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Titel in deutscher Sprache:
Varianzreduzierung mit Multilevel–Schätzern

Zusammenfassung:
Diese Dissertation besteht aus zwei Teilen, die sich beide mit partiellen Differentialglei-
chungen mit zufälligen Koeffizienten befassen, welche bei der Uncertainty Quantification
auftreten. Ziel der Arbeit ist es kosteneffiziente Schätzer zu konstruieren indem Diskreti-
sierungen der partiellen Differentialgleichungen mit unterschiedlichen Genauigkeiten kom-
biniert werden.
Im ersten Teil stellen wir eine multilevel Varianzreduktionstechnik vor, um den Erwar-
tungswert einer relevanten Größe zu schätzen. Außerdem analysieren wir diese. Die
Hauptidee besteht darin, die Schätzung als verallgemeinertes lineares Kleinste-Quadrate-
Problem neu zu formulieren und den zugehörigen multilevel besten linearen erwartungs-
treuen Schätzer herzuleiten. Wichtig ist, dass dieser Schätzer bei einer Hierarchie von
Modellen anwendbar ist. In einem weiteren Schritt betrachten wir die Berechnungskosten
der Samples und konstruieren einen sample allocation optimal best linear unbiased esti-
mator (SAOB). Dieser Schätzer erreicht die kleinste Varianz in der Klasse der linearen
erwartungstreuen Schätzer mit einem vorgeschriebenen Rechenbudget. Somit verbessert
der SAOB bestehende Methoden wie Monte Carlo, Multilevel Monte Carlo und Multifide-
lity Monte Carlo. Man kann zeigen, dass die Komplexität des SAOB asymptotisch optimal
ist für lineare Kombinationen von Samples aus Modelldiskretisierungen, die gegen die ex-
akte relevante Modellgröße konvergieren. Es ist jedoch schwierig, explizite Ausdrücke für
die Komplexität des implizit definierten SAOB zu erhalten. Aus diesem Grund führen wir
die neuen Richardson–Extrapolations–Schätzer ein und analysieren sie um die Kosten des
SAOB nach oben abzuschätzen. Interessanterweise ist der Richardson–Extrapolations–
Schätzer eine Verallgemeinerung des Multilevel–Monte–Carlo–Schätzers.
Im zweiten Teil entwickeln wir einen Multilevel–Monte–Carlo–Schätzer für ein risikoneu-
trales Optimalsteuerungsproblem mit deterministischer Kontrolle. Die Grundidee besteht
darin, die Multilevel Monte Carlo Diskretisierung vom Erwartungswert in der Zielfunktion
auf die deterministische Kontrolle zu verschieben. Dies liefert eine Folge konvexer Opti-
mierungsprobleme. Wir zeigen, dass dies ähnlich wie bei der normalen Multilevel Monte
Carlo Methode die Varianz des Schätzers der optimale Kontrolle verringert. Im Gegen-
satz zu alternativen Methoden in der Literatur, beispielsweise stochastischen Optimie-
rungsmethoden, ist keine Auswahl der Schrittweite erforderlich. Darüber hinaus kann die
Konvergenzanalyse des neuen Ansatzes mit klassischen Werkzeugen aus der numerischen
Analyse durchgeführt werden. Wir verifizieren die Hauptergebnisse dieser Arbeit nume-
risch unter Verwendung einer elliptischen partiellen Differentialgleichung mit zufälligen
Koeffizienten.
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Abstract

This thesis has two parts, both concerned with partial differential equations with random
coefficients arising in uncertainty quantification. The goal of the thesis is to construct
cost-efficient estimators by combining discretizations of the partial differential equations
with different accuracies.
In the first part we introduce and analyse a multilevel variance reduction technique to
estimate the expectation of a quantity of interest. The main idea is to reformulate the es-
timation as a generalized linear least squares problem and derive the associated multilevel
best linear unbiased estimator. Importantly, this estimator can work with a hierarchy of
models. In a further step we consider the computational cost for a sample and construct a
sample allocation optimal best linear unbiased estimator (SAOB). This estimator achieves
the smallest variance in the class of linear unbiased estimators given a prescribed com-
putational budget. Thus, the SAOB improves upon existing methods like Monte Carlo,
Multilevel Monte Carlo and Multifidelity Monte Carlo. We show that the complexity
of the SAOB is asymptotically optimal for linear combinations of samples from model
discretizations which converge to the exact model output quantity of interest. However,
explicit expressions for the complexity of the implicitly defined SAOB are difficult to
obtain. For this reason we introduce and analyse the novel Richardson extrapolation esti-
mators that allow us to upper bound the cost of the SAOB. Interestingly, the Richardson
extrapolation estimator is a generalisation of the Multilevel Monte Carlo estimator.
In the second part, we develop a Multilevel Monte Carlo estimator for a risk neutral opti-
mal control problem with deterministic control. The basic idea is to push the Multilevel
Monte Carlo discretization from the mean in the cost functional to the deterministic con-
trol which leads to a sequence of convex optimization problems. We show that, similar
to standard Multilevel Monte Carlo, the variance of the estimator for the optimal control
is reduced. In contrast to alternative methods in the literature, for example, stochastic
optimization methods, no step size selection is required. In addition, the convergence anal-
ysis of the new approach can be carried out with classical tools from numerical analysis.
We numerically verify the main results of this thesis using an elliptic partial differential
equation with random coefficients.
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Chapter 1

Introduction

Uncertainty quantification is an important branch of Mathematics. Uncertainties arise
from measurement errors, unobservable or only partially known data as well as model
errors which are incorporated into physical and mathematical models [54, 130]. This
is done by assuming that the input of the model is random and takes on a possibly
infinite set of values with a prescribed probability. The input can be obtained from real
life measurements, generated samples from a simple distribution or the result of another
model. The response or output of the model then assumes a possibly infinite set of values
and follows a probability distribution, which allows us to study the model under different
configurations. This field of study is often called forward uncertainty quantification to
distinguish it from the more challenging inverse uncertainty quantification, where the
output is given and the input (distribution) has to be reconstructed, see e.g. [37, 129] or
[130, Chapter 6].
The infinite set of model outputs are difficult to examine and thus often collapsed in a
meaningful way into fewer values. The most important statistic is the expected value or
average output of the model. Other important statistics include the variance, moments,
quantiles or risk measures, see [110] or [127, Section 6] for the latter. The models and the
probability distribution of the inputs are often complicated such that there is no analytic
expression for the probability distribution of the output. Hence, the statistics of the
output have to be estimated or approximated with a numerical scheme. A well–known
technique for the estimation is the Monte Carlo method [77, 79, 118] which samples from
the input distribution or uses representative samples from real life measurements. The
model is then simulated and the computed or measured outputs are averaged to obtain
an approximation for the expectation.
There are numerous applications of the above approach. Classical use cases for proba-
bility theory and estimation include financial products, where we want to compute the
expected return, estimate the risk of a default or optimize a portfolio with respect to
(w.r.t.) some metric, see [59]. Similar methods are used to analyse related fields like
stochastic games and gambling. Machine learning [69, 99, 132] is another use case and
estimation is specifically used to train regression models like neural networks or kernel
methods. The models are trained for complicated tasks, for example image classification,
face recognition, targeted advertising, knowledge discovery or reinforcement learning for
board games. Other examples include groundwater flow where the composition of the
underlying rock layers is not fully known [40, 141]. In this thesis, we concentrate on a
randomized version of Poisson’s equation which models the stationary temperature profile
in a material with unknown heat conductivity coefficient. This is the standard model in
forward uncertainty quantification [25, 31, 63, 87, 134]. We assume that the conductiv-
ity coefficient is a lognormal random field and we use the Karhunen–Loève expansion [1,
Section 3] to sample from it. We now informally describe the methods, motivation and
goals of this thesis. Afterwards, we give a brief summary of the contents and main results
of each chapter.

Estimation. The Monte Carlo method is an extremely general method that can be
used to estimate the mean. The idea is to average the model outputs for multiple inputs
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following the same distribution. It relies only on a few weak assumptions, is often easy
to implement and does not require any knowledge of the underlying distribution, except
for existence of the first moment. Furthermore, the Monte Carlo method does not suffer
from “the curse of dimensionality”, which is often in contrast to deterministic quadrature
rules, see [24][Section 2], [35, Section 5.4] or [46, Section 1]. The curse of dimensionality
is a phrase to emphasize that the cost of a method increases rapidly, sometimes even
exponential, with its dimension. The generality of the Monte Carlo method and its easy
use has the significant downside of not being very cost effective. Indeed, this method often
requires a large amount of samples and thus we have to compute the model response very
often. Considerable research and methods have been proposed to improve and speed up
basic Monte Carlo. An often used term in this context is variance reduction since the cost
of the Monte Carlo method is often proportional to the variance of the random model
output [59, 118]. All parts in this thesis are geared towards achieving and obtaining a
variance reduction with sampling based methods. We mainly focus on the control variate
approach and neglect other approaches that modify the sampling process like importance
sampling, Markov chain Monte Carlo or Sequential Monte Carlo [28, 48, 54, 118].

Model discretization and variance reduction. Models like Poisson’s equation for
diffusion processes often require numerical approximations, since the respective solution
cannot be computed analytically. This requires us to discretize an infinite dimensional
function space and we use the well–known finite element method [21, 29] which approx-
imates this space with a finite number of basis functions. The approximation quality
increases if we increase the number of basis functions, hence the costs to obtain an ap-
proximate solution also increases. This means that there is an inherent trade off between
the accuracy of the solution and the computational costs. Multigrid methods [67, 137] use
coarse grids to reduce the effort to solve a linear system on the fine grid. The idea to use
coarse models for estimation was used by Heinrich [70] and the Multilevel Monte Carlo
approach was analysed by Giles [56, 57]. A control variate approach, where coarse grid
levels are used, is the Multifidelity Monte Carlo estimator [106, 107] or the Approximate
Control Variate approach [62]. A survey of Multifidelity methods for estimation can be
found in [108]. As it turns out, if the model discretization satisfies some cost and variance
properties, then the Multilevel Monte Carlo estimator of Giles [56] achieves a substan-
tially smaller asymptotic cost than Monte Carlo. This means the actual model, whose
mean we want to approximate, can be estimated much cheaper. This was also verified
analytically for the Multifidelity Monte Carlo estimator in [106].

Best linear unbiased estimators and sample allocation. We show that it is
helpful to view the estimation of the mean as regression problem. The best linear unbiased
estimator, which is a well–known method in Statistics [8, 64, 69, 96, 114, 116, 142] uses
a linear combination of samples to estimate a parameter. We systematically develop
estimators that combine samples from inaccurate but cheap models with accurate but
expensive models. In contrast to Multilevel Monte Carlo methods, which exploits a similar
idea to drastically reduce the costs at least in the case of hierarchical models, we emphasize
the viewpoint as regression problem. We furthermore optimize the sample allocation
that determines the used models and how often we evaluate them. This then leads to
an estimator that is cost minimal in the class of linear unbiased estimators. Sample
allocation problems are crucial for a good estimator and this was already discussed in [56]
and [107] for the respective estimators that allow for a unique sample allocation under
mild assumptions.
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Optimal control problems. The goal in optimal control problems is to find a control
that steers the response of a system towards a prescribed desired state [73, 136]. For
example, the temperature inside a material should be close to the desired temperature
and we can cool or heat the material only at the boundary. Mathematically speaking,
this can be formulated as constrained minimization problem, where the solution is the
optimal control. The distinguishing feature is that the response of the system cannot
be controlled directly but only indirectly. The conductivity coefficient is often unknown
and thus assumed to follow some probability distribution. This problem is a risk neutral
optimal control problem and has gained interest in the literature, where different variants
and solution methods are discussed [4, 16, 52, 82, 138]. We search for a deterministic
control, however, the response of the system is random. Therefore the control is chosen to
be close on average to the desired state. We propose a novel variance reduction technique
based on the Multilevel Monte Carlo method to solve this minimization problem.

1.1 Organization of the thesis

This thesis is organized in eight chapters, where the first one is the introduction. We
list the other chapters with their respective content and objective. Figure 1.1 shows the
ordering of the chapters.

Chapter 2: Partial differential equations with random coefficients. In this
chapter we introduce concepts needed for forward uncertainty quantification. This in-
cludes basic probability theory, where we introduce random variables, their expectations
and variances. We further discuss the Karhunen–Loève expansion which is a method to
generate samples with values in an infinite dimensional Hilbert space. We conduct numer-
ical experiments with the help of Poisson’s equation, which we discuss in the last section
of this chapter. We further provide known results for the accuracy of the finite element
approximation of the solution.

Chapter 3: Estimation and variance reduction. We present methods to estimate
the expectation of a quantity of interest. These methods are used in practice and well
known in the literature. We start with the Monte Carlo method and introduce the con-
trol variate approach to obtain a variance reduction. Practically implementable control
variate approaches are the Multifidelity Monte Carlo and Approximate Control Variates
estimator, which improve over standard Monte Carlo in certain circumstances. We fur-
ther introduce the Multilevel Monte Carlo method, which is another method to reduce
the variance. We provide asymptotic results of these estimators for a model sequence
converging to the true model and introduce the notion of a lower variance bound. We use
these methods as comparison to the best linear unbiased estimator or the SAOB in the
following chapters.

Chapter 4: Multilevel best linear unbiased estimators. We present the basic idea
behind multilevel best linear unbiased estimators (BLUE) in this chapter. We examine the
class of linear estimators that use linear combinations of the samples and are unbiased
w.r.t. some linear combination of the mean values. A well–known result is that there
exists a best linear unbiased estimator, where best means that the variance is smallest.
Importantly, we reformulate the estimation of the mean as linear regression problem
which allows us to use the available mathematical literature for least squares problems.
The multilevel BLUE is then the (unique) solution of this regression problem, where
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the expression “multilevel” refers to different discretization levels of the same quantity
of interest. We then examine the estimators of Chapter 3 and give details under what
circumstances these are BLUEs.

Chapter 5: Sample allocation optimal BLUE. The BLUE is defined as solution of a
regression problem. This regression problem itself depends on the sample allocation, which
we study in this chapter. We introduce a budget constraint and the costs for the evaluation
of a model group. A model group is a collection of models that we evaluate using the
same input sample. The goal is then to select the regression problem and estimator such
that the variance is minimized given a fixed budget. We call the resulting estimator
the SAOB, which is optimal in the class of linear unbiased estimators. Computing the
true SAOB is in general an intractable problem due to integer constraints and thus focus
mostly on a relaxed version. We show that the relaxed sample allocation problem has a
solution, verify that this solution is in general not unique and a solution can be found
that uses at most L model groups. We then proceed and show that first optimizing the
sample allocation and then the coefficients is beneficial to remove some assumptions of the
previous theorems. The resulting optimization problem is similar to an `1 minimization
problem, which allows us to show that the set of minimizers has a specific structure.

Chapter 6: Asymptotics of the SAOB. This chapter extends the asymptotic analysis
of the Multilevel Monte Carlo estimator to the SAOB. The latter estimator is only given
implicitly as a minimizer of a convex optimization problem and thus rather difficult to
analyse. However, since the SAOB is the linear unbiased estimator with the smallest
variance given some prescribed budget, we are able to bound its complexity with explicit
complexity bounds from other linear unbiased estimators. In particular, we are able to
use the Monte Carlo, the Multifidelity and the Multilevel Monte Carlo estimator. We
then introduce Richardson extrapolation for both the mean and the variance to obtain
an estimator that, under specific assumptions, has an improved complexity compared to
other estimators. The obtained complexity bounds, while not necessarily sharp, are also
valid for the SAOB.

Chapter 7: A multilevel approach for the risk neutral optimal control prob-
lem. We introduce a multilevel approach for solving optimization problems, which
we exemplary apply for a linear quadratic optimization problem. This problem is a risk
neutral optimal control problem where we compute a deterministic control such that the
systems response is on average close to some prescribed state. A straightforward and
naive application of the Multilevel Monte Carlo estimator leads to an ill–posed optimiza-
tion problem. Our approach is to push the Multilevel Monte Carlo discretization to the
deterministic control, hence the name Multilevel Monte Carlo for the control. We verify
that this leads to a sequence of well–posed convex optimization problems. Furthermore,
this substantially improves the cost that are up to logarithmic factors equal to the cost
of the standard Multilevel Monte Carlo estimator.

Chapter 8: Conclusion and outlook. We finish with a conclusion of this thesis and
discuss open problems together with possible future research directions.
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Introduction, Chapter 1

PDEs with random coefficients, Chapter 2

Estimation and variance reduction, Chapter 3

Multilevel BLUEs, Chapter 4

Sample allocation optimal BLUE, Chapter 5

Asymptotics of the SAOB, Chapter 6

Multilevel Monte Carlo for the control, Chapter 7

Conclusion and outlook, Chapter 8

Figure 1.1: Chapters and ordering of this thesis.



18 Chapter 1 Introduction



Chapter 2 Partial differential equations with random coefficients 19

Chapter 2

Partial differential equations with random
coefficients

In this chapter we describe the basic notation, definition and results needed as foundation
of this thesis. Basic in this context means that we describe well–known ideas and methods
in mathematics. We lay a common ground to present our results in later chapters. Each
section of this chapter contains a short outline of its topic and concepts adapted for this
thesis, where proofs of statements are mostly omitted or very short to highlight the main
idea. We provide three distinct sections regarding related parts of Forward Uncertainty
Quantification.

� Probability Theory: Section 2.1 contains a short introduction and repetition of
basic notation in probability theory. We explain concepts like random variables,
independence, expectation, variance and provide some useful inequalities. Here we
use standard definitions from [79]. Further introductions to probability theory can
also be found in [6, 10, 77].

� Karhunen–Loève expansion: We are interested in random variables that have re-
alizations in a function space and we use the Karhunen–Loève expansion to generate
samples, which we describe in Section 2.2. We mainly focus on mean zero Gaus-
sian random fields and provide results for the Whittle–Matérn covariance function.
We further discuss some practical methods how to compute and sample from a
Karhunen–Loève expansion.

� Mathematical models: We provide the mathematical models we are using in
thesis in Section 2.3. This is mostly Poisson’s equation, which can be used to
model the temperature of a material given some heat source. We randomize the
conductivity and provide results for the existence and uniqueness of the random
solution of the weak Poisson’s equation. The finite element method is used to obtain
a discretized and thus computable solution which converges to the exact solution
with a certain rate.

2.1 Probability Theory

Random variables. The foundation of modern probability theory is a probability
space. We provide the standard definition and names for related concepts as well.

Definition 2.1 (Probability space [79, Definition 1.38]). The triple (Ω,F ,P) is a proba-
bility space if

� the set of elementary events Ω is non–empty, Ω 6= ∅,

� the σ-algebra F is a suitable subset of the power set, F ⊆ 2Ω,

� the probability measure P is a suitable measure, P : F → [0, 1]. �
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We use the usual definition of σ-algebra, the power set and probability measure. These
definitions are available in Klenke [79, Section 1] or Kallenberg [77, Section 1, Section 2].
We denote (elementary) events with ω ∈ Ω and also refer to the measure P as (probability)
distribution. We call the pair (Ω,F) measurable space. The motivation for Definition 2.1
is to assign every observable event F ∈ F a probability between [0, 1] which models the
chance of it occurring.
We are typically not interested in the probability of a random event F ∈ F but rather on
a respective outcome or effect. This is modelled with the help of random variables, which
are measurable functions that map events ω to quantities that we are interested in.

Definition 2.2 (Random variable [77, Section 2]). Let (H,G) be a measurable space and
Z : Ω→ H a function. Z is measurable if the preimage of a measurable set is measurable.
Stated formally, we require that for all G ∈ G

Z−1(G) := {ω ∈ Ω |Z(ω) ∈ G} ∈ F .

If Z is measurable on a probability space then Z is called a random variable. Then, in
case H is a space of vectors, we call Z a random vector and if H is a space of functions,
we call Z a random field. For H := R we call Z real–valued. �

The random variable Z allows us to define the probability of certain outcomes in the
image space H. For all G ∈ G the probability that Z assumes values in G is

P(Z ∈ G) := P({ω ∈ Ω |Z(ω) ∈ G}) = P(Z−1(G)).

This expression is well defined since Z is measurable by its definition as random variable.
As a consequence we conclude that the triple (H,G,P(Z ∈ ·)) is a well–defined probability
space. The map P(Z ∈ ·) is called the pushforward of P under Z. We denote this by
Z ∼ P and call P the distribution of Z.
The composition of measurable functions is again measurable and thus we are able to
compose new random variables in a simpler way. We precisely state this result.

Lemma 2.3 (Composition of measurable functions [79, Theorem 1.80]).
Let (Ω,F), (H1,G1) and (H2,G2) be measurable spaces. Furthermore, let Z1 : Ω → H1

and Z2 : H1 → H2 be measurable functions w.r.t. the respective σ-algebras. Then the
composition Z2 ◦ Z1 : Ω→ H2 is measurable.

Proof. For G ∈ G2 the preimage Z−1
2 (G) is measurable w.r.t. G1 and thus Z−1

1 (Z−1
2 (G))

is measurable w.r.t. F . This concludes the proof.

An important class of measurable functions are continuous functions. This often allows
us to circumvent the rather tedious direct verification of measurability from its definition.
We require the notion of a topological space, which is formally defined by Klenke [79,
Definition 1.20]. A topological space is a pair (H, τ) where τ is a topology. This can
be constructed from open sets which are defined in terms of a distance function. The
generated σ-algebra is then the smallest σ-algebra that contains these open sets. An
example for a topological space is (R, O), where O contains all open intervals of R. Then
the generated σ-algebra denoted by σ(O) is the well–known Borel σ-algebra.

Lemma 2.4 (Continuous functions are measurable [79, Theorem 1.88]). Let Z : H1 → H2

be a continuous function w.r.t. the topological spaces (H1, τ1) and (H2, τ2). Then Z is
measurable w.r.t. the measurable spaces (H1,G1) and (H2,G2), where G1 := σ(τ1) and
G2 := σ(τ2) denotes the generated σ-algebra.
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Proof. The main idea of the proof by Klenke [79, Theorem 1.88] is that the preimage of
an open set is open for the continuous function Z.

We often examine two or more random variables and their relationship. A pair of random
variables (Z, Y ) is independent if we are allowed to examine Z and Y separately. Infor-
mally, this means that we do not gain any information regarding the value of Z even if
we know the value of Y and vice versa. We make this statement precise for a finite set of
random variables.

Definition 2.5 (Independence of random variables [79, Remark 2.15]). Let (Z1, . . . , ZL)
be a random vector with associated probability space

(H1 × · · · ×HL,G1 × · · · × GL,P((Z1, . . . , ZL) ∈ ·)).

We denote the marginal probability measure of Z` with P` for all ` ∈ {1, . . . , L}. Then the
random variables Z1, . . . , ZL are called independent if the probability measure P factorizes
such that for all G1 ∈ G1, . . . , GL ∈ GL

P((Z1, . . . , ZL) ∈ G1 × · · · ×GL) =
L∏
`=1

P`(Z` ∈ G`). �

Simulation based techniques often require multiple realizations or samples of a random
variable Z. The idea is to extract information by looking at independent copies of Z
which are evaluated for some event ω ∈ Ω.

Definition 2.6 (Independent identically distributed samples). The random variables
Z1, . . . , Zm are independent identically distributed (i.i.d.) if Z1, . . . , Zm are independent
and Z` ∼ P for all ` ∈ {1, . . . ,m}. We always assume that random variables with differ-
ent superscripts are i.i.d.. For ω ∈ Ω we call Z(ω) a sample or realization of the random
variable Z. By slight abuse of notation we often drop the ω and denote i.i.d. samples of
Z with Z1 := Z1(ω), . . . , Zm := Zm(ω). �

The computation of a sample often incurs a random computational cost. This definition
is rather vague, since the exact cost may be the actual time a computer needs to compute
a sample. We may also define the cost as degrees of freedom or number of operations if
computing the sample requires us to solve a linear system.

Definition 2.7 (Expected cost for a random variable). The cost function W maps a
random variable Z to a non–negative real number

W : {Z : Ω→ H |Z measurable } → R≥0. �

The value of W[Z] is interpreted as expected cost to compute a sample of Z. For random
variables Z1, . . . , ZL we abbreviate

w` := W[Z`] for all ` ∈ {1, . . . , L}.

We frequently make statements about random variables that are certain and occur with
probability one. We formally define this and the equivalent formulation for a general
measure space.
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Definition 2.8 (Almost all, P–almost surely). Let (Ω,F , ν) be a measure space and
f : H → {0, 1} be a measurable function. We say that the property f holds for ν–almost
all ω ∈ Ω if

ν(f−1({0})) = 0.

If ν := P is a probability measure we say that f holds P–almost surely, which we sometimes
abbreviate with P–a.s.. We often drop P from the notation. �

There is little value in specifying the measurable space (Ω,F), since this is often given
implicitly in terms of a probability measure P, a probability density function, a random
variable or a cumulative distribution function. Therefore, we never attempt to describe
both Ω and F in this thesis. We however, always specify P or a corresponding random
variable Z.

Moments. For notational purposes and throughout the rest of this chapter we assume
that Z and Y assume values in the Hilbert space H unless stated otherwise. It is often
helpful to summarize or compress a function or random variable Z into a single value. We
achieve this if we integrate out the domain of Z raised to some power p. This operation is
well defined for measurable functions if the function is p-integrable. We formulate this for
a general measure space, where we denote the scalar product of a Hilbert space H with
(·, ·)H and the induced norm with ‖ · ‖H .

Definition 2.9 (Lebesgue space Lp). Let (Ω,F , ν) be a measure space and p ∈ [1,+∞].
The Lebesque space Lp(Ω, H, ν) is the space of measurable functions whose p–th moment
is bounded

Lp(Ω, H, ν) :=
{
Z : Ω→ H |Z is ν–measurable and ‖Z‖Lp(Ω,H,ν) < +∞

}
,

where the norm ‖ · ‖Lp(Ω,H,ν) for p ∈ [1,+∞) is defined such that

‖Z‖pLp(Ω,H,ν) :=

∫
Ω

‖Z(ω)‖pHdν(ω).

For the special case p = +∞ the norm is defined as

‖Z‖L∞(Ω,H,ν) := sup{c ∈ R | ν(‖Z‖H ≤ c) > 0}.

If the meaning of the space is clear from the context we use the abbreviation

Lp := Lp(Ω) := Lp(Ω, H) := Lp(Ω, H, ν). �

It is well known that the space Lp is a Banach space if we identify functions that are
equal up to a set of measure zero. Furthermore, for p = 2 the space L2 is a Hilbert space
that inherits the inner product structure from H. We formally define this inner product
such that for all Z, Y ∈ L2

(Z, Y )L2 :=

∫
Ω

(Z(ω), Y (ω))Hdν(ω). (2.1)

The Cauchy–Schwarz inequality shows that (2.1) is well defined. This inequality is a
special case of Hölder’s inequality and we precisely state both now.
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Lemma 2.10 (Hölder’s inequality, Cauchy–Schwarz inequality). Let p, q ∈ [1,+∞] with
1
p

+ 1
q

= 1, Z ∈ Lp and Y ∈ Lq. Then Hölder’s inequality holds

‖ (Z, Y )H ‖L1 ≤ ‖Z‖Lp‖Y ‖Lq .

The special case with p = q = 2 is the Cauchy–Schwarz inequality

‖ (Z, Y )H ‖L1 ≤ ‖Z‖L2‖Y ‖L2 .

Proof. See Klenke [79, Chapter 7].

A straightforward consequence of Hölder’s inequality and P(Ω) = 1 is that for all p ∈
[1,+∞] the random variable Z ∈ Lp(Ω, H,P) is also an element of the space Lq(Ω, H,P)
for all q ∈ [1, p]. This implication is in general not true if we replace P with an arbitrary
measure ν.

Expectation, Variance, Covariance and Correlation. We proceed to define specific
integrals concerning random variables. The expectation or mean of a random variable
describes its average value. We use the variance to describe the average squared deviation
from the mean. Both values are basic properties of random variables and exist if the first
respectively second moment is finite.

Definition 2.11 (Expectation, Variance). For Z ∈ L1 we define the expectation or mean

E[Z] :=

∫
Ω

Z(ω)dP(ω).

This definition has to be understood as Bochner integral if Z is not real–valued. If in
addition Z ∈ L2 we define the variance

V[Z] := E
[
‖Z − E[Z]‖2

H

]
= E

[
‖Z‖2

H

]
− ‖E[Z]‖2

H . (2.2)

�

For real–valued Z the variance (2.2) coincides with the usual definition. For random
variables Z1, . . . , ZL ∈ L2 we abbreviate the mean and variance

µ` := E[Z`] for all ` ∈ {1, . . . , L},
σ2
` := V[Z`] for all ` ∈ {1, . . . , L}.

The mean is the constant in H that best approximates the random variable Z. It is the
unique solution of the minimization problem

min
µ∈H
‖Z − µ‖2

L2 = E
[
‖Z − µ‖2

H

]
.

The value of the cost function at the minimizer µ = E[Z] is the variance and describes
the approximation error. The variance is zero V[Z] = 0 if and only if Z is almost surely
constant with Z = E[Z]. In all other cases the variance is positive. We are allowed to
pull out constants from the variance by squaring them, that is for all β ∈ R

V[βZ] = β2V[Z].
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The expectation is a linear operator since for all Z1, . . . , ZL ∈ L1 and vectors β ∈ RL

E

[
L∑
`=1

β`Z`

]
=

L∑
`=1

β`E[Z`].

The mean and variance are concerned with a single random variable Z and both give a
single value. We now describe relationships between two random variables with the help
of the covariance and correlation.

Definition 2.12 (Covariance, Correlation). For real–valued random variables Z, Y ∈ L2

we define the covariance

Cov[Z, Y ] := E[(Z − E[Z])(Y − E[Y ])] = E[ZY ]− E[Z]E[Y ].

If in addition V[Z],V[Y ] > 0 we define the correlation or correlation coefficient

Corr[Z, Y ] :=
Cov[Z, Y ]

(V[Y ]V[Z])1/2
.

The random variables Z and Y are uncorrelated if Cov[Z, Y ] = 0. �

We extend the previous definition to multiple random variables. This allows us to place
multiple covariance and correlation values into a vector or matrix.

Definition 2.13 (Covariance and Correlation matrix). For vectors of real–valued random
variables Z := (Z1, . . . , ZL)T ∈ L2 and Y := (Y1, . . . , YN)T ∈ L2 we define the covariance
matrix

Cov[Z, Y ] := E
[
(Z − E[Z])(Y − E[Y ])T

]
∈ RL×N .

For V[Z1], . . . ,V[ZL],V[Y1], . . . ,V[YN ] > 0 we define the correlation matrix as the corre-
lation between entries of Z and Y

Corr[Z, Y ] ∈ RL×N , Corr[Z, Y ]`,n := Corr[Z`, Yn] for all ` ∈ {1, . . . , L}, n ∈ {1, . . . , N}.

�

For real–valued random variables Z1, . . . , ZL ∈ L2 we abbreviate

C := Cov


Z1

...
ZL

,
Z1

...
ZL


 ∈ RL×L, P := (ρij)

L
i,j=1 := Corr


Z1

...
ZL

,
Z1

...
ZL


 ∈ RL×L.

(2.3)
We generalize the covariance to infinite dimensional Hilbert spaces. The basic idea is to
reduce the Hilbert space valued random variable Z to a single value in R by testing it
with a linear functional in the dual space H∗. We identify this space with H due to the
Riesz–representation theorem [79, Theorem 7.26].

Definition 2.14 (Covariance operator, Correlation operator). Let H1, H2 be real Hilbert
spaces. For Z ∈ L2(Ω, H1) and Y ∈ L2(Ω, H2) we define the covariance operator

Cov[Z, Y ] : H1 ×H2 → R, Cov[Z, Y ](z, y) := E[(z, Z − E[Z])H1(y, Y − E[Y ])H2 ].

We define the correlation operator accordingly

Corr[Z, Y ] : H1 ×H2 → R, Corr[Z, Y ](z, y) :=
Cov[Z, Y ](z, y)

(Cov[Z,Z](z, z)Cov[Y, Y ](y, y))1/2
,

whenever the quotient is not equal to zero. �



Chapter 2 Partial differential equations with random coefficients 25

The covariance operator is a generalization of the covariance matrix where the Hilbert
spaces are H1 := RL and H2 := RN with the Euclidean inner product. We obtain the
entries of the covariance matrix if we test with the unit vectors z := e` and y := en

Cov[Z, Y ](z, y) = E[(e`, Z − E[Z])RL(en, Y − E[Y ])RN ]

= E[(Z` − E[Z`])(Yn − E[Yn])]

= Cov[Z, Y ]`,n.

Let us now verify that the covariance is actually well defined for Z, Y ∈ L2. We fix
z ∈ H1, y ∈ H2, apply the Cauchy–Schwarz inequality twice and use the linearity of the
expectation

Cov[Z, Y ](z, y)2 ≤ E
[
(z, Z − E[Z])2

H1

]
E
[
(y, Y − E[Y ])2

H2

]
≤ E

[
‖z‖2

H1
‖Z − E[Z]‖2

H1

]
E
[
‖y‖2

H2
‖Y − E[Y ]‖2

H2

]
= ‖z‖2

H1
‖y‖2

H2
E
[
‖Z − E[Z]‖2

H1

]
E
[
‖Y − E[Y ]‖2

H2

]
.

The last term is bounded for Z, Y ∈ L2. We summarize some well–known properties of
the covariance.

Lemma 2.15 (Properties of the covariance). For Z,Z1, . . . , ZL ∈ L2(Ω, H1) and Y ∈
L2(Ω, H2) the covariance operator Cov is

� symmetric: Cov[Z, Y ](z, y) = Cov[Y, Z](y, z) for all z ∈ H1, y ∈ H2.

� bilinear: Cov
[∑L

`=1 β`Z`, Y
]

=
∑L

`=1 β`Cov[Z`, Y ] for all β ∈ RL.

� positive semi–definite: Cov[Z,Z](z, z) ≥ 0 for all z ∈ H.

� equal to the variance if Z is real–valued: Cov[Z,Z] = V[Z].

Proof. The properties follow directly from the definition of the covariance.

The correlation Corr inherits its properties from the covariance. The Cauchy–Schwarz
inequality can be used to show that the correlations operator takes values between −1
and 1. Formally, for all z ∈ H1 and y ∈ H2 where the correlation is well defined

Corr[Z, Y ](z, y) ∈ [−1, 1].

The covariance matrix C ∈ RL×L is always positive semi–definite. We now show that if the
entries of Z −E[Z] with Z = (Z1, . . . , ZL)T are linearly independent, then C = Cov[Z,Z]
is positive definite and thus invertible.

Lemma 2.16 (Positive definiteness of the covariance). For Z ∈ L2 the following state-
ments are equivalent

� Cov[Z,Z](z, z) > 0 for all z ∈ H \ {0}.

� (z, Z − E[Z])H 6= 0 P–almost surely for all z ∈ H \ {0}.

For Z := (Z1, . . . , ZL)T with real–valued Z1, . . . , ZL this equivalence reads

� βTCov[Z,Z]β > 0 for all β ∈ RL \ {0}.
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� Z1 − E[Z1], . . . , ZL − E[ZL] are linearly independent.

Furthermore, if βTCov[Z,Z]β = 0 for some β ∈ RL then P–almost surely

βT (Z − E[Z]) = 0. (2.4)

Proof. We deduce the claim by directly looking at the definition of the covariance

Cov[Z,Z](z, z) = E
[
(z, Z − E[Z])2

H

]
.

The factorization of the probability measure P for independent random variables shows
that their covariance is zero. We summarize this and further properties in the next lemma.

Lemma 2.17 (Properties of independent random variables [79, Theorem 5.4]). Let Z, Y ∈
L1 be independent random variables. Then the expectation of the product is equal to the
product of the expectations

E[(Z, Y )H ] = (E[Z],E[Y ])H .

For Z, Y ∈ L2 the random variables Z and Y are uncorrelated Cov[Z, Y ] = 0. �

The previous lemma shows that independence of Z, Y implies that Z, Y are uncorrelated,
however the converse is in general not true. We now state an important computational
rule for the variance of sums of random variables.

Lemma 2.18 (Variance of sums [79, Theorem 5.7]). Let Z1, . . . , ZL ∈ L2 be real–valued
random variables. Then the variance of the sum satisfies

V

[
L∑
`=1

Z`

]
=

L∑
`,j=1

Cov[Z`, Zj] =
L∑
`=1

V[Z`] +
L∑

`,j=1
`6=j

Cov[Z`, Zj].

If Z1, . . . , ZL are pairwise uncorrelated then the covariance terms are equal to zero

V

[
L∑
`=1

Z`

]
=

L∑
`=1

V[Z`].

Proof. We use the bilinearity of the covariance and Cov[Z`, Zj] = 0 for uncorrelated
Z`, Zj.

Convergence of random variables. There are different convergence types for random
variables. In this thesis we distinguish between almost sure convergence and convergence
in the Lebesgue space Lp.

Definition 2.19 (Almost sure convergence [79, Definition 6.2]). Let (Zn)∞n=1 be a sequence
of random variables. We say that (Zn)∞n=1 converges almost surely to the random variable
Z if

P
(

lim
n→+∞

Zn = Z

)
= 1. �
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Definition 2.20 (Convergence in Lp [79, Definition 7.2]). Let (Zn)∞n=1 ⊆ Lp and Z ∈ Lp.
Then (Zn)∞n=1 converges to Z in Lp if

lim
n→+∞

‖Zn − Z‖Lp = 0. �

Useful inequalities. The probability that a random variable deviates from its mean is
bounded by its variance. This allows us to estimate the probability that the realizations
of a random variable remain within a certain distance from its mean.

Theorem 2.21 (Markov inequality, Chebyshev inequality, [79, Theorem 5.11]).
Let Z be a random variable and f : [0,+∞) → [0,+∞) a monotonically increasing
function. Then for all ε > 0 Markov’s inequality holds

P(‖Z‖H ≥ ε) ≤ E[f(‖Z‖H)]

f(ε)

provided that the right–hand side is well defined. For Z ∈ L2 the Chebyshev inequality
holds

P(‖Z − E[Z]‖H ≥ ε) ≤ V[Z]

ε2
. �

We state Jensen’s inequality, which allows us to exchange the expectation and a convex
function ϕ at the cost of introducing an inequality.

Lemma 2.22 (Jensen’s inequality [79, Theorem 7.11]). Let I := (a, b) ⊆ R be an open
interval, Z ∈ L1(Ω, I) and the function ϕ : I → R convex. Then Jensen’s inequality holds

ϕ(E[Z]) ≤ E[ϕ(Z)],

provided that the right–hand side is well defined.

Proof. A formal proof is given in [79, Theorem 7.11]. We only remark that convex func-
tions are continuous and thus measurable, hence ϕ(Z) is a random variable.

We finish this section with the elementary Young inequality, which we use to estimate the
expectation of a product of real–valued random variables such that 2E[ZY ] ≤ E[Z2] +
E[Y 2].

Lemma 2.23 (Young inequality [79, Lemma 7.15]). For p, q ∈ (1,+∞) with 1
p

+ 1
q

= 1

and real numbers z, y ∈ [0,+∞) Young’s inequality holds

zy ≤ zp

p
+
yq

q
.

In particular, for p = q = 2 the inequality holds for arbitrary z, y ∈ R. �
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2.2 Karhunen–Loève expansion

Construction of Gaussian random fields. The Karhunen–Loève expansion (KLE)
is a powerful tool to generate random variables with values in an infinite dimensional,
separable Hilbert space. The main idea is to randomize the coefficients of a Fourier series
in a suitable way such that the series converges almost surely. A study of orthogonal
expansions of random variables is available in [1, Section 3]. First, we provide conditions
for the special case of real–valued random variables.

Lemma 2.24 (Khinchin and Kolmogorov [77, Lemma 3.16]). Let (ξn)∞n=1 be real–valued
independent random variables with E[ξn] = 0 for all n ∈ N such that their variance is
summable

∞∑
n=1

V[ξn] < +∞.

Then the series
∑∞

n=1 ξn converges almost surely. �

We require the previous lemma to ensure that the KLE is well defined.

Definition 2.25 (Infinite dimensional Gaussian random field). Let H be an infinite di-
mensional, separable, real Hilbert space. Furthermore, assume the following:

1. The eigenfunctions (ψn)∞n=1 form a complete orthonormal basis of H,

2. The random variables (ξn)∞n=1 are i.i.d. standard normals with ξn ∈ N(0, 1) for all
n ∈ N,

3. The eigenvalues (λn)∞n=1 are non–negative values λn ≥ 0 for all n ∈ N and the
sequence is summable

∞∑
n=1

λn < +∞. (2.5)

We define the KLE a as series

a :=
∞∑
n=1

√
λnξnψn.

We have a ∈ L2 and define C := Cov[a, a], which we abbreviate with a ∼ N(0, C). �

We use Parseval’s identity and apply Lemma 2.24 in combination with (2.5) to show that
the norm of a is almost surely bounded

‖a‖2
H =

∞∑
n=1

λnξ
2
n =

∞∑
n=1

λn(ξ2
n − 1) +

∞∑
n=1

λn < +∞.

We thus conclude that a ∈ H almost surely. We use the monotone convergence theorem
[77, Theorem 1.19] to exchange the mean and summation

E
[
‖a‖2

H

]
= E

[
∞∑
n=1

λnξ
2
n

]
=
∞∑
n=1

E
[
λnξ

2
n

]
=
∞∑
n=1

λn < +∞,

which shows that a ∈ L2. The dominated convergence theorem [77, Theorem 1.21] now
shows that E[a] = 0.
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We clarify why we call λn eigenvalues and ψn the eigenfunctions of C(ψn, ·). The functions
(ψn)∞n=1 form a complete orthonormal basis and thus

C(ψn, ·) =
∞∑

k,m=1

√
λk
√
λmE[ξkξm](ψn, ψk)H(·, ψm)H =

∞∑
m=1

√
λn
√
λmE[ξnξm](·, ψm)H .

We use the independence of ξn and ξm for n 6= m, E[ξm] = 0 and E[ξ2
m] = 1 to conclude

∞∑
m=1

√
λn
√
λmE[ξnξm](·, ψm)H = λn(·, ψn)H .

We interpret C(ψn, ·) as an element of H with the help of the Riesz–representation theorem
and conclude that ψn is an eigenfunction of C with eigenvalue λn

C(ψn) = λnψn.

The covariance operator is diagonal C(ψn, ψj) = λnδnj, where δnj is the Kronecker delta

δnj :=

{
1, if n = j,

0, if n 6= j.

We are interested in random fields and thus ψn are functions. For an event ω and x ∈ D
the KLE with arguments has the following form

a(x, ω) =
∞∑
n=1

√
λnξn(ω)ψn(x).

We want to construct a random field such that values at close points are highly correlated.
For points x, y ∈ D we require that

Cov[a(x), a(y)] = k(‖x− y‖),

where k is a stationary covariance kernel and ‖ · ‖ a suitable norm. We call a covariance
kernel or random field stationary if the covariance Cov[a(x), a(y)] depends only on the
distance between x and y. We work with the commonly used Whittle–Matérn covariance
kernel. Practical applications of covariance kernels are Gaussian processes regression or
kriging in machine learning [115], where the kernel models the similarity between the
datapoints. Another application is spatial descriptions in geostatistics [33, 140].

Definition 2.26 (Whittle–Matérn covariance kernel [115, Chapter 4]).
The Whittle–Matérn covariance kernel k has three parameters, the variance σ2 > 0, the
smoothness ν > 0 and the correlation length ` > 0. We write down the kernel for different
values of ν for a given distance d ≥ 0

� ν = 1/2 : k(d) := σ2 exp(−d/`),

� ν = 3/2 : k(d) := σ2(1 +
√

3d/`) exp(−
√

3d/`),

� ν = 5/2 : k(d) := σ2
(
1 +
√

5d/`+ 5d2/(3`2)
)

exp(−
√

5d/`). �

The Whittle–Matérn covariance kernel now defines the KLE of a Gaussian.
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Theorem 2.27 (Gaussian from Whittle–Matérn covariance kernel [115, Chapter 4]). Let
D ⊆ Rd be a bounded domain. Then there exists a ∼ N(0, C) with values in C(D) such
that for all x, y ∈ D

Cov[a(x), a(y)] = k(‖x− y‖),
where k is the Whittle–Matérn covariance kernel. We express the random field a as KLE

a :=
∞∑
n=1

√
λnψnξn.

We restrict ourselves to the random field a ∼ N(0, C) where C is induced by a Whittle–
Matérn covariance kernel k. Other stationary random fields are examined by Adler [1,
Section 5] and a general theory on the existence of Gaussian random fields in infinite
dimensions is given by Bogachev [12].

Practical implementation. The KLE for a is a series

a =
∞∑
n=1

√
λnξnψn,

which we truncate to obtain a finite sum that we evaluate numerically. We define the
truncated KLE

aN :=
N∑
n=1

√
λnξnψn.

The expected value of the error for this truncation in the H-norm is equal to the sum of
the missing eigenvalues.

Lemma 2.28 (KLE truncation error). The expected truncation error for a KLE is

E
[
‖aN − a‖2

H

]
=

∞∑
n=N+1

λn. (2.6)

This error converges to zero for N → +∞.

Proof. The error (2.6) follows from the Parseval identity and converges to zero since the
eigenvalues are summable by assumption (2.5).

For a fixed truncation index N we minimize the truncation error if we keep the N largest
eigenvalues. We thus sort the eigenvalues in descending order

λ1 ≥ λ2 ≥ . . . .

The eigenpairs (λn, ψn) for the Whittle–Matérn covariance typically cannot be computed
analytically. However, for arbitrary v ∈ L2(D) the eigenpairs are related to the kernel k
in the following way

λn(ψn, v)L2(D) = Cov[a, a](ψn, v)

=

∫
D

∫
D

ψn(x)E[a(x)a(y)]v(y)dxdy

=

∫
D

∫
D

ψn(x)k(‖x− y‖)v(y)dxdy

= ((ψn, k(‖ · − · ‖))L2(D), v)L2(D).
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This expression holds for all v ∈ L2(D) and thus for almost all y ∈ D

(k(‖ · −y‖), ψn)L2(D) = λnψn(y). (2.7)

The collocation approximation solves a numeric approximation of (2.7), which is equiva-
lent to a matrix eigenvalue problem.

Definition 2.29 (Collocation approximation [92, Section 7.4]). Let w1, . . . , wM ∈ R be
quadrature weights and x1, . . . , xM ∈ D collocation points such that

M∑
j=1

wjk(‖xj − xm‖)ψ(xj) = λψ(xm) for all m ∈ {1, . . . ,M}.

The collocation approximation requires us to solve the following eigenvalue problem

Av = λv,

A ∈ RM×M , Ajm := wjk(‖xj − xm‖),
v ∈ RM , vm := ψ(xm). �

The truncated KLE allows us to compute only the N largest eigenvalues and the cor-
responding eigenvectors. This problem is known as (generalized) Hermitian eigenvalue
problem, which is a well–studied problem in linear algebra, see for example [61, Chapter
8]. The evaluation of aN at a point x ∈ D is then approximately given by

aN(x) ≈
N∑
n=1

√
λnξnv

n[x],

where vn[x] ≈ ψn(x) is a suitable interpolation that uses the entries in the n–th eigenvector
vn. This procedure allows us to draw samples of aN which are close to a.
We give some examples for a Gaussian mean zero random field with Whittle–Matérn co-
variance in Figure 2.1 for D := [0, 1]. Figure 2.2 contains samples with similar parameters
for D := [0, 1]2. The parameter σ2 for the Whittle–Matérn kernel in Definition 2.26 con-
trols the variance or magnitude of the random field and is fixed σ2 := 1 for all examples.
The correlation length ` controls how fast the kernel decays. Large values of ` ensure that
a(x) ≈ a(y) even if x is not close to y. Small values of ` ensure that a(x) and a(y) are
almost uncorrelated even if x is close to y. Increasing the smoothness parameter ν leads
to smoother realizations.
We remark that the collocation approximation is not the only approach to sample from
a random field. The Galerkin approach [92, Section 7.4] approximates the eigenfunctions
ψ in a finite dimensional subspace of L2(D). The algorithm of Saibaba [124] computes
a random solution for the eigenvalue problem (2.7). For stationary random fields there
are circulant embedding methods to sample efficiently, see [47] or [92, Section 7.2]. We
remark that this is not an exhaustive list of methods to sample from a Gaussian with
values in an infinite dimensional Hilbert space.

2.3 Elliptic partial differential equation and discretization

Models with uncertain inputs. In this section we write down mathematical models
that we use for our numerical experiments. Let H1, H2 be two measurable spaces. A
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Figure 2.1: Samples of a Gaussian mean zero random field with Whittle–Matérn covari-
ance in D = [0, 1] for different values of the smoothness ν ∈ {1/2, 3/2, 5/2}, correlation
length ` ∈ {0.01, 0.05, 0.1, 0.5} and fixed variance σ2 = 1. Each plot shows three indepen-
dent realizations (red, blue and black). We generated the plots by a truncated KLE after
N = 1000 terms, M = 1000 collocation points and each random field is evaluated at 104

points.

model consists of an input parameter a ∈ H1 and a continuous function f : H1 → H2

which maps an input to the Quantity of Interest (QoI)

Z := f(a) ∈ H2.

We create a random model if we replace the deterministic input a with a random variable
a : Ω→ H1 such that the QoI is also a random variable

Z := f ◦ a : Ω→ H2.

Our goal is to collect information of Z like the mean, variance and so forth. The jus-
tification for such an approach is that in practice the input quantities are often either
unknown or known only up to a certain accuracy. Instead of a deterministic input we
allow a random input which assumes more values where each one is weighted according
to the distribution P of a. The gain is that we look at more than a single configuration
of the model and by examining the random Z we better understand how uncertainties in
the input a propagate to the QoI.

Poisson’s equation. We fix some notation for differential operators. For an open set
D ⊆ Rd and f : D → R we denote the partial derivative w.r.t. the n–th variable as ∂xn .
We define the divergence and the gradient as usual

div(f) :=
d∑
i=1

∂xifi,

∇f := (∂x1f, . . . , ∂xnf)T .
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Figure 2.2: Samples of a Gaussian mean zero random field with Whittle–Matérn co-
variance in D = [0, 1]2 for different values of the smoothness ν ∈ {1/2, 3/2, 5/2} and
correlation lengths ` ∈ {0.1, 0.5}. Each image is an independent realization of the ran-
dom field. We generated the plots by truncating the KLE after N = 100 terms.

We model heat transfer through a material with the help of Poisson’s equation. The
mathematical description for the temperature y is the solution of a partial differential
equation (PDE). The physical interpretation is that a constant heat source, say a chemical
reaction or the heating of a metal rod, has enough time to conduct through a material
[7, Chapter 7.1]. The steady state temperature is then described with Poisson’s equation,
where we first introduce the strong formulation.

Example 2.30 (Strong Poisson equation). Let D ⊆ Rd be a bounded domain. Then the
strong Poisson equation is

−div(a(x)∇y(x)) = u(x), x ∈ D,
y(x) = g(x), x ∈ ∂D.

(2.8)

Let us describe the quantities and their physical meaning:

� The domain D describes the volume of a material.

� The function y : D → R is the temperature in the material.

� The forcing function u controls how much heat is generated or lost inside the domain.

� The diffusion a > 0 determines how fast the heat travels through the material.

� The temperature at the boundary has fixed value g. �

This model problem is also used in groundwater flow, where it models subsurface flow.
Here Darcy’s law is combined with the continuity equation to obtain Poisson’s equation,
see [30, 40, 141]. The existence and uniqueness of solutions of strong PDE formulations is
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often difficult to prove. Instead, we look at weak formulations. We further randomize the
diffusion a which leads to a pathwise formulation. Weak formulations are often obtained
by multiplying the PDE with suitably smooth test functions and using integration by
parts. We denote with H1

0 (D) ⊆ L2(D) the Sobolev space consisting of functions with
weak first order derivative in L2(D) and zero trace [50, Section 5]. We equip this space
with the norm ‖y‖H1

0 (D) := ‖∇y‖L2(D).

Definition 2.31 (Pathwise weak elliptic PDE). Let D ⊆ Rd be a bounded domain,
u ∈ L2(D) and g := 0. We call y ∈ H1

0 (D) a weak solution of (2.8) if for all functions
v ∈ H1

0 (D)

(a∇y,∇v)L2(D) = (u, v)L2(D).

We call y a pathwise weak solution if for P–almost all ω ∈ Ω the function y(ω) ∈ H1
0 (D)

and for all functions v ∈ H1
0 (D)

(a(ω)∇y(ω),∇v)L2(D) = (u, v)L2(D). (2.9)

�

This model is well–studied and often used as a baseline for numerical experiments [25, 31,
63, 87, 134], which is why we also use it. It is of course possible to further randomize some
appearing quantities. Equation (2.9) can be generalized to account for random boundary
values g 6= 0 or a random right–hand side u. This is done in [26, 134]. We are often
not directly interested in the solution y but rather some quantity that we derive from it.
As an example, we might define the QoI as average over a subset of the whole domain
Dobs ⊆ D

Z(ω) :=
1

|Dobs|

∫
Dobs

y(ω, x)dx.

Properties of the solution. We have to make some assumptions on the diffusion
coefficient a to ensure existence and uniqueness of the solution y. These assumptions are
a reformulation of the assumptions in [26] and [134]. The authors of [26] assume a domain
D ∈ C2, i.e. with smooth boundary, and [134] extend the results to piecewise polygonal
domains.

Assumption 2.32 (Properties of the diffusion a). The diffusion coefficient a satisfies the
following three properties:

� There exists a t ∈ (0, 1] such that P–almost surely realizations of a are in Ct(D).

� The diffusion a satisfies the pathwise ellipticity bound such that for almost all ω

0 < amin(ω) ≤ a(x, ω) ≤ amax(ω) < +∞ for almost all x ∈ D, (2.10)

where amin and amax are random variables.

� For all s1, s2 ∈ R the bounds on the diffusion coefficient satisfy as1min, a
s2
max ∈ L2. �

Assumption 2.32 ensures that a ∈ Lp(Ω, Ct(D)) for all p ∈ [1,+∞). The lognormal
diffusion coefficient satisfies this assumption.
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Lemma 2.33 (Lognormal diffusion coefficient). Let κ ∼ N(0, C) with covariance such
that the kernel k : R≥0 → R defined as

k(‖x− y‖) := Cov[κ(x), κ(y)] for all x, y ∈ D

is Lipschitz continuous. Then the lognormal diffusion coefficient

a := exp(κ)

satisfies Assumption 2.32 for all t with t < 1/2. The Whittle–Matérn covariance kernel
satisfies this assumption for the smoothness ν = 1/2 for all t < 1/2 and for smoothness
ν = 3/2 and ν = 5/2 with t = 1.

Proof. The result can be deduced from [25, Section 2] and by showing that the Whittle–
Matérn covariance kernel is Lipschitz continuous. Therefore, we only outline the main
idea. First, Kolmogorov’s Theorem [34, Theorem 3.5] is used to verify that there exists a
version of a whose realizations are Hölder continuous and thus continuous. We are then
able to define the bounds

amin(ω) := min
x∈D

exp(κ(x, ω)), amax(ω) := max
x∈D

exp(κ(x, ω))

and (2.10) is satisfied since the exponential maps to the positive reals. The Fernique
Theorem [34, Section 2.2] can now be used to bound the moments of amin, amax and their
inverse. This can be done similar to [25, Proposition 2.3] and [26, Proposition 2.4]. The
smoothness of the sample paths for ν = 3/2 and ν = 5/2 follows from [111, Corollary
4.4]. The assumptions of this corollary are satisfied, since the covariance kernel is twice
continuously differentiable with Hölder continuous derivative. This can be deduced from
Definition 2.26 or from the expansion [128, Chapter 2, Equation (15)].

We use standard PDE theory [50, Chapter 6] to show the existence and uniqueness of a
pathwise weak solution as well as pathwise bounds under some mild assumptions.

Theorem 2.34 (Existence, uniqueness and regularity of pathwise weak solutions).
Let D ⊆ Rd be a bounded Lipschitz domain and let Assumption 2.32 be true for t ∈ (0, 1].
Then there exists a unique pathwise weak solution y of (2.9) such that

‖y(ω)‖H1
0 (D) ≤ c1(ω)‖u‖L2(D), (2.11)

‖y(ω)‖L2(D) ≤ c2(ω)‖u‖L2(D). (2.12)

Furthermore, for all 0 < s < t except s = 1/2 we have y(ω) ∈ H1+s(D) and the bound

‖y(ω)‖H1+s(D) ≤ c3(ω)‖u‖L2(D). (2.13)

The random variables c1, c2, c3 ∈ Lp for every p ∈ [1,+∞). For t = 1 the statement holds
with s = 1.

Proof. The existence, uniqueness and (2.11) is found in [25, Proposition 2.4] and is a result
of the classical Lax–Milgram Lemma [50, Section 6.2.1]. The use of Poincare’s inequality
then shows (2.12). The bound (2.13) is given in [26, Proposition 3.1]. The moments of
c1, c2, c3 are bounded according to [26, Theorem 3.4].

A further computation shows that y is actually a well–defined random variable.
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Lemma 2.35 (y is a random variable). Let the assumptions of Theorem 2.34 be true.
Then the unique pathwise weak solution y of (2.9) is a random variable y ∈ Lp(Ω, H1

0 (D)∩
H1+s(D)) for all p ∈ [1,+∞).

Proof. We verify that y is measurable by showing that y is locally Lipschitz continuous
w.r.t. a since continuous functions are measurable, see Lemma 2.4. We view the solution
y as function of the diffusion coefficient a

y : {a ∈ L∞(D) |There exists amin > 0 : a(x) ≥ amin > 0 for a.a. x ∈ D} → H1
0 (D),

where a.a. is the abbreviation for almost all. Let a, ã be two diffusion coefficients and
y := y(a), ỹ := y(ã) the respective solutions. A computation now shows

‖y − ỹ‖2
H1

0 (D) = ‖∇y −∇ỹ‖2
L2(D) ≤

1

amin

(a(∇y −∇ỹ),∇y −∇ỹ)L2(D).

We split this expression and use the weak formulation (2.9) with v = y− ỹ once for y and
once for ỹ to conclude

(a(∇y −∇ỹ),∇y −∇ỹ)L2(D) = (a∇y,∇y −∇ỹ)L2(D) − (a∇ỹ,∇y −∇ỹ)L2(D)

= (u, y − ỹ)L2(D) − (a∇ỹ,∇y −∇ỹ)L2(D)

= (ã∇ỹ,∇y −∇ỹ)L2(D) − (a∇ỹ,∇y −∇ỹ)L2(D)

≤ ‖ã− a‖L∞‖∇ỹ‖L2(D)‖∇y −∇ỹ‖L2(D).

We now use Poincare’s inequality to show the result

‖∇ỹ‖2
L2(D) ≤

1

ãmin

(ã∇ỹ,∇ỹ)L2(D) =
1

ãmin

(u, ỹ)L2(D) ≤
c

ãmin

‖u‖L2(D)‖∇ỹ‖L2(D).

Finite element method. The numerical computation of y requires us to discretize the
Sobolev space H1

0 (D) to obtain a discrete formulation of (2.9). In this thesis we restrict
ourselves to linear finite elements and polygonal domains D. We now basically follow [29],
a further introduction for finite element spaces is given by Brenner [21]. For the pathwise
formulation we use results from [25, 26, 134].

Definition 2.36 (Finite element mesh). Let D ⊆ R2 be a bounded and polygonal domain.
Then T := {τ1, . . . , τN} is an admissible mesh if

� The τn ⊆ R2 are open triangles,

� D is the union of these triangles D =
⋃N
n=1 τn,

� The triangles are disjoint τn ∩ τj = ∅ for n 6= j,

� Any face (vertex or edge) of τn is a face of another triangle τ j or is a subset of the
boundary ∂D.

The mesh size h is the diameter of the largest triangle h := maxn∈{1,...,N} diameter(τn). A
sequence of triangulations (T`)∞`=1 is called shape-regular if there exists a constant c > 0
such that for all ` ∈ N and all τn ∈ T`

inscribedradius(τn)

diameter(τn)
≥ c,

where inscribedradius is the radius of the largest inscribed circle of τn. �
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Definition 2.37 (Linear finite elements). Let T` be an admissible mesh. Then the space
of linear finite elements is

V FE
` :=

{
v ∈ C(D) | v|τn is affine linear for all τn ∈ T` and v|∂D = 0

}
.

The space of linear finite elements is conforming V FE
` ⊆ H1

0 (D) for all ` ∈ N, see Bren-
ner [21, Chapter 3]. �

The finite element method replaces H1
0 (D) with V FE

` in the weak formulation (2.9).

Definition 2.38 (Pathwise discrete solution). We call y` a pathwise discrete solution if
for P-almost all ω ∈ Ω the function y`(ω) ∈ V FE

` and for all v` ∈ V FE
`

(a(ω)∇y`(ω),∇v`)L2(D) = (u, v`)L2(D). (2.14)

�

We write down the discrete analogon for the existence, uniqueness and boundedness of
pathwise weak solutions.

Theorem 2.39 (Existence and uniqueness of pathwise discrete solutions). Let Assump-
tion 2.32 be true. Then there exists a unique pathwise discrete solution y` of (2.14) and
it is bounded by

‖y`(ω)‖H1
0 (D) ≤ c1(ω)‖u‖L2(D),

‖y`(ω)‖L2(D) ≤ c2(ω)‖u‖L2(D).

Furthermore, c1, c2 ∈ Lp for all p ∈ [1,+∞) and y` ∈ Lp(Ω, V FE
` ).

Proof. The proof is analogous to the proof of Theorem 2.34 and Lemma 2.35.

The approximation quality of the solution is summarized in the next theorem. The con-
vergence depends crucially on the mesh size h and the convergence rate on the smoothness
of the diffusion coefficient.

Theorem 2.40 (Finite element error estimate). Let Assumption 2.32 be true for t ∈ (0, 1].
Then for all 0 < s < t except s = 1/2 the approximation error is bounded

‖y`(ω)− y(ω)‖H1
0 (D) ≤ c1(ω)hs`‖u‖L2(D),

‖y`(ω)− y(ω)‖L2(D) ≤ c2(ω)h2s
` ‖u‖L2(D).

Furthermore, the constants c1, c2 ∈ Lp for all p ∈ [1,+∞) and thus

E
[
‖y` − y‖pH1

0 (D)

]
≤ chps` ‖u‖

p
L2(D),

E
[
‖y` − y‖pL2(D)

]
≤ ch2ps

` ‖u‖
p
L2(D).

(2.15)

For t = 1 the statement of this theorem holds with s = 1.

Proof. The proof for the estimates in the H1
0 (D) can be found in [26, Theorem 3.9] and

the Aubin–Nitsche trick is used to obtain estimates for L2(D), see [26, Corollary 3.10].
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We give the reader examples in Figure 2.3 of the solution y for different diffusion coeffi-
cients in d = 2. The general behaviour of the solution y is that if the diffusion is small in
a certain area, then the temperature generated by u accumulates in this area. For large
diffusion values the heat travels very fast to the boundary where we fixed the temperature
to zero and thus the temperature in this area is comparatively low. This also explains
why the temperature in the center is often largest, since the heat has to travel the farthest
distance to the boundary.

Figure 2.3: The left top image shows the function u which models heat generation at
five points in some material. The bottom left image is the temperature y with a diffusion
coefficient a = 1. The other images show the random field on top, which are realizations
of a := exp(κ), where κ ∼ N(0, C) and C is obtained from the Whittle–Matérn kernel
with ν := 3/2 and ` := 1/2. The three bottom images are the solutions y obtained from
the diffusion a above.

The convergence rates of y naturally extends to a QoI Z that is defined as an average
value over a subdomain Dobs ⊆ D

Z(ω) :=
1

|Dobs|

∫
Dobs

y(ω, x)dx,

Z`(ω) :=
1

|Dobs|

∫
Dobs

y`(ω, x)dx for all ` ∈ N.
(2.16)

We write down the corresponding error estimate.

Corollary 2.41 (Finite element error estimate for Z). Let Assumption 2.32 be with t = 1.
Then Z,Z1, Z2, · · · ∈ Lp for all p ∈ [1,+∞) and the approximation error is bounded

E
[
‖Z` − Z‖2

]
≤ ch4

` . (2.17)

In particular, we have the following errors for the mean and variance for all ` ∈ N

‖E[Z`]− E[Z]‖ ≤ ch2
` , (2.18)

V[Z` − Z] ≤ ch4
` . (2.19)

Proof. The result (2.17) follows from Jensen’s inequality and (2.15) in Theorem 2.40

E
[
‖Z` − Z‖2

]
≤ 1

|Dobs|2
E

[(∫
Dobs

|y`(x)− y(x)|dx
)2
]
≤ 1

|Dobs|2
E
[∫

D

|y`(x)− y(x)|2dx
]

≤ 1

|Dobs|2
E
[
‖y` − y‖2

L2(D)

]
≤ ch4

` .
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We show (2.18) by pulling out the expectation, using Jensen’s inequality and (2.17)

‖E[Z`]− E[Z]‖2 ≤ E
[
‖Z` − Z‖2

]
≤ ch4

` .

We use the fact that E[Z` − Z] is the deterministic constant that minimizes the quadratic
deviation from Z` − Z and use (2.17) to show (2.19)

V[Z` − Z] = E
[
‖Z` − Z − E[Z` − Z]‖2

]
= min

µ∈R
E
[
‖Z` − Z − µ‖2

]
≤ E

[
‖Z` − Z − 0‖2

]
≤ ch4

` .

Numerical implementation. We outline how to numerically compute a solution
y`(ω) ∈ V FE

` of (2.14). Let (ϕn)Nn=1 be any finite dimensional basis of V FE
` and express

the solution of y`(ω) as linear combination of the basis functions of this space

y`(ω) =
N∑
n=1

βn(ω)ϕn.

Then test (2.14) with all test functions ϕn ∈ V FE
` to obtain the pathwise linear system of

equations of the form such that for P–almost all ω ∈ Ω

A(ω)β(ω) = b. (2.20)

The stiffness matrix A(ω) is then

A(ω) := (Anj(ω))Nn,j=1 := ((a(ω)∇ϕn,∇ϕj)L2(D))
N
n,j=1 ∈ RN×N . (2.21)

The right–hand side or load vector b is given as follows

b := (bn)Nn=1 := ((u, ϕn)L2(D))
N
n=1 ∈ RN . (2.22)

The solution solution vector β(ω) ∈ RN is the vector of coefficients for y`(ω) satisfying
(2.20)

β(ω) := (βn(ω))Nn=1 ∈ RN .

It is often required to compute the L2(D)-norm of y` which can be achieved with the help
of the mass matrix

M := (Mnj)
N
n,j=1 := ((ϕn, ϕj))

N
n,j=1

such that ‖y`‖2
L2(D) = βTMβ.

Remark 2.42 (Quadrature rules). It is often necessary to use a quadrature rule to com-
pute the stiffness matrix A in (2.21) and the load vector b in (2.22). This introduces
additional errors that may worsen the error rates of Theorem 2.40 if a(ω) is not suffi-
ciently smooth, see [26, Section 3.3]. �

Remark 2.43 (Errors in the diffusion coefficient). We also replace the diffusion coefficient
a by a truncated KLE in our numerical experiments. We do not state the error that gets
introduced from using a truncation and instead refer to Charrier [25, 26]. �

We summarize the method to compute samples of y`. First, we have to compute the
KLE of the diffusion coefficient such that we are able to cheaply generate samples of a.
Afterwards, we obtain a single sample by the following steps:
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1. Compute a realization of the diffusion coefficient a(ω).

2. Compute the stiffness matrix A(ω) according to (2.21) using some quadrature rule.

3. Compute the load vector b according to (2.22) using some quadrature rule.

4. Solve the system (2.20) to obtain the coefficients β(ω) of y`(ω) ∈ V FE
` .

The most expensive step is often to solve the system (2.20). In particular, if the basis
functions (ϕn)Nn=1 have full support over D, then A(ω) is a dense matrix and thus the costs
to directly solve the system (2.20) is of order O(N3). A standard method to reduce the
complexity is to use the nodal basis, which are functions that have local support. Then
the stiffness matrix A is sparse, which allows us to efficiently solve the system (2.20).
Multigrid methods [137, Section 3] are able to compute a solution with accuracy ε with
costs O(N log(ε)), which is optimal up to logarithmic factors.
We remark that we view two solutions on two different grids y`1 and y`2 as functions in
H1

0 (D). This ensures, for example, that the expression y`1 − y`2 is well defined, however
the corresponding expression for the vectors β`1 − β`2 is in general not well defined. We
overcome this obstacle if V FE

`1
⊆ V FE

`2
with a linear prolongation operator PFE

`2,`1
such that

PFE
`2,`1

y`1 are the coefficients of y`1 in the nodal basis of V FE
`2

. That is, the coefficients of
the difference y`1 − y`2 in the nodal basis of V FE

`2
is computed as follows

PFE
`2,`1

β`1 − β`2 .
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Chapter 3

Estimation and variance reduction

The goal of this chapter is to give an overview for the approximation of the mean of a
random variable Z ∈ L2

E[Z] =

∫
Ω

Z(ω)dP(ω). (3.1)

We divide quadrature methods into deterministic and sampling based quadrature and list
common methods for both.

� Deterministic quadrature: These methods often discretize P and approximate (3.1)
as a weighted sum of evaluations of Z at quadrature points. Classical quadrature
rules like the trapezoidal rule or Gaussian quadrature (see [35, Chapter 5] or [38])
work well in one dimension and reach a high accuracy. The straightforward extension
to multiple dimensions is called tensor product quadrature and applies these rules for
every dimension. This is prohibitively expensive in high dimensions, since the cost
is exponential in the number of dimensions. A potential improvement are sparse
grids [24] where we do not use a full tensor grid but only a carefully chosen subset of
grid points. In the context of random PDEs this is often combined with collocation
methods [102]. Sparse grids require mixed regularity of the integrand w.r.t. the
dimensions, which may not always be satisfied. The stochastic Galerkin method [55]
or [92, Chapter 9] discretizes the probability space with the help of polynomials. The
approach is similar to the finite element discretization of H1

0 (D) and may result in
a high dimensional problem. The drawback of this method is that it requires the
solution of a large linear system and is intrusive. Another well–known approach is
quasi-Monte Carlo [46], [90, Section 5,6], which uses the same quadrature weights as
Monte Carlo with deterministic evaluation points obtained from a low-discrepancy
sequence. This also requires the reformulation of (3.1) as integral over Rs.

� Sampling based quadrature: These methods combine samples of Z. We explain gen-
eral results and introduce some common notation in Section 3.1. We examine the
classical Monte Carlo estimator in Section 3.2 adapted for the PDE setting with
random coefficients. Control Variates are a variance reduction technique and we
study them in Section 3.3. The specific implementations of Control Variates are
Multifidelity Monte Carlo in Section 3.4 and Approximate Control Variates in Sec-
tion 3.5. Another popular variance reduction method in the context of hierarchical
models is Multilevel Monte Carlo in Section 3.6. We finish this chapter with a brief
review of other sampling based methods in Section 3.7.

The thesis is mainly concerned with sampling based quadrature and we do not treat
deterministic quadrature any further. Most results in this chapter are well known and a
repetition or reformulation adapted for the goal (3.1). Throughout the rest of thesis if not
mentioned otherwise, we assume that Z is a real–valued random variable. Furthermore,
we assume that Z ∈ L2 such that Z has finite first and second moments. Generalizations
for Z ∈ L1 with Z 6∈ L2 are possible but complicate the analysis. For example, the
strong law of large numbers [79, Theorem 5.17] shows that the sample average converges
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almost surely to the mean under the weak assumption Z ∈ L1. However, for a rate of
convergence w.r.t. the number of samples we require higher regularity and Z ∈ L2 is
sufficient to obtain a usable rate.
We call the next assumption General Assumption, since we assume it throughout the
thesis without further mentioning it.

General Assumption 3.1. Let Z,Z1, Z2, . . . , ZL ∈ L2 be real–valued random variables
and let Z` have positive cost w` > 0 for all ` ∈ {1, . . . , L}. �

Challenges. Let us briefly demonstrate the challenges that arise for the computation
of the mean of a random variable.

Example 3.2 (Diffusion process). Let us define the QoI as in (2.16)

Z(ω) :=
1

|Dobs|

∫
Dobs

y(a(ω), x)dx,

where Dobs ⊆ D and y is a pathwise weak solution of the elliptic PDE in Definition 2.31
with diffusion coefficient

a(x, ω) :=
∞∑
n=1

√
λnξn(ω)ψn(x). (3.2)

We denote the truncation of this expansion at N with aN and obtain an approximation
of the integral

E[Z] =

∫
Ω

Z(a(ω))dP(ω) ≈
∫
RN
Z(aN(y))pN(y)dy,

where pN is the probability density function of the random vector (ξ1, . . . , ξN)T . We are
not able to compute the solution y or Z analytically and thus replace them with the
approximation ZL ≈ Z

E[Z] ≈
∫
RN
Z(aN(y))pN(y)dy ≈

∫
RN
ZL(aN(y))pN(y)dy. (3.3)

�

We list the three main challenges to compute the mean and list reasons why we should
be able to overcome them.

� Curse of dimensionality: The probability space is often high–dimensional, e.g. in
(3.3) of dimension N , and thus requires high-dimensional quadrature. The curse of
dimensionally describes the phenomena that the costs grow rapidly or exponentially
w.r.t. the dimension N of the stochastic space. However, as Lemma 2.28 shows the
error of dropping the random variable ξn from the KLE in (3.2) is small if n is large,
which translates to a small error for Z. Although the original problem (3.1) requires
the evaluation of an infinite dimensional integral, the effect of large dimensions n
on Z decays. This intuition is formalized with the variance since V[Z] < +∞ is
bounded independently of the truncation index N .

� Discretization: We have approximations Z1, Z2, . . . of Z at varying degrees of
accuracy. In Example 3.2 we use a finite element discretization for y and Theo-
rem 2.40 shows that the error decreases depending on the mesh size h. As the
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mesh size decreases the quadrature error decreases, however the required computa-
tional resources increase significantly. The coarse discretizations have a larger error
than the fine discretizations but are much cheaper to compute. Since the coarse
grids contain some information it is conceptionally advantageous to include them
for estimating the mean.

� Cost balancing: The quadrature and the discretization error have to be balanced
to achieve a computationally tractable solution. If the discretization is too fine we
are only able to compute a few evaluations of Z` and the quadrature error of E[Z] is
large. On the other hand if the discretization Z` is coarse and cheap the quadrature
error is small but the discretization error is large. Furthermore, a method that
uses discretizations Z1, Z2, . . . with different costs and accuracies has to balance the
computational effort between these models.

3.1 Sampling based estimation

The goal of this section is to define some common terminology and explain the reason for
the sampling based estimation of the mean. Sampling based estimators define a random
variable µ̂ that approximates the mean

µ̂ ≈ E[Z].

We understand ≈ in the mean square error sense, which is the average squared deviation
from the quantity E[Z]. We further define the bias that denotes how far E[µ̂] deviates
from E[Z]. This definition is rigorous if we assume µ̂ ∈ L2, which is the case for all
examined estimators in this thesis.

Definition 3.3 (Bias, mean square error). We define the bias and mean square error
(MSE) of an estimator µ̂ as

Bias(µ̂) := Bias(µ̂, Z) := ‖E[µ̂]− E[Z]‖,
MSE(µ̂) := MSE(µ̂, Z) := E

[
‖µ̂ − E[Z]‖2

]
,

where ‖ · ‖ is a suitable norm. We call an estimator µ̂ unbiased if Bias(µ̂) = 0 and thus
E[µ̂] = E[Z]. �

The bias and MSE are always defined w.r.t. the expectation E[Z] that we want to estimate.
We often abbreviate Bias(µ̂) and MSE(µ̂) without the explicit Z if there is no ambiguity.
It is well known that the MSE satisfies a bias-variance decomposition and is equal to the
squared bias plus the variance of the estimator. For unbiased estimators the MSE is equal
to the variance.

Theorem 3.4 (Bias-variance decomposition). The MSE admits the decomposition

MSE(µ̂) = Bias(µ̂)2 + V[µ̂].

In particular, for unbiased estimators µ̂ the MSE is equal to the variance

MSE(µ̂) = V[µ̂].
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Proof. We insert E[µ̂] and use the properties of the inner product

E
[
‖µ̂ − E[Z]‖2

]
= E[‖µ̂ − E[µ̂] + E[µ̂]− E[Z]‖2]

= E
[
‖E[µ̂]− E[Z]‖2

]
+ E

[
‖µ̂ − E[µ̂]‖2

]
+ 2E[(µ̂ − E[µ̂],E[µ̂]− E[Z])].

The first term is the squared bias and the second term is the variance of the estimator
µ̂. For the third term we use the linearity of the inner product in the first argument and
pull in the expectation. We then conclude that this term is zero.

The bias-variance decomposition leads to a bound on the probability that µ̂ deviates
from the mean E[Z]. Both the bias and the variance is small if the MSE is small and an
application of Chebychev’s inequality in Theorem 2.21 then bounds this probability.

Theorem 3.5 (MSE bound for probability of deviation). For all positive ε with ε2 ≥
4 MSE(µ̂) the probability that µ̂ deviates from E[Z] is bounded by

P(‖µ̂ − E[Z]‖ > ε) ≤ 4

ε2
MSE(µ̂). (3.4)

Proof. We insert E[µ̂] and use the triangle inequality

‖µ̂ − E[Z]‖ ≤ ‖µ̂ − E[µ̂]‖+ Bias(µ̂).

The expression on the left has equal or smaller probability to exceed ε than the expression
on the right

P(‖µ̂ − E[Z]‖ > ε) ≤ P(‖µ̂ − E[µ̂]‖+ Bias(µ̂) > ε). (3.5)

We use Theorem 3.4 and MSE(µ̂) ≤ ε2/4 to bound the bias

Bias(µ̂) ≤ (Bias(µ̂)2 + V[µ̂])1/2 = MSE(µ̂)1/2 ≤ ε/2.

We combine this with Chebychev’s inequality in Theorem 2.21 and V[µ̂] ≤ MSE(µ̂) from
Theorem 3.4 to conclude (3.4)

P(‖µ̂ − E[µ̂]‖+ Bias(µ̂) > ε) ≤ V[µ̂]

(ε− Bias(µ̂))2
≤ 4

ε2
MSE(µ̂).

The previous theorem allows us to derive confidence intervals for the estimation of the
mean. It further allows us to upper bound the required MSE such that we do not deviate
more than ε from the mean E[Z] with some prescribed probability δ.

Example 3.6 (Confidence intervals). We determine the deviation ε > 0 such that for a
prescribed confidence δ ∈ (0, 1)

P(µ̂ ∈ [−ε+ E[Z],E[Z] + ε]) ≥ δ.

This is equivalent to demand that

P(‖µ̂ − E[Z]‖ > ε) ≤ 1− δ. (3.6)

The use of (3.4) now gives the smallest deviation ε = 2(MSE(µ̂)/(1− δ))1/2. �
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Example 3.7 (Target MSE). Let the deviation ε > 0 and confidence level δ ∈ (0, 1) be
fixed. We want to determine MSE(µ̂) to ensure that

P(µ̂ ∈ [−ε+ E[Z],E[Z] + ε]) ≥ δ.

Similarly to Example 3.6 we obtain (3.6) and thus (3.4) shows

1− δ ≥ 4

ε2
MSE(µ̂).

Therefore the estimator µ̂ has to satisfy MSE(µ̂) ≤ (1− δ)ε2/4. �

It is of course possible to improve these estimates if more knowledge of the underlying
distribution of µ̂ is available, see [45, Chapter 8] or [42, Chapter 24, 25], [122, Chapter 10]
for the Gaussian case. Improved results are often obtained from concentration inequalities,
see [19].

3.2 Monte Carlo

Exact sampling. In this section we review the basic properties of the classical Monte
Carlo (MC) estimator. The results are well known and available in most introductory
books on probability theory [77, 79]. The MC estimator or the sample average plays a
central role for laws of large numbers, the central limit theorem and estimation in general.

Definition 3.8 (MC estimator). For m ∈ N the MC estimator is the sample average

µ̂MC :=
1

m

m∑
i=1

Zi,

where the Zi are m i.i.d. samples of Z. �

The MC estimator is unbiased and has variance inversely proportional to m. We provide
a proof since the used techniques are useful for other estimators.

Lemma 3.9 (Bias, variance of MC estimator). The MC estimator is an unbiased estima-
tor for E[Z] with variance

V
[
µ̂MC

]
=

V[Z]

m
. (3.7)

Proof. The unbiasedness is a direct consequence of the linearity of the expectation and
that all samples have the same distribution as Z. The expression for the variance crucially
requires that Z1, . . . , Zm are pairwise uncorrelated

V
[
µ̂MC

]
=

1

m2

m∑
i,j=1

Cov
[
Zi, Zj

]
=

1

m2

m∑
i,j=1

{
V[Zi], if i = j,

0, if i 6= j.

We use V[Zi] = V[Z] for i ∈ {1, . . . ,m} to conclude (3.7).
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The convergence rate for the MC estimator is thus of order O(m−1/2) for the root mean
square error (RMSE)

RMSE(µ̂MC) := MSE(µ̂MC)1/2 =
V[Z]1/2

m1/2
.

The rate O(m−1/2) is rather slow compared to deterministic quadrature. However, the
convergence rate is independent of the dimension of the underlying probability space, does
not suffer from the curse of dimensionality and does not require any regularity assumptions
except for Z ∈ L2.
The cost to evaluate the MC estimator is the cost of a single samples times the number of
samples. A consequence of Lemma 3.9 is that to half the RMSE we have to increase the
number of samples by a factor of four. This also increases the cost by a factor of four.

Corollary 3.10 (Exact sampling cost). The cost to achieve MSE(µ̂MC) ≤ ε2 is

W
[
µ̂MC

]
= mW[Z] =

1

ε2
V[Z]W[Z] = O(ε−2). (3.8)

�

We did not include the practically necessary ceiling of m in (3.8) since

m =
1

ε2
V[Z]

is typically not an integer. We continue to do so throughout the rest of this thesis and
only mention the additional costs for ceiling if the obtained results are different. We
remark that sampling based methods often require a lot of evaluations and thus ceiling
the number of samples does not significantly increase the overall costs.

Discretized sampling. Corollary 3.10 makes the strong assumption that we are able to
generate samples from the true QoI Z, which is often not possible. Therefore let Z1, Z2, . . .
be a sequence of model discretizations such that the mean converges E[Z`] → E[Z] for
` → +∞. The bias-variance decomposition of the MSE now guides us how to proceed.
First, select an appropriate fine level L such that the bias is smaller than a prescribed
threshold. Afterwards apply the standard MC estimator for ZL with enough samples
to sufficiently decrease the variance. We denote this estimator with µ̂MC

L and provide a
well–known result which is proved similarly to [56, Theorem 3.1].

Theorem 3.11 (Asymptotic cost). Assume that for all ` ∈ N the bias, variance and costs
of the models Z` satisfy

Bias(Z`) ≤ c2−γBias`, (3.9)

V[Z`] ≤ c, (3.10)

w` ≤ c2γCost`. (3.11)

Then for all ε ∈ (0, 1/e] there exists a fine level L ∈ N and a number of samples m ∈ N
such that the cost to achieve MSE(µ̂MC

L ) ≤ ε2 is bounded

W
[
µ̂MC
L

]
≤ cε−2−γCost/γBias . (3.12)
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Proof. We follow [56, Theorem 3.1]. Let ε2 > 0 be fixed and set

L := − log2(ε)/γBias + L0

for L0 := L0(ε2) ≥ 0 such that L ∈ N. We use (3.9) and assume L0 is large enough to
satisfy

Bias(µ̂MC
L )2 = Bias(ZL)2 ≤ c2−2γBiasL = c2−2γBiasL0ε2 ≤ ε2/2.

The last inequality is achieved for L0 bounded independently of ε2. We define the number
of samples as follows

m :=

⌈
2σ2

L

ε2

⌉
≥ 2σ2

L

ε2
.

We combine this with the bias-variance decomposition and the expression for the variance
(3.7) to obtain the bound for the MSE

MSE(µ̂MC
L ) = Bias(µ̂MC

L )2 + V
[
µ̂MC
L

]
≤ ε2

2
+
σ2
L

m
≤ ε2.

We apply the variance bound (3.10) and sample cost bound (3.11) to get the bound (3.12)

W
[
µ̂MC
L

]
= mwL =

⌈
2σ2

L

ε2

⌉
wL ≤ c(ε−2 + 1)2γCostL ≤ c2γCostL0ε−2−γCost/γBias

≤ cε−2−γCost/γBias .

The cost O(ε−2−γCost/γBias) is much larger than the cost O(ε−2) for exactly sampling from
Z. This result is rather intuitive, since an increase of the accuracy not only requires more
samples but also increases the cost per sample. Let us put this rate into perspective for
the elliptic PDE with different physical dimensions.

Example 3.12 (PDE example). Let Z be a QoI from an elliptic PDE similarly to (2.16).
We now assume an optimistic costs increase equal to the degrees of freedom in a finite
element mesh

w` = 2d`,

where γCost = d is the dimension of the physical domain D. We use Corollary 2.41 to
obtain the bias for level `

Bias(Z`) ≤ ch2
` .

This translates to γBias = 2 for uniform mesh refinement with h` = c2−`. The cost is thus
of order O(ε−2−d/2) and we give a summary in Table 3.1. The exact sampling cost of
O(ε−2) leads to a cost increase of a factor of four if we half the RMSE. �

Dimension d 1 2 3 4 5 6
Cost ε−2.5 ε−3 ε−3.5 ε−4 ε−4.5 ε−5

Cost increase ≈ 5.66 8 ≈ 11.31 16 ≈ 22.63 32

Table 3.1: Cost of the MC estimator w.r.t. to the dimension d of the domain D. The
row “Cost increase” denotes the factor by which the total cost increases if we require half
the RMSE ε. The QoI is (2.16) obtained from the elliptic PDE example.
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Variance reduction. We outline the main idea for many variance reduction techniques.
The cost of the MC estimator (3.8) is proportional to the variance V[Z] and we try to
decrease this term without increasing the overall costs to much. As an example, let Y be
a random variable with mean zero such that the MC estimator of Z − Y is an unbiased
estimator for E[Z]. The costs to achieve a MSE of ε2 are

W

[
1

m

m∑
i=1

(Zi − Y i)

]
=

V[Z − Y ]

ε2
W[Z, Y ],

where W[Z, Y ] is the cost to compute a sample of (Z, Y ). The cost compared to the
standard MC estimator is reduced significantly if

V[Z − Y ]W[Z, Y ]� V[Z]W[Z].

This happens if Z ≈ Y and the cost to compute a sample of Y is much cheaper than Z.
This approach is sensible since Y carries a lot of information required to compute E[Z]
and we already know E[Y ] = 0. We give a mathematically rigorous interpretation later
in Chapter 4. In any case, the estimators in the following sections all use some variation
of this basic idea to construct a cheaper estimator.

3.3 Control Variates

Single control variates. The method of control variates is a well–known variance
reduction technique and results of this section are available in [59, 60, 88, 123]. We start
with the single control variate (CV) estimator and introduce multiple control variates
later in this section. To construct the CV estimators we assume that the expectations
µ1, . . . , µL−1 are known.

Definition 3.13 (Single CV estimator). For m ∈ N and β ∈ R the CV estimator is
defined as

µ̂CV
L :=

1

m

m∑
i=1

Zi
L − β

(
1

m

m∑
i=1

Zi
L−1 − µL−1

)
.

We call the random variable ZL−1 control variate. �

The β does not influence the bias of the estimator, only its variance. Since we want to
obtain an estimator that minimizes the MSE it makes sense to choose a β such that the
variance is as small as possible. It turns out that the optimal value for β is unique under
mild assumptions and independent of the number of samples.

Lemma 3.14 (Bias, variance). The CV estimator is an unbiased estimator for µL with
variance

V
[
µ̂CV
L

]
=
σ2
L − 2βCL,L−1 + β2σ2

L−1

m
. (3.13)

For σ2
L−1 > 0 the variance minimizing coefficient is unique

β∗ =
CL,L−1

σ2
L−1

(3.14)

and the variance for this minimizer is

V
[
µ̂CV
L

]
= (1− ρ2

L−1,L)
σ2
L

m
. (3.15)



Chapter 3 Estimation and variance reduction 49

Proof. The unbiasedness of µ̂CV
L is obvious. The result (3.13) follows from the variance of

sums of independent random variables in Lemma 2.18. The variance (3.13) as function of
β is a parabola with positive leading coefficient since σ2

L−1 > 0. Elementary calculus now
shows (3.14) and (3.15).

The variance of the CV estimator is never larger than the variance of the MC estimator,
since ρL,L−1 ∈ [−1, 1] in (3.15), however, we have the additionally cost to compute a
sample of ZL−1. The next corollary states that the CV estimator improves the standard
MC estimator in terms of the computational cost if the squared correlation is large enough
or the coarse model is cheap.

Corollary 3.15 (Cost). The cost of the single CV estimator to achieve MSE(µ̂CV
L ) ≤ ε2

is

W
[
µ̂CV
L

]
=
σ2
L

ε2
(1− ρ2

L,L−1)(wL + wL−1).

Furthermore, the cost ratio w.r.t. the MC estimator satisfies

W
[
µ̂CV
L

]
W[µ̂MC

L ]
= (1− ρ2

L,L−1)

(
1 +

wL−1

wL

)
.

The CV estimator is an improvement compared to the MC estimator if the condition
wL−1 < ρ2

L,L−1(wL−1 + wL) is satisfied.

Proof. The result follows from Lemma 3.9 and Lemma 3.14.

Multiple Control Variates. The results for a single CV estimator easily generalize
to multiple control variates. The basic idea is to form a linear combination of the coarse
models Z1, . . . , ZL−1.

Definition 3.16 (Multiple CV estimator). For m ∈ N and β ∈ RL−1 the (multiple) CV
estimator is

µ̂CV
L :=

1

m

m∑
i=1

Zi
L −

L−1∑
`=1

β`

(
1

m

m∑
i=1

Zi
` − µ`

)
.

We call the random variables Z1, . . . , ZL−1 control variates. �

The properties of this estimator are similar to the single CV estimator in Lemma 3.14.
We again want to choose β such that the variance is minimized, which yields a quadratic
minimization problem. The variance minimizer is again independent of the number of
samples.

Lemma 3.17 (Bias, variance). Let I := {1, . . . , L − 1} be the index set of the control
variates. The CV estimator is an unbiased estimator for µL with variance

V
[
µ̂CV
L

]
=
σ2
L − 2CL,Iβ + βTCI,Iβ

m
. (3.16)

For positive definite CI,I the unique minimizer for the variance is

β∗ = C−1
I,ICI,L. (3.17)

The variance for this minimizer is

V
[
µ̂CV
L

]
=

1

m

(
σ2
L − CL,IC−1

I,ICI,L
)
. (3.18)



50 Chapter 3 Estimation and variance reduction

Proof. The proof is a straightforward extension of the proof of Lemma 3.14 to multiple
dimensions.

Let us comment on the assumption that CI,I is positive definite and thus invertible. This
is necessary for the uniqueness of a minimizer β∗. If CI,I is not positive definite then

Lemma 2.16 shows there exist coefficients β̃ ∈ RL−1 such that

L−1∑
`=1

β̃`(Z` − µ`) = 0.

Therefore we may w.l.o.g. remove the last control variate ZL−1 from the CV estimator

µ̂CV
L :=

1

m

m∑
i=1

Zi
L −

L−2∑
`=1

β`

(
1

m

m∑
i=1

Zi
` − µ`

)
.

We repeat this process until the remaining control variates I ′ ( {1, . . . , L − 1} satisfy
that CI′,I′ is positive definite or I = ∅. A minimizer β∗ for the original problem is thus

β∗` =

{
eT` C

−1
I′,I′CI′,L, if ` ∈ I ′,

0, if ` 6∈ I ′.

In this case the minimizer may not be unique, since linear dependence allows us to either
remove at least two different control variates from I or Z` = µ` almost surely. In the
latter case β∗` may be chosen arbitrarily.
Let us comment on the expression for the minimal variance (3.18). We write down the
covariance matrix C in block form

C =

(
σ2
L CL,I

CI,L CI,I

)
.

Then (3.18) without the factor 1/m is the Schur complement [61, Chapter 3] of the block
CI,I of the covariance matrix

C/CI,I := σ2
L − CL,IC−1

I,ICI,L.

The multiple CV estimator reduced the variance compared to the MC estimator if the
Schur complement is small enough and the coarse models are cheap. We obtain a result
that is similar to Corollary 3.15.

Corollary 3.18 (Cost). Let I := {1, . . . , L − 1} and CI,I be positive definite. Then the
cost to achieve V

[
µ̂CV
L

]
≤ ε2 is

W
[
µ̂CV
L

]
=

1

ε2
(C/CI,I)

L∑
`=1

w`.

Furthermore, the cost ratio w.r.t. the MC estimator is

W
[
µ̂CV
L

]
W[µ̂MC

L ]
=

(
C/CI,I
σ2
L

) L∑
`=1

w`
wL

.

Proof. The corollary follows from Lemma 3.17.
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Lower variance bound. Let us now assume that we have an infinite amount of samples
available for Z1, . . . , ZL−1 but only m samples of ZL. This fits in the setting of control
variates since by the strong law of large numbers [79, Section 5.3] we may assume that
µ1, . . . , µL−1 are known. Formally, for n → +∞ we have convergence in the almost sure
sense of the sample average to the mean

1

n

n∑
i=1

Zi
` → µ`.

This situation occurs in practice if we have a time limit for an expensive but fast computer
allowing us to sample only m times from the high fidelity model ZL. Later we may sample
more often the coarser models Z1, . . . , ZL−1 on a slower computer such that the error for
the approximation of µ1, . . . , µL−1 is negligible. Another situation where this occurs is
if the samples of ZL are expensive real life experiments and samples of Z1, . . . , ZL−1 are
simulations by a computer. We first assume that we only have a single sample m = 1 of
the high fidelity model.

Definition 3.19 (Lower variance bound of an estimator). We define the lower variance
bound for an estimator µ̂ with a single evaluation mL := 1 of ZL as

Vmin[µ̂] := lim
m1,...,mL−1→+∞

V[µ̂],

where m1, . . . ,mL−1 denotes the number of i.i.d. realizations of Z1, . . . , ZL−1. �

The restriction to a single high fidelity sample mL = 1 is often not severe, since the
estimators in this thesis have the property that the lower variance bound for arbitrary
mL translates to Vmin[µ̂]/mL.
The MC estimator is special in the sense that it does not use any coarse grid samples.
Therefore, the lower variance bound for MC is the variance of the high fidelity model

Vmin[µ̂MC
L ] = σ2

L.

We use (3.18) to conclude that the Schur complement is the lower variance bound for the
CV estimators such that with I := {1, . . . , L− 1} and J := I ∪ {L}

V
[
µ̂CV
L

]
= σ2

L − CL,IC−1
I,ICI,L = CJ,J/CI,I .

In Chapter 4 we formally prove that V
[
µ̂CV
L

]
is the minimal variance that is achievable

by any linear unbiased estimator of µL with only a single sample of ZL and an infinite
amount of samples of Z1, . . . , ZL−1.

Definition 3.20 (Lower variance bound). Let I ⊆ {1, . . . , L−1} such that CI,I is positive
definite. Then for J := I∪{L} we define the lower variance bound or maximally achievable
variance reduction as the Schur complement

Vmin
I := V

[
µ̂CV
L

]
= σ2

L − CL,IC−1
I,ICI,L = CJ,J/CI,I ,

where the CV estimator µ̂CV
L uses a single sample m = 1 and control variates ZI1 , . . . , ZI|I| .

�
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The CV estimator should achieve a larger variance reduction with more control variates.
Every additional model Z` allows us to choose the corresponding parameter β` 6= 0.
Therefore, the new estimator has more degrees of freedom which translates to an equal
or smaller variance. The lower variance bounds Vmin are therefore non–increasing if we
include more and more models.

Lemma 3.21 (Lower variance bound ordering). For I ⊆ {1, . . . , L − 1} and J ⊆ I the
lower variance bound satisfies

Vmin
I ≤ Vmin

J . (3.19)

Proof. Let us denote the CV estimator with control variates indices in I with µ̂CV
L [I] with

coefficients β. We do the same with for J with µ̂CV
L [J ] with coefficients α. We use (3.16)

and use the optimality of the coefficients to conclude

Vmin
I = V

[
µ̂CV
L [I]

]
= min

β∈R|I|
σ2
L − 2CL,Iβ + βTCI,Iβ

Vmin
J = V

[
µ̂CV
L [J ]

]
= min

α∈R|J|
σ2
L − 2CL,Jα + αTCJ,Jα.

It is crucial to observe that J ⊆ I and thus the first optimization problem simply min-
imizes over more coefficients. We fix β` = 0 for all ` ∈ I \ J to obtain the second
optimization problem

min
β∈R|I|

σ2
L − 2CL,Iβ + βTCI,Iβ ≤ min

β∈R|I|,
β`=0 if `∈I\J

σ2
L − 2CL,Iβ + βTCI,Iβ

= min
α∈R|J|

σ2
L − 2CL,Jα + αTCJ,Jα

and the result (3.19) now follows.

It is possible to extend the notion of a lower variance bound for multiple models, even if
they are not high fidelity.

Remark 3.22 (Lower variance bound for multiple models). We define the set of models
Q ⊆ {1, . . . , L} as the models that are evaluated once and I ⊆ {1, . . . , L} as the models
that we evaluate infinitely often. Then with J := Q ∪ I the covariance of the vector of
estimators (µ̂CV

` )`∈Q with correlated samples satisfies

Covmin := Cov
[
(µ̂CV

` )`∈Q, (µ̂
CV
` )`∈Q

]
= CJ,J/CI,I ∈ R|Q|×|Q|. �

Since Covmin is however a matrix and not single number, it is not clear what a lower
bound in this context means. It is possible to reduce this (often) positive definite matrix
to a single number via the trace(Covmin) or by looking at a specific linear combination
βTCovminβ.

Problems of the CV estimator. The CV estimator requires us to know the expecta-
tion of the control variates µ1, . . . , µL−1. These values are often unavailable and we need
to estimate them. Therefore, we could again devise a CV estimator.

Example 3.23 (Three level nested CV estimator). For the purpose of this example define
the CV estimator for µ1 as the MC estimator

µ̂CV
1 :=

1

m1

m1∑
i=1

Zi
1.
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We then define an approximation for the CV estimator for µ2 such that

µ̂CV
2 =

1

m2

m2∑
i=1

Zi
2 − β1

(
1

m2

m2∑
i=1

(Zi
1 − µ̂CV

1 )

)
.

Now we continue with the third level

µ̂CV
3 =

1

m3

m3∑
i=1

Zi
3 −

2∑
`=1

β`

(
1

m3

m3∑
i=1

(Zi
` − µ̂CV

` )

)
. �

The example shows that there are a several degrees of freedom and choices to make.

� We may choose the coefficients β for both estimators µ̂CV
2 and µ̂CV

3 to dependent on
each other.

� We want to distribute the number of samples m1,m2,m3 to achieve a small variance.

� It is unclear how to choose the independence structure of the random variables, i.e.
it might make sense to use independent samples to estimate µ̂CV

1 and µ̂CV
2 , but not

for µ̂CV
3 .

� It is trivial to generalize this estimator for more levels, however, the optimality of
this approach is not clear.

The Multifidelity Monte Carlo method in Section 3.4 and Approximate Control Variate
method in Section 3.5 both estimate µL in similar fashion shown in Example 3.23.

3.4 Multifidelity Monte Carlo

We continue with the Multifidelity Monte Carlo (MFMC) estimator in [107]. This method
assumes that the mean values µ1, . . . , µL−1 of the control variates are unknown and have
to be estimated. The MFMC estimator is a CV estimator with a specific number of
samples m and independence of the realizations.

Definition 3.24 (MFMC estimator). For m1, . . . ,mL ∈ N and β ∈ RL−1 we define the
MFMC estimator

µ̂MFMC
L :=

1

mL

mL∑
i=1

Zi
L −

L−1∑
`=1

β`

(
1

m`+1

m`+1∑
i=1

Zi
` −

1

m`

m∑̀
i=1

Zi
`

)
. (3.20)

�

Similar to the CV estimator we want to choose β and m such that the variance of the
estimator is minimized. As it turns out, the optimal choice of β is independent of the
choice of m allowing us to optimize them separately. The next lemma optimizes the β
and is a summary of the results of Section 3 from [107]. We simplify the notation and
abbreviate ρL,0 := 0.
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Lemma 3.25 (Bias, variance [107, Section 3]). Let m1 ≥ · · · ≥ mL and assume σ2
` > 0

for all ` ∈ {1, . . . , L}. Then the MFMC estimator is an unbiased estimator for µL with
variance

V
[
µ̂MFMC
L

]
=

σ2
L

mL

+
L−1∑
`=1

(
1

m`+1

− 1

m`

)
(−2β`CL` + β2

`σ
2
` ). (3.21)

A variance minimizer β∗ ∈ RL−1 is

β∗` = CL`/σ
2
` for all ` ∈ {1, . . . , L− 1} (3.22)

and the minimal variance satisfies

V
[
µ̂MFMC
L

]
= σ2

L

L∑
`=1

ρ2
L,` − ρ2

L,`−1

m`

. (3.23)

Proof. The proof is scattered throughout Section 3 of [107]. The unbiasedness follows
directly from the linearity of the expectation. The result in (3.21) is a straightforward
calculation done in [107, Lemma 3.2, Lemma 3.3]. A step in the proof is to compute

Cov

[
1

m`

m∑̀
i=1

Zi
`,

1

mj

mj∑
i=1

Zi
j

]
=

1

max{m`,mj}
C`,j.

The assumption m1 ≥ · · · ≥ mL is then used to obtain the easier manageable form (3.21).
The proof of (3.22) is given in [107, Theorem 3.4]. We use m1 ≥ · · · ≥ mL to ensure that
the expression (

1

m`+1

− 1

m`

)
≥ 0

is non–negative for all ` ∈ {1, . . . , L− 1}. W.l.o.g. we may assume that this expression is
larger than zero, otherwise the value of β` does not influence the variance in (3.21) and
we may choose β∗` = CL`/σ

2
` as in (3.22). For σ2

` > 0 equation (3.21) as function of β is
a sum of L − 1 parabolas with positive leading factor. We separately minimize them to
obtain the unique minimizer

β∗` = CL`/σ
2
` for all ` ∈ {1, . . . , L− 1}.

Inserting this optimal β∗ into (3.21) then leads to (3.23).

The condition m1 ≥ · · · ≥ mL is often satisfied for hierarchical models, where we require
few evaluations of the high fidelity model and allow for more evaluations of the coarser
models. Furthermore, σ2

` > 0 is a mild assumption, since σ2
` = 0 implies that Z` is almost

surely constant and thus CL` = 0. The corresponding term in (3.21) is then zero and
we remove Z` from the estimator. The minimizer β∗ is unique if the stricter inequality
m1 > · · · > mL is satisfied. This is desirable since for mj+1 = mj the terms associated
with the control variate Zj are zero and we remove this model

µ̂MFMC
L =

1

mL

mL∑
i=1

Zi
L −

L−1∑
`=1

β`

(
1

m`+1

m`+1∑
i=1

Zi
` −

1

m`

m∑̀
i=1

Zi
`

)

=
1

mL

mL∑
i=1

Zi
L −

L−1∑
`=1,
` 6=j

β`

(
1

m`+1

m`+1∑
i=1

Zi
` −

1

m`

m∑̀
i=1

Zi
`

)
.
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Sample allocation. We now answer the question how to optimally allocate the number
of samples m` for every level `. The goal is to minimize the variance not exceeding a fixed
computational budget Wbudget > 0. The MFMC estimator requires m` samples of Z`
and each sample incurs costs of w` > 0. This is formalized in the following relaxed
optimization problem, where we allow fractional samples:

min
m1,...,mL∈R

J(m) := V
[
µ̂MFMC
L

]
= σ2

L

L∑
`=1

ρ2
L,` − ρ2

L,`−1

m`

such that
L∑
`=1

m`w` = Wbudget,

m` ≥ m`+1 for all ` ∈ {1, . . . , L− 1},
mL ≥ 0.

(3.24)

We use the ordering constraints to apply (3.23) of Lemma 3.25 which ensures that the
expression for V

[
µ̂MFMC
L

]
is valid. The budget constraint

L∑
`=1

m`w` ≤Wbudget

is satisfied with equality at a minimizer, otherwise we could linearly scale up m1, . . . ,mL

to further reduce the variance. We include this constraint as equality constraint, since
these are easier to handle than inequality constraints in convex optimization.

Theorem 3.26 (Optimal sample allocation [107, Theorem 3.4, Corollary 3.5]).
Let σ2

` > 0 for ` ∈ {1, . . . , L} and assume the ordering

ρ2
L,1 < · · · < ρ2

L,L. (3.25)

Furthermore, let the costs and correlations satisfy

w`+1(ρ2
L,` − ρ2

L,`−1) > w`(ρ
2
L,`+1 − ρ2

L,`) (3.26)

for all ` ∈ {1, . . . , L − 1}. Then the unique variance minimal sample allocation m∗ of
(3.24) satisfies

m∗` =
Wbudget∑L

j=1

(
wj(ρ2

L,j − ρ2
L,j−1)

)1/2

(
ρ2
L,` − ρ2

L,`−1

w`

)1/2

(3.27)

for all ` ∈ {1, . . . , L}. The variance for this optimal sample allocation satisfies

V
[
µ̂MFMC
L

]
=

σ2
L

Wbudget

(
L∑
`=1

(
w`(ρ

2
L,` − ρ2

L,`−1)
)1/2

)2

. (3.28)

Proof. A detailed proof is given in [107, Theorem 3.4]. The assumptions (3.25) and (3.26)
are used to ensure that the constraint m1 ≥ · · · ≥ mL is satisfied with strict inequality
at the optimum m∗. Then (3.24) is minimized using basic convex optimization.
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The variance V
[
µ̂MFMC
L

]
is inversely proportional to Wbudget. This allows us to compare

the cost to the MC estimator similar to Corollary 3.18 for the CV estimator. The main
difference is that the variance reduction of the MFMC estimator only depends on the
correlations between the high fidelity model and the low fidelity models ρL,1, . . . , ρL,L−1

but no correlation between two low fidelity models. In contrast, the CV estimator depends
on the Schur complement of C, which takes other correlations into account.

Lemma 3.27 (Cost). Let the assumptions of Theorem 3.26 be true. Then the cost to
achieve V

[
µ̂MFMC
L

]
≤ ε2 is

W
[
µ̂MFMC
L

]
=
σ2
L

ε2

(
L∑
`=1

(
w`(ρ

2
L,` − ρ2

L,`−1)
)1/2

)2

. (3.29)

Moreover, the cost compared to the MC estimator satisfies

W
[
µ̂MFMC
L

]
W[µ̂MC

L ]
=

(
L∑
`=1

(
w`
wL

(ρ2
L,` − ρ2

L,`−1)

)1/2
)2

. (3.30)

Proof. The proof is a straightforward application of Theorem 3.26.

Graph based model selection. We have to devise an algorithm to ensure that the
assumptions of Theorem 3.26 are satisfied. Furthermore, we want to select or order the
models in such a way that the cost of the estimator is minimized. This problem is called
model selection problem.

Definition 3.28 (Model selection problem). The model selection problem for MFMC is
a minimization problem

min
P

J(P ) :=

|P |∑
`=1

(
wP`(ρ

2
L,P`
− ρ2

L,P`−1
)
)1/2

, (3.31)

where P = (P1, P2, . . . , P|P |−1, L)T is a vector of length |P | ≤ L with P` ∈ {1, . . . , L}. We
further require that P satisfies

σ2
P`
> 0 for all ` ∈ {1, . . . , |P |}, (3.32)

ρ2
L,P1

< · · · < ρ2
L,P|P |

, (3.33)

wP`+1
(ρ2
L,P`
− ρ2

L,P`−1
) > wP`(ρ

2
L,P`+1

− ρ2
L,P`

) for all ` ∈ {1, . . . , |P | − 1}. (3.34)

We define ρ2
L,P0

:= 0. �

The conditions (3.32), (3.33) and (3.34) are used to apply Lemma 3.27. The cost function
J in (3.31) is up to a constant equal to the square root of the cost of the MFMC estimator
in (3.29). The model selection P = (L)T corresponds to the MC estimator and thus the
minimizer in (3.31) is guaranteed to lead to an estimator with variance not exceeding MC.
Without model selection this property is in general not true.
The algorithm originally proposed by Peherstorfer [107, Algorithm 1] applies a brute force
strategy and checks all valid P that satisfy (3.32), (3.33), (3.34). The model selection P
with the smallest variance is then used. This strategy has costs exponential in the number
of models L.
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We propose a graph based approach where we reformulate (3.31) as a shortest path
problem. To explain the main idea we first neglect the constraints. Let Z0 be an artificial
model with w0 := 0, Cov[ZL, Z0] := 0, σ2

0 > 0 and define edge weights

qij :=
(
wi(ρ

2
L,i − ρ2

L,j)
)1/2

.

We then define the directed graph G with vertices V , edges E and edge weights Q

G := (V,E,Q), V := {0, . . . , L}, E := V × V, Q := (qij)
L
i,j=0.

The cost of a path P from 0 to L is exactly J(P ) in (3.31). Furthermore, every path
corresponds to a valid model selection and vice versa. Solving the model selection problem
is thus equivalent to finding a shortest path in a directed graph.
Let us now introduce the constraints that are all of local nature. First, if (3.32) is not
satisfied for some model Z`, then we do not add any edges to the vertex `. This ensures
that no path from 0 to L uses this model. Condition (3.33) is satisfied for every path P if
we only add edges (i, j) if ρ2

L,i < ρ2
L,j. The constraint (3.34) is tricky since it is a condition

between three models and thus three vertices. We solve this issue by introducing another
dimension in the vertex set of the graph such that nodes are now pairs (i, j). We then
introduce edges of the form ((i, j), (j, k)) if condition (3.34) is satisfied. A path which
uses this edge means that the models i, j were selected and k is the next model which
incurs costs of qjk. Let us formally define this graph G.

G := (V,E,Q),

V := {0, . . . , L} × {0, . . . , L},

E :=
{

((i, j), (j, k)) ∈ V × V | i 6= j, i 6= k, j 6= k and

σ2
i > 0, σ2

j > 0, σ2
k > 0, and

ρ2
L,j < ρ2

L,k, and

wk(ρ
2
L,j − ρ2

L,i) > wj(ρ
2
L,k − ρ2

L,j)
}

∪ {((0, 0), (0, `)) | ` ∈ {1, . . . , L}}
∪ {((`, L), (L,L)) | ` ∈ {1, . . . , L}},

Q := (qijjk)
L
i,j,k=0, qijjk := qjk.

(3.35)

The goal is to find a shortest path from (0, 0) to (L,L).

Lemma 3.29 (Shortest path model selection). Finding the shortest path from (0, 0) to
(L,L) in (3.35) is equivalent to the model selection problem in Definition 3.28.

Proof. We first show that every path P from (0, 0) to (L,L) in G delivers a valid model
selection and vice versa. For some K ∈ {1, . . . , L} the path P is

P = ((0, 0), (0, `1), (`1, `2), (`2, `3), . . . , (`K , L), (L,L)) (3.36)

and from this define the reduced path or model selection

P red := (`1, `2, `3, . . . , `K , L). (3.37)

The reduced path P red satisfies (3.32), (3.33) and (3.34) by construction. We only verify
this for last condition. For ` ∈ {1, . . . , K} and with P red

0 := 0 abbreviate the vertices
i := P red

`−1, j := P red
` and k := P red

`+1. The construction of P red from P shows

P = (. . . , (i, j), (j, k), . . . )
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and thus ((i, j), (j, k)) ∈ E. The definition of the edge set E in (3.35) shows (3.32)

wk(ρ
2
L,j − ρ2

L,i) > wj(ρ
2
L,k − ρ2

L,j).

The verification of the other conditions (3.32) and (3.33) is similar. We conclude that
P red is a valid model selection. For the other direction let P red be a valid model selection
given as in (3.37). From this we define P as in (3.36). It is now straightforward to verify
that P is actually a path in G from the assumption that P red is a valid model selection
satisfying (3.32), (3.33) and (3.34).
All that remains is to show that the cost of a path P is equal to the cost of the respective
model selection. We denote the first entry of P` = (i, j) with (P`)1 := i. The definition of
q in (3.35) shows that the cost satisfies

|P |∑
`=2

q(P`−1)1(P`−1)2(P`)1(P`)2 =

|P |−1∑
`=2

q(P`)1(P`)2 ,

where we used that the last term is qL,L = 0. The definition of P red in (3.37) shows

|P |−1∑
`=2

q(P`)1(P`)2 =

|P red|∑
`=1

qP red
`−1P

red
`

=

|P red|∑
`=1

(
wP red

`
(ρ2
L,P red

`
− ρ2

L,P red
`−1

)
)1/2

= J(P red),

which is exactly the cost in (3.31).

We remark that computing a shortest path in a directed graph G with non–negative
weights can be done efficiently in the sense that the costs are polynomial in the number
of models L. A well–known algorithm to compute shortest paths is Dijkstra’s algorithm,
see [13, Section 1.5] or [2, Section 7.4].

Asymptotic analysis. Let us return to the setting that we know asymptotic infor-
mation of the models Z`. We assume that the cost w` increases at most geometrically
and the difference ρ2

L,` − ρ2
L,`−1 decreases sufficiently fast. The latter is achieved if the

difference of the variance of two consecutive levels converges to zero at a certain rate. The
overall variance of the estimator is then given in terms of an asymptotic expansion. We
summarize the result of [106, Lemma 2] in the next lemma.

Lemma 3.30 (Asymptotic variance). Let the assumptions of Theorem 3.26 be true and
for all ` ∈ N

Bias(Z`) ≤ c2−γBias`, (3.38)

V[Z` − Z`−1] ≤ c2−γVar`, (3.39)

w` ≤ c2γCost`. (3.40)

Furthermore, assume uniform lower and upper bounds on the variance for all ` ∈ N

0 < σ2
− ≤ σ2

` ≤ σ2
+ < +∞. (3.41)

Then the bias for the MFMC estimator is

Bias(µ̂MFMC
L ) ≤ c2−γBiasL (3.42)

and the variance satisfies

V
[
µ̂MFMC
L

]
≤ c

Wbudget

(
L∑
`=1

2(γCost−γVar)`/2

)2

. (3.43)
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Proof. The MFMC estimator µ̂MFMC
L is an unbiased estimator for µL and thus (3.38)

shows (3.42). The proof for the variance (3.43) is given in [106, Lemma 1, Lemma 2] and
we only write down the main idea. We have to bound ρ2

L,` − ρ2
L,`−1 in (3.28)

V
[
µ̂MFMC
L

]
=

σ2
L

Wbudget

(
L∑
`=1

(
w`(ρ

2
L,` − ρ2

L,`−1)
)1/2

)2

. (3.44)

We assume 0 < ρL,1 < · · · < ρL,L, otherwise redefine some QoIs from Z` to −Z`. Combine
this with ρL,` ∈ [0, 1] to obtain the bound

ρ2
L,` − ρ2

L,`−1 = (ρL,` + ρL,`−1)(ρL,` − ρL,`−1) ≤ 2(ρL,` − ρL,`−1).

W.l.o.g. we assume σ2
` = 1 for all ` ∈ {1, . . . , L} due to (3.41) and apply Höelder’s

inequality to get

ρL,` − ρL,`−1 = Cov[ZL, Z` − Z`−1]

= Cov[ZL − Z`−1, Z` − Z`−1] + Cov[Z`−1, Z` − Z`−1]

≤ (V[ZL − Z`−1]V[Z` − Z`−1])1/2 + Cov[Z`−1, Z` − Z`−1].

The variance assumption (3.39) is used to bound the first term by c2−γVar`. Furthermore,
the second term is non–positive

Cov[Z`−1, Z` − Z`−1] = ρ`,`−1 − 1 ≤ 0 (3.45)

and thus ρ2
L,` − ρ2

L,`−1 ≤ c2−γVar`. We insert this and use the sample cost (3.40) to bound
the overall cost in (3.44), which yields (3.43).

The property (3.45) is crucially needed for the proof. We emphasize this, since since a
direct application of the Cauchy–Schwarz inequality leads to only half the rate

ρL,` − ρL,`−1 = Cov[ZL, Z` − Z`−1] ≤ (V[ZL]V[Z` − Z`−1])1/2 ≤ c2−γVar`/2.

Let us summarize the asymptotic complexity of the estimator in the next theorem. The
proof is very similar to the proof of [56, Theorem 1] and [31, Theorem 1]. The statement is
a slight generalization of the result in [106, Theorem 1, Corollary 1] since it takes rounding
into account.

Theorem 3.31 (Asymptotic cost [106, Theorem 1, Corollary 1]). Let the assumptions of
Lemma 3.30 be true. Then for all ε ∈ (0, 1/e] there exists a fine level L and a number of
samples m1, . . . ,mL such that cost to achieve MSE(µ̂MFMC

L ) ≤ ε2 is bounded

W
[
µ̂MFMC
L

]
≤ cε−γCost/γBias + c


ε−2, if γVar > γCost,

ε−2 log(ε)2, if γVar = γCost,

ε
−2− γCost−γVar

γBias , if γVar < γCost.

(3.46)

Proof. Fix ε2 > 0 and choose

L := − log(ε)/γBias + L0 (3.47)

for a suitable L0 ≤ c large enough such that L ∈ N and that the result (3.42) gives

Bias(µ̂MFMC
L )2 ≤ c2−2γBiasL = c2−2γBiasL0ε2 ≤ ε2/2.
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We further choose

Wbudget = cε−2

(
L∑
`=1

2(γCost−γVar)`/2

)2

/2

and combine these results with a bias-variance decomposition and (3.43)

MSE(µ̂MFMC
L ) = Bias(µ̂MFMC

L )2 + V
[
µ̂MFMC
L

]
≤ Bias(µ̂MFMC

L )2 +
c

Wbudget

(
L∑
`=1

2(γCost−γVar)`/2

)2

≤ ε2.

The asymptotic expression for the cost W
[
µ̂MFMC
L

]
= Wbudget without ceiling the number

of samples m follows by looking at the three distinct cases. First, for γVar > γCost we use
the properties of the geometric sum to obtain

L∑
`=1

2(γCost−γVar)`/2 ≤
∞∑
`=1

2(γCost−γVar)`/2 ≤ c,

where we used the fact that the exponent is negative. We thus obtain W
[
µ̂MFMC
L

]
= cε−2.

Secondly, for γVar = γCost the sum is bounded by(
L∑
`=1

2(γCost−γVar)`/2

)2

=

(
L∑
`=1

1

)2

= L2.

Inserting L from (3.47) adds the additional logarithmic factor W
[
µ̂MFMC
L

]
= cε−2 log(ε)2.

Finally, for γVar < γCost the geometric sum now grows faster(
L∑
`=1

2(γCost−γVar)`/2

)2

≤ c
(
2(γCost−γVar)(L+1)/2

)2
= c2(γCost−γVar)L.

Again, if we insert L from (3.47) we obtain the costs of W
[
µ̂MFMC
L

]
= cε−2ε−(γCost−γVar)/γBias .

Up until this point we have neglected the ceiling of the number of samples m. The
geometric cost increase (3.40) ensures that the cost of ceiling is dominated by cwL, which
is a constant times the cost of a single high fidelity sample. We combine this with (3.47)
to obtain

cwL ≤ c2γCostL ≤ cε−γCost/γBias ,

which is the additional term for the cost W
[
µ̂MFMC
L

]
in (3.46).

The complexity of the MFMC estimator is significantly smaller than the complexity of the
MC estimator which has the complexity expression (3.46) with γVar = 0. In particular,
for γVar > γCost and assuming that the cost for rounding does not dominate, that is,

γCost/γBias ≤ 2,

we have the optimal asymptotic cost of ε−2 as for the MC estimator that samples di-
rectly from Z without discretization, see Corollary 3.10. For completeness we state the
asymptotic cost compared to MC.
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Corollary 3.32 (Asymptotic cost quotient). Let the assumptions of Theorem 3.31 be
true. Then the cost of the MFMC estimator compared to the MC estimator to reach a
MSE of ε2 ∈ (0, 1] satisfies

W
[
µ̂MFMC
L

]
W[µ̂MC

L ]
= cε2 + c


ε
γCost
γBias , if γVar > γCost,

ε
γCost
γBias log(ε)2, if γVar = γCost,

ε
γVar
γBias , if γVar < γCost.

Proof. Combine the expressions of Theorem 3.31 and Theorem 3.11.

We return to the PDE Example 3.12 and there the MFMC estimator achieves the optimal
cost of O(ε−2) for low dimensions. These costs are asymptotically equal to the MC
estimator that directly samples from Z.

Example 3.33 (PDE example). Let the assumptions of Theorem 3.31 be true. Then if
Z is defined as in (2.16) such that Corollary 2.41 applies, we have γBias = 2, γVar = 4 and
γCost = d, where d is the dimension of D. The cost is minimal for d ≤ 3 and close to
optimal for d = 4. The result for different dimensions is summarized in Table 3.2. �

Dimension d 1 2 3 4 5 6
Cost ε−2 ε−2 ε−2 ε−2 log(ε)2 ε−2.5 ε−3

Cost increase 4 4 4 ≈ 4 ≈ 5.66 8

Table 3.2: Cost of the MFMC estimator w.r.t. to the dimension d of the domain D.
The row “Cost increase” denotes the factor by which the total cost increases if we require
half the RMSE ε. The QoI is (2.16) obtained from the elliptic PDE example.

Lower variance bound. We examine the behaviour for the MFMC estimator if we
increase the number of coarse grid samples m1, . . . ,mL−1 to infinity. We might expect the
same lower variance bound Vmin

I with I = {1, . . . , L − 1} as for the CV estimator, since
µ1, . . . , µL−1 are known. However, as the authors of [62, Theorem 1] show, this is not the
case. The MFMC estimator only reaches the bound Vmin

{L−1}, which is the lower variance
bound for a single CV estimator using ZL−1. We provide two proofs, one were we directly
increase the number of samples and one were we decrease the cost for the coarse models
to zero.

Theorem 3.34 (Lower variance bound [62, Theorem 1]). Let the assumption of Theo-
rem 3.26 be true. Then the lower variance bound for the MFMC estimator satisfies

Vmin[µ̂MFMC
L ] = Vmin

{L−1} = σ2
L(1− ρ2

L,L−1). (3.48)

Proof (sample based): Use the limit of m` → +∞ for ` ∈ {1, . . . , L−1} in (3.23) to obtain
the right side of (3.48). The resulting expression is equal to (3.15).

Proof (cost based): We have to be careful to ensure that assumption (3.26) of Theo-
rem 3.26 is satisfied if we let w1, . . . , wL−1 go to zero. Let α→ 0 with α > 0 and redefine
the costs as αw1, . . . , αwL−1. Now assumption (3.26) is satisfied for all α ≤ 1. We further
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define Wbudget = wL and from (3.27) we conclude m` → +∞ for ` ∈ {1, . . . , L − 1} and
mL → 1 for α→ 0. We obtain the result from (3.28)

Vmin[µ̂MFMC
L ] = lim

α→0
V
[
µ̂MFMC
L

]
= lim

α→0

σ2
L

Wbudget

(
(wL(ρ2

L,L − ρ2
L,L−1))1/2 +

L−1∑
`=1

(
αw`(ρ

2
L,` − ρ2

L,`−1)
)1/2

)2

= σ2
L(1− ρ2

L,L−1).

The MFMC estimator is not optimal in the limit of infinitely many low fidelity models.
From Lemma 3.21 we obtain a comparison to the full CV estimator

Vmin[µ̂MFMC
L ] = Vmin

{L−1} ≥ Vmin
{1,...,L−1} = Vmin[µ̂CV

L ].

This inequality is often strict, which we later show in numerical experiments in Section 4.
We want to give the reader a deeper understanding of why the variance reduction is not
optimal. A close inspection of the MFMC estimator shows almost sure convergence to the
single CV estimator with control variate ZL−1. In particular, the correlation information
between the models Z1, . . . , ZL−2 and ZL is lost. The reason is that some of the sums in
the definition of the MFMC estimator (3.20) almost surely converge to zero

lim
m1,...,mL−1→+∞

(
1

m`+1

m`+1∑
i=1

Zi
` −

1

m`

m∑̀
i=1

Zi
`

)
= 0 for all ` ∈ {1, . . . , L− 2}.

For ` ∈ {1, . . . , L − 2} the random variables Z1
` , . . . , Z

mL
` that are correlated with the

samples of the fine model Z1
L, . . . , Z

mL
L disappear.

Lemma 3.35 (Almost sure convergence to single CV). The MFMC estimator µ̂MFMC
L

converges almost surely to the single CV estimator µ̂CV
L with control variate ZL−1 and mL

samples
lim

m1,...,mL−1→+∞
µ̂MFMC
L = µ̂CV

L .

Proof. Let us rewrite the MFMC estimator defined in (3.20) such that the firstmL samples
are all grouped together

µ̂MFMC
L =

mL∑
i=1

(
1

mL

Zi
L −

L−1∑
`=1

β`

(
1

m`+1

Zi
` −

1

m`

Zi
`

))
+ βL−1

1

mL−1

mL−1∑
i=mL+1

Zi
L−1 +R,

where R is the remainder of the estimator. If we take the limit m1, . . .mL−1 to infinity,
the term 1

m`
Zi
` converges almost surely to zero. This is true for all random variables in

the left sum except for 1
m`+1

Zi
` with ` = L − 1. By the strong law of large numbers

R converges almost surely to zero and the remaining term converges almost surely to
βL−1µL−1. We conclude almost sure convergence of the MFMC estimator to the CV
estimator for m1, . . . ,mL−1 → +∞

µ̂MFMC
L → 1

mL

mL∑
i=1

Zi
L − βL−1

1

mL

mL∑
i=1

Zi
L−1 + βL−1µL−1 = µ̂CV

L ,

where µ̂CV
L is the single CV estimator with control variate ZL−1 with mL samples.
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3.5 Approximate Control Variates

We describe a different control variate framework introduced in [62] in this section. The
basic observation of the authors is that the MFMC and the Multilevel Monte Carlo
estimator in Section 3.6 do not achieve the same lower variance bound as the control
variate estimator. They propose several estimators which do not have this disadvantage.

Definition 3.36 (ACV–IS estimator [62, Definition 2]). For m1, . . . ,mL ∈ N and β ∈
RL−1 we define the Approximate Control Variate Independent Samples (ACV–IS) estima-
tor

µ̂ACV–IS
L :=

1

mL

mL∑
i=1

Zi,L
L −

L−1∑
`=1

β`

(
1

mL

mL∑
i=1

Zi,L
` −

1

m`

(
mL∑
i=1

Zi,L
` +

m∑̀
i=mL+1

Zi,`
`

))
. �

We want to choose the coefficients β such that the variance of the estimator is minimized.
In contrast to the MFMC estimator, the optimal coefficients β now depend on the number
of samples m. We denote the Hadamard or element wise product of two matrices with ◦.

Lemma 3.37 (Bias, variance [62, Theorem 3]). Define the matrix F IS ∈ R(L−1)×(L−1)

F IS := (F IS
`j )L−1

`,j=1, F IS
`j :=

{
(m`−mL)(mj−mL)

m`mj
, if ` 6= j,

m`−mL

m`
, if ` = j.

Moreover, let m` ≥ mL for all ` ∈ {1, . . . , L− 1} and for I := {1, . . . , L− 1} assume that
CI,I is positive definite. Then the ACV–IS estimator is an unbiased estimator for µL and
the variance minimizing choice for β is

β∗ = (F IS ◦ CI,I)−1(diag(F IS) ◦ CI,L). (3.49)

The minimal variance at β∗ satisfies

V
[
µ̂ACV–IS
L

]
=

1

mL

(σ2
L − (diag(F IS) ◦ CI,L)T (F IS ◦ CI,I)−1(diag(F IS) ◦ CI,L)). (3.50)

Proof. We refer to the proof of [62, Theorem 3].

The authors of [62, Definition 3] also define a modification of the MFMC estimator, where
the first average of the control variates is now only summed up over the first mL samples.

Definition 3.38 (ACV–MF estimator [62, Definition 3]). For m1, . . . ,mL ∈ N and β ∈
RL−1 we define the Approximate Control Variate Multifidelity (ACV–MF) estimator

µ̂ACV–MF
L :=

1

mL

mL∑
i=1

Zi
L −

L−1∑
`=1

β`

(
1

mL

mL∑
i=1

Zi
` −

1

m`

m∑̀
i=1

Zi
`

)
. �

Lemma 3.39 (Bias, variance [62, Theorem 4]). Define the matrix FMF ∈ R(L−1)×(L−1)

FMF := (FMF
`j )L−1

`,j=1, FMF
`j :=

{
min{m`,mj}−mL

min{m`,mj}
, if ` 6= j,

m`−mL

m`
, if ` = j.
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Moreover, let m` ≥ mL for all ` ∈ {1, . . . , L− 1} and for I := {1, . . . , L− 1} assume that
CI,I is positive definite. Then the ACV–MF estimator is an unbiased estimator for µL
and the variance minimizing choice for β is

β∗ = (FMF ◦ CI,I)−1(diag(FMF ) ◦ CI,L).

The minimal variance at β∗ satisfies

V
[
µ̂ACV–MF
L

]
=

1

mL

(σ2
L − (diag(FMF ) ◦ CI,L)T (FMF ◦ CI,I)−1(diag(FMF ) ◦ CI,L)).

Proof. We refer to the proof of [62, Theorem 4].

We continue with the next estimator which is a combination of two control variate esti-
mators.

Definition 3.40 (ACV–KL estimator [62, Definition 4]). Let m1, . . . ,mL ∈ N and β ∈
RL−1. Then for K,N ∈ {1, . . . , L} with N ≥ K we define the Approximate control variate
KL (ACV–KL) estimator

µ̂ACV–KL
L :=

1

mL

mL∑
i=1

Zi
L −

L−1∑
`=K

β`

(
1

mL

mL∑
i=1

Zi
` −

1

m`

m∑̀
i=1

Zi
`

)

−
K−1∑
`=1

β`

(
1

mN

mN∑
i=1

Zi
` −

1

m`

m∑̀
i=1

Zi
`

)
.

(3.51)

�

The KL in the name ACV–KL stems from the original parameters K,L used in [62]. The
idea behind this estimator is to use the ACV–MF estimator with the last control variates
ZK , . . . , ZL−1 and then use a CV scheme with the remaining control variates Z1, . . . , ZK−1.
These control variates are typically cheaper and this allow us to estimate the expression

1
mN

∑mN

i=1 Z
i
` with mN ≥ mL samples, which reduces the variance. In particular, for N = L

or K = 1 the ACV–KL estimator is equal to the ACV–MF estimator.

Lemma 3.41 (Bias, variance [62, Theorem 6]). Define the matrix FKL := (FKL
`j )L−1

`,j=1 ∈
R(L−1)×(L−1) such that

FKL
`j :=



min{m`,mj}−mL

min{m`,mj}
, if `, j ≥ K,

mL
(m`−mN )(mj−mN )−mN (min{m`,mj}−mN )

mjm`mN
, if `, j < K,

mL
m`−mN

m`mN
, if N > ` ≥ K, j < K,

mL
mj−mN

mjmN
, if N > j ≥ K, ` < K,

0, otherwise.

Moreover, let m` ≥ mL for all ` ∈ {1, . . . , L− 1}, m` > mN for all ` ∈ {1, . . . , N − 1} and
for I := {1, . . . , L−1} assume that CI,I is positive definite. Then the ACV–KL estimator
is an unbiased estimator for µL and the variance minimizing choice for β is

β∗ = (FKL ◦ CI,I)−1(diag(FKL) ◦ CI,L).

The minimal variance at β∗ satisfies

V
[
µ̂ACV–KL
L

]
=

1

mL

(σ2
L − (diag(FKL) ◦ CI,L)T (FKL ◦ CI,I)−1(diag(FKL) ◦ CI,L)).
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Proof. We refer the reader to the proof of [62, Theorem 6].

We give the reader an intuition for the particular expression of β∗ and the variance for the
ACV–IS estimator. A similar result also holds for the ACV–MF and ACV–KL estimators.
We define the sample modified covariance matrix as

Cm :=
1

mL

(
F IS diag(F IS)

diag(F IS)T 1

)
◦ C. (3.52)

With this notation we rewrite β∗ (3.49) and V
[
µ̂ACV–IS
L

]
in (3.50) to obtain an analogous

result to Lemma 3.17 for the multiple CV estimator in terms of the Schur complement

β∗ = (Cm
I,I)
−1Cm

I,L,

V
[
µ̂ACV–IS
L

]
= Cm/Cm

I,I .

A possible interpretation, at least in terms of the variance, is that the ACV estimators are
CV estimators that use control variates that depend on the number of samplesm1, . . . ,mL.
For ` ∈ {1, . . . , L− 1} we define

Z̃` :=
1

m
1/2
L

m` −mL

m`

Z` +

(
m` −mL

m`

−
(
m` −mL

m`

)2
)1/2

ξ`

, (3.53)

where the ξ1, . . . , ξL−1 are independent copies of Z1, . . . , ZL−1. We further define Z̃L :=

ZL/m
1/2
L . It is now straightforward to verify that the covariance matrix of Z̃1, . . . , Z̃L is

equal to (3.52). Furthermore, for m` > mL this covariance matrix is obviously invertible
if C is invertible and thus the expression (F IS ◦ CI,I)−1 in (3.49) is well defined.

Sample allocation. The ACV–IS, ACV–MF and ACV–KL estimators all depend on
the number of samples m1, . . . ,mL and the ACV–KL estimator additionally depends on
the parameters K and N . For a positive budget Wbudget > 0 the authors of [62] solve the
relaxed sample allocation problem

min
m1,...,mL∈R

J(m) := V
[
µ̂ACV–IS
L

]
such that

L∑
`=1

m`w` = Wbudget,

m` ≥ mL for all ` ∈ {1, . . . , L− 1},
mL ≥ 0.

The optimization problem for the ACV–MF estimator is similar, we simply replace the
variance V

[
µ̂ACV–IS
L

]
with the counterpart V

[
µ̂ACV–MF
L

]
. For the ACV–KL estimator we

have the integer parameters K and N and thus use categorical optimization. First fix K
and N and compute the optimal solution of

min
m1,...,mL∈R

J(m) := V
[
µ̂ACV–KL
L

]
such that

L∑
`=1

m`w` = Wbudget,

m` ≥ mL for all ` ∈ {1, . . . , L− 1},
m` ≥ mN for all ` ∈ {1, . . . , N − 1},
mL ≥ 0.
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This is then done for every valid combination of (K,N) and the parameters with the
smallest variance is chosen. There is no known analytical form for the optimal sample
allocation m1, . . . ,mL for either of these estimators. Therefore, numerical optimization
has to be used.
At this stage we remark that the ACV estimators depend on the ordering of Z1, . . . , ZL−1.
In particular, the authors of [62] do not optimize over this ordering and do not perform any
model selection. As an example to show why this might be a disadvantage let Z1, . . . , ZL−1

be independent of ZL. Then the constraint mL ≤ m` requires the evaluation of models
that do not reduce the variance but have non–zero costs.

Lower variance bound. The authors of [62] changed a small but important detail
for the ACV–IS and the ACV–MF estimator compared to the MFMC estimator. If the
number of low fidelity samples goes to infinity, then the contribution of the first term of
the control variates 1

mL

∑mL

i=1 Z
i,L
` in Definition 3.36 and 1

mL

∑mL

i=1 Z
i
` Definition 3.38 for

` ∈ {1, . . . , L − 1} does not go to zero as for MFMC. This allows these estimators to
achieve the same lower variance bound as the CV estimators. This was proven in a more
general setting by Gorodetsky et al. [62, Theorem 5]. The main idea of the proof is to
use the convergence of the matrices F IS ◦ CI,I and FMF ◦ CI,I to CI,I for an increasing
number of low fidelity evaluations. The result is the same lower variance bound as for the
CV estimator, which is not a coincidence.

Lemma 3.42 (Almost sure convergence to CV). The ACV–IS and ACV–MF estimator
converge almost surely to the multiple CV estimator with control variates Z1, . . . , ZL−1

and mL samples

lim
m1,...,mL−1→+∞

µ̂ACV–IS
L = lim

m1,...,mL−1→+∞
µ̂ACV–MF
L = µ̂CV

L [Z1, . . . , ZL−1]. (3.54)

The same statement holds for the ACV–KL estimator with K = 1 or N = L. For K > 1
and N < L the ACV–KL estimator almost surely converges to the multiple CV estimator
with control variates ZK , . . . , ZL−1 and mL samples

lim
m1,...,mL−1→+∞

µ̂ACV–KL
L = µ̂CV

L [ZK , . . . , ZL−1]. (3.55)

Proof. The proof for the ACV–IS estimator is similar to the proof for the ACV–MF
estimator, thus we only prove the statement (3.54) for ACV–MF. The estimator reads

µ̂ACV–MF
L =

1

mL

mL∑
i=1

Zi
L −

L−1∑
`=1

β`

(
1

mL

mL∑
i=1

Zi
` −

1

m`

m∑̀
i=1

Zi
`

)
.

If we now let m` → +∞ the terms 1
m`

∑m`

i=1 Z
i
` → µ` almost surely, which shows the claim.

The claim for the ACV–KL estimator follows since for K = 1 or N = L it is equal to the
ACV–MF estimator. The proof for K > 1 and N < L is straightforward. The terms in
the sum

∑K−1
`=1 in (3.51) converge almost surely to zero which shows the claim.

Another method to derive this result, at least for the ACV–IS estimator, is the interpre-
tation as CV estimator with control variates Z̃1, . . . , Z̃L−1 defined in (3.53). For mL = 1
and m` → +∞ for ` ∈ {1, . . . , L − 1} the control variates almost surely converge, that

is Z̃` → Z`. A straightforward consequence is that the lower variance bound for ACV
estimators is equal to the lower variance bound for the CV estimators.
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Theorem 3.43 (Lower variance bound). Let K = 1 or N = L for the ACV–KL estimator.
Then the lower variance bound for ACV is

Vmin[µ̂ACV–IS
L ] = Vmin[µ̂ACV–MF

L ] = Vmin[µ̂ACV–KL
L ] = Vmin

{1,...,L−1}. (3.56)

For K > 1 and N < L the lower variance bound for ACV–KL is

Vmin[µ̂ACV–KL
L ] = Vmin

{K,...,L−1}. �

3.6 Multilevel Monte Carlo

The Multilevel Monte Carlo (MLMC) estimator has recently become popular due to
its asymptotic complexity improvement over the MC estimator. Giles [56] introduced
this estimator for computing the expectation of the solution of a stochastic differential
equation. The authors of [31] extended this result to a PDE with a random diffusion
coefficient. A summary of the method and extensions are listed in [57]. Let us denote
Z0 := 0, w0 := 0 and µ0 := 0.

Definition 3.44 (MLMC estimator [56, Section 2]). For m1, . . . ,mL we define MLMC
estimator

µ̂MLMC
L :=

L∑
`=1

1

m`

m∑̀
i=1

(Zi,`
` − Z

i,`
`−1). (3.57)

�

The estimator differs from a CV estimator in the sense that there are no coefficients β
to choose. Furthermore, the samples for every difference in (3.57) are independent. In
particular, m` is not the number of evaluations of Z` but rather of Z` − Z`−1. The total
number of evaluations of Z` is m` +m`+1 for ` ∈ {1, . . . , L− 1} and of ZL is mL.
It is not immediately obvious why the MLMC estimator is constructed as a telescoping
sum, however the reasons will become clear when we examine its asymptotic properties.
Let us write down the bias and variance of this estimator.

Lemma 3.45 (Bias, variance [56, Section 2]). The MLMC estimator is an unbiased
estimator for µL with variance

V
[
µ̂MLMC
L

]
=

L∑
`=1

V[Z` − Z`−1]

m`

. (3.58)

Proof. We use the properties of the telescoping sum, the linearity of the expectation and
µ0 = 0 to conclude the unbiasedness

µ̂MLMC
L =

L∑
`=1

E[Z` − Z`−1] = µL − µ0 = µL.

We use the independence of the random variables w.r.t. the levels ` and the sample index
i together with the standard MC variance estimate to conclude (3.58)

V
[
µ̂MLMC
L

]
=

L∑
`=1

V

[
1

m`

m∑̀
i=1

(Zi,`
` − Z

i,`
`−1)

]
=

L∑
`=1

V[Z` − Z`−1]

m`

.
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Sample allocation. Let us continue with the sample allocation for MLMC. The goal
is to find the number of samples m1, . . . ,mL that minimize the variance given a fixed
computational budget Wbudget > 0. The relaxed sample allocation problem where we
allow fractional samples reads

min
m1,...,mL∈R

J(m) := V
[
µ̂MLMC
L

]
=

L∑
`=1

V[Z` − Z`−1]

m`

(3.59)

such that
L∑
`=1

m`(w` + w`−1) = Wbudget, (3.60)

m` ≥ 0 for all ` ∈ {1, . . . , L}. (3.61)

This minimization problem has a unique solution which can be computed analytically. The
solution was obtained by Giles [56] and generalized by Cliffe et al. [31] to accommodate
the PDE setting.

Theorem 3.46 (Optimal sample allocation [31, Section 2.1]). Let V[Z` − Z`−1] > 0 for
all ` ∈ {1, . . . , L}. Then the optimal sample allocation m∗ of (3.59)-(3.61) is

m∗` =
Wbudget∑L

`=1(V[Z` − Z`−1](w` + w`−1))1/2

(
V[Z` − Z`−1]

w` + w`−1

)1/2

.

The variance at this minimizer satisfies

V
[
µ̂MLMC
L

]
=

1

Wbudget

(
L∑
`=1

(V[Z` − Z`−1](w` + w`−1))1/2

)2

. (3.62)

Proof. The proof is standard convex analysis [20, Section 5]. We however, want to repeat
the main ideas of it since a proof with similar structure will appear in a more complicated
setting. First, we argue that a minimizer exists. We use V[Z` − Z`−1] > 0 and m` ≥ 0 to
show

lim
m`→0

J(m) = +∞.

Since J(m) is continuous for m` > 0, we conclude that m` ≥ c > 0 for all ` ∈ {1, . . . , L}
for some small c. Furthermore, the cost constraint (3.60) and w` > 0 ensures that

m`(w` + w`−1) ≤Wbudget

and thus m` ≤ c for all ` ∈ {1, . . . , L} for sufficiently large c. The continuous function J
attains its minimum over a compact set, thus m∗ exists. The uniqueness follows since J
is strictly convex restricted to linear cost constraint. This can be seen by looking at the
Hessian of J , which is a diagonal matrix that is strictly positive definite

HJ(m) = (HJ(m)`j)
L
`,j=1, HJ(m)`j =

{
2V[Z` − Z`−1]m−3

` , if ` = j,

0, if ` 6= j.

This also shows that (3.59)-(3.61) is a convex optimization problem, since the constraints
are all affine. The Karush-Kuhn-Tucker (KKT) conditions are thus sufficient for a min-
imizer. There exists the Lagrange multiplier λW ∈ R associated with the cost constraint
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and λ` ∈ R associated with the positivity constraint of m` for every ` ∈ {1, . . . , L} such
that the KKT conditions are

−V[Z` − Z`−1]

m2
`

+ λW(w` + w`−1)− λ` = 0 for all ` ∈ {1, . . . , L},

L∑
`=1

m`(w` + w`−1) = Wbudget,

m` ≥ 0 for all ` ∈ {1, . . . , L},
λ`m` = 0 for all ` ∈ {1, . . . , L},
λ` ≥ 0 for all ` ∈ {1, . . . , L}.

(3.63)

Observe that we already concluded m` > 0 and thus by the complementary slackness
condition λ` = 0. Therefore, we have to solve the system

−V[Z` − Z`−1]

m2
`

+ λW(w` + w`−1) = 0 for all ` ∈ {1, . . . , L},

L∑
`=1

m`(w` + w`−1) = Wbudget.

We further conclude that λW > 0 and thus for all ` ∈ {1, . . . , L}

m` =

(
V[Z` − Z`−1]

λW(w` + w`−1)

)1/2

.

The cost constraint (3.60) now shows

λW =
1

(Wbudget)2

(
L∑
`=1

(V[Z` − Z`−1](w` + w`−1))1/2

)2

.

This then yields the optimal value for m∗` for all ` ∈ {1, . . . , L}

m∗` =
Wbudget∑L

`=1(V[Z` − Z`−1](w` + w`−1))1/2

(
V[Z` − Z`−1]

w` + w`−1

)1/2

.

The variance at the minimizer m∗ satisfies

J(m∗) =
1

Wbudget

(
L∑
`=1

(V[Z` − Z`−1](w` + w`−1))1/2

)2

= λWWbudget.

It is straightforward to generalize the theorem if V[Z` − Z`−1] = 0 for some ` ∈ {1, . . . , L}.
We remove the model ` from the estimator without affecting the accuracy, which corre-
sponds to m∗` = 0. The result (3.62) shows the inversely proportional relationship between
V
[
µ̂MLMC
L

]
and Wbudget, similar to the result for MFMC in Theorem 3.26.

Graph based model selection. The variance of the MLMC estimator (3.62) shows
that the cost is not invariant under reordering of the models. Let us formulate a model
selection problem similar to the one for the MFMC estimator in Definition 3.28.
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Definition 3.47 (Model selection problem). The model selection for MLMC is to mini-
mize

min
P

J(P ) :=

|P |∑
`=1

(
V
[
ZP` − ZP`−1

]
(wP` + wP`−1

)
)1/2

, (3.64)

where P = (P1, P2, . . . , P|P |−1, L)T is a vector of length |P | ≤ L with P` ∈ {1, . . . , L} and
we defined wP0 := 0. �

The cost function J in (3.64) is up to constant equal to the square root of the variance of
the MLMC estimator in (3.62) for P = (1, . . . , L)T . Definition 3.47 allows us to reorder
the models and if necessary, not use some of them.
The goal is to find the optimal model selection P that minimizes the variance and we show
that this problem is equivalent to a shortest path problem. Let us define the directed,
edge weighted graph G := (V,E,Q) defined as

V := {0, . . . , L},
E := V × V,
Q := (qij)

L
i,j=0, qij := (V[Zj − Zi](wj + wi))

1/2.

(3.65)

A shortest path from 0 to L now describes the best model selection and can be computed
efficiently, i.e. by using Dijkstra’s algorithm, see [13, Section 1.5] or [2, Section 7.4].

Lemma 3.48 (Shortest path model selection). Finding a minimizer of (3.64) is equivalent
to finding a shortest path from 0 to L in G defined in (3.65).

Proof. The model selection P = (P1, P2, . . . , P|P |−1, L)T is a valid path from 0 to L in G
if we add zero in front P ′ = (0, P )T . Similarly, every path from 0 to L in G is a valid
model selection if we drop the first entry. All that remains is to show that the cost of any
path P from 0 to L is equal to J(P ) in (3.64). This however, follows from the definition
of the edge weights qij in (3.65).

Asymptotic complexity. The asymptotic cost for the MLMC estimator is an im-
provement over the MC estimator and is equal to the cost of the MFMC estimator in
Theorem 3.31. The proof is also quite similar. In particular, the MLMC estimator
achieves the optimal O(ε−2) complexity if the variance reduction rate γVar is larger than
the cost increase rate γCost.

Theorem 3.49 (Asymptotic cost [56, Theorem 3.1], [31, Theorem 1]). Let the following
assumptions be true for all ` ∈ N

Bias(Z`) ≤ c2−γBias`, (3.66)

V[Z` − Z`−1] ≤ c2−γVar`, (3.67)

w` ≤ c2γCost`. (3.68)

Then for all ε ∈ (0, 1/e] there exist a final level L and a number samples m1, . . . ,mL such
that the cost to achieve MSE(µ̂MLMC

L ) ≤ ε2 is bounded

W
[
µ̂MLMC
L

]
≤ cε−γCost/γBias + c


ε−2, if γVar > γCost,

ε−2 log(ε)2, if γVar = γCost,

ε
−2− γCost−γVar

γBias , if γVar < γCost.
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Proof. The proof is analogous to the proof for the MFMC estimator in Theorem 3.31.
We only have to verify that the variance satisfies the expression

V
[
µ̂MLMC
L

]
≤ c

Wbudget

(
L∑
`=1

2(γCost−γVar)`/2

)2

,

which directly follows if we combine (3.62) with (3.67) and (3.68).

Lower variance bound. The lower variance bound of MLMC does not reach the
bound Vmin

{L−1} as for a single CV estimator, since there is no coefficient β to choose. This

result can be found in [62, Section 2.4], we however provide a different proof.

Theorem 3.50 (Lower variance bound). The MLMC estimator almost surely converges

lim
m1,...,mL−1→+∞

µ̂MLMC
L =

1

mL

mL∑
i=1

(Zi
L − Zi

L−1) + µL−1. (3.69)

In particular, the lower variance bound for the MLMC estimator satisfies

Vmin[µ̂MLMC
L ] = V[ZL − ZL−1] ≥ Vmin

{L−1}. (3.70)

Proof. All MC estimators in (3.57) converge almost surely to their mean

lim
m1,...,mL−1→+∞

µ̂MLMC
L =

1

mL

mL∑
i=1

(Zi
L − Zi

L−1) +
L−1∑
`=1

(µ` − µ`−1),

which shows (3.69) since this is a telescoping sum with µ0 = 0. The bound (3.70) now
follows since the right estimator in (3.69) is a single CV estimator with control variate
ZL−1, mL samples and potentially suboptimal coefficient β = 1.

Let us briefly outline a derivation of the expression (3.70) by decreasing the cost of the
low fidelity models to zero. We use (3.62) with Wbudget = wL to obtain

lim
w1,...,wL−1→0

V
[
µ̂MLMC
L

]
= lim

w1,...,wL−1→0

1

Wbudget

(
L∑
`=1

(V[Z` − Z`−1](w` + w`−1))1/2

)2

= V[ZL − ZL−1].

3.7 Other multilevel methods

Multi-index Monte Carlo. The Multi-index Monte Carlo estimator [68] is an ex-
tension of the MLMC estimator such that the telescoping sum idea is used in multiple
directions. Let us assume that we have the models Z`,j for `, j ∈ {1, . . . , L} available.
Then define the two difference operators in the first and the second direction

∆1Zi,j :=

{
Z1,j, if i = 1,

Zi,j − Zi−1,j, if i 6= 1,
∆2Zi,j :=

{
Zi,1, if j = 1,

Zi,j − Zi,j−1, if j 6= 1.
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The estimator for E[ZL,L] now sums up over all low fidelity models

µ̂L,L :=
L∑

`,j=1

1

m`,j

m`,j∑
i=1

∆2∆1Z
i,j,`
`,j .

This is an unbiased estimator for E[ZL,L] with variance

V
[
µ̂L,L

]
=

L∑
`,j=1

V[∆2∆1Z`,j]

m`,j

.

This expression is equivalent to the expression for the MLMC estimator (3.58) except
that we sum over two dimensions. Importantly, this method is viable if the variance term
exhibits mixed regularity in the following sense

V[∆2∆1Z`,j] = c2−γVar2`2−γVar1j,

where γVar2, γVar1 are positive rates w.r.t. the respective dimensions.
It is possible and advisable to not sum up over all `, j ∈ {1, . . . , L} and instead carefully
select the indices. The authors show in [68, Remark 2.2] that with an improved selection
and under some regularity assumptions, the convergence rate is, up to logarithmic factor,
independent of the dimension d of D for the PDE setting in Example 3.12. These results
however, require mixed regularity assumptions w.r.t. the bias, variance and cost.

Adaptive methods. Adaptive methods seek to optimize the low fidelity models
Z1, . . . , ZL−1 in a certain way to reduce the variance. The method of Peherstorfer [105]
uses a Gaussian process to generate a cheap low fidelity model and uses this model as
control variate to estimate the expectation of the high fidelity model. The tradeoff here
is that the low fidelity model may be inaccurate if it is cheap.
Other adaptive methods do not consider a fixed hierarchy Z1, . . . , ZL−1 and use a refine-
ment scheme that depends on the particular sample, see [44, 74, 80]. This exploits features
of the underlying QoI that may be sample dependent such as a localized forcing term,
where the location is random and differs significantly for different realizations. Adaptive
mesh refinement is then used to obtain sample dependent approximations of Z.
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Chapter 4

Multilevel best linear unbiased estimators

In this chapter we reformulate sampling based estimation as linear regression problem and
generalized linear least squares problem. These problems and their respective solutions
are well known in the mathematical literature [8, 64, 69, 96, 114, 116, 142]. Therefore,
a lot of work in this chapter consists of translating sampling based estimation to the
language of least squares problems. We restrict ourselves to a solution in the class of
linear unbiased estimators, where we form a linear combination of the samples. This class
includes the estimators presented in Chapter 3. The Gauss–Markov–Aitken Theorem
asserts the existence and uniqueness of the best linear unbiased estimator (BLUE), where
“best” means variance minimal. In this context the term “multilevel” means that we use
the samples of the low fidelity models Z1, . . . , ZL−1 to estimate the expectation of the
high fidelity model ZL. The contents of this chapter is organized as follows:

� We derive the BLUE from two different perspectives in Section 4.1. First, we proceed
similar to the CV estimator by defining a general linear unbiased estimator. Then
we choose the coefficients to satisfy a bias constraint and to be variance minimal,
which in turn leads to the BLUE. The second approach reformulates the estimation
problem as linear regression problem, where we apply the Gauss–Markov–Aitken
Theorem to obtain the BLUE. Both derivations lead to the same result, however
the latter one is more insightful.

� We continue with the lower variance bound for the BLUE in Section 4.2. Since the
BLUE is the linear unbiased estimator with the smallest variance, this bound is a
lower bound for every linear unbiased estimator. As it turns out the bound is sharp
and equal to the bound for the CV and ACV estimators.

� Linear unbiased estimators are formed by linear combinations of the samples. In
Section 4.3 we view the samples as basis functions of a suitable subspace V . The
BLUE consists of the best approximation in V of an element in a larger space which
we obtain from the bias constraint plus a residual orthogonal to V . This viewpoint
emphasizes the samples and the QoIs Z1, . . . , ZL and not the coefficients of the linear
combination.

� We view the estimators of Chapter 3 as linear unbiased estimator in Section 4.4
and show that some of them are the BLUE under certain circumstances. We fur-
ther define the full coupling estimators, which are the BLUEs for a special sample
allocation.

� Some results of this chapter are verified numerically in Section 4.5, where we have
samples of a QoI which is a monomial or a monomial plus noise. The goal is to
combine these samples in a linear fashion to reduce the variance of the estimate for
the mean of the high fidelity model µL. We further verify that Vmin in Definition 3.19
is the lower variance bound.

Throughout this chapter we estimate a linear combination of the means of the discretized
QoIs E[Z1], . . . ,E[ZL] and not of the actual mean E[Z] we are interested in. This is a
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restriction that makes sense for the purpose of this chapter and we defer the estimation
of the exact mean E[Z] to Chapter 6. This chapter contains results from [126].

4.1 Estimation as linear regression

Linear unbiased estimators. We estimate the mean µ = (E[Z1], . . . ,E[ZL])T by
linearly combining samples of Z1, . . . , ZL. We define subsets of these QoIs as model
groups, where we later independently sample from them. We further define a restriction
and prolongation operator.

Definition 4.1 (Model group, restriction, prolongation). For K := 2L− 1 let S1, . . . , SK

be the K non–empty, disjoint subsets of {1, . . . , L}. We call each Sk a model group. For
each model group the restriction Rk is defined such that for all v ∈ RL

Rkv := vSk ∈ R|Sk|.

We define the prolongation as transpose of the restriction P k := (Rk)T . �

We simplify the notation by deliberately not specifying which subset the model group
Sk for a specific k is unless it is contextually required. We now define estimators that
linearly combine samples with coefficients that are deterministic and thus implicitly define
the bias parameter. For every k ∈ {1, . . . , K} we have mk i.i.d. samples of the QoIs with
indices in Sk and denote them as usual with Z1,k

Sk
, . . . , Zmk,k

Sk
.

Definition 4.2 (Linear unbiased estimator). For deterministic coefficients βi,k ∈ R|Sk|
and samples Zi,k

Sk
we call µ̂α a linear estimator

µ̂α :=
K∑
k=1

mk∑
i=1

(βi,k)TZi,k
Sk
.

The bias (parameter) α is defined in terms of the coefficients

α :=
K∑
k=1

P k

mk∑
i=1

βi,k. (4.1)

The estimator µ̂α is a linear unbiased estimator (for αTµ). For unit vectors e` ∈ RL we
abbreviate µ̂` := µ̂e` . �

We call α the bias since it determines the bias for estimating zero. The definition (4.1)
ensures that µ̂α is an unbiased estimator for αTµ irrespective of the actual value of µ,
which is required since we do not know any entry of the mean µ. This becomes clear if
we equivalently reformulate (4.1)

E[µ̂α] =
K∑
k=1

mk∑
i=1

(βi,k)TE
[
Zi,k
Sk

]
=

K∑
k=1

mk∑
i=1

(βi,k)TRkµ = αTµ for all µ ∈ RL.

It is often helpful to specifically select the coefficient in front of the `-th level

βi,k[`] := eT` P
kβi,k, (4.2)
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where the coefficient is zero βi,k[`] = 0 if the model is not in the group ` 6∈ Sk. Notice that

in general βi,k[`] 6= βi,k` and that βi,k` is ill–formed if ` > |Sk|. For the set I ⊆ {1, . . . , L} we
define

βi,k[I] := (βi,k[`] )`∈I ∈ R|I|. (4.3)

We allow the number of samples for a model group to be zero, hence we distinguish models
that we are required to evaluate, used models and used model groups.

Definition 4.3 (Required models, used models, used model groups). We define required
models that we have to evaluate

Uα := {` ∈ {1, . . . , L} |α` 6= 0}. (4.4)

The models that are evaluated at least once are the used models

UZ := {` ∈ {1, . . . , L} | there exists k ∈ {1, . . . , K} such that ` ∈ Sk and mk > 0}.
(4.5)

The used model groups are evaluated at least once

US := {k ∈ {1, . . . , K} |mk > 0}. (4.6)

�

A step in the construction is to choose the coefficients β given a desired bias α and the
number of samples. For every ` with α` 6= 0 we require to have at least one sample of Z`,
since otherwise the estimator is biased for µ` 6= 0.

Lemma 4.4 (Existence of linear unbiased estimators). For a fixed α ∈ RL there exists a
linear unbiased estimator µ̂α if and only if Uα ⊆ UZ .

Proof. “⇒” We fix ` ∈ Uα and combine this with (4.1)

0 6= α` = eT` α =
K∑
k=1

eT` P
k

mk∑
i=1

βi,k =
K∑
k=1

mk∑
i=1

βi,k[`] .

Hence there exists k ∈ {1, . . . , K} such that ` ∈ Sk and mk > 0, which shows ` ∈ UZ .
“⇐” We verify that (4.1) is satisfied if we average the coefficients as follows

βi,k[`] :=

{
1
Sk

(`)∑K
k=1mk1

Sk
(`)
α`, if ` ∈ UZ ,

0, if ` 6∈ UZ .

For ` ∈ UZ the denominator in this definition is positive and we obtain the desired bias

eT`

K∑
k=1

P k

mk∑
i=1

βi,k =
K∑
k=1

mk∑
i=1

βi,k[`] = α`

K∑
k=1

mk∑
i=1

1Sk(`)∑K
k=1mk1Sk(`)

= α`.

For ` 6∈ UZ we use the assumption Uα ⊆ UZ and hence α` = 0, which is equal to the linear
combination of the coefficients since they all satisfy βi,k[`] = 0.

It is straightforward to extend the notion of a linear unbiased estimator for the entire
vector µ or Aµ for any compatible matrix A. This is achieved by separately looking at
the rows of A. We abbreviate such an estimator with µ̂A or µ̂ in the case of A = I
the identity matrix. Clearly, a linear unbiased estimator for µ requires us to evaluate all
models at least once.
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Corollary 4.5 (Existence of linear unbiased estimators). Define the set of required models

UA := {` ∈ {1, . . . , L} | there exists i such that Ai` 6= 0}. �

For fixed A ∈ RN×L there exists a linear unbiased estimator µ̂A if and only if UA ⊆ UZ .
In particular, for A = I ∈ RL×L we require UZ = {1, . . . , L}. In the next sections
and throughout the rest of this thesis we tacitly assume that we have samples such that
UA ⊆ UZ is satisfied and thus linear unbiased estimators exist.

Best linear unbiased estimator. We now write down the variance of a linear unbiased
estimator. The result contains expressions with the covariance matrix of a model group

Ck := RkCP k ∈ R|Sk|×|Sk|.

We assume that the samples are uncorrelated across model groups and that all samples
of every model group are also uncorrelated. The random variables Zi,k

Sk
have the same

variance for different sample index i and thus the same information regarding µSk . Hence
it makes sense to all weigh them exactly the same way βi,k = βj,k for all i, j ∈ {1, . . . ,mk}.
We formally derive this.

Lemma 4.6 (Variance, uniform coefficients). The linear unbiased estimator µ̂α has the
variance

V[µ̂α] =
K∑
k=1

mk∑
i=1

(βi,k)TCkβi,k. (4.7)

For βk :=
∑mk

i=1 β
i,k the modified estimator

µ̂′α :=
∑
k∈US

(βk)T

(
1

mk

mk∑
i=1

Zi,k
Sk

)

uses the same samples, has the same bias and variance not larger than µ̂α, that is

V[µ̂′α] =
∑
k∈US

(βk)TCkβk

mk

≤ V[µ̂α]. (4.8)

Proof. The variance (4.7) follows from the independence structure of the samples

V[µ̂α] = V

[
K∑
k=1

mk∑
i=1

(βi,k)TZi,k
Sk

]
=

K∑
k=1

mk∑
i=1

V
[
(βi,k)TZi,k

Sk

]
=

K∑
k=1

mk∑
i=1

(βi,k)TCkβi,k.

The estimator µ̂′α clearly uses the same samples as µ̂α and is a linear unbiased estimator
for αTµ

E[µ̂′α] = E

[
K∑
k=1

(βk)T

(
1

mk

mk∑
i=1

Zi,k
Sk

)]
=

K∑
k=1

(βk)TµSk =
K∑
k=1

mk∑
i=1

(βi,k)TµSk

= E

[
K∑
k=1

mk∑
i=1

(βi,k)TZi,k
Sk

]
= E[µ̂α] = αTµ.

(4.9)
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For the variance (4.8) we separately minimize the inner sums of the variance in (4.7) such
that we do not change the bias

min
v1,...,vmk ∈R|Sk|

J(v1, . . . , vmk) :=

mk∑
i=1

(vi)TCkvi

such that

mk∑
i=1

vi =

mk∑
i=1

βi,k = βk.

(4.10)

Clearly, if mk = 0 then the optimization problem is trivial. For k ∈ US and thus mk > 0
this is a convex optimization since Ck is positive semi–definite and the constraint is affine.
The KKT conditions are thus necessary and sufficient [20, Section 5]. Let λ ∈ R|Sk| be
the Lagrange multiplier such that the optimal choice for v1, . . . , vmk satisfies the KKT
conditions

Ckvi + λ = 0 for all i ∈ {1, . . . ,mk},

βk =

mk∑
i=1

vi.

We write down a solution of this system

vi =
βk

mk

for all i ∈ {1, . . . ,mk},

λ = −C
k

mk

βk.

(4.11)

We conclude that using uniform coefficients across samples of a model group never in-
creases the variance and thus (4.8) holds.

The proof of Lemma 4.6 further shows that if the covariance matrix Ck is positive definite,
then the optimal choice for v1, . . . , vmk in (4.10) is unique with uniform coefficients for
every model group.
Notice that we have to make the distinction between mk = 0 and mk > 0, since we
otherwise divide by zero in (4.11). The estimator with equal coefficients in front of every
sample for each model group is a weighted sum of correlated MC estimators

µ̂α :=
∑
k∈US

(βk)T

(
1

mk

mk∑
i=1

Zi,k
Sk

)
=
∑
k∈US

∑
`∈Sk

βk[`]

(
1

mk

mk∑
i=1

Zi,k
`

)
. (4.12)

The inner sum contains correlated MC estimators when changing ` and the outer sum
contains uncorrelated MC estimators when changing k. The variance of this estimator is

V[µ̂α] =
∑
k∈US

(βk)TCkβk

mk

(4.13)

and the bias satisfies the simplified expression

α =
∑
k∈US

P kβk. (4.14)

The goal is now to choose the coefficients β such that the variance (4.13) is minimized
and the bias constraint (4.14) is satisfied. This is a quadratic optimization problem with
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positive semi–definite matrices Ck and a linear equality constraint. We define a matrix
to express the solution

Ψ :=
∑
k∈US

mkP
k(Ck)−1Rk ∈ RL×L

and write down its properties.

Lemma 4.7 (Properties of Ψ). The matrix Ψ is well defined if the model group covari-
ance matrices Ck are positive definite. Then Ψ is symmetric and positive semi–definite.
Furthermore, Ψ is positive definite if and only if we evaluate every model at least once,
that is UZ = {1, . . . , L}.

Proof. The well–definedness, symmetry and positive semi–definiteness are easy to verify.
Let us now verify the statement for the positive definiteness.

“⇐”: Let v ∈ RL be arbitrary such that

0 = vTΨv =
∑
k∈US

mkv
TP k(Ck)−1Rkv =

∑
k∈US

mkv
T
Sk(C

k)−1vSk .

For k ∈ US we use mk > 0 and that (Ck)−1 is positive definite to show

vSk = (v`)`∈Sk = 0.

For ` ∈ ∪k∈USSk = UZ we conclude v` = 0. Since we use all models UZ = {1, . . . , L} we
obtain v = 0 and thus Ψ is positive definite.

“⇒”: Let us assume that the model ` 6∈ UZ is not used, which implies that Rke` = 0 for
all k ∈ US. Then

eT` Ψe` =
∑
k∈US

mke
T
` P

k(Ck)−1Rke` = 0

and thus Ψ is not positive definite.

The above lemma allows us to write down the best linear unbiased estimator.

Definition 4.8 (Best linear unbiased estimator). If Ψ is well defined and positive definite
we define the best linear unbiased estimator (BLUE)

µ̂B
α :=

∑
k∈US

mkα
TΨ−1P k(Ck)−1

(
1

mk

mk∑
i=1

Zi,k
Sk

)
.

This is a linear unbiased estimator with coefficients

βk := mk(C
k)−1RkΨ−1α. (4.15)

�

The BLUE is the linear unbiased estimator for αTµ with the smallest variance. This
justifies its name.
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Theorem 4.9 (Existence and uniqueness of BLUE). Let the covariance matrices Ck be
positive definite for all k ∈ US and assume that we evaluate every model at least once
UZ = {1, . . . , L}. Then the estimator µ̂B

α is a linear unbiased estimator for αTµ with
variance

V
[
µ̂B
α

]
= αTΨ−1α. (4.16)

Every linear unbiased estimator µ̂α that uses the same samples as µ̂B
α satisfies

V[µ̂α] ≥ V
[
µ̂B
α

]
and equality holds only if µ̂α = µ̂B

α .

Proof. We verify that the coefficients in (4.15) are the unique best choice. First, we write
down the convex minimization problem for minimizing the variance such that the bias
constraint is satisfied

min
β

J(β) :=
∑
k∈US

(βk)TCkβk

mk

such that α =
∑
k∈US

P kβk.
(4.17)

We evaluate every model UZ = {1, . . . , L} and thus there exists a linear unbiased estimator
which is a feasible point of (4.17). The KKT conditions are thus necessary and sufficient
for a minimizer. The KKT conditions with the Lagrange-multiplier λ ∈ RL read

1

mk

Ckβk +Rkλ = 0 for all k ∈ US, (4.18)∑
k∈US

P kβk = α. (4.19)

We solve for βk in (4.18) since Ck is positive and insert the result into (4.19) to obtain
an expression for λ

α = −
∑
k∈US

mkP
k(Ck)−1Rkλ = −Ψλ.

Since Ψ is invertible we solve for λ and insert the result in (4.18)

1

mk

Ckβk −RkΨ−1α = 0 for all k ∈ US.

Again we solve for βk and obtain the coefficients (4.15) which are the minimizer of (4.17).
Since these coefficients satisfy the bias constraint (4.19) the BLUE is unbiased E

[
µ̂B
α

]
= α.

We insert the coefficients into the variance expression in (4.13)

V
[
µ̂B
α

]
=
∑
k∈US

(βk)TCkβk

mk

=
∑
k∈US

mkα
TΨ−1P k(Ck)−1RkΨ−1α = αTΨ−1ΨΨ−1α,

which is the variance (4.16). Now let µ̂α be another linear unbiased estimator. Then to
minimize the variance we are forced to choose the coefficients to be uniform for every
sample in each model group. The resulting estimator then corresponds to a feasible point
in (4.17) where µ̂B

α is the unique minimizer. Thus V[µ̂α] > V
[
µ̂B
α

]
if µ̂α 6= µ̂B

α .
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Remark 4.10 (Existence and uniqueness of BLUE for UZ ( {1, . . . , L}). The condition
UZ = {1, . . . , L} is not necessary to derive a BLUE. As long as there exists a linear
unbiased estimator Uα ⊆ UZ we are able to construct the BLUE by removing the unused
models {1, . . . , L} \ UZ and renumbering the remaining QoIs such that Z1, . . . , ZL′ with
UZ = {1, . . . , L′}. Then we apply Theorem 4.9 to this smaller set where every model is
used. �

Linear models. In the previous paragraph we derived the BLUE from a constructive
perspective. Fix the bias α, ensure that a linear unbiased estimator exists and select
the coefficients β such that the variance is minimized. This follows the control variate
approach in Section 3.3. We now derive this estimator from the perspective of linear
models and linear regression. The key observation is to reformulate the estimation and
to interpret the random variable ZL as noisy observation of the unknown mean µL in the
sense of a linear model

ZL = µL + (ZL − µL) = µL + ηL.

Here ηL is a mean zero noise with variance σ2
L. We extend this basic idea for all QoIs

Z1, . . . , ZL, for each model group and for multiple i.i.d. samples of every model group.
Recall that we want to estimate the vector µ ∈ RL or some linear combination αTµ of it.

Definition 4.11 (Linear model). For k ∈ {1, . . . , K} we abbreviate

ZSk := (Z`)`∈Sk ,

ηSk := ZSk −Rkµ,

and define the linear model
ZSk = Rkµ+ ηSk .

We collect mk samples of ZSk and define Y k, Bk and ηk such that

Y k :=

Z1
Sk
...

Zmk

Sk

 =

R
k

...
Rk

µ+

η
1
Sk
...

ηmk

Sk

 = Bkµ+ ηk.

We again collect these vectors in a linear model such that with Y,B and η it holds

Y :=

Y 1

...
Y K

 =

B1

...
BK

µ+

 η1

...
ηK

 = Bµ+ η. (4.20)

�

In the context of linear models Y is called the vector of observations, B the design matrix,
µ the parameter that we want to estimate and η the noise vector. We give a brief example
with three models to explicitly express such a linear model.

Example 4.12 (Linear model). Let L := 3 and the K = 7 model groups be

S1 := {1}, S2 := {2}, S3 := {3}, S4 := {1, 2},
S5 := {1, 3}, S6 := {2, 3}, S7 := {1, 2, 3}.
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We define the number of samples as m1 := m7 := 1,m6 := 2 and mk := 0 for all other
model groups. Ignoring the number of samples for a moment, the linear models are

Z1 =
(
1 0 0

)µ1

µ2

µ3

+ (Z1 − µ1) =R1µ+ η{1},

(
Z2

Z3

)
=

(
0 1 0
0 0 1

)µ1

µ2

µ3

+

((
Z2

Z3

)
−
(
µ2

µ3

))
=R6µ+ η{2,3},Z1

Z2

Z3

 =

1 0 0
0 1 0
0 0 1

µ1

µ2

µ3

+

Z1

Z2

Z3

−
µ1

µ2

µ3

 =R7µ+ η{1,2,3}.

We now collect these in a block vector to account for two samples of S6. We arrive at

Z1,1
1

Z1,6
2

Z1,6
3

Z2,6
2

Z2,6
3

Z1,7
1

Z1,7
2

Z1,7
3


=



1 0 0

0 1 0
0 0 1

0 1 0
0 0 1

1 0 0
0 1 0
0 0 1



µ1

µ2

µ3

+



Z1,1
1 − µ1

Z1,6
2 − µ2

Z1,6
3 − µ3

Z2,6
2 − µ2

Z2,6
3 − µ3

Z1,7
1 − µ1

Z1,7
2 − µ2

Z1,7
3 − µ3


=

B1

B6

B7

µ+

η1

η6

η7

 = Bµ+ η.

�

Linear models are well studied in mathematics and we derive some properties of this
specific instance (4.20). The design matrix B ∈ RN×L is typically a tall and skinny
matrix, since we often have more samples N than levels L in the following sense

N :=
K∑
k=1

mk|Sk| � L.

Similarly, realizations of the observations and noise Y (ω), η(ω) ∈ RN are vectors of size
N . The covariance matrix of the noise η describes how much the observations deviate
from the mean µ and the correlation between different observations. The noise covariance
matrix of a model group is equal to the model group covariance matrix

Cov[ηSk , ηSk ] = Cov[ZSk , ZSk ] = P kCov
[
Z{1,...,L}, Z{1,...,L}

]
Rk = P kCRk = Ck.

For the special case of i.i.d. samples across model groups and samples in the same model
group the covariance matrices of the combined noise vectors ηk and η are block diagonal.

Lemma 4.13 (Mean and covariance of η). The random variables ηSk, η
k and η have mean

zero. For all k ∈ {1, . . . , K} with i.i.d. samples Z1
Sk
, . . . , Zmk

Sk
the covariance matrix of

the noise ηk is block diagonal

Cov
[
ηk, ηk

]
= diag

(
(Ck)mk

i=1

)
. (4.21)

For i.i.d. samples also across model groups Z1,k
Sk
, . . . , Zmk,k

Sk
for all k ∈ {1, . . . , K} the

covariance matrix of the noise η is also block diagonal

Cov[η, η] = diag
(
(Cov

[
ηk, ηk

]
)Kk=1

)
= diag

(
((Ck)mk

i=1)Kk=1

)
. (4.22)



82 Chapter 4 Multilevel best linear unbiased estimators

Proof. The proof that the noises ηSk , η
k and η have mean zero follows directly from

Definition 4.11. We now show (4.21). We denote with [i] the entry of ηk that corresponds
to the i-th sample η[i],k := Zi

Sk
− µSk . For i, j ∈ {1, . . . ,mk} the independence across the

sample index then shows the block diagonal form

Cov
[
η[i],k, η[j],k

]
= Cov

[
Zi
Sk , Z

j
Sk

]
=

{
Ck, if i = j,

0, if i 6= j.

Similarly, for (4.22) we denote with [i, k] the entry of η that correspond to the i-th sample
for the k-th model group η[i,k] := Zi,k

Sk
− µSk . For k, ` ∈ {1, . . . , K} and i ∈ {1, . . . ,mk},

j ∈ {1, . . . ,m`} the independence across the sample index and model group shows the
block diagonal form

Cov
[
η[i,k], η[j,`]

]
= Cov

[
Zi,k
Sk
, Zj,`

S`

]
=

{
Ck ∈ R|Sk|×|Sk|, if i = j and k = `,

0 ∈ R|Sk|×|S`|, otherwise.

We are now in a position to derive the BLUE from the perspective of a generalized linear
least squares problem. First, recall the linear model in (4.20)

Y = Bµ+ η.

We model η as mean zero Gaussian with covariance Cov[η, η] and thus

Y ∼ N(Bµ,Cov[η, η]).

This distribution is determined solely by the parameter µ, since we assume that C and
thus Cov[η, η] is known. The goal is now to compute the the maximum likelihood estimator
for µ, which is the point where the probability density function is maximized. This is
equivalent to minimizing the negative log likelihood

µ̂B := argmax
µ∈RL

c exp

(
−1

2
(Bµ− Y )TCov[η, η]−1(Bµ− Y )

)
= argmin

µ∈RL

1

2
(Bµ− Y )TCov[η, η]−1(Bµ− Y ).

(4.23)

The estimator µ̂B in (4.23) is the solution of a least squares problem where the norm is
determined by the symmetric, positive definite and block diagonal matrix Cov[η, η]. We
set the derivative of the objective function to zero such that the minimizer µ̂B satisfies
the normal equations

BTCov[η, η]−1Bµ̂B = BTCov[η, η]−1Y. (4.24)

Solving the normal equations means inverting the matrix on the left–hand side of (4.24)
to arrive at

µ̂B = (BTCov[η, η]−1B)−1BTCov[η, η]−1Y. (4.25)

We now verify that this estimator is the BLUE for estimating µ̂. We start by simplifying
the expressions and show that the system matrix in (4.24) is equal to Ψ.
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Lemma 4.14 (Least squares solution). Let Ck be positive definite for all k ∈ US and
assume that we evaluate every model UZ = {1, . . . , L}. Then the estimator µ̂B in (4.25)
is well defined and

Ψ = BTCov[η, η]−1B =
∑
k∈US

mkP
k(Ck)−1Rk, (4.26)

µ̂B = Ψ−1
∑
k∈US

mkP
k(Ck)−1

(
1

mk

mk∑
i=1

Zi,k
Sk

)
. (4.27)

Proof. We use the block diagonal structure of the covariance matrix of η in (4.22) and
the invertibility of Ck to conclude that Cov[η, η] is invertible. We further write down the
inverse and recall the expression for B and Y

Cov[η, η]−1 = diag
(
(([Ck]−1)mk

i=1)k∈US
)
,

B = ((Rk)mk
i=1)k∈US ,

Y = ((Zi,k
Sk

)mk
i=1)k∈US .

A calculation now shows the expression for the matrix Ψ in (4.26)

BTCov[η, η]−1B = BT (([Ck]−1Rk)mk
i=1)k∈US =

∑
k∈US

mk∑
i=1

P k(Ck)−1Rk = Ψ.

The right–hand side of the normal equations (4.24) is

BTCov[η, η]−1Y = BT (([Ck]−1Zi,k
Sk

)mk
i=1)k∈US =

∑
k∈US

mk∑
i=1

P k(Ck)−1Zi,k
Sk
.

We combine this result with (4.25), (4.26) and the invertibility of Ψ in the proof of
Theorem 4.9 to conclude (4.27).

The previous lemma allows us to show that the estimator µ̂B is actually the BLUE for
estimating the mean µ.

Theorem 4.15 (Gauss–Markov–Aitken [114, Theorem 4.4]). Let Ck be positive definite
for all k ∈ US and assume that we evaluate every model UZ = {1, . . . , L}. Then the
estimator µ̂B is a linear unbiased estimator of µ with covariance

Cov
[
µ̂B, µ̂B

]
= Ψ−1. (4.28)

Every linear unbiased estimator µ̂ that uses the same samples satisfies

Cov[µ̂, µ̂] ≥ Cov
[
µ̂B, µ̂B

]
(4.29)

and equality holds only if µ̂ = µ̂B.

Proof. The proof is a translation of [114, Section 4.2] or [76, Appendix A] for our setting.
We first show the unbiasedness of the BLUE

E
[
µ̂B
]

= Ψ−1
∑
k∈US

mkP
k(Ck)−1

(
1

mk

mk∑
i=1

E
[
Zi,k
Sk

])
= Ψ−1

∑
k∈US

mkP
k(Ck)−1Rkµ = µ.
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We use (4.27) to express the covariance matrix of the BLUE as

Cov
[
µ̂B, µ̂B

]
= Ψ−1Cov

[∑
k∈US

P k(Ck)−1

mk∑
i=1

Zi,k
Sk
,
∑
k∈US

P k(Ck)−1

mk∑
i=1

Zi,k
Sk

]
Ψ−1.

The independence across the sample index i and model groups k now shows (4.28)

Cov
[
µ̂B, µ̂B

]
= Ψ−1

∑
k∈US

mk∑
i=1

P k(Ck)−1Cov
[
Zi,k
Sk
, Zi,k

Sk

]
(Ck)−1RkΨ−1

= Ψ−1
∑
k∈US

mkP
k(Ck)−1Ck(Ck)−1RkΨ−1

= Ψ−1ΨΨ−1.

Now let µ̂ be another linear estimator for µ that uses exactly the same samples

µ̂ = µ̂B + βTY,

where β ∈ RN×L models the respective difference for the linear combination compared to
the BLUE. We require that µ̂ is unbiased for all possible mean vectors µ ∈ RL

µ = E[µ̂] = E
[
µ̂B + βTY

]
= µ+ βTBµ+ βTE[η] = µ+ βTBµ,

from which we conclude βTB = 0. The covariance matrix of µ̂ is

Cov[µ̂, µ̂] = Cov
[
µ̂B, µ̂B

]
+ 2Cov

[
µ̂B, βTY

]
+ βTCov[Y, Y ]β.

We use Y = Bµ+ η and βTB = 0 to conclude that the second term is zero

Cov
[
µ̂B, βTY

]
= Cov

[
Ψ−1BTCov[η, η]−1Y, βTY

]
= Cov

[
Ψ−1BTCov[η, η]−1η, βTη

]
= Ψ−1BTCov[η, η]−1Cov[η, η]β

= Ψ−1BTβ

= 0.

We conclude (4.28) since the matrix Cov[Y, Y ] = Cov[η, η] is positive definite and thus
for a positive semi–definite matrix A

Cov[µ̂, µ̂] = Cov
[
µ̂B, µ̂B

]
+ βTCov[η, η]β = Cov

[
µ̂B, µ̂B

]
+ A.

We now verify that A = 0 implies β = 0 and therefore µ̂ = µ̂B is the unique BLUE. The
covariance matrix of the noise is block diagonal, hence the matrix A satisfies

A = βTCov[η, η]β = βT ((Ckβi,k)mk
i=1)k∈US =

∑
k∈US

mk∑
i=1

(βi,k)TCkβi,k,

where βi,k ∈ R|Sk|×L are the respective entries of β. Notice that the matrix (βi,k)TCkβi,k ∈
RL×L is positive semi–definite and thus A = 0 implies that for all v ∈ RL

vT (βi,k)TCkβi,kv = 0.

We use that Ck is positive definite to conclude

βi,kv = 0.

Since this result holds for all vectors v ∈ RL we conclude βi,k = 0 and thus β = 0.
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We remark that the BLUE for the specific linear combination αTµ is given by

µ̂B
α = αT µ̂B

and thus we immediately obtain an expression for its variance

V
[
µ̂B
α

]
= Cov

[
µ̂B
α , µ̂

B
α

]
= αTCov

[
µ̂B, µ̂B

]
α = αTΨ−1α.

We furthermore obtain the coefficients

βk = mk(C
k)−1RkΨ−1α.

This coincides with the BLUE in Definition 4.8 and Theorem 4.9 is now a straightforward
consequence of Theorem 4.15.

4.2 Lower variance bound

We derive the lower variance bound for the BLUE and thus for all linear unbiased es-
timators. We assume that we evaluate the model group S1 which contains the high
fidelity model once and all other model groups with models in I∞ ⊆ {1, . . . , L − 1} an
arbitrary amount of time. The fixed models IF := S1 \ I∞ are then evaluated only
once and the models that reduce the variance are I := I∞ ∩ S1. We assume that
UZ = {1, . . . , L} = S1 ∪ I∞, otherwise some models are not used and can w.l.o.g. be
removed. This setting is a slight generalization of the control variate setting where
S1 = {1, . . . , L}, I∞ = I = {1, . . . , L − 1} and IF = {L}. We verify that the BLUE
has the same lower variance bound as the CV or ACV estimators. Let us give a brief
example for the aforementioned sets.

Example 4.16 (Lower variance bound sets). Let S1 := {1, 3, 4} and assume that we have
an arbitrary amount of model evaluations in I∞ := {2, 3, 5, 6}. We want to compute the
lower variance bound for the BLUE with bias α := (1, 1, 1, 1, 0, 0)T . We then have

UZ = S1 ∪ I∞ = {1, . . . , 6},
IF = {1, 4},
I = {3}. �

We will later show that the coefficients of models in IF are fixed and only samples in I can
be used to reduce the variance. The lower variance bound for the BLUE is the solution
of a minimization problem.

Lemma 4.17 (Lower variance bound optimization). The lower variance bound of the
BLUE is

Vmin[µ̂B
α ] = min

β
βTCI,Iβ − 2βTCI,IFαIF + αTIFCIF ,IFαIF . (4.30)

Proof. “≥”: We write down the variance of the BLUE in terms of a minimization problem

V
[
µ̂B
α

]
= min

β
(β1)TC1β1 +

∑
k∈US\{1}

(βk)TCkβk

mk

such that α =
∑
k∈US

P kβk.
(4.31)
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The entries of β1 corresponding to IF are fixed, since these models are evaluated only
once and only in S1

αIF =
∑
k∈US

βk[IF ] = β1
[IF ].

We drop the remaining bias constraints and the variance terms not belonging to S1. This
yields a lower bound for the variance

V
[
µ̂B
α

]
≥ min

β1
[I]

(
β1

[I]

β1
[IF ]

)T(
CI,I CI,IF
CIF ,I CIF ,IF

)(
β1

[I]

β1
[IF ]

)
.

We rename β1
[IF ] = αIF and β1

[I] = −β to obtain exactly the lower bound in (4.30).

“≤”: Let β∗ be a minimizer of (4.30) and β1
[IF ] = αIF . We insert these suboptimal

coefficients in (4.31) to obtain the upper bound

V
[
µ̂B
α

]
≤
(
β∗

αIF

)T(
CI,I CI,IF
CIF ,I CIF ,IF

)(
β∗

αIF

)
+ min

βk

∑
k∈US\{1}

(βk)TCkβk

mk

,

where we still have to satisfy the bias constraint with the other βk for k 6= 1. This
constraint can always be achieved by samples of the model group Sk

∞
:= I∞

α =

(
αI∞
αIF

)
= P 1

(
β∗

αIF

)
+ P k∞βk

∞
+

∑
k∈US\{1,k∞}

P kβk

if we set βk := 0 for k ∈ US \ {1, k∞}, βk
∞

[I] := αI − β∗ and βk
∞

[I∞\I] := αI∞\I . The variance
is thus upper bounded

V
[
µ̂B
α

]
≤
(
β∗

αIF

)T(
CI,I CI,IF
CIF ,I CIF ,IF

)(
β∗

αIF

)
+

(βk
∞

)TCk∞βk
∞

mk∞
.

No coefficient here depends on the number of samples mk∞ , hence the limit procedure for
mk∞ → +∞ and afterwards using the definition of β∗ shows the result.

The lower variance bound is a Schur complement and for special sets and biases equal to
the bound for the control variate setting.

Corollary 4.18 (Lower variance bound for the BLUE). For positive definite CI,I the
lower variance bound of the BLUE is a Schur complement

Vmin[µ̂B
α ] = αTIF

(
CIF ,IF − CIF ,IC−1

I,ICI,IF
)
αIF .

For α := eL, I := I∞ := {1, . . . , L − 1} and S1 := {1, . . . , L} this bound is equal to the
lower variance bound for the control variates

Vmin[µ̂B
L] = Vmin[µ̂CV

L ] = Vmin
I = C \ CI,I .

Proof. The minimizer in (4.30) satisfies

CI,Iβ = CI,IFαIF ,

where β can be computed since CI,I is invertible. The proof of the remainder of this
corollary is then a straightforward computation.



Chapter 4 Multilevel best linear unbiased estimators 87

We summarize the result of this section in the next theorem, which states a tight lower
bound for the variance of any linear unbiased estimator with a certain sample allocation.

Theorem 4.19 (Lower variance bound). Assume that CI,I is positive definite. Let µ̂L
be a linear unbiased estimator that uses a single sample of Z1

S1 and further samples of Zi
`

with ` ∈ I∞ which are uncorrelated to ZS1 . Then its variance is lower bounded

V[µ̂L] ≥ Vmin
I . (4.32)

A linear unbiased estimator µ̂ for µ with the same samples as µ̂L satisfies

Cov[µ̂, µ̂]IF ,IF ≥ CIF ,IF − CIF ,IC−1
I,ICI,IF . (4.33)

Both inequalities are tight.

Proof. We prove both inequalities (4.32) and (4.33) by replacing µ̂L with the BLUE that
uses the same sample allocation. By definition of the BLUE this never increases the
variance

V[µ̂L] ≥ V
[
µ̂B
L

]
.

We now use V
[
µ̂B
L

]
≥ Vmin

I from Corollary 4.18 to show (4.32). The tightness of this
bound follows if µ̂L is the BLUE with a suitable sample allocation. We obtain (4.33) and
its tightness by observing that for all α ∈ RL with α = (0, αIF )T

αTIFCov[µ̂, µ̂]IF ,IFαIF = αTCov[µ̂, µ̂]α = V
[
αT µ̂

]
≥ V

[
µ̂B
α

]
≥ αTIF

(
CIF ,IF − CIF ,IC−1

I,ICI,IF
)
αIF .

Up until this point we made the choice to evaluate the sample group S1. Importantly, all
models that are evaluated only once are in this model group. We now explain this choice
with an example.

Example 4.20 (Sample allocation). Let us assume that the models in I∞ and the models
in S1 are uncorrelated, that is

Cov[Z`, Zj] = 0, for all ` ∈ I∞, j ∈ S1.

Then clearly, no variance reduction can be achieved and we are allowed to ignore the
bias constraints associated with these models. Thus w.l.o.g. I∞ = ∅. We further assume
that we have two models and α1 = α2 = 1. Then there exists a unique linear unbiased
estimator which is equal to the BLUE with variance

V
[
µ̂B
α

]
= V[α1Z1 + α2Z2].

Notice that if we restrict the number of evaluations of Z1 and Z2 we are free to choose
whether we use dependent samples and a single evaluation of S1 := {1, 2} or independent
samples with a single evaluation of both S2 := {1} and S3 := {2}. The variance of the
two different BLUEs is then

V
[
µ̂B
α

]
=

{
σ2

1 + σ2
2, for m1 = 1,m2 = 0,m3 = 0,

σ2
1 + σ2

2 + 2C1,2, for m1 = 0,m2 = 1,m3 = 1.

Clearly, depending on the sign of C1,2 either of these estimators may achieve a smaller
variance than the other. �

We conclude that we have two different BLUEs that achieve a different variance. The
smallest variance is achieved if we also optimize over the possible sample allocations. We
deal with this problem in Chapter 5.
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4.3 Linear subspace formulation

Lower variance bound. Up until this point we formulated the BLUE as a specific
linear combination

µ̂B
L =

∑
k∈US

(βk)T

(
1

mk

mk∑
i=1

Zi,k
Sk

)
and we chose the coefficients to minimize the variance such that a bias constraint is
satisfied. This approach focuses on the coefficients β and not the linear subspace spanned
by the linear combination of the MC estimators. In this rather short section, we interpret
the BLUE with the help of the best approximation in a certain Hilbert space similarly to
[60], where this was done with control variates. It is well known that least square solutions
can often be interpreted as best approximations, or equivalently, that computing a best
approximation requires the solution of a least squares problem. We define the subspace
of L2 with mean zero random variables

H := {Z − E[Z] |Z ∈ L2}

with the inner product
(Z, Y ) := Cov[Z, Y ].

This space is a well–defined Hilbert space since the scalar product is positive definite on
H due to the restriction to mean zero random variables. Formally, for Z ∈ L2 with

(Z,Z) = Cov[Z,Z] = V[Z] = 0

we conclude that Z = E[Z] is almost surely constant. The assumption Z ∈ H then shows
Z = E[Z] = 0 almost surely.
For an index set I ⊆ {1, . . . , L− 1} we define the subspace of control variates

VI := span
(
(Z` − µ`)`∈I

)
⊆ H.

The lower variance bound in Lemma 4.17 is thus a minimization problem over this space

Vmin
I = min

β
βTCI,Iβ − 2βTCI,L + σ2

L

= min
β

(
−β
1

)T(
CI,I CI,L
CL,I σ2

L

)(
−β
1

)
= min

β
V

[
ZL −

∑
`∈I

β[`]Z`

]
= min

v∈VI
‖ZL − v‖2

H

= dist(ZL, VI).

The minimizer β∗ now corresponds to the element v∗ ∈ VI which is the best approximation
of ZL − µL ∈ H. The residual is orthogonal to all elements in VI

ZL − µL − v∗ ⊥ VI ,

in other words the residual is uncorrelated to every element in the space VI . Therefore,
the best approximation v∗ is the orthogonal projection of ZL− µL onto the space VI . We
remark that the CV estimator assumes that µ1, . . . , µL−1 is known and thus the space VI
is known. The best approximation is the linear combination of the control variates that
minimize the variances. This perspective is often helpful as we show in the next example.
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Example 4.21 (Linear combination). Let ZL be a linear combination of Z1, . . . , ZL−1

and let ξ denote a random variable which is uncorrelated to Z1, . . . , ZL−1

ZL :=
L−1∑
`=1

β`Z` + ξ, (4.34)

then ξ is the residual and its variance is the lower variance bound

Vmin
{1,...,L−1} = V[ξ].

Conversely, the expansion (4.34) for ZL always exists and if CI,I with I := {1, . . . , L− 1}
is positive definite, then the coefficients β` are unique. �

Best approximation for multiple samples. Let us now write down the BLUE for
multiple model groups. We restrict ourselves to the estimator with SL := {1, . . . , L} and
non–zero mL, which allows us to easily express the results. We first eliminate the bias
constraint by fixing βL as

βL =
∑

k∈US\{L}

P kβk − eL.

We insert this expression into the variance (4.13) of linear unbiased estimators and with
I := {1, . . . , L− 1} we obtain

V
[
µ̂B
L

]
=

(βL)TCβL

mL

+
∑

k∈US\{L}

(βk)TCkβk

mk

=

 ∑
k∈US\{L}

(βk)TRk

 C

mL

 ∑
k∈US\{L}

P kβk

− 2

 ∑
k∈US\{L}

(βk)TRk

CI,L
mL

+
σ2
L

mL

+
∑

k∈US\{L}

(βk)TCkβk

mk

.

A computation shows that the above expression is actually equal to

V
[
µ̂B
L

]
= V

 1

mL

mL∑
i=1

Zi,L
L −

∑
k∈US\{L}

(βk)T

(
1

mL

mL∑
i=1

Zi,L
Sk
− 1

mk

mk∑
i=1

Zi,k
Sk

).
We define the control variate space, that now depends on the number of samples m

V m
I := span

(( 1

mL

mL∑
i=1

Zi,L
` −

1

mk

mk∑
i=1

Zi,k
`

)
`∈Sk

)
k∈US\{L}

 ⊆ H.

The basis functions are differences of uncorrelated MC estimators which ensures that the
estimator remains unbiased. Then the best approximation minimizes the distance to the
MC estimator of ZL in the following sense

V
[
µ̂B
L

]
= min

v∈VmI

∥∥∥∥∥ 1

mL

mL∑
i=1

Zi,L
L − v

∥∥∥∥∥
2

H

= dist

(
1

mL

mL∑
i=1

Zi,L
L , V m

I

)
.
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Example 4.22 (Linear combination). Let the MC estimator of ZL be a linear combination
of the functions that define V m

I plus some random variable ξ with ξ ⊥ V m
I

1

mL

mL∑
i=1

Zi,L
L :=

∑
k∈US

∑
`∈Sk

βk[`]

(
1

mL

mL∑
i=1

Zi,L
` −

1

mk

mk∑
i=1

Zi,k
`

)
+ ξ

=
∑
k∈US

∑
`∈Sk

βk[`]

(
1

mL

mL∑
i=1

Zi,L
`

)
−
∑
k∈US

∑
`∈Sk

βk[`]

(
1

mk

mk∑
i=1

Zi,k
`

)
+ ξ.

It is always possible to find such a decomposition. We see that we now have two parts
of the estimator that depend on the coefficients β, where the first part is correlated with
the MC estimator of ZL and the second part is not. The variance of the BLUE is

V
[
µ̂B
L

]
= V

[
1

mL

mL∑
i=1

Zi,L
L −

∑
k∈US

∑
`∈Sk

βk[`]
1

mL

mL∑
i=1

Zi,L
`

]
+ V

[∑
k∈US

∑
`∈Sk

βk[`]
1

mk

mk∑
i=1

Zi,k
`

]
= V[ξ]. �

4.4 Comparison of linear unbiased estimators

In this section we derive the circumstances under which the linear unbiased estimators of
Chapter 3, that is the MC, CV, ACV, MFMC and MLMC estimators, are the BLUE or
give examples when they are not. These estimators are all of the form

µ̂L =
N∑
i=1

βiZ
ki
`i

(4.35)

for suitable coefficients βi. We further write down the model groups to denote the cor-
relation structure and thus the underlying linear regression problem. In this section, we
assume that the covariance matrix C is positive definite to ensure that the coefficients β
for e.g. the BLUE or the CV estimator are well defined and unique.

Monte Carlo. We first look at the MC estimator

µ̂MC
L :=

1

mL

mL∑
i=1

Zi
L

which uses a single model group
SL = {L}.

We use the convention that the model ZL is in the samples group SL and we keep this
consistent for this section.
The MC estimator is the BLUE. A formal verification uses Lemma 4.6 to show that the
coefficients βi in (4.35) for the BLUE are all equal and thus βi = 1/mL, which shows that
the BLUE is the MC estimator. If σ2

L = 0 and thus C is not positive definite, then the
BLUE is not unique and any combination of coefficients with

N∑
i=1

βi = 1
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delivers a BLUE with zero variance.

Control Variates. We deal with the CV estimator in a special way, since these
estimators assume that µ1, . . . , µL−1 is known

µ̂CV
L :=

1

mL

mL∑
i=1

Zi
L −

L−1∑
`=1

β`

(
1

mL

mL∑
i=1

Zi
` − µ`

)
.

The only model group that is used consists of all models

SL = {1, . . . , L}.

The knowledge of µ1, . . . , µL−1 is in stark contrast to the other estimators and to the BLUE
discussed in this chapter. Therefore, we compare it to a hypothetical linear unbiased
estimator

µ̂L :=

mL∑
i=1

(βi)TZi
SL

where we only keep the bias constraint for the fine model ZL

1 =

mL∑
i=1

βiL.

This can be achieved since we assume that µ1, . . . , µL−1 are known. The variance of this
estimator is

V[µ̂L] =

mL∑
i=1

(βi)TCβi.

The KKT conditions for optimizing the coefficients βi and adhering to the bias constraint
require us to find a Lagrange multiplier λ ∈ R such that

Cβi + λeL = 0 for all i ∈ {1, . . . ,mL},
mL∑
i=1

eTLβ
i = 1.

A straightforward calculation shows that there exists a unique solution such that all
coefficients are equal w.r.t.the sample index i

βi =
1

mL

C−1eL(eTLC
−1eL)−1 =

1

mL

(
−β
1

)
for a suitably chosen β that minimizes the variance. Hence the BLUE is the CV estimator

µ̂B
L =

mL∑
i=1

(βi)TZi
SL =

1

mL

mL∑
i=1

(
Zi
L −

L−1∑
`=1

β`Z
i
`

)
= µ̂CV

L .

For positive definite covariance matrix C the choice of βi is unique. This shows existence
and uniqueness of the BLUE and the optimality of the CV estimator for the special case
of knowing µ1, . . . , µL−1 with SL = {1, . . . , L}.
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Multifidelity Monte Carlo. The MFMC estimator assumes that the expectations
µ1, . . . , µL−1 are unknown and have to be estimated. This estimator is

µ̂MFMC
L :=

1

nL

nL∑
i=1

Zi
L −

L−1∑
`=1

β`

(
1

n`+1

n`+1∑
i=1

Zi
` −

1

n`

n∑̀
i=1

Zi
`

)
.

The model groups for this approach are

S1 = {1}, m1 = n1 − n2,

...
...

SL−1 = {1, . . . , L− 1}, mL−1 = nL−1 − nL,
SL = {1, . . . , L}, mL = nL.

We verify that this estimator is the BLUE for some interesting cases.

Theorem 4.23 (Cases for which MFMC is BLUE ). Let C be positive definite. Assume
that at least one of the following is true

(i) L ≤ 2,

(ii) ZL−1 and ZL are uncorrelated to Z1, . . . , ZL−2, that is ρL,` = ρL−1,` = 0 for ` ∈
{1, . . . , L− 2}.

Then the MFMC estimator is the BLUE µ̂MFMC
L = µ̂B

L.

Proof. “(i)”: For L = 1 the MFMC estimator is the MC estimator and thus the BLUE.
For L = 2 the bias constraint of the BLUE ensures that β2

2 = 1 and thus

µ̂B
L =

1

m2

m2∑
i=1

(β2)T
(
Zi,2

1

Zi,2
2

)
+

1

m1

m1∑
i=1

β1
1Z

i,1
1 =

1

m2

m2∑
i=1

Zi,2
2 +β2

1

1

m2

m2∑
i=1

Zi,2
1 +β1

1

1

m1

m1∑
i=1

Zi,1
1 .

A computation redefining the coefficients β2
1 and β1

1 in a suitable manner shows

β2
1

1

m2

m2∑
i=1

Zi,2
1 + β1

1

1

m1

m1∑
i=1

Zi,1
1 = β̃

2

1

1

m2

m2∑
i=1

Zi,2
1 + β̃

1

1

1

m1 +m2

(
m1∑
i=1

Zi,1
1 +

m2∑
i=1

Zi,2
1

)
.

The bias constraint now requires that β̃
2

1 = −β̃
1

1 and thus the BLUE is equal to the
MFMC estimator

µ̂B
L =

1

m2

m2∑
i=1

Zi,2
2 − β̃

1

1

(
1

m2

m2∑
i=1

Zi,2
1 −

1

m1 +m2

(
m1∑
i=1

Zi,1
1 +

m2∑
i=1

Zi,2
1

))
= µ̂MFMC

L .

This result follows, since both estimators optimize over the coefficient β̃
1

1.
“(ii)”: For L > 2 with ρL,` = 0 for ` ∈ {1, . . . , L − 2} the coefficients of the MFMC
estimator from (3.22) are equal to zero

β` =
CL`
σ2
`

= ρL`
(σ2

Lσ
2
` )

1/2

σ2
`

= 0.

Therefore, this estimator is equal to the MFMC estimator with L = 2 after renaming
ZL−1, ZL to Z1, Z2. We prove that the BLUE and the MFMC estimator are equal if we
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verify that the BLUE also only uses ZL−1 and ZL. First, define I := {L − 1, L} and
with Ic = {1, . . . , L− 2} we use CI,Ic = 0 to conclude that the covariance matrix is block
diagonal. A computation then also shows ΨI,Ic = 0 and thus Ψ is block diagonal. We
combine this with the formula for the coefficients (4.15) of the BLUE

βk = mk(C
k)−1RkΨ−1eL

= mk

(
C−1
Ic∩Sk,Ic∩Sk 0

0 C−1
I∩Sk,I∩Sk

)
Rk

(
Ψ−1
Ic,Ic 0
0 Ψ−1

I,I

)0|Ic|
0
1


= mk

(
C−1
Ic∩Sk,Ic∩Sk 0

0 C−1
I∩Sk,I∩Sk

)
Rk

 0|Ic|

Ψ−1
I,I

(
0
1

)
= mkR

k

C−1
Ic∩Sk,Ic∩Sk 0 0

0 C−1
I∩Sk,I∩Sk 0

0 0 0|(Sk)c|

 0|Ic|

Ψ−1
I,I

(
0
1

).
A careful inspection using Sk = {1, . . . , k} and Ic = {1, . . . , L − 2} now shows that
βk[Ic] = 0 and thus the BLUE does not use Z1, . . . , ZL−2.

We comment on the different cases. Case (i) says that the MFMC estimator is optimal
if we have two models and case (ii) says that this is still the case if we add models that
are uncorrelated to ZL−1 and ZL. For L > 2 the MFMC estimator is typically not the
BLUE and we provide and example for L = 3. We exploit the property that the MFMC
estimator does not depend on the correlations ρ`j for models j, ` ∈ {1, . . . , L− 1}.

Example 4.24 (Noisy observations). We define the models such that

Z1 := Y + 10ξ1 + ξ2,

Z2 := 10Y + 10ξ1,

Z3 := 10Y,

where Y, ξ1, ξ2 ∼ N(0, 1) are independent random variables. Notice that the coarsest
model Z1 is almost independent of Z3 but can be used to remove the noise ξ1 from Z2.
Therefore the BLUE leverages the linear combination Z3 ≈ Z2 − Z1 which yields a small
variance. The MFMC estimator is not able to do this. We write down the covariance and
correlation matrices

C =

102 110 10
110 200 100
10 100 100

, P ≈

 1 0.77 0.10
0.77 1 0.71
0.10 0.71 1

.
We conclude that the ordering of the models satisfies 0 < ρ1,3 < ρ2,3 < ρ3,3 = 1 which is
required by the MFMC Theorem 3.26. The variance of the MFMC estimator is

V
[
µ̂MFMC
L

]
= σ2

L

L∑
`=1

ρ2
L,` − ρ2

L,`−1

n`
≥ 100

n3

(1− 1/2) +
100

n2

(1/2− 0.01) +
100

n1

0.01

=
50

n3

+
49

n2

+
1

n1

.
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Contrast this with the following MLMC estimator that uses fewer samples

µ̂MLMC
L =

1

n3

n3∑
i=1

(Zi,3
3 − (Zi,3

2 − Z
i,3
1 )) +

1

n2 − n3

n2−n3∑
i=1

(Zi,2
2 − Z

i,2
1 ).

This is a linear unbiased estimator and thus the variance of the BLUE satisfies

V
[
µ̂B
L

]
≤ V

[
µ̂MLMC
L

]
=

2

n3

+
82

n2 − n3

.

A suitable choice of n2 and n3 now shows that the MFMC estimator is not the BLUE

V
[
µ̂B
L

]
≤ V

[
µ̂MLMC
L

]
< V

[
µ̂MFMC
L

]
. �

Let us continue with another interesting example. The MFMC estimator only uses the
correlations ρ`,L for ` ∈ {1, . . . , L} and thus it is tempting to think that this estimator is
the BLUE if ρ`,j = 0 for `, j ∈ {1, . . . , L− 1} with ` 6= j, that is, no correlation between
the models Z` and Zj can be used. This is however, not the case. We derive this from
the lower variance bound.

Example 4.25 (MFMC is not BLUE). We define the QoI as follows

Z1 := ξ1.

Z2 := ξ2,

Z3 := Y + ξ1 + ξ2,

where again Y, ξ1, ξ2 ∈ N(0, 1) are independent random variables. Clearly Z1 and Z2 are
uncorrelated. However, the lower variance bound for the BLUE is tight and thus there
exists n1, n2, n3 and ε > 0 such that

V
[
µ̂B
L

]
≤ (1 + ε)Vmin[µ̂B

L] = (1 + ε)Vmin
{1,2} = (1 + ε)V[Y ] = 1 + ε.

On the other hand, we have shown that the MFMC estimator only reaches the lower
variance bound in Theorem 3.34

V
[
µ̂MFMC
L

]
≥ Vmin[µ̂MFMC

L ] = Vmin
{2} = V[Y + ξ1] = 2.

Therefore, the MFMC estimator is not the BLUE. �

Approximate Control Variates. We start with the ACV–IS estimator which is
defined as follows

µ̂ACV–IS
L :=

1

nL

nL∑
i=1

Zi,L
L −

L−1∑
`=1

β`

(
1

nL

nL∑
i=1

Zi,L
` −

1

n`

(
nL∑
i=1

Zi,L
` +

n∑̀
i=nL+1

Zi,`
`

))
.

The sample groups and their respective number of samples are

S1 = {1}, m1 = n1 − nL,
...

...

SL−2 = {L− 2}, mL−2 = nL−2 − nL,
SL−1 = {L− 1}, mL−1 = nL−1 − nL,
SL = {1, . . . , L}, mL = nL.
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It turns out that the ACV–IS estimator is the BLUE. The intuitive reasoning is that the
BLUE with the same sample allocation requires the coefficients to satisfy β`[`] = −βL` from
the bias constraint. Then the BLUE is essentially a control variate approach where the
unknown µ1, . . . , µL−1 are estimated from independent MC estimators from samples of
the model groups S1, . . . , SL−1.

Theorem 4.26 (ACV–IS is BLUE). Let C be positive definite. Then the ACV–IS esti-
mator is the BLUE, µ̂ACV–IS

L = µ̂B
L.

Proof. First, we rewrite the ACV–IS estimator to group the respective model groups

µ̂ACV–IS
L =

1

nL

nL∑
i=1

Zi,L
L −

L−1∑
`=1

β`

((
1

nL
− 1

n`

) nL∑
i=1

Zi,L
` −

1

n`

n∑̀
i=nL+1

Zi,`
`

)

=
1

nL

nL∑
i=1

Zi,L
L −

L−1∑
`=1

β`
m`

n`

(
n`
m`

(
1

nL
− 1

n`

) nL∑
i=1

Zi,L
` −

1

m`

n∑̀
i=nL+1

Zi,`
`

)

We use m` = n` − nL for ` ∈ {1, . . . , L− 1} and nL = mL to conclude that

n`
m`

(
1

nL
− 1

n`

)
=

n`
m`

n` − nL
nLn`

=
1

nL
=

1

mL

.

We change the superscript of the samples Zi,`
` and the definition of β` to arrive at

µ̂ACV–IS
L =

1

mL

mL∑
i=1

Zi,L
L −

L−1∑
`=1

β̃`

(
1

mL

mL∑
i=1

Zi,L
` −

1

m`

m∑̀
i=1

Zi,`
`

)
. (4.36)

The BLUE with the same sample allocation is

µ̂B
L =

1

mL

mL∑
i=1

(βL)TZi,L
SL

+
L−1∑
`=1

β`1
1

m`

m∑̀
i=1

Zi,`
` .

Here the bias constraint requires the coefficients to satisfy

βL` = −β`[`] = −β`1 for all ` ∈ {1, . . . , L− 1},
βLL = 1.

We use this result and group the models Z` together

µ̂B
L =

1

mL

mL∑
i=1

Zi,L
L −

L−1∑
`=1

β`1

(
1

mL

mL∑
i=1

Zi,L
` −

1

m`

m∑̀
i=1

Zi,`
`

)
.

This however, is exactly (4.36) for β̃` = β`1. The ACV–IS estimator and the BLUE are
identical µ̂ACV–IS

L = µ̂B
L, since both select the coefficients to minimize the variance.

We continue with the ACV–MF estimator

µ̂ACV–MF
L :=

1

nL

nL∑
i=1

Zi
L −

L−1∑
`=1

β`

(
1

nL

nL∑
i=1

Zi
` −

1

n`

n∑̀
i=1

Zi
`

)
, (4.37)
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where we w.l.o.g. assume that nL−1 ≤ nL−2 ≤ · · · ≤ n1, otherwise we rename Z1, . . . , ZL−1

accordingly. The model groups and number of samples are the same as for the MFMC
estimator

S1 = {1}, m1 = n1 − n2,

...
...

SL−1 = {1, . . . , L− 1}, mL−1 = nL−1 − nL,
SL = {1, . . . , L}, mL = nL.

This estimator is the MFMC estimator if L ≤ 2 or if Z1, . . . , ZL−2 are uncorrelated to
ZL−1, ZL and thus this estimator is the BLUE in this case.

Theorem 4.27 (Cases for which ACV–MF is BLUE). Let C be positive definite. Assume
that at least one of the following is true

(i) L ≤ 2,

(ii) ZL−1 and ZL are uncorrelated to Z1, . . . , ZL−2, that is ρL,` = ρL−1,` = 0 for ` ∈
{1, . . . , L− 2},

(iii) Z1, . . . , ZL−1 are pairwise uncorrelated.

Then the ACV–MF estimator is the BLUE, µ̂ACV–MF
L = µ̂B

L.

Proof. “(i)”: The estimators are equal µ̂MFMC
L = µ̂ACV–MF

L and Theorem 4.23 now shows
the result.

“(ii)”: We reduce this case to (i) by showing that only the two fine grid models are used.
With I := {1, . . . , L − 1} and J := {1, . . . , L − 2} from Lemma 3.39 we use the block
diagonal structure of the covariance matrix such that for all ` ∈ {1, . . . , L− 2}

β` = eT` (FMF ◦ CI,I)−1(diag(FMF ) ◦ CI,L)

= eT`

(
(FMF ◦ CJ,J)−1 0

0 (FMF
L−1,L−1CL−1,L−1)−1

)(
0

FMF
L−1,L−1CL−1,L

)
= eT`

(
0

1
CL−1,L−1

CL−1,L

)
= 0.

Therefore the ACV–MF estimator only uses the models ZL−1 and ZL an we may w.l.o.g.
assume that L = 2. Now (i) shows the result.

“(iii)”: We show that the BLUE is equal to the ACV–MF estimator. The coefficients
of the BLUE divided by the number of samples are constant for k ∈ {1, . . . , L − 1} and
` ∈ {1, . . . , k}. This follows from the diagonal structure of Ck = diag((σ2

` )
k
`=1)

βk`
mk

= eT` (Ck)−1RkΨ−1eL =
1

σ2
`

eT` R
kΨ−1eL =

1

σ2
`

eT` Ψ−1eL =: β̃`.



Chapter 4 Multilevel best linear unbiased estimators 97

This coefficient is independent of k and only depends on `. Therefore, the BLUE is

µ̂B
L =

L∑
k=1

k∑
`=1

βk`
mk

m∑̀
i=1

Zi,k
`

= (βL)T
1

mL

mL∑
i=1

Zi,L
SL

+
L−1∑
k=1

L−1∑
`=1

β̃`1Sk(`)

mk∑
i=1

Zi,k
`

= (βL)T
1

mL

mL∑
i=1

Zi,L
SL

+
L−1∑
`=1

β̃`

L−1∑
k=1

mk∑
i=1

1Sk(`)Z
i,k
` .

Let us now collect all samples that evaluate the `-th model for ` ∈ {1, . . . , L − 1} and
introduce the coefficients β̌`, β`

βL`
1

mL

mL∑
i=1

Zi,L
` + β̃`

L−1∑
k=1

mk∑
i=1

1Sk(`)Z
i,k
`

=

(
βL`
mL

− β̃`
) mL∑

i=1

Zi,L
` + β̃`

L∑
k=1

mk∑
i=1

1Sk(`)Z
i,k
`

= β̌`
1

mL

mL∑
i=1

Zi,L
` + β`

1∑L
j=`mj

L∑
k=1

mk∑
i=1

1Sk(`)Z
i,k
` .

Notice that the right expression is a MC estimator with
∑L

j=`mj = n` independent

samples. We rewrite this and use the bias constraint β̌` = −β` to obtain

β̌`
1

mL

mL∑
i=1

Zi,L
` + β`

1∑L
j=`mj

L∑
k=1

mk∑
i=1

1Sk(`)Z
i,k
` = −β`

(
1

nL

nL∑
i=1

Zi
` −

1

n`

n∑̀
i=1

Zi
`

)
.

The bias constraint is satisfied only if βLL = 1 and the combination of these results shows

µ̂B
L =

1

mL

mL∑
i=1

Zi
L −

L−1∑
`=1

β`

(
1

nL

nL∑
i=1

Zi
` −

1

n`

n∑̀
i=1

Zi
`

)
.

With mL = nL this is exactly the ACV–MF estimator in (4.37). The statement now
follows since both estimators choose β` such that the variance is minimized.

We give an example that the ACV–MF estimator is not the BLUE for L ≥ 3 in the
numerical experiments in Section 4.5. Let us continue with the ACV–KL estimator

µ̂ACV–KL
L :=

1

mL

mL∑
i=1

Zi
L −

L−1∑
`=K

β`

(
1

mL

mL∑
i=1

Zi
` −

1

m`

m∑̀
i=1

Zi
`

)

−
K−1∑
`=1

β`

(
1

mN

mN∑
i=1

Zi
` −

1

m`

m∑̀
i=1

Zi
`

)
.

The model groups and number of samples are the same as for the MFMC and ACV–MF
estimator

S1 = {1}, m1 = n1 − n2,

...
...

SL−1 = {1, . . . , L− 1}, mL−1 = nL−1 − nL,
SL = {1, . . . , L}, mL = nL.
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Since the ACV–KL estimator is equal to the ACV–MF estimator for N = L or K = 1
and these parameters are chosen to minimize the variance, we use Theorem 4.27 to obtain
the following result.

Theorem 4.28 (Cases for which ACV–KL is BLUE). Let C be positive definite. Assume
that at least one of the following is true

(i) L ≤ 2,

(ii) ZL−1 and ZL are uncorrelated to Z1, . . . , ZL−2, that is ρL,` = ρL−1,` = 0 for ` ∈
{1, . . . , L− 2},

(iii) Z1, . . . , ZL−1 are uncorrelated.

Then the ACV–KL estimator is the BLUE µ̂ACV–KL
L = µ̂B

L and N = L or K = 1. �

We postpone the verification that the ACV–KL estimator is in general not the BLUE for
L ≥ 3 to the numerical experiments in Section 4.5. We only verify this for some fixed
values of N or K by using the lower variance bound.

Example 4.29 (ACV–KL is not BLUE). The lower variance bound of the BLUE and of
the ACV–KL estimator in Theorem 3.43 with N < L satisfies

Vmin[µ̂ACV–KL] = Vmin
{K,...,L−1} ≥ Vmin

{1,...,L−1} = Vmin[µ̂B
L].

The above inequality is strict for suitably defined Z1, . . . , ZL and K. As an example,
assume that Z1, . . . , ZL−1 are pairwise independent and have unit variance, that is V[Z`] :=
1 for all ` ∈ {1, . . . , L− 1}. Now define the high fidelity model as follows

ZL =
L−1∑
`=1

Z` + ξ,

where ξ ∼ N(0, 1) is independent of Z1, . . . , ZL−1. Then the inequality is strict if K < L

L−K + 1 = Vmin
{K,...,L−1} > Vmin

{1,...,L−1} = 1. �

Multilevel Monte Carlo. The MLMC estimator is defined as

µ̂MLMC
L :=

L∑
`=1

1

m`

m∑̀
i=1

(Zi,`
` − Z

i,`
`−1).

Here we defined Z0 := 0 and thus the sample groups are

S1 = {1},
S2 = {1, 2},

...

SL−1 = {L− 2, L− 1},
SL = {L− 1, L}.

(4.38)

It is straightforward to verify that this estimator is not the BLUE. The reason is that we do
not optimize the coefficients in front of the samples. In particular, scaling Z1, . . . , ZL−1 by
a non–zero constant does not change the variance of the BLUE but changes the variance
of the MLMC estimator. Furthermore, the MLMC estimator is not able to ignore models
that are independent of ZL by setting the coefficients in front of them to zero.
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Example 4.30 (MLMC is not BLUE). We choose Z1, Z2 ∼ N(0, 1) to be independent
random variables. Then

V
[
µ̂MLMC

2

]
=

2

m2

+
1

m1

.

Contrast this with the BLUE that only uses the last model

V
[
µ̂B

2

]
=

1

m2

.

We conclude that the MLMC estimator is not the BLUE

V
[
µ̂MLMC

2

]
> V

[
µ̂B

2

]
. �

Full coupling estimator. For completeness we define the full coupling (FC) estimator
which we use in the numerical experiments Section 4.5. This estimator uses the identical
sample allocation as the MFMC, ACV–MF and ACV–KL estimators

S1 := {1},
...

SL−1 := {1, . . . , L− 1},
SL := {1, . . . , L}

and is defined as the associated BLUE

µ̂FC
L := µ̂B

L.

We further the define FC κ estimator that couples only the last κ models

SL−κ+1 := {L− κ+ 1},
...

SL−1 := {L− κ+ 1, . . . , L− 1},
SL := {L− κ+ 1, . . . , L}

and is again the BLUE with this sample allocation

µ̂FCκ
L := µ̂B

L. (4.39)

We clearly have µ̂FCL
L = µ̂FC

L and that µ̂FC 1
L is the MC estimator. A calculation similar to

Section 4.3 to eliminate the bias constraint shows that this estimator is very similar to a
CV estimator

µ̂FCκ
L :=

1

mL

mL∑
i=1

Zi,L
L −

L−1∑
`=L−κ+1

(β`)T

(
1

mL

mL∑
i=1

Zi,L
S`
− 1

m`

m∑̀
i=1

Zi,`
S`

)
.

The coefficients β` ∈ R|S`| are once again chosen such that the variance is minimized.

Summary. Let us summarize the used model groups for every estimator of this section
in Figure 4.1. We further summarize under which circumstances the estimators are the
BLUE in Table 4.1. We define the conditions

L ≤ 2 or ρL,` = ρL−1,` = 0 for all ` ∈ {1, . . . , L− 2}, (4.40)

Z1, . . . , ZL−1 are pairwise uncorrelated. (4.41)
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MC CV MFMC

ACV-IS ACV-MF ACV-KL

MLMC FC 3 FC

Figure 4.1: Model groups of different linear unbiased estimators µ̂5 with models
Z1, . . . , Z5. A model group Sk uses the model Z` if the respective square is red, oth-
erwise it is white. The model groups Sk changes from estimator to estimator. We follow
the convention that Z5 ∈ S5 for all estimators.

Condition MC CV MFMC ACV–IS ACV–MF ACV–KL MLMC FC
none 3 3 7 3 7 7 7 3

(4.40) 3 3 3 3 3 3 7 3

(4.41) 3 3 7 3 3 3 7 3

Table 4.1: Conditions under which the estimators are BLUE. “3” means that the
estimator is a BLUE and “7” that the condition is not sufficient. A “3” for the second
row means that the estimator is unconditionally the BLUE. For L = 1 all estimators are
equal to the MC estimator, thus all are the BLUE.
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4.5 Numerical experiments

Monomial example. We define the QoI as monomials similar to [62, Section 2.5] for
L = 5 as

Z`(ω) := ω` for all ` ∈ {1, . . . , 5} (4.42)

where the random source is uniformly distributed ω ∼ U([0, 1]). We explicitly compute
the mean, variance and covariance

µ` =

∫ 1

0

x` dx =
1

`+ 1
,

σ2
` =

1

2`+ 1
− 1

(`+ 1)2
,

C`,j =

∫ 1

0

(
x` − 1

`+ 1

)(
xj − 1

j + 1

)
dx =

1

`+ j + 1
− 1

(`+ 1)(j + 1)
.

and summarize them in Table 4.2. We derived in Section 4.3 that the BLUE uses the best
approximation of ZL in the space span(Z1−µ1, . . . , ZL−1−µL−1) given enough low fidelity
samples such that we can neglect the error in the estimation of µ1, . . . , µL−1. Since the QoIs
are monomials, the problem is equivalent to the approximation of a polynomial of higher
order with polynomials of lower order on the interval [0, 1]. The constant polynomial v
is not used for the approximation since it would already approximate the mean, that is,
the mean v∗ =

∫ 1

0
xLdx = µL is the unique minimizer of

min
v∈R
‖ZL − v‖2

L2([0,1]) =

∫ 1

0

(xL − v)2dx.

Our goal is to verify the lower variance bound Vmin
I , which is plotted in Figure 4.2. We

conclude that the highest variance reduction is achieved if we choose I to be as large as
possible I = {1, . . . , L− 1} and that the inequality in Lemma 3.21 is true

Vmin
I ≤ Vmin

J for all J ⊆ I.

We now want to estimate µL using the following number of evaluations of models Z` for
different N ∈ N

n` := 2N3L−` for all ` ∈ {1, . . . , L− 1},
nL := 1.

µ σ2

Z1 0.50 0.08
Z2 0.33 0.09
Z3 0.25 0.08
Z4 0.20 0.07
Z5 0.17 0.06

Model P Z1 Z2 Z3 Z4 Z5

Z1 1 0.97 0.92 0.87 0.82
Z2 sym 1 0.99 0.96 0.93
Z3 sym sym 1 0.99 0.97
Z4 sym sym sym 1 0.99
Z5 sym sym sym sym 1

Table 4.2: Monomial example: Mean, variance and Pearson correlation coefficient matrix
P of the QoI defined in (4.42). The entry “sym” means symmetric and the value can be
deduced from the relationship ρij = ρji.
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Figure 4.2: Monomial example: Different values of Vmin
I marked as “x” for different

model groups S = I ∪ {L} that contain the high fidelity model ZL. A red square means
that the model is used whereas no square means that the model is not used.

We then choose sufficiently large N to simulate m` → +∞ for ` ∈ {1, . . . , L− 1}, which
corresponds to inexpensive low fidelity models. The number of evaluations of the high
fidelity model is fixed to one, that is, nL = 1.

We distribute the number of evaluations n` across the levels such that we have as much
evaluations on the finer models as possible. As an example, for the MLMC estimator we
use mL = nL samples for SL = {L − 1, L}. There are now mL−1 := nL−1 − nL samples
available for the evaluation of SL−1 = {L − 2, L − 1}. We continue with this scheme for
all levels and apply this for every estimator. For the MFMC estimator the model group
SL = {1, . . . , L} is evaluated only a single time since nL = 1. This costs an evaluation
of Z1, . . . , ZL−1, whereas the MLMC estimator only has an additional evaluation of ZL−1.
We do not use any model selection or optimize the estimator w.r.t. the overall cost. We
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only optimize the coefficients β for the BLUE FC, CV, MFMC, ACV–IS, ACV–MF and
ACV–KL estimator. We further optimize over the integer valued parameters K and N of
the ACV–KL estimator.

0 1 2 3 4 5 6 7 8

10
-5

10
-4

10
-3

10
-2

0 5 10 15 20 25

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Figure 4.3: Monomial example: Variance of different estimators for different N . The
left plot is a zoom in with N ∈ {0, . . . , 8} of the right image with N ∈ {0, . . . , 25}. The
dashed reference lines are Vmin

∅ ,Vmin
{4} ,Vmin

{3,4}, . . . ,Vmin
{1,...,4} with decreasing value. The MC

estimator is not drawn, since its variance is equal to Vmin
∅ . The CV estimators with control

variates in I have variance equal to Vmin
I .

We present the computed variance of different estimators in Figure 4.3. We conclude that
the FC estimators have a smaller variance compared to the other estimators for small N .
The FC estimator uses a sample allocation equal to the MFMC, ACV–MF and ACV–KL
estimator and thus neither of these three estimator is in general the BLUE. We further
conclude that the variance of the estimators is larger than the predicted minimal variance
Vmin[µ̂L], even if we increase the number of low fidelity samples to infinity. The variance
of the FC κ estimators converges to the predicted bound Vmin

{L−κ+1,...,L}, in particular the

FC estimator that couples all models is closest to the bound Vmin
{1,...,L−1}. We remark that

the variance of the MLMC estimator does not reach the respective bound Vmin
{L−1} and

stops shortly before it.

We get a better explanation for this if we look at the coefficients in front of every sample
group for every estimator for N = 8 in Figure 4.4. We conclude that the coefficient β5 of
S5 of the FC estimator is very close to the coefficient of the CV estimator, which fits the
theory. We further observe that the coefficients for MFMC, ACV–MF and ACV–KL have
the same sign for all models Z` except one. This is in contrast to the FC estimators that
allow models with multiple negative or positive coefficients, which leads to a checkerboard
pattern for this example. We further remark that in the MFMC estimator the coefficients
of the models in S5 = {1, . . . 5} are very close to zero. The result is that the models
Z1, . . . , ZL−2 are not used for further variance reduction and thus the MFMC estimator
is not able to achieve a variance smaller than Vmin

{4} .

Noisy monomial example. The previous example showed the basic properties of
the BLUE by optimally combining the models. A linear combination of the low fidelity
models ensures that the residual has a small variance such that it is easy to estimate.
We now give an example where the result is more pronounced by adding noise to the
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MC
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Figure 4.4: Monomial example: Coefficients of the linear combination for different linear
unbiased estimators for N = 8. An empty box means that a model is not used for the
respective model group. Each row has to sum up to 0 except for the top row which sums
up to 1. Here we do not account for rounding errors and the CV estimator has the bias
property only for the top row, since this estimator assumes that µ1, . . . , µL−1 is known.
The estimator CV 2 uses a single control variate Z4 and couples the two models Z4 and
Z5. Green coefficients are positive and blue coefficients are negative.
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monomials
Z1(ω) := 1 + ξ,

Z`(ω) := ω`−1 + ξ for all ` ∈ {2, . . . , 5},
Z6 := ω5.

(4.43)

We again assume that ω ∼ U([0, 1]) and that the noise ξ ∼ N(0, 4) is independent of ω.
The QoI Z1 is up to a constant equal to the noise, Z2, . . . , Z5 have added noise and Z6 has
no noise and is equal to the high fidelity model for the monomial example without noise.
The mean, variance and covariance can easily be computed using the independence of ω
and ξ and we summarize these values in Table 4.3. We plot the different model groups and
Vmin
I for different sets I ⊆ {1, . . . , L−1} in Figure 4.5. We use the same sample allocation

strategy as for the monomial example and show the variance of different estimators in
Figure 4.6. Since the BLUE computes the best linear combination, we conclude that
by defining Z ′` := Z` − Z1 the FC estimator removes the noise from the control variates
Z2, . . . , Z5, therefore its performance should not change significantly compared to the
monomial example without noise.
However, the other estimators, especially the MLMC and MFMC estimator, will have
a large variance since the correlation ρL,L−1 is not at all close to one. Here the fixed
a-priori ordering of these estimator leads to a large variance. The MLMC estimator has
a far larger variance than even the MC estimator since ZL − ZL−1 is not small. This
is typically detected by a model selection step, which could then use the MC estimator.
Furthermore, every estimator that does not use the model Z1 like the MC estimator or
the FC κ estimators for κ < 6 are not able to significantly reduce the variance.
For a small number of low fidelity samples N the respective BLUE FC estimator has a
much smaller variance than the other estimators.

Remark 4.31 (BLUE is robust). We emphasize the robustness of the BLUE w.r.t. prior
assumptions. The MLMC estimator makes the a-priori choice for the models and coeffi-
cients based on the idea that ZL −ZL−1 is small. If this is not satisfied, then the MLMC
estimator may not even achieve a variance reduction. On the other hand the MLMC esti-
mator does not require us to tune or compute any coefficients β, which typically requires
the knowledge of the covariance matrix. �

Let us finally look at the coefficients for the estimators in Figure 4.7. The MFMC esti-
mator chooses the coefficients to be close to zero except for the coefficient in front of ZL,

µ σ2

Z1 1 4
Z2 0.50 4.08
Z3 0.33 4.09
Z4 0.25 4.08
Z5 0.20 4.07
Z6 0.17 0.06

Model P Z1 Z2 Z3 Z4 Z5 Z6

Z1 1 0.99 0.99 0.99 0.99 0
Z2 sym 1 1.00 1.00 1.00 0.12
Z3 sym sym 1 1.00 1.00 0.14
Z4 sym sym sym 1 1.00 0.14
Z5 sym sym sym sym 1 0.13
Z6 sym sym sym sym sym 1

Table 4.3: Noisy monomial example: Mean, variance and Pearson correlation coefficient
matrix P of the QoI defined in (4.43). The entry “sym” means symmetric and its value
can be deduced from the relationship ρij = ρji. Values with 1 are exactly 1 and values
with 1.00 are rounded up from 0.99 . . . .
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Figure 4.5: Noisy monomial example: Different values of Vmin
I marked as “x” for different

model groups S = I ∪ {L} that contain the high fidelity model ZL. A red square means
that the model is used and an empty square that the model is not used.
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Figure 4.6: Noisy monomial example: Variance of different estimators for different N .
The left plot is a zoom in with N ∈ {0, . . . , 8} of the right image with N ∈ {0, . . . , 30}.
The dashed reference lines are Vmin

∅ ,Vmin
{5} ,Vmin

{4,5}, . . . ,Vmin
{1,...,5} with decreasing value. The

MC estimator is not drawn, since its variance is equal to Vmin
∅ . The CV estimators with

control variates in I have variance equal to Vmin
I .
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which does not reduce the variance in any significant way. If we add up the last column
of the FC estimator w.r.t. the noise ξ we have

0ξ − 2.49ξ + 2.21ξ − 0.83ξ + 0.12ξ + 0.99ξ ≈ 0,

which shows that the FC estimator removes the noise. We obtain a similar result for
every column of the FC estimator. We further remark that the values in this matrix with
rows Z2, . . . , Z6 and columns S2, . . . , S6 are almost identical to the values of the matrix
of the FC estimator for the monomial example without noise in Figure 4.7. This confirms
that the BLUE removes the noise from every sample group. The model Z1 in S1 of the
FC estimator has a coefficient very close to zero, which means that this sample group is
essentially not used. This is not surprising, since Z1 and Z6 are independent and we can
always subtract a multiple of Z1 and thus ξ in the linear combination (βk)TZSk due to
the model group structure S` = {1, . . . , `}.
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Figure 4.7: Noisy monomial example: Coefficients of the linear combination for different
linear unbiased estimators for N = 8. An empty box means that a model is not used for
the respective model group. Each row has to sum up to 0 except for the top row, which
sums up to 1. Here we do not account for rounding errors and the CV estimator has
the bias property only for the top row, since this estimator assumes that µ1, . . . , µL−1 is
known. Green coefficients are positive and blue coefficients are negative.
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Chapter 5

Sample allocation optimal BLUE

The condition that an estimator is the BLUE is not a sufficient for being an inexpensive
estimator. Chapter 4 showed that the MC estimator is the BLUE in contrast to the
MLMC estimator which is in general not a BLUE. Nevertheless, MLMC has a better
asymptotic complexity than MC if we compare Theorem 3.11 with Theorem 3.49. The
reason is that both estimators use different samples such that the achievable variance is
smaller for the MLMC estimator. Therefore we have to equip the BLUE with a method
to choose the linear regression problem which we call the sample allocation problem. In
this chapter we proceed as follows:

� We define the sample allocation problem in Section 5.1. We further prove the
existence of a solution which defines a sample allocation optimal BLUE and verify
that this estimator is optimal in the class of linear unbiased estimators. We further
extend the sample allocation problem to include a coupling number κ such that only
model groups are evaluated with less or equal to κ models.

� We relax the sample allocation problem to obtain a tractable solution and discuss
why this relaxation is sensible. The relaxed problem in Section 5.2 has a solution
that is in general not unique. We further show that optimal solutions are sparse in
the sense that at most L of the K = 2L−1 model groups are used. This property is
crucial for a practical implementation due to the necessity for rounding the number
of samples to the next integer.

� Section 5.3 provides analogous but slightly stronger results compared to Section 5.2.
The main idea is to view the sample allocation problem from a different angle
and first optimize the sample allocation and afterwards the coefficient of the linear
unbiased estimator. These results simplify the asymptotic analysis in Chapter 6.

� In Section 5.4 we prove that every minimizer of the sample allocation problem lies
in the convex hull of a finite number of minimizers where each of these uses at most
L model groups.

The sections of this chapter in terms of their minimization problems are given in Fig-
ure 5.1. This chapter contains results from [125, 126] and Section 5.2 together with
Section 5.4 extend some of these results.

5.1 Ideal sample allocation optimal BLUE

We know from Chapter 4 that the variance of the BLUE with coefficients βk in (4.15)
and number of samples m is

V
[
µ̂B
α

]
=
∑
k∈US

(βk)TCkβk

mk

= αTΨ−1α = αT

(∑
k∈US

mkP
k(Ck)−1Rk

)−1

α.

In the following we ease the notation and make the dependence on the number of samples
m of the system matrix Ψ(m) and the estimator µ̂B

α(m) explicit. The goal is to choose m



110 Chapter 5 Sample allocation optimal BLUE

Sample Allocation Optimal BLUE (SAOB)

minm∈NK ,β J(m,β) :=
∑K

k=1
(βk)TCkβk

mk

such that
∑K

k=1mkW
k ≤Wbudget,∑K

k=1 P
kβk = α.

Section 5.1

Relaxed sample allocation problem

minm∈RK ,β J(m,β) :=
∑K

k=1
(βk)TCkβk

mk

such that
∑K

k=1mkW
k = Wbudget,∑K

k=1 P
kβk = α,

mk ≥ 0 for all k ∈ {1, . . . , K}.

First BLUE, then sample allocation

minm∈RK J(m) := αTΨ(m)−1α

such that
∑K

k=1mkW
k = Wbudget,

mk ≥ 0 for all k ∈ {1, . . . , K}.

Section 5.2

First sample allocation, then BLUE

minβ J(β) :=
∑K

k=1

(
(βk)TCkβkW k

)1/2

such that
∑K

k=1 P
kβk = α.

Section 5.3

Set of minimizers in Section 5.4

relax mk ∈ R≥0

optimize out β optimize out m

Figure 5.1: Sections of Chapter 5 described in terms of the respective minimization
problem that we examine. Here Wbudget > 0 denotes a computational bugdet and W k

the cost to compute a single evaluation of all models in the model groups Sk. There are
two methods to derive an approximation of the SAOB: The common step is to first allow
non–integer samples to obtain a tractable optimization problem. Then we use explicit
expression for the optimal β or m to obtain two different minimization problems which
both lead to the SAOB. These are examined in Section 5.2 and Section 5.3.
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such that the variance is minimized and we do not exceed a known computational budget
similar to the MLMC, MFMC and ACV estimators in Chapter 3. This cost constraint
is necessary since otherwise the variance can be made as small as desired by choosing m
sufficiently large. We define the cost of a model group as the sum of the costs of every
contained model

W k := W[ZSk ] =
∑
`∈Sk

W[Z`] =
∑
`∈Sk

w` for all k ∈ {1, . . . , K}.

We introduce a fixed budget Wbudget > 0 and write down the sample allocation problem

min
m1,...,mK∈N0

V
[
µ̂B
α(m)

]
= αTΨ(m)−1α

such that W
[
µ̂B
α(m)

]
=

∑
k∈{1,...,K}

mkW
k ≤Wbudget.

(5.1)

We define V
[
µ̂B
α(m)

]
:= +∞ if m is such that the BLUE µ̂B

α(m) is not well defined. The
BLUE is not necessarily unique, therefore we are only able to prove existence of a solution
of (5.1).

Theorem 5.1 (Existence of sample allocation optimal BLUE). Let Wbudget be such that
we are able to evaluate the required models at least once∑

`∈Uα

w` ≤Wbudget. (5.2)

Then there exists a minimizer m∗ of (5.1) and every corresponding BLUE is a sample
allocation optimal BLUE (SAOB)

µ̂SAOB
α := µ̂B

α(m∗).

Proof. The sample allocation problem (5.1) optimizes over a finite set of m ∈ NK
0 since

the cost of every model w` > 0 is positive. We thus enumerate all values and choose
m∗ such that the variance is minimized. Assumption (5.2) now ensures that the MC
estimator with a single sample defines a feasible BLUE

µ̂MC
α := αTZ1

Uα .

Hence we conclude that m∗ is feasible and thus V
[
µ̂B
α(m∗)

]
= V

[
µ̂SAOB
α

]
< +∞.

The SAOB is optimal in the class of linear unbiased estimators. No other linear unbiased
estimator is able to achieve a smaller variance satisfying the cost constraint.

Theorem 5.2 (Optimality of SAOB). Let µ̂α be a linear unbiased estimator that uses
mk i.i.d. samples of Sk for k ∈ {1, . . . , K}, where the samples are also independent across
model groups. Then every SAOB with Wbudget = W[µ̂α] has smaller or equal variance

V
[
µ̂SAOB
α

]
≤ V[µ̂α].

Proof. The BLUE µ̂B
α(m) with the same sample allocation m as µ̂α has smaller or equal

variance
V
[
µ̂B
α(m)

]
≤ V[µ̂α].

The Assumption (5.2) is satisfied since µ̂B
α is a feasible estimator in (5.1) and thus a SAOB

exists. However, the SAOB is the minimizer of this problem and thus we conclude the
theorem

V
[
µ̂SAOB
α

]
= V

[
µ̂B
α(m∗)

]
≤ V

[
µ̂B
α(m)

]
≤ V[µ̂α].



112 Chapter 5 Sample allocation optimal BLUE

The two previous theorems allow the usage of every model group Sk and similar results
are achievable if we allow only the use of specific model groups. We are particularly
interested in evaluating or coupling at most κ models in a single model group, that is
mk = 0 if |Sk| > κ. The SAOB with coupling κ ∈ N (SAOB κ) is a BLUE with a sample
allocation that solves

min
m1,...,mK∈N0

V
[
µ̂B
α(m)

]
= αTΨ(m)−1α

such that
∑

k∈{1,...,K}

mkW
k ≤Wbudget,

mk = 0 for k ∈ {1, . . . , K} with |Sk| > κ.

We denote this estimator with µ̂SAOBκ and remark that its existence and optimality follows
analogously to SAOB. For completeness we write down the optimality result.

Corollary 5.3 (Optimality of SAOB κ). Let µ̂α be a linear unbiased estimator that uses
mk i.i.d. samples of Sk for k ∈ {1, . . . , K} with |Sk| ≤ κ, where the samples are also
independent across model groups. Then every SAOB κ with Wbudget = W[µ̂α] has smaller
or equal variance

V
[
µ̂SAOBκ
α

]
≤ V[µ̂α]. �

The coupling parameter κ of SAOB κ is important for the asymptotic analysis in Chap-
ter 6. We further remark that κ also determines the lower variance bound of SAOB κ,
since we are allowed to couple at most κ− 1 other models with the high fidelity model

Vmin[µ̂SAOBκ
L ] = min

I⊆{1,...,L},
|I|=κ−1

Vmin
I .

It is possible to weaken the assumptions of i.i.d. samples for every model group and
across different model groups. The BLUE is the solution of a generalized linear regression
problem, where a different sample structure leads to a different noise assumption, hence
a BLUE still exists. We are further able to generalize the cost constraint by simply
bounding the cost of the respective BLUE

min
µ̂Bα

V
[
µ̂B
α(m)

]
such that W

[
µ̂B
α(m)

]
≤Wbudget.

This problem typically has a feasible point if Wbudget is large enough. Since the number
of samples are integer, the cost constraints often ensures that the number of evaluations
and thus the number of feasible BLUEs is bounded. We further have to demand that the
estimator µ̂B

α(m) only depends on m and no further other independent parameters that
may modify the noise or covariance structure. Then the solution of this problem is again
a SAOB that is now optimal in this defined class of linear unbiased estimators with costs
bounded by Wbudget.
The above generalization is interesting but in its generality not very useful. In practice, we
have to compute an approximation to the minimization (5.1), which we will do by allowing
the number of samples to be positive real numbers. If we additionally change the structure
of the noise η for the regression problem in Definition 4.11 to include dependencies across
model groups, then the dependence of the system matrix Ψ w.r.t. m is more complex.
Furthermore, the covariance matrix C is often unknown in practice and introducing more
coupling requires that we estimate more entries of the covariance matrix of the noise η.



Chapter 5 Sample allocation optimal BLUE 113

5.2 First BLUE, then sample allocation

Relaxed formulation. We state reasons how and why we simplify the optimization
problem (5.1). We relax the constraint that the number of samples m are integer to
non–negative real numbers to obtain a problem that is numerically tractable

min
m1,...,mK∈R

J(m) := αTΨ(m)−1α

such that
K∑
k=1

mkW
k = Wbudget,

mk ≥ 0 for all k ∈ {1, . . . , K}.

We have replaced the inequality for the cost constraint with equality which is always
satisfied at every minimizer. This problem is still difficult to handle, since Ψ might not
be well defined or not invertible, however the BLUE might still exist. We first show an
example where this is not a problem.

Example 5.4 (Ψ not invertible). Let L := 2, w1 := w2 := 1, Wbudget := 3, α := (0, 1)T

and let the covariance matrix be the identity C := I. Then the MC estimator with three
samples of Z2 is the BLUE since samples of Z1 never decrease the variance. This can
formally be checked by looking at the lower variance bound Vmin

∅ = Vmin
{1} . Notice however

that the matrix

Ψ = m1P
1(C1)−1R1 = 3

(
0
1

)
1
(
0 1

)
=

(
0 0
0 3

)
is not invertible on R2 but on V := span(α), where it matters, that is

Ψ : V → V, Ψα = 3α.

We are thus able to compute the inverse of the linear operator Ψ on V and thus

αTΨ−1α =
1

3
‖α‖2 =

1

3
,

which is the variance of the MC estimator with three samples of Z2. �

The second and more subtle problem is that the BLUE is not well defined if we do not
evaluate all models that are required by the bias. However, since we demand m ≥ 0 the
number of evaluations of a model may tend to zero if the respective covariance matrices
are close to non–invertibility. We demonstrate this in the next example.

Example 5.5 (C not invertible). Let L := 2, w1 := w2 := 1, Wbudget := 1, α := (1, 1)T

with covariance matrix C :=

(
ε2 0
0 1

)
. It is straightforward to see that we obtain the

smallest variance if we evaluate the uncorrelated Z1 and Z2 separately. We compute the
system matrix

Ψ(m) = m1P
1(C1)−1R1 +m2P

2(C2)−1R2 =

(
m1ε

−2 0
0 m2

)
.

This matrix is invertible for all ε2 > 0 and the variance of the BLUE is

J(m) = αTΨ(m)−1α =

(
1
1

)T( 1
m1
ε2 0

0 1
m2

)(
1
1

)
=

1

m1

ε2 +
1

m2

.
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We minimize this expression w.r.t. the cost constraint and use the KKT conditions such
that the optimal m1 and m2 satisfy

1

m2
1

ε2 =
1

m2
2

,

m1 +m2 = Wbudget.

The optimal solution and the variance is then

m1 =
ε

1 + ε
, m2 =

1

1 + ε
, J(m) = (1 + ε)ε+ (1 + ε).

The above expressions are well defined for all ε ≥ 0 and in particular for ε = 0 for which
C is not invertible. The latter is problematic, since then m1 = 0 and thus we obtain an
estimator with Uα = {1, 2} 6⊆ UZ = {2}. Therefore, the estimator µ̂B

α for ε = 0 with
m1 = 0 and m2 = 1 is not a well defined linear unbiased estimator of αTµ. �

Formulated differently, the set where the bias constraint can be satisfied is not closedm1, . . . ,mK ∈ R≥0 | there exists βk with α =
∑

{k |mk>0}

P kβk


and minimizing J leads to a point not in this set. We circumvent this difficulty if we
assume that we pay the price of having at least a single evaluation of all models SL :=
{1, . . . , L}.
Intuitively, it does not make sense to evaluate a model group Sk where Ck is not positive
definite, since we know that the vectors (Z`−µ`)`∈Sk are linearly dependent. Ignoring the
mean µ for now, we are able to compute the value of any linear combination of (Z`)`∈Sk
without evaluating a particular model j ∈ Sk and thus we do not have to pay the cost
wj. We formalize this intuition where we do not ignore the mean µ.

Lemma 5.6 (Model groups not used). Let µ̂α be a linear unbiased estimator with mL ≥ 1
for the model group SL := {1, . . . , L} and C not positive definite. Then there exists an
estimator µ̂′α with sample allocation m with equal variance V[µ̂′α] = V[µ̂α] and smaller or
equal cost W[µ̂′α] ≤W[µ̂α] such that all model groups Sk where Ck is not positive definite
are not used, or used only once for k = L

mk =

{
0, if k 6= L,

1, if k = L.

Proof. Let k ∈ {1, . . . , K} \ {L} such that Ck is not positive definite and assume that µ̂α
uses this model group. Lemma 2.16 now shows that there exist coefficients (a`)`∈Sk 6= 0
such that almost surely ∑

`∈Sk
a`Z` =

∑
`∈Sk

a`µ`. (5.3)

This allows us to represent an arbitrary model j ∈ Sk with aj 6= 0 in terms of the other
QoIs and the mean values

Zj = −
∑

`∈Sk\{j}

a`
aj
Z` + µj +

∑
`∈Sk\{j}

a`
aj
µ` = −

∑
`∈Sk\{j}

a`
aj
Z` +

∑
`∈Sk

a`
aj
µ`. (5.4)
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W.l.o.g. we assume that the linear unbiased estimator µ̂α uses equal coefficients for every
sample in the model group Sk

µ̂α =
∑

n∈US\{k}

∑
`∈Sn

βn[`]

(
1

mn

mn∑
i=1

Zi,n
`

)
+
∑
`∈Sk

βk[`]

(
1

mk

mk∑
i=1

Zi,k
`

)

and we replace Zj in the last expression with (5.4)∑
`∈Sk\{j}

βk[`]Z
i,k
` + βk[j]Z

i,k
j =

∑
`∈Sk\{j}

(
βk[`] −

a`
aj
βk[j]

)
Zi,k
` + βk[j]

∑
`∈Sk

a`
aj
µ`.

This replacement does not change the variance and we define the estimator µ̂∗α to be

µ̂∗α :=
∑

n∈US\{k}

∑
`∈Sn

βn[`]
1

mn

mn∑
i=1

Zi,n
` +

∑
`∈Sk\{j}

(
βk[`] −

a`
aj
βk[j]

)
1

mk

mk∑
i=1

Zi,k
` + βk[j]

∑
`∈Sk

a`
aj
µ`.

The last part of this estimator is a linear combination of the mean values, which we know
from (5.3) if we have a sample of SL = {1, . . . , L} available. Moreover, the estimator µ̂∗α
is cheaper than µ̂α since it does not evaluate Zj in the model group Sk

W[µ̂α] = W[µ̂∗α]−mkW
[
Sk
]

+mkW
[
Sk \ {j}

]
= W[µ̂∗α]−mkwj. (5.5)

We now repeat the procedure outlined in this proof for µ̂∗α until we obtain an estimator
µ̂′α such that mk = 0 for all k ∈ {1, . . . , K} \ {L} where Ck is not positive definite. We
remark that this approach works even if we remove only some samples of a model group
with non–positive definite covariance matrix while keeping the remaining ones. Since this
proof is valid if SL is evaluated at least once, we keep a single sample mL = 1 for µ̂′α.

The above lemma is a justification to only look at model groups where the respective
covariance matrix is positive definite. We view this as preliminary model selection where
we are able to ignore some model groups without increasing the variance of the minimizer.
We incorporate the evaluation of SL in an alternative way into the cost function by
adding the diagonal matrix δI with δ > 0 such that Ψδ(m) := Ψ(m) + δI is invertible.
We interpret δI as additional independent evaluations of Z1, . . . , ZL in the following sense:

δI =
L∑
`=1

δσ2
`P

`(C`)−1R`.

We used that S` = {`} and assumed σ2
` > 0 for ` ∈ {1, . . . , L}, hence adding δI corre-

sponds to δσ2
` additional evaluations of Z`. We then define the relaxed sample allocation

problem
min

m1,...,mK∈R
Jδ(m) := αTΨδ(m)−1α

such that
K∑
k=1

mkW
k = Wbudget,

mk ≥ 0 for all k ∈ {1, . . . , K}.

(5.6)

The matrix Ψδ and its inverse is well defined if C is positive definite or if we restrict
ourselves to model groups where Ck is positive definite. In the latter setting we however,
may have to pay the price of an additional evaluation of all models.
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Remark 5.7 (Other relaxations). We are able to replace δI by δC−1 to obtain a δ–th of
an evaluation of {1, . . . , L} if C is positive definite. Another alternative is to ensure that
all models are evaluated at least δ-times∑

{k∈{1,...,K} | `∈Sk}

mk ≥ δ for all ` ∈ {1, . . . , L}.

Both methods complicate the analysis and our numerical results in Chapter 6 suggest
that setting δ = 0 is possible. Furthermore, in Section 5.3 we apply a different approach
which allows us to remove the matrix δI altogether. �

We derive a lower and upper bound on the error of the variance for replacing Ψ with Ψδ.
Since δI can be viewed as additional samples, we expect that the error gets smaller and
smaller if we use more and more samples.

Lemma 5.8 (Variance with added δI). For positive definite Ψ and δ ≥ 0 the change in
the variance by adding δI satisfies

1

1 + δλmax(Ψ−1)
αTΨ−1α ≤ αTΨ−1

δ α ≤ 1

1 + δλmin(Ψ−1)
αTΨ−1α, (5.7)

where λmin and λmax are the smallest respectively largest eigenvalue of Ψ. In particular,
if we increase the number of samples to infinity the relative error converges to zero in the
following sense

αTΨ(sm)−1α− αTΨδ(sm)−1α

αTΨ(sm)−1α
≤ δλmax(Ψ−1)

s+ δλmax(Ψ−1)
→ 0 for s→ +∞. (5.8)

Proof. We extract the matrix Ψ−1/2 and use the bound of the largest eigenvalue

αTΨδ
−1α = αT (Ψ + δI)−1α = αTΨ−1/2(I + δΨ−1)−1Ψ−1/2α

≤ λmax((I + δΨ−1)−1)αTΨ−1α.

For positive definite matrices the largest eigenvalue of its inverse is the inverse of the
smallest eigenvalue

λmax((I + δΨ−1)−1) =
1

λmin(I + δΨ−1)
=

1

1 + δλmin(Ψ−1)
,

which shows the upper bound in (5.7). For the lower bound we use the inequality

αTΨ−1/2(I + δΨ−1)−1Ψ−1/2α ≥ λmin((I + δΨ−1)−1)αTΨ−1α,

from which the result follows similarly to before. We obtain (5.8) using the lower bound
in (5.7) and

λmax(Ψ(sm)−1) = λmax((sΨ(m))−1) =
1

s
λmax(Ψ(m)−1).

Existence of a minimizer. We summarize and derive important properties of the
cost function Jδ, which follow mostly from the fact that Jδ is the variance of a BLUE. To
avoid technical difficulties we assume that C is positive definite.
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Lemma 5.9 (Properties of Jδ). Let C be positive definite. The function Jδ has the
following properties:

(i) Jδ : R|K|≥0 → R>0,

(ii) Jδ(m/λ) = λJδ/λ(m) for all δ ≥ 0 and λ > 0,

(iii) Coupling of more models never increases the variance, that is for k, j ∈ {1, . . . , K}
with Sk ⊆ Sj we have for all λ ≥ 0 and δ > 0

Jδ(m + λek) ≥ Jδ(m + λej),

(iv) Increasing the number of samples never increases the variance, Jδ is monotonically
decreasing in every argument,

(v) Jδ is twice continuously differentiable for δ > 0 with derivatives

∂mk
Jδ(m) = −αTΨδ(m)−1P k(Ck)−1RkΨδ(m)−1α,

∂mk
∂mj

Jδ(m) = 2αTΨδ(m)−1P k(Ck)−1RkΨδ(m)−1P j(Cj)−1RjΨδ(m)−1α.

(vi) Jδ is convex for δ > 0,

(vii) Jδ is not strictly convex for L ≥ 3.

Proof. The properties “(i)” and “(ii)” are straightforward to verify. For “(iii)” we use
Sk ⊆ Sj, denote I := Sj \ Sk with |I| > 0 and w.l.o.g. assume

Cj =

(
CI,I CI,Sk
CSk,I Ck

)
.

Since the covariance matrix Cj is positive definite we use the inverse of the Schur com-
plement [109] and the fact that the Schur complement is positive semi–definite

(Cj)−1 =

(
I 0

−(Ck)−1CSk,I I

)(
(Cj/Ck)−1 0

0 (Ck)−1

)(
I −CI,Sk(Ck)−1

0 I

)
≥
(

I 0
−(Ck)−1CSk,I I

)(
0 0
0 (Ck)−1

)(
I −CI,Sk(Ck)−1

0 I

)
=

(
0 0
0 (Ck)−1

)
.

We conclude that for all v ∈ R|Sj |

vT (Cj)−1v ≥ vTSk(C
k)−1vSk

and thus
P k(Ck)−1Rk ≤ P j(Cj)−1Rj.

We use this to verify that for all λ ≥ 0

Ψ(m + λek) = Ψ(m) + λP k(Ck)−1Rk ≤ Ψ(m) + λP j(Cj)−1Rj = Ψ(m + λej).

For two symmetric positive definite matrices A,B it is well known that

A ≤ B ⇔ A−1 ≥ B−1,
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which we use to conclude the statement

Jδ(m + λek) = αT (Ψ(m + λek) + δI)−1α ≥ αT ((Ψ(m + λej) + δI)−1α = Jδ(m + λej).

“(iv)”: The computation is analogous to (iii), where we informally may use Sk := ∅
to directly obtain the result. Alternatively (v) shows that the first derivative is zero or
negative.

“(v)”: The expression for the first derivative follows from a standard derivative rule for
inverse matrices [109]

∂mk
(Ψδ(m))−1 = −Ψδ(m)−1(∂mk

Ψδ(m))Ψδ(m)−1.

The expression for the second order derivative follows if we apply the derivative rule for
the matrix product [109] for matrices A and B

∂mk
(A(m)B(m)) = (∂mk

A(m))B(m) + A(m)(∂mk
B(m)).

“(vi)”: We verify that the Hessian is positive semi–definite. For v ∈ RK we have

vTHJδv =
K∑

k,j=1

vk2α
TΨδ(m)−1P k(Ck)−1RkΨδ(m)−1P j(Cj)−1RjΨδ(m)−1αvj

= 2αTΨδ(m)−1

(
K∑
k=1

vkP
k(Ck)−1Rk

)
Ψδ(m)−1

(
K∑
j=1

vjP
j(Cj)−1Rj

)
Ψδ(m)−1α

= 2αTΨδ(m)−1Ψ(v)Ψδ(m)−1Ψ(v)Ψδ(m)−1α,

which is always greater or equal to zero.

“(vii)”: The matrix Ψ is symmetric as sum of K = 2L − 1 symmetric matrices

Ψ(m) =
K∑
k=1

mkP
k(Ck)−1Rk.

The space of symmetric matrices has dimension (L + 1)L/2 < 2L − 1 = K for L ≥ 3.
Therefore, there exists coefficients β 6= 0 such that

Ψ(β) = 0

and thus with mk = 1 for all k ∈ {1, . . . , K} and for all λ sufficiently small

Jδ(m) = αT (Ψ(m) + δI)−1α = αT (Ψ(m + λβ) + δI)−1α = Jδ(m + λβ).

Therefore, Jδ is constant along the non–zero direction β and thus not strictly convex.

We show that the relaxed sample allocation problem (5.6) has a minimizer, which is
basically a result of Jδ being convex.

Theorem 5.10 (Existence of a minimizer). Let C be positive definite and δ > 0. Then
there exists a minimizer of (5.6).
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Proof. The function Jδ is convex due to Lemma 5.9. We optimize over the feasible region{
m1, . . . ,mK ∈ RK |mk ≥ 0 for all k ∈ {1, . . . , K},

K∑
k=1

mkW
k = Wbudget

}
,

which is compact since W k > 0 for all k ∈ {1, . . . , K}. All that remains to show is that
this set is non–empty, which follows since it contains the MC estimator

mk =

{
Wbudget

Wk , for k with Sk = {1, . . . , L},
0, otherwise.

We write down the KKT conditions for the convex optimization problem (5.6). These are
necessary and sufficient for the minimizers. Let ξW be the Lagrange multiplier associated
with the cost constraint and ξ1, . . . , ξK with the positivity constraint. Then the minimizer
satisfies

αTΨδ(m)−1P k(Ck)−1RkΨδ(m)−1α = W kξW − ξk for all k ∈ {1, . . . , K},
K∑
k=1

mkW
k = Wbudget,

mk ≥ 0 for all k ∈ {1, . . . , K},
mkξk = 0 for all k ∈ {1, . . . , K}.

(5.9)

Sparsity of used model groups. The minimization problem (5.6) has K = 2L − 1
variables, which is exponential in L. Furthermore, a practical implementation requires us
to ceil the number of samples m to be integer. The additional cost for this operation is
bounded by an additional evaluation of every model group

2L−1∑
k=1

W k, (5.10)

which is a bound that is also exponential in L. Fortunately, we are always able to reduce
the number of used model groups to at most L without increasing the variance or the
cost. We formally denote this as |US(m)| ≤ L, where we make the dependence of the
used model groups US(m) on the number of samples m explicit.

Theorem 5.11 (Sparse solution). Let C be positive definite, δ > 0 and m be a feasible
sample allocation of (5.6) with |US(m)| > L. Then there exists a feasible point m′ with
|US(m′)| ≤ L and

Jδ(m
′) ≤ Jδ(m).

In particular, there exists a minimizer m∗ of (5.6) with |US(m∗)| ≤ L.

Proof. Let m be a feasible point such that w.l.o.g. m1, . . . ,mL+1 > 0. We now construct
a direction along which the variance Jδ is constant and the cost does not increase. For
x := Ψδ(m)−1α there exists β ∈ RL+1 \ {0} such that the following linear combination is
zero

L+1∑
`=1

β`R
`(C`)−1P `x =

L+1∑
`=1

β`x
` = 0, (5.11)
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which follows from a dimension counting argument of the vectors x1, . . . , xL+1 ∈ RL with
x` := R`(C`)−1P `x. Furthermore, we demand that these coefficients satisfy

L+1∑
`=1

β`W
` ≤ 0, (5.12)

which can always be achieved by suitably changing the sign of β, that is redefining β as
−β if necessary. For notational purposes we now view β as a vector in RK where we
set βk := 0 for k ∈ {L + 2, . . . , K}. We define the maximum scale parameter smax ∈ R
such that we are at the boundary of the feasible region with the ray originating in m in
direction of β

smax := max{s ≥ 0 |m` + sβ` ≥ 0 for all ` ∈ {1, . . . , L+ 1}}. (5.13)

The combination of β 6= 0 and W ` > 0 with (5.12) shows that there exists a negative
coefficient β` < 0 and thus smax < +∞ is well defined. We verify that the sample
allocation m′ := m + smaxβ ≥ 0 uses at least one less model group, has smaller or equal
cost and equal variance compared to m.

� m′ ≥ 0: By definition of β we have m′k = mk ≥ 0 for k ∈ {L + 2, . . . , K}. For
` ∈ {1, . . . , L + 1} we have m′` = m` + smaxβ` ≥ 0 from the definition of smax in
(5.13).

� m′ uses at least on less model group: By definition of smax there exists an index
` ∈ {1, . . . , L + 1} such that m` + smaxβ` = 0. Therefore, m′ does not use S` and
no other additional model groups are used for m′, hence |US(m′)| < |US(m)|.

� m′ has smaller or equal cost: This is a consequence of (5.12) and smax ≥ 0

K∑
k=1

(mk + smaxβk)W
k =

K∑
k=1

mkW
k + smax

L+1∑
`=1

β`W
` ≤

K∑
k=1

mkW
k.

� Jδ(m
′) = Jδ(m): The definition of x := Ψδ(m)−1α shows

α = Ψδ(m)x =
L+1∑
`=1

m`R
`(C`)−1P `x+

K∑
k=L+2

mkR
k(Ck)−1P kx+ δx.

We now use (5.11) to insert zero into the first term

α =
L+1∑
`=1

(m` + smaxβ`)R
`(C`)−1P `x+

K∑
k=L+2

mkR
k(Ck)−1P kx+ δx

= (Ψ(m + smaxβ) + δI)x

= Ψδ(m
′)x.

The matrix Ψδ(m
′) is positive definite and thus the variances are equal

Jδ(m) = αTΨδ(m)−1α = αTx = αTΨδ(m
′)−1α = Jδ(m

′).
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We now inductively repeat the process outlined in this proof for m′ until we reach a
sample allocation m such that the initial assumption |US(m)| > L is false. Hence there
exists a sample allocation m with

|US(m)| ≤ L,

Jδ(m) = Jδ(m),

K∑
k=1

mkW
k ≤

K∑
k=1

mkW
k = Wbudget,

mk ≥ 0 for all k ∈ {1, . . . , K}.

The sample allocation m is infeasible if it is truly cheaper than m. We fix this by scaling
the number of samples such that for another sample allocation m̃

m̃k := mk

Wbudget∑K
k=1mkW k

≥ mk for all k ∈ {1, . . . , K}.

The cost constraint is now satisfied with equality and since the variance Jδ is monotonically
decreasing in every argument due to Lemma 5.9 (iv)

Jδ(m̃) ≤ Jδ(m) = Jδ(m).

It is now trivial to find an upper bound on the additional cost introduced from the
ceiling since every model is evaluated additionally at most L times, which is a substantial
improvement over (5.10)

L
L∑
`=1

w`.

However, in practice this bound is often better since expensive models often occur only
in few of the used model groups. We remark that ceiling the number of samples does not
necessarily lead to the SAOB. However, if the budget Wbudget is large or δ is small, then
it is straightforward to argue that the error or the additional cost can be neglected.
We are now in the position to provide an example where the optimal sample allocation
in (5.6) is not unique.

Example 5.12 (Non–uniqueness of an optimal solution). We know that the MFMC es-
timator is the BLUE for L ≤ 2 and that the MC estimator is the BLUE for L = 1. We
show that if the MC estimator has the same variance as the MFMC estimator, then the
optimal sample allocation for the BLUE is not unique. For α = (0, 1)T we narrow down
the possible BLUE by examining which models groups we are able to use together.

� {1}: Impossible, bias constraint β1
[1] = 0, additional costs to evaluate Z1,

� {2}: Possible, the MC estimator,

� {1, 2}: Impossible, bias constraint β3
[1] = 0, additional costs to evaluate Z1,

� {1}, {2}: Impossible, bias constraints β1
[1] = 0, additional costs to evaluate Z1,

� {1}, {1, 2}: Possible, the MFMC estimator,

� {1, 2}, {2}: Impossible, bias constraints β3
[1] = 0, additional costs to evaluate Z1,



122 Chapter 5 Sample allocation optimal BLUE

� {1}, {2}, {1, 2}: Possible, combination of the MC and MFMC estimator.

If the last combination {1}, {2}, {1, 2} has the best sample allocation, then we are able
to use Theorem 5.11 to reduce the number of active model groups to two or less, which is
the MFMC or the MC estimator. Hence, it suffices to construct an example where both
have the same variance. We use Theorem 3.26 and require the data to satisfy

V
[
µ̂MFMC

2

]
=

σ2
2

Wbudget

((
w1

(
ρ2

2,1 − 0
))1/2

+
(
w2

(
ρ2

2,2 − ρ2
2,1

))1/2
)2

=
w2

Wbudget
σ2

2 = V
[
µ̂MC

2

]
.

We choose ρ2
2,1 = 1/2 and w2 = 1 such that w1 has to satisfy(

w
1/2
1

(
1

2

)1/2

+

(
1

2

)1/2
)2

= 1,

which is true for w1 = (
√

2− 1)2. With these choices for w1, w2 and ρ2,1 the assumptions
of Theorem 3.26 are satisfied and thus our derivation is valid. �

5.3 First sample allocation, then BLUE

Sample allocation. In the previous section we derived some properties of the optimal
sample allocation by adding the matrix δI which we interpreted as additional model
evaluations. This change was made purely because of technical reasons to avoid the
difficulty of the matrix inversion. We now derive a stronger result for δ = 0 by first
optimizing over m and then over the coefficients β for the variance of a linear unbiased
estimator

V[µ̂α] =
K∑
k=1

(βk)TCkβk

mk

.

In the first step β is not necessarily such that µ̂α is a BLUE. We have to make sure that
the cost constraint is satisfied and we do not divide by zero. The case βk = 0 is equivalent
to not using the model group Sk and thus we w.l.o.g. may define mk = 0. On the other
hand if βk 6= 0 we w.l.o.g. assume that mk > 0. The set of used model groups is then
entirely defined by the coefficients β

Uβ := {k ∈ {1, . . . , K} | (βk)TCkβk > 0}.

For the special case of a positive definite covariance matrix C, we have

Uβ = {k ∈ {1, . . . , K} | βk 6= 0} = US.

We write down the relaxed sample allocation problem for a linear unbiased estimator with
fixed coefficient β

min
m1,...,mK∈R

J(m) :=
∑
k∈Uβ

(βk)TCkβk

mk

such that
K∑
k=1

mkW
k = Wbudget,

mk ≥ 0 for all k ∈ {1, . . . , K}.

(5.14)
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We remark that the MLMC estimator is a linear unbiased estimator and thus with

S1 := {1}, β1 := 1,

S2 := {1, 2}, β2 := (−1, 1),

...
...

SL := {L− 1, L}, βL := (−1, 1),

the cost function J is

J(m) =
L∑
`=1

V[Z` − Z`−1]

m`

.

This particular instance of (5.14) is exactly the sample allocation problem for the MLMC
estimator, which has a unique solution according to Theorem 3.46. We show that this
is in general the case for arbitrary β in (5.14) and unsurprisingly the exact statement as
well as its proof are quite similar.

Theorem 5.13 (Optimal sample allocation for linear unbiased estimators).
Let (βk)TCkβk = 0 for all k ∈ {1, . . . , K}. Then any feasible point of (5.14) is optimal
with J(m) = 0. If (βk)TCkβk > 0 for some k ∈ {1, . . . , K}, then the unique optimal
sample allocation of (5.14) is

mk =
Wbudget∑

k∈Uβ [(βk)TCkβkW k]1/2

(
(βk)TCkβk

W k

)1/2

for all k ∈ {1, . . . , K}. (5.15)

The variance at this minimizer is

J(m) =
1

Wbudget

∑
k∈Uβ

[
(βk)TCkβkW k

]1/22

. (5.16)

Proof. First, observe that the statement of this theorem for(βk)TCkβk = 0 for all k ∈
{1, . . . , K} is trivial. Thus assume now that (βk)TCkβk > 0 for some k, which immediately
shows that the denominator in (5.15) is well defined. Notice that for k with (βk)TCkβk = 0
the choice mk = 0 is optimal since otherwise this incurs a cost proportional to W k > 0
but does not decrease the variance. Thus (5.15) is valid for those model groups. Since we
divide by mk in J there exists a positive constant c > 0 such that the number of samples
is bounded from below

mk ≥ c for all k ∈ Uβ.

Similarly, the cost constraint and W k > 0 ensures that there exists a second positive
constant c > 0 such that the number of samples is bounded from above

mk ≤ c for all k ∈ Uβ.

J is convex and we optimize over a compact and non–empty set, hence there exists a
solution of (5.14). We write down the necessary and sufficient KKT conditions with
Lagrange-multiplier ξW ∈ R associated to the cost and ξk ∈ R for k ∈ Uβ associated with
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the positivity constraint

−(βk)TCkβk

m2
k

+ ξWW k − ξk = 0 for all k ∈ Uβ, (5.17)∑
k∈Uβ

mkW
k = Wbudget, (5.18)

mk ≥ 0 for all k ∈ Uβ, (5.19)

ξk ≥ 0 for all k ∈ Uβ, (5.20)

mkξk = 0 for all k ∈ Uβ. (5.21)

We have already verified that mk is positive for all k ∈ Uβ and thus ξk = 0. Furthermore,
since there exists a solution we conclude ξW > 0, otherwise (5.17) cannot be satisfied. We
reformulate this equation to arrive at

mk =

(
(βk)TCkβk

ξWW k

)1/2

and insert this into (5.18)

(ξW)1/2 =

∑
k∈Uβ

[
(βk)TCkβkW k

]1/2
Wbudget

.

We combine the last two equations to obtain (5.15) and a straightforward computation
shows (5.16).

We now choose the coefficients β to minimize the variance and respecting the bias con-
straint. We achieve this if we minimize over the inner expression of (5.16)

min
β

J(β) :=
K∑
k=1

[
(βk)TCkβkW k

]1/2
such that

K∑
k=1

P kβk = α.

(5.22)

The cost function J from (5.16) now includes values that are zero βk = 0. We remark
that we now do not have any issue stating this problem w.r.t. the matrix inversion of Ψ
as this was the case in Section 5.2 where we have added the artificial matrix δI.

Theorem 5.14 (Existence of optimal coefficients). There exists a solution of (5.22).

Proof. First, we assume that C is positive definite. Then since W k > 0 we define the
norms ‖ · ‖k for all k ∈ {1, . . . , K}

‖v‖k :=
[
(v)TW kCkv

]1/2
for all v ∈ R|Sk|.

The cost function is a sum over different norms and thus convex

J(β) =
K∑
k=1

‖βk‖k.
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The minimization problem (5.22) has a feasible point, since the bias constraint is satisfied
for βL = α for SL := {1, . . . , L} and βk = 0 for k 6= L. We further conclude that for every
k ∈ {1, . . . , K}

lim
‖βk‖→+∞

J(β) = +∞.

We are thus able to w.l.o.g. restrict the set of possible coefficients to a bounded set{
β |

K∑
k=1

P kβk = α, ‖βk‖ ≤ c for all k ∈ {1, . . . , K}

}
,

where c > 0 is a sufficiently large positive constant. A minimizer now exists, since J is
continuous and we optimize over a non–empty compact set.
Now let C be non–negative definite. We split R|Sk| = Xk + Y k such that Ck is positive
definite on Xk and Y k is the space of eigenvectors with zero eigenvalue. We rewrite (5.22)
such that

min
x1∈X1,...,xK∈XK ,
y1∈Y 1,...,yK∈Y K

J(β) =
K∑
k=1

‖xk‖k

such that
K∑
k=1

P kxk = α−
K∑
k=1

P kyk.

The vectors yk do not influence the value of J which allows us to replace the bias constraint
with a constraint in a smaller space

P Y ⊥
K∑
k=1

P kxk = P Y ⊥α,

where P Y ⊥ is the projection onto the space Y ⊥

Y ⊥ := {v ∈ R|Sk| | (v, P kyk) = 0 for all yk ∈ Y k, k ∈ {1, . . . , K}}.

The resulting sample allocation problem now reads

min
x1∈X1,...,xK∈XK

J(β) =
K∑
k=1

‖xk‖k

such that P Y ⊥
K∑
k=1

P kxk = P Y ⊥α.

The function ‖ · ‖k is a norm on Xk, hence similarly to the case of positive definite C the
existence of a minimizer follows.

We remark that an optimizer in Theorem 5.14 corresponds to an optimizer in Theo-
rem 5.10 if δ = 0 and vice versa. Furthermore, it is not straightforward to actually
compute an optimal coefficient β, since the norm ‖ · ‖k is not differentiable at zero which
requires an expensive case distinction w.r.t. the used model groups.
Let us now assume that we have computed the optimal coefficients β. We are able to
compute the number of samples from (5.14)

mk =
Wbudget∑K

k=1[(βk)TCkβkW k]1/2

(
(βk)TCkβk

W k

)1/2

, (5.23)
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however this expression is only valid if C is positive definite. It is straightforward to
verify that if the denominator is zero, then we found an estimator with zero variance and
thus the choice m = 0 seems reasonable. However, this violates the existence of a linear
unbiased estimator with bias α 6= 0. This fact even holds if the denominator is not zero,
which we show in a continuation of Example 5.5.

Example 5.15 (C not invertible). Let us assume that L := 2, w1 := w2 := 1, Wbudget :=

1, α := (1, 1)T and the covariance matrix C :=

(
0 0
0 1

)
. With S1 := {1}, S2 := {2} and

S3 := {1, 2} the cost function and bias constraint is

J(β) = ‖β1‖1 + ‖β2‖2 + ‖β3‖3 = |β2
1 |+ 2|β3

2 |,

α =

(
1
1

)
=

(
β1

1

0

)
+

(
0
β2

1

)
+

(
β3

2

β3
2

)
.

The minimizer is clearly β1
1 = β2

1 = 1 and zero for all other values. We compute the
number of samples with (5.23)

m1 = 0, m2 = 1, m3 = 0.

However, since Uα = {1, 2} 6= UZ = {2} there exists no linear unbiased estimator with
this sample allocation. �

We are able to circumvent the problems of the previous example if we require a single
evaluation of the model group Uα. This step can be postponed after computing the
optimal coefficients β. We further have to ceil the number of samples in (5.23) to obtain
a reasonable approximation of the SAOB. In this sense, we removed both the need for
adding the additional matrix δI as well as the assumption that C is positive definite.

Sparsity of used model groups. We provide a proof of the existence of a sparse
solution β that satisfies |Uβ| ≤ L. This is a consequence of the sum of norms property,
since we may view J as `1-norm over the different coefficients βk in the following sense

J(β) = ‖β‖`1 :=
K∑
k=1

‖βk‖k.

We keep the notation of ‖ · ‖k even though this function may only be a semi–norm if C
is not positive definite. We never implicitly rely on its norm properties. The proof of the
sparsity result is in spirit similar to the proof of Theorem 5.11.

Theorem 5.16 (Sparse solution). Let β be a feasible point of (5.22) with |Uβ| > L. Then
there exists a feasible point β′ of (5.22) with |Uβ′| ≤ L and J(β′) ≤ J(β). In particular,
there exists a minimizer β∗ of (5.22) with |Uβ∗| ≤ L.

Proof. We construct a direction along which the bias remains unchanged and the variance
does not increase. For a feasible point β with |Uβ| > L we w.l.o.g. assume β1, . . . , βL+1 6=
0. Then by a dimension counting argument applied to P `β` ∈ RL there exists a linear
combination v ∈ RL+1 \ {0} such that

L+1∑
`=1

v`P
`β` = 0.
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For notational purposes we now view v as element of v ∈ RK , where we extend this vector
by zeros vk = 0 for k ∈ {L + 2, . . . , K}. The bias does not change along this direction
since for arbitrary s ∈ R

α =
K∑
k=1

P kβk =
L+1∑
k=1

(1 + svk)P
kβk +

K∑
k=L+2

(1 + s0)P kβk =
K∑
k=1

P k[(1 + svk)β
k].

We write down the value of the cost function

J((1 + sv1)β1, . . . , (1 + svK)βK) =
K∑
k=1

‖(1 + svk)β
k‖k =

K∑
k=1

|(1 + svk)|‖βk‖k

=
L+1∑
`=1

|(1 + sv`)|‖β`‖` +
K∑

k=L+2

‖βk‖k.

Only the first sum depends on s and we now show that there exists an index ` ∈ {1, . . . , L+
1} such that we are able to choose s = −1/v`, which removes the `–th model group. We
view J as function of s and compute the derivative for s close to zero

∂sJ(s) := ∂sJ((1 + sv1)β1, . . . , (1 + svK)βK) =
L+1∑
`=1

v`‖β`‖`. (5.24)

This expression is valid only for small s such that 1+sv` > 0 for all ` since the modulus | · |
is not differentiable at zero. The key idea is to recognize that J as function of s is locally
linear near 0 and globally continuous, which allows to compute its exact value using only
the first derivative. We then choose s such that 1 + sv` ≥ 0 with equality for at least one
model group. We distinguish between three cases.

� ∂sJ < 0: We choose s as maximum

smax := max{s ≥ 0 | 1 + sv` ≥ 0, for all ` ∈ {1, . . . , L+ 1}}.

From (5.24) together with ∂sJ < 0 we conclude that there exists ` ∈ {1, . . . , L+ 1}
with v` < 0 and thus smax < +∞ is well defined. Since ∂sJ < 0, J is locally linear
and smax > 0 we conclude that

J((1 + smaxv1)β1, . . . , (1 + smaxvK)βK) < J(β1, . . . , βK).

Moreover, by definition of smax and with β′ such that β′,k := (1 + smaxvk)β
k for

all k ∈ {1, . . . , K} we conclude |Uβ′ | < |Uβ|, since at least one less model group
` ∈ {1, . . . , L + 1} is used. In this case, we have v` 6= 0, 1 + smaxv` = 0 and thus
smax = −1/v`.

� ∂sJ > 0: The proof is analogous to ∂sJ > 0. Here we have to choose smin as minimal
s such that 1 + sv` ≥ 0 for all ` ∈ {1, . . . , L + 1}. Then we have 0 > smin > −∞
and the result follows.

� ∂sJ = 0: In this case the variance is constant and we may choose smax,min either
as maximum or minimum s such that 1 + sv` ≥ 0 for all ` ∈ {1, . . . , L + 1} with
equality for at least one model group. Once again from v 6= 0 we are able to conclude
−∞ < smax,min < +∞ and thus

J((1 + smax,minv1)β1, . . . , (1 + smax,minvK)βK) = J(β1, . . . , βK).

The definition of β′ is similar to before.
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We started from coefficients β with |Uβ| > L and constructed other coefficients β′ such
that

J(β′) ≤ J(β),

K∑
k=1

P kβ′,k =
K∑
k=1

P kβk = α,

|Uβ′ | < |Uβ|.

We now inductively continue the procedure outlined in this proof until we obtain the
coefficients that satisfy the statement of the theorem.

We now return to Example 5.12 and verify that we are actually in the case ∂sJ = 0.

Example 5.17 (Non–uniqueness of SAOB). The MC estimator and the MFMC estimator
have the same variance if ρ2,1 =

√
1/2, w1 = (

√
2 − 1)2 and w2 = 1. We assume

σ2
1 = σ2

2 = 1. The coefficients for the MC estimator are β2 = 1 and zero otherwise. We
compute the respective value of the norm

‖β2‖2 =
√

(β2)TC2β2W 2 =
√
w2 = 1.

We now compute the respective coefficients of the MFMC estimator. This estimator reads

µ̂MFMC =
1

m3

m3∑
i=1

Zi
2 − ρ2,1

(
1

m3

m3∑
i=1

Zi
1 −

1

m1 +m3

m1+m3∑
i=1

Zi
1

)

=
1

m3

m3∑
i=1

Zi
2 − ρ2,1

m1

m1 +m3

(
m1 +m3

m1

[
1

m3

− 1

m1 +m3

] m3∑
i=1

Zi
1 −

1

m1

m1+m3∑
i=m3+1

Zi
1

)

=
1

m3

m3∑
i=1

Zi
2 − ρ2,1

m1

m1 +m3

(
1

m3

m3∑
i=1

Zi
1 −

1

m1

m1+m3∑
i=m3+1

Zi
1

)
.

We insert the optimal number of samples (3.27) (where the m∗` denotes the total number
of samples) to conclude

β3
1 = −β1 = −ρ2,1

m1

m1 +m3

= −ρ2,1

(
ρ22,1−ρ22,0

w1

)1/2

−
(
ρ22,2−ρ22,1

w2

)1/2

(
ρ22,1−ρ22,0

w1

)1/2
= −ρ2,1(1− w1/2

1 )

= −(
√

2− 1) = −
√
w1.

For the MFMC estimator we thus have β3 = (−√w1, 1)T and β1 =
√
w1. We compute

the respective norms

‖β1‖1 =
√

(β1)TC1β1W 1 =
√
w1w1 = w1,

‖β3‖3 =
√

(β3)TC3β3W 3 =
√

(w1 − 2
√
w1ρ2,1 + 1)(w1 + 1) = 2

√
2− 2 = 1− w1.

We furthermore compute the linear combination v such that

0 =
3∑
`=1

v`P
`β` = v1

(√
w1

0

)
+ v2

(
0
1

)
+ v3

(
−√w1

1

)
,
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which is satisfied for v1 = v3 = 1 and v2 = −1. Now observe that the expression for the
derivative of J w.r.t. the scaling s in (5.24) is

∂sJ(s) =
3∑
`=1

v`‖β`‖` = (w1)− (1) + (1− w1) = 0.

We thus conclude that for all λ ∈ [0, 1] the following values of β lead to optimal J under
the bias constraint

β1 = 0 + λ
√
w1,

β2 = 1− λ,

β3 = 0 + λ

(
−√w1

1

)
,

(5.25)

where λ = 0 is the MC estimator and λ = 1 the MFMC estimator. For λ ∈ (0, 1) we have
a convex combination of these two estimators. �

Lower variance bound. Let us derive the lower variance from the perspective of
(5.15) and (5.16). We assume that the high fidelity model is in the model group S1 and
we decrease the cost of Z1, . . . , ZL−1 to zero w1, . . . , wL−1 → 0 to conclude

mk → +∞ for all k ∈ {2, . . . , K},
m1 → 1,

J(β)→ 1

Wbudget
(β1)TC1β1wL = (β1)TC1β1,

where we have used Wbudget = wL. The lower variance bound for the SAOB and thus for
any linear unbiased estimator is

Vmin[µ̂SAOB
L ] = Vmin

S1\{L} = Vmin = min
β

(β1)TC1β1,

where we have to satisfy the bias constraint in the last minimization problem

eL = α =
K∑
k=1

P kβk.

This is exactly the bound from Corollary 4.18.

5.4 Characterisation of the set of minimizers

Example 5.17 shows that the set of optimizers can be described as the convex hull of
finitely many estimators with at most L active model groups. We verify that this is
always the case if C is positive definite. Let us define the set

{P kβk | k ∈ Uβ}. (5.26)

This section proceeds with the following three steps:

1. Every minimizer is a convex combination of minimizers where the vectors (5.26) are
linear independent.
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2. If the vectors (5.26) are linear independent for a minimizer β, then there is no other
minimizer β′ such that Uβ = Uβ′ . In this sense β is unique.

3. Therefore, every minimizer is a convex combination of finitely many minimizers
where the vectors (5.26) are linearly independent and thus necessarily uses at most
L model groups.

We start with the first claim.

Lemma 5.18 (Convex combination of minimizers). The minimizer β of (5.22) is a convex
combination of minimizers β[1], . . . , β[N ] of (5.22)

β =
N∑
j=1

λjβ
[j] for some λ1, . . . , λN ∈ [0, 1] with

N∑
j=1

λj = 1,

where the vectors (5.26) are linear independent for each β[j].

Proof. Let β be a minimizer for which (5.26) is not linear independent such that

Vβ :=

v ∈ RK |
∑
k∈Uβ

vkP
kβk = 0, vk = 0 for k 6∈ Uβ


has dimension dβ := dim(Vβ) > 0. We show that β is a convex combination of two

other minimizers β and β̃ with dβ̃ < dβ and dβ < dβ. We then repeat this argument

for both β̃ and β until we obtain the minimizers β[1], . . . , β[N ] for which dβ[j] = 0 and
thus the vectors (5.26) are linearly independent. Since a convex combination of a convex
combination is again a convex combination, the minimizer β must be a convex combination
of β[1], . . . , β[N ] and thus the statement of the theorem holds. Therefore, we only have to
verify that β is a convex combination of minimizers β̃ and β with dβ̃ < dβ and dβ < dβ.
In the proof of Theorem 5.16, whose notation we follow, there exists a vector v such that
for all s moving along the direction

(1 + sv1)β1, . . . , (1 + svK)βK

does not change the bias. Since β is a minimizer, we are in the setting ∂sJ(s) = 0 of
Theorem 5.16, since otherwise we are able to find a feasible point with smaller value of
J . Then there exists both smax > 0 and smin < 0 and two distinct minimizers

β̃ := ((1 + smaxv1)β1, . . . , (1 + smaxvK)βK)T ,

β := ((1 + sminv1)β1, . . . , (1 + sminvK)βK)T .

Each of these uses at least one less model group compared to β, hence dβ̃ < dβ and dβ < dβ.

The minimizer β is a convex combination of β̃ and β, since for λ = −smin/(smax− smin) ∈
[0, 1]

λβ̃
k

+ (1− λ)β
k

= − smin

smax − smin

(1 + smaxvk)β
k +

smax

smax − smin

(1 + sminvk)β
k = βk.

We continue with the second statement and the uniqueness of a minimizer w.r.t. its used
model groups.
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Lemma 5.19 (Uniqueness of the minimizer). Let C be positive definite and β be a
minimizer of (5.22) such that the vectors (5.26) are linearly independent. Then β is

the unique minimizer in the sense that there exists no other minimizer β̃ of (5.22) with
Uβ̃ = Uβ.

Proof. We verify that the function J has positive definite Hessian at the minimizer β if we
restrict the directions v to be small, Uβ+v = Uβ and that the bias constraint is satisfied.
Then J is a convex function that is strictly convex at a minimizer which must be unique.
We have ‖βk‖k 6= 0 for k ∈ Uβ since ‖ · ‖k is a norm for positive definite C and thus J is
twice differentiable

∂βki βkj J(β) = ∂βki βkj ‖β
k‖k = ∂βki βkj

(
(βk)TCkβkW k

)1/2

= W k
Ck
ij

‖βk‖k
− (W k)2

(eTi C
kβk)(eTj C

kβk)

‖βk‖3
k

.

Notice that J as the sum of norms of βk has a block-diagonal Hessian, thus all other
second derivatives are zero. Hence, we only have to verify that the matrices

Ak := W kCk‖βk‖2
k − (W k)2(Ckβk)(Ckβk)T

are positive definite along the directions where the bias constraint is satisfied. Since J
is convex, we conclude that Ak is positive semi–definite. Now let vk ∈ R|Sk| such that
0 = (vk)TAkvk. We denote the scalar product corresponding to the norm ‖ · ‖k with (·, ·)k
and apply the Cauchy–Schwarz inequality

0 = (vk)TAkvk = ‖vk‖2
k‖βk‖2

k − (vk, βk)2
k ≥ ‖vk‖2

k‖βk‖2
k − (‖vk‖k‖βk‖k)2 = 0.

The Cauchy–Schwarz inequality holds with equality if and only if vk is a scalar multiple
of βk

vk = skβ
k,

where sk ∈ R is arbitrary. We now demand that the directions vk for k ∈ Uβ satisfy the
bias constraint

α =
∑
k∈Uβ

P k(βk + vk) =
∑
k∈Uβ

P kβk +
∑
k∈Uβ

P kvk = α +
∑
k∈Uβ

skP
kβk

and thus we require the sk to satisfy∑
k∈Uβ

skP
kβk = 0.

Since the vectors P kβk for k ∈ Uβ are linearly independent by the assumption of the
theorem, the above expression is valid only if sk = 0. We conclude that vk = 0 and thus
the Hessian of J is positive definite restricted to the linear subspace defined by the bias
constraint and the constraint of only using model groups in Uβ.

The previous lemma crucially requires that the covariance matrix is positive definite, since
otherwise this result does not hold. A simple counter example is C = 0 such that every
coefficient β that satisfies the bias constraint is a an optimal solution and thus it is trivial
to find a second minimizer β′ with Uβ′ = Uβ. Let us derive the final result of this section.
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Theorem 5.20 (Set of minimizers). Let C be positive definite. Then there exists mini-
mizers β[1], . . . , β[N ] of (5.22) such that the derived vectors (5.26) are linearly independent
for every β[n], n ∈ {1, . . . , N}. Furthermore, the set of minimizers of (5.22) is the convex
hull of β[1], . . . , β[N ].

Proof. Lemma 5.19 shows that there exists at most a single minimizer β for each Uβ if the
set (5.26) is linear independent. Hence we have at most finitely many different minimizers
with these two properties. Since Lemma 5.18 shows that every minimizer β is a convex
combination of those minimizers, the result follows.

Uniqueness under small perturbations. The previous theorem shows that the
set of optimizers is up to convex combinations a discrete set and Example 5.17 shows
that we have to choose the cost and covariance of the models exactly right to obtain
multiple SAOBs. In this example these are the MC and MFMC estimator or any convex
combination thereof. For our numerical experiments we only obtained a single unique
SAOB and we now show that small perturbations of the cost or covariance lead to a
unique solution. The perturbed optimization problem is given by

min
β

J̃(β) :=
K∑
k=1

[
(βk)TCkβk(W k + ξk)

]1/2
such that

K∑
k=1

P kβk = α,

(5.27)

where ξ1, . . . , ξK are perturbations in the cost, e.g. obtained from estimating the cost
of computing the model group. Results for perturbations in the covariance, e.g. from
estimation, are more challenging to examine. In any case, perturbations in the cost and
covariance lead to similar results, since we may redefine the covariance of every model
group to Ck(W k + ξk) and the cost to be equal to one without changing the minimizer
or minimum of (5.27). We start with a result showing that the used model groups of the
optimizers stay fixed under small perturbations in the cost.

Lemma 5.21. Let C be positive definite, U ⊆ {1, . . . , K} and β an optimizer of the
unperturbed problem (5.22) restricted to U , that is we fix βk = 0 for k 6∈ U . Furthermore,
assume that Uβ = U and that the vectors in (5.26) are linearly independent. Then for all

ε > 0 small enough with i.i.d. perturbations ξ1, . . . , ξK ∼ U(−ε, ε) the optimizer β̃ for
the perturbed problem (5.27) restricted to U satisfies Uβ̃ = U = Uβ and the vectors in

(5.26) are linearly independent with βk replaced by β̃
k
.

Proof. We w.l.o.g. assume β1, . . . , βL are not equal to zero and |Uβ| = L. We write
down the optimality conditions of (5.22) restricted to U = {1, . . . , L} and denote the
Lagrange–multiplier with λ ∈ RL

W kCkβk −
[
(βk)TCkβkW k

]1/2
P kλ = 0 for all k ∈ {1, . . . , L},

L∑
k=1

P kβk = α.

The optimality conditions depend continuously on W k and thus the optimal β1, . . . , βL

also depend continuously on W 1, . . . ,WL. Now let β̃ be the optimizer for the perturbed
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problem restricted to Uβ. Then the vectors P 1β̃
1
, . . . , PLβ̃

L
are again linearly independent

since the determinant is a continuous function and

det(P 1β1| . . . |PLβL) 6= 0.

due to linear independent vectors in (5.26). This also shows that the set of used models
does not change under small perturbations of the costs.

In terms of Example 5.17 Lemma 5.21 means that the MFMC estimator does not decay to
a MC estimator that only uses either the model group {1, 2} or {1} if we slightly perturb
the costs.
We now assume that Uβ = {1, . . . , L} for the optimizer β of (5.22) such that Ψ(m) is
positive definite if C is positive definite. Then the optimality conditions in the formulation
of the samples m (5.9) are

αTΨ(m)−1P k(Ck)−1RkΨ(m)−1α = W kλW for all k ∈ {1, . . . , L}, (5.28)

L∑
k=1

mkW
k = Wbudget. (5.29)

Multiplying (5.28) by mk, summing up over k = 1, . . . , L together with (5.29) and the
definition of Ψ(m) shows that the Lagrange–multiplier satisfies

λW =
αTΨ(m)−1α

Wbudget
=

J(β)

Wbudget
. (5.30)

Since we only compare estimators with the same budget we examine how changes in
W 1, . . . ,WL changes the value of λW, which we do using the implicit function theorem.
We write the optimality conditions (5.28) and (5.29) as single equation

F (W 1, . . . ,WL,Wbudget,m1, . . . ,mL, λ
W) = 0. (5.31)

This equation is satisfied at the unperturbed optimizer. The implicit function theorem
requires us to compute some derivatives, which we do now.

Lemma 5.22 (Derivatives of F ). Let C be positive definite and W 1, . . . ,WL, Wbudget,
m1, . . . ,mL, λW satisfy (5.31) with mk > 0 for k ∈ {1, . . . , L}. Then with W :=
(W 1, . . . ,WL)T there holds

∂WkF = −λWek +mkeL+1,

∂WbudgetF = −eL+1,

∂m1,...,mL,λWF =

(
A −W
W T 0

)
, A = (Ak,j)

L
k,j=1 ∈ RL×L,

Ak,j = −2αTΨ(m)−1P k(Ck)−1RkΨ(m)−1P j(Cj)−1RjΨ(m)−1α,

eTL+1(∂m1,...,mL,λWF )−1 =
1

Wbudget
(−m1, . . . ,−mL,−2λW).

Proof. The proof for the derivatives is straightforward. The matrix −A is symmetric
positive definite, which can be verified from

vT (−A)v = 2αTΨ(m)−1Ψ(v)Ψ(m)−1Ψ(v)Ψ(m)−1α (5.32)
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using that Ψ(m)−1 is positive definite and Ψ(m) andΨ(v) symmetric. Hence A is invertible
and thus

(∂m1,...,mL,λWF )−1 =

(
A−1 − A−1W (W TA−1W )−1W TA−1 A−1W (W TA−1W )−1

−(W TA−1W )−1W TA−1 (W TA−1W )−1

)
.

(5.33)
We have (m1, . . . ,mL)T = −2λWA−1W since

−A(m1, . . . ,mL)T = 2

(
L∑
k=1

mkα
TΨ(m)−1P k(Ck)−1RkΨ(m)−1P j(Cj)−1RjΨ(m)−1α

)L

j=1

= 2
(
αTΨ(m)−1Ψ(m)Ψ(m)−1P j(Cj)−1RjΨ(m)−1α

)L
j=1

= 2
(
αTΨ(m)−1P j(Cj)−1RjΨ(m)−1α

)L
j=1
.

Now use the optimality condition (5.28)

− A(m1, . . . ,mL)T = 2(W jλW)Lj=1 = 2λWW. (5.34)

We use that W T (m1, . . . ,mL)T = Wbudget from the cost constraint (5.29) to conclude

(W TA−1W )−1 = −2λW(W T (−2λWA−1W ))−1 = −2λW(W T (m1, . . . ,mL)T )−1 =
−2λW

Wbudget
.

(5.35)
This now shows that the inverse in (5.33) is well defined, since (5.35) is a well–defined
negative number. We now conclude the lemma with a calculation using (5.34) and (5.35)

eTL+1(∂m1,...,mL,λWF )−1 = (−(W TA−1W )−1W TA−1, (W TA−1W )−1)

=
1

Wbudget
(2λWA−1W T ,−2λW)

=
1

Wbudget
(−m1, . . . ,−mL,−2λW).

We now derive the Taylor expansion for the optimal objective value at a minimizer w.r.t.
the costs of the model groups.

Lemma 5.23 (Taylor expansion). Let C be positive definite and W 1, . . . ,WL, Wbudget,
m1, . . . ,mL, λW satisfy (5.31) with mk > 0 for k ∈ {1, . . . , L}. Let β be the respective

coefficients and β̃ the coefficients of the perturbed problem with Uβ = Uβ̃ with i.i.d.
perturbations ξ1, . . . , ξK ∼ U(−ε, ε) and ε > 0 sufficiently small. Then the objective
function value at the minimizer satisfies the Taylor expansion

J̃(β̃) = J(β) +
J(β)

Wbudget

L∑
k=1

mkξk + o(‖ξ‖). (5.36)

Proof. We use the implicit function theorem to achieve

0 = F (W 1 + ξ1, . . . ,W
L + ξL,Wbudget, m̃1, . . . , m̃L, λ̃

W) = F (W + ξ,Wbudget, g(W + ξ))

in a small neighbourhood around (W 1, . . . ,WK ,Wbudget)T ∈ RL+1. Here g : RL+1 → RL+1

is a smooth function and we are only interested in the last component since (5.30) shows

eTL+1g = λW =
J(β)

Wbudget
.
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The implicit function theorem and Lemma 5.22 now shows that

∂WkλW = ∂WkeTL+1g = −eTL+1(∂m1,...,mL,λWF )−1∂WkF

=
1

Wbudget
(m1, . . . ,mL, 2λ

W)
(
−λWek +mkeL+1

)
=

λW

Wbudget
mk.

(5.37)

We now use a Taylor expansion, (5.37) and (5.30) to obtain the result (5.36)

J̃(β̃) = WbudgetλW(W + ξ)

= WbudgetλW(W ) + Wbudget(∂W 1λW(W ), . . . , ∂WLλW(W ))(ξ1, . . . , ξL)T + o(‖ξ‖)

= J(β) + λW(W )
L∑
k=1

mkξk + o(‖ξ‖).

Here λW(W + ξ) denotes the optimal Lagrange–multiplier of the perturbed and λW(W )
of the unperturbed problem.

The Taylor expansion (5.36) shows that a perturbation which increases the cost of a single
model group leads to an increase in the variance proportional to the number of samples
of this model group (ignoring higher order terms). The scaling factor J(β)/Wbudget = λW

is the variance per cost ratio of the estimator at the minimizer which is multiplied by the
cost change keeping the old number of samples to obtain the (linear) variance change.
The result in Lemma 5.23 is thus not surprising.
We now derive the main uniqueness result.

Theorem 5.24 (Almost sure uniqueness under perturbations of W k). Let C be positive
definite, ε > 0 sufficiently small and ξ1, . . . , ξK ∼ U(−ε, ε) i.i.d. uniformly distributed.
Then problem (5.27) has P–almost surely a unique solution.

Proof. We write down the Taylor expansion for minimizers restricted to a general Uβ,
which is a straightforward generalization of (5.36)

J̃(β̃) = J(β) +
J(β)

Wbudget

∑
k∈Uβ

mkξk + o(‖ξ‖). (5.38)

Now assume that two minimizers β[1] and β[2] with Uβ[1] 6= Uβ[2] satisfy J(β[1]) = J(β[2])

and denote the respective number of samples with m[1] and m[2]. Then we use (5.38) to
conclude that

J̃(β̃
[1]

) = J(β[1]) +
J(β[1])

Wbudget

∑
k∈U

β[1]

m
[1]
k ξk + o(‖ξ‖)

= J(β[2]) +
J(β[2])

Wbudget

∑
k∈U

β[2]

m
[2]
k ξk + o(‖ξ‖) = J̃(β̃

[2]
)

happens P–almost never since we have a non–zero i.i.d. contribution of a random variable
mkξk not appearing on both sides as Uβ[1] 6= Uβ[2] . Hence, if J(β[1]) = J(β[2]) for the

unperturbed problem we almost surely have that either β̃
[1]

or β̃
[2]

has a smaller objective
function value than the other. We apply this idea for the minimizers β[1], . . . , β[N ] with
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Uβ[1] , . . . , Uβ[N ] in Theorem 5.20 of the unperturbed problem. This means that we P–
almost surely obtain a unique minimizer if we restrict the problem to the model groups
given as union of Uβ[1] , . . . , Uβ[N ] .

All that remains is to verify that there are no other solutions. Let U be such that (5.22)
restricted to U has the solution β with J(β) > Jmin, where Jmin denotes the unrestricted

minimum. Now we verify that for sufficiently small ε we still have J̃(β̃) > J̃min for

the perturbed problem, where β̃ is the respective minimizer and J̃min the unrestricted
minimum of the perturbed problem. We use the continuity of J , that ξ1, . . . , ξK are small
and that β minimizes J to verify that

J̃(β̃) =
K∑
k=1

[
(β̃

k
)TCkβ̃

k
(W k + ξk)

]1/2

≥ (1− δ)
K∑
k=1

[
(β̃

k
)TCkβ̃

k
W k
]1/2

= (1− δ)J(β̃) ≥ (1− δ)J(β)

holds for some δ > 0 that can be made arbitrarily small if we make ε sufficiently small.
The result Jmin ≥ (1− δ)J̃min follows similarly. We thus conclude

J̃(β̃) ≥ (1− δ)J(β) = (1− δ)J(β)

Jmin
Jmin ≥ (1− δ)2J(β)

Jmin
J̃min.

Now use J(β)/Jmin > 1 and that δ is sufficiently small to obtain J̃(β̃) > J̃min.

The previous result shows that small random perturbations inW k lead to unique solutions.
For Example 5.17, where we had to choose the cost and correlation exactly right, this
means that either the MC or the MFMC estimator has a smaller variance after the
random perturbation.

Let us now recall the original definition of the cost per model group

W k =
∑
`∈Sk

w` for all k ∈ {1, . . . , K}, (5.39)

where w` denotes the cost for one evaluation of Z`. It is straightforward to derive results
for perturbations ξ1, . . . , ξL in w1, . . . , wL instead of W k. The perturbed problem is then

min
β

J̃(β) :=
K∑
k=1

[
(βk)TCkβk

∑
`∈Sk

(w` + ξ`)

]1/2

such that
K∑
k=1

P kβk = α.

We use the chain rule and (5.37) to compute the derivative of λW w.r.t. w`

∂w`λ
W(W ) = (∂W 1,...,WLλW(W ))(∂w`W ) =

λW(W )

Wbudget
(m1, . . . ,mL)

1S1(`)
...

1SL(`)


=
λW(W )

Wbudget

∑
{k | `∈Sk}

mk,

(5.40)
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where 1Sj(`) is equal to one if ` ∈ Sj and zero otherwise. Thus we are now proportional
to the total number of evaluations of Z` instead of the number of samples of a model
group. No other results change. The Taylor expansion is comparable to (5.38) and reads

J̃(β̃) = J(β) +
J(β)

Wbudget

L∑
`=1

 ∑
{k | `∈Sk}

mk

ξ` + o(‖ξ‖).

The linear change in the variance of two estimators is thus P–almost surely the same if
the number of evaluations of each model Z` is the same since we otherwise have differently
scaled i.i.d. combinations of the random noise similar to the proof of Theorem 5.24. We
thus obtain the following corollary, which can be proven similarly to Theorem 5.24.

Corollary 5.25 (Almost sure uniqueness under perturbations of w`). Let C be positive
definite, ε > 0 sufficiently small and ξ1, . . . , ξL ∼ U(−ε, ε) i.i.d. uniformly distributed.
Furthermore, assume that the unperturbed problem (5.22) has minimizers β[1], . . . , β[N ]

from Theorem 5.20 with respective number of samples m[1], . . . ,m[N ]. Furthermore, as-
sume that the total number of evaluations for at least one model is pairwise different,
that is for all i, j ∈ {1, . . . , N}∑

{k | `∈Sk}

m
[i]
k 6=

∑
{k | `∈Sk}

m
[j]
k for at least one ` ∈ {1, . . . , L}. (5.41)

Then problem (5.40) has P–almost surely a unique solution. �

In the setting of Example 5.17 this corollary ensures that we have almost sure uniqueness
under perturbations of w`, since the MC estimator does not use the coarse model Z1

whereas the MFMC estimator does. This also means that if we restrict the optimization
to a set of model groups U such that the linear system of equations∑

{k∈U | `∈Sk}

mk = 0 for all ` ∈ {1, . . . , L}

has the unique solution mk = 0 for all k ∈ U , then (5.41) is always satisfied. As an
example, assume that we optimize only over the model groups of the MLMC estimator

S1 = {1}, S2 = {1, 2}, S3 = {2, 3}, . . . , SL = {L− 1, L}.

Now let m[1] be a minimizer and we look for a second minimizer m[2] such that (5.41) is
not satisfied, that is∑

{k∈{1,...,L} | `∈Sk}

m
[2]
k =

∑
{k∈{1,...,L} | `∈Sk}

m
[1]
k for all ` ∈ {1, . . . , L}.

For L this condition is
m

[2]
L = m

[1]
L

and for L− 1 we have
m

[2]
L +m

[2]
L−1 = m

[1]
L +m

[1]
L−1

and thus also m
[2]
L−1 = m

[1]
L−1. A further recursion then shows m[2] = m[1] and thus (5.41)

is always satisfied and we P–almost surely obtain a unique solution.
As of the writing of the thesis it is not clear whether Corollary 5.25 can be improved
by removing the assumption (5.41) on the optimizer β[1], . . . , β[N ] of the unperturbed
problem. However, it is clear from Example 5.17 that we require at least three models,
that is L ≥ 3 which complicates finding a counterexample.
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Chapter 6

Asymptotics of the SAOB

In this chapter we analyse the asymptotic behaviour of the SAOB for the convergence
of the models to the true QoI ZL → Z for L → +∞. The goal is to construct an
estimator that is cheap in the sense that the cost does not increase too fast. Ideally, we
want to recover the optimal MSE of ε2 with costs of order ε−2 that is achieved with the
standard MC estimator by sampling directly from Z, which is often not possible. We
mainly analyse hierarchical models that exhibit high smoothness properties, which we
exploit using Richardson Extrapolation (RE). This chapter is divided into the following
sections:

� Section 6.1 is concerned with the asymptotic analysis of general linear unbiased
estimators. Here we obtain a specific complexity theorem for the estimator as well
as an upper bound on the number of samples. This result is a generalization of the
complexity theorem of the MC and MLMC estimator, however, this result relies on
the knowledge of the coefficients βk and is thus not suitable to study the SAOB. We
then proceed to derive that the SAOB is the linear unbiased estimator that has the
smallest asymptotic cost. Thus the goal of the following sections is to find a good
estimator to compare to.

� We introduce the RE estimators in Section 6.2, which first consists of a general
repetition of RE, which we then apply for estimation. The RE estimators are
constructed as a generalization of the MLMC estimator and improve the asymptotic
complexity compared to the latter. In particular, we decouple the bias vector α
from the variance reduction with the help of a weighted RE estimator. We finish
this section with the remark that if the QoI has an analytic error expansion, then
the cost for the estimation can always be reduced to the optimal ε−2.

� We derive asymptotic lower bounds on the complexity of any linear unbiased esti-
mator in Section 6.3. Clearly, if the asymptotic cost is upper bounded by ε−2, then
this bound is sharp. For the case of dominating costs on the fine level we show that
an asymptotic expression for the lower variance bound Vmin can be used to derive a
lower bound on the complexity. In particular, this allows us to derive a lower bound
on the complexity for every linear unbiased estimator.

� In Section 6.4 we study some interesting academic numerical examples. We verify
that the coefficients of the SAOB converge to the coefficients of the RE estimator in
a particular setting. We then proceed to show that this is not always the case. In
particular, the SAOB may be a strict improvement over the RE estimator in terms
of variance reduction.

� In Section 6.5 we compare the estimators presented in this thesis for a smooth PDE
example and numerically verify some results of this chapter. In particular, we show
that under certain circumstances the SAOB and RE estimators improve over the
MC estimator. We further give a possible explanation why the CV and MFMC
estimators do not improve asymptotically over the MLMC estimator, even though
they couple more models.
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This chapter contains results from [126] and [125].

6.1 Asymptotic analysis for linear unbiased estimators

General linear unbiased estimators. We start by analysing the asymptotic com-
plexity of a general linear unbiased estimator µ̂α. The goal is to obtain a small MSE of
order ε2 > 0, which is the squared bias plus the variance

MSE[µ̂α] = Bias[µ̂α]2 + V[µ̂α] = (αTµ− E[Z])2 + V[µ̂α].

We achieve the desired accuracy if both the bias and the variance is sufficiently small

(αTµ− E[Z])2 ≤ ε2/2, (6.1)

V[µ̂α] ≤ ε2/2. (6.2)

We satisfy (6.1) by choosing α = eL and the level L large enough. The variance constraint
(6.2) is achieved if we compute the cost of the linear unbiased estimator from (5.16) with
J(m) = ε2/2

W[µ̂α] = 2ε−2

(
K∑
k=1

(
(βk)TCkβkW k

)1/2

)2

. (6.3)

Here the coefficients βk have to satisfy the bias constraint

α =
K∑
k=1

P kβk.

Importantly, the finest level L and thus the bias α and the variance depends on the
MSE ε2. Therefore, we view the estimator µ̂α as a sequence of estimators (µ̂αL)∞L=1 with
different biases (αL)∞L=1. Then clearly, also the number of model groups K, the model
groups Sk and the coefficients βk depend on L. It is sensible to require that αL ∈ RL and
that we only use the first L models, thus µ ∈ RL. We often do not mention the extra
dependence on L explicitly to keep the notation simple.

The cost in (6.3) does not include the cost for ceiling the number of samples which effects
the asymptotic complexity compared to e.g. MLMC in Theorem 3.49. It is therefore
desirable to decrease the rounding costs as much as possible and we achieve a useful
bound if we only use L model groups S1, . . . , SL such that mL+1 = · · · = mK = 0.
This requirement can always be achieved according to Theorem 5.16 by changing the
coefficients without increasing the variance of the estimator. Then, the ceiling costs affect
at most L model groups, which yields a tractable bound. We combine this with upper
bounds for the expressions (βk)TCkβkW k in (6.3) to obtain an explicit expression for the
asymptotic cost for a wide range of linear unbiased estimators.

Theorem 6.1 (Asymptotic complexity for linear unbiased estimators). Assume that the
biases satisfy

|(αL)Tµ− E[Z]| ≤ c2−γBiasL for all L ∈ N. (6.4)
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Moreover, assume that for all L the coefficients βk of µ̂αL satisfy

βk = 0 for all k ∈ {L+ 1, . . . , K}, (6.5)

αL =
L∑
k=1

P kβk, (6.6)

(βk)TCkβk ≤ c2−γVark for all k ∈ {1, . . . , L}, (6.7)

W k ≤ c2γCostk for all k ∈ {1, . . . , L}. (6.8)

Then for all ε ∈ (0, 1/e] there exists L ∈ N such that MSE[µ̂αL ] ≤ ε2 with costs

W[µ̂αL ] ≤ cε−γCost/γBias + c


ε−2, if γVar > γCost,

ε−2 log(ε)2, if γVar = γCost,

ε
−2− γCost−γVar

γBias , if γVar < γCost.

(6.9)

Proof. The proof is a straightforward generalization of the proof of Theorem 3.31 and
[31, Theorem 1], where we replace V[Z` − Z`−1] for the MLMC estimator with the more
general (βk)TCkβk. For completeness, we repeat the main arguments. We choose L in
(6.4) such that (6.1) is satisfied

L ≥ − log2(ε)

γBias

+ c. (6.10)

We apply Theorem 5.13 and compute the cost according to (6.3) to obtain (6.2) such that
the estimator has a MSE of ε2. We use the variance reduction (6.7) and geometric cost
increase (6.8) for the L active model groups due to (6.5)

W[µ̂α] = 2ε−2

(
L∑
k=1

(
(βk)TCkβkW k

)1/2

)2

≤ cε−2

(
L∑
k=1

2
k
2

(γCost−γVar)

)2

.

For brevity we now only verify the case γVar > γCost. Here the geometric sum with negative
exponent is bounded independently of L and thus of ε. Hence the cost excluding rounding
is

W[µ̂α] ≤ cε−2.

Finally, the cost for ceiling is upper bounded by a single evaluation of the model group
WL since we assumed a geometrical cost increase (6.8). This adds costs of order

W[ZL] ≤ WL ≤ c2γCostL ≤ cε−γCost/γBias

and shows (6.9) for γVar > γCost. The other cases γVar = γCost and γVar < γCost follow
similarly.

We derive an asymptotic upper bound for the number of samples on every level. This
result is interesting for practical considerations, since we often have to compute the sample
covariance matrix. If the number of high fidelity models tends to infinity and the cost
increase is geometric, then this allows us to use more and more pilot samples for the
sample covariance matrix without effecting the total cost of the SAOB too much.
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Corollary 6.2 (Asymptotic upper bound on the number of samples).
Let the assumptions of Theorem 6.1 be true and additionally assume that the model
group cost is lower bounded

W k ≥ c2γCostk for all k ∈ {1, . . . , L}. (6.11)

Then for all ε ∈ (0, 1/e] the number of samples on level k ∈ {1, . . . , L} to achieve
MSE[µ̂αL ] ≤ ε2 is upper bounded by

mk ≤ 1 + cε
−2+

γVar+γCost
2γBias

k
L


1, if γVar > γCost,

| log(ε)|, if γVar = γCost,

ε
− γCost−γVar

2γBias , if γVar < γCost.

(6.12)

Proof. We use (5.15), (5.16) and parts of the proof of Theorem 6.1 to conclude

mk = ε−2

[
K∑
j=1

(
(βj)TCjβjW j

)1/2

](
(βk)TCkβk

W k

)1/2

≤ ε−1
√
φ(ε)

(
(βk)TCkβk

W k

)1/2

,

where φ(ε) is the asymptotic cost in (6.9) with the costs for rounding excluded

φ(ε) := ε−2


1, if γVar > γCost,

log(ε)2, if γVar = γCost,

ε
− γCost−γVar

γBias , if γVar < γCost.

We use (6.7), (6.11) and insert the expression for L in (6.10) to obtain(
(βk)TCkβk

W k

)1/2

≤ c2−
γVar+γCost

2
k = c2−

γVar+γCost
2

L k
L ≤ cε

γVar+γCost
2γBias

k
L .

We combine the results of this proof and ceil the number of samples to conclude (6.12).

Upper bounds for SAOB. It is straightforward to verify that for αL = eL and coef-
ficients βk of the MC or MLMC estimator from Section 4.4 we obtain the corresponding
asymptotic results Theorem 3.11 and Theorem 3.49. It is however not straightforward to
analyse the SAOB, since the coefficients βk are chosen implicitly by solving (5.22), where
even uniqueness of the coefficients is not guaranteed. Therefore, Theorem 6.1 cannot be
used to analyse the SAOB. For the same reason, this theorem cannot be used to analyse
the ACV and MFMC estimators. However, since the SAOB achieves the smallest variance
its costs are not larger than any of the other estimators.

Theorem 6.3 (Asymptotic optimality of SAOB). Let µ̂α be a linear unbiased estimator
that uses mk i.i.d. samples of Sk for all k ∈ {1, . . . , K}, where the samples are also
independent across model groups. Furthermore, assume that

MSE[µ̂α] ≤ ε2 with W[µ̂α] ≤ φ(ε).
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Then the SAOB achieves the same accuracy with the smaller or equal costs

MSE[µ̂SAOB
α ] ≤ ε2 with W

[
µ̂SAOB
α

]
≤ φ(ε). (6.13)

In particular, if every estimator of the sequence (µ̂αL)∞L=1 satisfies the assumptions of this
theorem, then the asymptotic cost of the sequence (µ̂SAOB

αL )∞L=1 is never larger compared
to the cost of (µ̂αL)∞L=1.

Proof. We use a straightforward bias-variance decomposition. The SAOB µ̂SAOB
α has by

definition the same bias as µ̂α, thus the only difference is their variances. Since the SAOB
has equal or smaller variance by Theorem 5.2, the statement (6.13) holds.

It is straightforward to generalize the previous theorem to other kinds of estimators where
some model groups Sk are not used or only a fixed amount of time. We write this down
for the special case of the SAOB κ.

Corollary 6.4 (Asymptotic optimality of SAOB κ). Let µ̂α be a linear unbiased estimator
that uses mk i.i.d. samples of Sk for all k ∈ {1, . . . , K} with mk = 0 if |Sk| > κ, where
the samples are also independent across model groups. Furthermore, assume that

MSE[µ̂α] ≤ ε2 with W[µ̂α] ≤ φ(ε).

Then the SAOB κ achieves the same accuracy with the smaller or equal costs

MSE[µ̂SAOBκ
α ] ≤ ε2 with W

[
µ̂SAOBκ
α

]
≤ φ(ε).

In particular, if every estimator of the sequence (µ̂αL)∞L=1 satisfies the assumptions of this
theorem, then the asymptotic cost of the sequence (µ̂SAOBκ

αL )∞L=1 is never worse compared
to (µ̂αL)∞L=1. �

We informally summarize Theorem 6.3 and Corollary 6.4.

� The SAOB is asymptotically optimal in the class of linear unbiased estimators.

� The SAOB κ is asymptotically optimal in the class of linear unbiased estimators
that couple at most κ models.

Here the phrase “in the class of linear unbiased estimators” means that we have indepen-
dent evaluations for samples in a model group and across different model groups. This
shows that the SAOBs have decreasing asymptotic cost with increasing coupling κ.

Corollary 6.5 (Cost ordering for SAOB and SAOB κ). Assume that the SAOB κ achieves

MSE[µ̂SAOBκ
α ] ≤ ε2 with W

[
µ̂SAOBκ
α

]
≤ φ(ε).

Then for all κ′ ≥ κ

MSE[µ̂SAOBκ′

α ] ≤ ε2 with W
[
µ̂SAOBκ′

α

]
≤ φ(ε). (6.14)

In particular, we can replace µ̂SAOBκ′
α with µ̂SAOB

α in (6.14). �
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We now use Theorem 6.3 for upper complexity bounds of the SAOB: Find a sequence of
comparison estimators (µ̂αL)∞L=1 where the asymptotic complexity φ(ε) is explicitly known
and use this as bound for SAOB. Similarly, for the SAOB κ we apply Corollary 6.4, where
we additionally have to ensure that the comparison estimator couples at most κ models.
Furthermore, this allows us to choose the biases (αL)∞L=1 from the comparison estimator.
This is important, since up until now we assumed that the bias for the SAOB is given a
priori.
The question is now of course, how to construct the comparison estimators such that the
cost bound φ(ε) is as small as possible. Observe that the coefficients of the SAOB solve
the cost minimization problem (5.22)

min
β
J(β) :=

K∑
k=1

(
(βk)TCkβkW k

)1/2

such that αL =
K∑
k=1

P kβk.

(6.15)

Therefore we use the key Theorem 6.3 and the following strategy to obtain a sequence of
comparison estimators and thus an upper bound on the complexity of the SAOB:

� Suitably choose the sequence of biases (αL)∞L=1 such that the bias convergence rate
γBias in (6.4) is large.

� Choose explicitly known coefficients βk such that the variance (βk)TCkβk in (6.7)
is asymptotically small and γVar is explicitly known. Additionally, ensure that the
bias constraint (6.6) as well as the geometric cost increase (6.8) with known γCost is
satisfied. Theorem 5.16 ensures that (6.5) is satisfied. Then also J in (6.15) is small,
which is the cost of the estimator µ̂αL with coefficients βk and optimal (fractional)
sample allocation.

� We use Theorem 6.1 to obtain the explicit asymptotic bound φ(ε) in (6.9) for the
sequence of estimators (µ̂αL)∞L=1.

� Apply Theorem 6.3 to show that the SAOB has costs smaller or equal to (µ̂αL)∞L=1.
Hence the explicit bound φ(ε) also holds for the SAOB.

The above approach can be generalized for the SAOB κ by using model groups Sk with
coupling κ and thus βk = 0 if |Sk| > κ. We now apply the outlined procedure for both
the MC and the MLMC estimators.

Example 6.6 (MC estimator). We define αL := eL and β1 := 1 with S1 := {L} and zero
for all other coefficients. Then we assume that (6.4) is satisfied for some rate γBias > 0 and
that (6.8) is satisfied for some γCost > 0. Finally, if the lower bound V[ZL] ≥ c > 0 holds
independently of L, then the only sensible choice is to use γVar = 0 in (6.7). Therefore
γVar < γCost in (6.9) holds and the cost to achieve a MSE of ε2 is

W
[
µ̂SAOB
L

]
≤W

[
µ̂SAOBκ
L

]
≤W

[
µ̂MC
L

]
≤ cε

−2− γCost−γVar
γBias = cε−2−γCost/γBias .

The result for the MC estimator coincides with the well–known asymptotic complexity
Theorem 3.11. It is straightforward to extend this result to the MC estimator that uses
a different bias by redefining the QoI

µ̂MC
αL :=

1

m1

m1∑
i=1

Z̃
i

L =
1

m1

m1∑
i=1

(
L∑
`=1

αL` Z
i
`

)
,
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where the bias is now (αL)Tµ with a potentially improved rate γBias. �

Corollary 6.7 (MC complexity bound for SAOB and SAOB κ). Assume that the rates
γBias and γCost are positive and that for all L ∈ N

|(αL)Tµ− E[Z]| ≤ c2−γBiasL,

wL ≤ c2γCostL.

Then for all ε ∈ (0, 1/e] the SAOB and SAOB κ with κ ∈ N achieve a MSE of ε2 with
costs bounded by

W
[
µ̂SAOB
αL

]
≤W

[
µ̂SAOBκ
αL

]
≤ cε−2−γCost/γBias . �

The previous corollary gives a weak and often non–tight bound for the cost of the SAOB.
However, we have no assumption on the variance reduction rate γVar. Under additional
assumptions the MLMC estimator achieves a better asymptotic complexity which implies
a better complexity bound for the SAOB.

Example 6.8 (MLMC estimator). Similarly to the MC estimator we choose αL := eL
and the standard setting for MLMC

S1 := {1}, β1 := 1,

S2 := {1, 2}, β2 := (−1, 1)T ,

...
...

SL := {L− 1, L}, βL := (−1, 1)T .

This is a linear unbiased estimator for µL. Crucially, the only difference compared to the
MC estimator is that

(β`)TC`β` = V[Z` − Z`−1] ≤ c2−γVar`

has often a variance reduction rate γVar > 0. Therefore, we conclude (6.9) for the MLMC
estimator

W
[
µ̂SAOB
L

]
≤W

[
µ̂SAOBκ
L

]
≤W

[
µ̂MLMC
L

]
≤ cε−γCost/γBias +c


ε−2, if γVar > γCost,

ε−2 log(ε)2, if γVar = γCost,

ε
−2− γCost−γVar

γBias , if γVar < γCost.

We require that κ ≥ 2 for SAOB κ since the MLMC estimator couples two models. The
bound can also directly be obtained from Theorem 3.49. �

Corollary 6.9 (MLMC complexity bound for SAOB and SAOB κ). Let the rates γBias,
γVar and γCost be non–negative and such that for all L ∈ N

|µL − E[Z]| ≤ c2−γBiasL,

V[ZL − ZL−1] ≤ c2−γVarL,

wL ≤ c2γCostL.

Then for all ε ∈ (0, 1/e] the SAOB and SAOB κ with κ ∈ {2, 3, . . . } achieve a MSE of ε2

with costs bounded by

W
[
µ̂SAOB
L

]
≤W

[
µ̂SAOBκ
L

]
≤ cε−γCost/γBias + c


ε−2, if γVar > γCost,

ε−2 log(ε)2, if γVar = γCost,

ε
−2− γCost−γVar

γBias , if γVar < γCost.

�



146 Chapter 6 Asymptotics of the SAOB

We now improve the two previous examples by increasing the bias and the variance
reduction rate using RE.

6.2 Richardson Extrapolation Estimator

Standard RE. Indeed, under stronger assumptions on the models we are able to use
RE named after Richardson [117]. RE is a well–known technique to improve the accuracy
of numerical approximations [22]. It is used for quadrature [120], for ordinary differential
equations [23] and for stochastic ordinary differential equations [104, 133]. The technique
was also applied to PDEs in [5, 11, 113]. This technique was already used in the original
MLMC paper [56] to improve the bias. The authors of [89, 97] also considered RE to
obtain an even smaller bias. Therefore, the results derived in this section concerning the
mean and the bias rate γBias are known or only slight variations of these results. However,
we expand RE to also achieve an improved variance reduction rate γVar and we construct a
weighted RE estimators such that we are able to choose both γBias and γVar independently.
We achieve this by separately applying RE for the mean and pathwise for the variance.

We now write down the two basic model assumptions. The first assumption concerns the
mean, which we will later use improve the bias. The second assumption concerns the
realizations and will be used to improve the variance reduction rate.

Assumption 6.10 (Mean expansion). There exists qmean ∈ N and 0 = γ1 < · · · < γqmean

such that for all ` ∈ N

E[Z`] = E[Z] +

qmean−1∑
j=2

cj2
−γj` +O(2−γqmean`), (6.16)

where O(2−γqmean`) is meant in the sense of `→ +∞. �

Assumption 6.11 (Pathwise expansion). There exists qpath ∈ N and 0 = γ1 < · · · < γqpath
such that for all ` ∈ N and P–almost surely

Z`(ω) = Z(ω) +

qpath−1∑
j=2

cj(ω)2−γj` +O(2−γqpath`), (6.17)

where O(2−γqpath`) is meant in the L2-sense for `→ +∞

E

(Z` − Z − qpath−1∑
j=2

cj2
−γj`

)2
 ≤ c2−2γqpath` for all ` ∈ N.

The random variables c2, . . . , cqpath−1 as well as the random remainder have finite second
moments. �

It is obvious that Assumption 6.11 implies Assumption 6.10 with qmean ≥ qpath by taking
the mean and using that c2, . . . , cqpath−1 and the remainder have finite second moments.
However, the converse is not true.
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Example 6.12 (Assumption 6.10 6⇒ Assumption 6.11). Let Z` satisfy (6.17) with a
remainder that is not of the form 2−γ`

Z`(ω) := Z(ω) +

qpath−1∑
j=2

cj(ω)2−γj` + cqpath(ω)
2−γqpath−1`

log(`)
.

For fixed δ > 0 observe that

2−γqpath−1`

log(`)
> c2−(γqpath−1+δ)` for ` sufficiently large

and thus Assumption 6.11 holds with at most γqpath−1. On the other hand, if E
[
cqpath

]
= 0,

then Assumption 6.10 holds with a zero remainder in (6.16). Thus any qmean ≥ qpath is a
valid choice and in particular strict inequality is possible. �

The intuitive explanation of the previous example is that a non–smooth contribution is
averaged out to a smooth result. In this case, the mean E acts as smoothing of the
expansion, which allows us to use more terms. RE linearly combines models to achieve a
higher order of approximation. We define the RE vectors for q ≤ L and k ∈ {1, . . . , L}

vk,q :=


0, if k = 0,

e1, if k = 1,

(2γkDvk−1,q − vk−1,q)/(2γk − 1), if 1 < k < q,

Dvk−1,q if k ≥ q.

∈ RL. (6.18)

Here the matrix D shifts a vector in the following sense

D :=

(
0 0

IL−1,L−1 0

)
∈ RL×L.

We remark that vk,q` = 0 if ` > k and thus we view vk,q ∈ RL for some L sufficiently large.
The specific linear combination (6.18) removes the terms of order 2γj from (6.16).

Lemma 6.13 (Mean RE linear combination). Let Assumption 6.10 be true. Then the
linear combination

∑k
`=1 v

k,q
` Z`+`0 with k ∈ N and starting level `0 ∈ N0 satisfies

E

[
k∑
`=1

vk,q` Z`+`0

]
= E[Z] +

qmean−1∑
j=k+1

ckj2
−γj`0 +O(2−γqmean`0), (6.19)

where ckj are suitable constants. Importantly, if k+1 > qmean−1 then the sum disappears
and only E[Z] +O(2−γqmean`0) remains.

Proof. The proof is a well–known result for RE. The basic idea is to use the (6.18) such
that the terms of lower order cancel. We use induction over k to prove the desired
statement. For k = 1 we have v1,q = e1 and thus (6.19) trivially holds from (6.16) of
Assumption 6.10. Now let 1 < k < q, use the properties of the shift matrix and vk−1,q

k = 0
to conclude

E

[
k∑
`=1

vk,q` Z`+`0

]
=

k∑
`=1

2γk(Dvk−1,q)` − vk−1,q
`

2γk − 1
E[Z`+`0 ]

=
2γk

2γk − 1

k−1∑
`=1

vk−1,q
` E[Z`+`0+1]− 1

2γk − 1

k−1∑
`=1

vk−1,q
` E[Z`+`0 ].
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We use the induction hypothesis with k − 1, `0 + 1 for the first and `0 for the second
summand

E

[
k∑
`=1

vk,q` Z`+`0

]
=

2γk

2γk − 1

(
E[Z] +

qmean−1∑
j=k

ck−1
j 2−γj(`0+1) +O(2−γqmean (`0+1))

)

− 1

2γk − 1

(
E[Z] +

qmean−1∑
j=k

ck−1
j 2−γj`0 +O(2−γqmean`0)

)

= E[Z] +

qmean−1∑
j=k

(
2γk

2γk − 1
ck−1
j 2−γj(`0+1) − 1

2γk − 1
ck−1
j 2−γj`0

)
+O(2−γqmean`0)

= E[Z] +

qmean−1∑
j=k

2γk2−γj − 1

2γk − 1
ck−1
j 2−γj`0 +O(2−γqmean`0).

We introduce the constants c0
j := cj and

ckj :=
2γk2−γj − 1

2γk − 1
ck−1
j .

Crucially, we have that ckk = 0 and thus the order 2−γk`0 disappears from the expansion
showing (6.19). Finally, for k ≥ q the RE vector is constructed from the shift matrix

E

[
k∑
`=1

vk,q` Z`+`0

]
= E

[
k∑
`=1

(Dvk−1,q)`Z`+`0

]
= E

[
k−1∑
`=1

vk−1,q
` Z`+`0+1

]
.

Hence, the result also follows from induction with k − 1 = q.

We now also state essentially the same result for the case of the pathwise expansion. The
proof is identical, except that instead of deterministic coefficients we have realizations of
random variables.

Lemma 6.14 (Pathwise RE linear combination). Let Assumption 6.11 be true. Then the
linear combination

∑k
`=1 v

k,q
` Z`+`0 with k ∈ N and starting level `0 ∈ N0 satisfies

k∑
`=1

vk,q` Z`+`0 = Z +

qpath−1∑
j=k+1

ckj2
−γj`0 +O(2−γqpath`0), (6.20)

where ckj are suitable random variables with finite second moment. The remainder also
has finite second moment. Importantly, if k + 1 > qpath − 1 then the sum disappears and
only Z +O(2−γqpath`0) remains.

Proof. The proof is identical to Lemma 6.13. We write down how the random variables
ckj are defined

ckj :=
2γk2−γj − 1

2γk − 1
ck−1
j ,

with the start of the recursion c0
j := cj. These random variables and the remainder

have finite second moments as linear combinations of random variables with finite second
moments.
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Before we continue we want to derive an explicit expression for vq−1,q, which can then be
used to derive all other RE vectors.

Lemma 6.15 (Explicit expressions for RE vectors). For all q ∈ {2, 3, 4, . . . } the RE
vector satisfies

vq−1,q =
1∏q−1

j=2(2γj − 1)



(−1)q

(−1)q−1
∑

2≤i1≤q−1 2γi1

(−1)q−2
∑

2≤i1<i2≤q−1 2γi1+γi2

...∑
2≤i1<i2<···<iq−3≤q−1 2γi1+γi2+···+γiq−3

−
∑

2≤i1<i2<···<iq−2≤q−1 2γi1+γi2+···+γiq−2∑
2≤i1<i2<···<iq−1≤q−1 2γi1+γi2+···+γiq−1


∈ Rq−1. (6.21)

Now we view vq−1,q ∈ RL with suitable zero extension. Then v`,q = v`,`+1 for all ` ∈
{1, . . . , q − 1} and v`,q = D`−q+1vq−1,q for ` ∈ {q, . . . , L}.

Proof. We use induction over q. For q = 2 we have v1,2 = e1 by its definition (6.18). For
q > 2 we again use the definition (6.18), vq−2,q

{1,...,q−2} = vq−2,q−1 and the induction hypothesis

vq−1,q =
1

2γq−1 − 1
(2γq−1Dvq−2,q − vq−2,q)

=
1

(2γq−1 − 1)
∏q−2

j=2(2γj − 1)



0
2γq−1(−1)q−1

2γq−1(−1)q−2
∑

2≤i1≤q−2 2γi1

2γq−1(−1)q−3
∑

2≤i1<i2≤q−2 2γi1+γi2

...
2γq−1

∑
2≤i1<i2<···<iq−4≤q−2 2γi1+γi2+···+γiq−4

−2γq−1
∑

2≤i1<i2<···<iq−3≤q−2 2γi1+γi2+···+γiq−3

2γq−1
∑

2≤i1<i2<···<iq−2≤q−2 2γi1+γi2+···+γiq−2



− 1

(2γq−1 − 1)
∏q−2

j=2(2γj − 1)



(−1)q−1

(−1)q−2
∑

2≤i1≤q−2 2γi1

(−1)q−3
∑

2≤i1<i2≤q−2 2γi1+γi2

...∑
2≤i1<i2<···<iq−3≤q−2 2γi1+γi2+···+γiq−4

−
∑

2≤i1<i2<···<iq−2≤q−2 2γi1+γi2+···+γiq−3∑
2≤i1<i2<···<iq−1≤q−2 2γi1+γi2+···+γiq−2

0


.

The denominator has the correct value and we further conclude that all entries of vq−1,q

have the correct sign. We now show that the absolute value of the vector also has the
correct value, i.e. for vq−1,q

4 we have to show∑
2≤i1<i2≤q−2

2γi1+γi2+γq−1 +
∑

2≤i1<i2<i3≤q−2

2γi1+γi2+γi3 =
∑

2≤i1<i2<i3≤q−1

2γi1+γi2+γi3 .

This is however, a combinatorial argument. All subsets of {2, . . . , q − 1} of size n can be
written as union of sets

{I ∪ {q − 1} | I ⊆ {2, . . . , q − 2}, |I| = n− 1} ∪ {I ⊆ {2, . . . , q − 2} | |I| = n}
= {I ⊆ {2, . . . , q − 1} | |I| = n}.
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The result (6.21) then follows. The remaining statement of this lemma is straightforward
to verify from definition (6.18).

Let us give some brief examples for the expression (6.21).

Example 6.16 (RE vectors). We use the recursion (6.18).

v1,2 = e1,

v2,3 =
1

2γ2 − 1

(
0 −1

2γ2 −0

)
=

1

2γ2 − 1

(
−1
2γ2

)
,

v3,4 =
1

(2γ2 − 1)(2γ3 − 1)

 0 −(−1)
2γ3(−1) −2γ2

2γ32γ2 −0

 =
1

(2γ2 − 1)(2γ3 − 1)

 1
−(2γ3 + 2γ2)

2γ3+γ2

,
v4,5 =

1

(2γ2 − 1)(2γ3 − 1)(2γ4 − 1)


0 −1(1)

2γ4 −(−(2γ3 + 2γ2))
2γ4(−(2γ3 + 2γ2)) −(2γ3+γ2)

2γ42γ3+γ2 −0



=
1

(2γ2 − 1)(2γ3 − 1)(2γ4 − 1)


−1

2γ4 + 2γ3 + 2γ2

−(2γ4+γ3 + 2γ4+γ2 + 2γ3+γ2)
2γ4+γ3+γ2

.
These expressions coincide with (6.21). �

RE estimator. We use the same idea underlying MLMC to obtain an estimator with
improved variance reduction. The difference of two consecutive RE linear combinations
improves the asymptotic rate.

Definition 6.17 (RE estimator). We define the RE estimator with coupling q as:

µ̂RE q
vL,q

:=
L∑
`=1

L∑
j=1

(v`,qj − v
`−1,q
j )

1

m`

m∑̀
i=1

Zi,`
j . (6.22)

�

At first glance it looks like µ̂RE q
vL,q

uses all models on every level, however this is not true
since some entries of the difference v`,q−v`−1,q are zero. More precisely, the RE estimator
with coupling q uses the following model groups

S` := {max{`− q + 1, 1},max{`− q + 2, 1}, . . . , `} for ` ∈ {1, . . . , L} (6.23)

and thus couples at most q models. It is straightforward to verify that µ̂RE q
vL,q

is actually
a linear unbiased estimator for vL,q since this estimator is constructed from a telescoping
sum similar to MLMC. Furthermore, we write down the coefficients of the RE estimator
in the form of this thesis

β`[j] = v`,qj − v
`−1,q
j for all j ∈ S`, ` ∈ {1, . . . , L}. (6.24)

For all other model groups the coefficient is equal to zero. We further remark that for
q = 2 the RE and the MLMC estimator coincide.
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Example 6.18 (RE 2 and MLMC are equal). First, both the RE 2 and the MLMC
estimator use the same model groups, which can be deduced by comparing (6.23) with
(4.38). We write down the bias and coefficients of the RE estimator

vL,2 = DvL−1,2 = · · · = DL−1e1 = eL,

v`,2 − v`−1,2 = e` − e`−1,

where we define e0 := 0. Therefore the coefficients as well as the bias of the RE 2 and the
MLMC estimator are equal. In particular, the linear combination of the former satisfies

L∑
j=1

(v`,qj − v
`−1,q
j )

1

m`

m∑̀
i=1

Zi,`
j =

1

m`

m∑̀
i=1

(Zi,`
` − Z

i,`
`−1)

showing that both estimators are in fact equal. �

We verify that the bias and coefficients of the RE estimator lead to an improved bias and
variance reduction rates if Assumption 6.10 or Assumption 6.11 are satisfied.

Lemma 6.19 (Properties of RE estimator coefficients). Let Assumption 6.10 be satisfied.
Then the RE vector has the bias rate γBias = γqmean

|(vL,qmean)Tµ− E[Z]| ≤ c2−γqmeanL. (6.25)

Now, let Assumption 6.11 be true. Then the difference of RE vectors has the variance
reduction rate γVar = 2γqpath

(v`,qpath − v`−1,qpath)TC(v`,qpath − v`−1,qpath) ≤ c2−2γqpath` for all ` ∈ {1, . . . , L}. (6.26)

Furthermore, if the cost increase per level is geometrically bounded w` ≤ c2γCost` for all
` ∈ {1, . . . , L}, then so are the costs of the model groups

W ` ≤ c2γCost` for all ` ∈ {1, . . . , L}. (6.27)

Proof. The proof of (6.25) follows from (6.19) in Lemma 6.13 by subtracting the mean
E[Z] from both sides

((vL,qmean)Tµ− E[Z]) =

qmean−1∑
j=L+1

cLj 2−γj`0 +O(2−γqmean`0).

For L ≥ qmean− 1 the sum is zero. Since the first non–zero entry of vL,qmean is the starting
level `0 = L− qmean + 1 we conclude

|(vL,qmean)Tµ− E[Z]| ≤ c2−γqmean (L−qmean+1) ≤ c2−γqmeanL.

The statement (6.25) also holds for L < qmean − 1 if the constant c is large enough. We
now prove (6.26). We use (6.20) in Lemma 6.14 to remove Z

(v`,qpath − v`−1,qpath)TC(v`,qpath − v`−1,qpath)

= V

[∑̀
j=1

v
`,qpath
j Zj+`0 −

`−1∑
j=1

v
`−1,qpath
j Zj+`0

]

= V

[
qpath−1∑
j=`+1

c`j2
−γj`0 −

qpath−1∑
j=`

c`−1
j 2−γj`0 +O(2−γqpath`0)

]
.
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For ` > qpath − 1 the two sums disappear and using `0 = `− qpath + 1 then shows (6.26).
Once again, for ` ≤ qpath − 1 the constant has to be chosen sufficiently large. Finally,
verifying (6.27) is straightforward due the geometric cost increase and the model groups
defined in (6.23).

We are now in the position to write down the complexity of the RE estimator.

Theorem 6.20 (Complexity of RE estimator). Let both Assumption 6.10 and Assump-
tion 6.11 be true with q = qmean = qpath. Furthermore, assume a geometric cost increase
of the models

w` ≤ c2γCost` for all ` ∈ {1, . . . , L}.

Then for all ε ∈ (0, 1/e] there exists L and m1, . . . ,mL such that the RE estimator
achieves MSE[µ̂RE q

vL,q
] ≤ ε2 with costs bounded by

W
[
µ̂RE q
vL,q

]
≤ cε−γCost/γq + c


ε−2, if 2γq > γCost,

ε−2 log(ε)2, if 2γq = γCost,

ε
−2− γCost−2γq

γq , if 2γq < γCost.

(6.28)

Proof. We have to verify the assumptions of Theorem 6.1. These however, follow either
from the definition of the RE estimator in case of (6.5) and (6.6), or from Lemma 6.19 in
case of (6.4), (6.7) and (6.8). The result (6.28) is then (6.9).

For completeness we write down the corresponding upper cost bound for the SAOB.

Corollary 6.21 (RE complexity bound for the SAOB and SAOB κ).
Let Assumption 6.10 and Assumption 6.11 be true with q = qmean = qpath. Then for all
ε ∈ (0, 1/e] the SAOB and SAOB κ with κ ≥ q achieve a MSE of ε2 with the cost bound
in (6.28).

Weighted RE estimator. The bias and variance reduction capabilities of the RE
estimator are coupled together in the sense that µ̂RE q

vL,q
typically has equal rates qmean =

qpath. This is reasonable, however, we have already seen in Example 6.12 that necessarily
qmean ≥ qpath possibly with strict inequality. We combine this with γBias = γqmean and
γVar = 2γqpath from Lemma 6.19 to obtain

2γBias ≥ γVar

with possibly strict inequality. Hence it is beneficial to apply RE more often for the
mean than pathwise. Furthermore, we are interested in analysing the complexity of the
µ̂SAOB
L and µ̂SAOB q

L , which have a small bias eL = vL,2 but may have a large variance
reduction rate comparable to µ̂RE q

vL,q
for q > 2. We thus want to decouple the mean RE

from the pathwise RE. To accommodate this change, we first observe that the difference
of consecutive RE vectors form a basis of RL

span(v1,qpath − v0,qpath , . . . , vL,qpath − vL−1,qpath) = RL.

This follows from (6.18) observing that these vectors are linearly independent since

v
`,qpath
` 6= 0 for all ` ∈ {1, . . . , L},

v
`,qpath
j = 0 for all j ∈ {`+ 1, . . . , L}, ` ∈ {1, . . . , L}.
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Hence, there exists weights a := (a1, . . . , aL)T ∈ RL such that for arbitrary α ∈ RL

α =
L∑
`=1

a`(v
`,qpath − v`−1,qpath). (6.29)

This allows us to define an RE estimator with arbitrary bias α.

Definition 6.22 (Weighted RE estimator). For α ∈ RL we define the weighted RE esti-
mator as

µ̂RE q
α :=

L∑
`=1

a`

L∑
j=1

(v`,qj − v
`−1,q
j )

1

m`

m∑̀
i=1

Zi,`
j , (6.30)

where a1, . . . , aL satisfy (6.29) with q = qpath. �

We verify that µ̂RE q
α is an unbiased estimator for αTµ using the definition of a in (6.29)

E
[
µ̂RE q
α

]
=

L∑
`=1

a`

L∑
j=1

(v`,qj − v
`−1,q
j )µj =

L∑
`=1

a`(v
`,q − v`−1,q)Tµ = αTµ.

We verify that for α = v`,q the weighted RE estimator (6.30) is equal to the standard RE
estimator (6.22). We use the telescoping sum idea with a1 = · · · = aL = 1 and v0,q = 0 to
conclude (6.29)

v`,q =
L∑
`=1

(v`,q − v`−1,q) =
L∑
`=1

a`(v
`,q − v`−1,q).

The variance reduction properties of the weighted RE estimator compared to the standard
RE estimator only differ in the additional weights a1, . . . , aL. We verify that these are
bounded. In particular, we want to replace α with the RE vector vL,qmean in (6.29) to
potentially achieve a better bias rate.

Lemma 6.23 (Bounded weights). For α = vL,qmean the weights a1, . . . , aL satisfying (6.29)
are bounded

|a`| ≤ c‖vqmean−1,qmean‖ ≤ c for all ` ∈ {1, . . . , L}, (6.31)

where the constant c is independent of the finest level L. Now let Assumption 6.11 be
true. Then for all ` ∈ {1, . . . , L} the variance is bounded

(a`(v
`,qpath − v`−1,qpath))TC(a`(v

`,qpath − v`−1,qpath)) ≤ ca2
`2
−γqpath`. (6.32)

Proof. The expression (6.32) follows from Lemma 6.19. We now show (6.31). Computing
a in (6.29) means solving a linear system where the RE difference vectors

∆v` := v1,qpath − v0,qpath

are columns of a matrix(
∆v1| . . . |∆vL

)
a

=
(
∆v1| . . . |∆vqpath | D∆vqpath| D2∆vqpath | . . . |DL−qpath∆vqpath

)
a = vL,qmean .

Here we assume that L is sufficiently large. This matrix is upper triangular with non–
zero diagonal and since the lower right part is independent of L, the values a` for all
` ∈ {L− qmean + 1, . . . , L} are bounded independently of L

|a`| ≤ c‖vL,qmean‖ = c‖DL−qmean+1vqmean−1,qmean‖ = c‖vqmean−1,qmean‖.
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Now let ` ∈ {qpath + 1, . . . , L − qmean}. We have that vL,qmean

` = 0 and since the first
L− qpath entries of ∆v` = D`−qvq are zero due to the shift D, we obtain a` by a backward
substitution with zero right–hand side

∆v
qpath
qpatha` = −

qpath−1∑
j=1

∆v
qpath
qpath−ja`+j.

Therefore the following recursive relationship is valid a`
...

a`+qpath−1

 =

(
− 1

∆v
qpath
qpath

(∆v
qpath
(qpath−1,...,1))

T 0

Iqpath−1,qpath−1 0

) a`+1
...

a`+qpath

 = Q

 a`+1
...

a`+qpath

.
Here we use the notation that ∆v

qpath
(qpath−1,...,1) = (∆v

qpath
qpath−1, . . . ,∆v

qpath
1 )T and suitably

defined Q. We use this recursion to obtain an explicit term

a` = eT1Q
L−`−qpath+1

aL−qpath+1
...
aL

.
We now show that Q = UΣU−1 is diagonalizable with diagonal matrix Σ with eigenvalues
λ1, . . . , λL smaller or equal to one. Then ‖ΣL−`−qpath+1‖ ≤ 1 and thus

|a`| ≤ ‖e1‖‖QL−`−qpath+1‖

∥∥∥∥∥∥∥
aL−qvar+1

...
aL


∥∥∥∥∥∥∥ ≤ c‖UΣL−`−qpath+1U−1‖‖vqmean−1,qmean‖

≤ c‖vqmean−1,qmean‖‖U‖‖ΣL−`−qpath+1‖‖U−1‖ ≤ c‖vqmean−1,qmean‖.

(6.33)

Clearly 0 is an eigenvalue of Q. We verify that the remaining qpath− 1 distinct eigenpairs
of Q are

(λj, x
j) := (2−γj , (2−γj(qpath−n+1))

qpath
n=1 ) for all j ∈ {1, . . . , qpath − 1}.

We compute the application of Q

Qxj =

(
− 1

∆v
qpath
qpath

(∆v
qpath
(qpath−1,...,1))

T 0

Iqpath−1,qpath−1 0

)2−γjqpath
...

2−γj



=


− 1

∆v
qpath
qpath

(∆v
qpath
(qpath−1,...,1))

Txj(1,...,qpath−1)

2−γjqpath

2−γj(qpath−1)

...
2−γj2

.

Clearly, the equation Qxj = 2−γjxj is true if the first row satisfies

−(∆v
qpath
(qpath−1,...,1))

Txj(1,...,qpath−1) = ∆v
qpath
qpath2−γj2−γjqpath .
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We divide both sides by 2−2γj , rearrange the terms and thus we have to show that 2−γj is
a root of the polynomial

qpath∑
n=1

∆v
qpath
n 2−γj(n−1) = 0. (6.34)

We compute the RE difference ∆vqpath = Dvqpath−1,qpath − vqpath−1,qpath with the help of the
explicit form (6.21), where a calculation and rewriting as multiplication shows

qpath∑
n=1

(Dvqpath−1,qpath)n2−γj(n−1) =

qpath∑
n=2

v
qpath−1,qpath
n−1 2−γj(n−1)

=
1∏qpath−1

n=2 (2γn − 1)

qpath−1∏
n=2

(1− 2γn2−γj)

qpath∑
n=1

v
qpath−1,qpath
n 2−γj(n−1) = 2−γj

qpath−1∑
n=1

vqpath−1,qpathn2−γjn

=
2−γj∏qpath−1

n=2 (2γn − 1)

qpath−1∏
n=2

(1− 2γn2−γj).

The condition (6.34) is thus equivalent to

qpath−1∏
n=2

(1− 2γn2−γj) = 2−γj
qpath−1∏
n=2

(1− 2γn2−γj).

Equality now trivially holds for j = 2, . . . , qpath − 1 since then the j–th factor is equal to
zero. For j = 1 we have γ1 = 0 by definition and thus 2−γ1 = 1 showing equality. We
conclude (6.33) and summarize the result so far

|a`| ≤ c‖vqmean−1,qmean‖ for all ` ∈ {qpath + 1, . . . , L},

where the constant c is independent of L. Finally, the weights a1, . . . , aqpath depend linearly
on aqpath+1, . . . , a2qpath and the matrix describing this dependence is independent of L. We
conclude (6.31) and thus the lemma.

Let us formulate a corollary for the boundedness of the weights for arbitrary α ∈ RL.
This allows us to use an arbitrary bias vector, even if the bias vector is not an RE vector.

Corollary 6.24 (Bounded weights). For α ∈ RL and a1, . . . , aL satisfying (6.29) the
bound holds

|a`| ≤ c‖α‖`1 for all ` ∈ {1, . . . , L},

where the constant c is independent of L. In particular, if a sequence of bias vectors
(αL)∞L=1 is constructed from a down shift αL := DL−qαq for some αq and some fixed q,
i.e. the RE vector vL,q, then

|a`| ≤ c for all ` ∈ {1, . . . , L} and all L ∈ N.
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Proof. We express the bias in the basis of unit vectors, which are RE vectors

α =
L∑
j=1

bjej =
L∑
j=1

bjv
j,2. (6.35)

The idea of the proof is now a component–by–component application of Lemma 6.23.
Define weights aj that satisfy (6.29)

vj,2 =
L∑
`=1

aj`(v
`,qpath − v`−1,qpath) for all j ∈ {1, . . . , L}.

Setting aj` = 0 since vj,2` = 0 for ` > j shows

vj,2 =

j∑
`=1

aj`(v
`,qpath − v`−1,qpath) for all j ∈ {1, . . . , L}. (6.36)

This system has a solution according to (6.31) in Lemma 6.23 with bounded components

|aj`| ≤ c‖vj,2‖ = c‖ej‖ = c. (6.37)

We use (6.35) together with (6.36)

α =
L∑
j=1

bjv
j,2 =

L∑
j=1

bj

L∑
`=1

aj`(v
`,qpath − v`−1,qpath) =

L∑
`=1

(
L∑
j=1

bja
j
`

)
(v`,qpath − v`−1,qpath),

hence a comparison of coefficients shows that the weights satisfy a` =
∑L

j=1 bja
j
`. We

combine the bound (6.37) with (6.35) to conclude the corollary

|a`| =

∣∣∣∣∣
L∑
j=1

bja
j
`

∣∣∣∣∣ ≤
L∑
j=1

|bj||aj`| ≤ c
L∑
j=1

|bj| = c‖α‖`1 .

Lemma 6.23 allows us to write down the complexity of the weighted RE estimator.

Theorem 6.25 (Complexity of weighted RE estimator). Let Assumption 6.10 and As-
sumption 6.11 be true. Furthermore, assume a geometric cost increase of the models

w` ≤ c2γCost` for all ` ∈ {1, . . . , L}.

Then for all ε ∈ (0, 1/e] there exists L and m1, . . . ,mL such that MSE[µ̂
RE qpath
vL,qmean ] ≤ ε2 with

costs bounded by

W
[
µ̂

RE qpath
vL,qmean

]
≤ cε−γCost/γqmean + c


ε−2, if 2γqpath > γCost,

ε−2 log(ε)2, if 2γqpath = γCost,

ε
−2−

γCost−2γqpath
γqmean , if 2γqpath < γCost.

(6.38)

Proof. The proof is to combine Lemma 6.19 and Lemma 6.23 to verify Theorem 6.1.

We write down the corollary for the SAOBs.



Chapter 6 Asymptotics of the SAOB 157

Corollary 6.26 (Weighted RE complexity bound for SAOB and SAOB κ).
Let Assumption 6.10 and Assumption 6.11 be true. Then for all ε ∈ (0, 1/e] the estimators
µ̂SAOB
vL,qmean and µ̂SAOBκ

vL,qmean with κ ≥ qpath achieve a MSE of ε2 with the cost bound in (6.38).

Analytic complexity. Both Assumption 6.10 and Assumption 6.11 have a finite
index qmean or qpath respectively, where the series expansion ends with a remainder. It is
now straightforward to verify that a RE estimator with sufficiently high order achieves
optimal complexity. For simplicity, we only state the result with the stronger pathwise
assumption.

Theorem 6.27 (Analytic complexity of RE estimator). Let (γn)∞n=1 be a sequence with
0 = γ1 < γ2 < . . . and γn → +∞ for n→ +∞ such that P–almost surely

Z`(ω) = Z(ω) +
∞∑
j=2

cj(ω)2−γj`,

where c2, c3, . . . have finite second moments uniformly bounded by some constant c. Fur-
thermore, assume that the models satisfy the geometric cost bound

w` ≤ c2γCost` for all ` ∈ N.

Then for all ε ∈ (0, 1/e] there exists q, L and m1, . . . ,mL such that MSE[µ̂RE q
vL,q

] ≤ ε2 with
costs bounded by

W
[
µ̂RE q
vL,q

]
≤ cε−2.

Proof. We apply Theorem 6.20 with sufficiently large q. Since γn → +∞ we choose q
large enough such that both the rounding costs and the variance costs are smaller or equal
to ε−2. This is achieved if we ensure that

−γCost/γq ≥ −2,

2γq > γCost,

which is satisfied if the second condition is true 2γq > γCost.

The SAOB is then also asymptotically optimal with costs of order ε−2.

Corollary 6.28 (Analytic RE complexity bound for SAOB and SAOB κ). Let the as-
sumptions of Theorem 6.27 be true. Then for all ε ∈ (0, 1/e] there exist L, q such that
the estimators µ̂SAOB

vL,q and µ̂SAOBκ
vL,q with κ ≥ q achieve a MSE of ε2 with costs bounded by

cε−2.

6.3 Lower bounds on the complexity

The goal of this section is to derive lower bounds on the complexity of the SAOB. First
of all, if the complexity of the RE estimator has already the optimal costs of order ε−2

of any sampling based estimator, then this is clearly also a lower bound of SAOB. The
other interesting case is when the costs on the finest level dominate. Unsurprisingly, if
the costs on the fine grid dominates, then we may assume low fidelity samples are for free
without increasing the asymptotic complexity. The basic idea in this section is thus to
use the lower variance bound Vmin from Definition 3.19 to obtain a lower bound on the
complexity for the SAOB.
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Lemma 6.29 (Lower bound for costs). Let the bias αL 6= 0 and the covariance matrix C
be positive definite. Then the cost of every linear unbiased estimator to reach a variance
of ε2 is lower bounded by

W[µ̂α] ≥ cε−2α2
LW[ZL]Vmin. (6.39)

Proof. For fixed coefficients βk the cost to reach a variance of ε2 is (6.3)

W[µ̂α] = cε−2

(
K∑
k=1

(
(βk)TCkβkW k

)1/2

)2

.

This expression does not include ceiling the number of samples, which we neglect since we
look for a lower bound. We minimize the inner expression if we introduce more degrees
of freedom by replacing βk ∈ R|Sk| with βk ∈ RL, Ck ∈ R|Sk|×|Sk| with C ∈ RL×L and
setting w` = 0 for ` = 1, . . . , L − 1. We further assume now βkL = 0 if L 6∈ Sk and we
further relax the bias constraint to only be enforced on the finest level(

K∑
k=1

(
(βk)TCkβkW k

)1/2

)2

≥ wL

 ∑
{k |L∈Sk}

(
(βk)TCβk

)1/2

2

αL =
∑

{k |L∈Sk}

βkL.

We view this now as minimization problem, remark that every summand contains the
same value and appears equally in the equality constraint and hence we w.l.o.g. assume
(βk)TCβk 6= 0. We minimize over the convex inner expression to obtain the KKT condi-
tions for some Lagrange-multiplier λ ∈ R

Cβk

((βk)TCβk)1/2
= λeL for all k with L ∈ Sk,

αL =
∑

{k |L∈Sk}

βkL.

From the first condition we conclude

βk

((βk)TCβk)1/2
=

βj

((βj)TCβj)1/2
for all k, j with L ∈ Sk ∩ Sj.

We are now able to choose these βk = β 6= 0 independently of k such that (βk)TCβk =
βTCβ. The bias constraint can also be satisfied if

αL =
∑

{k |L∈Sk}

βkL = |{k |L ∈ Sk}|βL.

Therefore, we are allowed to choose β1, . . . , βL−1 freely and only βL is fixed. We use the
last equation to conclude ∑

{k |L∈Sk}

(
(βk)TCβk

)1/2

2

≥
(
|{k |L ∈ Sk}|

(
βTCβ

)1/2
)2

= |{k |L ∈ Sk}|2βTCβ

=

(
β̃
αL

)T
C

(
β̃
αL

)
= α2

L

(
β
1

)T
C

(
β
1

)
.
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Since we minimize over β Lemma 4.17 shows that the last expression is equal to the lower
variance bound scaled by α2

L and thus

W[µ̂α] ≥ cε−2wLα
2
LVmin.

It is often possible to derive asymptotic bounds for αL and W[ZL], e.g. using RE vectors to
achieve a certain bias rate and assuming a geometric cost increase due to the discretization
of Z. However, an asymptotic expression and lower bound for Vmin is not obvious. We
first derive an upper bound for Vmin.

Lemma 6.30 (Asymptotic upper bound for Vmin). Let Assumption 6.11 be true. Then

Vmin ≤ c2−2Lγqpath . (6.40)

Proof. We use the definition of Vmin as minimizer (4.30) and insert the (suboptimal)
difference of RE vectors, which we scale in the last component using

v
L,qpath
L − vL−1,qpath

L = v
L,qpath
L .

We then use (6.26) to asymptotically bound the variance

min
β∈RL−1

V

[
ZL +

L−1∑
`=1

β`Z`

]
≤ (vL,qpath − vL−1,qpath)TC(vL,qpath − vL−1,qpath)

(v
L,qpath
L )2

≤ c2−2Lγqpath .

We give an example where the rate (6.40) is actually sharp.

Example 6.31 (Expansion with independent noise for Vmin). Define the QoI as follows

Z`(ω) := Z(ω) +

qpath−1∑
j=2

cj(ω)2−γj` + ξ`(ω)2−γqpath`.

We assume that Z, c2, . . . , cqpath−1, ξ1, . . . , ξ` ∼ N(0, 1) are independent random variables
and hence Assumption 6.11 is satisfied. Then every linear combination of models satisfies

V

[
L∑
`=1

β`Z`

]
=

(
L∑
`=1

β`

)2

V[Z] +

qpath−1∑
j=2

(
L∑
`=1

β`2
−γj`

)2

V[cj] +
L∑
`=1

β2
` 2
−2γqpath`V[ξ`].

The first two summands are zero for the difference of RE coefficients that use RE suffi-
ciently often. We know βL = 1 and thus we lower bound the last term

V

[
L∑
`=1

β`Z`

]
≥ β2

L2−2Lγqpath = 2−2Lγqpath .

We conclude Vmin ≥ c2−2Lγqpath and the sharpness of (6.40). �

Now that we have shown the underlying statement for the variance we adapt this result
for the mean.
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Example 6.32 (Expansion with independent noise for bias). Define the QoI as follows

Z`(ω) := Z(ω) +

qpath−1∑
j=2

cj(ω)2−γj` + ξ`(ω)2−γqpath`.

We assume that Z, c2, . . . , cqpath−1, ξ1, . . . , ξ` ∼ N(c, 1) are independent random variables
such that each one has an unknown mean. We then take the mean to obtain

E[Z`] = E[Z] +

qpath−1∑
j=2

E[cj]2
−γj` + E[ξ`]2

−γqpath`,

which satisfies Assumption 6.10 with qmean = qpath. We linearly combine them to obtain

L∑
`=1

α`E[Z`]−
L∑
`=1

α`E[Z] =

qmean−1∑
j=2

E[cj]
L∑
`=1

α`2
−γj` +

L∑
`=1

α`E[ξ`]2
−γqmean`.

Under the assumption
∑L

`=1 α` = 1 we obtain a standard bias expression and using RE
coefficients ensures that the first sum disappears. We have

L∑
`=1

α`E[Z`]− E[Z] =
L∑
`=1

α`E[ξ`]2
−γqmean`.

This result holds even if we do not know mean values of E[cj]. We however, do not
know E[ξ`], which prevents us from removing the last sum. In the worst case, we may
have E[ξ`] = sign(α`), we use

∑L
`=1 α` = 1 and we simplify by assuming known means

E[cj] = 0 to obtain the lower bound∣∣∣∣∣
L∑
`=1

α`E[Z`]− E[Z]

∣∣∣∣∣ =

∣∣∣∣∣
L∑
`=1

|α`|2−γqmean`

∣∣∣∣∣ ≥ 2−γqmeanL

L∑
`=1

|α`| ≥ 2−Lγqmean .

This example shows that in general, the rate for the bias cannot be better than 2−Lγqmean .
�

We now state a main result concerning a lower bound of the asymptotic complexity. This
result relies on the crucial assumption that the bias rate is lower bounded in terms of
Assumption 6.10 and the lower variance bound Vmin in terms of Assumption 6.11. The
two previous examples showed that in general we cannot improve this result.

Theorem 6.33 (Lower complexity bound for SAOB). Let Assumption 6.10 and 6.11 be
true and C be positive definite. Furthermore, assume that the bias bound, the lower
variance bound and the lower cost bound

|(vL,qmean)Tµ− E[Z]| ≥ c2−Lγqmean for all L ∈ N, (6.41)

Vmin ≥ c2−2Lγqpath for all L ∈ N, (6.42)

wL ≥ c2LγCost for all L ∈ N. (6.43)

Then for all ε ∈ (0, 1/e] the cost to achieve MSE[µ̂SAOB
vL,qmean ] ≤ ε2 is lower bounded by

W
[
µ̂SAOB
vL,qmean

]
≥ cε−γCost/γqmean + c

{
ε−2, if 2γqpath ≥ γCost,

ε
−2−

γCost−2γqpath
γqmean , if 2γqpath < γCost.

(6.44)

This bound is sharp for 2γqpath > γCost and 2γqpath < γCost.
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Proof. The first term in the bound (6.44) is simply the cost for a single high fidelity
evaluation and thus cannot be lower bounded any further. This evaluation is required,
since vL,qmean

L 6= 0. For 2γqpath ≥ γCost the bound of ε−2 is trivial. For the case 2γqpath < γCost

the bias-variance decomposition shows

E
[
(µ̂SAOB

vL,qmean − E[Z])2
]

= ((vL,qmean)Tµ− E[Z])2 + V
[
µ̂SAOB
vL,qmean

]
.

To achieve a bias of order ε2 we have to choose L ≥ − log2(ε)/γqmean + c using (6.41).
Since we want a tight lower bound, we choose L = − log2(ε)/γqmean . We now combine this
with (6.39), the bound (6.42) and (6.43)

W[µ̂α] ≥ cε−2α2
LW[ZL]Vmin ≥ cε−22L(γCost−2γqpath ) = cε−2ε−(γCost−2γqpath )/γqmean .

This shows the claim (6.44). The sharpness of the bound follows from Corollary 6.26.

The previous theorem shows that there is a strict lower limit on the asymptotic complexity
of any linear unbiased estimator. In particular, the smoothness of Z1, Z2, . . . w.r.t. the
mean and pathwise can be used to offset the increased cost w.r.t. the level. However, this
only works up to a certain degree and thus the optimal asymptotic costs of cε−2 cannot
be achieved in general for linear unbiased estimators.

Remark 6.34 (Equal costs on every level). The previous theorem does not include the
case of a sharp bound for equal costs on every level 2γqpath = γCost, in which the proof
idea of Lemma 6.29 falls apart. We cannot reduce(

K∑
k=1

(
(βk)TCkβkW k

)1/2

)2

to a single model group and we also cannot pull out the costs for only the high fidelity
model. Intuitively, this is not possible since each non–zero term should asymptotically be
of the same size. We thus expect(

K∑
k=1

(
(βk)TCkβkW k

)1/2

)2

≥ c(L(βL)TCLβLWL)1/2)2 = cL2(βL)TCLβLWL, (6.45)

where SL is now the only model group that contains the high fidelity model. It is however,
not straightforward to verify this inequality. However, if (6.45) holds, then it is straight-
forward to provide a sharp bound for 2γqpath = γCost following the ideas outlined in this
section. The additional L2 compared to (6.39) adds the term log(ε)2. In any case, it is
straightforward to verify that under the assumption of Theorem 6.33 for 2γqpath = γCost

and using Corollary 6.26

cε−γCost/γqmean + cε−2 ≤W
[
µ̂SAOB
vL,qmean

]
≤ cε−γCost/γqmean + cε−2 log(ε)2.

Therefore, the bound (6.44) is tight up to logarithmic factors. �

Remark 6.35 (C positive definite in Theorem 6.33). Let us comment on the assumption
that C in Theorem 6.33 is positive definite, which is not necessary. If C has a zero
eigenvalue and corresponding eigenvector v with vL 6= 0 then

Vmin = min
β

(
β
1

)T
C

(
β
1

)
≤ 1

v2
L

vTCv = 0,



162 Chapter 6 Asymptotics of the SAOB

which contradicts (6.42). Therefore, C may only have zero eigenvalues with eigenvectors v
where vL = 0. This means that linear combinations of low fidelity models may be linearly
dependent (ignoring the mean). However, since we assumed w` = 0 for ` ∈ {1, . . . , L− 1}
we cannot use this linear dependence to further reduce the variance. Thus, we may always
remove enough models of Z1, . . . , ZL−1 such that C is positive definite without increasing
the variance. �

6.4 Numerical experiments with explicit expansions

Convergence of SAOB to RE. We demonstrate that for a specific example the SAOB
converges to the RE estimator. We define the QoI as

Z`(ω) := Z(ω) +
4∑
j=2

cj2
−(j−1)(`+`0) + 0.1ξ`2

−3(`+`0) (6.46)

and assume that (Z, c2, c3, c4)T ∼ N(0, Q) with covariance matrix Qij = exp(−|i − j|),
which is obtained from the exponential covariance function. We further assume that
ξ` ∼ N(0, 1) i.i.d. and that the ξ` are independent of Z, c2, c3, c4. The variable `0 describes
the initial accuracy of the models. We compute the covariance matrix C analytically and
fix artificial costs for every model ` ∈ {1, . . . , L} with w` = 22`−2. We further choose the
computational budget Wbudget to be sufficiently large. This model fits Assumption 6.11
with qpath = 4, γ2 = 1, γ3 = 2 and γ4 = 3. We compare the SAOB κ with the weighted
RE κ estimator with κ = 2, 3, 4 with a bias of α := eL. We define the difference in the
coefficients as follows

dκ(`0) :=

(
K∑
k=1

‖βk,SAOBκ(`0)− βk,REκ‖2

)1/2

. (6.47)

The SAOB chooses the same model groups as the RE estimators for example (6.46). We
further compare the relative difference of the variances

vκ(`0) :=
V
[
µ̂REκ
L (`0)

]
− V

[
µ̂SAOBκ
L (`0)

]
V[µ̂SAOBκ

L (`0)]
. (6.48)

The variance of both estimators clearly depends on the covariance matrix C = C(`0)
which itself depends on `0. However, the coefficients of the RE estimators βk,REκ do not
depend on `0. We plot the computed values dκ and vκ in Figure 6.1 for different values
of `0. The respective coefficients of the SAOB 2 and the MLMC (RE 2) estimator are
given in Figure 6.2 and for the SAOB 3 and RE 3 estimator in Figure 6.3. We conclude
that both the coefficients as well as the relative variance difference converges to zero.
This indicates that asymptotically, there is no difference between the SAOB κ and RE κ
estimator. We further conclude that the difference between the SAOB κ and the RE κ
estimator is larger if κ is larger, both in terms of dκ and vκ. This is not surprising, since
the SAOB is able to optimize over more parameters achieving a larger variance reduction.

Remark 6.36 (Proof of convergence). A rigorous proof of convergence for the models
(6.46) is not straightforward as it might seem. An idea is to first verify that both es-
timators use the same model groups, i.e. for sufficiently large `0 the SAOB κ uses the
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Figure 6.1: The left image shows the convergence of the coefficients of the SAOB κ to
the coefficients of the weighted RE κ estimator w.r.t. (6.47). The right image shows the
convergence of the relative variance difference (6.48).
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Figure 6.2: Coefficients βk,SAOB 2(`0) of the SAOB 2 and βk,MLMC of the MLMC estimator
for different initial accuracies `0. The latter do not depend on `0, thus these coefficients
are only drawn once in the bottom right. The error in terms of (6.47) is drawn in the left
plot of Figure 6.1 in d2.
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Figure 6.3: Coefficients βk,SAOB 3(`0) of the SAOB 3 and βk,RE 3 RE 3 estimator for
different initial accuracies `0. The latter do not depend on `0, thus these coefficients are
only drawn once in the bottom right. The error in terms of (6.47) is drawn in the left
plot of Figure 6.1 in d3.

same model groups as the RE κ estimator. Although this result seems reasonable due
to the geometric cost increase, it is far from obvious and clearly depends on the involved
constants. Once such a result is established, it should be straightforward to verify the
convergence of the coefficients. We outline this step for SAOB 4. First, the bias constraint
requires us to choose

β4
4 = 1.

We now have three degrees of freedom left, namely β4
1 , β

4
2 and β4

3 . This allows to remove
Z, c2, c3 from (6.46) and thus we obtain a variance rate of γVar = 2 ·3 = 6. This is the only
linear combination independent of `0 to achieve this rate, all other linear combinations
achieve at most the rate 4. Since the resulting estimator is now biased, we have to correct
it using model groups with coarser models. We have to satisfy β3

[3] = −β4
[3] due to the

bias constraint and thus we now only have two degrees of freedom left. Therefore only
a single `0 independent unique linear combination leads to the rate 4. This process is
now repeated for all model groups leading to unique coefficients, which are in fact the
coefficients of the RE 4 estimator. Stated differently, the cost of the SAOB 4 is

W
[
µ̂SAOB 4
L

]
=

(
4∑

k=1

((βk)TCkβkW k)1/2

)2

≈ c

(
4∑

k=1

2−γk(k+`0)+k

)2

,

which is minimal only if the rates γk are minimal. Thus, the SAOB 4 is forced to find
the smallest rates which for coefficients independent of `0 is only achieved for the RE
vectors. Since we are in the preasymptotic regime, the coefficient β1 of the SAOB 4 of
the coarsest model group may differ in the order of 2−γ2`0 = 2−`0 without worsening the
asymptotic variance behaviour. This together with the fact that SAOB aims to keep the
sum of the independent variables ξ1, . . . , ξ4 small explains the observed rate in the left
plot of Figure 6.1. �
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Improved bounds for SAOB. The RE estimator is used as upper bound for the SAOB,
however, we now give an example where a different estimator achieves a larger variance
reduction than the RE estimator. The basic idea to construct models such that the RE
estimator is not able to remove terms in the expansion if the order is not polynomial. Let
us illustrate this for the following QoI

Z`(ω) := Z(ω) + c2(ω)(`+ `0)22−(`+`0)/2 + c3(ω)2−(`+`0) + ξ`(ω)2−3(`+`0)/2.

We assume that Z, c2, c3, ξ1, ξ2, · · · ∼ N(0, 1) are independent random variables. The RE
2 estimator is not able to remove the term `22−`/2 and does not improve any further.
However, the SAOB is able to remove this term. To see why, we w.l.o.g. set `0 = 0 and
write down the linear combination

4∑
`=1

β`Z` =

(
4∑
`=1

β`

)
Z +

(
4∑
`=1

β``
22−`/2

)
c2 +

(
4∑
`=1

β`2
−`

)
c3 +

4∑
`=1

β`ξ`2
−3`/2.

We want that the coefficients β` satisfy three conditions

4∑
`=1

β` = 0,
4∑
`=1

β`2
−` = 0,

4∑
`=1

β``
−12−2` = 0

to remove the first three terms such that only the remainder with the higher order 2−3`/2

remains. We further want to ensure that

βL = 1

to not obtain β = 0. This is now a 4× 4 system that we are able solve. Therefore, if the
|β`| are bounded by a constant independently of `, we obtain the improved rate of 2−3`/2.
We call this specific coefficient βLGS and compare the variance of the linear combination

V

[
4∑
`=1

βLGS
` Z`

]
= (βLGS)TCβLGS

with the RE 2 and RE 3 difference vectors v4,2 − v3,2 respectively v4,3 − v3,3 assuming
the (incorrect) rate γ2 = 1/2. We further compare it to the variance obtained using the
smallest eigenvector umin of C in the following sense

Varumin = V

[
4∑
`=1

umin
`

umin
4

Z`

]
=

(umin)TCumin

(umin
4 )2

.

The division ensures that the coefficient in front of Z4 is one, since umin
4 6= 0 for this

experiment. In this case, we have Vmin = Varumin . We plot the resulting difference to the
eigenvalue and variance

eu(`0) := ‖βLGS(`0)− umin(`0)/umin
4 (`0)‖,

eVar(`0) := (umin(`0))TC(`0)umin(`0)/(umin
4 (`0))2 − (βLGS(`0))TC(`0)βLGS(`0)

in Figure 6.4, where we now make the dependence on `0 explicit. As predicted, the vector
βLGS is able to improve the rate such that only the remainder with a rate γVar = 2·3/2 = 3
remains. The RE vectors are not able to achieve this. We further conclude that the vector
βLGS converges to the scaled eigenvector umin corresponding to the smallest eigenvalue and
the respective variance of the linear combination converges to Vmin.
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Figure 6.4: The left plot shows the variance of certain linear combinations where we
replace β with the corresponding value. The right image shows the convergence of the
variance and the coefficients of βLGS to the scaled eigenvector umin/umin

4 for the smallest
eigenvalue of C. Reference rates are drawn black.

Remark 6.37 (Generalized estimator). We try to generalize the estimator from above.
Assume that the QoI satisfies

Z` := Z +

q−1∑
j=2

cjϕj(`) + r`, (6.49)

where r` is a remainder term decaying sufficiently fast. With ϕ1(`) := 1 we look for
coefficients β that satisfy

q−1∑
`=1

β`ϕj(`) = 0 for all j = 1, . . . , q − 1,

βq = 1.

(6.50)

Under the assumption that this linear system has a solution the variance is

V

[
q∑
`=1

β`Z`

]
= V

[
q∑
`=1

β`r`

]
,

that is only some linear combination of the remainder has to be estimated. Again, using
the properties of the shift we are able to define consecutive vectors

y`,q := Dy`−1,q for all ` ≥ q.

All that remains is to define the vectors y`,q for ` < q using the conditions (6.50), which
is left as an exercise for the reader. Clearly, if (6.50) is satisfied, then we have a reduced
variance. It is straightforward to define an estimator similar to the RE estimator in
Definition 6.17

µ̂yL,q =
L∑
`=1

L∑
j=1

(y`,qj − y
`−1,q
j )

1

m`

m∑̀
i=1

Zi,`
j .

In fact, if we have ϕj(`) = 2−γj` in (6.50), then this estimator is precisely the RE estimator
except for the scaling of the last coefficient βq = 1. For other biases we may introduce
weights a1, . . . , aL similarly to (6.29). �
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Figure 6.5: Biases, variances and costs for the QoI defined in (6.52). Here Z` − Z`−1

corresponds to the difference (v`,2 − v`−1,2)T (Zj)
`
j=1.

While it is possible to generalize the RE estimator to other estimators with improved
variance reduction if an expansion of the form (6.49) is available and known a-priori, it
is more involved due the more general ϕj. We never apply this for a practically relevant
problem and thus we do not analyse this method any further.

6.5 Numerical experiments with an elliptic PDE

PDE example with true costs. We use the PDE example from Section 2.3 such that
P–almost surely

−div(a(x, ω)∇y(x, ω)) = 1, x ∈ (0, 1)2,

y(x, ω) = 0, x ∈ ∂(0, 1)2.
(6.51)

The diffusion coefficient is lognormal a := exp(b), where b is a mean zero Gaussian
random field on (0, 1)2 with Whittle–Matérn covariance with smoothness ν := 3/2, vari-
ance σ2 := 1 and correlation length ` := 0.5. We integrate the weak solution y over
Dobs := (3/4, 7/8)× (7/8, 1) to define the QoI

Z :=
1

|Dobs|

∫
Dobs

y(x)dx. (6.52)

We discretize Z by discretizing y using linear finite elements with uniform mesh refinement
and compute the corresponding covariance matrix C with 105 pilot samples. We exclude
the cost of the pilot samples from the subsequent analysis in this section. Notice that the
parameters in (6.51) are smooth in the sense that the diffusion a as well as the constant
right–hand side 1 is smooth and we integrate over y in (6.52). This gives a smooth
QoI such that Assumption 6.10 and Assumption 6.11 should be satisfied with coefficients
q = qpath = qmean = 3 and γ1 = 0, γ2 = 2 and γ3 = 4. Since we solve the PDE in 2
dimensions, we expect a doubling of the cost with uniform mesh refinement and a rate of
γCost = 2. We plot the biases, variances and the costs in Figure 6.5 to verify these claims
numerically. This result shows that we are able to use RE to potentially obtain improved
variance reduction. The asymptotic costs of every estimator discussed in this thesis are
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Estimator κ γBias γVar Complexity bound HF evaluations Source
µ̂MC
L 1 2 0 ε−1 + ε−3 ε−2 Theorem 3.11

µ̂MLMC
L 2 2 4 ε−1 + ε−2 ε−0.5 Theorem 3.49
µ̂MFMC
L L 2 4 ε−1 + ε−2 ε−0.5 Theorem 3.31

µ̂SAOB 2
L 2 2 4 ε−1 + ε−2 ε−0.5 Corollary 6.26
µ̂SAOB 3
L 3 2 8 ε−1 + ε−2 ε0.5 Corollary 6.26
µ̂SAOB
L L 2 8 ε−1 + ε−2 ε0.5 Corollary 6.26
µ̂MC
vL,3 1 4 0 ε−0.5 + ε−2.5 ε−2 Example 6.6

µ̂RE 2
vL,3 2 4 4 ε−0.5 + ε−2 ε−1.25 Theorem 6.25
µ̂RE 3
vL,3 3 4 8 ε−0.5 + ε−2 ε−0.75 Theorem 6.20

µ̂SAOB 2
vL,3 2 4 4 ε−0.5 + ε−2 ε−1.25 Corollary 6.26
µ̂SAOB 3
vL,3 3 4 8 ε−0.5 + ε−2 ε−0.75 Corollary 6.21
µ̂SAOB
vL,3 L 4 8 ε−0.5 + ε−2 ε−0.75 Corollary 6.26

Table 6.1: Different estimators with the respective coupling number κ that denotes the
maximum number of models using the same event ω, their bias and variance reduction
rate as well as an upper bound on their cost complexity (6.53) for the true cost rate
γCost = 2. The first term always corresponds to the ceiling cost ε−γCost/γBias , whereas the
second value corresponds to the variance and second part of (6.53). The column “HF
evaluations” contains the upper bound on the number of high fidelity evaluations, which
can be derived from Corollary 6.2. The last column contains the references and proofs for
the upper complexity bound.

of the form (6.9)

W[µ̂L] ≤ cε−γCost/γBias + c


ε−2, if γVar > γCost,

ε−2 log(ε)2, if γVar = γCost,

ε
−2− γCost−γVar

γBias , if γVar < γCost

(6.53)

for different values of γBias and γVar. We write down the cost of the estimators in Table 6.1
and describe how we derived these values. First of all, for all estimators with α = eL the
bias rate γBias = 2 and for estimators with α = vL,3 the rate γBias = 4 holds. The
variance reduction rate should be γVar = 2γκ for an optimal variance reduction, where
κ is the coupling number. This however, is in general not reached, since either the QoI
is not smooth enough, thus qpath < κ or the coefficients of the estimator are chosen sub
optimally. Applying this logic, this means that the SAOB κ with κ = 2 respectively
κ = 3 reaches γVar = 4 respectively γVar = 8. This also holds for the RE estimators.
The SAOB with no coupling restriction κ = L may reach a larger variance reduction
rate and thus γVar = 8 is a lower bound. The MC estimator does not have any variance
reduction γVar = 0. The previous explanations concerning the variance are valid for all
estimators except for the MFMC estimator, which couples all L models but achieves a
smaller variance reduction rate due to suboptimal coefficients. We later give a heuristic
reason for this. We compute the upper complexity bound with these values using (6.53).
For a rigorous proof, we refer to the statement in the last column of Table 6.1.
We plot the cost of every estimator to reach a MSE of ε2 in Figure 6.6 for both α = e`
and using RE once with α = v`,3. We conclude that the upper bounds for the complexity
in Table 6.1 predict the correct values.
We now examine the number of high fidelity model evaluations, where the upper bounds
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Figure 6.6: Complexity of different estimators for different RMSE ε for the true cost
rate γCost = 2. The left image shows estimators with bias e` and the right image with
v`,3, i.e. for SAOB the left plot shows µ̂SAOB

L and the right one shows µ̂SAOB
v`,3

.

for k = L are given in Table 6.1. The actual numbers used by the estimators are in
Figure 6.7 and they match the predictions. For α = v`,3 the number of high fidelity
evaluations does not decrease to zero, which allows us to use more and more pilot samples
for the sample covariance matrix without worsening the asymptotic complexity.

PDE example with artificial costs. All estimators, except for standard MC, achieve
the optimal complexity of ε−2 with the true cost rate γCost = 2. Therefore, we artificially
increase this rate to γCost = 6 by setting w` = 10−6 · 26`. Similarly to before, we derive
Table 6.2 containing the updated complexity bound and the bound on the number of high
fidelity evaluations. We again plot the computational complexity in Figure 6.8 and the
number of high fidelity evaluations in Figure 6.9. We conclude that changing the bias
from e` to v`,3 is necessary to reduce the complexity of the estimation, since otherwise we
have at least costs of ε−3 due to the ceiling of the number of samples. This ceiling cost has
to be reduced by increasing the bias rate from 2 to 4 by using RE. It is also apparent that
the number of high fidelity evaluations tends to zero if we use more than two models for
α = e`, i.e. the RE 3 or SAOB 3 estimator. This is typically not desirable and indicates
that the bias vector can and should be chosen differently to reduce the overall complexity.
The bias vector α = v`,3 yields the best possible complexity of ε−2 for estimators that
couple at least three models except for MFMC, i.e. the SAOB κ and the weighted RE κ
estimator for κ ≥ 3.

Coefficients for ACV estimators and the MFMC estimator. We comment on
the ACV estimators, which we did not include up until now. This is deliberate, since
the asymptotic cost of the ACV estimators is not known to date. For the same QoI
from (6.52) with artificial cost rate γCost = 6 we plot the cost of these estimators in
Figure 6.10. The ACV estimators have the same asymptotic complexity as the MLMC
estimator and do not reach the improved asymptotics of the RE estimators, even if we
exclude ceiling the number of samples. This also holds for the MFMC estimator and is
somewhat surprising, since these estimators couple more models than MLMC. We provide
a possible explanation in terms of their respective coefficients. As we have already seen in
Section 4.5 and which can be verified quite easily, the coefficients of all ACV estimators
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Figure 6.7: Number of high fidelity evaluations for different RMSE ε for the true cost
rate γCost = 2. The left image shows estimators with bias α = e` and the right image
shows the bias v`,3, i.e. for SAOB the left plot shows µ̂SAOB

L and the right one shows
µ̂SAOB
v`,3

.

Estimator κ γBias γVar Complexity bound HF eval bound Source
µ̂MC
L 1 2 0 ε−3 + ε−5 ε−2 Theorem 3.11

µ̂MLMC
L 2 2 4 ε−3 + ε−3 ε0 Theorem 3.49
µ̂MFMC
L L 2 4 ε−3 + ε−3 ε0 Theorem 3.31

µ̂SAOB 2
L 2 2 4 ε−3 + ε−3 ε0 Corollary 6.26
µ̂SAOB 3
L 3 2 8 ε−3 + ε−2 ε0.5 Corollary 6.26
µ̂SAOB
L L 2 8 ε−3 + ε−2 ε0.5 Corollary 6.26
µ̂MC
vL,3 1 4 0 ε−1.5 + ε−3.5 ε−2 Example 6.6

µ̂RE 2
vL,3 2 4 4 ε−1.5 + ε−2.5 ε−1 Theorem 6.25
µ̂RE 3
vL,3 3 4 8 ε−1.5 + ε−2 ε−0.25 Theorem 6.20

µ̂SAOB 2
vL,3 2 4 4 ε−1.5 + ε−2.5 ε−1 Corollary 6.26
µ̂SAOB 3
vL,3 3 4 8 ε−1.5 + ε−2 ε−0.25 Corollary 6.21
µ̂SAOB
vL,3 L 4 8 ε−1.5 + ε−2 ε−0.25 Corollary 6.26

Table 6.2: Different estimators with the respective coupling number κ that denotes the
maximum number of models using the same event ω, their bias and variance reduction
rate as well as an upper bound on their cost complexity (6.53) for the artificial cost rate
γCost = 6. The first term always corresponds to the ceiling cost ε−γCost/γBias , whereas the
second value corresponds to the variance and second part of (6.53). The column “HF eval
bound” contains the upper bound on the number of high fidelity evaluations, which can
be derived from Corollary 6.2. The last column contains the references and proofs for the
upper complexity bound.
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Figure 6.8: Complexity of different estimators for different RMSE ε for the artificial
cost rate γCost = 6. The left image shows estimators with bias e` and the right image
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. Here
SAOB(*) is the cost of the SAOB without ceiling the number of samples.
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Figure 6.9: Number of high fidelity evaluations for different RMSE ε for the artificial
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Figure 6.10: Complexity of different estimators for different RMSE ε for the artificial
cost rate γCost = 6. The left image shows the complexity of the estimators without ceiling
and the right image with ceiling. Both images show estimators with a bias of α = e`. In
particular, the RE 4 estimator is µ̂RE 4

L .

satisfy the sign condition

sign(βL` ) = − sign(βk` ) for all k ∈ {1, . . . , L− 1} with ` ∈ Sk. (6.54)

This simply means that the sign of the coefficients can be deduced from the sign of the
coefficients of the model group that uses all models {1, . . . , L}. Similarly, the coefficients
of the MFMC estimator also satisfy a sign condition

sign(β``) = − sign(βk` ) for all k ∈ {`+ 1, . . . , L} with ` ∈ Sk, (6.55)

thus the sign is given in terms of the diagonal element. However, looking at the difference
of two consecutive RE vectors (6.21) with L > q shows that

∆vq = Dvq−1,q − vq−1,q =
1∏q−1

j=2(2γj − 1)



0
(−1)q

(−1)q−1
∑

2≤i1≤q−1 2γi1

(−1)q−2
∑

2≤i1<i2≤q−1 2γi1+γi2

...∑
2≤i1<i2<···<iq−3≤q−1 2γi1+γi2+···+γiq−3

−
∑

2≤i1<i2<···<iq−2≤q−1 2γi1+γi2+···+γiq−2∑
2≤i1<i2<···<iq−1≤q−1 2γi1+γi2+···+γiq−1



− 1∏q−1
j=2(2γj − 1)



(−1)q

(−1)q−1
∑

2≤i1≤q−1 2γi1

(−1)q−2
∑

2≤i1<i2≤q−1 2γi1+γi2

...∑
2≤i1<i2<···<iq−3≤q−1 2γi1+γi2+···+γiq−3

−
∑

2≤i1<i2<···<iq−2≤q−1 2γi1+γi2+···+γiq−2∑
2≤i1<i2<···<iq−1≤q−1 2γi1+γi2+···+γiq−1

0


∈ Rq.
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Figure 6.11: Coefficients for different estimator for a RMSE ε = 3 ·10−6 for the artificial
cost rate γCost = 6. Here the coefficients of the ACV–MF and ACV–KL estimator are
the same. The RE estimator exhibits a checkerboard pattern, whereas the SAOB 4 also
shows this pattern except for a small deviation for S6 and Z3.

Taking a look at the sign of these vectors shows that both Dvq−1,q and −vq−1,q have entries
with equal signs. We use that γj ≥ 0 for j ∈ {1, . . . , q − 1} to conclude

sign((∆vq)`) = sign(vq−1,q
`−1 ) = (−1)q−` for all ` ∈ {2, . . . , q}

and the special case of sign((∆vq)1) = (−1)q−1. Then

sign((∆vq)`) = (−1)q−` for all ` ∈ {1, . . . , q}.

A further computation in the same spirit shows that the same is true independently of q

sign((∆vj)`) = (−1)j−` for all ` ∈ {1, . . . , j} for all j ∈ {1, . . . , L}. (6.56)

Hence the coefficients of the RE estimators form a checkerboard pattern w.r.t. the sign of
the linear combination. This however, cannot be achieved by either of the ACV or MFMC
estimators due to (6.54) or (6.55). We verify these claims by plotting the coefficients of
the ACV estimators along with the coefficients of the MFMC estimator, the SAOB 4 and
the RE 4 estimator in Figure 6.11 for the smallest RMSE of ε = 3 · 10−6. We conclude
that the conditions (6.54), (6.55) and (6.56) hold for this example. In general, if the
coefficients of the RE estimators are mostly unique and often the only sensible choice
to achieve a smaller variance, then this means that the ACV and MFMC estimators are
not able to reach a higher variance reduction than MLMC due to the sign restriction.
Therefore, even though these estimators couple more models than the MLMC estimator,
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they do not improve due to their design, which restricts the number of possible linear
combinations.

Remark 6.38 (Other models). Assumption 6.10 and Assumption 6.11 might not be true
for other model hierarchies and thus an improved variance reduction might be obtained
even if condition (6.54) for ACV and condition (6.55) for MFMC holds. In any case, it is in
general feasible to obtain complexity expression for the MLMC and the RE estimator since
their coefficients βk are fixed and known, which is not the case for both MFMC and ACV.
This makes it difficult to derive statements about their complexity. The coefficients βk

of the SAOB and SAOB κ are also given implicitly, however for these estimators we have
the principle that they are optimal in the class of linear unbiased estimators Theorem 6.3,
which allows us to at least derive some upper bounds. �
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Chapter 7

A multilevel approach for the risk neutral
optimal control problem

In this chapter we examine the risk neutral optimal control problem. The goal is to steer
the result of a system to a prescribed desired state. The system, described by an elliptic
PDE, contains random functions and is controlled by a deterministic distributed control
without control constraints. We account for the randomness by ensuring that the ex-
pected value of the distance to the desired state is small. The use and analysis of the MC
method to solve this problem is more or less straightforward, however, the resulting costs
to compute an accurate approximation are large. A straightforward application of MLMC
to reduce the asymptotic complexity often leads to an ill–posed minimization problem.
We overcome this difficulty by proposing a strategy where we apply the MLMC estima-
tor to the deterministic control as opposed to the cost function where the expectation
appears. The result is an estimator that has the improved complexity of MLMC without
the drawbacks of being ill–posed. We divide this chapter into the following sections:

� In Section 7.1 we introduce the risk neutral optimal control problem. In essence,
this is an infinite dimensional quadratic optimization problem with a linear PDE
constraint. The cost function contains randomness, which we eliminate by taking
the mean. We show existence and uniqueness of a solution, we derive the optimality
conditions, give a short literature review and derive convergence results for the
spatial discretization with finite elements. These results are standard and the focus
of this chapter is the discretization of the mean, which we focus on in the remaining
sections of this chapter.

� We continue with the standard MC approach in Section 7.2, which we use as a
reference. This approach allows us to discuss the basic concepts needed for the
MLMC approach. We show that the MC discretization leads to a well–posed prob-
lem and derive an asymptotic complexity result. The resulting costs of this method
are typically quite large.

� We improve the MC approach with an MLMC approach in Section 7.3. We call the
method Multilevel Monte Carlo for the control (MLC). The idea is to compute the
difference of the optimal controls on two consecutive levels, which itself is a solution
of an optimal control problem. This approach achieves an MLMC complexity result
similar to Theorem 3.49. In particular, the MLC improves the standard MC method
and is well posed in contrast to directly applying the MLMC telescoping sum idea
to the cost function.

� We conduct numerical experiments in Section 7.4 to verify the complexity results
for MC and MLC. We verify that we have substantial gains compared to the MC
estimator in the order of two magnitudes.
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7.1 The risk neutral optimal control problem

Introduction. We are interested in the risk neutral optimal control problem

min
u∈U

J(u) :=
1

2
E
[
‖y(u)− yd‖2

Z

]
+
α

2
‖u‖2

U

such that P–a. s. y(u, ω) = S(ω)u.
(7.1)

This is a quadratic optimization problem with linear equality constraint. We call y the
random state such that y(ω) ∈ Y , u ∈ U the deterministic control and yd ∈ Z the desired
state. We assume for simplicity that the desired state is deterministic, however, similar
results can be obtained for random desired states. The state and control are coupled by
the state equation such that P–almost surely

y(u, ω) = S(ω)u.

We assume that the spaces Z, Y , U are Hilbert spaces with scalar product (·, ·) and
induced norm ‖ · ‖. We drop the subscript in the norm and scalar product, since this
will be clear from the surrounding context. We also demand that Y ⊆ Z such that the
image of S(ω) may strictly be smaller than Z. The goal is to approximate the optimal
u that minimizes (7.1). In particular, the state y should be close to the desired state
yd on average in terms of the realizations of the linear solution operator S(ω) : U → Y .
We furthermore use a Tikhonov regularization parameter α > 0 since (7.1) is in general
ill–posed for infinite dimensional problems or for finite dimensional problems if S has zero
eigenvalues since multiple optimizers may exist. The case of not using a regularization
term α = 0 can be handled by control constraints, for example a ≤ u ≤ b for real–valued
a, b ∈ R with a ≤ b. This however, increases the technical difficulty of the analysis and
the numerical experiments contrasting the goal of this chapter to introduce a variance
reduction method for optimal control problems. We provide the example we use latter
for the numerical experiments.

Example 7.1 (An optimal control problem). We give the standard example also seen in
[73, Section 1.5.3.1] without control constraints and with a random state equation. We
have Z := U := L2(D) and Y := H1

0 (D). The linear solution operator S(ω) : L2(D) →
H1

0 (D) maps the distributed control u to the state y using the weak elliptic PDE with zero
Dirichlet boundary conditions (2.9). We demand that P–almost surely for all v ∈ H1

0 (D)

(a(ω)∇y(ω),∇v)L2(D) = (u, v)L2(D). (7.2)

The randomness in the diffusion coefficient a carries over to the solution operator S. We
abbreviate condition (7.2) in short operator form as y(u, ω) = S(ω)u. The stochastic
state then satisfies y ∈ L2(Ω, Y ), see Theorem 2.34. �

There is a lot of literature on optimization with deterministic PDE constraints [14, 15,
39, 73, 136]. The authors of [16] discuss how to introduce uncertainty for optimal control
problems. More difficult PDE constraints with randomness compared to the elliptic case
that we study was also done in [16] for a non–linear reaction–diffusion model and in [65]
for the Navier–Stokes system. Shape optimization problems with random right hand side
are discussed in [36].
The stochastic pathwise optimal control solves (7.1) without the mean. The optimal
control is then stochastic. This was examined in [16] and implemented in [121] with
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stochastic collocation and the stochastic Galerkin method. A method to compute the
mean of the stochastic control with MLMC was done in [4]. However, if the randomness
is crucial for the system, then the resulting optimal control does not approximate the
solution of (7.1). Nevertheless, this is approach can be used to obtain an insight on how
the randomness effects the solution of (7.1).

The stochastic collocation method is used to approximate the mean operator E in [135].
The authors of [17] combine this method with a multigrid method and apply it to a
non–linear parabolic optimal control problem. Another method [18] is to obtain pathwise
optimal controls that are used to compute a proper orthogonal decomposition. This
decomposition is used to obtain a low dimensional but accurate approximation of U and
thus the infinite dimensional (7.1) is replaced by a low dimensional problem. A similar
approach using a reduced basis method is analysed in [27]. The collocation method was
also used as part of a trust region algorithm, a general optimization procedure, in [83, 84].

A stochastic gradient method with approximate line search was analysed in [93] for the
standard MC discretization of the gradient. A multilevel version with detailed analysis
was performed in [94]. The authors of [138] use the MLMC estimator to improve the
numerical complexity to compute an approximation of the gradient. Under the additional
assumption that the norm of the gradient converges linearly to zero, the authors show
that the optimal asymptotic complexity of ε−2 to reach a gradient norm of ε is achieved.
The same authors in [139] also apply the MG/OPT framework, which is a multilevel
technique for optimization [91, 100]. Additional to the variance reduction the idea is to
use a coarse grid for the search direction along which we optimize. This framework is
combined with stochastic collocation in [82]. Another approach using stochastic gradient
descent with MC, where the descent algorithm is coupled with the mesh size, can be
found in [53]. Another well–known stochastic optimization method is SAGA [41], which
was applied in [95] for the risk neutral optimal control problem. A variance reduction
method for optimization that reuses information from previous iterations was studied in
[32, 101].

Other approaches include a full discretization of both the probability space and the finite
element space [75], use quasi–Monte Carlo [66] or a polynomial chaos expansion with low
rank tensors [52]. Our approach for the optimal control problem is different from stochastic
optimization methods. We apply a variant of MLMC for the optimality conditions of (7.1)
avoiding some of the pitfalls of classical MLMC. In particular, applying MLMC for the
expectation in (7.1) or directly for the optimality conditions leads to a potentially ill–
posed and non–convex optimization problem. We push the telescoping sum idea to the
deterministic control u ∈ U to circumvent this problem while retaining the benefits of
improved asymptotic complexity of MLMC.

Other risk measures, which we do not discuss in this chapter, are studied theoretically
in [81]. The authors of [3] and [138] consider adding a variance term such that solutions
with smaller variance are preferred thus ideally decreasing the probability for outliers.
Other, more advanced risk measures like the conditional value at risk are studied in [85].
The authors of [86] study a MLMC approach for functions and include minimization
problems. This approach is able to achieve the optimal complexity (up to logarithmic
factors). However, the authors study problems where the parameter we want to minimize
is in a compact, real–valued interval. Their approach requires the discretization of the cost
function on the entire parameter interval, which is not feasible in the high dimensional
setting and this is acknowledged by the authors. In particular, a naive application of this
method requires the full approximation of the cost function, i.e. if the control is a finite
element function on a grid with 1000 degrees of freedom then we have to evaluate the entire
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function on a 1000 dimensional space. In our opinion, this approach for minimization
seems suboptimal, since we discretize the cost function far away from the minimum thus
adding additional and probably unnecessary costs.
The problem (7.1) uses the mean squared deviation from the desired state, which is a risk
neutral risk measure since we do not penalize large deviations from the mean of the state
y.

Existence, uniqueness and optimality conditions. We want to derive that (7.1)
has a unique solution for α > 0. This requires certain regularity for the solution operator
S which should be bounded by a constant whose moments are also bounded.

Assumption 7.2 (S is regular). The solution operator S and its adjoint S∗ are pathwise
bounded, that is P–almost surely

‖S(ω)u‖ ≤ q(ω)‖u‖ for all u ∈ U,
‖S∗(ω)y‖ ≤ q(ω)‖y‖ for all y ∈ Y.

The scalar valued random variable q has bounded fourth moment. S and S∗ are random
variables. �

We derive the necessary optimality conditions of (7.1). The directional derivative ∂v of
the direction v ∈ U is

∂v‖u‖2 = lim
h→0

‖u+ hv‖2 − ‖u‖2

h
= lim

h→0

(hv, 2u+ hv)

h
= 2(v, u),

∂vE
[
‖y(u)− yd‖2

]
= lim

h→0

E[‖S(u+ hv)− yd‖2]− E[‖Su− yd‖2]

h

= lim
h→0

E[(Shv, 2(Su− yd) + sv)]

h
= 2E[(Sv, Su− yd)] = 2(v,E[S∗Su− S∗yd]).

A necessary condition for optimality is ∂vJ = 0 for all v ∈ U and thus

αu+ E[S∗S]u = E[S∗]yd.

We rewrite this as operator equation to obtain the first order necessary optimality condi-
tions,

(αI +Q)u = f,

where we abbreviate Q := E[S∗S] and f := E[S∗]yd. We further define B := αI + Q to
arrive at

Bu = f. (7.3)

We now formally state the existence and uniqueness results of the optimal solution u of
(7.1) which is the solution of (7.3). Hence this first order necessary optimality condition is
also sufficient. This result is available in [27, 66, 75] and follows from standard arguments,
e.g. in [73, Section 1.5.1].

Theorem 7.3 (Existence and uniqueness). Let α > 0 and Assumption 7.2 be true. Then
there exists a unique minimizer u ∈ U of (7.1) satisfying (7.3) and

‖u‖ ≤ c‖yd‖. (7.4)

Furthermore, the operator B is bounded, self–adjoint and invertible with bounded inverse

‖B−1‖ ≤ c. (7.5)
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Proof. We verify that (7.3) has a unique solution using the Lax–Milgram Lemma [50,
Section 6.2.1] for the bilinear form

a(u, v) = (Bu, v).

We verify that a is bounded w.r.t. both arguments with Assumption 7.2

|a(u, v)| ≤ ‖αu+ E[S∗S]u‖‖v‖ ≤ (α‖u‖+ E[‖S∗Su‖])‖v‖
≤ (α‖u‖+ E[q‖Su‖])‖v‖ ≤ (α‖u‖+ E

[
q2
]
‖u‖)‖v‖

≤ (α + E
[
q2
]
)‖u‖‖v‖ ≤ c‖u‖‖v‖.

We use α > 0 to show that a is coercive

a(u, u) = α‖u‖2 + (E[S∗S]u, u) = α‖u‖2 + E[(S∗Su, u)]

= α‖u‖2 + E[(Su, Su)] = α‖u‖2 + E
[
‖Su‖2

]
≥ α‖u‖2.

The boundedness of the right–hand side is straightforward to verify. Hence there exists a
unique solution u ∈ U of (7.3), (7.5) holds and the use of Assumption 7.2 shows

‖u‖ = ‖B−1f‖ ≤ 1

α
‖E[S∗]yd‖ ≤

1

α
E[‖S∗yd‖] ≤

E[q]

α
‖yd‖ ≤ c‖yd‖.

B is also clearly self–adjoint. A formal derivation for the existence and uniqueness of
a minimizer of (7.1) follows from [73, Theorem 1.43]. The optimality conditions (7.3)
follow from [73, Theorem 1.46] showing that J in (7.1) is Gateaux differentiable ([73,
Definition 1.29]), that is directionally differentiable in all directions and the derivative is
bounded. We have already shown the directionally differentiability and the boundedness
is straightforward, since for all v ∈ U

|∂vJ(u)| = |(Bu− f, v)| ≤ c(‖u‖+ 1)‖v‖.

For the rest of this chapter we simplify the notation by denoting the solution of (7.3) with
u if not mentioned otherwise.

Remark 7.4. The optimality conditions are often written down with the help of the
adjoint equation, see [73, Section 1.6]. The equivalent formulation of (7.3) is

y(ω) = S(ω)u P–almost surely, (7.6)

p(ω) = S∗(ω)(y(ω)− yd) P–almost surely, (7.7)

αu+ E[p] = 0. (7.8)

Here (7.6) is called the state equation, (7.7) the adjoint equation and p the adjoint. The
last equation (7.8) expresses that the gradient of J to be equal to zero. This formulation is
often used in practice since (7.6)–(7.8) offers a convenient way to compute the gradient. �

Spatial discretization. The discretization of (7.3) requires the approximation of the
mean E, the solution operator S and the adjoint operator S∗. We first write down a
well–known perturbation result for errors in the operator or right–hand side.
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Lemma 7.5 (Perturbation error). Let (X , ‖ · ‖X ) and (B, ‖ · ‖B) be Banach spaces. Let
A : X → B be a linear, bounded, invertible operator whose inverse is bounded. Assume
that x ∈ X and b ∈ B are such that

Ax = b.

Furthermore, assume that we have perturbations ∆A : X → B linear, ∆x ∈ X and
∆b ∈ B such that

(A+ ∆A)(x+ ∆x) = b+ ∆b.

Let A+ ∆A : X → B be a linear, bounded, invertible operator whose inverse is bounded.
Then the perturbation error in the solution is bounded as follows

‖∆x‖X ≤ ‖(A+ ∆A)−1‖op(‖∆Ax‖B + ‖∆b‖B), (7.9)

where ‖ · ‖op denotes the operator norm.

Proof. We rewrite the perturbed system and use Ax = b

(A+ ∆A)∆x = −(A+ ∆A)x+ b+ ∆b = (−Ax+ b)−∆Ax+ ∆b = −∆Ax+ ∆b.

Now use that the inverse of A+ ∆A exists and is bounded.

We spatially discretize S and its adjoint S∗. We assume that these operators are pathwise
bounded and their approximation error decays geometrically.

Assumption 7.6 (S` is regular). Let ` ∈ N. The operator S` and its adjoint S∗` are
P–almost surely bounded

‖S`(ω)u‖ ≤ q(ω)‖u‖ for all u ∈ U,
‖S∗` (ω)y‖ ≤ q(ω)‖y‖ for all y ∈ Y.

Furthermore, there exists the rate γ > 0 such that the following error estimates are
P–almost surely true

‖(S(ω)− S`(ω))u‖ ≤ q(ω)2−γ`‖u‖ for all u ∈ U,
‖(S∗(ω)− S∗` (ω))y‖ ≤ q(ω)2−γ`‖y‖ for all y ∈ Y.

The scalar valued random variable q has bounded fourth moment. S` and S∗` are random
variables. �

The previous assumption is often satisfied for an elliptic PDE with uniform mesh re-
finement, since a version of Theorem 2.39 and Theorem 2.40 holds. We write down the
discretized version of the optimality conditions (7.3) such that for all ` ∈ {1, . . . , L}

(αI + E[S∗`S`])u` = E[S∗` ]yd,

where we again use abbreviations Q` := E[S∗`S`] and f` := E[S∗` ]yd

(αI +Q`)u` = f`.

We further abbreviate the operator B` := αI +Q`

B`u` = f`. (7.10)

We derive the optimal control problem that has the optimality conditions (7.10).
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Remark 7.7 (Spatially discretized optimal control problem). We discretize the solution
operator S to arive at the spatially discretized version of (7.1). For all ` ∈ {1, . . . , L} this
problem reads

min
u∈U

J(u) :=
1

2
E
[
‖y`(u)− yd‖2

]
+
α

2
‖u‖2

such that P–a.s. y`(u, ω) = S`(ω)u.
(7.11)

In particular, we do not discretize the control u or the space U , which is the approach
taken in [72]. We only replaced S with S`, thus we have to do the same for the optimality
conditions in (7.3) to arrive at (7.10). �

We now verify that (7.10) and thus (7.11) have the unique solution u`. We further derive
an error estimate.

Theorem 7.8 (Existence, uniqueness and error). Let α > 0, Assumption 7.2 and As-
sumption 7.6 be true. Then B` is bounded, self–adjoint and invertible with bounded
inverse

‖B`
−1‖ ≤ c. (7.12)

Furthermore, for all ` ∈ {1, . . . , L} there exists a unique solution u` of (7.10) that satisfies

‖u`‖ ≤ c‖yd‖, (7.13)

‖u` − u‖ ≤ c2−γ`‖yd‖. (7.14)

Proof. The existence of the inverse B`
−1 and (7.12) follows from the Lax–Milgram Lemma

similarly to the proof of Theorem 7.3. The bound (7.13) and also the self–adjointness
follows similarly. For the error estimate (7.14) we use Lemma 7.5 with

A = αI +Q, ∆A = Q` −Q,
b = f, ∆b = f` − f,
x = u, ∆x = u` − u

such that (7.9) reads

‖u` − u‖ ≤ ‖(αI +Q`)
−1‖(‖(Q` −Q)u‖+ ‖f` − f‖)

≤ c(‖(E[S∗`S`]− E[S∗S])u‖+ ‖(E[S∗` ]− E[S∗])yd‖)
= c[(I) + (II)].

Here we used that the inverse of αI +Q` = B` is bounded. We simplify (I) with the help
of Assumption 7.6 and (7.4) to bound ‖u‖

(I) ≤ E[‖(S∗`S` − S∗S)u‖] ≤ E[‖S∗` (S` − S)u‖] + E[‖(S∗` − S∗)Su‖]
≤ E[q‖(S` − S)u‖] + E

[
q2−γ`‖Su‖

]
≤ 2E

[
q2
]
2−γ`‖u‖

≤ c2−γ`‖yd‖.

Similarly, we bound (II) using Assumption 7.6

(II) ≤ E[‖(S∗` − S∗)yd‖] ≤ E
[
q2−γ`‖yd‖

]
≤ c2−γ`‖yd‖.

We thus conclude (7.14) and the theorem.
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Similarly to before, from now throughout the remainder of this chapter we denote the
solution of (7.10) with u`.

Remark 7.9 (Constant c). The constant c in (7.12), (7.13) and (7.14) contains the factor
α−1 and thus requires α > 0. We do not mention the dependence on α for norm and
error estimates of u or approximations thereof in the future. This constant also contains
moments of q. �

7.2 Monte Carlo discretization

We continue with the discretization of E in (7.10) with standard MC. The fully discrete
optimality conditions for ` ∈ {1, . . . , L} read(

αI +
1

m

m∑
i=1

S∗` (ωi)S`(ωi)

)
ûMC
` =

1

m

m∑
i=1

S∗` (ωi)yd,

where we abbreviate the operator and right–hand side to arrive at(
αI + Q̂`

)
ûMC
` = f̂`.

We further abbreviate the left operator B̂` := αI + Q̂` such that

B̂`û
MC
` = f̂`. (7.15)

We remark that we use the same i.i.d. samples for the discretization of the operator B̂`

and the right–hand side f̂`. We write down the corresponding optimal control problem.

Remark 7.10 (MC optimal control problem). The optimality conditions (7.15) corre-
spond to the optimal control problem (7.1) where we discretize both the expectation E
and the solution operator S with S` for ` ∈ {1, . . . , L}

min
u∈U

J(u) :=
1

2

1

m

m∑
i=1

‖y`(u, ωi)− yd‖2 +
α

2
‖u‖2

such that y`(u, ωi) = S`(ωi)u for all i ∈ {1, . . . ,m}.
(7.16)

This is again a quadratic optimization problem with m linear equality constraints. �

We derive existence and uniqueness of a solution of (7.15) similar to Theorem 7.3 and
Theorem 7.8. This result is not surprising, since the MC discretization of the expectation
in (7.16) is a norm on the product space Y m and the m equality constraints can be grouped
together to a single equation with a block diagonal solution operator. We conclude that
(7.16) is a standard deterministic optimal control problem with quadratic cost function
and linear constraint, hence the standard theory applies.

Theorem 7.11 (MC existence, uniqueness and error). Let α > 0 and Assumption 7.6

be true. Then for all ` ∈ {1, . . . , L} the operator B̂` is self–adjoint and invertible with
bounded inverse

‖B̂−1
` ‖ ≤

1

α
≤ c. (7.17)
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Furthermore, for all ` ∈ {1, . . . , L} there exists a unique solution ûMC
` of (7.15) that has

bounded second moment and satisfies the estimates

E
[
‖ûMC

` ‖2
]
≤ c‖yd‖2, (7.18)

E
[
‖ûMC

` − u`‖2
]
≤ c

1

m
‖yd‖2. (7.19)

Proof. The invertibility of B̂`, (7.17) and that B̂` is self–adjoint follows similarly to the
proof of Theorem 7.8. We use (7.17) and Assumption 7.6 to calculate

‖ûMC
` ‖ ≤ ‖B̂−1

` ‖‖f̂`‖ ≤ c

∥∥∥∥∥ 1

m

m∑
i=1

S∗` (ωi)yd

∥∥∥∥∥
≤ c

1

m

m∑
i=1

‖S∗` (ωi)yd‖ ≤ c
1

m

m∑
i=1

q(ωi)‖yd‖.

We square this expression, apply the expectation operator and the Cauchy–Schwarz in-
equality

E
[
‖ûMC

` ‖2
]
≤ cE

( 1

m

m∑
i=1

q(ωi)

)2
‖yd‖2 = c‖yd‖2 1

m2

m∑
i,j=1

E[q(ωi)q(ωj)]

≤ c‖yd‖2 1

m2

m∑
i,j=1

E
[
q(ωi)

2
]1/2E[q(ωj)2

]1/2
= c‖yd‖2E

[
q2
]
.

The result (7.18) then follows from Assumption 7.6 using that q has a bounded second
moment. We now analyse the error introduced from sampling. We use Lemma 7.5 with

A = αI +Q`, ∆A = Q̂` −Q`,

b = f`, ∆b = f̂` − f`,
x = u`, ∆x = ûMC

` − u`.

We insert these values into (7.9), square it, bound the inverse of B̂` = αI + Q̂` and use
Young’s inequality

‖ûMC
` − u`‖2 ≤‖(αI + Q̂`)

−1‖2
(
‖(Q̂` −Q`)u`‖+ ‖f̂` − f`‖

)2

≤ c
(
‖(Q̂` −Q`)u`‖2 + ‖f̂` − f`‖2

)
= c[(I) + (II)].

We take the expectation, use the definition of the variance (2.2), the MC variance estimate,
Assumption 7.6, bound the fourth moment of q and use (7.13) to bound ‖u`‖2

E[(I)] = E

[
‖ 1

m

m∑
i=1

S∗` (ωi)S`(ωi)u` − E[S∗`S`]u`‖2

]
= V

[
1

m

m∑
i=1

S∗` (ωi)S`(ωi)u`

]

=
V[S∗`S`u`]

m
≤ E[‖S∗`S`u`‖2]

m
≤ E[q4]‖u`‖2

m
≤ c

1

m
‖yd‖2.
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We use exactly the same steps to estimate (II) from which (7.19) follows

E[(II)] = E

[
‖ 1

m

m∑
i=1

S∗` (ωi)yd − E[S∗` ]yd‖2

]
= V

[
1

m

m∑
i=1

S∗` (ωi)yd

]

=
V[S∗` yd]

m
≤ E[‖S∗` yd‖2]

m
≤ E[q2]‖yd‖2

m
≤ c

1

m
‖yd‖2.

Remark 7.12 (Bias of MC). It is crucial to remark that ûMC
` is in general not an unbiased

estimator for u` since

E
[
ûMC
`

]
= E

[(
αI + Q̂`

)−1

f̂`

]
6= E

[(
αI + Q̂`

)−1
]
E
[
f̂`

]
6=
(
αI + E

[
Q̂`

])−1

E
[
f̂`

]
= (αI +Q`)

−1f` = u`.

This holds, since Q̂` is correlated with f̂` as both use the same samples. Furthermore,
we cannot interchange the mean and the inverse. However, (7.19) shows that the bias
decreases sufficiently fast with order at least m−1/2. In fact, the actual order is m−1,

which we now verify. For a fixed v ∈ U we use E
[
f̂`

]
= f` to obtain

(E
[
ûMC
`

]
− u`, v) = E

[
(B̂−1

` f̂` −B`
−1f̂`, v)

]
= E

[
(B`

−1(B̂` −B`)B̂
−1
` f̂`, v)

]
.

Now crucially, we insert the mean zero term B`
−1(B̂`−B`)B`

−1f` and use that B`
−1(B̂`−

B`) is self–adjoint to conclude

(E
[
ûMC
`

]
− u`, v) = E

[
(B`

−1(B̂` −B`)(B̂
−1
` f̂` −B`

−1f`), v)
]

= E
[
(B̂−1

` f̂` −B`
−1f`, B`

−1(B̂` −B`)v)
]

= E
[
(ûMC

` − u`, B`
−1(B̂` −B`)v)

]
.

Finally, we use the Cauchy–Schwarz inequality, the error estimate (7.19), we bound the
right expression with a standard MC variance estimate and bound B`

−1 to arrive at

|E
[
(ûMC

` − u`, B`
−1(B̂` −B`)v)

]
| ≤ E

[
‖ûMC

` − u`‖2
]1/2E[‖B`

−1(B̂` −B`)v‖2
]1/2

≤ c
1

m1/2
‖yd‖

1

m1/2
‖v‖ = c

1

m
‖yd‖‖v‖.

Now set v = E
[
ûMC
`

]
− u` ∈ U to conclude

‖E
[
ûMC
`

]
− u`‖2 ≤ c

1

m
‖yd‖‖E

[
ûMC
`

]
− u`‖,

which shows that the bias of the MC estimator ûMC
` is at least of order m−1. �

In practice we have to solve the system (7.15). For PDE constraints the operator S` and

thus Q̂` corresponds to a matrix that is often dense. Therefore, it is not practical to
compute the operator B̂` = αI + Q̂` or its inverse. However, some iterative methods only
require the application of the matrix B̂` to a vector. In this case, the MC method requires
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a state solve applying S` and an adjoint solve applying S∗` for every realization. The
convergence rate of such iterative methods is often linear and we derive results specifically
for the conjugate gradient (CG) algorithm. The CG–algorithm we use is standard and
given in [103, Algorithm 5.2]. This is a Krylov subspace method originally from the
authors of [71] and well known in mathematical literature, see [131, Chapter 4], [78,
Chapter 2] and [98, Chapter 2]. We denote the CG–approximation of ûMC

` with ûMC,CG
`

starting the iteration with a zero vector.

Lemma 7.13 (Number of CG–iterations). Let α > 0 and Assumption 7.6 be true. For
` ∈ {1, . . . , L} let ûMC,CG

` be the CG–approximation of ûMC
` . Then the convergence is

linear such that after n iterations the error satisfies

‖ûMC,CG
` − ûMC

` ‖ ≤ c

[
α + 1

m

∑m
`=1 q

2(ωi)

α

]1/2

2−γCGn‖ûMC
` ‖, (7.20)

where the random rate γCG is lower bounded

γCG ≥ − log2

1−

(
α

α + 1
m

∑m
i=1 q

2(ωi)

)1/2
 > 0. (7.21)

Furthermore, for all ε ∈ (0, 1/e] the expected number of steps E[n] to achieve the error
‖ûMC,CG

` − ûMC
` ‖ ≤ ε is logarithmic in ε

E[n] ≤ c(| log2(ε)|+ E
[
‖ûMC

` ‖2
]1/2

) ≤ c| log2(ε)|. (7.22)

Proof. We use the definition of the A–norm for a symmetric positive definite matrix A,
which satisfies the well–known inequalities for all z ∈ Rn

‖z‖2
A := zTAz, ‖z‖2

I ≤ ‖A−1‖‖z‖2
A, ‖z‖2

A ≤ ‖A‖‖z‖2
I .

We further use the estimate [103, Equation 5.36], where we use the starting point to be
zero. According to this equation, after n steps the CG–approximation xCG of x, where x
solves Ax = b, satisfies

‖xCG − x‖A ≤ 2

(√
‖A‖‖A−1‖ − 1√
‖A‖‖A−1‖+ 1

)n

‖x‖A.

We use this and define the condition number κ := ‖B̂`‖‖B̂−1
` ‖ to obtain

‖ûMC,CG
` − ûMC

` ‖2
I ≤ ‖B̂−1

` ‖‖û
MC,CG
` − ûMC

` ‖2
B̂`
≤ 4‖B̂−1

` ‖
(√

κ− 1√
κ+ 1

)2n

‖ûMC
` ‖2

B̂`
.

A further computation then shows

‖B̂−1
` ‖
(√

κ− 1√
κ+ 1

)2n

‖ûMC
` ‖2

B̂`
≤ ‖B̂−1

` ‖‖B̂`‖
(

1− 2
1√
κ+ 1

)2n

‖ûMC
` ‖2

I

= κ

(
1− 2

1√
κ+ 1

)2n

‖ûMC
` ‖2

I .

(7.23)
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We now upper bound the condition number using ‖B̂−1
` ‖ ≤ 1/α and Assumption 7.6

κ ≤ 1

α
sup
‖v‖=1

‖(αI + Q̂`)v‖

≤ 1

α

(
α + sup

‖v‖=1

∥∥∥∥∥ 1

m

m∑
i=1

S∗` (ωi)S`(ωi)v

∥∥∥∥∥
)

≤
α + 1

m

∑m
i=1 q

2(ωi)

α
.

We insert this into (7.23) to obtain (7.20), since the linear convergence rate satisfies

2−γCG ≤ 1− 2
1√
κ+ 1

≤ 1− 2
α1/2

(α + 1
m

∑m
`=1 q

2(ωi))1/2 + α1/2

≤ 1− 2
α1/2

(α + 1
m

∑m
`=1 q

2(ωi))1/2 + (α + 1
m

∑m
`=1 q

2(ωi))1/2
.

We take the negative logarithm to conclude (7.21). For a fixed ε ∈ (0, 1/e] we achieve
‖ûMC,CG

` − ûMC
` ‖ ≤ ε using (7.20) if we choose

n = c

− log2(ε) + log2(‖ûMC
` ‖) + log2

([
α+ 1

m

∑m
`=1 q

2(ωi)

α

]1/2
)

γCG

.

Here we implicitly assume that ‖ûMC
` ‖ > 0, since we otherwise have to iterate at most once

n = 1 for realizations with ‖ûMC
` ‖ = 0. We use that γCG is positive and the elementary

inequality log2(x) ≤ 2x for x > 0 to conclude

n ≤ c

− log2(ε) + ‖ûMC
` ‖+

[
α+ 1

m

∑m
`=1 q

2(ωi)

α

]1/2

γCG

.

Now take the mean and use the Cauchy–Schwarz inequality for the last two terms

E[n] ≤ c| log2(ε)|E
[

1

γCG

]
+

E
[
‖ûMC

` ‖2
]1/2

+ E

[
α + 1

m

∑m
`=1 q

2(ωi)

α

]1/2
E
[

1

γ2
CG

]1/2

.

We use Assumption 7.6, E[1/γCG] ≤ E[1/γ2
CG]

1/2
and ε ∈ (0, 1/e] to conclude

E
[
t̂
]
≤ c
(
| log2(ε)|+ E

[
‖ûMC

` ‖2
]1/2)E[ 1

γ2
CG

]1/2

. (7.24)

Since the norm of ûMC
` is bounded due to (7.18) of Lemma 7.13, it remains to show that

the right–most term in (7.24) is bounded. The elementary inequality

− log(1− x) ≥ x for all x ∈ [0, 1) (7.25)
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holds, which can easily be checked since equality holds for x = 0 and the derivative of the
left side is larger than the derivative of the right side

1

1− x
≥ 1 for all x ∈ [0, 1).

Using that both sides of (7.25) are non–negative we obtain

log(1− x)−2 ≤ x−2 for all x ∈ [0, 1).

This inequality also holds for the logarithm with base 2 if we add an appropriate constant.
We combine this with (7.21) and Assumption 7.6 to finally bound

E
[
1/γ2

CG

]
= E

log2

1−

(
α

α + 1
m

∑m
i=1 q

2(ωi)

)1/2
−2 ≤ cE

[
α + 1

m

∑m
`=1 q

2(ωi)

α

]
≤ c.

The previous theorem allows us to write down the complexity of the MC estimator ob-
tained from the CG–method.

Theorem 7.14 (Complexity of MC). Let α > 0, Assumption 7.2 and Assumption 7.6 be
true. Let the cost increase for both an application of S` and its adjoint S∗` be at most
geometric

W[S`] + W[S∗` ] ≤ c2γCost` for all ` ∈ {1, . . . , L}. (7.26)

Then for all ε ∈ (0, 1/e] there exists L and m such that E
[
‖ûMC,CG

L − u‖2
]
≤ ε2 with

expected costs bounded by

W
[
ûMC,CG
L

]
≤ c| log(ε)|ε−2−γCost/γ. (7.27)

Proof. The proof is an adaptation of the MC complexity Theorem 3.11 which includes
the iteration error. We split up the error into three terms with the triangle inequality and
Cauchy–Schwarz inequality with (1, 1, 1)T ∈ R3

E
[
‖ûMC,CG

L − u‖2
]
≤ E

[(
‖ûMC,CG

L − ûMC
L ‖+ ‖ûMC

L − uL‖+ ‖uL − u‖
)2
]

≤

(
3∑
i=1

12

)(
E
[
‖ûMC,CG

L − ûMC
L ‖2

]
+ E

[
‖ûMC

L − uL‖2
]

+ ‖uL − u‖2
)

≤ 3((I) + (II) + (III)).

We require that the iteration error (I), the variance (II) and the bias error (III) are all
smaller than ε2/9. For (III) ≤ cε2 the use of the error estimate (7.14) shows that we
have to choose

L ≥ − log2(ε)

γ
+ c. (7.28)

We have (II) ≤ cε2 using the error estimate (7.19) with the number of samples

m ≥ cε−2. (7.29)
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Finally (7.22) shows that the expected iteration count is logarithmic w.r.t. ε

E[n] ≤ c| log2(ε)|. (7.30)

We multiply the number of iterations (7.30) with the number of samples (7.29) and the
cost on level L in (7.28). We then use the geometric cost increase (7.26) to obtain (7.27)

W
[
ûMC,CG
L

]
= E[nm(W[S`] + W[S∗` ])] ≤ cε−22γCostL| log2(ε)| ≤ cε−2−γCost/γ| log2(ε)|.

The additional logarithmic factor in (7.27) compared to the result in Theorem 3.11 is
purely a consequence of requiring a logarithmic number of iterations for the CG–algorithm.
If the system B̂` can explicitly be formed and (7.15) can be solved with costs independently
of L, then the logarithmic term disappears. Importantly, the optimal cost rate with
γCost = 0 leads to the optimal (up to logarithmic factors) complexity | log2(ε)|ε−2, which
is not achieved by MC.

Remark 7.15 (Removing the logarithmic factor). We outline a method for removing the
logarithmic factor | log2(ε)| in the asymptotic complexity (7.27). The idea is to use fewer
samples at the start of the CG–iteration and geometrically increase their number. For
simplicity and to avoid complications, assume that m = 4N for some N ∈ N and every
CG–iteration reduces the error by half. We then start with n = 1 and 4n samples denoting
the corresponding estimator with ûMC,1

L and its CG–approximation with ûMC,CG,1
L . We

apply four iterations of the CG–method starting at zero and assuming ‖ûMC,1
L ‖ ≤ 4 to

conclude

‖ûMC,CG,1
L − ûMC,1

L ‖ ≤ 2× 0.54‖ûMC,1
L ‖ ≤ 1

8
‖ûMC,1

L ‖ ≤ 1

2
.

We continue with n = 2 and 4n samples to similarly define ûMC,2
L and the corresponding

CG–approximation with ûMC,CG,2
L . We apply four iterations of the CG–method starting

with ûMC,CG,1
L instead of a zero vector to conclude

‖ûMC,CG,2
L − ûMC,2

L ‖ ≤ 2× 0.54‖ûMC,CG,1
L − ûMC,2

L ‖

≤ 1

8
‖ûMC,CG,1

L − ûMC,1
L ‖+

1

8
‖ûMC,1

L − ûMC,2
L ‖

≤ 1

8
‖ûMC,CG,1

L − ûMC,1
L ‖+

1

8
‖ûMC,1

L − uL‖+
1

8
‖ûMC,2

L − uL‖.

Repeating this procedure sequentially with n ∈ {1, . . . , N} shows the recursion

‖ûMC,CG,n
L −ûMC,n

L ‖ ≤ 1

8
‖ûMC,CG,n−1

L −ûMC,n−1
L ‖+1

8
‖ûMC,n−1

L −uL‖+
1

8
‖ûMC,n

L −uL‖. (7.31)

Now we make the assumption of ‖ûMC,n
L − uL‖ ≤ 2−n, which is justified since we expect a

RMSE of order 2−n given 4n samples. We then use induction over n to show ‖ûMC,CG,n
L −

ûMC,n
L ‖ ≤ 2−n since (7.31) directly shows

‖ûMC,CG,n
L − ûMC,n

L ‖ ≤ 1

8
(2−n+1 + 2−n+1 + 2−n) ≤ 2−n.

We use that ûMC,CG,N
L = ûMC,CG

L and ûMC,N
L = ûMC

L , which shows that the iteration error
is of the same order as the RMSE ‖ûMC

L − uL‖ ≤ 2−N since

‖ûMC,CG
L − ûMC

L ‖ ≤ 2−N . (7.32)
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We assume that the cost of applying one solution and adjoint operator is equal to one.
Then the overall evaluation costs to achieve (7.32) is bounded by

4
N∑
n=1

(W[SL] + W[S∗L])4n ≤ 4× 4N+1 ≤ c4N .

This cost however, is proportional to a single CG–iteration using all 4N samples of ûMC
L .

Therefore, without making this argument rigorous, we believe that the logarithmic factor
| log2(ε)| can be removed from the asymptotic complexity by modifying the CG–method.

�

7.3 Multilevel Monte Carlo for the control

We highlight why applying standard MLMC for the risk neutral optimal control problem
(7.1) may lead to an ill–posed problem.

Remark 7.16 (Naive MLMC is ill–posed). We discretize the the expectation with the
standard MLMC estimator

min
u∈U

J(u) :=
1

2

L∑
`=1

1

m`

m∑̀
i=1

(
‖y`(u, ωi,`)− yd‖2 − ‖y`−1(u, ωi,`)− yd‖2

)
+
α

2
‖u‖2

such that y`(u, ωi,`) = S`(ωi,`)u for all i ∈ {1, . . . ,m`}, ` ∈ {1, . . . , L}.
(7.33)

Here we defined y0 := yd. The cost function does not ensure J ≥ 0, although this is
the case for the original problem (7.1), the problem where only the solution operator
S is discretized (7.11) and for the MC discretized version (7.16). Even worse, since we
subtract a convex function from a convex function, it is not guaranteed that the resulting
function is convex. We obtain such an example if we assume that L := 2, m1 = m2 := 1,
S1(ω1,1) := S2(ω1,2) := 0 and S1(ω1,2) := I. We further assume that yd := 0. The cost
function is then

J(u) =
1

2

(
‖yd‖2 − ‖u− yd‖2 + ‖yd‖2

)
+
α

2
‖u‖2 =

α− 1

2
‖u‖2,

which is strictly concave if α < 1 and in this case does not have a minimizer. Hence, the
problem (7.33) is ill–posed. We write down the first order necessary optimality conditions
of (7.33) (

αI +
L∑
`=1

1

m`

m∑̀
i=1

[
S∗` (ωi,`)S`(ωi,`)− S∗`−1(ωi,`)S`−1(ωi,`)

])
ûMLMC
L

=
L∑
`=1

1

m`

m∑̀
i=1

[
S∗` (ωi,`)− S∗`−1(ωi,`)

]
yd.

Here the operator on the left may not be invertible since even in the finite dimensional
case the difference of two positive definite matrices is not necessarily positive definite. For
the example in this remark, we have to solve

(α− 1)ûMLMC
2 = 0,

which does not have a unique solution for α = 1 and for α < 1 we compute the maximizer
instead of the minimizer. Therefore, the naive application of MLMC is difficult to analyse
since with positive probability we obtain an ill–posed minimization problem. �



190 Chapter 7 A multilevel approach for the risk neutral optimal control problem

The basic idea of MLC is to apply the MLMC telescoping sum idea to the control. We
rewrite uL as follows

uL =
L∑
`=1

u` − u`−1 =
L∑
`=1

δ`, (7.34)

where we define u0 := 0. We use the system (7.10) for ` and ` − 1 to show that the
increments δ` := u` − u`−1 satisfy

B`δ` = (αI +Q`)u` − (αI +Q`)u`−1

= f` − (αI +Q`−1)u`−1 + (Q`−1 −Q`)u`−1

= f` − f`−1 − (Q` −Q`−1)u`−1.

We use the difference notation ∆f` := f` − f`−1 and ∆Q` := Q` −Q`−1 to arrive at

B`δ` = ∆f` −∆Q`u`−1. (7.35)

Here we tacitly defined S0 := 0 and S∗0 := 0 and thus f0 := 0 andQ0 := 0. We approximate
(7.35) using MC in a recursive fashion(

αI +
1

m`

m∑̀
i=1

S∗` (ωi,`)S`(ωi,`)

)
δ̂` =

1

m`

m∑̀
i=1

(S∗` (ωi,`)− S∗`−1(ωi,`))yd

−

(
1

m`

m∑̀
i=1

(S∗` (ωi,`)S`(ωi,`)− S∗`−1(ωi,`)S`−1(ωi,`))

)
ûMLC
`−1 .

We abbreviate this as follows

B̂`δ̂` = ∆f̂` −∆Q̂`û
MLC
`−1 . (7.36)

The controls ûMLC
` are defined as MC approximation of (7.34) with the help of δ̂`

ûMLC
` :=

∑̀
j=1

δ̂j. (7.37)

Importantly, we assume that samples are independent across levels in the sense that
∆Q̂`,∆f̂` are independent of ∆Q̂j,∆f̂j if ` 6= j. However, the increments δ̂` are not

independent w.r.t. each other, since they depend on ûMLC
`−1 and thus in (7.37) on δ̂`−1.

This is a key difference compared to the standard MLMC estimator and makes the error
analysis more complicated.
We outline the advantages of the MLC approach. First of all, the system (7.36) is always

invertible and in fact, uses the same operator B̂` as MC in (7.15). Secondly, we have a
variance reduction for both terms in the right–hand side of (7.36) since the differences

are of order 2−γ`. For a sampling based method the error δ̂`− δ` is then of order 2−γ`/m`

for all ` ∈ {1, . . . , L} and thus we need fewer samples on fine grids. We write down the
corresponding optimal control problem to further explain the main idea.

Remark 7.17 (MLC optimal control problem). We rewrite the optimality conditions
(7.35) to redefine the desired state

B`δ` = E
[
S∗`
[(
I − (S∗` )

−1S∗`−1

)
yd − (S∗` )

−1
(
S∗`S` − S∗`−1S`−1

)
u`−1

]]
= E[S∗` yd,`], (7.38)
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where the updated desired state yd,` is defined accordingly

yd,` :=
(
I − (S∗` )

−1S∗`−1

)
yd − (S∗` )

−1
(
S∗`S` − S∗`−1S`−1

)
u`−1.

This expression is well defined if (S∗` )
−1S∗`−1 is well defined, which may or may not be

true. It is straightforward to verify that (7.38) are the necessary and sufficient optimality
conditions of

min
δ∈U

J(δ) :=
1

2
E
[
‖y`(δ)− yd,`‖2

]
+
α

2
‖δ‖2

such that P–a.s. y`(δ, ω) = S`(ω)δ,
(7.39)

where the desired state is now random and depends on the optimal control on the previous
levels. We thus have to solve L consecutive convex optimal control problems starting with
the coarsest level. We now discretize the expectation in (7.39) with MC and replace u`−1

with ûMLC
`−1 , which leads to the following optimal control problem for the `–th level

min
δ̂∈U

J(δ̂) :=
1

2

1

m`

m∑̀
i=1

‖y`(δ̂, ωi,`)− ŷd,`(ωi,`)‖2 +
α

2
‖δ̂‖2

such that y`(δ̂, ωi,`) = S`(ωi,`)δ̂ for all i ∈ {1, . . . ,m`},
(7.40)

where the desired state is defined as

ŷd,`(ω) :=
(
I − S∗` (ω)−1S∗`−1(ω)

)
yd − S∗` (ω)−1

(
S∗` (ω)S`(ω)− S∗`−1(ω)S`−1(ω)

)
ûMLC
`−1 .

As it turns out, the optimality conditions of (7.40) are exactly (7.36). Importantly, the
optimal control problem (7.40) remains convex. �

We now outline why this approach leads to a variance reduction. Thus assume for a
moment that the random bound q ∈ L∞ in Assumption 7.6 and that the same bounds
hold for the inverse (S∗` )

−1, which we also assume exists. Previous error estimates in this
chapter often include the factor ‖yd‖2 and the same bounds also holds for (7.39) if we
replace ‖yd‖2 with ‖yd,`‖2 since q ∈ L∞. Then a computation using Young’s inequality,
Assumption 7.6 and (7.13) shows

E
[
‖yd,`‖2

]
≤ E

[(
‖(S∗` )−1‖‖

(
S∗` − S∗`−1

)
yd −

(
S∗`S` − S∗`−1S`−1

)
u`−1‖

)2
]

≤ cE
[
‖
(
S∗` − S∗`−1

)
yd‖2 + ‖

(
S∗`S` − S∗`−1S`−1

)
u`−1‖2

]
≤ c2−2γ`‖yd‖2.

We further replace ûMC
` with δ̂`, u` with δ` and assume that ûMLC

`−1 = u`−1 to obtain an
improved bound from (7.19)

E
[
‖δ̂` − δ`‖2

]
≤ c

1

m`

E
[
‖yd,`‖2

]
≤ c

2−2γ`

m`

‖yd‖2.

This is the same error rate as for the standard MLMC estimator in (3.58) if V[Z` − Z`−1] ≤
c2−2γ`. We therefore expect that ûMLC

L has similar complexity than the standard MLMC
estimator. Notice that these results only hold if an exact approximation of u`−1 is available
but the approximation error of this quantity is also reduced using the same idea on a
coarser level. These results also require stronger assumptions on the solution operator,
its adjoint and the inverse of it, which we will not require in the remaining section.
The error analysis for the MLC estimator is more challenging than for the MLMC estima-
tor since the increments δ̂` are not independent of each other. We first provide a technical
lemma which estimates some terms required for the error analysis.
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Lemma 7.18 (Error estimates). Let α > 0 and Assumption 7.6 be true. Then for all
` ∈ {1, . . . , L}

E
[
‖∆f̂` −∆f`‖2

]
≤ c

2−2γ`

m`

‖yd‖2, (7.41)

E
[
‖∆Q̂`(û

MLC
`−1 − u`−1)‖2

]
≤ c2−2γ`E

[
‖ûMLC

`−1 − u`−1‖2
]
, (7.42)

E
[
‖[B̂−1

` −B`
−1](ûMLC

`−1 − u`−1)‖2
]
≤ c

1

m`

E
[
‖ûMLC

`−1 − u`−1‖2
]
, (7.43)

E
[
‖(∆Q̂` −∆Q`)u`−1‖2

]
≤ c

2−2γ`

m`

‖yd‖2, (7.44)

E
[
‖(Q̂` −Q`)δ`‖2

]
≤ c

2−2γ`

m`

‖yd‖2. (7.45)

Proof. (7.41): We use a standard MC error estimate and Assumption 7.6

E
[
‖∆f̂` −∆f`‖2

]
=

V
[
(S∗` − S∗`−1)yd

]
m`

≤
E
[
‖(S∗` − S∗`−1)yd‖2

]
m`

≤ E[q2]2−2γ`‖yd‖2

m`

.

(7.42): We use the triangle inequality and Assumption 7.6 to conclude that for all v ∈ U

‖(S∗`S` − S∗`−1S`−1)v‖ ≤ ‖S∗` (S` − S`−1)v‖+ ‖(S∗` − S∗`−1)S`−1v‖ ≤ 2q22−γ`‖v‖. (7.46)

We remark that S∗` (ωi,`)S`(ωi,`) − S∗`−1(ωi,`)S`−1(ωi,`) is independent of ûMLC
`−1 − u`−1 and

thus we estimate

‖∆Q̂`(û
MLC
`−1 − u`−1)‖ ≤ 1

m`

m∑̀
i=1

‖
[
S∗` (ωi,`)S`(ωi,`)− S∗`−1(ωi,`)S`−1(ωi,`)

]
)(ûMLC

`−1 − u`−1)‖

≤ c
1

m`

m∑̀
i=1

q2(ωi,`)2
−γ`‖ûMLC

`−1 − u`−1‖

= c

(
1

m`

m∑̀
i=1

q2(ωi,`)

)
2−γ`‖ûMLC

`−1 − u`−1‖.

We square this expression, take the expectation, use the independence of ûMLC
`−1 and q, the

Cauchy–Schwarz inequality and Assumption 7.6

E

( 1

m`

m∑̀
i=1

q2(ωi,`)

)2

2−2γ`‖ûMLC
`−1 − u`−1‖2

 ≤ 2−2γ`E
[
q4
]
E
[
‖ûMLC

`−1 − u`−1‖2
]

≤ c2−2γ`E
[
‖ûMLC

`−1 − u`−1‖2
]
.

(7.43): This expression is the difference of two solutions of a linear system with the same
right–hand side. We apply Lemma 7.5 with

A = αI +Q`, ∆A = Q̂` −Q`,

b = ûMLC
`−1 − u`−1, ∆b = 0,

x = B`
−1(ûMLC

`−1 − u`−1), ∆x = [B̂−1
` −B`

−1](ûMLC
`−1 − u`−1).
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The perturbation result (7.9) reads

‖[B̂−1
` −B`

−1](ûMLC
`−1 − u`−1)‖ ≤ ‖B̂−1

` ‖‖(Q̂` −Q`)B`
−1(ûMLC

`−1 − u`−1)‖
≤ c‖(Q̂` −Q`)B`

−1(ûMLC
`−1 − u`−1)‖.

Here we used the bound ‖B̂−1
` ‖ ≤ 1/α ≤ c. We square this and take the conditional

expectation noting that Q̂` is independent of ûMLC
`−1 to obtain

E
[
‖(Q̂` −Q`)B`

−1(ûMLC
`−1 − u`−1)‖2|ûMLC

`−1

]
= V

[
Q̂`B`

−1(ûMLC
`−1 − u`−1)|ûMLC

`−1

]
.

We use the standard MC variance estimate, Assumption 7.6 and the bound ‖B`
−1‖ ≤ c

V
[
Q̂`B`

−1(ûMLC
`−1 − u`−1)|ûMLC

`−1

]
=

V
[
S∗`S`B`

−1(ûMLC
`−1 − u`−1)|ûMLC

`−1

]
m`

≤
E
[
‖S∗`S`B`

−1(ûMLC
`−1 − u`−1)‖2|ûMLC

`−1

]
m`

≤
E[q4]‖B`

−1(ûMLC
`−1 − u`−1)‖2

m`

≤ c
‖ûMLC

`−1 − u`−1‖2

m`

.

Now use the law of total expectation E[·] = E
[
E
[
·|ûMLC

`−1

]]
to conclude (7.43).

(7.44): We use the standard MC variance estimate, (7.46) with v = u`−1 ∈ U and
Assumption 7.6

E
[
‖(∆Q̂` −∆Q`)u`−1‖2

]
= V

[
(∆Q̂` −∆Q`)u`−1

]
=

V
[
(S∗`S` − S∗`−1S`−1)u`−1

]
m`

≤
E
[
‖(S∗`S` − S∗`−1S`−1)u`−1‖2

]
m`

≤ c
E[q4]2−2γ`‖u`−1‖2

m`

≤ c
2−2γ`

m`

‖u`−1‖2.

We then use (7.13) to bound u`−1 in the previous equation

‖u`−1‖2 ≤ c‖yd‖2.

(7.45): We use a MC variance estimate and Assumption 7.6

E
[
‖(Q̂` −Q`)δ`‖2

]
= V

[
Q̂`δ`

]
=

V[S∗`S`δ`]

m`

≤ E[‖S∗`S`δ`‖2]

m`

≤ E[q4]

m`

‖δ`‖2.

The result then follows since q has bounded fourth moment and the error estimate (7.14)
shows

‖δ`‖ = ‖u` − u`−1‖ ≤ ‖u` − u‖+ ‖u`−1 − u‖ ≤ c2−γ`‖yd‖.

The next step is again a technical lemma that derives an expression for a mixed term.
This estimate is needed later to ensure that the MSE decays fast enough.



194 Chapter 7 A multilevel approach for the risk neutral optimal control problem

Lemma 7.19 (Mixed estimate). Let α > 0 and Assumption 7.6 be true. Then for all
` ∈ {1, . . . , L} the estimate holds

|E
[
(δ̂` − δ`, ûMLC

`−1 − u`−1)
]
| ≤ c

2−2γ`

m`

‖yd‖2 + c

(
1

m`

+ 2−γ`
)
E
[
‖ûMLC

`−1 − u`−1‖2
]
. (7.47)

Proof. We use the definition of δ̂` and δ` in (7.35) and (7.36) to obtain

δ̂` − δ` = B̂−1
` (∆f̂` − Q̂`û

MLC
`−1 )−B`

−1(∆f` −∆Q`u`−1)

− B̂−1
` (∆f` −∆Q`u`−1) + B̂−1

` (∆f` −∆Q`u`−1)

= B̂−1
` (∆f̂` −∆f`)− B̂−1

` (∆Q̂`û
MLC
`−1 −∆Q`u`−1)

− (B`
−1 − B̂−1

` )(∆f` −∆Q`u`−1)

= B̂−1
` (∆f̂` −∆f`)− B̂−1

` (∆Q̂`û
MLC
`−1 −∆Q̂`u`−1)

− B̂−1
` (∆Q̂`u`−1 −∆Q`u`−1)− (B`

−1 − B̂−1
` )(∆f` −∆Q`u`−1)

= (I) + (II) + (III) + (IV ).

(7.48)

Let us now estimate the term (I). We use that ûMLC
`−1 is independent of f̂` to insert the

mean zero expression B`
−1(∆f̂` −∆f`) into the scalar product

E
[
(B̂−1

` (∆f̂` −∆f`), û
MLC
`−1 − u`−1)

]
= E

[
([B̂−1

` −B`
−1](∆f̂` −∆f`), û

MLC
`−1 − u`−1)

]
.

We use that adjoints satisfy (A + B)∗ = A∗ + B∗, (A−1)∗ = (A∗)−1 and that both B̂−1
`

and B`
−1 are self–adjoint. We combine this with the Cauchy–Schwarz inequality

|E
[
([B̂−1

` −B`
−1](∆f̂` −∆f`), û

MLC
`−1 − u`−1)

]
|

= |E
[
(∆f̂` −∆f`, [B̂

−1
` −B`

−1](ûMLC
`−1 − u`−1))

]
|

≤ E
[
‖∆f̂` −∆f`‖2

]1/2

E
[
‖[B̂−1

` −B`
−1](ûMLC

`−1 − u`−1)‖2
]1/2

.

We now use (7.41) and (7.43) to conclude

|E
[
((I), ûMLC

`−1 − u`−1)
]
| ≤ c

2−γ`

m`

‖yd‖E
[
‖ûMLC

`−1 − u`−1‖2
]1/2

. (7.49)

Let us now estimate (II). We use the bound ‖B̂−1
` ‖ ≤ c and the Cauchy–Schwarz in-

equality

|E
[
((II), ûMLC

`−1 − u`−1)
]
| = |E

[
(B̂−1

` ∆Q̂`(û
MLC
`−1 − u`−1), ûMLC

`−1 − u`−1)
]
|

≤ cE
[
‖∆Q̂`(û

MLC
`−1 − u`−1)‖2

]1/2

E
[
‖ûMLC

`−1 − u`−1‖2
]1/2

.

We combine this with (7.42) to conclude

|E
[
((II), ûMLC

`−1 − u`−1)
]
| ≤ c2−γ`E

[
‖ûMLC

`−1 − u`−1‖2
]
. (7.50)

Let us continue with the term (III). We use that B`
−1(∆Q̂`u`−1 −∆Q`u`−1) has mean

zero and is independent of ûMLC
`−1 to conclude

E
[
((III), ûMLC

`−1 − u`−1)
]

= E
[
(−B̂−1

` (∆Q̂`u`−1 −∆Q`u`−1), ûMLC
`−1 − u`−1)

]
= E

[
([B`

−1 − B̂−1
` ](∆Q̂` −∆Q`)u`−1, û

MLC
`−1 − u`−1)

]
.
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Similarly to the calculation of (I), we use the properties of the adjoints and inverses.
Then we apply the Cauchy–Schwarz inequality

|E
[
([B`

−1 − B̂−1
` ](∆Q̂` −∆Q`)u`−1, û

MLC
`−1 − u`−1)

]
|

= |E
[
((∆Q̂` −∆Q`)u`−1, [B`

−1 − B̂−1
` ](ûMLC

`−1 − u`−1))
]
|

≤ E
[
‖(∆Q̂` −∆Q`)u`−1‖2

]1/2

E
[
‖[B`

−1 − B̂−1
` ](ûMLC

`−1 − u`−1)‖2
]1/2

.

We use (7.43) and (7.44) to bound this term

|E
[
((III), ûMLC

`−1 − u`−1)
]
| ≤ c

2−γ`

(m`)1/2
‖yd‖

E
[
‖ûMLC

`−1 − u`−1‖2
]1/2

(m`)1/2

= c
2−γ`

m`

‖yd‖E
[
‖ûMLC

`−1 − u`−1‖2
]1/2

.

(7.51)

We now derive an expression for (IV ). A calculation and B`
−1(∆f`−∆Q`u`−1) = δ` from

(7.35) shows

(IV ) = [B̂−1
` −B`

−1](∆f` −∆Q`u`−1) = B̂−1
` [B` − B̂`]B`

−1(∆f` −∆Q`u`−1)

= B̂−1
` (Q` − Q̂`)δ`.

We use that B`
−1(Q`− Q̂`)δ` has mean zero and is independent of ûMLC

`−1 , which allows us
to subtract it

E
[
((IV ), ûMLC

`−1 − u`−1)
]

= E
[
(B̂−1

` (Q` − Q̂`)δ`, û
MLC
`−1 − u`−1)

]
= E

[
([B̂−1

` −B`
−1](Q` − Q̂`)δ`, û

MLC
`−1 − u`−1)

]
.

Similarly to before, use the properties of adjoints and the Cauchy–Schwarz inequality

|E
[
([B̂−1

` −B`
−1](Q` − Q̂`)δ`, û

MLC
`−1 − u`−1)

]
|

= |E
[
((Q` − Q̂`)δ`, [B̂

−1
` −B`

−1](ûMLC
`−1 − u`−1))

]
|

≤ E
[
‖(Q` − Q̂`)δ`‖2

]1/2

E
[
‖[B̂−1

` −B`
−1](ûMLC

`−1 − u`−1)‖2
]1/2

.

We use (7.43) and (7.45) to bound this

|E
[
((IV ), ûMLC

`−1 − u`−1)
]
| ≤ c

2−γ`

m`

‖yd‖E
[
‖ûMLC

`−1 − u`−1‖2
]1/2

. (7.52)

We combine (7.48) with (7.49), (7.50), (7.51) and (7.52) to obtain

|E
[
(δ̂` − δ`, ûMLC

`−1 − u`−1)
]
| ≤ |E

[
((I), ûMLC

`−1 − u`−1)
]
|+ |E

[
((II), ûMLC

`−1 − u`−1)
]
|

+ |E
[
((III), ûMLC

`−1 − u`−1)
]
|+ |E

[
((IV ), ûMLC

`−1 − u`−1)
]
|

≤ c
2−γ`

m`

‖yd‖E
[
‖ûMLC

`−1 − u`−1‖2
]1/2

+ c2−γ`E
[
‖ûMLC

`−1 − u`−1‖2
]
.
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The result (7.47) now follows from Young’s inequality

2−γ`

m`

‖yd‖E
[
‖ûMLC

`−1 − u`−1‖2
]1/2

= ‖yd‖
2−γ`

(m`)1/2

(
E
[
‖ûMLC

`−1 − u`−1‖2
]

m`

)1/2

≤ c‖yd‖2 2−2γ`

m`

+ c
E
[
‖ûMLC

`−1 − u`−1‖2
]

m`

.

Before we continue, we verify that the increment δ̂` has bounded second moment and
satisfies an error estimate.

Lemma 7.20 (Bound and error estimate for δ̂`). Let α > 0 and Assumption 7.6 be true.

Then for all ` ∈ {1, . . . , L} the increments δ̂` have bounded second moment and satisfy
the error estimate

E
[
‖δ̂`‖2

]
≤ c2−2γ`(‖yd‖2 + E

[
‖ûMLC

`−1 − u`−1‖2
]
), (7.53)

E
[
‖δ̂` − δ`‖2

]
≤ c2−2γ`

(
1

m`

‖yd‖2 + E
[
‖ûMLC

`−1 − u`−1‖2
])
. (7.54)

Proof. We first show (7.54). We use the perturbation result (7.9) with

A = αI +Q`, ∆A = Q̂` −Q`,

b = ∆f` −∆Q`u`−1, ∆b = ∆f̂` −∆Q̂`û
MLC
`−1 −∆f` + ∆Q`u`−1,

x = δ`, ∆x = δ̂` − δ`.

We combine this with the triangle inequality and the bound ‖B̂−1
` ‖ ≤ c

‖δ̂` − δ`‖ ≤ ‖B̂−1
` ‖(‖(Q̂` −Q`)δ`‖+ ‖∆f̂` −∆f`‖+ ‖∆Q̂`û

MLC
`−1 −∆Q`u`−1‖)

≤ c(‖(Q̂` −Q`)δ`‖+ ‖∆f̂` −∆f`‖+ ‖∆Q̂`(û
MLC
`−1 − u`−1)‖+ ‖(∆Q̂` −∆Q`)u`−1‖).

We square this, apply the Cauchy–Schwarz inequality with (1, 1, 1, 1)T ∈ R4 and take the
expectation to conclude

E
[
‖δ̂` − δ`‖2

]
≤ 4c(E

[
‖(Q̂` −Q`)δ`‖2

]
+ E

[
‖∆f̂` −∆f`‖2

]
+ E

[
‖∆Q̂`(û

MLC
`−1 − u`−1)‖2

]
+ E

[
‖(∆Q̂` −∆Q`)u`−1‖2

]
).

These expressions are estimated in Lemma 7.18 from which we directly deduce (7.54). The
bound (7.53) follows using the triangle inequality and the Cauchy–Schwarz inequality

E
[
‖δ̂`‖2

]
≤ cE

[
‖δ̂` − δ`‖2

]
+ cE

[
‖δ`‖2

]
= cE

[
‖δ̂` − δ`‖2

]
+ c‖u` − u‖2 + c‖u`−1 − u‖2.

Now use the result (7.54), m` ≥ 1 and the error estimate (7.14) to obtain (7.53).

Lemma 7.20 allows us to derive an error estimate for the MLC estimator ûMLC
` as well as

a bound for the second moment of it.
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Theorem 7.21 (Bound and error estimate for ûMLC
` ). Let α > 0 and Assumption 7.6 be

true. Then for all L ∈ N the bound and error estimate hold

E
[
‖ûMLC

L ‖2
]
≤ c

(
1 +

L∑
`=1

2−2γ`

m`

L∏
j=`+1

[
1 + c

(
1

mj

+ 2−γj + 2−2γj

)])
‖yd‖2, (7.55)

E
[
‖ûMLC

L − uL‖2
]
≤ c

(
L∑
`=1

2−2γ`

m`

L∏
j=`+1

[
1 + c

(
1

mj

+ 2−γj + 2−2γj

)])
‖yd‖2. (7.56)

In particular, if the number of samples satisfy

L∑
`=1

1

m`

< c (7.57)

with a constant c independent of L, then it holds

E
[
‖ûMLC

L ‖2
]
≤ c‖yd‖2, (7.58)

E
[
‖ûMLC

L − uL‖2
]
≤ c

(
L∑
`=1

2−2γ`

m`

)
‖yd‖2. (7.59)

Proof. We use the recursive definitions uL = δL + uL−1 and ûMLC
L = δ̂L + ûMLC

L−1 together
with the properties of the scalar product to obtain

E
[
‖ûMLC

L − uL‖2
]
= E

[
‖δ̂L − δL‖2

]
+ 2E

[
(δ̂L − δL, ûMLC

L−1 − uL−1)
]

+ E
[
‖ûMLC

L−1 − uL−1‖2
]

≤ E
[
‖δ̂L − δL‖2

]
+ 2|E

[
(δ̂L − δL, ûMLC

L−1 − uL−1)
]
|+ E

[
‖ûMLC

L−1 − uL−1‖2
]
.

We now use Lemma 7.19 and Lemma 7.20 to obtain the recursion

E
[
‖ûMLC

L − uL‖2
]
≤ c0

2−2γL

mL

‖yd‖2 +

[
1 + c0

(
1

mL

+ 2−γL + 2−2γL

)]
E
[
‖ûMLC

L−1 − uL−1‖2
]
.

(7.60)
We explicitly use the constant c0 instead of c to verify that this constant does not depend
on L. We apply induction over L to verify

E
[
‖ûMLC

L − uL‖2
]
≤ c0

(
L∑
`=1

2−2γ`

m`

L∏
j=`+1

[
1 + c0

(
1

mj

+ 2−γj + 2−2γj

)])
‖yd‖2. (7.61)

Notice that E
[
‖ûMLC

0 − u0‖2
]

= 0 by definition and thus the recursion (7.60) for L = 1 is
valid. We use the induction hypothesis assuming that (7.61) is valid for L− 1

E
[
‖ûMLC

L − uL‖2
]
≤ c0

2−2γL

mL

‖yd‖2

+

[
1 + c0

(
1

mL

+ 2−γL + 2−2γL

)]
c0

(
L−1∑
`=1

2−2γ`

m`

L−1∏
j=`+1

[
1 + c0

(
1

mj

+ 2−γj + 2−2γj

)])
‖yd‖2

= c0
2−2γL

mL

‖yd‖2 + c0

(
L−1∑
`=1

2−2γ`

m`

L∏
j=`+1

[
1 + c0

(
1

mj

+ 2−γj + 2−2γj

)])
‖yd‖2

= c0

(
L∑
`=1

2−2γ`

m`

L∏
j=`+1

[
1 + c0

(
1

mj

+ 2−γj + 2−2γj

)])
‖yd‖2.
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Here we used that the empty product is equal to one for the last equation. This shows the
result (7.56) for all L. The infinite product converges to a finite value if the corresponding
sequence is summable, that is for a sequence of summable, non–negative numbers (an)∞n=1

we have

log

(
∞∏
n=1

(1 + an)

)
= log

(
lim

N→+∞

N∏
n=1

(1 + an)

)
= lim

N→+∞

N∑
n=1

log(1 + an)

=
∞∑
n=1

log(1 + an) ≤
∞∑
n=1

an < +∞.

We thus have to ensure that

L∑
`=1

(
1

m`

+ 2−γ` + 2−2γ`

)
≤ c

independently of L. This is satisfied if the additional assumption (7.57) is true and using
γ > 0 from Assumption 7.6. This shows (7.59). The remaining bounds (7.55) and (7.58)
can be proved similarly to (7.53) in Lemma 7.20 by bounding uL using (7.13).

We remark that (7.59) is equal to the bound of the variance of the MLMC estimator in
(3.58) by estimating V[Z` − Z`−1] ≤ c2−2γ`‖yd‖2. The Assumption (7.57) is not required
to obtain an error estimate. A simple and straightforward calculation using the triangle
and Cauchy–Schwarz inequality with (1, . . . , 1)T ∈ RL shows

E
[
‖ûMLC

L − uL‖2
]
≤ E

( L∑
`=1

‖δ̂` − δ`‖

)2
 ≤ ( L∑

`=1

12

)
E

[
L∑
`=1

‖δ̂` − δ`‖2

]

≤ L
L∑
`=1

E
[
‖δ̂` − δ`‖2

]
.

(7.62)

We are then able to bound these differences similarly to the proof of Lemma 7.20 and
obtain

E
[
‖ûMLC

L − uL‖2
]
≤ cL

(
L∑
`=1

2−2γ`

m`

L∏
j=`+1

[
1 + c2−2γj

])
‖yd‖2 ≤ cL

(
L∑
`=1

2−2γ`

m`

)
‖yd‖2.

This error is asymptotically larger due to the additional factor L and worsens the final
complexity by a logarithmic factor, however, a close inspection of the proof of Theo-
rem 7.21 and especially Lemma 7.18 shows that using this weaker bound simplifies the
analysis. This might be of interest if the function J in (7.1) is more complicated or the
solution operator S is non–linear.
Similar to the MC estimator we use the CG–method to iteratively solve (7.36) sequentially

for ` ∈ {1, . . . , L}. Therefore we define the CG–approximation of δ̂` as δ̂CG
` and the overall

solution on level L as

ûMLC,CG
L :=

L∑
`=1

δ̂CG
` .

We now derive the main complexity result of this chapter showing improved complexity
of MLC similarly to the MLMC complexity Theorem 3.49.
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Theorem 7.22 (Complexity of MLC). Let α > 0, Assumption 7.2 and Assumption 7.6
be true. Let the cost increase for both an application of S` and its adjoint S∗` be at most
geometric

W[S`] + W[S∗` ] ≤ c2γCost` for all ` ∈ {1, . . . , L}. (7.63)

Then for all ε ∈ (0, 1/e] there exists L and m1, . . . ,mL such that E
[
‖ûMLC,CG

L − u‖2
]
≤ ε2

with expected costs bounded by

W
[
ûMLC,CG
L

]
≤ c| log(ε)|


ε−2, if 2γ > γCost,

ε−2 log(ε)2, if 2γ = γCost,

ε−2− γCost−2γ

γ , if 2γ < γCost.

(7.64)

Proof. The proof is very similar to the proof of Theorem 7.14. We decompose the error

E
[
‖ûMLC,CG

L − u‖2
]
≤ 3E

[
‖ûMLC,CG

L − ûMLC
L ‖2

]
+ 3E

[
‖ûMLC

L − uL‖2
]

+ 3‖uL − u‖2.

The bias like term is smaller than ε2/9 if we choose L as in the proof of Theorem 7.14

L ≥ − log2(ε)

γ
+ c. (7.65)

We now choose the number of samples m` on level ` ∈ {1, . . . , L} as follows

m` := φ(ε)2−
(2γ+γCost)

2
`, φ(ε) :=


ε−2, if 2γ > γCost,

ε−2| log(ε)|, if 2γ = γCost,

ε−2− γCost−2γ

2γ , if 2γ < γCost.

(7.66)

We are able to apply Theorem 7.21, since the additional sample assumption (7.57) is
satisfied. To show this, we use the properties of the geometric sum and (7.65)

L∑
`=1

1

m`

=
1

φ(ε)

L∑
`=1

2
2γ+γCost

2
` ≤ c

2
(2γ+γCost)

2
(L+1)

φ(ε)
≤ c


ε1− γCost

2γ , if 2γ > γCost,

| log(ε)|−1, if 2γ = γCost,

1, if 2γ < γCost.

 ≤ c.

We then use (7.59) such that the variance like term satisfies

E
[
‖ûMLC

L − uL‖2
]
≤ c

L∑
`=1

2−2γ`

m`

= c
1

φ(ε)

L∑
`=1

2−2γ`+
2γ+γCost

2
` = c

1

φ(ε)

L∑
`=1

2
γCost−2γ

2
` ≤ cε2.

(7.67)
The last inequality is a calculation very similar to the proof of Theorem 3.31 for all three
cases. Finally, we take care of the iteration error, where we use the Cauchy–Schwarz
inequality with (1, . . . , 1)T ∈ RL to conclude

E
[
‖ûMLC,CG

L − ûMLC
L ‖2

]
= E

[
‖

L∑
`=1

(δ̂CG
` − δ̂`)‖2

]
≤ E

[(
L∑
`=1

12

)(
L∑
`=1

‖δ̂CG
` − δ̂`‖2

)]

= L
L∑
`=1

E
[
‖δ̂CG

` − δ̂`‖2
]
.

(7.68)
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Notice that Lemma 7.13 also holds for δ̂` instead of ûMC
` , since (7.15) and (7.36) have the

same left–hand side operator. We thus conclude that to reach ‖δ̂CG
` − δ̂`‖ ≤ cε/L and

thus E
[
‖ûMLC,CG

L − ûMLC
L ‖2

]
≤ ε2/9 the expected number of iterations n` on level ` is

bounded from (7.22)

E[n`] ≤ c(| log2(ε/L)|+ E
[
‖δ̂`‖2

]1/2

). (7.69)

We use (7.53), (7.59) with L−1, a calculation similarly to (7.67) and ε ∈ (0, 1/e] to bound
the increment

E
[
‖δ̂`‖2

]
≤ c2−2γ`

(
‖yd‖2 + E

[
‖ûMLC

L−1 − uL−1‖2
])
≤ c2−2γ`

(
1 +

L−1∑
`=1

2−2γ`

m`

)

≤ c2−2γ`

(
1 +

L∑
`=1

2−2γ`

m`

)
≤ c2−2γ`

(
1 + ε2

)
≤ c.

Now use (7.69), that L grows logarithmically w.r.t. ε in (7.65) and again ε ∈ (0, 1/e]

E[n`] ≤ c(| log2(ε)|+ | log2(L)|+ c) ≤ c(| log2(ε)|+ | log2(| log2(ε)|)|+ c) ≤ c| log2(ε)|.

This bound is independent of ` and thus the total costs are upper bounded using the
geometric cost increase (7.63) and (7.66)

W
[
ûMLC,CG
L

]
= E

[
L∑
`=1

n`m`(W[S`] + W[S∗` ])

]
≤ c

L∑
`=1

E[n`]m`2
γCost`

≤ c| log2(ε)|φ(ε)
L∑
`=1

2
(γCost−2γ)

2
`.

A straightforward calculation similar to the proof of Theorem 3.31 then shows the com-
plexity result (7.64). As a final remark we note that rounding never increases the asymp-
totic complexity, since the additional cost of rounding is of order at most | log2(ε)|ε−γCost/γ.
This is not surprising, since the rounding costs never dominate for 2γBias = γVar in (3.46)
and we have 2γ = 2γBias = γVar.

We conclude this section by remarking that MLC achieves the optimal complexity (up to
logarithmic factors) of | log2(ε)|ε−2 if the variance reduction is larger than the cost increase
2γ > γCost. This is in contrast to the standard MC estimator, which only achieves this
complexity for the exact sampling case γCost = 0.

Remark 7.23 (Removing the logarithmic factor). Similar to Remark 7.15 with the same

basic idea applied to δ̂CG
` for all ` ∈ {1, . . . , L}, we believe that we are able to remove

the logarithmic factor | log2(ε)|. Therefore, instead of requiring the expected number of
iterations to be equal to (7.69), we w.l.o.g. may assume that

E[n`] ≤ c(| log2(1/L)|+ E
[
‖δ̂`‖2

]1/2

) ≤ c(1 + | log2(L)|) ≤ c| log2(| log2(ε)|)|,

where we used that L is logarithmic w.r.t. ε in (7.65). We thus have replaced the
logarithmic factor | log2(ε)| with the much smaller | log2(| log2(ε)|)|. This additional factor
is a consequence of (7.68), where we applied the Cauchy–Schwarz inequality. We believe
that this leads to an estimate that is not sharp and thus to an additional factor L similarly
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to (7.62). The latter is itself is not sharp compared to the improved but technically more
challenging (7.59) without the extra L. If a similar improvement can be derived for (7.68),
then the additional factor | log2(| log2(ε)|)| can entirely be removed. For most practical
purposes the factor | log2(| log2(ε)|)| grows so slowly that it may be viewed as a constant
not worth the additional effort to remove it. �

7.4 Numerical experiments

We numerically verify some of the results stated in this chapter. As constraint we use the
elliptic boundary value problem from Section 2.3

−div(a(ω, x)∇y(ω, x)) = u(x), if x ∈ (0, 1)2,

y(x) = 0, if x ∈ ∂(0, 1)2,

where the diffusion coefficient a := exp(κ) is lognormal. Here κ ∼ N(0, C), where C is the
covariance operator with the Whittle–Matérn kernel with smoothness ν := 3/2, variance
σ2 := 1 and correlation length ` := 0.5. We furthermore use the Tikhonov regularization
parameter α := 1. We uniformly refine the finite element mesh starting at 9 nodes up to
level L := 8 with 16641 nodes. We compute reference solutions uRef on level ` = 1, . . . , 7
with a sufficiently large number of samples using the standard MC method. We define
and approximate the bias as follows

Bias(u`) := ‖u` − u‖ ≈ ‖uRef
` − uRef

7 ‖ for all ` ∈ {1, . . . , 6}

and extrapolate it for level ` = 7, 8 such that Bias(u`) := Bias(u`−1)/4. The sample
allocation for both the MC and MLC estimator is not straightforward to determine.
However, a computation using (7.10) and α = 1 shows

u = E[S∗(yd − Su)]. (7.70)

Here the control appears on the left and right–hand side. We eliminate the appearance
on the right–hand side to obtain the approximation

u` ≈ E[S∗` (yd − S`u)]. (7.71)

The MC estimator of this quantity with a single sample assuming a fixed u then gives the
covariance for `, j ∈ {1, . . . , L}

C`,j := E
[
(S∗` (yd − S`u)− E[S∗` (yd − S`u)], S∗j (yd − Sju)− E

[
S∗j (yd − Sju)

]
)L2

]
.
(7.72)

We use this as ad hoc definition for the covariance matrix which was computed using
N := 104 pilot samples. Formally, for any orthonormal basis (ψn)n∈N of L2(D) we collapse
the covariance between two random fields into a single value

C`,j =
∞∑
n=1

Cov
[
S∗` (yd − S`u), S∗j (yd − Sju)

]
(ψn, ψn).

We also use the pilot samples to verify the cost assumption

w` := W[S`] + W[S∗` ] ≤ c2γCost` for all ` ∈ {1, . . . , L}. (7.73)
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We plot the bias, the variance C`,`, the variance difference

V
[
ûMC
` − ûMC

`−1

]
≈ C`,` + C`−1,`−1 − 2C`−1,` (7.74)

as well as the costs in Figure 7.1. We see that the assumption of γCost = 2 is satisfied,
whereas the bias rate is close to γ = 2 and the variance difference rate is slightly smaller
than 2γ = 4. Hence it is safe to assume that γCost < 2γ and that the best complexity case
of ε−2 (ignoring logarithmic factors) holds for the MLC estimator. We conclude that the
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Figure 7.1: Ad hoc defined bias, variance C`,`, variance difference (7.74) of the right–
hand side in (7.71) and costs W[S`] + W[S∗` ] for all levels ` ∈ {1, . . . , L}. The reference
rates are drawn black.

cost assumption (7.73) as well as Assumption 7.6 is satisfied. This is not surprising, since
both Assumption 7.2 and Assumption 7.6 are satisfied for the elliptic PDE constraint due
to Theorem 2.34 respectively Theorem 2.39 and Theorem 2.40.
We define the idealized MSE to match the form of the standard MLMC estimator as
follows

IMSE(û`) := Bias(u`)
2 +

L∑
`=1

C`,` + C`−1,`−1 − 2C`,`−1

m`

.

Here the nominator of the fractions approximate V
[
ûMC
` − ûMC

`−1

]
due to (7.74). We now

require the variance part to be equal to the square of the bias on level `, that is

L∑
`=1

C`,` + C`−1,`−1 − 2C`,`−1

m`

= Bias(uL)2.

The standard MLMC sample allocation, see Theorem 3.46, is then used to compute
m1, . . . ,mL to minimize the cost. The sample allocation for the MC estimator is computed
similarly with CL,L/mL as variance part. The allocations are listed in Table 7.1. Here
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we remark that the sample allocation algorithm showed that MLC only reduces the costs
if the level is greater or equal to 4, otherwise the standard MC estimator is cheaper.
Note that we do not account for the iteration costs of solving linear systems. Instead, we
apply the CG–method until the residual has the norm 10−9, which exceeds the range of
the MSE that we care about. This removes the logarithmic factor in the MC complexity
Theorem 7.14 and MLC complexity Theorem 7.22. In practice, we observed that we
require three iterations of the CG–method to reach this accuracy, which is fast and a
result of the rather large α = 1. We thus have approximately four state and adjoint
solves, one for the right–hand side and three for the solution of the linear system. This
allows us to simply multiply the cost by a factor of four. The computed costs are then
defined as

4
L∑
`=1

m`(W[S`] + W[S∗` ]).

We plot the computed costs versus the idealized MSE for both MC and MLC in Figure 7.2.
The idealized MSE underestimates the true MSE, since we did not account for the bias
that is obtained by sampling

E
[
ûMC
`

]
6= u`.

and thus have
E
[
‖ûMC

` − u`‖2
]
6= V

[
ûMC
`

]
.

Remark 7.12 shows that the bias decays faster than the variance. A similar result should
also hold for the MLC estimator and thus the idealized MSE should be a reasonable metric
that can be used for the sample allocation.
We account for this by plotting the computed costs versus the actual MSE in the left
image of Figure 7.3. We compute the MSE with the help of the reference solution on level
L = 7 using 100 independent runs for both the MC and MLC estimator

MSE(û`) ≈
1

100

100∑
i=1

‖ûi` − uRef
7 ‖2. (7.75)

The reference solution on level 7 allows us to obtain numerical results only up to level 6.
This is rather unsatisfactory, however, computing a reference solution on level L = 8 with
MC is prohibitively expensive. In fact, the costs to compute the MC estimator on level 8 is
approximately two years, whereas the MLC estimator can be computed in less than three
days. Therefore, we run another experiment using a level 8 reference solution obtained
from the MLC estimator, which we call uRef

8 . This additional reference solution allows us
to compute the MSE on level 7 for the MLC estimator. The right plot of Figure 7.3 shows
these values. We conclude that the MLC estimator is a significant improvement over the
standard MC estimator. In particular, the cost of the MC estimator follows the predicted
costs of ε−3 in Theorem 7.14 to reach a MSE of ε−2, whereas the MLC estimator seems
to have the optimal cost rate of ε−2 in Theorem 7.22. Once again, we iterate the CG–
algorithm a fixed number of times and thus we do not measure the logarithmic factors.
We believe that this rate is visible rather late, since the constant in (7.56) is

L∏
j=`+1

[
1 + c

(
1

mj

+ 2−γj + 2−2γj

)]
.

The increase of this constant compared to a previous level is rather large for small levels
L since m1, . . . ,mL are typically small and 2−γL is comparatively large.
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Level ûMC
2 ûMC

3 ûMC
4 ûMLC

4 ûMC
5 ûMLC

5

2 2 - - - - -
3 - 27 - 401 - 4,749
4 - - 395 33 - 381
5 - - - - 4,495 80

Cost 0.0048s 0.08s 2.8s 1.6s 84s 21s

Level ûMC
6 ûMLC

6 ûMC
7 ûMLC

7 ûMC
8 ûMLC

8

3 - 190,864 - 3,151,628 - 51,381,086
4 - 15,289 - 252,453 - 4,115,744
5 - 3,211 - 53,018 - 864,354
6 173,982 499 - 8,238 - 134,290
7 - - 2,795,608 1,130 - 18,411
8 - - - - 44,777,906 2,667

Cost 3.6h 0.25h 264h 4.2h 729d 2.9d

Table 7.1: Sample allocation for the MC and MLC estimator on different levels. The
entries correspond to the number of samples the estimator uses on the respective level.
The costs correspond to the computed costs of the estimator, that is all samples of all
levels assuming three iterations of the CG–algorithm plus the computation of the right–
hand side. The costs are given in seconds (s), hours (h) or days (d). The estimator ûMC

1

only requires a single sample and costs approximately 0.0021 seconds. The estimators
ûMLC

2 and ûMLC
3 have larger variance than the corresponding MC estimators and are thus

not listed.
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Figure 7.2: Computed costs versus the idealized MSE of both the MC and MLC es-
timator on all levels. The idealized MSE does not account for any bias obtained from
sampling and thus has to understood as a lower bound for the true MSE.
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1 2 3 4 5 6 7
MC 0.54 0.93 1.15 1.25 1.19 2.24 -

MLC - - - 1.07 1.17 2.16 2.18

Table 7.2: Quotient of the true MSE divided by the idealized MSE for the MC and MLC
estimator on different levels.

Finally, we plot the true costs of our implementation w.r.t. the MSE in Figure 7.4. We
used a computer with four equally fast processors and thus the cost is cut by roughly a
quarter, i.e. 0.98 hours actual time used for a sample of ûMLC

7 versus the computed costs
of approximately 4.2 hours. This observation seems to be valid for datapoints on fine
levels but not for coarse levels. We believe that this is a result of our implementation
which is not very efficient for a small number of samples. In particular, we think that
we have sample independent fix costs of at least two seconds due to the parallelization
every time we solve a linear system. This affects the performance of the coarse estimators
ûMC

1 , . . . , ûMC
4 such that they have almost the same costs. The ûMC

4 is in fact cheaper than
ûMLC

4 contrary to the computed costs. The latter estimator uses two levels and thus has
to solve two linear systems, which means we pay the fix costs twice. The relative overhead
gets smaller as we increase the number of samples and thus the estimated costs closely
match the true costs on fine levels.
We compare how well the idealized MSE, which we use to compute the sample allocation,
approximates the true MSE. The quotient of the true MSE divided by the idealized MSE
is given in Table 7.2 and is roughly in the correct range. We believe that the larger values
> 2 are a consequence of an inaccurate value of the bias on level 6, which can be seen
by the kink from level 5 to 6 in Figure 7.1. Here the bias is smaller by a factor of 6.1
compared to the previous level instead of the expected value of slightly smaller than 4.
The bias on level 7 is then extrapolated by dividing the bias on level 6 by 4. Hence,
it seems reasonable that the idealized MSE assumes a bias that is too small and thus
underestimates the true MSE on level 6 and 7.
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Figure 7.3: The computed cost over 100 runs is plotted with thick markers for both
the MC and MLC estimator w.r.t. the MSE (7.75). The left and right lines with white
marker are the bounds of the region such that the error of 90 percent of the samples are
within this region. The left plot uses the MC reference solution on level 7 and the right
plot uses the MLC reference solution on level 8. Both images use the computed costs
listed in Table 7.1.
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Figure 7.4: True cost versus the MSE of both the MC estimator on level 1, . . . , 6 and
MLC estimator on level 4, . . . , 7. Each one of the 100 datapoints represents the error and
cost of one independently computed estimator. The lines show the average costs versus the
MSE, reference rates are drawn black. The MSE was computed using the MLC estimator
as reference and the true costs are in seconds for an actual implementation using four
processors.
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Chapter 8

Conclusion and outlook

Conclusion. We briefly summarize the main results of the thesis. We reformulated
the estimation of the mean of an output quantity of interest as linear regression problem
and used well–known methods to derive the normal equations and the variance minimal
BLUE. Afterwards, we introduced a cost constraint and optimized the sample allocation
to obtain the SAOB. This estimator has the smallest variance in the class of linear unbi-
ased estimators with a fixed budget. We furthermore derived slightly stronger results by
first optimizing the sample allocation and then choosing the coefficients of the respective
BLUE. The resulting estimator exists but is not necessarily unique. We showed that there
exists a sparse version of it in the sense that at most L model groups are used. We proved
that the SAOB achieves optimal asymptotically complexity in the class of linear unbiased
estimators. However, an exact expression for its complexity is very difficult to derive,
since the number of samples or the coefficients of the linear combination are given implic-
itly as a solution of an optimization problem. Nevertheless, we introduced the Richardson
extrapolation estimators to obtain upper bounds on the costs of the SAOB. We further
verified that the asymptotic cost of the SAOB is optimal for linear unbiased estimation.

Finally, we showed that variance reduction techniques can indirectly be applied to the
risk neutral optimal control problem. We pushed the MLMC discretization onto the
deterministic control which leads to a sequence of convex optimal control problems. We
verified that the resulting formulation is well posed and reduces the variance compared
to MC. A challenge of this approach was the analysis since the resulting estimators are
not unbiased.

The numerical experiments in this thesis verified our results. We showed that the Richard-
son extrapolation estimators, the SAOB and the MLC estimator are effective variance
reduction methods in the context of uncertainty quantification with PDEs.

We now give a short list of open questions, encountered problems and future research
directions in the context of this thesis.

Covariance matrix. It is unrealistic to assume that the model covariance matrix C
in (2.3) is known but the mean is not. We believe that this is the biggest drawback of
the BLUE and thus also of the SAOB. There are several possible approaches to obtain
an approximation of the covariance matrix, however, it is not clear how large the error of
such an estimator is.

The simplest solution is to use pilot samples to compute the sample covariance. These
pilot samples are then not used for the estimator. This approach clearly increases the cost,
however, we believe that in some scenarios this does not effect the asymptotic complexity.
Assume that the complexity of a single evaluation of all models satisfies

ε−γCost/γBias ≤ ε−2+δ

for some δ > 0, i.e. the evaluation of a sample of (Z1, . . . , ZL) is slightly cheaper than the
optimal complexity ε−2. Then we are able to spend an increasing amount of the budget
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of order ε−δ without worsening the asymptotic cost, that is

Cost = ε−γCost/γBias︸ ︷︷ ︸
Cost for rounding

+ ε−2︸︷︷︸
Cost for the estimator

+Npilotε
−γCost/γBias︸ ︷︷ ︸

Cost for pilot samples

≤ cε−2,

where Npilot = ε−δ is the number of pilot samples. This means that asymptotically the
number of pilot samples may be increased to infinity without worsening the asymptotic
complexity. Furthermore, if we choose Npilot = ε−δ/2, then the cost for the pilot samples
compared to the cost for the estimator is negligible. Therefore, if we are able to ap-
proximate the covariance matrix with Npilot samples sufficiently well, then the computed
SAOB with this matrix converges to the true SAOB. However, it is not straightforward to
verify that Npilot = ε−δ is sufficient to show that the sample covariance matrix converges
to the true covariance for ε → 0, since the covariance matrix changes if ε decreases due
to additional fine grid models. An error analysis for the SAOB with approximated co-
variance matrix also has to be conducted to make the above statements mathematically
sound. In particular, an error analysis of the problem in (5.22) w.r.t. perturbations in
the covariance matrix Ck and costs W k should be carried out.
The authors of [9] and [112] construct efficient multilevel estimators to compute the vari-
ance of a QoI. These approaches may be adapted to compute an even cheaper approxi-
mation of the covariance matrix compared to the sample covariance. However, similar to
the naive MLMC estimator in Chapter 7, a straightforward MLMC approximation of the
entries of the covariance matrix does not ensure that this approximation is positive semi–
definite. Hence, the corresponding optimization problem for the SAOB may be ill–posed.
Maybe similar methods to the one outlined in Chapter 7 can be used to push the MLMC
estimator to the coefficients β of the BLUE instead of the covariance matrix.
Aside from the asymptotic cost increase of the estimator, it is not clear how big the
constants in front of the costs for the pilot samples are. In particular, if few samples are
used, then the estimator may be overconfident, and we might assume that the correlation
is much higher than it truly is. This then leads to a bad estimator. It is of course
possible to avoid pilot samples or to reuse the pilot samples for the estimation, however,
this introduces a bias. Whether this bias is actually significant and has to be avoided or
can be fully ignored is not clear as of the writing of the thesis. This may also depend
on the particular estimation problem. We also did not conduct any conclusive numerical
experiments. If an unbiased estimator is desired, then clearly we are able to use the
estimator

µ̂α := µ̂1
α/2[Ĉ

2
] + µ̂2

α/2[Ĉ
1
].

Here the estimator µ̂1
α/2[Ĉ

2
] is the SAOB that uses the sample covariance matrix Ĉ

2

obtained from the samples of µ̂2
α/2 to compute its coefficients β and vice versa. This

approach ensures that the resulting estimator is unbiased, however it is not clear if and
by how much the variance increases.

Condition number of the covariance matrix. The condition of the covariance
matrix C is typically large. If the quantities ZL converge to the exact model Z, then
the covariance matrix C has, at least asymptotically, almost constant entries with values
approximately equal to V[Z]. Hence, there is an eigenvalue close to LV[Z] with eigenvector
consisting of entries that are all close to one. On the other hand, a variance reduction
can often be achieved by obtaining a small value of

βTCβ = V

[
L∑
`=1

β`Z`

]
≈ λmin
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with ‖β‖ = 1 and λmin denoting the smallest eigenvalue. Therefore, the larger the
achievable variance reduction, the smaller the smallest eigenvalue. Since the value of
V[Z` − Z`−1] converges to zero, λmin does so as well. Hence, the condition of C diverges
to +∞. Consequently, the better the variance reduction, the worse the condition of C.
We thus believe that the algorithms that depend on C−1 or some (C`)−1 may be unstable
or yield inaccurate results. This undesirable property also occurs for some Richardson
extrapolation methods. We verified that the coefficients of the SAOB converge to the
coefficients of the RE estimator in specific circumstances and thus we expect the SAOB
may suffer from the same inaccuracies. The significance of this problem can be reduced if
we fix the coupling number κ to a small value or we carefully choose a small subset of all
2L − 1 model groups. However, this results in a potentially decreased variance reduction
which may or may not be significant.

Hybrid estimators. The SAOB does not use any structural assumptions about the
QoI. In particular, the SAOB only requires the covariance matrix and model costs to
achieve a variance reduction. However, this generality comes at the cost of requiring an
estimate of the covariance matrix. The numerical experiments in Chapter 6 have shown
that the improvement of the SAOB over the MLMC and RE estimators is small if we are
in the asymptotic regime. In contrast, far away from this regime the SAOB, or in general
any BLUE, is able to provide significant improvements. Therefore, it may make sense to
construct a hybrid estimator as follows

µ̂MLMC + SAOB
L :=

L∑
`=Lcoarse+1

1

m`

m∑̀
i=1

(
Zi,`
` − Z

i,`
`−1

)
+ µ̂SAOB

Lcoarse
.

The SAOB here only estimates µLcoarse and thus only needs the covariance of the coarse
models Z1, . . . , ZLcoarse , which is in general cheap to obtain. At the same time, we use the
MLMC estimator for the high fidelity models, which does not require the full covariance
matrix. We thus use the SAOB in the regime of coarse models where it has the biggest
advantage over other methods. An open question is of course, that it is not clear how
to choose Lcoarse or how to increase Lcoarse if we want to increase the accuracy of the
estimator.

Regularization. Another approach would be to include some prior information for the
coefficients. As an example, we might add a regularization term to (5.22) in form of the
MLMC estimator

min
β

K∑
k=1

[
(βk)TCkβkW k

]1/2
+ αreg

L∑
k=1

[
(βk − βMLMC,k)TCk(βk − βMLMC,k)W k)

]1/2
such that

K∑
k=1

P kβk = α.

Here αreg is a regularization parameter, βMLMC,k the coefficients and S1, . . . , SL the model
groups of the MLMC estimator. Depending on the size of αreg we may be close to a MLMC
estimator or far away from it. In particular, the parameter αreg is allowed to contain some
information about the accuracy of the estimate for the covariance matrix. Ideally, if we do
not know much about the covariance matrix, which may be derived from error estimates,
the value αreg should be large and conversely, if the estimate of the covariance is very
accurate, the value of αreg should be small or zero. This approach ensures that the
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potentially inaccurate covariance matrix computed from only a few samples does not lead
to an inaccurate estimator.

Efficient algorithm to solve the sample allocation problem. The sample allo-
cation problem in Section 5.2 to compute m, or the equivalent problem to compute β
in Section 5.3 are both convex optimization problems. However, the number of variables
depends exponentially on the number of levels L if we do not restrict the coupling of
the models, that is κ = +∞. Therefore, it is not clear whether there is a polynomial
time algorithm (polynomial in L) that solves this problem. Nevertheless, the optimiza-
tion problem (5.22) exhibits some interesting local behaviour. Let us assume that some
iterative algorithm returns a suboptimal allocation that uses the model groups S1, . . . , SL

and we want to check whether it makes sense to use the model group SL+1. Then if for
all βL+1 the minimization problem

min
β1,...,βL

J(β) :=
L∑
`=1

(
W `(β`)TC`β`

)1/2

such that
L∑
`=1

P `β` = PL+1βL+1

(8.1)

has a minimum smaller than
(
WL+1(βL+1)TCL+1βL+1

)1/2
the SAOB does not use the

model group SL+1. This can be proven by contradiction, thus assume that the SAOB
does and write down this estimator as follows

µ̂SAOB
α = µ̂+

1

mL+1

mL+1∑
i=1

∑
`∈SL+1

βL+1
[`] Zi,L+1

` , (8.2)

where µ̂ is a suitable estimator. Now, the second part of this estimator is an unbiased
estimator for (PL+1βL+1)Tµ, however, the function J in (8.1) is the variance of another
SAOB with, by assumption, smaller variance then the estimator using only SL+1. Due to
the independence structure, we can replace the right estimator of (8.2) with the SAOB
obtained from (8.1) leading to a smaller variance and thus a contradiction. The scale
invariance now implies that the statement we made so far is equivalent to show that the
max-min problem

max
‖βL+1‖=1

min
β1,...,βL

J(β) :=
L∑
`=1

(
W `(β`)TC`β`

)1/2 −
(
WL+1(βL+1)TCL+1βL+1

)1/2

such that
L∑
`=1

P `β` = PL+1βL+1

(8.3)

has a maximizer strictly smaller than 0. As an example why this result might be useful,
assume that the MLMC estimator for µL has a smaller variance than the MC estimator
for µL using the same budget. Then, the SAOB never uses the model group that only
contains ZL. A possible research direction is to use this local property to exclude some
model groups that are not useful to reduce the variance. Then the optimization problem
may have a smaller number of variables instead of exponentially many.

Flat optimization surface. The numerical experiments in Section 6.5 for the true
costs showed that the variance of the compared estimators (except for MC) are all very
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similar. This is not surprising, since the variance reduction ensures that most of the costs
are on the coarse grids allowing a different number of fine grid evaluations, or use of
different model groups without worsening the overall costs too much. More specifically,
using the RE coefficients or coefficients close to it, the variance corresponding to the
model group SL with the high fidelity model is

(βL)TCLβLWL ≈ c2−(γVar−γCost)L. (8.4)

This is asymptotically for L → +∞ very small if γCost < γVar compared to the value of
the model group S1 which only consists of the coarsest model

(β1)TC1β1W 1 ≈ c.

For hierarchical models, the cost of the discretization increases geometrically, thus adding
or removing the models 1, . . . , L/2 from the model group SL, which contains the high
fidelity model, is not going to significantly change WL. Furthermore, adding or remov-
ing these models does not change the overall variance that much since (8.4) contributes
asymptotically nothing and the variance reduction rate γVar is often achieved with only
a few fine grid levels. Now observe that there are a total of 2L/2 possible combinations if
we keep the fine models ZL/2+1, . . . , ZL in SL and add or remove the models Z1, . . . , ZL/2.
The result is thus that there are exponentially many directions that lead to an almost
identical function value. However, this means that the function J we optimize over in
(5.22) is flat at the minimum. This often poses difficulties for standard numerical opti-
mization methods since the gradient becomes small and the Hessian ill–conditioned. This
can be mitigated by choosing to optimize only over a subset of all 2L − 1 model groups
and thus removing some flat direction. If a minimizer is found, then suitably adding or
removing some model groups could be used to obtain the global minimizer.

Extension to non–linear estimators. The author of [105] used the MFMC estimator
with a low fidelity model that is adaptively improved to reduce the variance. A similar
approach might also be viable for the BLUE. The MFMC estimator requires models that
are cheap and correlate well with the high fidelity model. Let us assume that V[Z] :=
V[Z`(θ)] := 1 where Z`(θ) is the low fidelity model and θ some model parameter. Then
we want to choose θ to minimize

1− ρ2 = 1− Cov[Z,Z`(θ)]
2 = (1− Cov[Z,Z`(θ)])(1 + Cov[Z,Z`(θ)])

≤ 2(Cov[Z,Z − Z`(θ)] ≤ 2(V[Z − Z`(θ)])1/2.

It is now straightforward to generalize this idea for the SAOB with multiple low fidelity
models. The optimization problem (5.22) then reads

min
β,θ

K∑
k=1

(
(βk)TCk(θ)βkW k(θ)

)1/2

such that
K∑
k=1

P kβk = eL.

(8.5)

Here the costs as well as the covariance matrix now depend on θ

C`,j(θ) = Cov[Z`(θ), Zj(θ)].



212 Chapter 8 Conclusion and outlook

The quantities Z1, . . . , ZL are potentially combined in a non–linear way since the cost
function is

K∑
k=1

(
(βk)TCk(θ)βkW k(θ)

)1/2
=

K∑
k=1

(
V

[∑
`∈Sk

βk[`]Z`(θ)

]
W k(θ)

)1/2

.

The pilot samples, which we use to compute the sample covariance matrix, can now be
used to change the low fidelity models to reduce the variance. Let us assume that (8.5) has
a well–defined minimizer (β∗, θ∗). Then the SAOB with parameters (β∗, θ∗) achieves the
smallest variance in the class of unbiased estimators for µL that have equal or smaller cost,
depend linearly on β and non–linearly on θ and only use the QoIs Z1(θ), . . . , ZL(θ). In this
sense, the SAOB is still variance minimal and thus a sensible choice even if non–linearities
arise. Furthermore, similar to the standard SAOB, once the models Z1(θ∗), . . . , ZL(θ∗)
are fixed we require at most L model groups. A disadvantage may be that solving (8.5)
is difficult and impractical. Nevertheless, such an approach includes non–linear surrogate
models like Gaussian processes, support vector machines or neural networks.

Variance reduction for root-finding algorithms. The variance reduction technique
for the optimal control problem in Chapter 7 can be generalized to root-finding algorithms.
Assume that we want to find a deterministic θ ∈ Θ such that for a parametric random
variable Z : Θ× Ω→ X

E[Z(θ)] = 0.

The discretized condition with Z1, . . . , ZL then reads

E[Z`(θ`)] = 0 for all ` ∈ {1, . . . , L}.

We define δ` := θ` − θ`−1 and we linearise the left–hand side of the equation

E[Z`(θ`)] = E[Z`(θ`−1 + δ`)] = E[Z`(θ`−1)] + E[∇θZ`(θ`−1)]T δ` + o(‖δ`‖).

A single step of the Newton method, that is ignoring o(‖δ`‖), and assuming that θ`−1 is
known, solves for the Newton step s1

` with the starting iterate θ`−1

E[∇θZ`(θ`−1)]T s1
` = −E[Z`(θ`−1)] = 0− E[Z`(θ`−1)] = E[Z`−1(θ`−1)− Z`(θ`−1)]. (8.6)

The next iteration of the Newton method then has to solve

E
[
∇θZ`(θ`−1 + s1

`)
]T
s2
` = E

[
Z`−1(θ`−1)− Z`(θ`−1 + s1

`)
]
.

A MC discretization method of the last equation now has a small variance if Z`−1(θ`−1)−
Z`(θ`−1 + s1

`) and s2
` is small. This follows, since (8.6) is a linear system similarly to the

system (7.35) in Chapter 7. However, we have to potentially use multiple Newton steps,
since the expression o(‖δ`‖) might be large on coarse grids. This clearly complicates the
analysis.
This root-finding algorithm can obviously be used for the optimization problem

min
θ

E[Z(θ)],

where we apply Newton’s method to the first order optimality conditions

E
[
∇2
θZ(θ)

]
s = −E[∇θZ(θ)].
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Here ∇2
θZ denotes the Hessian of Z w.r.t. the parameter θ and s the Newton step. The

proposed method for stochastic optimization is a second order method and thus differs
from the well–known first order stochastic gradient descent methods, where multilevel
variance reduction was already incorporated [43, 51, 94, 95, 138].

Conditional value at risk and risk averse optimization problem. The conditional
value-at-risk (CVaR) (or average value-at-risk) describes the tail expectation of a random
variable and is a coherent risk measure, see [127, Chapter 6] or [110, Chapter 2] for more
information on risk measures. The authors of [119] show that computing the CVaR can
be formulated as non–smooth minimization problem

CVaR(Z) := min
t
t+

1

1− τ
E[(Z − t)+], (8.7)

where τ ∈ (0, 1) is the risk level and (x)+ := max{x, 0}. The optimal t∗ is called the
value-at-risk, whereas the minimum is the CVaR. The authors of [86] developed a method
to compute the cumulative distribution function using the MLMC estimator. An approx-
imation to the CVaR is then computed using a post processing step. Giles et al. [58]
used a multilevel estimator for a nested expectation involving probabilities and then use
a root-finding algorithm to obtain the value-at-risk and the CVaR. A future research di-
rection would be to compute the minimum in (8.7) with a similar approach we outlined
in Chapter 7, which of course has to be adapted to deal with the non–linearity of (·)+.
We write down the optimality conditions of (8.7) for t∗1, . . . , t

∗
L as follows

P(Z` ≤ t∗`) = τ.

Now linearise the left–hand side to introduce an update δ` = t∗` − t∗`−1 such that

P(Z` ≤ t∗`) = P(Z` ≤ t∗`−1 + δ`) = P(Z` ≤ t∗`−1) + p`(t
∗
`−1)δ` + o(δ`),

where p` is the probability density function of Z`. The condition for the Newton step s1
`

then reads

p`(t
∗
`−1)s1

` = τ − P(Z` ≤ t∗`−1) = P(Z`−1 ≤ t∗`−1)− P(Z` ≤ t∗`−1).

If δ` is not small enough, we use another Newton step

p`(t
∗
`−1 + s1

`)s
2
` = P(Z`−1 ≤ t∗`−1)− P(Z` ≤ t∗`−1 + s1

`).

We discretize the left and right–hand side using an MC estimator for the quantile and
density independently of t̂∗`−1, which we assume was already estimated. This then gives

p̂`(t̂
∗
`−1)ŝ` = P̂(Z`−1 ≤ t̂∗`−1)− P̂(Z` ≤ t̂∗`−1).

If the estimator for the density and the difference of the quantile estimators is sufficiently
small, then this should yield a variance reduction comparable to the standard MLMC
estimator.
The goal is of course to apply this method to a risk averse optimal control problem, which
is given as follows

min
u

J(u) = CVaR(‖y(u)− yd‖2) +
α

2
‖u‖2

such that P–a.s. y(u, ω) = S(ω)u.
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This problem without variance reduction was studied in [85].

Risk neutral optimal control problem with control constraints. The optimal
control problem in Chapter 7 does not have control constraints. With control constraints
this problem is given as follows

min
u

J(u) =
1

2
E
[
‖y(u)− yd‖2

]
+
α

2
‖u‖2

such that P–a.s. y(u, ω) = S(ω)u,

a ≤ u ≤ b,

(8.8)

where a ≤ b are two real–valued numbers or functions in L2(D). Now assume that the
solution u`−1, that is if we discretize S by S`−1, is known. Then for δ` := u` − u`−1 the
corresponding optimal control problem is

min
δ`

J(δ`) =
1

2
E
[
‖y`(u`−1 + δ`)− yd‖2

]
+
α

2
‖u`−1 + δ`‖2

such that P–a.s. y`(u`−1 + δ`, ω) = S`(ω)(u`−1 + δ`),

a ≤ u`−1 + δ` ≤ b.

We now rewrite this to obtain

min
δ`

J(δ`) =
1

2
E
[
‖y`(δ`)− ỹd‖2

]
+
α

2
‖u`−1 + δ`‖2

such that P–a.s. y`(δ`, ω) = S`(ω)δ`,

a− u`−1 ≤ δ` ≤ b− u`−1,

(8.9)

where ỹd := y`(u`−1)−yd. The difference compared to the original (8.8) is that the control
constraints depend on the previous level, ỹd is now random and the regularization term
includes u`−1. Crucially, if S` = S`−1, then the unique solution of (8.9) is δ` = 0. Hence
for S` ≈ S`−1 the norm of the increment is small and it is reasonable to expect that
the variance of the MC estimator for the mean in J in (8.9) is also small. The result is
that we should need few samples for a good approximation of δ`. An approach similar to
Chapter 7 could be used to solve this problem. For example, if a version of [73, Theorem
3.5] holds in our setting when replacing u with δ, h2 with the MC error, squaring and
changing the norm then gives

E
[
‖δ` − δ̂`‖2

]
≤ c

1

m`

(E
[
‖y`(δ`)‖2

]
+ ‖δ`‖2) ≤ c

2−2γ`

m`

.

It is not clear whether such a bound holds, however, if it does then we have a variance
reduction similar to the standard MLMC estimator.
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N L parameter of the ACV–KL estimator 64–67, 97, 98, 103

P Prolongation operator for vectors with zero extension 74–79, 81, 83–86, 89, 109, 110, 113–115,

117–120, 124–134, 136, 140, 141, 144, 209–211

P Probability measure 19–23, 25–27, 32, 34, 37, 39, 41, 42, 44, 45, 135–137, 146, 157, 167, 176, 178–181, 191, 213,

214

q Generic random bound 178–187, 191–193

qmean Number of terms of the RE expansion for the mean 146–148, 151–157, 160, 161, 167

qpath Number of terms of the pathwise RE expansion 146–148, 151–157, 159–162, 167, 168

Q Equal to E[S∗S], where S is the control to state map and S∗ its adjoint 178, 180, 181, 183,

184, 190, 192, 193, 195, 196

Q̂ MC estimator of Q 182–184, 186, 192–196

∆Q Difference of Q on two consecutive discretization levels 190, 192–196

∆Q̂ MC estimator of ∆Q 190, 192–196

R Restriction operator, removes entries of a vector 74, 76, 78–81, 83–85, 89, 93, 96, 109, 113, 115,

117–120, 133, 134

S Model group, a non–empty subset of {1, . . . , L} 74–78, 80–100, 102, 103, 106, 107, 110–112, 114–120,

122–126, 129, 131, 136, 137, 140, 142–145, 150, 158, 161, 172, 173, 209–212

S The control to state map of the optimal control problem 176, 178–193, 198–203, 213, 214

S∗ Adjoint of S 178–193, 199–203



List of Symbols 229

u Right–hand side of a PDE and control 33–35, 37, 38, 176–184, 187–203, 213, 214
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