 
magnetic 
stimulation (TMS) 

FDA-approved for 
treatment-
resistant/refractory 
depression 

 

Vagus nerve 
stimulation (VNS) 

FDA-approved as a long-
term adjunctive treatment 
for treatment-resistant 
depression 

 

Esketamine Nasal spray to be used in 
conjunction with an oral 
antidepressant in 
treatment-resistant 
depression 

 

 

Despite sequential combination or increase of treatment interventions, almost half the patients 

suffering from major depressive episode are not able to respond, regardless of the operational 

concept used for treatment-resistant depression (TRD)9,10. The detection of its subtypes is another 

challenge in MDD. We are aware that MDD is heterogeneous in such characteristics as clinical 

presentation, disease development, reaction to treatment, genetics and neurobiology11. This 

heterogeneity hampers progress in the detection and efficient treatment of the cause of MDD12. A 

number of studies have been conducted to classify data-driven subtypes of MDD using clinical 

questionnaires in order to address this issue. But either conflict or clusters linked to depression are 

identified by the results of these studies, which do not provide any definitive evidence for subtypes of 

depression13,14. 

1.2 Longitudinal clustering and clinical subtypes of major depressive 
disorder 

 
Personalized, specific, stratified medicine is understood as a medicinal approach, in which patients are 

stratified by specialized diagnostic assessments depending on their condition subtype, risk, prognosis 

or treatment response. In precision medicine, an important question is how to model disease 

progression appropriately and thus determine the correct type and time for individual therapy. The 

inherent complexity of diseases that exhibit highly diverse clinical phenotypes may be missed by 

classical univariate clustering methods. Grouping of patients by symptom development therefore 

leads to the difficult question of how a clustering of a multivariate time series can be learned. In 
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machine learning and statistics, clustering is a fundamental and well-researched domain in general. 

The aim of clustering is to divide samples into clusters so that there is a higher degree of similarity of 

samples within a cluster compared with samples between clusters. Following Hastie et al. (2009)15, 

clustering algorithms exist in three major categories: (i) mixing algorithms, (ii) mixing modeling, and 

(iii) searching for mode modes. A wide range of methods for different clustering issues is available 

within each of these three categories. The combinatorial cluster analyzes can be seen as a method for 

investigating (heuristically) the region of any possible group data arrangement and selecting that 

which fits to an Optimized Target function16. Combinatorial algorithms do not assume a basic 

likelihood model, but work directly with the data. Examples therefore include C-means, spectral and 

hierarchical clustering17,18. Mixing models assume that some probabilistic models can describe the 

data. One example for this is the Gaussian mixture clustering. In the search mode, the underlying 

multi-modal probability density is then attempted to be estimated directly. The medium-shift 

algorithm18 is an important example here. Several techniques have been developed for the clustering 

of multivariate time series data19. In general, however, these approaches rely on a much longer time 

series than typically available in most longitudinal clinical observations. In addition, these methods 

are not suitable for many missing values that are often found in clinical data. Missing values in clinical 

data can be present for several reasons: (i) patients drop out of the study or trial, e.g. due to worsening 

symptoms; (ii) a diagnostic test is not performed (e.g. due to a lack of the patient's agreement), which 

could lead to a lack of information for whole variable groups. 

Longitudinal data contain observations that are measured repeatedly over time. One way to analyze 

this type of data is to classify it, i.e. to divide it into unique subgroups. To achieve this, different 

methods have been proposed, including variants of k-means and various models based on mixture 

models20. While there are no generally accepted recommendations on which methods to use in a 

specific context21,22, these approaches are regularly considered. The general idea behind clustering is 

to group individuals by their similarity to each other. For the concept of "similarity" several concepts 

can be employed, and basically they are built on the concept of distance, similarity itself or probability. 

For example, two subjects are considered similar in the majority of current approaches when each 

point has close trajectories. This approach takes local similarities into account, but not necessarily the 

overall shapes of trajectories. Two trajectories which has similar shape but can be may be assigned to 

different clusters. The direct result is that the mean of the group does not tell the shapes, but in many 

cases it is more important to observe the progression of a phenomenon rather than simply drawing 

inference from its occurrence. In those circumstances, one would prefer to divide people whose 

trajectories have similar forms regardless of their shift in time23. 
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1.3 Neuroimaging 
 
A neuroimaging method can be defined as any imaging technique that allows to obtain images of the 

human central nervous system structure or its function. Neurophysiological techniques such as 

electro-encephalography or evoked potentials, along with neuroimaging, can be subsumed as human 

brain mapping as they also help o map (i.e., localize) brain function. Such a method should ideally 

provide good correct spatial resolution of brain anatomy and good temporal resolution of functional 

changes. Ideally, for human studies, the method should be minimally invasive and repeatable. The 

way neuroimaging techniques address questions of functional neuroanatomy, particularly in the 

context of behavioral studies or clinical disorders, has strongly evolved over the last 20 years. 

Structural neuroimaging addresses the structure of the brain (for example, by demonstrating image 

contrast among between major tissue types cerebrospinal fluid (CSF), gray matter (GM) and white 

matter(WM)). Indirect measurement of the brain function is made possible through functional 

neuroimaging (e.g., neural activity). 

a Computed Tomography (CT), 

b Positron Emission Tomography (PET), 

c Single Photon Emission Computed Tomography (SPECT), 

d Magnetic Resonance Imaging (MRI), 

Structural MRI including diffusion imaging and functional MRI including its main representative BOLD 

fMRI, has taken a lead role due to its low invasiveness, lack of radiation exposure and relatively wide 

availability. A great portion of neuroimaging research is thus based on MRI. Basic MRI researchers like 

Peter Mansfield and Paul Lautebur, who won the 2003 Nobel Prize for Physiology or Medicine, have 

developed the basic principle of magnetic resonance to an applicational status where it became 

immediately useful as key imaging technique in in many medical disciplines. In the neurological and 

psychiatric field, MRI produces high quality images of the brain macro- and microstructure and helps 

to map its functional status, hereby avoiding any ionizing radiation (X-rays) or radioactive tracers, only 

relying on magnetic fields and their interaction with the body tissue and high frequency radio waves. 

Generally, there is consensus that MRI does no harm to the organism unless taken to extreme field 

strengths (e. g. > 9 Tesla) or to the human fetal life stage where indications are very strict and safety 

data incomplete. By sensitizing the sequence to T1-, T2-, proton density or diffusion properties of the 

tissues by independent parameters, a whole range of tissue properties can be highlighted. 

1.4 T1-weighted magnetic resonance (MR) images and basics of 
segmentation 
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T1-weighted MRI images 
 
T1-eighted images (T1WI) in magnetic resonance imaging (MRI) represent one basic pulse sequence 

in MRI to showcase T1-properties of the tissue. This property is based on the principle of MRI and 

needs a short excursion: During MRI, the tissue is first exposed to a constant, strong magnetic field, 

that aligns the magnetic spin of all H+-atoms in parallel, or anti-parallel, to that field. The net vector 

of this magnetization, however, is not zero, but slightly positive. The outer, constant magnetic field 

further leads the spins of the H+-atoms to take a frequency (Larmor Frequency) linearly correlated 

with the strength of the B0-field (The B0 is the main static magnetic field in the MRI and is determined 

by Teslas (T). In clinical applications, the majority of the MRI systems are 1.5T, with an increasing 

number of 3T mounted. There have been 7T clinic scanners since 2017), multiplied by the 

gyromagnetic ratio (in units Mhz/T). This ratio is specific to the type of isotopes studied, and for H+ it 

is 42.58 Mhz/T. As soon as radiofrequency close the Larmor frequency is sent to the tissue, the energy 

is absorbed first, and the synchronously spinning vectors are desynchronized on one hand, and they 

lose their net vector magnetization on the other hand. After the HF application stops, the system 

develops back to the formerly state it was in the constant magnetic field. Here the T1-relaxation time 

is a measure for how fast the net magnetization vector comes back to its ground state in the direction 

of B0. This associated energy loss when the excited nuclei return to their lower energy state is lost to 

the surrounding nuclei. Phrased differently, the T1WI relies on this longitudinal relaxation of a tissue’s 

net magnetization vector. The T2-time (more correct, the T2* time) represents the time needed until 

the spinning process is desynchronized again, and component orthogonal to the B0 field is falling back 

to zero again. T1-weighted image (also referred to as T1WI or "spin-lattice" relaxation time) is one of 

the basic pulse sequences in MRI and demonstrates differences in the T1 relaxation times of tissues.  

In clinical and brain mapping practice, T1WI generally depict a good intensity contrast between grey 

matter (incl. the cortex), white matter, and CSF. T1WI are also sensitive to the enhancing effects of 

gadolinium24. The order of intensity of these three compartments is WM > GM > CSF.  Fat tissue or 

sometimes calcifications can also appear bright on T1WI, so sometimes fat is be by fat saturation 

techniques. To create a T1WI, the magnetization is allowed to mostly recover before reading out the 

MR after a rather long24 (TR). TR is the time between excitations. In essence, in brain imaging, a T1WI 

allows a proper assessment of the large macroscopic compartments of GM (including the cerebral 

cortex), white matter and CSF, and, in studies on inflammatory diseases is also useful to collect post 

contrast images. An example of a whole head T1WI is given in Figure 1.1. The typical acquisition time 

as such an image is about 8 to 15 minutes, depending on geometrical details, and typical resolutions 

of the original images are round 1x1x1 mm3, or slightly smaller voxel size. There are other pulse 

sequences that emphasize abnormal brain tissue more than normal anatomy. By altering the 
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parameters of the sequence, mainly the repetition time (TR) and echo time (TE), more T1 or more T2-

properties of the tissue can be extracted. Naturally, sequences vary in acquisition length depending 

on these parameters. 

The characteristics of T1 weighted images are: a) Water as well as dense bone and air, such as CSF, 

have low intensity, b) fat and lipid tissues appear hyper intense (compared with cortex) which also 

explains the high intensity of myelinated white matter due to lipid component of myelin, c) Grey 

matter is typically in between the intensity of CSF and WM. d) In areas of (microscopically) mixed 

tissue, so when GM and WM are neighbored, such as in the thalamus or pallidum that contain white 

matter fibers, the intensity lies between GM and WM (so, e. g. light grey). 

 
 

 
Figure 1.1: Example of T1-weighted image shown in three planes (sagittal, axial, coronal). 
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Note intermediate, greyish intensity of grey matter, high intensity of white matter, and low intensity 
of CSF (and w. g. air).  

 
Brain tissue segmentation 

As indicated, healthy brain tissue, or better the intracranial space, at an intermediate resolution 

typically generated in a 3 Tesla system, can be classified into three tissue types on the basis of a T1WI: 

GM, WM, and CSF (Figure 1.2). Roughly, the distinction of the brain tissue in GM and WM is also 

corresponding to its first macroscopic, anatomical appearance when dissected post-mortem. Grey 

matter is the component consisting of neuronal cell bodies, neuropil (dendrites and unmyelinated 

axons), glial cells (astrocytes and oligodendrocytes), synapses, and capillaries. White matter is the 

tissue that contains the axons of the neurons and their myelin sheaths that together are responsible 

for signal transduction between neurons within the central nervous system. The intensity of white 

matter is due to the presence of fatty substances (myelin) surrounding the nerve fibers (axons). 

Cerebrospinal fluid (CSF) is a clear, colorless body fluid found in specific spaces in the brain (ventricles, 

aqueduct), around the cortex (external CSF spaces such as sulci and cisterns) and around the spinal 

cord. CSF is produced by ependymal cells in the choroid plexuses of the ventricles of the brain, and, 

after taking part in a circulation process, absorbed in the arachnoid granulations and extra spinally. 

The segmentation of different tissue can be performed manually on a good quality T1 image, by 

selecting particular image intensity ranges encompassing the voxel intensities of the desired tissue 

type. However, this procedure is highly subjective. T1-weighted images, because of their good 

GM/WM/CSF contrast, have been widely employed for automated segmentation methods and brain 

morphometry. The voxel intensity in an image is one (and the most important) type of information we 

can use in the segmentation of tissue classes. The fact that most brains share many of the features in 

the spatial distribution of tissue classes gives us an additional type of information: that of location. 

This means that types of tissue are not randomly spread in the brain but are located relatively 

systematic and can be used by us to improve our segmentation. Tissue probability maps for various 

tissue classes made of a large number of brains registered into a common space thus represent very 

important source of information needed to define a voxel's tissue class. These maps to be considered 

the probability of a voxel belonging to a specific tissue class in a Bayesian context and are therefore 

often referred to as 'prior.' A large number of tissue segmentation algorithms use three category maps 

of probability: gray matter, white matter and CSF. It should be added that other classes are also used 

in these algorithms, such as 'skull', 'facial soft tissue', air space surrounding the head' etc. These 

additional classes help to reduce the ambiguity further. 
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Figure 1.2: Segmented grey matter(GM), white matter (WM) and cerebrospinal fluid (CSF) images. 

1.5 Unified segmentation and DARTEL registration 
 
The use of tissue probability maps to segment the image of a subject poses a circular ('chicken-egg') 

problem. That is, the probability maps of the tissue are usually in a stereotactic standard space (in 

SPM this is the MNI space (Montreal Neurological Institute-Hospital). Therefore, it is necessary to 

perform a registration between the subject and the MNI spaces before using the tissue probability 

map. In turn, however, the tissue probability map gained for an individual needs the information from 

the MNI space prior. Thus, a segmentation algorithm that wants to make use of tissue priors needs to 

optimize both steps, registration between the individual's native space and the MNI space, and 

segmentation. Ashburner (2005) 25 managed to unify these steps, along with bias field correction as 

third element, into a single integrated generational model that is ref. to as unified segmentation. To 

achieve optimal local solutions for every process this model involves alternating tissue segmentation, 

bias field correction, and spatial registration. The tissue likelihood maps are registered to the data of 

the single subject, and the Bayes rule uses these priors in combination with tissue likelihood from 

voxel intensities to create native tissue likelihood maps25. 

The next challenge is to optimally co-register subjects of a study onto each other for later voxel-wise 

statistics. is important that this inter-related registration is as precise as possible. A sophisticated 

registration algorithm through exponential lie-algebra is available in the DARTEL algorithm26 that is 

based on the output of the above-explained Unified Segmentation.  DARTEL is currently not seamlessly 

integrated into the segmentation model and requires unified segmentation of the gray and white 

tissue maps. The current version of the unified segmentation typically does not segment the brain 

spinal fluid very reliably. Therefore, the DARTEL registration usually uses only gray matter and white 

matter tissue maps. DARTEL acts iteratively in up to six generations, each aligning the GM and WM 
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segments more and more to each other. The inter-subject co-registration in DARTEL can be started 

with pre-existing six generation TPMs of GN and WM (such as from the IXI sample), or these 6 

generation of maps can be produced from the sample analysis itself. In the end, registered tissue maps 

are converted into standard size, and in order to conserve the amount of tissue in each structure the 

transformed maps are multiplied by the Jacobian deformations determinants27,28. By this step, the 

probability information (of the native space voxels) is transformed into a volume information in MNI 

space. Recent studies have shown that the performance of non-linear registration algorithms, such as 

unified segmentation and DARTEL, is better than the immediate output of the unified segmentations 

in MNI space28,29. It should be emphasized that the input to DARTEL is not the (already provided) MNI 

space GM and WM segments, but the native GM and WM (after a simple affine first pre-positioning 

referred to as import step). 

1.6 Spatial normalization and voxel based morphometry (VBM) 
 
Good inter-subject co-registration is the prerequisite to reliable VBM, because only then voxels with 

presumably the same anatomical 'origin' (or function) come to lie over each other across all subjects.  

The above-mentioned Unified Segmentation does provide MNI space and Jacobian modulated GM 

maps. For the spatial normalization, a Bayesian framework is used, using a prior knowledge of normal 

brain size variability, to estimate a maximum posteriori spatial transformation. The second step 

involves the differences in global nonlinear shapes modeled by a linear combination of smooth spatial 

basis functions. The nonlinear registration consists of evaluating coefficients of the base functions, 

which at the same time maximize the smoothness of the deformations and minimize the residual 

squared difference between images and template30 After unified segmentation, there is reasonable 

agreement between the cortex shapes at the mesoscopic level of granularity – yet, DARTEL further 

improves the alignment between subjects. The better the voxel alignment is, the less shape differences 

remain – thus it becomes more important to apply the JM step after the full transformation through 

DARTEL - then, close-to-perfect co-registration is combined with individual volumetric information. 

One consequence of DARTEL over only Unified Segmentation is that due to the better geometric inter-

subject co-registration, less spatial smoothing can be applied, and geometric result precision is thus 

higher. Generally, a relatively high resolution (1 mm or 1.5 mm isotropic voxels) is required for the 

spatially normalized images so that the gray matter extraction does not excessively interfere with a 

partial volume effect where voxels contain a mixture of different kinds of tissues. 

 

Voxel-based morphometry (VBM) is a mass univariate approach for comparing the voxel-wise volume 

of tissue among populations of subjects24–26,31. Voxel-based morphometry has grown in popularity 
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since its introduction although there have been several criticisms32. Some studies have compared 

results of Voxel-based Morphometry analyses to manual measurements of particular structures and 

have shown relatively good correspondence between both techniques32. Although other software 

packages such as FSL can also be used, SPM is most widely used for Voxel-based Morphometry 

analyses. This is mainly due to the reliable, six tissue priors and the Unified Segmentation step 

combined with DARTEL-based improved spatial co-registration. 

VBM implies a voxel-specific comparison between two groups of subjects of the local gray material 

concentration. Yet, all GLM-based models can be set up in the GLM framework of SPM, both with 

classical or Bayesian statistical inference. The normalized and Jacobian modulated GM images 

(sometimes, WM) are spatially smoothed to some degree (e. g. 6x6x6 mm3 FWHM of a Gaussian 

kernel). As a rule of thumbs, the size of this kernel should be the expected size of areas of difference. 

This step leads to higher and more homogeneous spatial smoothness of the residual images, and to 

improved normal distribution of the residuals per voxel. The theory of Gaussian random fields can 

then be used to correct for multiple comparisons 33as based on a certain smoothness the number of 

expected clusters emerging by chance can be estimated34. In Figure 1.3, the blue areas stand for voxel 

based comparison between different types of neurodegeneration (for example Alzheimer's disease, 

or semantic dementia), indicating areas with a deficit of grey matter volume35. This work will be 

explained in more detail as it bridges between disease-specific GM deficits and these areas resembling 

physiological structural and functional networks. 

 
Figure 1.3: Combined VBM, resting state and morphological covariance study by Seeley. 
35In this study, disease specific areas/patterns of GM deficits of five defined neurodegenerative 
disease (blue, here frontotemporal dementia) were compared with seed-based results of functional 
connectivity time series (of healthy subjects, see yellow result map) and morphological covariance 
maps (also of healthy subjects, see green result map). It was noted that these maps show high 
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spatial similarity among each other, as an indication that the pathological process may occur within 
a specific network and not randomly.  

 
The modulation step in VBM is an essential step that is particularly important as soon as the spatial 

deformation (normalization) steps become very precise: In this case, the resulting voxel positions are 

very similar and most or all individual information is contained in the deformation field. Thus, this 

information has to be re-coded into the voxel value in the atlas space. For this re-scaling, the Jacobian 

determinant is calculated from the deformation field (see REF for vector mathematics of this).  For 

example, a small area of e. g. 15 voxels of a brain structure in subject A (e. g., the hippocampus) with 

clear GM probability (>0.99), is stretched to 45 voxels in template space (so, expanded) – its resulting 

voxel values will thus be lowered (e. g. by some factor 3, so resulting volume values round 0.33). 

Another subject B's same original structure is sized 30 voxels, and it is also stretched to 45 voxels – 

here, the expansion is less strong, and the stretching facto only 45/30=1.5, so volume values will be 

round 0.66. Eventually, the 45 voxels are in the same geometric comparison, but for subject A, the 

lower original volume compared with subject B is still preserved. In essence, this Jacobian modulation 

step preserves the original volume information (that is a GM probability value) during the spatial 

transformation. Mathematically, the multiplicates of the original shape by the probability values is 

equivalent to the MNI shape by the modulated volume values of the corresponding voxels. 

Grey matter voxel-wise volume based morphological covariance 

Brain networks can be constructed based on similarity of GM volume between brain areas, which was 

named as the gray matter (GM) structural covariance network (SCN)24,36–38. Based on prior studies, the 

biological meaning of structural connectivity network (SCN) may link to coordinated GM growth during 

development36, functional co-activation36, axonal connectivity39,40 and genetic factors36,41,42 

Cortical thickness based morphological covariance 

Structural covariance with the cortical thickness in two regions of the brain was suggested to reflect 

their synchronized maturation changes, possibly through axonal links forming and reforming over 

time. There is evidence for such structural covariance development models, but they have not yet 

been fully tested. Structural MRI networks are of qualitatively similar cost-effectiveness, small-world 

and modular properties to those for functional brain grids. Pairs of functionally interconnected regions 

may also have a strong structural covariance and highly correlated rate of adolescent anatomical 

change. The link between structural or maturational networks and functional networks, however, is 

not yet systematically investigated. The study now uses a structural MRI-data set from healthy young 

persons, scanned longitudinally at least 3 times over 6 years, for each of the 360 regional nodes for 

cortical thickness and mature change. The hypothesis was tested that structural covariation is related 
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to synchronized mature changes between the distributed cortical areas. Brain networks were 

compared on structural covariance and maturation changes. 

1.7 Independent Component Analysis (ICA) 
 
ICA is considered a multivariate extension of voxel-base morphometry in sMRI analysis. Most 

individual subjects are segmented and gray matter maps are organized into a matrix that is used to 

analyze and to create a maximum spatially independent map of the component of the ICA. These maps 

include areas with similar covariation of gray matter between subjects. The extent to which the data 

are 'expressed' can be recorded via the parameters of its loading. The multi-site data were used to 

study Volume Based Morphometry (VBM)31. A major advantage of this approach is that strong 

assumptions related to the use of atlases must not be made. The main difference between principal 

component analysis and independent component analysis are given below. a) 

PCA43,44chooses orthogonal vectors iteratively to explain most of the variance with the first few of 

them. ICA on the other hand does not have the orthogonality constraint of PCA but wants to 

emphasize statistical independence between components, b) ICA is a development out of PCA, c) PCA, 

yet, optimizes the covariance matrix (“second order statistics”), e. g. orthogonal, it where ICA 

optimizes higher order statistics (e. g. kurtosis), d) PCA finds uncorrelated components where ICA 

finds independent components. 

 

Principal of ICA 

We can use a statistical latent variables model to define Independent Component Analysis 45.  

Suppose we observe n linear blends x1, ...., xn of n components45 

𝒙𝒋 =  𝒂𝒋𝟏𝒔𝟏 +  𝒂𝒋𝟐𝒔𝟐 + ⋯ +  𝒂𝒋𝒏𝒔𝒏  , for all j.                                         (1) 

 

In the ICA model, we assume that both xj mixture and sk component is the alteration variable, not the 

proper time signals; The time index t has now been dropped. A sample of this random variable is then 

observed values xj(t), such as microphone signals in the cocktail party problem. We can assume that 

both the mixture variables and the independent components have a zero mean without loss in terms 

of generality: if this is not true, the observable xi variables can then always be centered by subtracting 

the mean, meaning that the model is zero. 

Instead of sums like the previous equation, it is convenient to use vector matrix notation. We have 

denoted the random vector whose components are x1, ..., xn and also the random vector  with 

elements s1, ... , sn. Let us denote an element matrix with elements aij. In general, bold lower case 
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characters show vectors, and bold upper-case characters indicate matrices. All vectors are considered 

to be column vectors; therefore, or transposition of , is a row vector. The above mixing model 

is written using this vector matrix notation 

𝒙 = 𝑨𝒔      (2) 

 

The mixing model can also be written as 

𝒙 =  ∑ 𝒂𝒊
𝒏
𝒊=𝟏 𝒔𝒊    (3) 

The statistical model in Eq.(2)45 is called independent component analysis, or ICA model. The ICA 

model is a generative model, which means that it describes how the observed data are generated by 

a process of mixing the components si. The independent components are latent variables, meaning 

that they cannot be directly observed. Also the mixing matrix is assumed to be unknown. All we 

observe is the random vector , and we must estimate both  and  using it. This must be done 

under as general assumptions as possible. Equation no. 4 in the statistical model is referred to as 

independent analysis of components or ICA model. It describes how the observed data is produced by 

a process of mixing the components si, and thus is a generative model. The separate components are 

latent variables, which means they cannot be observed directly. It is also assumed that the mixing 

matrix is unknown. All that we observe was the random vector, and  and   must both be 

estimated with it. The starting point for ICA is the simple assumption of statistically independent 

components si. We must also assume that there must be non-gaussian distributions on the 

independent component. But we don't assume in the basic model that these distributions are known 

(if they are well known the problem is significantly simplified.) We also assume that the unknown 

matrix of mixing is square. These assumptions can sometimes be relaxed. After we evaluate the 

matrix, we can then calculate its inverse , say, and simply by: 

𝒔 = 𝑾𝒙                 (𝟒) 

The properties of mixed signals: Mixed signal have certain properties. Those are a) independence, b) 

gaussianity and c) complexity. 

1 Independence: If the source signals are independent, their mixture signals are not. This is 

because the source signals are shared between both mixtures. 

2 Gaussianity: The histogram of mixed signals is bell-shaped histogram (Gaussian or normal). 

This property can be used for searching for non-Gaussian signals within mixture signals to 
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extract source or independent signals. The source signals must be non-Gaussian because the 

ICA model cannot estimate Gaussian Independent components. 

3 Complexity: Mixed signals are more complex than source signals 

Independent Component is closely linked with the method called BSS or Blind Source Separation 

(BSS)46. An "source" here is an original signal like a speaker in a cocktail party problem, i.e. an 

independent component. "Blind" means that we make little or no assumptions on the source 

signals on the mixing matrix. ICA is one method for performing blind source separation, perhaps 

the most commonly used. It would be more realistic in many applications to assume that the 

measured noise exists which means that a noise term is added to this model. We remove noise 

terms, since the estimation of the model without noise is sufficiently difficult by itself and seems 

to be sufficient for many applications. There are mainly two preprocessing before ICA. Those are 

a) demeaning and b) whitening. Whitening also consist of two steps, “Decorrelation” and 

“Scaling”, There are three different kinds of ICAs., projection pursuit, infomax47,48 and FastICA45 

I Projection pursuit: Here the algorithm is trying to find ICs which maximize measures of 

non-Gaussianity such as negentropy or kurtosis. 

II Infomax: Minimizing the mutual information. 

III  FastICA: Here algorithm is trying to maximizes non-Gaussianity by maximizing the 

negentropy for the extracted signals using a fixed-point iteration scheme. 

Challenges of ICA 

a When the number of sources (p) and the number of mixture signals (n) are equal, the matrix 

A is invertible. 

b n < p (so less ‘microphones’ than sources): Over-complete problem; thus, A is not square and 

not invertible. Sometimes advantageous as it uses as few ”basis” elements as possible; this is 

called sparse coding. 

c n > p: number of mixtures is higher than number of source signals: Under-complete problem. 

This problem can be solved by deleting some mixtures using dimensionality reduction 

techniques such as PCA to decrease the number of mixtures. 
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2 Clustering of treatment response dynamics and prediction 
from clinical variables 

 
 

The content of this chapter has been taken from the published paper and has been paraphrased (Paul, 

R., Andlauer, T.F.M., Darina, C., Hoehn, D., Lucae, S., Pütz, B., Lewis, C.M, Uher, R., Müller-Myhsok, B., 

Ising, M., and Sämann, P. G. (2019). Treatment response classes in major depressive disorder 

identified by model-based clustering and validated by clinical prediction models. Transl Psychiatry 

9, 187 (2019). https://doi.org/10.1038/s41398-019-0524-4). The figures and tables have been taken 

from the above mentioned published paper and have been cited.  

2.1 Depression: a major disorder and a relentless burden 
 
The most common psychiatric illness is major depressive disorder (MDD) which is a leading global 

cause of disability for years49,50. According to the World Health Organization (WHO), depression is a 

leading contributor to the global disease burden and related costs. The burden of disease is a concept 

developed in the 1990s by the Harvard School of Public Health, the World Bank, and the World Health 

Organization51 to quantify premature death and health loss from illness, injury, and risk factors for all 

regions of the world. MDD1is an affective disorder mainly characterized by persistent feeling of 

sadness, loss of interest and energy, sleeping problems, loss of pleasurable activity, pessimistic 

thinking, feeling of guilt and worthlessness, and suicidality52. About 50% of individuals who commit 

suicide have before been diagnosed with a MDD or depression in the context of a bipolar disorder53. 

Because mood disorders underlie 50-70% of all suicides, effective treatment of these disorders on a 

national level can reduce this major complication of mood disorders. 

The cost of depression, particularly the cost of lost workdays, is as great as or greater than the cost of 

many other common medical illnesses54. Depression is also associated with more impairment in 

occupational and interpersonal functioning in comparison to other common medical (somatic) 

illnesses. It has a large impact on maternal and child well-being, and eventually contributes to risk 

factor for child mortality, for example influenced by less breastfeeding. Depression during pregnancy 

is strongly associated with low birth weight and other sequelae for the child54. It is thus important to 

consider that the outcome of depression is significantly improved by early detection54. As soon as 

detected, a wide range of highly effective treatments including pharmacological treatment, 

somatic/biological therapies (such as light therapy, electroconvulsive treatment, sleep deprivation), 

and psychotherapeutic interventions are available. Antidepressant treatment and supportive 

psychological interventions are effective in about 80% of patients54, but often, treatment is prolonged 

https://doi.org/10.1038/s41398-019-0524-4
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and first treatment attempts are ineffective in about half of (out-) patients (Star*D Study55,56). Also, 

the number of trained health care providers (psychiatrists, psychologists, and psychiatric nurses) is 

limited, particularly when critically reviewed at the global level; here, rural areas seem less well 

covered compared with urban and semi-urban areas57. 

2.2 Treatment Response (TR) in MDD 
 
In the context of depression, treatment response can be understood as a general term that describes 

the change of clinical symptoms under a certain treatment. Both self-rating (such as the Beck 

Depression Inventory) and clinician rating schemes (such as the Hamilton Disease [HAM-D] Rating 

scale)58,59 can be used to quantify treatment response. As no reliable biomarkers exist so far, 

monitoring treatment response is indeed still mostly done clinically. For scientific studies, self-rating 

scales or rating scales used by trained raters are the standard. The HAM-D covers a time period of the 

last 7 days on which the patient is interviewed regarding his/her symptoms of depression.  Different 

clinical rating scales of different degrees of reliability and validity are available60. The HAM-D rating 

scale is one of the most widely used ones in international studies and assesses a past time window of 

up to one week, hereby covering most domains that define MDD, such as depressed mood, suicidality, 

anhedonia, lack of drive, circadian symptom changes, and autonomous nervous system disturbances. 

Good test-retest and interrater reliabilities are achieved by properly trained raters61–65. In clinical 

studies, the rater should not be the treating psychiatrist to avoid any bias, both on the patient and the 

rater side. 

Clinical response and remission are defined as follows in the context of MDD research: Response is 

defined as a minimum 50% decrease of the score on the respective rating scale compared to the 

baseline score. Remission is not defined by a relative improvement, but by an absolute threshold and 

can best be described as the practical absence of symptoms. For the HAM-D rating scale both 

thresholds of lower than 8 or 10 points have been suggested61–65. According to the same mentioned 

previous studies on the Munich Antidepressant Response Signature project, partial responses were 

defined as a reduction of at least 25% after two weeks, and a reduction of at least 50% after 5 weeks 

compared to the HAM-D21 (HAM-D rating scale with 21 items) at the time of admission. The 17-item 

version of the HAM-D (HAM-D17) with values lower or equal to 7 was used as equivalent definition of 

remission in accordance with consensus criteria66,67. Stable response or remission is defined as 

response or remission for at least two consecutive weeks. Treatment resistance has been defined as 

a situation in which patients fail to respond in an appropriate time (6-8 weeks) to at least two trials 

using different antidepressants, as suggested by Souery68. Despite typically successful short-term 

therapies for acute episodes of major depression, many patients have experience relapses (early 
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return of symptoms within the expected duration of a current episode, e.g. between three to twelve 

months) or recurrence (new episodes). A recurrent depressive disorder has frequent episodes of 

depression without an independent history of mood and increased mania or energy. There should be 

at least one previous episode which would lasted for at least two weeks and has been isolated for a 

period of a minimum of two months by the new episode. At no time in the past has there been any 

hypomanic or manic symptoms. We have four different kinds of recurrent depressive episode: a) MDD 

with mild recurrent, b) MDD with moderate recurrent, c) MDD with severe recurrent without any 

psychotic features, and d) MDD with severe recurrent with psychotic features. Different 

psychotherapeutic interventions could be applied to prevent depression relapse and to reduce 

depressive symptoms69 

2.3 Hamilton Depression Rating Score 
 
In patients diagnosed with a major depressive disorder, the Hamilton Rating Scale for Depression 

(HAM-D) is a widely used scale for assessing depression severity by trained clinicians (medical doctors 

or psychologists or psychiatric nurses)58,59,70,71. The initial version of the HAM-D of the year 196010,11 

consisted of 21 items: the HAM-D21. The number of citations of the HAM-D exceeds 21.000 in the 

Scopus literature search system72, demonstrating its wide use. Later, the developer Paul et al. (2019)73 

recommended to use only the first 17 items11 as the other four ones were neither considered part of 

the disease or relatively rarely occurring or as features related to depression severity (i.e. diurnal 

variation, de-personalization or de-realization, paranoia and obsession or compulsive symptoms). 

Several other amendments were proposed over the years and a number of HAM-D versions have been 

developed and implemented. 

 

One measure of reliability in clinical scoring is the inter-rater reliability. Here, generally a rater is a 

person who scores or measures a human or animal's performance, behavior or skill. If the observations 

of different raters differ significantly, then the rating items or rating technique could be unreliable and 

brings rater-dependency into the statistical analyses. A meta-analysis of the interrater reliability of the 

HAM-D was carried out by Trajković et al.74 who reported a combined mean intra-class coefficient 0.92 

which indicates an excellent level of inter-rater reliability. Unfortunately, only the 17-items version of 

the HAM-D of the year 1960-2008 was investigated. They included 409 articles in their analyses that 

had reported one of the following measures: the intra-class correlation coefficient, Pearson coefficient 

of correlation, Spearman coefficient of correlation rank, kappa coefficient or Kendall W. They have 

found a pooled mean intra-class correlation coefficient ICC of 0.92, suggesting an outstanding degree 

of reliability of the intra-class correlations. Unfortunately, they did not differentiate between the 
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various version of the HAM-D. It is a dynamic and individually different process to develop and recover 

from an episode of an MDD. Multiple additional symptoms may occur during an episode, as described 

by chapter 1.1, with each individual pattern and variability during episode11,67, as during the treatment 

response also during the development of MDD, patients could go through sub-clinical phases with 

areas with preserved function. Thus, while consensus definitions of MDD include basic symptoms such 

as anhedonia and depressed mood1. For instance, in the initial phase, MDD can first start with sleep 

problems. 

This diversity of symptoms may be underpinned by strong, inter-individual differences in psychosocial 

stress sensitivity – a major risk factor for MDD75. Up to 11976 combinations of defined symptoms were 

estimated to be possible in order to meet the MDD criteria. Similarly, there are significant individual 

differences between patients in the regression of symptoms under treatment. However, both stable 

subgroups77–79 and predictive clinical patterns78–83 have been hypothesized and shown to exist. The 

predictive clinical pattern is important for the successful clinical management of MDD. 

 

The main rule is that treatment should ideally lead to full recovery, as persistence of residual 

symptoms significantly increases the probability of a relapse1. This implies that postponement of 

therapeutic intensification or too late medication switching may further increase the risk of 

therapeutic failure and chronification84. Early treatment response (e. g., within two weeks) is strongly 

predictive of the longer course85. This is an important and long established correlation which also 

applies to patients receiving first-time antidepressant treatment86. Similarly, various 

psychopathological profiles (i.e. combinations of symptoms) may reflect differences in functional 

stress sensitivity and therefore may be predictive of the treatment response. For example, a patient 

who has severe anhedonia as a key symptom may respond to a dopaminergic system therapy 

particularly well87. 

 

 Clustering and multivariate prediction 

Despite the heterogeneous symptom profile of depression, treatment response classes are usually 

based on compound scores, which then are subjected to relative criteria of change or absolute 

thresholding (e.g. depression severity below a certain cut-off over a specific time period). Various 

multivariate statistical approaches have been employed to identify predictive patterns for such 

conventional treatment response classes80,82,83. Chekroud et al.80have used an elastic network to 

identify 25 of the 164 patient-reportable variables from Sequenced Treatment Alternatives to Relieve 

Depression (STAR*D) study55,56,79 which predicted a citalopram reaction. These values were used to 

train a machine learning model that could be validated in an external sample with significant but low 
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percentage of correct predictions (59.7%). Nie et al.82 trained five different machine learning 

algorithms, using data from the STAR*D study, either in the complete set of 700 or two differently 

reduced set of clinical parameters (30 and 22, respectively), to predict treatment resistance or non-

resistance in STAR*D (at week 12). In addition, they predicted the same outcomes in an independent 

validation study (at weeks 6). Early response markers carried the predictions, yet obtained only 

moderate exactness. Wardenar et al.83 have reported significant improvements in the prediction of 

persistence and severity of depression through information on co-morbidities. However, although the 

classes of responses predicted here are largely rooted in the long-known importance of early response 

and full remission, these markers are not fully data based, so they do not represent all dynamic 

patterns contained in the data. 

Clustering analysis can be useful here if the data space is to be dissected into sub-spaces based on 

features shared between subgroups and distinct between them88. Clustering analysis has so far been 

mainly used towards cross-sectional markers to identify subtypes based on clinical symptom profiles, 

13,58,89,90 cognitive markers91 or functional imaging markers92, assuming that the clusters could stand 

for the distinct pathophysiological components. Here we are trying to cluster the treatment response 

dynamics based on the trajectories of the total severity of symptoms, i.e. the clinical development of 

patients over a defined observing time. Such five93 or nine prototypical trajectories94 based on 12 

weeks of observation were before reported in longitudinal latent class analysis. More specifically, this 

study93 showed a relatively limited prediction by 13 basic clinical items and polygenic scores made up 

of five hypothesis-based genetic variants based on literature. The second study94 found weak 

association between the response trajectories and the type of the medication, but here no clinical 

predictors were investigated. Seven trajectories were discovered in another study based on one year 

of observation95. The limitation of these studies is low generalizability as data from single center 

studies were only used. 

 

Study design overview 

In performing this analysis, we aimed to create TRCs in a non-biased way. A second aim was to 

investigate to what extent the results of the first aim were clinically valid and equally important, 

generalizable.  The main input for these analysis were the trajectories of the depression ratings. In 

order to verify the generalizability, two different cohorts were used differing in aspects of patient 

selection and treatment approach. Study number one was the prospective Munich Antidepressant 

Response Signature (MARS) cohort. This is a multicentric study with the MPI of Psychiatry, Munich, 

being the main hub61. By design it is an open and observational. Diagnosis included bipolar depression, 

major depressive disorders, and schizoaffective disorder, covering thus various aspects of the 
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depressive spectrum61 Second cohort was Genome-based Therapeutic Drugs for Depression 

(GENDEP)96,97, a multicenter study investigating pharmacogenomic and clinical aspects. It included 

patients with at least a moderately severe depressive episode treated with nortriptyline or 

escitalopram and monitored up to 12 weeks in a partially randomized design98. Both studies used the 

Hamilton Depression Rating Scale (HAM-D) to measure current symptom levels for most MDD 

domains such as depressed mood, suicidality and anhedonia, lack of drives, circadian symptoms 

changes and autonomous nervous system disorders, achieved strong test and interrater reliability99. 

 

From a methodological point of view, we intended to make optimal use of the repeated clinical ratings 

and applied a model-based non-linear longitudinal clustering technique to detect TRCs (also referred 

to as clusters) in MDD. More specifically, we employed a mixed model-based clustering algorithm in 

our discovery sample which as a subsample of the explained MARS cohort. Summarized briefly, this 

mixed model-based clustering algorithm assigns individuals to a TRC by borrowing information from 

all other individuals and, thereby, improves cluster stability, which often is critical for generalizability 

and clinical applications. Another advantage of this algorithm is that the optimal number of clusters is 

also estimated from the same dataset by a bootstrapping approach. 

Finally, we assessed cluster stability empirically in a two-stage design in the second subsample of 

MARS and in the GENDEP sample.  Last, we performed an indirect validation by exploring if clinical 

characteristics at baseline (MARS) can predict the detected TRC by using a multivariate random forest 

approach. 

2.4 Samples and Methods 
 
The respective Local Ethics Committees have approved both the MARS and the GENDEP study 

protocols. Prior to the participation, all participants gave their written informed consent. Patients of 

MARS have been admitted for treatment for different depressive disorders to a hospital MPIP in 

Munich, Germany and to a collaborative hospital in southern Bavaria and Switzerland. The study was 

initiated in the year 2000 with the aim of generating large longitudinal observations with weekly 

ratings and sociodemographic, psychopathological and biological data from in-patient patients with 

all kinds of depressive disorders, such as MDD, bipolar depression and schizoaffective disorder61. 

ICD10100 diagnoses have been obtained from the patient interviews and clinical recorded patients of 

trained psychiatrists61. Of the 1286 patients available, the ones were eligible with a single episode of 

MDD (ICD-10-F32), N=373) or a recurrent (unipolar) depressive episode (ICD-10-F33 and N=698). 

Patients with bipolar depression (N=175), chronic depression (ICD-10 F34, N=3), or baseline HAM-D 

patients < 14 (N=37) were excluded from the analysis. Of these 1071 remaining eligible patients, 834 
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(recruited 2002-2011) patients formed the discovery sample and 236 (recruited 2012-2016) formed 

the replication sample. The split point between discovery and replication, represented an organization 

time marker related to genotyping activities which has no association with this analysis73. 

The age range was 18 to 87 years (see demographic and clinical details in Table 1) and all patients 

were European ethnicity. In order to optimize the plasma medicine levels, patients received 

therapeutic drug monitoring and were treated psychopharmacologically according to the doctor's 

choice. Depression symptoms were assessed weekly with 21-item version of HAM-D up to week six 

and then bi-weekly with the most recent assessment up to week 16 unless not discharged earlier. In 

the first six weeks, 7.1% of HAM-D scores were missing due to organizational reasons. We used linear 

interpolation to obtain complete time series where HAM-D scores for the first six weeks missing as 

well as for the two-weekly HAM-D scores skipped. 88% of discovery patients and 99% of the validation 

samples for MARS were discharged prior to the 16th week and thus the original time series for HAM-

D had less than 17 data points. 

The GENDEP study is a partially randomized, multicenter, depression87 clinical and pharmacogenomic 

study, in which 826 subjects were registered between July 2004 and December 2007.  The main 

inclusion criteria were the diagnosis of a major depressive episode of at least moderate severity as 

defined by DSM-V1, ICD-10 criteria100 and Schedules for Clinical Assessment in Neuropsychiatry (SCAN, 

version 2.1)101. Exclusion criteria included a degree of first-grade relativity of bipolar disorder, a history 

of an event hypomanic or depressive, incongruous mood psychotic signs, primary abuse of the drug, 

primary organic disorder, ongoing antipsychotic therapy or mood stabilization, and maternity or 

lactation. For 12 weeks, nortriptyline (50 to 150 mg / day) or escitalopram (10 to 30 mg / days) with 

clinically informed dose titrations were randomly assigned to patients eligible for both 

antidepressants. The other medications were non-randomly assigned to those patients with a history 

of adverse effects, non-response or contraindications to one of these drugs. The other antidepressant 

was given to patients who could not tolerate or did not have adequate improvements to the first 

antidepressant with an adequate dose within 8 weeks. Depression symptoms were assessed by 

psychiatrists and psychologists on a weekly basis up until week 12, using the 17-item version of the 

HAM-D97. All subjects ranged from 18 to 72 years, and all patients were of European ethnicity. A 

combination of 15 people with lack of data on all three baseline suicidal items and 809 patients with 

baseline HAM-D scores < 14 were excluded97. Demographic information is provided in table 2.9. 

Various biological aspects of treatment response102,103and schemes of psychopathological predictors 

have been reported from this study94. 

 

Mixed-Model based clustering algorithm 
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The course of the HAM-D score time series after logarithm (ln) transformation was described by using 

a mixed model approach (ln of [HAM-D score + 0,5]) to take into consideration information not only 

from each trajectory but also combining pathways from several patients to identify TRCs. The 

FlexMix104,105 clustering algorithm in R (version 3.3) was used on the HAM-D trajectories of the MARS 

discovery sample for a first organization of HAM-D responses into TRCs. FlexMix offers a flexible fitting 

infrastructure with the expectation-maximization algorithm to cluster individual trajectories for finite 

mixing models. The algorithm oscillates between computing and maximizing the expectation of the 

log-likelihood. Thus estimates of the parameters of the TRCs are obtained. We ran the clustering 

model with 200 repetitions and later jackknifing approach with 1000 repetition was applied on the 

clustering model to finalize a stable clustering solution. The optimal number of TRCs is determined on 

the basis of the Integrated Completed Likelihood (ICL) model criterion106. 

 

Stability and repeatability of clusters 

The coefficients of the discovery sample model were projected onto a second sub-sample of the same 

cohort, the MARS validation sample, to validate the stability and generalization of the clustering 

solution (N=236). The hypothesis was that patients could be categorized into defined TRC with about 

equal proportions and similar HAM-D-mediated cluster-specific courses as observed for the sample. 

 

Validation of the clusters in an independent study 

In addition, we projected the same clustering model onto 12-week HAM-D courses of the GENDEP 

sample, hypothesizing similar median HAM-D courses per class, yet, not necessarily similar cluster 

proportions. These, we hypothesized, might be different due to differences in the patient population 

of GENDEP and the different study design. For both projection experiments, the resulting proportions 

of classes were compared with the original distribution of the discovery sample using a 𝜒2 test. In 

order to assess the suitability of the clustering solution for the validation samples, posterior likelihood 

values, classification log-likelihoods, and also ICL values were calculated on the basis of the clustering 

model of the discovery sample. Furthermore, projecting our clustering solution on 12-week GENDEP 

Sample, a procedure implying similar mean HAM-D trajectories by class. We found related cluster 

frequencies not necessarily identical likely due to differences in patient population and studies design. 

The resulting class proportions were compared with the original distribution of the discovery sample 

using a 𝜒2 test. We systematically decreased the number of applied coefficients down to 1 for every 

observation interval and compared that classification to the classification based on all coefficients (i.e. 

the complete observation interval). Pearson's correlation between the model-based slope values for 
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the respective TRCs value was calculated in order to determine the true distance between any two 

solutions. 

 

 

 

Clinical variables for predicting and validating TRCs 

A random forest algorithm was then used as implemented in the R package Ranger107 to detect 

associations between the MARS clinical variables and the previously achieved TRCs, thus 

implementing multivariate analysis. 

The batteries of clinical predictors: Table 2.1, explains all 72 clinical variables. Their choice was based 

on two principles: first, the availability in both MARS subsamples and second, the choice of those 

variables, based on widely available measuring instruments (to allow for replication experiments). The 

main model (Model 0) included 50 clinical variables based solely on basic evaluations, covering fields 

of sociodemography, clinical diagnosis, history of the MDD, present episode, family history of mental 

health, basic laboratory information, events of life, the current psychopathology (SCL-90R Symptom 

Checklist),108and questionnaires concerning personality (Eysenck Personality Questionnaire [EPQ])109, 

Tridimensional Personality Questionnaire [TPQ]110).  As random forest model data sets are required, 

missing data were filled by calculating the median for the overall sample (see additional Table S2 for 

details). Extended models are Model 1 that extended model 0 by including the 21 baseline HAM-D 

singe items that represent the baseline psychopathology; Model 2 extended the model 0 by HAM-D 

data from weeks 2 that can be regarded early response.  Model 3 combined both two expansions 

(Figure 2.1). 
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Figure 2.1: Specification of four clinical sets of predictors for the prediction model. Model 0 (see 
methods and Table 2.1 for detailed specification of all clinical items), and three extended models 
(model 1, model 2 and model 3). Random forest prediction models were estimated for all four sets of 
predictors with each two variants modelling the treatment response slope (individual slope vs. cluster-
derived slope)73 

 
Random forest-based prediction models 

A fast implementation of random forests with high dimensional data is the key algorithm available in 

the Ranger package. In a random forest, every node is divided into a subset of predictors randomly 

selected at this node111. In order to control this process there were two parameters: prediction trees 

and search features to find the best characteristic (try). Mtry is the square root of D, which is the 

number of independent classification predictors. The predictions were achieved by aggregating 

forecast trees (i.e., the average for regression models and the majority for the classifying). In order to 

quantify the explained variance and the predictive quality of the entire model, we calculated adjusted 

coefficients for several correlations R2 and corresponding p values. To characterize the characteristic 

importance of each variable, a permutation method was applied112 (1000 permutations) which uses 

the distribution of measured meaning in a non-informative setting; the p<0.05 predictors are reported 

in more detail. Further, after Fisher's Z-transformation of their respective r values, R2 differences 

between competing models were compared. The MARS discovery and validation sample were 

considered jointly in the multivariate prediction model. Two ways of HAM-D time series modeling 

were considered and compared for each set of predictors: first, the patient's individual response slope 

which was estimated using a simple linear regression of natural log (ln) transformed HAM-D values, 

and second, the slope estimated in the clustering model. The aim of the comparison was to find out 
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whether the clustering method would produce more meaningful and generalizable results. In addition, 

the accuracy values for classes were calculated on the basis of the respective confusion margins 

wherein the class of interest was defined as true class and the six other classes as false class. This was 

done by [true positives + true negatives], and by the other six classes as false class. 

 

Table 2.1: Description of clinical items used for multivariate prediction models in the MARS 
cohort73  

Category Model 
Short 
name 

Variable 
description 

Type 

MARS discovery 
sample 

MARS validation 
sample 

p-valuea 
Mean SD Mean SD 

% % 

Socio-
demo-
graphic 

data 

0 Age 
Age at study 
inclusion 
(years) 

N 48.26 14.02 45.48 14.99 0.008c 

0 k_sex 
Gender (% 
female) 

D 53.72 % 53.39 % 0.941 

0 spouse 
Living with a 
partner 

D 50.24% 38.56% 0.001b 

0 
educati

on 

School years 
of education 
(university not 
considered) 
(years) 

N 10.33 1.46 10.21 1.51 0.275 

0 

training
_ 

retirem
ent 

Being in 
training/retire
ment vs. 
employment 

D 25.42% 22.46% 0.393 

0 
employ
ment 

Employment 
status: 
unemployed/
part time/full 
time 

N 1.54 0.78 1.56 0.78 0.678 

Diagnosis 0 ICD10 

ICD-10 code 
for recurrent 
depressive 
disorders 
(F33) (%) 

C 64.63% 66.95% 0.536 

History of 
depressive 

disorder 

0 age_on 
Age at disease 
onset (years) 

N 36.51 15.16 34.06 14.26 0.027b 

0 
prev_e

pi 

Number of 
previous 
depressive 
episodes 

N 2.62 5.24 2.58 3.69 0.894 

0 
s_histo

ry 

Any suicide 
attempt 
before current 
episode 

D 19.54% 9.32% 0.0001c 

0 
psycho

t_ 
history 

Psychotic 
symptoms in 
any previous 
episode 

D 11.15% 3.81% 0.0004c 
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Family 
history 

0 
Fam_hi

story 

Family history 
of any mental 
disorders 

D 63.19% 64.41% 0.760 

0 
Fam_F
20_F25 

Family history 
of 
schizophrenic 
disorders 

Nd 0.08 0.37 0.06 0.32 0.340 

0 
Fam_F

31 

Family history 
of bipolar 
disorders 

Nd 0.05 0.31 0.08 0.37 0.348 

0 
Fam_F

32_ 
_F34 

Family history 
of affective 
disorders 
(except 
bipolar 
disorder) 

Nd 0.88 0.95 0.87 0.96 0.857 

0 FA_X60 
Family history 
of attempted 
suicide 

Nd 0.23 0.58 0.16 0.46 0.082 

Informatio
n on 

current 
episode 

0 
index_

d 

Duration of 
the current 
episode 
(weeks) 

N 34.54 58.74 32.19 51.58 0.577 

0 
ATRQ_
Score 

ATRQ total 
score of 
treatment 
resistance for 
pre-
medication 

N 1.09 0.90 1.01 1.33 0.311 

0 
s_curre

nt 

Suicide 
attempt 
during the 
current 
episode 

D 10.31% 2.54% <0.0001c 

0 
psycho

t_ 
current 

Psychotic 
symptoms 
during the 
current 
episode 

D 10.43% 2.97% 0.0001c 

Basic 
medical 

and 
baseline 

laboratory 
data 

0 Height 
Body height 
(m) 

N 1.72 0.09 1.72 0.09 0.545 

0 Weight 
Body weight 
(kg) 

N 25.65 6.07 25.94 5.28 0.504 

0 Bmi 
Body mass 
index (m2/kg) 

N 25.34 4.41 25.94 5.27 0.075 

0 HR 
Heart rate 
(1/min) 

N 82.75 13.16 80.45 12.14 0.016b 

0 RRsys 
Systolic blood 
pressure 
(mmHg) 

N 125.78 18.10 128.04 17.44 0.088 

0 RRdia 

Diastolic 
blood 
pressure 
(mmHg) 

N 78.70 11.06 79.10 11.97 0.640 
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0 
cort_ba

sal 

Morning 
cortisol level 
(µg/l) 

N 200.53 39.61 206.70 63.54 0.068 

0 TSH 

Thyroid 
stimulating 
hormone level 
(µIU/l) 

N 1.47 1.02 1.75 1.21 0.0005c 

0 fT3 
Free T3 
hormone level 
(pmol/l) 

N 4.57 0.93 4.45 0.62 0.065 

0 fT4 
Free T4 
hormone level 
(pmol/l) 

N 16.16 9.23 15.29 3.57 0.158 

0 CRP 
CRP level 
(mg/l) 

N 1.49 2.92 2.83 9.00 0.0002c 

0 HbA1C 
HBA1c level 
(mmol/mol) 

N 5.34 0.34 5.31 0.35 0.209 

Life events 

0 L-Event 
Sum of life 
events 

N 29.50 10.46 30.23 11.83 0.359 

0 
wL-

Event 

Stress-
weighted sum 
of life events 

N 82.30 38.65 86.36 47.94 0.177 

Baseline 
psycho-

pathology 

0 
scl_so

m 

Symptom 
checklist-90-R 
(SCL-90R) for 
somatization 

N 0.97 0.64 0.99 0.64 0.488 

0 
scl_co

mp 

SCL-90R for 
compulsivene
ss 

N 1.77 0.72 1.70 0.69 0.177 

0 
scl_unc

ert 

SCL-90R for 
uncertainty in 
social contact 

N 1.30 0.77 1.33 0.83 0.630 

0 scl_dep 
SCL-90R for 
depression 

N 2.08 0.73 2.06 0.76 0.660 

0 scl_anx 
SCL-90R R for 
anxiety 

N 1.37 0.70 1.31 0.75 0.258 

0 scl_agg 
SCL-90R for 
aggressivenes
s/hostility 

N 0.77 0.60 0.86 0.69 0.046b 

0 scl_pho 
SCL-90R for 
phobic anxiety 

N 0.88 0.75 0.94 0.83 0.283 

0 scl_par 
SCL-90R for 
paranoid 
ideation 

N 0.92 0.72 0.99 0.82 0.218 

0 scl_psy 
SCL-90R for 
psychoticism 

N 0.83 0.55 0.80 0.54 0.507 

Personality 
items 

0 
epq_ne

u 

Eysenck 
Personality 
Questionnaire 
(EPQ)-RK 
neuroticism 

N 6.85 2.50 6.84 2.73 0.938 

0 
epq_ps

y 
EPQ-RK 
psychoticism 

N 1.92 1.24 2.16 1.40 0.010b 

0 
epq_ex

t 
EPQ-RK 
extraversion 

N 5.20 2.97 5.07 3.03 0.567 
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0 tpq_ha 

Tridimensiona
l Personality 
Questionnaire 
(TPQ) Harm 
avoidance 
total 

N 20.63 5.58 20.27 5.92 0.386 

0 tpq_ns 
TPQ Novelty 
Seeking total 

N 13.07 3.81 14.04 4.41 0.001b 

0 tpq_rd 
TPQ Reward 
Dependence 
total 

N 17.75 3.30 17.50 3.84 0.318 

0 
tpq_rd

2 

TPQ Reward 
Dependence - 
Subscale 
Persistence 

N 4.81 1.70 4.88 1.86 0.623 

HAM-D 
single 
items 

(baseline) 

1, 3 

HAM-
D0_01-
HAM-
D0_21 

21 HAM-D 
single items 
(baseline) 

N N/Te N/Te N/Te N/Te N/Te 

Early 
partial 

response 
(at week 2) 

2, 3 
HD_2W

E 

HAM-D early 
partial 
response 
(≥25% 
reduction) 
after 2 weeks 

D N/Te N/Te N/Te N/Te N/Te 

 

a Two-sided comparison between the MARS discovery and validation samples (Fisher’s 
exact test and Fisher-Freeman-Halton test for dichotomous and categorical variables; 
Student’s t test for numerical variables) 

b Nominal significance (p<0.05) 

c Significance after Bonferroni correction for multiple testing, here: p<0.05/50=0.001 

d To allow optimal use in a parametric test, variables were coded as 0 (no relative 
affected), 1 (only second-degree relatives affected), and 2 (first-degree or first-degree 
and second-degree relatives affected). 

e Not tested as these items were not part of model 0. 

Abbreviations: N, numerical; D, dichotomous; C, categorical 

Table 2.2: Percentage of imputed clinical batteries73  

 Category Short name 
Proportion of 

imputed values 
Category 
(cont’d) 

Short 
name 

(cont’d) 

Proportion 
of imputed 

values 
(cont’d) 

Sociodemo-
graphic data 

Age 0% 
Life events 

L-Event 41.49% 

k_sex 0% wL-Event 41.86% 

spouse 2.61% 

Baseline 
psycho-

pathology 

scl_som 19.53% 

education 5.23% scl_comp 19.71% 

training_ 
retirement 

3.73% scl_uncert 19.62% 

employment 28.5% scl_dep 19.43% 

Diagnosis ICD10 0% scl_anx 19.62% 
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History of 
depressive 

disorder 

age_on 4.39% scl_agg 20.09% 

prev_epi 16.44% scl_pho 19.71% 

s_history 12.14% scl_par 19.81% 

psychot_history 4.20% scl_psy 20.09% 

Family history 

Fam_history 2.80% 

Personality 
items 

epq_neu 37.47% 

Fam_F20_F25 1.78% epq_psy 37.57% 

Fam_F31 1.78% epq_ext 37.66% 

Fam_F32_ _F34 1.59% tpq_ha 37.38% 

FA_X60 1.78% tpq_ns 37.38% 

Information on 
current episode 

index_d 10.0% tpq_rd 37.47% 

ATRQ_Score 21.96% tpq_rd2 37.29% 

s_current 9.81%    

psychot_current 0%    

Basic medical 
and baseline 

laboratory data 

Height 2.89%    

Weight 7.66%    

Bmi 8.13%    

HR 2.61%    

RRsys 2.61%    

RRdia 2.52%    

cort_basal 62.99%    

TSH 12.89%    

fT3 35.42%    

fT4 35.14%    

CRP 54.29%    

HbA1C 64.76%    

 

We have investigated not only treatment response dynamic clusters based on HAMD sum score over 

time points but also briefly investigated treatment response clusters in symptom space. This can be 

achieved by developing symptom class specific response clusters by (1) dissecting depression 

symptom space into factors (model based cross sectional clustering using “mclust” package) and (2) 

performing 3D-model-based clustering on trajectories of these factors over 16 weeks, similarly as in 

recent work (Paul et al., Translational Psychiatry 201973), yet by a variation of the algorithm that 

considers several trajectories at the same time. Here we performed model based clustering “mclust” 

(R package) for the Step I (1) using Hamilton baseline 21 items as well as 17 items. Items 18 to 21 has 

lower score in general compared to rest of the item scores, to investigate that furthermore, we used 
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two different types of number of items for model based cross-sectional clustering using “mclust” 

package (Gaussian finite mixture modelling). We imputed 4% overall missing values in the Hamilton 

single items. To impute the missing value, we used “imputeData” package which is suitable algorithm 

for “mclust” packages to impute the missing data. Dataset here is being split into training and 

validation sets (50%-50%). Parameters for EM algorithm are tolerance (“tol” =1-05) and “itmax” which 

is a vector of length two giving integer limits on the number of EM iterations and on the number of 

iterations in the inner loop for models with iterative M-step ("VEI", "EVE", "VEE", "VVE", "VEV"), 

respectively (“itmax” = c(1000,10000)). Then in the Step II we can calculate polygenic correlates of 

specific response clusters by (1) correlating SNP sets from depression GWAS with symptom class 

specific model slopes and (2) calculating polygenic response scores (PRS) per symptom class in an 

independent sample. Finally, in the Step III, we can integrate these PRS in prediction models per 

symptom class (independent sample) by calculating individual PRS per symptom class (using the class 

specific weighting scheme from II) and including such PRS in multivariate prediction (Random Forest 

or Probabilistic neural network) models along with classical clinical baseline predictors. In current 

study we have mainly detected HAMD item specific clusters cross sectional and baseline items (HAMD 

-21 items and HAMD-17 items in baseline). 

2.5 Results 
 

Clustering of HAM-D time courses  

The FlexMix clustering algorithm for any number of clusters k<4 or k>10 has not been used in the 

HAM-D time course for the sampled discovery sample. For k <=4 and k>=10, we have therefore 

evaluated the stability of the clusters in more detail using 200 algorithm repeats and 1000 repetitions 

using a jackknifing approach for each k. Seven clusters (Figure 2.2 and Figure 2.3A) found the lowest 

value of the ICL criterion, which represents the optimal model fit. 
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Figure 2.2: Resulting cluster shape characteristics and underlying natural logarithm-transformed 
HAM-D courses for the discovery sample and both validation samples73.X axis: observation time in 
weeks; Y-axis: natural logarithm-transformed HAM-D values (purple: raw values, black: cluster-specific 
median, pink: model-based linear fit). Slope and intercept values of all clusters are given on the right. 
Clusters are sorted from C1 to C7 according to the cluster-specific slope. Absolute and relative cluster 
sizes in all samples are given within the subplots. Green borders represent the limits in which 95% of 
HAM-D values of the discovery sample were contained. These were transferred to columns 2 and 3 to 
allow for comparison with the validation samples. Abbreviations: S, slope; I, intercept; ln, natural 
logarithm-transformed.
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Figure 2.3: Integrated completed likelihood (ICL) values of the discovery sample and the validation 
samples. 73 (A) ICL values for clustering solutions between 4 and 10 clusters are plotted on scales 
adjusted to the respective result range. One data point represents one subject; open diamonds 
represent mean values; vertical lines represent one standard error of the mean; boxplots represent 
the median and quartiles. (B) For improved comparability, ICL mean values of the MARS discovery 
sample, the MARS validation sample, the GENDEP validation sample and the combined validation 
samples (MARS and GENDEP) are plotted on the same Y-axis.  

 
The resulting TRCs (C1 to C7), sorted for their model-derived slopes, are shown in Figure 2.2. C1 
displayed the most dramatic change in symptoms (fastest improvement), while C2 and C3 showed a 
decreased rate in symptom improvement. Cluster C4 represented a more dynamic and volatile 
pattern, while C5, C6 and C7 displayed a generally slow rate of improvement with C7 showing 
virtually no improvement over at least 16 weeks. As would be expected from these courses, the 
mean HAM-D baseline scores were significantly different from one cluster in ANOVA (p=0.009); the 
median HAM-D median of the episode differed considerably (ANOVA, p=4.022×10-116). The clustered 
slopes were weakly associated to HAM-D (r=0.09, p= 0.002) and to episode HAM-D (r=0.57, p=8.270) 
(Table 2.3). 
 
Table 2.3: Baseline HAM-D and average HAM-D values per cluster (discovery sample) 73  

Cluster 
label 

Baseline HAM-
D 

[mean (SD)] 

Average 
HAM-D across 

time seriesb 
[mean (SD)] 

Comparison of neighboring clusters 

Cluster pair 

Baseline 
HAM-D 

[mean (SD)] 

Average 
HAM-D 

across time 
seriesa 
[mean 
(SD)] 
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C1a 24.63 (6.08) 11.15 (3.74) C1 vs. C2 0.006 2.10×10-9 

C2 26.35 (6.26) 14.15 (3.74) C2 vs. C3 n. s.d 0.018 

C3 26.10 (6.14) 15.47 (3.95) C3 vs. C4 n. s. 0.001 

C4 26.22 (6.65) 12.46 (3.53) C4 vs. C5 n. s. 7.11×10-12 

C5 26.71 (4.86) 19.17 (4.07) C5 vs. C6 n. s. 0.005 

C6 25.10 (6.44) 16.23 (4.30) C6 vs. C7 n. s. 4.25×10-8 

C7 27.04 (6.03) 21.80 (4.56)    

ANOVA 
(df=6) 

p=9.446×10-3 p=4.022×10-116 
   

Linear 
correlationc 

r=0.09, 
p=2.497×10-3 

r=0.57, 
p=8.271×10-76 

   

a Sorting is by increasing cluster-derived slope, as in Figure 2.2. 
b Average across all available HAM-D values of the time series until discharge. 
c Correlation between cluster-derived slope and individual baseline HAM-D values (middle column) and 
individual average HAM-D across time (right column). 
d n. s., not significant (p>0.05) 
 

We have allocated clusters to patients of the two MARS and GENDEP validation samples, using 

coefficients of the model estimated in the discovery sample, to analyze whether TRCs represent 

stable and generalizable entities. Figure 2.2 displays the respective cluster-specific median time 

courses along with boundaries that comprise 95 percent of the values for a sample discovery. 

Figure 2.3B displays different and combined ICL values for both samples of the validation 

analysis. The minimum ICL was observed for all samples, except the MARS validation study, for 

seven clusters. The latter showed a rather flat ICL profile, yet with a relative minimum at five 

clusters, most likely due to the relatively small sample size of about 30% compared with the 

MARS discovery and the GENDEP validation sample73. We also observed that the median HAM-

D courses for the MARS validation sample were extremely similar to that of the discovery 

sample, with no different proportions detected for clusters (Χ2=6.157, df=6, p=0.40). With an 

exception of C4, median of HAM-D trajectories were similar between discovery (MARS) and 

validation sample (GENDEP). This discrepancy in C4, appearing as lower average values 

compared to MARS, was triggered by some patients with high variability between week 4 and 

~10 and HAM-D under the 95% threshold. The GENDEP clusters varied in proportion (Χ2=177.13, 

p=1.38×10-35), displaying fewer fast responders (e.g. in C1, average 4.9 weeks to discharge) and 

higher number of slow responders (i.e. average of C7 20.8 weeks to discharge) compared with 

the samples of MARS discovery. Then, we evaluated to what extent a smaller number of 

sequential observations could surrogate for the full observation period. Here, we found that the 

correlation coefficient between the reduced and the cluster assignment based on the all 

variable data from week 0 to 4 was found to be almost linearly increasing. The MARS validation 
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and combination of MARS samples (0.96-0.98) were already strong at week eight (Figure 2.4). 

The slope of GENDEP was typically below 0.77 at week 8 and was linear until its maximum. 

Figure 2.4: Prediction accuracy for reduced observation intervals. 73Correlation of prediction result 
achieved from reduced observation intervals ranging from one observation (baseline HAM-D) to the 
full set of either 17 HAM-D values (baseline through week 16, for MARS derived samples) or 13 HAM-
D values (baseline through week 12, for GENDEP sample). Pearson correlations were calculated 
between clusters predicted using the reduced and predicted with the full observation interval, using 

the model-based HAM-D slope of the respective cluster. Note that a positive linear correlation of 0.50 

was reached at week 2 and a correlation of 0.96 (for the MARS samples) and 0.77 (for GENDEP) was 
reached at week 8. 

 
Table 2.4: Association between TRCs, established response markers and psychopharmacological 
treatment in the combined MARS sample73 

 Clinical item 
ANOVA/ 
Χ2 testa 
p-value 

Cohen’s f Cohen’s ω 

Established 
response markers 

Response (HAM-D reduction 
>50%) at discharge 

4.16×10-65 N/A 0.546 

Remission (HAM-D<10) at 
discharge 

1.05×10-90 N/A 0.609 

Weeks until discharge 4.59×10-84 0.685 N/A 

Psycho-
pharmacological 

treatmentb 

Tricyclic antidepressants 1.75×10-5* 0.177 N/A 

Selective serotonin reuptake 
inhibitors 

0.071 0.104 N/A 
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Selective serotonin and 
noradrenalin reuptake inhibitors 

0.477 0.077 N/A 

Noradrenergic and specific 
serotonergic antidepressants 

0.503 0.063 N/A 

Other antidepressants 0.012 0.126 N/A 

Antipsychotic medication 9.68×10-12* 0.247 N/A 

Mood stabilizers 0.012 0.130 N/A 

Anxiolytic  medication 1.44×10-7* 0.197 N/A 

Sleep promoting medication 0.229 0.090 N/A 
 

a Χ2 test for categorical variables response and remission. ANOVA was applied if not otherwise specified, b 

Pharmacological treatment classes were binary coded (1:= applied/0 := not applied) every week and then 
aggregated across the entire hospitalization period, with “1” indicating treatment with the respective drug 
category during complete hospitalization, “0” indicating not applied at all, and values between “0” and “1” 
indicating the relative time under treatment with the respective drug category. Most patients were treated 
with several types of pharmacological treatments, *p-value robust towards Bonferroni correction for nine 
psycho-pharmacological classes. 

 
Table 2.5: Comparison of established response markers between neighboring clusters in the MARS 
discovery sample 73 

 Cluster averages Comparison of neighboring clusters 

Cluster 

Response 
(>50% 

HAM-D 
reduction  

at 
discharge

) 

Remission 
(HAM-D<10 

at discharge) 

Weeks until 
discharge 

Cluster 
pair 

Response 
(>50% 

HAM-D 
reduction  

at 
discharge) 

Remission 
(HAM-

D<10 at 
discharge) 

Weeks 
until 

discharge 

C1 100.0% 100.0% 4.9 C1 vs. C2 n.s.a 7.38×10-6 6.05×10-13 

C2 85.8% 98.7% 6.7 C2 vs. C3 1.78×10-5 2.59×10-4 4.99×10-18 

C3 76.1% 91.6% 11.3 C3 vs. C4 n. s. 9.13×10-3 0.002 

C4 88.2% 91.2% 14.0 C4 vs. C5 8.75×10-6 1.58×10-16 n. s. 

C5 25.0% 57.5% 12.4 C5 vs. C6 n. s. 1.16×10-5 4.19×10-4 

C6 59.3% 80.7% 16.8 C6 vs. C7 1.87×10-8 1.22×10-9 0.003 

C7 12.9% 32.5% 20.8  

a n. s., not significant (p>0.05) 

 

We then investigated if the TRCs would correlate with established response markers. Indeed, we 

found evidence for strong correlations of TRCs with such validated response markers (weeks before 

discharge, response [50% relative discharge symptom decrease], remission [HAM-D<10 discharge] 

Details on these results can be found in Table 2.4. These findings reached significance for about 80 

per cent of the neighboring clusters, particularly for remission as a conservative criterion (Table 2.5). 

A further significant difference was found for three out of nine types of medication (benzodiazepines, 

tricyclic antidepressant and anti-psychotics) administered throughout the episode (Table 2.4)73. 
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Predicting treatment response dynamic clusters from clinical characteristics 

We evaluated whether clinical features could predict the attribution of patients to the TRCs. The 

analysis was exploratory and tested if the TRCs were associated with clinically plausible and previously 

reported markers, in the sense of a clinical cluster validation. In order to do this, four models were 

analyzed, yet we focused on model 0, comprising 50 baseline clinical components. HAM-D baseline 

items were included Model 1, and early partial response in Model 2. Model 3 represented both 

additions. All four models predicted treatment response in the combined MARS sample for both 

alternatives of modelling the slope (individual and cluster-derived) (both p<2.17×10-21, Table 2.6). 

 

Table 2.6: Prediction characteristics of model 0 and the extended models 1-3 73 

a Adjusted R2 coefficients indicate the explained variance and p-values indicate the overall model 
significance, 
 b Based on Fisher's Z'-transformed r value 
 

Two levels of performance (A and B) were observed, overall, for models with a cluster-derived 

slope: (A) Model 0 and 1, both of these explained 13% of this variance. The improvement over 

(A) was induced by adding the early part response element in Model 2 and Model 3 

respectively, explaining the 20% and 21% of the variation; no additional effect for Model 3 

that used the basic HAM-D items was noted as observed at the first comparison (A). 

Projections for both MARS subsample models (p<1.30×10-17 and p<8.71×10-5 for the discovery 

and validation sample, respectively) were also significant for all four models. It should be 

noted that the prediction analysis was entirely independent of the clustering procedure in the 

Model Sample 
Explained variance 

(Adjusted R2)a 
Overall model significance 

Significance of 

the R2 

difference 

(p-value)b 

  
Individual 

Cluster-

derived 
Individual 

Cluster-

derived  

Model 0 

Model 0 

Model 0 

All 

Discovery 

Validation 

0.08 

0.08 

0.06 

0.13 

0.12 

0.19 

2.17×10-21 

3.76×10-18 

8.71×10-5 

1.53×10-33 

1.54×10-24 

1.72×10-12 

0.019 

0.106 

0.009 

Model 1 

Model 1 

Model 1 

All 

Discovery 

Validation 

0.08 

0.08 

0.10 

0.13 

0.12 

0.20 

4.35×10-22 

1.30×10-17 

7.35×10-7 

1.49×10-34 

2.06×10-24 

4.09×10-14 

0.025 

0.097 

0.047 

Model 2 

Model 2 

Model 2 

All 

Discovery 

Validation 

0.13 

0.14 

0.07 

0.20 

0.21 

0.20 

1.52×10-34 

6.78×10-30 

3.64×10-5 

3.42×10-54 

8.43×10-45 

8.68×10-14 

0.008 

0.026 

0.008 

Model 3 

Model 3 

Model 3 

All 

Discovery 

Validation 

0.13 

0.13 

0.11 

0.21 

0.21 

0.21 

2.95×10-34 

2.42×10-28 

2.76×10-7 

1.53×10-57 

1.71×10-46 

9.93×10-15 

0.004 

0.012 

0.050 
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MARS validation sample. On all models, the variance was significantly greater with the cluster-

derived slope than with individual slopes (Table 2.6). Classification accuracies as calculated 

from cluster specific confusion matrices ranged between 75.0% and 95.2% (Table 2.8 for 

details). 
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Table 2.7: Univariate comparison of significant predictors between TRCs (model 0, combined MARS samples) 73  
 

 index_d scl_uncert scl_psy scl_pho epq_neu epq_ext epq_psy tpq_ha wL-Event 

C1 
22.27± 
27.67 

↓ 
1.04± 
0.70 

↓ 
0.63± 
0.48 

↓ 
0.64±
0.69 

↓ 
5.17± 
2.81 

↓ 
6.42±
3.34 

↑ 
1.91±
1.63 

0 
17.18±

6.23 
↓ 

69.82±
33.76 

↓ 

C2 
28.46±5

4.70 
↓ 

1.19± 
0.70 

↓ 
0.74± 
0.46 

↓ 
0.79±
0.65 

↓ 
6.59± 
2.52 

↓ 
5.65±
3.04 

↑ 
1.94±
1.13 

0 
19.81±

5.65 
↓ 

77.92±
29.51 

↓ 

C3 
43.35±7

5.64 
↑ 

1.41± 
0.83 

↑ 
0.84± 
0.59 

 0 
0.94±
0.79 

0 
7.43± 
2.42 

↑ 
4.95±
3.06 

↓ 
2.00±
1.31 

0 
21.51±

4.86 
↑ 

87.15±
44.22 

↑ 

C4 
17.23±1

4.19 
↓ 

1.02± 
0.86 

↓ 
0.67± 
0.52 

↓ 
0.63±
0.71 

↓ 
5.92± 
2.81 

↓ 
5.56±
3.08 

↓ 
2.35±
1.44 

↑ 
18.15±

6.55 
↓ 

29.00±
12.94 

↓ 

C5 
38.67±6

0.82 
↑ 

1.48± 
0.76 

↑ 
0.93± 
0.50 

↑ 
1.02±
0.75 

↑ 
7.47± 
2.19 

↑ 
4.52±
2.39 

↓ 
1.94±
1.10 

0 
21.92±

5.05 
↑ 

86.46±
39.29 

↑ 

C6 
30.97±3

4.81 
 0 

1.27± 
0.74 

 0 
0.86± 
0.58 

↑ 
0.94±
0.84 

0 
7.00± 
2.05 

0 
4.76±
2.88 

↓ 
2.10           

±1.27 
↑ 

21.29±
4.73 

↑ 
90.72±
45.12 

↑ 

C7 
43.46±6

3.86 
↑ 

1.53± 
0.79 

↑ 
1.03± 
0.63 

↑ 
1.18±
0.86 

↑ 
7.74± 
2.02 

↑ 
4.26±
2.39 

↓ 
1.87±
1.12 

↓ 
22.81±

4.90 
↑ 

94.96±
50.82 

↑ 

95% CIb 30.59; 37.46 1.26; 1.35 0.79; 0.85 0.85; 0.94 6.70; 7.00 4.99; 5.35 1.90; 2.05 20.21; 20.89 80.74;85.65 

Multivariat
e 

importance 
p-value 

0.0210 0.0073 0.0208 0.0182 <0.0001 <0.0001 0.0445 <0.0001 0.0002 

ANOVA 
p-value 

(Cohen’s  f 

c) 

4.0×10-4 
 (0.153) 

2.5×10-10 
(0.233) 

1.9×10-10 
(0.234) 

9.8×10-10 
(0.227) 

7.1×10-25 
(0.355) 

2.9×10-11 
(0.243) 

3.3×10-1 
(0.081) 

6.7×10-23 
(0.341) 

4.4×10-7 
(0.196) 
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a index_d: duration of the current episode; scl_uncert: uncertainty in social contact (SCL-90R); scl_psy: psychotism (SCL-90R); scl_pho: phobic anxiety (SCL-90R), 
epq_neu:  neuroticism (EPQ-RK), epq_ext: extraversion (EPQ-RK), epq_psy: psychoticism (EPQ-RK), tpq_ha: harm avoidance total (TPQ), wL-Event: stress-weighted 
sum of life events. See Table 2.1 for more details on the clinical items, b CI: confidence interval. Arrows indicate lower (↓), higher (↑), or within (0) positioning 
regarding the 95% CI of the respective parameter distribution, c Cohen’s f: >0.10 and <0.25: small effect; ≥0.25 and <0.40, medium effect; ≥0.40: large effects 
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Table 2.8: Overview of classification accuracy (%) per class for all models.73  

 

a Classification accuracy defined as [true positives + true negatives]/[true positives + false 
positives + true negatives + false negatives]) 
 

Table 2.7 lists the 9 (out of 50) most significant predictors of model 0. For this ranking, we 

used a multivariate comparison of each single item with all other competing items113. The 

univariate associations of these items with TRCs (likelihood ratio test on a generalized 

linear model) were also analyzed. Both types of comparison therefore revealed the 

strongest effects for personality items neuroticism, extraversion and harm avoidance. In 

addition, we examined the cluster-specific averages of each clinical element compared 

with the 95 % confidence interval (CI) of the sample as a whole (Table 2.7): Fast 

improvement clusters (C1 and C2) showed lower average values for all predictors except 

for the personality trait of extraversion. The treatment resistance group C7 showed higher 

than average values, except for extraversion and psychotic personality elements. More 

generally, except for extraversion, there was a tendency that lower clinical scores (i.e., a 

shorter index episode, less SCL-90R symptoms, fewer weighted life events, and lower 

scores for the personality items neuroticism and harm avoidance) were found in clusters 

with good treatment response, and higher scores in clusters C6 or C7. Deviations from this 

pattern could point to nonlinear relationships or complex interactions, most obvious in 

the intermediate clusters C3 to C5 (see for example, weighted life events). The random 

forest algorithm had no demographic variables selected. We still did not overlook 

demographic that could influence the clustering, so we compared these between the 

clusters, especially of the MARS discovery sample, finding no significance differences. Age 

Model Sample C1a C2 C3 C4 C5 C6 C7 

 
Model 0 

 

All 84.4 80.4 78.3 95.1 81.5 91.7 88.2 

Discovery 83.0 79.7 78.9 95.2 81,8 92.0 88.6 

Replication 89.0 82.2 75.4 94.5 79.7 90.7 86.9 

 
Model 1 

 

All 84.6 80.4 78.3 95.1 81.4 91.7 88.4 

Discovery 83.2 79.7 78.8 95.2 81.9 92.0 88.8 

Replication 88.6 82.6 75.0 94.5 79.7 90.7 86.9 

 
Model 2 

 

All 84.7 80.4 78.3 95.1 81.5 91.7 88.5 

Discovery 83.2 79.7 78.9 95.2 81.8 92.0 88.7 

Replication 89.0 82.2 75.0 94.5 79.7 90.7 86.9 

Model 3 

 

All 84.6 80.4 78.3 95.1 81.4 91.7 88.5 

Discovery 83.8 79.7 78.8 95.2 81.9 92.0 89.0 

Replication 88.6 82.6 75.4 94.5 80.1 90.7 86.9 
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was only significant in the GENDEP sample (Table 2.9). The three extended models are 

summarized in Table 2.10 by significant predictors. In short, model 1 was characterized 

by priority setting for three basic HAM-D single items in comparison to model 0, model 2 

was identified as a strong predictor, as anticipated, early partial response, along with 

smaller other shifts. Model 3 delivered a combined pattern with a basic HAM-D single 

item (somatic symptoms), early partial response and current psychotic symptoms as 

additional predictors. 

Table 2.9: Demographic variables compared across clusters and samples73 
a ANOVA used for continuous variables. 
b Chi square statistics for categorical values. 
c (C) stands for p-values for main effect of cluster. 
d (S) stands for p-values for main effect of sample. 
e (C×S) stands for p-values for the cluster-by-sample effect. 
 

Table 2.10: Overview of significant predictor variables of all models (combined MARS 
sample) 114  

Category Clinical itema 
Model 0 
p-valuebc 

Model 1 
p-value 

Model 2 
p-value 

Model 3 
p-value 

Personality 
items 

epq_neu <0.0001 <0.0001 <0.0001 <0.0001 

epq_psy 0.0444 0.0433 0.0192 0.0308 

Demographic 
variables 

Differences between clusters (p-value) MARS 
discovery & 
validation 

All 3 
samples MARS 

discovery 
MARS 

validation 
GENDEP 

Agea 0.135 0.251 3.463×10-05 
0.150 (C)c 
0.006 (S)d 

0.223 (C×S)e 

0.008 (C) 
1.268×10-21 

(S) 
0.048 (C×S) 

Genderb 0.276 0.298 0.005 
0.999 (C) 
0.981 (S) 

0.975 (C×S) 

0.999 (C) 
0.002 (S) 

0.247 (C×S) 

Spouseb 0.222 0.684 0.890 
0.999 (C) 
0.007 (S) 

0.999 (C×S) 

0.999 (C) 
1.270×10-5 

(S) 
0.984 (C×S) 

Educationb 0.098 0.071 0.127 
0.999 (C) 
0.958 (S) 

0.999 (C×S) 

0.999 (C) 
1.571×10-21 

(S) 
0.837 (C×S) 

Employmentb 0.404 0.788 0.062 
0.999 (C) 
0.986 (S) 

0.999 (C×S) 

0.999 (C) 
1.390×10-5 

(S) 
0.903 (C×S) 

Training/ 
Retirementb 

0.365 0.022 0.915 
0.999 (C) 
0.635 (S) 

0.775 (C×S) 

0.999 (C) 
0.015 (S) 

0.460 (C×S) 
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epq_ext <0.0001 <0.0001 <0.0001 <0.0001 

tpq_ha <0.0001 <0.0001 <0.0001 <0.0001 

Life events 
L-Event n.s 0.0220 n. s. n. s. 

wL-Event 0.0002 <0.0001 0.0008 0.0002 

Baseline 
psycho-

pathology 

scl_comp n. s. 0.0304 n. s. n. s. 

scl_uncert 0.0073 0.0020 0.0215 0.0099 

scl_pho 0.0207 0.0156 n.s 0.0327 

scl_psy 0.0182 0.0155 n. s. 0.0308 

HAM-D0_13d 
not 

included 

0.0327 
not 

included 

0.0045 

HAM-D0_14d 0.0258 n. s. 

HAM-D0_16d 0.0419 n.s 

Information on 
current 
episode 

index_d 0.0210 0.0186 n. s. n. s. 

psychot_ 
current 

n. s. n. s. 0.0466 0.0492 

Early response 
rated at  
week 2 

HD_2WE 
not 

included 
not 

included 
<0.0001 <0.0001 

a epq_neu: neuroticism (EPQ-RK); epq_psy: psychoticism (EPQ-RK); epq_ext: 
extraversion (EPQ-RK); tpq_ha: harm avoidance total (TPQ); L-Event: sum of life 
events; wL-Event: sum of weighted life events; scl_comp: compulsiveness (SCL-
90R); scl_uncert: uncertainty in social contact (SCL-90R); scl_pho: phobic 
anxiety (SCL-90R); scl_psy: psychotism (SCL-90R); index_d: duration of current 
episode; psychot_current: Psychotic symptoms during the current episode; 
HD_2WE: HAM-D early partial response (≥25% reduction) after 2 weeks. 
Categories/items that delivered no predictors at p<0.05 are not listed in the 
table. 

b p-values are based on testing the respective single importance value against all 
other competing predictors (see methods for details). 

c p-values for model 0 are identical with the p-values reported in Table 2.6 and 
listed for direct comparison with the other models. 

d baseline item HAM-D items: 13: somatic symptoms – general, 14: genital 
symptoms, 16: weight loss 

Abbreviations: n. s., not significant (p>0.05) 

 

We have performed Item clustering using model based approach and these item clusters 

can be used for detecting symptom based treatment response subtypes. We have 

investigated both types, HAMD-21 items and HAMD-17 items to detect robust item 

clusters. For cluster stability and to select optimal number of cluster solution we have also 

used the same ICL criterion with jackknife approach (1000 repetitions). We have detected 

4 stable clusters with lowest ICL value for both HAMD-21 items and HAMD-17 items (Figure 

2.5 and 2.6). We have performed jackknifing and calculated co-occurrence matrix for 

training (N=506) and test dataset (N=506) (Figure 2.7 and 2.8) 
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Figure 2.5: Overview of ICL value for all model using HAMD-single items train data set (N= 506) 
(baseline 17 items) and 1000 repetitions (jackknife).Here we have used the best model “VII” 
based on 8B and detected lowest ICL value for K=4.  
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Figure 2.6: Overview of ICL value for all model using HAMD-single items test data set (N= 506) 
(baseline 17 items) and 1000 repetitions (jackknife).Here we have used the best model “VII” 
based on 8B and also detected lowest ICL value for K=4 (same as Figure 2.5)  
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Figure 2.7: Overview of co-occurrence matrix using HAMD-single items train data set (N= 535) 
(baseline 17 items) and 1000 repetitions (jackknife) using the best model (k=4).Here we could 
visualize the item clusters which are based on number of (%) co-occurrence of items.  
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Figure 2.8: Overview of co-occurrence matrix using HAMD-single items test data set (N= 535) 
(baseline 17 items) and 1000 repetitions (jackknife) using the best model (k=4). Here we could 
visualize the item clusters which are based on number of (%) co-occurrence of items.  

 
We have also investigated this four group of items for checking the reproducibility between train 
and test dataset for HAMD-21 items and HAMD-17 items. For example, we have found 4 clusters 
using HAMD 17 items: a) cluster 1 contains item related to depressed mood work and interest; 
b) cluster 2 contains items related somatic symptom general, genital symptoms, feeling guilt, 
suicide, insomnia-initial, insomnia-middle, insomnia-delayed; c) cluster 3 contains agitation, 
hypochondriasis, weight loss, insight; somatic symptoms gastrointestinal; d) cluster 4 contains 
anxiety psychic and somatic. We will briefly discuss about it in the section 4 (General Discussion). 
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Table 2.11: Overview of single item clustering using HAMD-21 items for train and test 
datasets.Here we found four item clusters which has mismatch in the cluster membership 
between train dataset and test dataset.  
Train Cluster- 
Using 21 items 
(N=535) 

Test Cluster- 
Using 21 
Items 
(N=535) 

item 

1 1 1 Depressed Mood 

3 3 2 Feelings of Guilt 

3 3 3 Suicide 
3 3 4 Insomnia - Initial 
3 3 5 Insomnia - Middle 
3 3 6 Insomnia - Delayed 
1 1 7 Work and Interests 
3 3 8 Retardation 
4 4 9 Agitation 
2 2 10 Anxiety - Psychic 
2 2 11 Anxiety - Somatic 
4 4 12 Somatic Symptoms - Gastrointestinal 

2 2 13 General Somatic Symtoms 
2 2 14 Genital Symptoms 
4 4 15 Hypochondriasis 

4 4 16 Weight Loss 

4 4 17 Insight 
2 2 18 Diurnal Variation 
4 4 19 Depersonalization and Derealization 
4 4 20 Paranoid symptoms 

4 4 21 Obsessional Symptoms 
 
 
Table 2.12: Overview of single item clustering using HAMD-17 items. Here we found four 
item clusters with no mismatch in the cluster membership between train dataset and test 
dataset 
 

Train Cluster- 
Using 17 
Items (N=535) 

Test Cluster- 
Using 17 
Items 
(N=535) 

item 

1 1 1 Depressed Mood 

2 2 2 Feelings of Guilt 
2 2 3 Suicide 
2 2 4 Insomnia - Initial 
2 2 5 Insomnia - Middle 
2 2 6 Insomnia - Delayed 
1 1 7 Work and Interests 
3 3 8 Retardation 
3 3 9 Agitation 
4 4 10 Anxiety - Psychic 
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4 4 11 Anxiety - Somatic 
3 3 12 Somatic Symptoms - Gastrointestinal 

2 2 13 Somatic Symptoms - General 
2 2 14 Genital Symptoms 
3 3 15 Hypochondriasis 

3 3 16 Weight Loss 

3 3 17 Insight 
 
 

2.6 Discussion  
 
We have used nonlinear, model based clustering104,105 applied to symptom courses of 834 

hospitalized patients and detected seven different TRCs. These classes were already visually 

distinct, ranged from rapidly, and unambiguously fast response to severe resistance to 

treatment. The average HAM-D decrease was significantly different between classes and classes 

correlated with establishing response markers, emphasizing that they reflect clinically important 

effects. Baseline severity was only weakly associated with the response slope over a small range 

of HAM-Ds, contradicting the intuition that a high initial disease severity is closely linked to a 

steep decrease in symptoms. The classification of 236 MARS patients and 809 GENDEP samples 

shows that these clusters can capture the response dynamics of the patients while at the same 

reflecting specific differences between the response profiles in the study64. 

 

Robustness and Reproducibility of the clustering solution 

We detected similar cluster size and shape characteristics after projecting the discovery 

clustering model onto validation sample. (Figure 2.2).  The consistency observed in this 

validation is superior to previous latent variables analyses, which neither used any machine 

learning nor produce stable symptom-based subtypes of depression.11 However, one of the 

major differences that limits the comparability of these tests is that they were based on a cross-

sectional symptom spectrum instead of on the trajectory of symptom changes, namely factors 

analyses, principal component analyses, and latent class analyses. 

 

Here, we have applied a machine learning algorithms to identify MDD subtypes based on data 

gathered longitudinally over 16 weeks. Our findings show that the MARS cohort does indeed 

contain significant latent subtypes for MDD. One advantage of our approach might be the 

identification of the best model by using ICL criterion, which is more robust to the violation of 

some of the mixture model assumptions compared with the commonly used Bayesian 
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information criterion. The use of the ICL may therefore have led to an improved choice for the 

number of clusters and therefore to a more sensitive data partitioning 106,115. In combination 

with the jackknife it allowed significance testing of the cluster solutions within themselves 

without recurrence to outside data, i.e. from another domain. 

 

We have made another important observation: The use of slopes from the linear mixed model 

that characterizes each TRC led, in each model, to higher R2 coefficients than the application of 

individual slopes, in particular in the validation sample (Table 2.6). This observation reinforces 

the validity of the detected response classes and emphasizes that the clustering algorithm 

actually assessed the individual information from HAM-D time courses.  In addition, it stresses 

that the average slope of the class is a good approximation of response behavior, which 

contributes to denoising individual observations73. 

Clustering and Simulation of independent patient groups using reduced observation 

intervals 

We analyzed two aspects to facilitate the translation of our clustering system into other cohorts 

and to understand the generality of our clustering solution. First, the clustering coefficients of 

the discovery sample were applied to an independent MARS subsample, and we found that the 

group plots with median HAM-D courses were classified into the same shapes as found in the 

discovery sample. The observation that the classes formed from the MARS validation sample 

were also similarly proportioned as in the discovery sample confirmed that a stable solution was 

found within the MARS cohort. The further projection to the GENDEP sample was also 

informative: With the exception of a small number of patients that exceeded the lower HAM-D 

boundaries of one (discovery) cluster the algorithm captured patients equally into the seven 

TRCs. However, the cluster proportions were different, and significantly more slow or non-

responders were found than in the MARS cohort. This may be a hint towards the limited 

possibilities for changing and intensifying the treatment in GENDEP, which is inherent to its 

design.  Also, generally different patient characteristics may be at the root of these proportion 

differences. The combination of these two observations leads us to conclude that the seven TRCs 

actually do reflect generalizable response patterns. 

 

Different criteria for cluster stabilization might have led to different solutions, such as the 

longitudinal latent class analysis using the Bayesian Information Criterion identified nine clusters 

in GENDEP94. Comparability with our solution, however, is hindered by the use of a different 

scale of depression (Montgomery-Asberg Depression Rating Scale (MADRS)116. 
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Secondly, during a simulation we reduced the observation period to see if the current clustering 

solution could also be of benefit to studies with shorter observation windows. In MARS subjects, 

we observed a correlation (Pearson's r) of 0.96, and r was 0.77 in the independent GENDEP study 

after eight weeks of HAM-D measurements (Figure 2.4). The rest of the improved prediction 

accuracy between weeks 8 and 12 was stronger in GENDEP. This indicated that eight week 

observations usually appear to be adequate, but the changes in sample characteristics expected 

to play a role, suggesting more observations recommended. The increased flexibility in the 

MARS study to repeatedly adjust treatment for the individual patient could be one reason for 

the difference between week 8 and 12. In general, we hypothesize that for observational studies 

the generalizability of our clustering solution could be more robust compared with controlled 

studies.73 

 

Prediction of treatment response classes from clinical baseline features 

The clinical usefulness of TRCs were further investigated by testing whether clinical basic 

characteristics in a multivariate model (random forest algorithm) can be predicted117. We did 

not conceptualize this analysis as a separate study and as an additional clinical validation of 

clusters that primarily represent statistical, data-driven entities. Several machine learning 

techniques had previously been used to predict treatment response in MDD118–120. Their models 

were still mostly trained for classic remission categories non-remission80, treatment 

resistance121, or persistence seriousness83. Briefly, 50 clinical baseline variables were reported 

to predict about 13 percent of TRC variance. While seemingly low, this is actually in the range of 

previous multivariate analyses that focused on the prediction of two outcome categories, 

reporting low to medium accuracy values from receiver operating characteristics analyses. 

These variable has been obtained through interviews, self-reporting of symptoms and standard 

physical or laboratory tests. This proportion of explained variance is apparently low, but it is in 

the range of previously reported multivariate analyses focused on the prediction of two 

outcome categories, reporting low to medium accuracy values from receiver functionality 

analyzes. 80,83,121As an example for HAM-D measures, the clustering of these categories will show 

more fine grained and yet sparse and data-driven classification structures, as opposed to the 

use of predetermined cut-off criteria for these categories. Of our clinical predictors, nine have 

significantly higher weights than others: (i) duration of the index episode; (ii–iv) symptom 

checklist items psychosocial self-assurance; psychotic and phobic anxiety; (v–viii) personality 

traits: neuroticism, extraversion, psychoticism and harm avoidance, and, (ix), sum scores for life 

events (weighted for their straining impact). Although all items support the overall prediction, a 

review of these nine items strengthened the clinical validity in several ways: 
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Before starting antidepressant treatment, a longer period spent in depression has previously 

been identified as a negative predictor of outcome122. By contrast, for the current total episode, 

no consistent predictive value including periods with and without treatment has been 

determined123,124.  As we did not quantified the time without medication in our cohort, we 

speculated that our current marker for the duration of the episode incorporated untreated 

period and gained significance through large statistical power. In addition, baseline symptom 

profiles contributed significantly to the model. Several reports highlighted that strong symptoms 

of anxiety during a depressive episode increase the risk of not achieving remission125. At least 

two out of the predictive symptom items (phobic anxiety, psycho-social self-assuredness, and 

psychoticism) reflected the aspects of anxiety, which were corroborated by high anxiety in MDD.   

 

In a structural MRI analysis comparing MDD patients with high level of anxiety to patients with 

low level of anxiety, brain areas were retrieved that are involved in the processing of social 

issues126 and that overlap with areas that predicted treatment response over six weeks in a 

MARS subsample127 While the symptom checklists includes current disease state, personality 

questionnaires are designed to described a person's enduring personality traits. From the latter 

category, predictors such as harm avoidance and neuroticism were identified, both of which 

represent similar concepts of anxiety feelings and the fearful avoidance of new or upcoming 

challenges. This association has been reported before128,129, and detecting this correlation with 

the TRCs represents an indirect validation of these data-driven entities. Extraversion is another 

personality trait: it has so far been found to mainly protect against chronic stress clinical 

symptoms130. We report a more clearly defined impact on treatment response, which is 

potentially facilitated by the random approach to forests that integrates multiple interactions. 

As reported131,132, life events, especially early adverse events, represent episodes of long-term 

adjustment, stress and liability that increase the risks of MDD but also influence the chances of 

recovery122–124,133,134. Early childhood adversity information was only provided for one subsample 

(35%), and so analyses on this marker could not be performed. There is an expectation though, 

that having such childhood adversity markers, including the exact time point of their occurrence, 

could further improve prediction models. 

 

In a previous representative MARS sample61, previous treatment resistance was mentioned as 

powerful univariate biomarker for non-remission. Treatment resistance is usually defined as at 

least two unsuccessful trials with different antidepressants at sufficient doses at a minimum of 

six weeks68. In this study, the antidepressant treatment response questionnaire (ATRQ) encoded 

therapeutic resistance but showed no significant p-value significance (still a significant 
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univariate association [data not shown]). ATRQ based results could vary since the measure tends 

to underreport unsuccessful tests135. Likewise, in our study the BMI was not linked to TRCs. The 

BMI has previously been reported to be linked to remission rates 61 and treatment response63.  

One explanation for this is that the positive report63 used a binary cut (25 kg/m2) which could 

indicate a non-linear relation. Note that the number of previous episodes of depression – a 

lifetime burden surrogate – was also not predictive, confirming other negative reports 68. 

 

Similarly, age at onset (AAO), was not predictive. AAO is often inversely correlated with the 

number of episodes. Regarding the AAO marker, we found a mixed report.  We found some 

findings with no correlation136,137 and some findings with an influence on the speed of the 

remission138 or treatment resistance139.  This variability can be explained through cached AAO's 

interactions with subgroups (as for co-morbid alcohol dependence)140. Cortisol was also not a 

predictive basis as a simple HPA-axis marker; stimulation tests are probably more sensitive, 

especially when longitudinally obtained65 and as reported before. Due to the observational study 

design, however, the here detected TRCs may indirectly reflect either disease acuity (anxiolytic 

drugs), treatment escalations (i.e. tricyclic anti-depressants), or episode severity (antipsychotic 

drugs). TRCs indeed differed between the types of psychopharmacological treatment (Table 

2.4). For biological markers, like in meta-analyses of brain structure, similar co-correlations 

between drug variables and disease severity have been reported141,142 

We have further investigated two different strategies to improve our basic model 0 (Table 2.1), 

either by adding single baseline HAM-D items or by adding early response information after two 

weeks. It has not been possible to improve the model by inclusion of single baseline HAM-D 

elements. This may be due the current symptomatology having already represented in the 

symptom check list (SCL). This does, however, not mean that primary clustering of trajectories 

of a single item cannot lead to new results or different clusters. This conceptual change would 

increase the number of observations per case and may result in model instability. We see this 

as a worthwhile follow-up project that also breaks up the sum score and by this adds clinical 

elaboration. In all cases, including the early response (2 weeks) markers, improved the model 

which confirmed similar reports of observational and controlled studies82,85,118–120,133,134(Table 

2.7). There are several limitations of this study. First, important clinical variables such as 

neurocognitive results, more complex endocrine tests or neuroimaging markers, were not 

included, despite reporting that a trade-off needs to be made between higher statistical power 

through the use of large samples and the use of powerful, specific single predictors65,143. Second, 

in MARS there was no formalized evaluation of previous, non-pharmacological treatments, 

including psychotherapy, which prevented to probe the predictive value of these factors, even 
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if the psycho-pharmacological treatments were well-documented. Third, the MARS discovery 

and validation samples differed significantly in seven baseline items (age at study inclusion 

(years), any suicide attempt before current episode, psychotic symptoms in any previous 

episode, suicide attempt during current episode, psychotic symptoms during the current 

episode, thyroid stimulating hormone level, Free T4 hormone level) which could explain minor 

prediction results differences. However, these seven items did not overlap with the most 

informative predictors of model 0 or predictors emerging from the other models. 

 

2.7 Conclusion 
 
In summary, we have detected seven distinct classes of treatment response that are stable in 

two validation samples using model-based nonlinear clustering at clinical scores of a large cohort 

of MDD patients. In a multi-dimensional prediction analysis, 50 clinical variables with personality 

items, life events and the duration of the episode were predictors of these classes, with a special 

weight on baseline psychopathological characteristics. The construct and clinical validity of the 

here reported MDD (acute) treatment response classes support that their neurobiological basis 

(e. g. genetic underpinnings, imaging correlates) should be studied in more detail. In addition, 

the clustering system imprinted in the clustering coefficients may be useful to project other 

studies with HAM-D data into the same space. 
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3 Clustering of Source-Based Morphometry (SBM): Atlas 
Parcellation 

3.1 Introduction 
 
Structural Covariance Analysis (SCA) can detect anatomical structural patterns across different 

subjects. It is a general concept theoretically applicable to all structural brain measures that are 

systematically indexed, or, in the most straightforward form, aligned ('co-registered') in a 

stereotactic space, or more generally, in an anatomical space along with an anatomical labeling 

system. One system used in the mapping of brain features is Voxel-based morphometry (VBM): 

here, corresponding data points (volume elements = voxels) are registered in a standard space, 

mostly following segmentation steps31,144. Other than functional connectivity analysis, which is 

based on signal time-series analyses, SCA is not performed in individual data sets but across a 

group of individuals: thus, the concept of the connectivity analysis can be defined in 

the subject rather than the time dimension. This makes SCA particularly interesting for large 

cross-sectional samples. For example, 'seed analysis' was employed in an earlier VBM 

framework that measured gray matter density (GMD)24 (note: GMD is similar to voxel-wise GM 

volume), enabling to reveal robust and symmetric volume characteristics of homotopic brain 

regions. Later work demonstrated a vital analogy between resting-state functional connectivity 

networks 145,146 and resting-state functional connectivity density hubs147, MRI co-activation maps 

148 and individually operated, morphologically operating fiber-based connectivity networks149. 

VBM-based SCA also includes the segmentation of smaller brain structures (e.g., hippocampus) 

using clustering 150 of voxels with similar covariance structures. GM voxels of the hippocampus 

that have a similar covariance with all other GM voxels of the brain are classified into one class. 

Critical processes like aging 35 seem to follow such SCA networks, and also pathological entities 

seem to follow these networks151. The analogies between functional connectivity and 

anatomical connectivity have often been reported and could reflect the 'firing together, wiring 

together' principle 152. Neurons frequently involved in synaptic signal transmissions change their 

dendritic morphology up to a measurable extent through MRI morphometry. Aging may play a 

somewhat minimal role intrinsically, merely modifying existing neuroanatomy differences that 

reflect a combination of genetic factors and environmental influences153. Forest et al. 

154investigated that connectivity at some of the seed regions induces essential effects on their 

connected targets and that these effects are reflected in gene expression. Source-based 

morphometry (SBM) is an analysis strategy that combines VBM data (mainly of grey matter) with 

an independent component analysis (ICA)155. This combination allows the separation and 
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mapping of various 'sources' (or components) of voxels linked through a representative cohort 

by similar behavior., Source-Based Morphometry (SBM) has been applied compared with 

regulatory cohorts156 to identify and compare gray-matter networks between disease groups 

and healthy subjects and patients, e.g., with schizophrenia. Guo et al. (2015) reported 6-7 SBM-

based networks, including the posterior default mode net of 82 and 109 healthy young adults 

and their visual and auditory networks157. However, it was not systematically evaluated how 

many independent components (non-overlapping) exist that are stable and generalizable. 

Imaging data-driven parceling of brain atlas data as such is not new, and for this purpose, there 

have been several modalities and principles158. Naturally, these data-driven atlases challenge 

the principle that anatomic gold standard (AGS) methods are considered to define boundaries 

between functional units by cytoarchitectural, histochemical, gene expression, or post mortem 

fiber tracking experiments. On the other hand, macroscopy has generated parcellation that is 

widely used for human brain mapping (REF), in particular gyral and sulcal morphology. A grey 

matter VBM-based parcellation with its mesoscopic measurement scale is inter-positioned 

between a bottom-up 'microscopic/molecular' and a top-down 'topological' approach, as 

connections of both levels with VBM data have been demonstrated before150. 

 

 In this study, we address the question of dimensionality (i.e., the number of 'true' components 

in the data) in a set of 563 healthy subjects with 3 Tesla T1 weighted images (T1WI). Before the 

study, pilot experiments with ICA as implemented in FSL (MELODIC) and VBM gray matter 

information had been performed, and plausible patterns were detected. The following steps are 

taken in this work: 

First, we use a combination of the iterative ICA (ICASSO technique 159), (agglomerative) 

hierarchical clustering of high-dimension ICA followed by re-aggregation and analyses of the 

similarity between aggregated solutions to estimate this. 

 

Second, we present methods for building a parcellation that considers component stability and 

from which binary (discrete versions) and fuzzy border versions of an atlas can be generated. 

Third, we repeat the whole procedure in an independent and similarly sized second data set for 

investigating the generalizability, again determining the dimensionality of the resulting 

parcellation and their spatial similarity with the original data set. 

Fourth, we look at two methodological questions in the specific VBM context: the effect of 

spatial smoothing on the dimensionality of the ICA and removing covariate effects such as age 

on the formation process of components. 
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Lastly, we compare the resulting representative parcellation with several previously reported 

structural and functional brain parcellation in qualitative and quantitative ways155. 

3.2 Methods 
 
Sample Description 

As discovery sample, we used the IXI sample (http:/www.brain-development.org) which is 

publicly accessible was collected from 600 healthy participants (age 19.98-86.32 years, 56% 

females) from three separate scanner sites (one 1.5 Tesla [X] and two 3 Tesla sites [X, Y]). After 

exclusion of cases due to the lack of essential phenotypes (age, sex, ethnicity) or lack of images 

563 subjects were included. Our replication sample were several combined healthy subjects’ 

samples (Table 3.1) that counted 566 subjects when counted together (age 18-83 years, 54% 

female) and that were all scanned on a 3 Tesla research MRI scabber at the Max-Planck-Institute 

of Psychiatry (Neuroimaging Core Unit). All subjects gave their informed written consent. 

Table 3.1: Details of subsamples of the replication sample. TMEM: Imaging Genetics Study 
directed towards effects of the TMEM gene group on anxiety related MRI tasks and sMRI; 
PsyCourse: Clinical MRI Study on healthy controls and patient (MDD, bipolar disease, 
schizophrenia) groups160; BeCOME: Biological classification of mental disorders: Ongoing deep 
phenotyping study performed at the MPIP  161; Imaging Stress Test Study: Multimodal imaging 
study directed towards effects of Psychoscial Stress162; Switch-Box and Junior-Switch-Box: 
collaborative EU project (local PI Prof. J. Zihl) on cognitive reserve phenomena in elderly and 
young healthy subjects; IL-16-MS-Atrophy: Study directed towards atrophy effects in Multiple 
Sclerosis and inflammatory markers (cum Dr. S. Nischwitz).  
 

 

 

 

VBM-style preprocessing of T1WI for later SCA 

Study N Age 
 

Sex 

TMEM 154 18-36 51.2% 

PsyCourse 28 20-52 64.2% 

BeCOME 115 19-66 
66.9% 

Imaging Stress Test Study 59 20-31 49.1% 

Switch-Box 135 68-83 47% 

Junior-Switch-Box 46 25-32 52.1% 

IL-16-MS-Atrophy Study 29 20-61 
41.8% 
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We performed a VBM-style preprocessing to prepare the input dataset for the actual key 

analysis, the SCA to generate a data driven parcellation. 'VBM-style' refers to the fact that usually 

on the resulting smoothed GM images voxel-wise statistical analyses, with statistical inference 

on the voxel or the cluster level, are performed. Table 3.1 gives an overview of these steps 

performed mainly in SPM (version SPM12163), a MATLAB based software package for image 

processing and statistical analysis. 

Table 3.2: VBM-style preprocessing steps applied to the discovery (IXI) and replication sample 
(MPIP) 



  

60 

 

 

 

Processing Steps Processing Details 

1 Visual quality 

Control (QC) 

Visual inspection of raw T1WI to verify AC-PC image orientation and exclude 

corrupt for further processing in SPM12 

2 Unified 

Segmentatio

n 

Unified Segmentation method (as described before) to derive grey matter 

(GM), white matter (WM) and cerebrospinal fluid (CSF) segmentations using 

six default templates in MNI space (parameter settings: light bias 

regularization [0.001], FWHM of Gaussian smoothness of bias 60 mm, 1 

iteration of the Markov Random Field cleanup procedure, cleaning intensity 

‘thorough’, warping regularization [0 0.001 0.5 0.05 0.02], affine 

regularization: European brains, smoothness 0 mm, sample distance 3 mm). In 

addition to native space results, (modulated) normalized (MNI space) results 

are also written out, but not used further. 

3 DARTEL 

import step 

Import step for later processing in DARTEL. This step performs an affine 

registration (driven by the whole head) for a first alignment of GM and WM  

with the MNI space. 

4 Iterative 

warping in 

DARTEL 

Generation of flow fields using DARTEL with 6-generation GM and WM 

templates in MNI space gained from the IXI sample (source: VBM8 toolbox) 

(http://dbm.neuro.uni-jena.de/vbm8) (default DARTEL parameter settings). 

The resulting flow fields contain deformation information needed to transform 

images between the affine-registered position (after step 3) fully to MNI space. 

The generation of this flow-field is based both on GM and WM warping 

channels. 

5 Writing out 

of warped 

GM with 

Jacobian 

Modulation 

Generation of spatially normalized GM images at a resolution of 1.5 × 1.5 × 1.5 

mm3 through application of the flow-fields to the imported GM images 

(dimensioned 121 × 145 × 121 voxels, 5th degree spline interpolation) with full 

Jacobian modulation (JM). JM preserves the original GM probability 

information which, after warping, can be interpreted as volume information. 

6 Smoothing Spatial smoothing using a Gaussian kernel sized (FWHM) 6 × 6 × 6 mm3. A 

second set of smoothed images was produced with a kernel sized (FWHM) 10 

× 10 × 10 mm3. 

 

http://dbm.neuro.uni-jena.de/vbm8/
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Figure 3.1: Early processing steps of Unified Segmentation and DARTEL import step.Left: 
Original T1WI in axial, sagittal and coronal view. Middle: native space GM, WM and CSF 
segmentations, in addition to two further non-brain compartments (skull/bone and soft-tissue). 
The 6th compartment is not displayed because it is usually not written out. Right: GM, and WM 
segments after affine registration with the template space. Note different bounding box and 
symmetric position. No Jacobian modulation is applied during this step, yet, the volume change 
during the affine registration is added up to the JM information later.  

 

Figure 3.2: Example of a flow field and resulting warped and modulated GM image.Left: 
Example of a flow-field (as far as depictable in a triplanar image). Note complex global and local 
information. Right: GM segmentation after application of the flow-field. Note symmetric 
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position in MNI space), some individual gyrification pattern, and differences in local brightness 
(bright: 'condensed' areas for high GM volume, pale: expanded areas for low GM volume).  

 
Calculation of intracranial volume 

The intracranial volume (ICV) is an essential global measure to 'scale' morphometric analyses of 

local features because local brain measures are highly correlated with the skull's volume. 

Meanwhile, more complex than linear models have been detected in data and are used 

sometimes, but most analyses (as our) still base this step on the assumption of a linear 

relationship. Inaccurate ICV estimations could thus distort any further analysis results. The VBM 

toolbox 164 of Statistical Parametric Mapping 31was used with default parameters to segments 

the voxels of T1-weighted brain volume into four classes, namely white matter (WM), gray 

matter (GM), cerebrospinal fluid (CSF) and other. No preprocessing or re-orientation was 

applied on the T1-weighted images in advance to estimate the ICV since manual intervention165 

to attain the method's automatic feature. ICV was defined as the sum of modulated, normalized 

GM, WM, and CSF maps, with each map being protected by an SPM12 default ICV mask. Thus, 

we calculated ICV based on the accurate segmentated data; that is, we summed up the values 

of the Jacobian-modulated, spatially normalized GM, WM, and CSF map of an individual. 

Theoretically, the same summing procedure could have been performed in native space. We 

preferred to perform it in MNI space, as here, by a default (template) ICV mask, the CSF 

compartment can be 'cut out' to prevent voxels being added in that are not genuinely 

intracranial CSF. Such wrong spaces are, for example (rarely): lower cisterns extending too far 

out due to soft (facial) tissue misclassified as CSF, parts of the transverse venous sinus, etc. 

Regarding the statistical approach, the ratio (or proportional) approach (reviewed in O’Brien 

study 166). Still, the covariate approach is generally preferred because it is more flexible and 

borrows information from the other subject in the GLM, whereas the proportion method (i.e., 

dividing each voxel by ICV) can lead to error propagation, as two measures are combined. 
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Spatial Gaussian smoothing 

 

Figure 3.3: Warped and modulated GM image with 6 mm3 and 10 mm3 smoothing kernel. 
Left: Example of a modulated warped GM map with 6 mm3 smoothing kernel, Right: Example of 
a modulated warped GM map with 10 mm3 smoothing kernel  

 
Jacobian modulated, warped GM volume maps are smoothed spatially in addition, replacing the 

voxels original value by a weighted average of the surrounding voxels. The number of voxels 

included in the averaging process at every point depends on the size of the smoothing kernel. A 

Gaussian isotropic kernel is generally used for this purpose with a full width of maximum of the 

Gaussian shaped kernel up to half to 6-12 mm (in all three directions, written for example as 

FWHM [6 6 6] mm3). In VBM, usually isometric kernels are used; non-isometric kernels are 

sometimes used in functional MRI when the voxels are non-cubic. The smoothing level should 

be based on the accuracy of the co-registration and also be guided by the size of the anticipated 

regional differences among groups. Here we used 6 mm and 10 mm FWHM smoothing: 6 mm is 

the actually desired smoothing level suitable for DARTEL, as the latter provides excellent inter-

subject alignment. The use of 10 mm represented a specific manipulation to investigate the 

effect of a higher smoothness on the ICA. Generally, spatial smoothing also increases the validity 

of parametric models by improving the normality of the residuals. Another effect of smoothing 

is also to reduce the number of independent spatial elements (referred to as 'resels' in VBM). 

 

Concatenation of 3D volumes to a 4D volume 

After smoothing, we concatenated all individual smoothed GM maps (dimension 121 x 145 x 

121 voxels) to a single 4D file. This step was performed separately for the discovery and the 

replication sample. It is a mere technical step, not changing the information, as the ICA tools 

usually prefer to process 4D data. 
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Combat strategy and Residualization model 

As an intermediate step, the 4D dataset as stored in the NIFTI format was transformed into a 

2D-array (collapsing 3D spatial information into N-1-vector) with dimension [2122945, 563] (for 

the discovery) and [2122945, 566] (for the replication sample) in order to apply 

the Combat function167,168 to it. Of this array, only the voxels within the GM mask (479384 

voxels) were selected. Combat has been developed initially for genomic data to remove batch 

effects, but the method has been successfully used for different imaging data167–169. Notably, an 

array of covariates is also entered into the algorithm, and the goal is only to remove variance 

caused by the batch (here: three different MRI acquisition sites of the IXI sample (for the 

discovery sample) and six different original sub-studies of the MPIP sample (for the replication 

sample)) but preserve variance explained by the covariates. 

ComBat algorithm170 has recently been adapted for multi-site DTI modeling and elimination of 

site effects in batch-effect correction tools, widely used in genomics171. ComBat is an important 

harmonization strategy, eliminating undesirable site differences and preserving biological 

connections in the results. We used the ComBat algorithm171 to harmonize gray matter maps 

collected from different scanners. We used two primary multi-site datasets: IXI, a three-site 

multicenter analysis, and MPIP, which has used a total of 6 scanners. We harmonize data with 

scanner and site impact elimination using ComBat while maintaining the availability associated 

with biology. We prove that Battle can also be used for integrating data sets for the study of life-

length trajectories through many locations. 

Suppose the data contain m batches containing 𝑛𝑖 subjetcs within batch i for i = 1, . . . , m, for 

voxels g = 1, . . . , G . We assume the model specified in (2.1), namely, 

𝜸𝒊𝒋𝒈
∗ = 𝜶𝒈 +  Xβg + 𝛾𝑖𝑔 +  𝛿𝑖𝑔𝜀𝑖𝑗𝑔          (2.1) 

and that the errors, ε, are normally distributed with mean zero and variance 𝜎𝑔
2. 

where 𝜶𝒈  is the overall data matrix (voxels * subjects) , X is a design matrix for sample 

conditions, and βg is the vector of regression coefficients corresponding to X. The error terms, 

𝜀𝑖𝑗𝑔, can be assumed to follow a Normal distribution with expected value of zero and variance 

𝜎𝑔
2. The 𝛾𝑖𝑔 and 𝛿𝑖𝑔 represent the additive and multiplicative batch effects of batch i for gene g, 

respectively. The batch-adjusted data, 𝜸𝒊𝒋𝒈
∗  

The algorithm contained three main steps: 

Step 1. Standardize the data:  
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𝑍𝑖𝑗𝑔 =  
𝑌𝑖𝑗𝑔  −  𝜶̂𝒈  − 𝚾𝜷̂𝒈

𝜎̂𝑔
 

Step 2: Empirical Bayes (EB) batch effect parameter estimation using parametric empirical 

priors 

𝜸𝒊𝒈
∗ =

𝓷𝒊𝝉̅𝒊
𝟐𝜸̂𝒊𝒈+𝜹𝒊𝒈

𝟐∗𝜸̅𝒊

𝖓𝒊𝝉̅𝒊
𝟐+𝜹𝒊𝒈

𝟐∗  and 𝜹𝒊𝒈
𝟐∗ =

𝜃̅𝑖+
1

2
∑ (𝒁𝒊𝒋𝒈−𝜸̂𝒊𝒈

∗ )
2

𝑗  
𝑛𝑗

2
+𝜆𝑖̅−1

 

Step 3: Adjust the data for batch effects 

𝜸𝒊𝒋𝒈
∗ =

𝝈̂𝒈

𝝈̂𝒊𝒈
∗ (𝒁𝒊𝒋𝒈 − 𝜸̂𝒊𝒈

∗ ) + 𝜶̂𝒈 + 𝚾𝜷̂𝒈 

The covariates entered were: ICV, age, age2, sex, age-by-sex, age2-by-sex, and ethnicity for the 

IXI sample (as dummy variables, six levels). Age and age2 were centered before used for the 

interaction terms. Table 3.3 lists the 6 and 12 terms of the covariate matrix for the Combat step 

for both samples. First, a 4D ‘stacked’ version of all individual smoothed GM images were 

generated, and the MATLAB implementation of Combat was used to remove site effects, 

separately of the discovery and replication sample, under preservation of 12 and 6 covariates, 

respectively. Second, a multiple linear regression model including an intercept term was defined 

in SPM12 (again separately for discovery and replication sample), estimated within the above-

described mask area, and non-normalized residual images collected. Non-zero voxels were 

increased by a constant value of 100 to ensure positive values. 4D versions of these 563 

(discovery) and 566 (replication) images were calculated as input for ICA. 

 

Table 3.3 List of Covariates for the discovery, 6 lines for replication sample 

Discovery (12 terms) Replication (6 terms) 

ICV ICV 

age age 

age2 age2 

sex sex 

age-by-sex age-by-sex 

age2-by-sex age2-by-sex 

ethnicity (dummy coded): 1 to 6 NA 
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Figure 3.4: Exemplary residualisation model (replication sample).The GLM as visualized in SPM 
('review model' function) with the vertical dimension representing the subject axis, and 
regressors labelled at the top. Note that additional dummy covariates were used to code to for 
6 different ethnicity subgroups in the discovery sample (ICV, age, age2, sex, age-by-sex, age2-by-
sex and ethnicity with 6 levels (dummy coded only for discovery).  

 
Independent component analysis, SBM as implemented in GIFT and computational setup 

Independent component analysis for biomedical signal analysis is a popular and essential 

multivariate statistical technique. Often, biomedical signals we can measure actually consist of 

mixtures of signals from various underlying sources that also bring in noise. ICA works by 

breaking up the mixed signals into underlying components. We have described Independent 

Component Analysis clearly in section 1.7. 

 

Source-Based Morphometry (SBM) is a multivariate tool to study the gray matter differences 

between the patients and controls 156,172. ICA is used on the subject images to determine the 

maximally independent sources. Basically, ICA decomposes data into subject loading coefficients 



  

67 

 

and component maps. It is similar to doing single subject single session analysis in the GIFT, 

except the time points are subject images. 

 
Figure 3.5: Source Based Morphometry using for discovery and replication data, where 
subject-by-gray matter matrix is decomposed into mixing matrix and source matrix.We have 
used the SBM/GIFT toolbox to perform the infomax ICA. ICA model in which the subject‐by‐gray 
matter matrix was decomposed into mixing matrix and spatially independent components. 156 

 
The following are the differences between the GIFT and SBM: 

• Default mask used in the SBM includes voxels greater than or equal to 1% of the mean 

of the data. 

• Detrending is excluded in the SBM toolbox whereas it is included in GIFT, which mainly 

dealing with time-series data of fMRI 

• Component maps are stored with the suffix *group*component*ica* in Analyze or Nifti 

format. Subject component loading coefficients are stored with the 

suffix *group*loading*coeff* in Analyze or Nifti format. 

• Batch template is provided in icatb\icatb_batch_files\Input_sbm.m. Specify modality 

type as ’smri’ and enter the parameters similar to one subject one session analysis as in 

the GIFT. After entering the parameters, use icatb_batch_file_run(inputFile) at the 

MATLAB command prompt. 

Percent variance utility can be used after running a group ICA analysis. Percent variance 

explained by the components in the data is calculated by doing a multiple Regression of the 

BOLD signal and the component. For the analysis of gray matter volume maps, the SBM toolbox 
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within GIFT 173 is a specific implementation of ICA and ICASSO, Of the several ways to extract the 

components (or sources), Infomax was found most suitable to estimate maximum spatially 

independent sources. The infomax principle has a close connection with maximum probability 

45,46,48. It is based on a neural network with nonlinear outputs to maximize the output entropy 

or information flow. The algorithm is based on the maximization of entropy and presents a 

natural gradient form for the computation of independent components174. 

As for the mathematical formulation, it can be interpreted as a neural learning method:  

𝑊(𝑡 + 1) =  𝑊(𝑡) + 𝜂(𝑡)(𝐼 − 𝑓(𝑠)𝑠𝑇)𝑊(𝑡) 

where η(t) is a learning-rate function and f(⋅) is a function related to the distribution nature (i.e. 

super Gaussian or sub Gaussian)175. 

As explained earlier, in batch mode, the SBM/GIFT tool was used to run ICA repeatedly over a 

range of predefined dimensions, from 20 to 545 components (in steps, 25, so [20:25:545]) one 

after the other, using the same input data (discovery sample with 6 mm and 10 mm FWHM 

Gaussian smoothing, respectively, and replication sample only with 6 mm). The number of 

components were estimated 176 from these sMRI datasets using the inbuilt MDL method first. 

Components are estimated for discovery and replication sample separately. The number of 

estimated components for the discovery sample and the replication sample, after Combat, but 

both with and without residualisation, is given in table 3.4. 

Table 3.4 Estimated number of components for four different cohorts using MDL algorithm 
(GIFT toolbox) 

Input Estimated Number of Components 

Discovery sample (6 mm3) with combat + 
resdualisation 

4 

Replication sample (6 mm3)  with combat + 
resdualisation 

5 

Discovery sample (6 mm3) with only combat  43 

Discovery sample (10 mm3) with combat + 
resdualisation 

8 

 

Infomax is a very popular ICA approach and produces more stable components compared to 

FastICA177. In general, ICA contains stochastic steps, so the resulting components are not 

completely deterministic, but can vary from run to run. Iterative ICASSO is an approach that 

delivers both 'centroid' versions of a component in addition to component stability 

measures159,178.Random initialization (RandInit) was used for each of the 20 runs of a random 

initial value and 16 and 20 (default settings) were the minimum and maximum cluster size. 
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Further configurations (e.g., maximum number of steps) at the default values were kept. We 

extracted the component maps, and the stability index vector as main results of ICASSO. For 

each component, this stability index is calculated by ICASSO: It is mainly driven by spatial 

differences between recurrent components179. Reliable estimates (values close to 1) correspond 

to 'tight clusters' and unreliable ones do not point to any cluster (Example cluster number 69 in 

Figure 3.6) 

 

 

Figure 3.6: Estimated space as a 2d CCA projection to visualize reliable and unreliable clusters 
using stability index. Here estimates which acquired high intra-cluster similarity values (>=0.8) 
in multiple iteration formed compact and isolated clusters whereas estimates with low (<0.8) 
intra-cluster similarity values in multiple iteration formed volatile clusters. 
  
Since ICASSO uses clustering of components and there is no constraint in ICASSO on the number 

of components within each cluster. A cluster containing more components than runs might 

combine components from different functional areas. Also the mixing coefficients of centrotype 

might come from different runs which might not be desirable as well. To avoid this stable run 

estimates are used. These estimates are calculated using stability index, minimum and maximum 

cluster size. After the ICASSO step is completed, subsequent group ICA analysis steps like Back 

Reconstruction, Scaling Components and Group Stats are run. 
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ICASSO uses group average link (AL) as default choice of agglomeration strategy. Himberg180 

introduced a conservative cluster quality index Iq that reflects the compactness and isolation of 

a cluster. It is computed as the difference between the average intra-cluster similarities and 

average extra-cluster similarities. 

 

For stability and similarity measurement, we have calculated Stability index (Iq), and b) 

sR=Variable containing information about similarity measure, clustering, and projection. Cluster 

quality index (Iq) of the selected components from ICASSO-runs179 were used to assess the 

repeatability of ICA components of interest and mean of all Iq was used to measure the overall 

stability of the whole ICA decomposition.  

 

An Iq value of higher than 0.8 is often used to define a component as 'stable', but this is not a 

fix rule. The mixing matrix containing cluster centrotype based estimates from ICASSO was used 

to produce final IC maps.  

Hu et al. (2019) 181 recently developed an improved stability index, which also accounts for a 

potential instability of the loading vector subject. As a post-hoc analysis, we used this algorithm 

to investigate the impact on the final data-driven atlas (parcellation) of the more sensitive 

stability estimation's spatial features. Iq is calculated in terms of inner similarity within one 

cluster and dissimilarity among different clusters. Himberg 179 used 𝑪𝒐𝒎𝒑_𝑰𝒒 (Iq for the 

components) as a stability index. For example, if the number of components is N, and ICA 

decomposition is run K times with random initialization, N*K components are produced, and 

then, those components can be clustered. For ICA decomposition, each component is associated 

with each coefficient vector. N*K components' memberships can be used to cluster 

the N*K coefficient vectors to obtain the coefficient matrix's stability. The parameter Iq can also 

be generated for the coefficient matrix. It is called 𝑪𝒐𝒆𝒇_𝑰𝒒 in this study. If both the component 

and the corresponding coefficient vector are stably extracted, the ICA decomposition for the 

component and the coefficient vector is repeatable. As a result, the Iq of the ICA decomposition 

in this study is defined as:  

𝑰𝒒 =  𝑪𝒐𝒎𝒑_𝑰𝒒  ×  𝑪𝒐𝒆𝒇_𝑰𝒒 

Since the range of stability index of 0 to 1 so the multiplication does not change the range of 

stability evaluation. The probability of the stability of the coefficient matrix can be represented 

as 𝑪𝒐𝒎𝒑_𝑰𝒒. The probability of the stability of the coefficient matrix can be understood as 

𝑪𝒐𝒆𝒇_𝑰𝒒 The multiplication can thus be represented as the overall stability181. 

 

Mask generation 
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Since we were primarily interested in grey matter coherence patterns, we defined a 1/0 mask 

for the analytical space based on two steps: First, all 563 smoothed GM images (FWHM 6 x 6 x 

6 mm3) of the discovery sample were averaged into one 3D image, and this average image was 

thresholded at > 0.1 (resulting in 476219 voxels). Second, due to the known imperfect and 

potentially underestimated probability of GM in the basal ganglia area (particularly thalamus 

and pallidum), there was a risk to threshold away these areas. To counteract this, we produced 

a 'protective' 1/0 mask of the putamen, pallidum, caudate, and thalamus from the bilateral AAL 

atlas regions and added this onto the mask of step 1. This process increased the total number 

of voxels to eventually 479384. We first produced a mask using the same two-step, for the 

replication sample analysis, which resulted in a mask with slight differences in rim areas 

compared with the discovery sample mask (1279 additional voxels and 10634 missing voxels). 

However, as 99.73 percent of the discovery mask's voxels overlapped with the intersection of 

both masks, the discovery sample mask was also used for the replication sample. It covered the 

entire cortex, super-cortical and infratentorial, but spared the mesencephalon and most of the 

pons. These areas usually do not deliver reliable GM information, as they do not contain 

compact nuclei of GM, but a more diffuse mixing of GM and WM signal cannot be resolved using 

3 Tesla MRI.  

 

 
Figure 3.7: Exemplary smoothed GM maps of four subjects and tri-planar visualization of 
analysis mask. On the left, 4 Jacobian modulated and smoothed GM maps of subjects A-D are 
shown. Note very similar margins and geometry, but different intensities in corresponding areas 
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that represent different volume states. The right column shows the binary analysis masks that 
contained 479384 voxels as generated by the two step procedure (see text). The internal spared 
areas represent either WM or CSF areas.  

 

 
Hierarchical clustering, re-agglomeration and convergence analysis for dimensionality 
estimation 
 
ICA requires the definition of a number k of components expected. The estimation of the 'proper 

dimensionality' of the data set is independent of the ICA itself and usually carried out before. 

For its estimation, different methods and metrics have been suggested, for example [Minimum 

Description Length (MDL), Akaike’s Information Criterion (AIC)182, Bayesian Information 

Criterion (BIC)183, Integrated Completed Likelihood (ICL)106. The number of sources can be 

estimated using the well-known Akaike's information criterion (AIC)182 or the minimum 

description length (MDL) criterion184. These criteria have the following forms: 

 

 

 

 

 

where V is the number of voxels, M is the number of subjects, £ (ΘˆN) is the log of the maximum 

likelihood estimate of the model parameters (and is estimated from the data, e.g., sMRI 

data), ML is the number of time points following the first reduction stage, and N is the number 

of sources. The estimate for the number of sources is determined from the minima of the above 

functions with respect to N 185. 

MDL is a popular approach for VBM based ICA to estimate the optimal number of independent 

components. We probed MDL in our data, too, as it is automatically calculated in the GIFT/SBM 

toolbox. Extracting the signal from noise is achieved using information theory metrics such as 

MDL176,185,186. We used the MDL criterion, a standard method for estimating the number of 

components from the aggregated dataset. The method makes a decision based upon the 

complexity or information content of the data. 

However, the MDL approach is not robust and reliable in estimating the optimal number of the 

component which will cover the whole brain. This can cause disruption in the atlas parcellation 

and will develop an incomplete atlas. Here modified and extended a previously suggested 
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principle to estimate the dimensionality of a morphological, SCA-type of the dataset: The 

method has been initially referred to as ‘ICA-by-block’ in which ICAs with n components are 

performed on non-overlapping B blocks of the data are compared across blocks regarding their 

similarity. By a counting system of very high correlation values, the number of optimal 

components can be determined187. The principle could be rephrased in that an ‘overstretching’ 

of the estimated components are detected by the appearance of an over-proportional number 

of distinct components in the comparison scheme. Our modification and extension are as 

follows: 

 

Figure 3.8: Exemplary hierarchical clustering tree and re-agglomeration to a lower number of 
components. Here, the 'cutting level' is indicated by the scissor and dashed red line. 'Re-
agglomeration' means that 2 lower levels components (here: for example, the two leftmost 
leafs) are fused into one parent component. A cut at the shown level would result in 18 
components of a maximum of 20 leafs. A higher cut would result in fewer agglomerated 
components. Functions exist that can determine the needed cut-level for a k'.  

 

Assuming that Ntrue sources are contained in a dataset, these Ntrue sources could be directly 

estimated from running an ICA with Ntrue components, or by re-agglomerating components from 

an ICA run with an N > Ntrue. For this purpose, after performing the ICAs for a k, each of them was 

submitted to hierarchical clustering and re-agglomeration to k’ (running from 10 to 545 in steps 

of 5) components were enforced for all available ICAs with dimension k > k’. This procedure 

follows the latent hypothesis that the closer k’ is to Ntrue, the more similar with each other the re-

agglomerated component sets of size k’ are. The goal is thus to identify the row k’ that delivers 

the highest similarity values across k. 

For a quantification of the similarity of two component sets A and B (each of dimension k’), 

several metrics were developed and implemented in MATLAB: 
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• For each component of A, the maximum spatial correlation (Pearson correlation coefficient 

r, followed by Fisher’s z transformation to rz) with any component of B was identified and 

stored, along with the index of that maximally similar component of B. In addition, the 

second best match from the component set B was stored, as a high specificity of the best 

match would be reflected in a steep decrease of the similarity with the 2nd best match (i.e., 

a high difference value rbest-r2nd); in turn, a low difference value would indicate a higher level 

of ambiguity of the choice. This resulted in a list as follows (e.g., for k’=20): A1: best match 

with rmax=0.78 to B3 (r2nd=0.32); A2: best match with rmax=0.97 to B2 (r2nd=0.12); A3: best match with 

rmax=0.86 to B14 (r2nd=0.44), etc., up to A20. 

• From the list of components of B that were selected as best matches, a vector was 

constructed that contained how often a component of B was chosen as best match (‘pick 

count vector’): an ideal outcome would be a vector length k’ only containing values of 1, i.e., 

each component of B has been chosen as best fit for a component of set A exactly one time. 

Deviations from this ideal vector contain zeros (a component was not picked as best match) 

or values larger than 1 (a component was picked several times as best match), both 

increasing the variance of this vector. This vector served as second basis for extracting the 

following seven overall similarity measures: 

 

Table 3.5: Similarity metrics used for comparing agglomerations of the same k' constructed 
from different original k. The listed metrics can be used to compare any two set of ICs of the 
same dimensionality.  

Metric # Short name Explanation Range 

1 ‘Mean 
Pearson’* 

Mean of all (k’) highest Fisher’s z transformed r-
values comparing each component of A with 
each component of B  

[0, 1] 
(optimum: 1) 

2 ‘Median 
Pearson’* 

Median of all (k’) highest Fisher’s z transformed 
r-values comparing each component of A with 
each component of B  

[0, 1] 
(optimum: 1) 

3 ‘Delta 
1st/2nd’ 

Mean of all difference between first and second 
best match for any A1-k’ with two components of 
B 

[0, 1] 
(optimum: 1) 

4 ‘SD of PCV’ Standard deviation of the pick count vector [0, limit] 
(optimum: 0) 

5 ‘Percentage 
of PVC=1’ 

Percentage of values 1 in the pick count vector [0, 100] 
(optimum: 100) 

6 ‘Percentage 
of PVC=0’ 

Percentage of values 0 in the pick count vector [0, limit] 
(optimum: 0) 
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7 ‘Percentage 
of PVC>1’ 

Percentage of values larger than 1 in the pick 
count vector 

[0, limit] 
(optimum: 0) 

 

In pilot studies we checked the robustness of these metrics to the order of the component sets 

A and B. A very correlated table of similarities was found when re-agglomerated component sets 

A and B were exchanged. Given the half matrix of k-by-k’ with k > k’ of re-agglomerated ICA 

solutions, we then faced the problem how to organize the comparisons within one row of k’: For 

example, for k’ = 120, the available re-agglomerations from higher original values stem from 

ICAs with k of 145, 170, 195, 220, 245, 270, 295, 320, 345, 370, 395, 420, 445, 470, 495, 520, 545 

and 558, i.e. 18 levels. All possible pair indices were formed under the constraint of kA < kB, 

resulting in (182-18/2) = 153 pairs of component systems compared using the resulting seven 

metrics Performing this procedure for all 108 levels of k’, this resulted in 9361 comparisons of 

pairs of component sets (>325 million component comparisons), requiring parallel computing. 

We noted that systematic gradients of the similarity values occurred in dependency of the 

position of a solution in the k-by-k’ space. Due to this, we corrected for such effect by 

residualizing the entire vector against three values kA, kB, and k’ using an in-house R script. Three 

aggregation schemes were considered for collecting information (per metric) from a single 

matrix field in the half-matrix of k-by-k': 

First, to include as many measures as possible, comparisons of all pairs formed by a cell with 

other cells of the same line of k’ were averaged (scheme ‘permute’). In the example above, 18 

values would have been averaged per cell. 

Second, only immediately neighboring cells (scheme ‘neighbor’) were compared, similar to a 

sliding window to detect potential gradients in the horizontal direction per line of k’. 

Third, comparisons of a cell were always performed against the most left positioned cell next to 

the diagonal, representing the re-agglomeration from the k closest to k’ but skipping the original 

ICA (scheme ‘diagonal’). 

The optimal number of components was determined separately for the discovery and 

replication set by calculating the mean value for each metric across a line of k’ and creating 

profile plots for each metric across the k’ axis. These plots were slightly smoothed, z-

transformed for a uniform scale, and metrics #4, #6 and #7 inverted (to have local maxima as a 

uniform measure). 21 local maxima positions on the k’ axis (seven metrics, three aggregation 

systems) were then determined and the median served as the basis for defining dimensionality. 

Exploration of the relation of k with explained variance, component stability and anatomical 
location of stable and unstable component 
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The cumulative variance explained by each component of an ICA with dimension k was 

calculated. We also calculated the variance for each k separately for stable (Iq>=0.8) and 

unstable components (Iq<0.8) in order to understand the relation between k, the proportion of 

unstable components (explored at different Iq thresholds) and the variance explained by 

unstable versus stable components at standard Iq < 0.8 cutoffs. In order to understand if 

unstable components (again defined by Iq < 0.8) locate to similar areas with increasing k, i.e., if 

these areas are data/sample-dependent or dimensionality-dependent, we created maximum Z 

(maxZ-) maps of all stable and unstable components for the entire k range. For these maximum 

Z maps, a voxel was given the highest available Z value of all stable or unstable components, 

respectively. See figure 3.12 that illustrates schematically how maxZ (and maxLoc) images were 

calculated. 

Compilation of atlas parcellation with discrete or fuzzy boundaries 

The re-agglomeration system was used predominantly for estimating the dimensionality. Only 

original ICA runs without re-agglomeration were used to create discrete atlas systems for the 

discovery and replication sample. The assignment of a voxel to a component in the discrete atlas 

version was determined by identifying the component that provided the maximum Z-value for 

the voxel. To incorporate ICASSO-based component stability information, all component maps 

were weighted by the Iq value before this ranking-based decision. The refined ICASSO algorithm 

provided by a refined stability index (Iq*) integrating spatial stability for the component and 

subject-specific ranking stability was used for the respective optimal dimensions alone (in the 

discovery and replication sample)177,181. As the latter necessitated the use of an implementation 

of an ICASSO-based infomax outside of the GIFT toolbox (https://github.com/GHu-DUT/Tensor-

clustering) we first compared similarity between the two component solutions and found close 

to perfect matches between the components. We thus considered the ICASSO implementations 

well-comparable, so the Iq* values could be used to weigh components instead of the classic Iq 

values180. This modified Iq* values are the multiplied form of component Iq and also coefficient 

Iq. The idea behind this approach is to cluster not only component matric and also coefficient 

matrix to produce more robust component maps (see section “Independent component 

analysis, SBM as implemented in GIFT and computational setup” for more details) 177,181 

We also tried to visualize how definite the boundaries between parcels were, besides creating 

discrete parcellation. This type of display is referred to as 'fuzzy border' approach. For this 

purpose, the difference between the highest Z value and the second highest Z value (after 

weighing with Iq or Iq*) were calculated per voxel. High values would represent strong 

distinction. The scale of this image was inverted and a 'web-like' image provided, in which the 
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most probable course of the boundary (‘likelihood valley') is displayed as brighter color. Both for 

discrete and fuzzy solutions, the ICA of the discovery and replication sample were repeated with 

a common suitable dimensionality. 

Comparison of spatial similarity of the original and agglomerated component system of the 
discovery and replication sample 

This comparison was made using four complementary analytical approaches due to the 

conceptual significance of this analytical analysis for reproducibility, replicability and 

generalization issues: 

1 Parcellation of k-by-k’ (half-) matrices were compared between samples using seven of 

the same metrics as the inter-sample comparisons. There has been no aggregation 

system here because only 1:1 comparison are made here. In other words, the original 

ICAs were included (k = k’) to draw a simple similarity profile for the 23 original ICAs, 

other than for the comparisons within the sample. 

2 The 'mean Pearson' metric was re-calculated for fully pairwise aligned component 

systems in a variation of (1) to eliminate any influences of the asymmetric approach. 

3 In the first place, the fuzzy boundary systems were inspected in direct opposition 

qualitatively for one common dimensionality (median of sample specific median 

optima).  

Effect of smoothing level on dimensionality estimation and covariate residualisation on 
dimensionality estimation (discovery sample) 

We repeated the whole analysis (multiple ICAs, hierarchical clustering, re-agglomeration, 

similarity analysis, determining local peak positions of profile plots) on the discovery dataset 

with larger Gaussian smoothing kernel of isometric 10 mm FWHM. The effect of skipping the 

residualisation of the covariates was also investigated by using the whole algorithm after 

removal of site effects on the discovery data set, but with no further correction for other 

covariates. In addition, for a common k, we calculated the variance of the subject loadings per 

component explained by age and (orthogonalised) age2 in order to understand if structural 

covariance (and by this, component formation) is dominated by age effects. 
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3.3 Results 
 

 
Proportion of stable components and explained variance over dimension k 

The ratio of stable components plotted for different thresholds of Iq is represented for each k in 

Figure 3.9 and Figure 3.10. We observed that the proportion of unstable components and k 

were inversely proportional to each other. In addition, and expected, the higher the Iq threshold 

was set, the lower the proportion of stable components was generally. For each k, Figure 3.9 

depicts the proportion of stable components calculated (Iq>=0.8), but plotted for our different 

samples: (i) discovery with 6 mm smoothing, (ii) replication with 6 mm smoothing, and (iii) 

discovery with 10 mm smoothing. Smoothing had a clear impact on the proportion of stable 

components. Smoothing with a larger kernel slowed the decline of the proportion stable 

components with higher k. Expressed differently, there was a general increment of the 

proportion of good components when smoothing factor was changed from 6 mm FWHM to 10 

mm FWHM. Figure 3.11 depicts the variance explained by all components and components split 

into stable (Iq >=0.8) and unstable ones (Iq <0.8). The total variance for stable components did 

not rise further after k of 300. The average maximum Z of all stable and unstable components is 

illustrated in Figure 3.12, which shows a steady increase of max-Z-values over k. 

We have calculated the Iq values of classical ICASSO based on the spatial similarity of the 

repeatedly produced ICs (Figure 3.13a), but also the Iq values of the coefficient matrix, and 

based on both Iq values (according to Hu et al. 2019 and Zhang et al. 2018 algorithm), a tensor-

clustering based 'combined' iq value (Figure 3.13b). Generally, voxels of components with low 

combined Iq values may have volatile characteristics, which means that their assignment to a 

specific component maybe unstable, or the pattern of how the subjects load on the component 

may be unstable. It was decided not to exclude components based on Iq value because including 

only those components with Iq>=0.8 during the atlas formation could break the brain coverage, 

leaving areas only components with even lower max-Z values would-be candidates. This means 

we used all components for the atlas formation but weighted Z-maps by their Iq value before 

the competition of the components for that voxel. In a volatile component, the component's Z-

values would be low, and 'underdrive' a better component that then takes place for that voxel. 

We used both the classical, simple Iq value, and the tensor-clustering based one. 
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Figure 3.9: Proportion of stable components for different stability index (Iq) thresholds (0.1 to 
0.9) for ICAs with different k. Note that the x-axis ticks represent all values of k used in this 
study, including the maximum of 558. Further note that the y-axis starts at 40% – at k=245, for 
an Iq-threshold of 0.8, there were still 80% stable components.  

 

 
Figure 3.10: Proportions of stable components for a fix stability index (Iq) threshold (>=0.8) for 
ICAs with different k, plotted for different input data. Note similar course for the discovery and 
replication sample, and up-shifted values for the 10 mm smoothed discovery sample.  
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Figure 3.11: Comparison of explained variance using stability index (Iq) threshold (>=0.8) to 
stratify into stable and unstable components. Note some saturation for the cumulative 
variance of the stable components in both samples, and steady more linear increase of the 
variance explained by unstable components. Note a flat turning point round k of 300 from 
whereon variance seems to be shifted to unstable components.  

 

 

 
Figure 3.12: Average max-Z values of stable and unstable components. For this analysis, a max-
Z-map was calculated for the stack of stable and the stack of unstable components. Per voxel, 
the maximum Z-value detectable in the respective stack was selected, and then an average 
calculated over the mask area. Interestingly, the replication sample showed a stronger 
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difference between stable and unstable components (higher positioned curve of stable 
components).  
 

 
Figure 3.13: Standard stability index Iq plotted per component for the k=149 ICASSO of the 
discovery sample.Values were obtained from the GIFT/SBM software for k set to 149  
 

 
 
Figure 3.14: Component-related stability index (blue), coefficient-related stability index 
(green) and tensor based combined stability index (red).All values were obtained through an 
Infomax ICA implementation (2 Chinese REFS) (https://github.com/GHu-DUT/Tensor-clustering) 
with included tensor-based clustering for a combined Iq value. Note decline of about a third of 
the components. The tensor-based stability index seems to detect instability more sensitively.  
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Results of the similarity analysis of re-agglomerated ICAs 

These result matrices served to decide if there is a promising range of k' for which re-

agglomerations are most similar. Figure 3.15 A-G depicts seven half-matrices, each representing 

one similarity metric, of the discovery sample. Within the half-matrix, each field represents the 

average of similarity comparisons with all other fields (i.e., the aggregation scheme ‘permute’) 

of that same row k’. Corresponding results of the other two aggregation schemes (‘neighbor', 

‘diagonal’) are shown in Table 3.4. The rightmost column represents the average of the 

respective k’ row and serves as the basis for the peak detection step. Note band-like maximum 

and mirrored minimum areas for inversely signed metrics. Figure 3.16 shows the profile plot of 

those seven similarity metrics (for scheme 'permute'). Here, for the discovery sample a mean 

peak position of the 7 metrics (aggregation scheme 'permute') was located to k=143 (median 

145). The replication sample results are plotted in Figure 3.17 A-G that again depicts the seven 

half-matrices, each representing one similarity metric. A very similar result pattern can be seen. 

Figure 3.18 shows the respective profile plots with the mean of the 7 again being 151 (median 

155). Similarly, we also investigated the similarity matrix and similarity profiles of the 10 mm 

smoothed discovery sample (‘permute’ aggregation scheme) and found that the profile showed 

a mean peak location at k=148 (median 145) (Figure 3.19A-G and Figure 3.20). The mean values 

reported here in the text are based on the raw values of Table 3.6 using the ‘permute’ scheme.  

The full result matrix hereof is given in Table 3.6 that also shows mean, SD and median values 

of all 21 (7 metrics, 3 aggregation schemes) and overall mean, median and SD values for all 21 

values. With the overall mean values of 147.6 (rounded 148) and 150.0 being very close, we 

defined k'=149 as the final dimensionality for visualization purposes and post-hoc analyses. 
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Figure 3.15: Half-matrices representing each one similarity metric of the discovery sample 
smoothed 6 mm.Within the half-matrix, each field represents the average of similarity 
comparisons with all other fields (i.e., the aggregation scheme ‘permute’) of that same row k’. 
The metrics are: A: Mean Pearson, B: Median Pearson, C: Delta 1st/2nd, D: SD of PCV, E: 
Percentage of PVC =1, F: Percentage of PVC=0, G: Percentage of PVC > 1. See table X for details 
on the metrics.  
 

Figure 3.16: Profile plots of seven similarity metrics of the discovery sample smoothed 6 mm 
(aggregation scheme ‘permute’).The vertical line shows the mean position of the seven peaks, 
locating to a rounded 144.  
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Figure 3.17: Half-matrices representing each one similarity metric of the replication sample 
smoothed 6 mm. Within the half-matrix, each field represents the average of similarity 
comparisons with all other fields (i.e., the aggregation scheme ‘permute’) of that same row k’. 
The metrics are: A: Mean Pearson, B: Median Pearson, C: Delta 1st/2nd, D: SD of PCV, E: 
Percentage of PVC =1, F: Percentage of PVC=0, G: Percentage of PVC > 1. See table X for details 
on the metrics.  

 

 
Figure 3.18: Profile plots of seven similarity metrics of the replication sample smoothed 6 mm 
(aggregation scheme ‘permute’).The vertical line shows the mean position of the seven peaks, 
locating to a rounded 151.  
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Figure 3.19: Half-matrices representing each one similarity metric of the discovery sample 
smoothed 10 mm.Within the half-matrix, each field represents the average of similarity 
comparisons with all other fields (i.e., the aggregation scheme ‘permute’) of that same row k’. 
The metrics are: A: Mean Pearson, B: Median Pearson, C: Delta 1st/2nd, D: SD of PCV, E: 
Percentage of PVC =1, F: Percentage of PVC=0, G: Percentage of PVC > 1. See table X for details 
on the metrics.  

 

 
 

 
Figure 3.20: Profile plots of seven similarity metrics of the discovery sample smoothed 10 mm 
(aggregation scheme ‘permute’).The vertical line shows the mean position of the seven peaks, 
locating to a rounded 150.  
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Table 3.6: Distribution of the peak positions of k' for each of the seven similarity metrics and 
three aggregation schemes for four samples.  These samples were: discovery 6 mm, 
replication 6 mm, discovery 10 mm, and discovery 6 mm with combat-only)  

Scheme Discovery 
(6 mm) 

Replication 
(6 mm) 

Discovery 
(10 mm) 

Discovery (6 mm) with 
Combat-only 

Permute 135 140 140 135 

Permute 140 155 145 140 

Permute 135 135 140 110 

Permute 145 155 150 145 

Permute 145 175 160 170 

Permute 150 135 140 115 

Permute 150 165 160 165 

Neighbour 155 175 165 170 

Neighbour 120 135 140 105 

Neighbour 140 115 150 155 

Neighbour 180 175 150 175 

Neighbour 140 130 150 110 

Neighbour 145 135 150 165 

Neighbour 175 180 150 180 

Diagonal 135 130 160 115 

Diagonal 145 130 150 160 

Diagonal 175 180 145 175 

Diagonal 135 130 150 115 

Diagonal 145 165 150 170 

Diagonal 175 180 150 180 

Diagonal 135 130 165 120 

Median 
 (Permute) 

145 155 145 140 

Mean 
(Permute) 

142.9 151.4 147.8 140 

SD 
(Permute) 

16.0 21.6 7.7 22.7 

Median 
(Neighbour) 

145.0 140.0 150.0 155.0 

Mean 
(Neighbour) 

147.6 150.0 150.0 146.4 

SD 
(Neighbour) 

16.0 21.6 7.7 22.7 

Median 
(Diagonal) 

145.0 140.0 150.0 155.0 

Mean 
(Diagonal) 

147.6 150.0 150.0 146.4 

SD 
(Diagonal) 

16.0 21.6 7.7 22.7 

Median (Overall) 145.0 140.0 150.0 155.0 

Mean (Overall) 147.6 150.0 150.0 146.4 

SD (Overall) 16.0 21.6 7.7 22.7 
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Optimally dimensioned parcellation of the discovery sample with discrete and fuzzy 

boundaries 

There are a lot of challenges for constructing the discrete atlas. Here, “discrete” means that one 

voxel is attributed to one and only one component. We have considered the degree of 

component stability in three different grades: a) no consideration of Iq values, b) using the 

conventional Iq value from ICASSO, c) tensor-clustering based Iq value that also considers 

instability of the subject loadings. We have considered an/the ICA solution with k=149 for 

comparing the discovery with the replication atlas with fuzzy boundaries where lower values 

indicating vague attribution (difference between first and second best Z-value) and higher values 

indicating clearer attribution. We have flipped the intensities due for visualization purposes. 

Here (Figure 3.21), broader bright bands indicate a larger area of uncertainty whereas thin bright 

lines indicate a certain distinction between bordering parcels. At the same time, dark areas 

indicate voxels/components with very low uncertainty. 

 

Figure 3.21: Discovery and replication sample atlas parcellation border images.In these 
depictions, we display high values for high ambiguity between the best and second best 
component Z-value, and low values for low ambiguity. Thin lines represent sharp, clear borders 
whereas broader bands represent areas more difficult to attribute to one parcel. Note that no 
separate parcels are shown in the strict sense, but rather ambiguity border information that 
underlies the attribution to discrete parcels.  
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Comparison between discovery and replication sample based parcellation 

 

Figure 3.22: A-G Seven half-matrices, each representing one similarity metric, of a comparison 
of the discovery sample with the replication sample(A: Mean Pearson, B: Median Pearson, C: 
Delta 1st/2nd, D: SD of PCV, E: Percentage of PVC =1, F: Percentage of PVC=0, G: Percentage of 
PVC > 1).  

 

We have also compared and investigated the similarity between discovery and replication 

sample with 6 mm smoothing. Figure 3.22 A-G shows the comparisons of corresponding 

parcellation of the k-by-k’ (half-)matrix, including the original ICAs, using the same 7 metrics as 

between discovery and replication sample. The mean Pearson correlation between discovery 

and replication sample which assesses spatial component similarity (k=149 each) was 0.53 which 

is moderate. Most importantly, however, Figure 3.20 E depicts how many percent of the 

components in the replication atlas found exactly one corresponding component in the 

discovery atlas. This procedure accepts minor deviations between components as long as they 

bind together in comparison. Values were high throughout the diagonal line, dropped for 

agglomerations from higher parcellation, and showed a profile plot with a peak at 62 (Figure 

3.23) 
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Figure 3.23: Profile plots of seven similarity metrics of the comparison between discovery and 
replication sample smoothed 6 mm. The vertical line shows the mean position of the seven 
peaks, locating to a rounded 62.  
 
We have also visually compared the component similarity between discovery, replication with 
sorted and binarized resorted standard Iq values. Most of the components looks very similar in 
discovery and replication sample (Figure 3.24 and Figure 3.25). 
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Figure 3.24: Discovery and replication sample atlas parcellation for k=149.Most of the 
components looks very similar between discovery and replication sample.  

 

 
Figure 3.25: The representation of components maps for discovery and replication with a 
dimension of k=149 in a multi-sliced plot ;where A represents multi-sliced plot for discovery 
sample, B represents multi-sliced plot for replication, C represents multi-sliced plot for 
replication with sorted Iq values and then D represents multi-sliced plot with binarized and 
sorted Iq values.  
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Effects of residualisation on age (and other covariates ICV, sex, sex-y-age interactions) 

Not performing the residualisation as explained before, led to lower Delta-values and seems to 
degrade the atlas quality. Voxel-wise age effects seem to put noise on the system. 
 

 

Figure 3.26: Effect of residualisation on component formation. Combat-only without 
residualisation demonstrates larger areas of ambiguity and generally higher values.  

 
Effects of smoothing 

The degree of smoothing applied (smoothing kernel 6 mm3 and 10 mm3) to data is inversely 
proportional to the range of the standard deviation of the position of number of components. 
10 mm atlas is clearer so less number of small island around, and the borders sharper in some 
areas, so the atlas is more stabilized with higher smoothing kernel (Figure 3.27) 
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Figure 3.27: Effect of smoothing on component formation. Atlas and border images with higher 
smoothing kernel demonstrates smaller areas of ambiguity and less small changes around the 
atlas which helps to develop more stabilize parcellation framework.  

 
Finally, we have constructed the atlas using K=149 and re-agglomerated them to 20 
components to visualize each component with clear and separate color. 

 

 

Figure 3.28: Atlas with k=149 parcels but re-agglomerated in 20 parcels for discovery and 
replication sample. 
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3.4 Discussion and Outlook 
 
Summary of concept and results 

We have built a data-driven parcellation framework and used it to dissect GM volume maps of 

the brain into a set of about 150 brain areas. As method to identify groups of voxels that behave 

similarly across the population we used ICA, more precisely, ICASSO, a variant of ICA that repeats 

several runs of ICAs to calculate stability values from this. As examples of the population we 

work on two about equally sized (563 and 566) sets of GM images of healthy subjects. The mixing 

matrix holds information  of the contribution of individuals to the sources, and morphometric 

analyses using these values are referred to as source based morphometry (SBM) 156. Still, we 

continued differently with the ICASSO solutions in that we performed across a wide range of 

components (20 to 558): We used this multi-ICASSO framework to feed a re-agglomeration step 

and then compare re-agglomerated components systems to find out the optimal number of 

‘true’ components in the VBM-GM data. This computationally expensive approach was used in 

four different datasets to investigate and validate this optimal number, or at least range, of 

components. 

Our main findings were as follows: 

1 We detected a stable range of 145-150 GM volume components that were purely ‚data-

driven‘(Table 3.6, Figure 3.16, Figure 3.17, Figure 3.29), identified by the combination 

of ICASSO, re-agglomeration and similarity comparisons. 

2 This dimensionality median was stable across two samples and across two different 

spatial smoothing levels. Ranges were larger (still with a similar center) in the replication 

sample and when skipping the covariate correction step (see Table 3.6). 

3 Their spatial patterns were reasonably similar, depending on the exact type of analytical 

approach. (Figure 3.21): While re-agglomerations with k’ very different from k were not 

similar, the similarity was higher when k’ was close to k (see discussion below). Ignoring 

the hierarchical tree structure and focusing on the width of ambiguous border zone 

voxels revealed very good comparability. 

4 Hierarchical clustering plus similarity analysis served as useful approach to determine 

the dimensionality in ICA. Though suggested in a simple form as ‘blocked ICA’, its 

systematic extension and combination with elaborate similarity comparisons has not 

been reported before. 

5 Our approach allows to break down VBM-GM data in the sense of an anatomically 

interpretable dimensionality reduction. The approach may also be useful for non-
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imaging related, high dimensional data such as genetic data, epigenetic (e.g., 

methylation) data and transcriptomics. 

6 The residualisation step to remove linearly estimated effects of ICV, age, age2, sex and 

ethnicity had an impact on the border zones that – while still showing the same basic 

parcellation pattern - were less definite. 

 
Figure 3.29: Distribution, median and quartiles of the optimal number of components of all 4 
samples. Values per boxplot are the 21 peak position values (7 from each of 3 agglomeration 
schemes).  Note smallest range in the Discovery 10 mm sample.  

 
ICA variants and other clustering tools as alternative - defense of the choice made 

We constructed and evaluated VBM-GM atlases using both the discovery and replication sample 

by employing ICA as main method to detect components in the data, followed by hierarchical 

clustering and similarity analyses. Various alternative clustering tools are available for 

dimensionality reduction and component analysis: K-means is perhaps the most widely used 

vector data clustering technique. It consists of an alternative optimization of (1) the 

assignment uk−means of samples to a cluster and (2) cluster centroid estimation. The inertia, i.e. 

the total of squared differences between samples and their representative cluster centroid is 

minimized. In K-means the clustering of sMRI data without explicitly considering their spatial 

structure, although before the clustering spatial smoothing, can provide for spatial 

regularization indirectly.  K- Means clustering holds some inconvenience since it fails to 
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contemplate any information regarding spatial structure and is therefore sensitive to noise and 

other imaging relics, such as intensity inhomogeneity. It can also lead to a sub-optimal local 

solution due to poor initialization. Hierarchical clustering, which we used here only as a 

secondary methodology, can be also considered as an alternative188. These processes begin with 

every singleton {j} cluster xj voxels. Instead of measuring the Euclidean distance directly, it 

analyzes the variance of clusters. At each iteration, a pair of clusters is selected according to 

optimal cluster selection criterion. This process gives rise to a hierarchy of clusters that are 

depicted as binary tree, also often referred to as Dendrogram188 in which each non-terminal 

node is related to the clusters of its two children. The variance-related approach to Ward's 

algorithm is used most commonly 189 among various hierarchical agglomerative clustering 

procedures 190. Agglomerative clustering is the most general method of hierarchical clustering 

for grouping objects on the basis of similarities. Each object is viewed as a singleton group, which 

begins by the algorithm. Second, pairs of clusters will be successively fused into a large cluster, 

which will hold all objects, before all clusters are united. The effect is a tree-based image of the 

objects, known as Dendrogram. The ward algorithm also does not include any spatial structure 

information in the process. Although, we have used the agglomerative hierarchical clustering 

approach to fuse the higher component solution to lower component solutions but this can be 

alternative clustering approach for directly obtained brain parcellation191. For generating the 

component map, we have used Infomax ICA which not only contains all the spatial information 

but also provides robust solution156.  Fixed-point based FastICA192 and max mutual information 

based Infomax ICA 46,48 both have been widely used in many sMRI related studies but in our 

study we have used mainly due to its stability advantage193. 

 

Comparison with other brain parcellation methods 

VBM based GM maps were used as input data and Infomax ICA along with hierarchical clustering 

based re-agglomeration scheme were used for finding components. In the following we will 

discuss other established brain atlases. A formal comparison between the here developed GM 

volume based data-driven parcellation and publicly available parcellation 194is challenging in 

several ways: First, not all parcellation are available as volume representations but in a 

vertex/surface format.  We focused on atlases available in volume space, due to VBM being 

clearly bound to a 3D-grid-framework. Second, several parcellation contain only cortical (with 

or without the cerebellum) but no subcortical areas. As our parcellation over the entire GM 

space, we compared the development of our atlas parcellation scheme with Glasser Atlas 

195(based on multimodal and contains T1w images) and Shen atlas196 (based on spectral 

clustering on resting state fMRI datasets) 
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Glasser Atlas (Glasser et al 2016): The complexity of the human brain cortex requires a map of 

its major subdivisions for many subsequent applications in imaging.  Using the multi-modal MRI 

Human Connectome Project (HCP) images and an objective neuro-anatomatic semi-automatic 

approach, Glasser et al. presented 180 areas per hemisphere in a precisely aligned group 

average of 210 healthy young adults, using sharp changes in the cortical architecture, function, 

connections, and topography. They used T1w and T2w structural images, task-based and resting 

state-based fMRI images, diffusion-weighted images, and b0 field maps to generate a cortical 

parcellation generated from multimodal images of 210 adults from the HCP. They developed a 

semi-Automated quantitative method to detect transitions representing candidate's real 

boundaries, adapted to data on multimodal neuroimaging (T1w and T2w structural images, task-

based and resting state-based fMRI images, diffusion-weighted images, and b0 field maps), 

based on gradient-based parceling, on two-dimensional cortical surface models. A trained 

machine-literature classifier was used to identify the multimodal fingerprint for each cortical 

area to enable automated delineation and identification of these subjects for new HCP topics 

and future studies. This classifier identified the occurrence, replicated group parcellation, 96.6 

percent of cortical areas in new subjects, and could correctly find parcels in individuals with 

atypical parceling. Cortical regions were delineated concerning function, connectivity, cortical 

architecture, topography, and expert knowledge and meta-analysis results from the literature. 

The similarity was that both atlas parcellation framework was a model-driven approach and 

Glasser also included T1 weighted images in the atlas parcellation scheme. However, Glasser 

atlas focused on cortical areas but did not include any subcortical areas where our VBM-GM was 

based on grey matter maps and covered the full brain, including cortical and subcortical areas. 

 

Shen Atlas (Shen et al. 2013): A group-based parceling approach was used to define network 

analysis nodes. They defined a number of nodes as the input to the first instance, and the 

purpose was to investigate network-theory-based analyses. The replicability of parcellation in 

every sub-unit was calculated and shown to be high among several groups of healthy volunteers. 

The proposed approach was then applied to real resting-state fMRI data, and the whole-brain 

parcellation results are shown along with reproducibility maps. For 200 subunits (102 L, 98 R), 

they used a spectral clustering approach to compute a volumetric group-wise parcellation based 

on an optimization process that guarantees functional homogeneity within each parcel that 

computed parcels are consistent across subjects. Volumetric parcels from the provided 1 mm 

sampled 268-parcel atlas are projected to the cortical surface. The similarity between the Shen 

atlas framework and our atlas framework was that Shen performed whole-brain parcellation to 
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build the atlas, and our data-driven atlas was also done on the whole brain. Shen used a group-

wise multigraph clustering algorithm to produce subunits with homogeneous temporal patterns 

and build a data-driven parcellation framework to finalize the atlas' optimal number the atlas. 

We have also built and data-driven atlas framework to finalize the number of parcels for our 

VBM-GM based atlas. However, Shen atlas was developed using resting-state fMRI data, and our 

data-driven atlas was build using grey matter maps. 

 
Discussion of user-dependent settings in the pipeline smoothing levels 

Smoothing effects: We have found significant differences in the median of the optimum 

component solution between 6 mm and 10 mm solution (both applied to the discovery sample), 

but the range of peak positions was clearly lower in the 10 mm smoothing version (Figure 3.28). 

However, increasing the spatial smoothing from 6 mm to 10 mm increased the proportion of 

stable components over the entire range of k (Figure 3.27). While comparing the atlas between 

6 mm and 10 mm smoothing Comparison of we have found that 10 mm discovery showed more 

stability in border patterns than 6 mm smoothing (Figure 3.27), and the range for the standard 

deviation of the peak position of the atlas was also much narrower than 6 mm. Spatial smoothing 

increases the signal to noise ratio, which improved the stability in the brain atlas. So smoothing 

played an essential role in the data-driven atlas parcellation framework. 

 

Finding the optimal dimensionality of ICA: alternative methods 

A problem that comes naturally with clustering algorithms is choosing the number of clusters to 

be used in the model. We applied four methods among the methods considered as standard in 

the field to find the optimal dimensionality of an ICA. These are Minimum Description Length 

(MDL), Bayesian Information Criterion (BIC), Cross-validated likelihood, Bootstrap with similarity 

measurement 

 



  

98 

 

Figure 3.30: MDL plot for estimating number of component using replication datasets. We 
noticed a sharp minimum using non-residualized dataset. However, we don’t see any sharp 
minimum after using the residualized datasets.  

 
Component estimation using MDL from non-residualized and residualized replication dataset 

In essence, we found that minima at 43 (SBM) for the discovery sample. After residualisation of 

the raw dataset, the MDL plots showed no local minimum but a sharp drop to zero (with high 

artificial minima reported). The pattern was similar for the replication sample, with 33 and 56 

components for the raw data, slightly fewer after Combat, and no stable results after 

residualisation. Residualisation may cause to overfit the data, and they caused a wholly 

unreliable and deficient number of estimated components. We found a low number of 

estimated components using another preprocessing scheme, which might indicate the non-

gaussian characteristics of the MDL algorithm were not entirely suitable for the datasets (Figure 

3.30) 

Table 3.7: Dimension estimate using MDL for discovery and replication samples in different 
versions. MDL was estimated in GIFT-SBM designed for VBM data. 
 

 
Component estimation using ICL from non-residualized and residualized replication dataset 

ICL: In separate experiments, we have also estimated the dimensionality using ICL. The ICL 

criterion106 is an alternative to BIC. The Bayesian Information Criterion (BIC) is a method for 

estimating an optimal number of component. It is appropriate for models fit under the 

maximum likelihood estimation framework. 

𝑩𝑰𝑪 =  −𝟐 ∗ 𝑳𝑳 + 𝐥𝐨𝐠(𝑵) ∗ 𝒌 

Where log () has the base-e called natural logarithm, LL is the log-likelihood ration of the models, 

N is the number of subject and k is the number of parameters in the model. The score as defined 

above is minimized, e.g. the model with the lowest BIC is selected. ICL equals to BIC plus penalty. 

Sample Preprocessing Method Minimum Comment 

Discovery 

None (raw) 
 

MDL in sbm 43 Sharp minimum 

Combat MDL in sbm 43 Sharp minimum 

Residualization MDL in sbm 558 Sharp drop 

Combat & residualisation MDL in sbm 4 
Yet strange and with 
sharp drop at 550 

Replication, 
N=564 

None (raw) MDL in sbm 56 Sharp minimum 

Combat 
 

MDL in sbm 22 Sharp minimum 

Residualization MDL in sbm 5 
Not reliable / sharp 
drop at ~550 

Combat & residualization MDL in sbm 5 
Yet strange and with 
sharp drop at 550 
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Up to now it has been widely presented as a penalized likelihood criterion, which penalty 

involves an “entropy” term. 

𝑰𝑪𝑳 = 𝑩𝑰𝑪 + 𝒑𝑴, 

where pM > 0 is the penalty applied to the likelihood L of model M. 

ICA was not implemented in GIFT-SBM toolbox so we needed to calculated it outside of GIFT-

SBM toolbox (Table 3.8) 

Table 3.8: Dimension estimate using ICL for the discovery and replication sample. Note that 
again the raw samples and samples after, combat-only, residualisation and after both 
correction steps were used  

Sample Preprocessing Method Minimum Comment 

Discovery, N=563 
None (raw) ICL 445 Sharp minimum 

Residualization (raw) ICL 445 flat 

Replication, N=564 

None (raw) ICL 420/445 Sharp minimum 

Combat ICL 445 Sharp minimum 

Residualization ICL   No minimum flat 

Combat & residualisation ICL 420/445 flat 
 

We have used PCA data matrix as input. After preprocessing, PCA was performed on data matrix 

[subjects × voxels] of the discovery ample. We have then used the score matrix (subjects-1 

× subjects) obtained from PCA and fed this into “mclustICL”197 function to calculate the ICL 

value. The estimated dimension was that of the relatively (locally) lowest ICL value. 

 
Importance of reliability analysis using ICASSO 

We showed how ICASSO could estimate the robustness of independent components. On the 

one hand, it is clear why reliability analysis is needed; any data findings should be based only on 

reliable components. On the other hand, reliability analysis provides an interesting "data 

mining" tool; it highlights some major stable components and suggests that the remaining 

unstable components can be excluded from the study. This reduced dimension can significantly 

lower the computational cost of the analysis and only consider robust and reliable components 

between dozens of components given by ICA. In principle, we can use ICASSO without reducing 

dimensions just as a weight for the components (multiplicative), where higher Iq will generate 

more weight for a robust component, whereas lower Iq creates less weight for the unstable 

component. PCA is the initial step in the ICA process. In practice, PCA significantly improves the 

quality of the ICA results as it reduces the level of noise. If we can already generate robust and 

reproducible components from PCA, then the overall reliability analysis in ICA will be more 

substantial and robust. 
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A novel approach in similarity analysis for atlas parcellation framework in terms of 

estimating the optimal number of components 

As for the calculation load, the ICA with multiples run with hierarchical clustering in the current 

computational environment is the bottleneck. The computer load as a time consumption 

increases as a cubic function of the number of estimates concerning the current 

implementation. Therefore, more sophisticated implementation, e.g., ICA and estimation of 

number components using cross-validation, may be necessary for the larger number of voxels. 

We are still investigating the alternative clustering methods over ICA. Since we did not use the 

pre-estimated number of components by MDL (built-in GIFT) or ICL approach, we introduced a 

new similarity measurement pipeline with hierarchical clustering, re-agglomeration method, 

and seven different similarity metric to produce a full and sparse component map. Clustering in 

the high-dimensional signal space requires the determination of the number of clusters to be 

modeled. The theoretical problem is challenging to automatically determine optimal values for 

these parameters; ultimately, optimal values also depend upon application-specific and 

subjective considerations. Therefore, we use seven different similarity metrics to finalize the 

optimal number of components for our data driven atlas. Despite computational complexity, 

this similarity framework offered a stable solution over different cohorts. 

 

Limitations 

The time complexity of an algorithm is the total time required by the program to run till its 

completion. The time complexity of the algorithms is most often expressed by the big O-

notation. The complexity of time is an asymptotic notation. This is most generally measured by 

counting the number of elemental steps performed by every algorithm to end execution. Time 

complexity in ICA is a major issue when we are considering reproducibility and repeatability of 

the components. First, we have performed 23 different ICASSO analyses for each of four 

samples. To increase the generalizability of the algorithm we have used 20 runs for each of the 

ICA solution. 

The computational complexity of ICA (ref) is given as: 

 

O(2md(d+1)n), 

 
where d is the number of variables/dimensions, n is the number of samples, and m is the num

ber of iterations. If we increase the sample size or we increase the repetitions, the 

computational complexity will be high198,199. Second, we have used similarity measurement 
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(Pearson correlation and six other measurements) to validate the component similarity. The 

computational complexity of Pearson correlation is 

O(nlogn), 

 
where, n is the number of samples. So, if we increase the sample size then the time complexity 

will increase. In our study we have computed 23 ICAs with 20 runs for each of them. So, all 

together we have performed 460 ICAs and then for the similarity comparison we have calculated 

more than 3 million component comparison analysis. This computational load required high 

performance computational system (HPC). Here we have used our HPC with several cores (>20) 

and 100 GB RAM for each of the run, along with parallel processing to compute the ICA, re-

agglomeration and similarity measurement. All these calculations are only necessary in new 

studies, however, if a new sample-specific atlas should be produced from scratch. Possibly, as 

the range of optimal dimension seems to be round 150 components, for new samples sparser 

schemes could be set up based on this knowledge. 

 

We used IXI sample which a multi-site cohorts including 1.5 Tesla and 3 Tesla scanner. Although 

we used Combat approach to remove the scanner effects from the data but 1.5 Tesla images are 

not fully comparable to 3 T datasets of IXI datasets and our replication cohorts. We still detected 

variability between discovery and replication which possibility indicated that with larger samples 

the atlas stabilizes more (e.g. both samples, 10 mm). Edge-preserving smoothing exists as 

alternative could be of advantage for smaller structures (e. g. hippocampus) that are smeared 

otherwise. Our atlas parcellation framework was only validated using health subjects but was 

not clinically validated if more sensitive to detect disease effect that e. g. a random parcellation, 

or other known atlases. Result atlas neither described nor compared anatomically to other atlas 

systems. This study was mainly focused on the algorithm or building model derived atlas 

parcellation scheme than its anatomical and clinical validity. Resulting parcellation were 

visualized and explored regarding symmetry features and similarity with known functional 

networks. 

 

Outlook 

Data-Driven atlas utilization for clinical comparisons 

According to our goal we have built a GM map-driven atlas from healthy control samples. The 

resulting atlas with a dimension optimized for both samples can be written out in a discrete form 

and used in independent projects. It is ideally used in VBM-like studies because of this type of 

data best match the granularity of the atlas, but also altered functional patterns can be analyzed 
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using this atlas. . As indicated in the limitations, the use of a larger sample smoothed with 10 

mm could reveal an even more generalizable atlas. The already developed parcellation, 

however, seems valid enough to study disease effects, aging effects, or to use it as sparse GM 

data representation for machine learning algorithms. 

 

Data reduction technique for GWAS study of the whole brain: 

This method can be also applied to voxel-wise GWAS study for the whole brain. Stein et al. (2010) 

have performed voxel-wise tensor-oriented morphometry to measure individual differences in 

brain structure at the voxel level in healthy subjects and then performed genome-wide 

association studies (GWAS) for each voxel. They discuss about this developed method (vGWAS) 

by studying the most related variant in each voxel to address the multiple comparison problem 

and computer burden associated with unprecedented amount of genetic data. In such scenario, 

our approach could help to reduce the dimension and generate component maps which will 

reduce the computational burden of the GWAS analysis and improve its interpretability. 

 

Correction with functional connectivity analysis and fiber-tracking 

This parcellation framework can be used to create ROI systems for fiber-tracking and functional 

connectivity analyses, for example to prove the „firing together/wiring together” hypothesis 

(Hebbian Theory). 

 

Transfer of analysis framework to other voxel/vertex-wise measures 

Here, voxel-wise GM volumes were studied. This measure, geometrically, is influence both by 

cortical thickness and surface area (what regards cortical areas), and also subcortical volumes 

have shape features that may be annihilated. Thus, the parcellation framework can be used in a 

similar way to map, for example, cortical thickness. Possibly, volume based networks differ from 

purely cortical thickness networks. As many studies use FreeSurfer to calculate regional cortical 

thickness and provide meaningful clinical results (ENIGMA-overview paper), a pure data-driven 

parcellation of the cortical thickness may be useful as an alternative parcellation compared with 

mostly used DESKANY atlas. 

 

3.5 Conclusion 
 

First, we have built a VBM-GM based data driven brain parcellation that contains cortical and 
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subcortical GM. Our data-driven approach that employed multiple runs of ICA with 

systematically varying dimension, re-agglomeration and similarity analysis to find an optimal 

dimensionality, helped to build such atlas without any prior assumption of the number of ROIs, 

or any other external knowledge. With a typical smoothing of 6 mm found a very similar 

dimensionality round 150 components across two larger samples of healthy subjects. We also 

compared the similarity of the resulting parcellation of the two samples as indicator of 

robustness and generalizability, finding well-matching component pairs across samples, with 

moderate spatial overlap of the components in detail, but very good overlap of the separation 

lines between components. More generally, we have developed a new, computationally 

enriched engine for multi-ICA, re-agglomeration and similarity measurements to define the 

likely dimensionality of VBM-GM data as typically used in clinical studies. Some elements of the 

pipeline may also be transferred to other clustering challenges (e.g., genomic data, or clustering 

the subject space). 
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4 General Discussion 
 

4.1 Similarities and differences between the two projects 
 
In both studies, the objectives were different; however, we applied the same approach to 

achieve the goals, which was unsupervised learning. So, the similarity between the two projects 

is the model derived or unsupervised learning approach. The unsupervised models we discussed 

in the first project used clinical variables to detect treatment response dynamic classes, and then 

we used supervised models to predict those classes of depression treatment response. A mixed 

model-based longitudinal clustering method includes or finds meaningful clusters within 

heterogeneous patient samples in the first project. In the second project, we used a clustering 

method to find robust components for developing a data-driven atlas parcellation framework. 

We have performed external validation in two studies, thus not risking that the model will fit 

well to the dataset used for discovery and replication and extrapolated to other patients. 

However, the difference between the two projects is that we have used longitudinal clinical 

datasets for the dissection of patient space in the first project, and as a result, we have detected 

seven treatment response subgroups. In the second project, we have used cross sectional 

imaging datasets to dissect voxel space into components/networks. 

4.2 Extension of longitudinal clustering to multiple symptom 
development trajectories and to polygenic response scores 

 

By using multivariate machine learning approaches, we investigated latent response subtypes 

by using the MARS dataset (N=1071 61,73). These subtypes were validated using a stable and 

conservative multivariate prediction model (random forest). In summary of the above presented 

study (chapter 2), model-based clustering identified distinct, clinically meaningful and stable 

TRD classes in MDD that were predictable from clinical baseline characteristics. As one outlook, 

conceptually, such clustering of patients with longitudinal Hamilton Disease Rating scale data 

can support larger studies on the neurobiology of treatment response. The latter might also 

apply to multicenter designs, as we showed that the transfer of the clustering model to an 

independent patient cohort worked well. Given the many clinical symptom profiles MDD may 

have, it is a certain limitation that we have investigated the treatment response dynamic 

characteristics only on the basis of the HDRS sum score, collapsing the information of individual 

items. Expressed differently, our approach assumes as a latent hypothesis, that differences 

between symptom profiles make no difference: For example, a patient with sleeping problems 
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and anhedonia as main problems with a sum score 21 is not handled differently than a patient 

with suicidality and anxiety, also reaching a sum score of 21. Still, both patient (types) may show 

different response dynamics. Thus, one future prospective of this approach could be to expand 

the clustering to the whole matrix of HAM-D single items implementing multivariate symptom-

based clustering using the same model based robust clustering method. This extended data-

driven approach would investigate the use of clusters of symptoms on the 21-item Hamilton 

Rating Scale for Depression (HAM-D-21) to define the symptom clusters and their development 

over the treatment period and respect, as first step, respect clinically distinct symptom profiles 

and their development over time. While a wide range of individual patient data was used in the 

current study already, such analysis and replication based on all single items may be challenging.  

Sample size also played an important role in terms of detecting robust and clinically meaning 

clusters. If the sample size is significantly low, then the detected clusters will not able to replicate 

in the different cohort. We have also performed jackknife with 1000 repetitions which is 

conceptually simpler than bootstrap and also performs well for confidence interval for pairwise 

agreement measures. The post-hoc nature of the analysis is further limited by studies of 

different protocols, which can be difficult to combine. The results of the cluster analysis may be 

affected by differences in study design, length, number of treatment arms or other factors. The 

seven-cluster solution may have been influenced by imbalances in the proportions of patients 

within the clusters and consequent differences in clinical features or contributing towards 

differences in efficacy results73,200,201. Thus we have performed a follow up approach will be to 

demonstrate that throughout the course of an episode symptoms develop in individual patterns. 

For these symptom (class) specific patterns we aim at calculating polygenic correlates, using 

results from large GWAS studies on depression. Eventually, this allows to calculate polygenic 

response predictors per symptom class. As a preliminary analysis we have developed model 

derived item clustering framework and found four stable clusters in symptom (item) space. We 

detected these items by dissecting depression symptom space into factors (model based cross 

sectional clustering using “mclust” package) and in future work these item clusters can be used 

to build symptom class specific response clusters by performing 3D-model-based clustering on 

trajectories of these factors over 16 weeks, similarly as in recent work73, yet by a variation of the 

algorithm that considers several trajectories at the same time. These four clusters in symptom 

space were characterized by their baseline severity of core symptoms or anxiety-related 

symptoms.  This will help use to detect not only the overall treatment response dynamic clusters 

but also symptom based treatment response dynamic clusters. 
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4.3 The problem of solution stability: when is an atlas parcellation 
final? 

 
We present a data-driven framework for the development of a VBM-GM atlas with cortical and 

subcortical areas in order to obtain (1) provides a new perspective for the application of the 

data-driven scheme rather than traditional methods, (2) uses the large-scale heterogeneous 

data with multiple to achieve more specific probabilistic atlases than by using the single group 

and single site data in the form of individual variances, (3) demonstrates the advantages of using 

a large-scale scheme to generate robust data-driven VBM-GM atlases, (4) requires high 

computational resources for re-agglomeration of multi-ICA pipeline (from higher number of 

component map solution to lower number of component map solution) and similarity 

measurement between component solution. So, we found that there were spatial differences 

between atlases all though there were already very similar. The proposed method is able to be 

a baseline in many algorithms and applications for medical images because of its higher accuracy 

and low computational costs. 

We found an influence of the smoothing kernel on the final atlas. Spatial smoothing decreased 

the degree of ambiguity clusters whereas the degree of robust and large cluster in the 

parcellation framework increased with the increasing full width at half maximum of the 

smoothing kernel. 

We also aimed to investigate more about whether ICASSO with ICA will be robust enough to 

build data driven atlas in irrespective of cohort type. Instead of performing ICA multiple times 

and measuring inter cluster similarity coefficient for finding robust component we could also 

think of building nested cross validation framework with ICA where model could be evaluated 

on test data so that a cross-validation process with multiple folds and permutations. In each 

case, the model was learned by the training set (i.e., a random subsample of n fold of the data), 

including the estimation of clustering and the fitting of the model, the log-like value calculated 

from the test data is then summarized in parcels in order to give a unique amount (nested cross 

validation of log likelihood) in the test data.  Finally select the optimal number of parcels for the 

based on the integrated completed likelihood obtained from the nested CV pipeline. However, 

in our current study, this approach will be highly expensive due to time complexity and lack of 

sample size for the replication datasets. 

In this study for clustering, we have used seven different measures of cluster ‘goodness’ or 

quality to find optimal number of clusters (parcels) in the atlas framework. These type of 

measures allow us to compare different sets of cluster solution without reference to external 

knowledge and is called an internal quality which is used as a measure of ‘overall similarity’ 
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based on the pairwise similarity of components. However instead of using seven different 

similarity metric we could also have calculated one similarity matric. We have use re-

agglomeration scheme to fuse the component map from high dimension to lower dimension 

using hierarchical clustering and then measure the similarity using these fused atlases. In 

hierarchical clustering, a Dendrogram is the graphical representation of a cophenetic metric202. 

So alternative approach could be comparing the similarity between two Dendrogram (pairwise 

comparison) using cophenetic metrics and then finalize the optimal numbers cluster or optimal 

parcellation solution. 

As a final atlas, we could provide it in two different ways; firstly, we could present the atlas 

solution by providing a range of downloadable atlases (k=140 to 150 parcels). Secondly, we could 

provide the pipeline to develop their atlas. The first way is very straightforward for the external 

user and has no computational cost. However, since the range of downloadable atlases is 

cohort-specific, it may not work correctly on an external cohort with different age ranges and 

sample sizes. Thus the second way will be to provide the complete pipeline to the user. This way 

will not be easier either for the external user, which involves computational cost and finding a 

cohort-specific optimal number of components. We will provide a range of downloadable 

atlases to pick the best one based on their study hypothesis as a immediate solution. 

In a step towards introducing data-driven brain atlases to neuroradiology, we can think of 

various potential use of the atlases in clinical use:  a) to detect an unknown intricate pattern in 

detecting disease groups effectively and label it; b) to cope with the data explosion. The 

usefulness of the atlas for automatic structure identification, localization, delineation, labeling 

and quantification, and reporting and communication potentially increases the interpreter's 

efficiency and confidence and expedites image interpretation in clinical diagnosis. 

A data-driven Atlas is beneficial for brain aging research and may help diagnose Alzheimer's 

disease, as a study suggests. Most of the existing MRI atlases based on VBM-GM are based on 

young and medium-aging brains that do not span the large spectrum of ages. In our research, 

both for discovery and replication datasets, we used a larger aging spectrum that can be easily 

used to recognize improvements in patients' brain structure that may be an underpinning 

symptom of neurodegenerative disorder. The deterioration of brain tissue in an area of the brain 

called the medial temporal lobe is a crucial symptom of early Alzheimer's disease. These brain 

structure improvements are often subtle and difficult to recognize, but a detailed brain atlas 

powered by VBM-GM data could make their identification simpler. VBM-GM-based atlases with 

a wide-scale age range can diagnose brain damage in other disorders, including schizophrenia 

stable subjects. Data-driven brain atlases aim to support earlier detection of psychiatric and 
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neurological diseases that develop at different life stages. These parcellation can also be used 

for fiber-tracking and functional connectivity analysis to prove the "firing together/wiring 

together "(Hebb's hypothesis which will be useful in brain plasticity (Hebb's law)203. 

4.4 Conclusion 
 

All the above-mentioned multivariate pattern analysis approaches; dimensionality reduction, 

independent component analysis, stability measurement of features, and unsupervised 

clustering algorithm will be very useful in detecting robust, meaningful signatures using the 

multimodal datasets. 

  

In the first project, we used clinical datasets to detect seven robust and reproducible subtypes; 

however, we can also use disease brain features obtained from data-driven parcellation 

framework in the longitudinal clustering model and can detect robust brain imaging-based 

subtypes in psychiatric disease.  

 

The fusion of project 1 and 2 would be useful to cluster (model-based clustering) patient space 

based on VBM component weights (unmixing matrix), and so ICA and SBM, in this case, will be 

a useful framework to get component weights using patient datasets and these components can 

be used for detecting disease-specific subtypes. We might face challenges to generate 

components using ICA and SBM based on healthy subjects and then project it on disease subjects 

because brain structure is different across healthy and disease datasets, so learning of 

components from healthy subjects and then predicting disease datasets will not be trivial. 

Consequently, the best approach will be to use the parcellation methodology to detect the atlas 

using disease dataset and extract the VBM component weights and perform clustering or use 

the atlas (based on the heathy subject) to extract brain volume feature for disease datasets and 

then perform clustering. 

  

There is a possible dilemma between methodological development and clinical translation. The 

hypothesis or the purpose of the methodological development needs to be useful and applicable 

for clinical translation. In the clinical translation, one would be more interested in seeing the 

direct effect or biological and clinical signatures directly associated with disease detection 

(treatment response classes or changes in the brain structure across patients). If a 

methodological approach does not directly associate in terms of disease progression or 
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treatment response, doctors may not be very interested in using the clinical translation and 

disease diagnostic framework. 

The treatment response dynamic subtypes obtained from the first project can be used for clinical 

purposes because they have been validated in a large sample cohort and require very few weeks 

(2 to 6 weeks) to correctly detect the treatment response group. 

  

For psychiatric translation, we need unsupervised and supervised learning to find clinically 

meaningful and robust clusters or disease-specific signatures. We should not rely only on 

unsupervised learning, where we would need to validate clusters or features obtained from 

unsupervised learning. For psychiatric translation, we should opt for a hybrid approach to detect 

sub using unsupervised learning and validate those subgroups clinically using supervised 

learning. We should also use the semi-supervised methodology to develop and detect complex 

and sparse biological signatures from the multimodal high dimensional dataset. These sparse 

frameworks can also be applied in precision medicine's clinical translation for the early detection 

of psychiatric and neurological disorders. 
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