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Abstract— An unstable grasp pose can lead to slip, thus
an unstable grasp pose can be predicted by slip detection. A
regrasp is required afterwards to correct the grasp pose in order
to finish the task. In this work, we propose a novel regrasp
planner with multi-sensor modules to plan grasp adjustments
with the feedback from a slip detector. Then a regrasp planner
is trained to estimate the location of center of mass, which
helps robots find an optimal grasp pose. The dataset in this
work consists of 1 025 slip experiments and 1 347 regrasps
collected by one pair of tactile sensors, an RGB-D camera and
one Franka Emika robot arm equipped with joint force/torque
sensors. We show that our algorithm can successfully detect and
classify the slip for 5 unknown test objects with an accuracy
of 76.88% and a regrasp planner increases the grasp success
rate by 31.0% compared to the state-of-the-art vision-based
grasping algorithm.

I. INTRODUCTION

Robotic grasping and manipulating of unknown objects
bring enormous profit to human society. Leveraging the
fast advances in deep learning and computer vision, robotic
grasping draws increasing interests from industries, e.g., the
Amazon Robotic Challenges [1]. However, to obtain a robust
performance, vision based methods have some limitations.
First, the currently proposed methods either learned from
realistic data [1]–[5] or from synthetic data [6]–[8], only
involve object shapes or geometries, ignoring many other
aspects such as material properties and object mass. Second,
the vision-only method is open-loop without information
of contacts with objects, thus the robustness is hard to
guarantee.

In consequence, one sensory modality cannot provide
enough context to plan a robust grasp. Several novel fu-
sion methods of multi-sensor modules are proposed, to
learn to detect object geometries [9], to help robotic grasp
planning [10]–[12], to execute manipulation tasks like peg
insertion [13]. Here we propose a novel algorithm with fusion
of multi-sensor modules for unknown objects.

Meanwhile, grasping and manipulating unknown objects
are essential for service robots in the future to execute
challenging tasks. For object manipulation, a stable grasp
is prerequisite but grasping objects with uncertainties of
surface textures [14], [15] and center of mass [16], [17], are
still challenging for robotic systems, such as some common
tools, e.g., axes and hammers which combine more than one
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material in one object, are hard to grasp and manipulate
because of uneven mass distributions towards simple robot
end effectors for example a two-jaw gripper.

A grasp is unstable if the grasp pose is not force-
closure/antipodal [18] or the grasp force is too small to
provide enough friction [16], resulting in insufficient con-
tact or slip. Slip detection has been studied since the late
1980s till now with either analytical methods [19]–[22] or
data-driven methods [23]–[27]. With the feedback of slip
detection, regrasp can be planned accordingly by applying
more grasp force [16], [28], when the grasp pose is stable
and the contact situation is unchanged. Or with a grasp
stability estimator, regrasp can be chosen by scoring the
regrasp poses [11], [29]. Regrasp planning using feedback
of slip detection has advantages of regulating grasp forces
and more robustness by identifying a bad grasp with a slip
detector instead of pure information from touch. To the best
of our knowledge, so far, there is no regrasp planner which is
based on the slip detection to plan a new stable grasp pose.

In this paper we propose a novel center-of-mass-based
robotic grasping algorithm using tactile-visual sensors to
grasp unknown objects. The grasp failures are found by slip
detection and then a regrasp is planned to improve grasp
stability. The proposed algorithm takes object shapes and
object mass into consideration using multi-sensor modules.
We close the loop of robotic grasping to make it more robust
with better performance. We employ Support Vector Machine
(SVM) and Long short-term Memory (LSTM) model to
extract the tactile features from tactile sensors to detect
slip as well as to plan regrasp, and we collect a dataset of
1039 slips and 1347 regrasps from 19 experimental objects.
To the best of our knowledge, this is the first work that
utilizes multi-sensor modules to plan regrasp based on slip
prediction.

We list the main contributions of our paper as follows:
1) A novel center-of-mass-based robust grasp planning

to grasp unknown objects. Then to close the loop of
grasping, a novel slip detection method is proposed
and a novel regrasp planner is trained to estimate the
grasp stability by estimating center of mass.

2) A multi-modal robotic grasping dataset contains tactile
sensors and RGB-D images for daily objects.

3) The proposed algorithm is proved to be feasible to
grasp daily objects with good performance, even for
a low-resolution tactile sensor with only 4 × 4 tactile
taxels.

II. RELATED WORK

Recently grasp planning has been extensively researched
in the past years in the robotic field [3], [10], [30]–[33].
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Analytical methods. These methods require an explicit
model of the objects and the robot kinematics. First, robots
need to “know” this object previously. To provide this
data, some precomputed databases such as Columbia Grasp
Database [34] of 3D objects have been established, where
each object is labeled with grasp quality metrics such as
grasp wrench space (GWS) analysis [35]. Afterwards the best
grasp is chosen out of the precomputed grasp poses with the
highest score according to the quality metric in [30]. Ana-
lytical method only works well if the real-world system fits
the assumption of an analytic model without uncertainties,
such as unseen objects, un-structured environment.

Empirical methods with vision sensors. Given sufficient
data, empirical methods are more robust against uncertainties
during robotic grasping [36]. Recently empirical methods
are able to predict grasp pose using RGB-D cameras by
either end-to-end learning methods [1], [3], [5], [31], [37] or
learning a grasp pose scoring function [6], [30], [32], [38].

Empirical methods with tactile sensors. Tactile sensing
in robotic grasping can be used to detect object material [39],
estimate force [11], detect slip [24], [26] and estimate grasp
stability. Considering the limitations of vision, researchers
are also discovering how much a tactile sensor can contribute
to the grasping performance in combination with vision.
Since accurate modeling of contact physics is complex and
parameter-dependent, analytical methods [19], [21], [40] are
not able to generalize to unknown objects. The tactile sensor
can contribute to the grasping performance in two ways,
either using the data collected during closing the robot end
effector to estimate grasp stability [10], [33], [41] or using
the data to detect slip [19], [21], [22], [26], [42].

Slip detection. Analytical slip detection methods detect
the derivative of the normal force in [19], [21], [40], estimate
the ratio between friction and the normal force according to
the Coulomb friction model by [19], [21], [22] as well as
analyze vibrations features [19]–[21].

Empirical methods become more popular in research be-
cause they can handle uncertainties in the environment and
can be generalized to unknown objects. Machine learning
methods are used e.g., Hidden Markov Models (HMM) [23],
SVM [25] and Random Forest [24], deeper architecture
of network e.g., convolutional network by treating tactile
feedback as images [42] and LSTM [26]. In most literature,
the experiment regarding slip detection is conducted to keep
either the object or the robot end effector static except [25],
which is not the typical scenarios for robot grasping appli-
cation.

Meanwhile, all methods mentioned above to predict grasp
stability are still open-loop. Without a regrasp planner, the
grasping process has to iteratively ”touch” objects until a
stable enough grasp pose is found.

Regrasp. One idea of tactile based regrasping is to directly
apply more force when the slip is detected only under
the assumption that the grasp pose is correct. There are
some model-based methods to adjust the grasping force
considering the feedback of tactile sensing [12], [16], [28],
[43].

A more common case for regrasping is the unstable grasp
pose. In this case, the first step is to correct the grasp pose.
The regrasp action is assumed as a translational action [29]
and the tactile imprints after the regrasp action can be

simulated and predicted. The proposed algorithm simplifies
the regrasp actions only as translational action, which is not
feasible when the object has shape of e.g., cylinder. Further,
an action-conditional model with inputs of vision, tactile and
grasp action is proposed to plan the regrasp [11].

All the proposed regrasping methods are based on the
tactile data collected by ”touching” the static object, which
has limitations for certain objects e.g., tool objects, where
the single tactile data may not be sufficient for a robust
prediction. Our proposed methods collected data by not only
”touching” but also ”lifting” the object.

To solve more specific problems in the domain of robotic
grasping, a center-of-mass based grasp planning method is
proposed by [17]. Using a force/torque sensor and a 3D range
sensor, the regrasp pipeline towards center of mass follows
the measurement of torque using a humanoid hand. Similarly,
a regrasp policy by adding force in [16] is introduced to grasp
objects with dynamic center of mass but only force instead of
the grasp pose needs to be adjusted. In advance, we design
a regrasp planner which predicts the grasp adaption based
on slip detection using two-jaw gripper where objects are
previously unknown.

III. PROBLEM STATEMENT

We attempt to solve the problem of planning a stable
grasp pose with a parallel-jaw gripper for unknown objects
laying with unknown mass distribution on the table inside
the robot workspace, using a commercial RGB-D camera,
tactile sensors and force/torque sensors.
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Robot Control
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Fig. 1. The whole pipeline of the proposed method.

IV. METHODS

The proposed grasping method is illustrated in Figure 1.

A. Antipodal Grasp Sampler
The object is segmented out in a depth image using

RANSAC plane segmentation method implemented in Point
Cloud Library (PCL) [44]. Afterwards with the object bound-
ary, an antipodal grasp sampler is implemented to sample
poses out of the object boundary and identify if the grasp
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Fig. 2. The structure of the slip detection model. The input tactile data is visualized with a 4× 4 GUI exhibiting the color intensity between black and
white. Then the sequential tactile data Xn

T is processed with 2 classifiers based on SVM and LSTM model to predict the slip. For SVM-based classifier,
the sequential data is first flattened in a one-dimensional vector and then classified with SVM classifier. For LSTM-based classifier, the sequential data is
processed with a LSTM layer of 75 memory cells. The extracted features are first fed into an average-pooling layer and then classified with two Fully
Connected (FC) layers.

pose is force-closure [18]. The friction coefficient is assumed
started with 0 and then it increases step by step to 1 with
interval of 0.2 until a certain number of grasp samples are
found. The depth value “z” of grasp pose is also sampled
between the depth of table and the depth of the grasp center
point. After choosing an initial grasp pose, the robot executes
the pose using an inverse kinematic solver and robot joint
motion control with the pipeline shown in Figure 1.

B. Slip Detector

We attempt to learn a classifier f(·) named slip detec-
tor, given the nth tactile sensor data sequence {Xn

T :
xn1, x

n
2, ...x

n
T } with a variable length T , which is collected

during lifting the objects. The slip is classified with four
classes {sno :“no slip”, scw :“clockwise rotational slip”,
sccw :“counterclockwise rotational slip”, stra :“translational
slip”}, the first case is detected by determining if the object
is still in contact with the tactile sensor and the other three
cases are predicted by our classifier.

st = f(Xn
T ), (1)

where st ∈ [sno, scw, sccw, stra].
We compare the performance of two classification models

to predict the slip.
1) Support Vector Machine: For the classification tasks,

Support Vector Machine (SVM) finds a decision func-
tion efficiently with the maximal margin [45]. Given
the training set of T examples xi with labels yi:
(x1, y1), (x2, y2), ..., (xT , yT ), where yk = 1 means xk
belongs to class A and yk = −1 stands for class B. The
algorithm finds the decision function f(x) [45]:

f(x) =

T∑
k=1

wkK(xk, x) + b. (2)

In Equation (2) wk is the weight, K is the kernel function, b
is the bias and xk is a support vector. For 3-class prediction
in our case, SVM draws decision function between each pair
of classes so in total 3. Here we compare two kernels namely
linear kernel and Radial Basis Function(RBF) kernel.

Other kernels such as polynomial and sigmoid kernels
are less applied considering their computational reasons and

more hyperparameters. Additionally, in [46] the sigmoid
kernel has very similar behavior like RBF kernel for certain
parameters.

2) LSTM: Long short-term memory (LSTM) is one re-
current neural network which has shown great performance
in processing sequential data, for example speech recogni-
tion [47], [48] or video recognition [49].

The main problems of recurrent neural networks are the
gradient vanish and gradient explosion problem [50]. During
the backpropagation, the gradient flow could vanish if it
is frequently multiplied by a small value and it could also
explode if often multiplied by a large value. The structure of
LSTM model with three gate units could protect the access
to the error flow, to enforce the error flow constant. Therefore
we can keep the value of gradient in a proper range to avoid
the problem of vanishing or exploding gradients [51].

Considering that the input tactile sequences may have
variable lengths thus we resize all the sequences with the
same length and then we employ a Masking layer from
Tensorflow Keras before LSTM layers to mask those time
steps for all downstream layers. The structure follows the
pipeline shown in Figure 2.

C. Learning a regrasp planner

We attempt to utilize multiple sensor modules such as
tactile sensors and torque sensors mounted on the robot arm
to learn the regrasp. The unstable grasps in our experiment
often lead to rotational slip because of too much torque
generated from gravity. In other word, the grasp pose is
far away from the center of mass. And the regrasp planner
attempts to predict a stable grasp pose which is as close as
possible to the center of mass.

The regrasp action is formalized as an one dimensional
adjustment. We use a variable µ to define the location of
center of mass (i.e., the regrasp pose) based on the current
grasp pose c and the object boundary point a visualized
in Figure 3. The object boundary points a and a′ can be
obtained by finding the points of intersection from the object
boundary and the grasp normal which is depicted as dashed
line in Figure 3. One of the object boundary points will be
chosen according to the rotational slip.
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Fig. 3. Given the current grasp pose c, the object boundary point a, the
regrasp pose is located with a variable called regrasp ratio µ. Regarding the
point a as the reference point, the distance between a and c is y and the
distance between a and b is x. Thus the regrasp ratio µ = x

y
.

Tactile Data

Fig. 4. The structure of the regrasp planner. The model takes the tactile
sequential data, torque/force data, regrasp ratio and grasp force as inputs
and it outputs the grasp robustness of the new grasp pose located according
to regrasp ratio.

The whole regrasp planner model is illustrated in Figure 4.
The first input is tactile sequential data with 32 features
from 2 tactile sensors. The second input is also a sequential
data of external forces and torques in 6-DOFs end effector
frame. The third input is one scalar variable, the regrasp
ratio described in Figure 3. The fourth input is also a scalar
variable, the adjustment of grasp force.

We apply the LSTM model again to process the tactile
sequential data and the torque/force data for regrasp planner.
For the third and the forth scalar inputs, we simply add
one dense layer to enlarge the output size. Afterwards the
two LSTM layers and two dense layers get concatenated in
the third dense layer along the axis of features. The whole
features are classified with the following two dense layers
and finally the grasp robustness is estimated.

With a learned regrasp planner, we sample the grasp ratio
and choose one with the highest predicted grasp robustness.
Given the object boundary point a and the first grasp pose
c, we can obtain the regrasp pose with equation :

poseb = posea + (posec − posea) ∗ µ. (3)

V. EXPERIMENTS

A. Experimental setup
The robotic grasping experiment is conducted using a

7-DOFs Franka Panda robot arm, equipped with a Franka
parallel-jaw gripper. The gripper is mounted with two tactile
sensors on the fingertip. The experiments are running on a

Sensor Housing

Silicon with 
4x4 taxels 

UDP 

Franka Gripper

Tactile Sensor

Fig. 5. The Franka gripper and the tactile sensors employed for our
experiment.

laptop installed with Ubuntu 18.04 with a 4.1 GHz Intel Core
i7-8750H 6-Core CPU and an NVIDIA GeForce GT 1060
graphic card.

The Franka parallel-jaw gripper in Figure 5 has one degree
of freedom with an adjustable grasp of 0.0cm to 8.0cm. The
force applied on gripper can be controlled in the range of
20 − 100N. The gripper during experiment is controlled to
close until the required force is reached.

A commercial RGB-D camera Realsense D415 is mounted
at a height of 80 cm above the table and we capture depth
images to sample the initial grasp poses.

B. Tactile and Torque Sensors
The tactile sensor in Figure 5 provided by the Kinfinity

UG1 is a 3D-printed low-resolution pressure tactile sensor
with 4×4 resolution, which provides the information about
pressure distribution on the contact surface. It consists of a
blue silicon cover and 4×4 tactile taxels embedded inside,
where each taxel has a spatial dimension of 4×4 mm.

The sensor output is transmitted through User Datagram
Protocol (UDP) protocol via Ethernet cable. An infinite
impulse response (IIR) digital filter is designed to remove
high-frequency noise in tactile data, which also are capable
for real-time applications.

The Franka Emika Panda platform uses 7-DOF joint
torque sensors. The force/torque data in end effector frame
is obtained by applying Jacobian matrix transformation.

The data is streamed at a frequency of 1 kHz and with
filtering we collect the data at a frequency of 50 Hz.

C. Experimental objects
The training dataset contains daily tool objects such as

axes and hammers, box-like objects and also a modularized
object, considering the limitations of the experimental hard-
ware and software.

With the limited number of experimental objects, we keep
the material of objects same by adding extra weight to
adjust the locations of center of mass as well as the object
mass, such as the different configurations for LEGO model
in Figure 6(c).

In total, there are 6 configurations for training, namely
(0, 0), (120, 0), (120, 120), (240, 0), (240, 120)g. Addition-
ally, a configuration of extra weights on left and right sides
with (60, 300)g is used for the test phase.

In summary, we collect totally 19 objects (originally 13
objects with different extra weights) including 12 objects of
daily use and a modularized object made of LEGO model to
generate 7 different configurations. We split those 19 objects
into 14 training objects and 5 test objects.

1http://kinfinity-solutions.com
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(a) The experimental objects (b) The tested objects.

``````

Weights

0g 120g

(c) The “open” LEGO

Weights

(d) Th “closed” LEGO.

Fig. 6. All objects used for our experiment. The objects are collected
from tools of daily use, box-like objects and a modularized object made
of LEGO. The modularized object allows us to load extra weights on the
two sides. For example in (c) the weights on left and right side are 0 g
and 120 g, or (0, 120g. The ”closed” LEGO in (d) shows no differences in
visual sensor but it may has totally different center of mass. Same works
for box-like objects.

D. Data collection
An automatic data collection process is designed to obtain

training data. The robot will have a first trial to grasp the
object and lift it to the constant height of 10 cm. Then a
random regrasp ratio µ is chosen to define the regrasp pose
as illustrated in Figure 3.

After two grasp trials the robot will change the pose of
grasped object to another random pose and then release it
on the table for the next experiment.

In the experiment there are only 14 samples labeled with
“translational slip” out of 1039 samples so we will ignore
this case in the result. Totally we collect 1039 grasps for the
slip detection from 12 objects and 1 347 regrasps.

For the regrasping, we label the data with “1” if the object
is grasped successfully without slip, otherwise we label the
data with “0”.

E. Training
First, we preprocess the data with feature standardization

method.Then we split the training dataset objectwise ran-
domly into training set and validation set with a ratio of 5:1.

For the SVM based slip detector, using 5-fold cross
validation, the hyperparameter C for linear SVM and RBF
kernel SVM are chosen to be 1 and 1e3. The hyperparameter
γ in RBF kernel function.

The LSTM based slip detector has a batch size of 16, 75
LSTM memory cells, a learning rate of 1e−3 and a hidden
layer size of 50. To avoid overfitting we deploy dropout and
recurrent dropout [52] with rate of 0.2 for the LSTM model
meanwhile a dropout layer with rate of 0.5 after the hidden
FC layer. We choose binary cross entropy method as loss
function and Adam optimizer as the optimization method.
With similar hyperparameters, LSTM based regrasp planner
uses mean squared error as loss function.

VI. RESULTS

A. Slip Detection
The evaluation results are shown in Figure 7. Linear SVM

outperforms other classifiers with an accuracy of 84.4%
(RBF kernel SVM with 82.8% and LSTM classifier with
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Fig. 7. Comparison of three classifiers using confusion matrix. All
prediction accuracy is normalized for each class. The linear SVM classifier
has the best validation results.

74.9%). For the classification accuracy of each label, linear
SVM and RBF kernel SVM both achieve best classification
performance on the “counterclockwise slip” class each with
an accuracy of 90.0% and 100.0% respectively. Meanwhile
LSTM model relatively is better at detecting stable grasp of
the class “no slip” with a 81% accuracy.

Linear SVM performs slightly better than RBF kernel
SVM. Since we flatten the tactile sequential data into an
one-dimensional vector, the feature size increases from “16”
to “sample length × 16”. In case where the feature size is
larger than the instances, RBF kernel could not outperform
linear kernel because there is no need to project the data
into a higher-dimensional feature space. Meanwhile, LSTM
classifier does not perform as well as other classifiers,
probably because of the limited dataset.

1) Torque Sensors for Slip Detection: In Table II we
see that performance indeed drops significantly when
force/torque data is involved. The possible reasons are on
the one hand, torque sensors are known for inevitable noise
and drift. On the other hand, the object can be grasped but
still lying on the table because of a rotational slip thus the
external forces from gravity are relative small. Meanwhile
with torque input, LSTM model outperforms other SVM
models with more than 10% accuracy. It indicates that LSTM
model can process multi-sensor input modules and extract
features better than SVM models.

2) Robot Grasp Evaluation: Afterwards we test our
trained classifiers on the robot towards novel test objects
with the following test objects listed in Figure 6(b).

The results from online test in Table III are quite similar to
the offline results. Linear SVM outperforms LSTM classifier
with 10.10% but they have different performances on the
individual object. Linear SVM has better performance on
most objects than LSTM classifier except hammer and LEGO
model. The linear SVM classifier with best performance will
be applied for our regrasp planner.

B. Regrasp Planner
We evaluate the regrasp planner with different input mod-

ules in Table IV. The result shows a better performance of
inputs with multi-sensor modules.
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TABLE I
REGRASP PLANNER TEST RESULTS

Algorithms Random planner Dex-Net 4.0 Simpler Regrasp Planner Our Regrasp Planner
success success rate success success rate success success rate success success rate

Hammer 2 10.0% 0 0.00% 7 35.0% 16 80.0%
Wooden hammer 16 80.0% 17 85.0% 19 95.0% 20 100%

iPhone box 5 25.0% 6 30.0 % 8 40.0% 9 45.0%
LEGO model 11 55.0% 12 60.0% 16 80.0% 18 90.0%
Screwdriver 14 70.0% 14 70.0% 16 80.0% 17 85.0%

Mean 9.6 48.0% 9.8 49.0% 13.2 66.0% 16.0 80.0%

TABLE II
K-FOLD(K=5) CROSS-VALIDATION ACCURACY OF DIFFERENT SLIP

DETECTION MODELS

Slip Classifier Linear SVM RBF SVM LSTM
tactile only 88.2% 80.5% 82.1%
torque only 58.1% 61.8% 75.5%

tactile + torque 68.8% 68.1% 78.1%

TABLE III
THE FSCORE [53] OF SLIP DETECTION FROM A LINEAR SVM AND A

LSTM CLASSIFIER

Slip Classifier Linear SVM LSTM
Hammer 71.43% 82.98%

Wooden hammer 90.50% 75.00%
iPhone box 82.35% 56.70%

LEGO model 57.14% 62.07%
Screwdriver 86.25% 57.14%

Mean 76.88% 66.78%

TABLE IV
DIFFERENT INPUT MODULES FOR REGRASP PLANNER

Input modules Tactile only Torque only Tactile + torque
Accuracy 66.8 % 63.3 % 75.2%

We use grasp success rate to compare different policies.
The definition of a successful grasp is that only if the
object is lifted stably without any slip, determined by a
human expert. With the limited grasp force and relative heavy
experimental objects chosen by us, the grasp is likely to be
unstable if the grasp pose is not close enough to the center
of mass.
• Random grasp planner: The grasp pose is randomly

chosen from the antipodal grasp sampler.
• Dex-Net 4.0 [6]: A grasp planning model trained on

Dex-Nex 4.0 dataset using a parallel-jaw gripper.
• Our slip detector + a simple regrasp policy: A simple

regrasp policy with a fixed regrasp ratio of 0.5.
• Our slip detector + our regrasp planner: Our learned

regrasp planner using multi-sensor modules to plan a
stable grasp based on slip detector.

The first two policies are open-loop and the rest policies with
regrasp planner are closed-loop with the feedback of the slip
detection.

Each policy is evaluated with two grasp trials and each
object is grasped with 20 times. For the regrasp planner, both
the false prediction from slip detector and regrasp planner
will lead to a failure.

In Table I, the result implies that the closed-loop policies
outperform the open-loop policies. The feedback from slip
detection in our case can help to regrasp and thus improve
the grasp robustness.

For the open-loop policies, Dex-Net 4.0 does not show

much better performance than a random planner. Because the
Dex-Net is trained on a dataset where all objects are assumed
with even mass distribution. In our case, many objects e.g.,
hammer, LEGO model and screwdriver have uneven mass
distributions. Second, all experimental objects are relative
heavier with our experimental setup, which makes it critical
for a grasp pose to be close to the center of mass. However,
Dex-Net 4.0 predicts most of the poses close to the pixel-
wise center in the depth image instead.

For the closed-loop policies, the learning based regrasp
planner with predicted regrasp ratio outperforms the Dex-
Net 4.0 with 31% and the simpler regrasp planner with 14%
success rate.

VII. CONCLUSION & FUTURE WORK

We present a novel learning based approach using multi-
sensor modules to predict stable grasp poses of unseen
objects, based on the slip detection. The proposed approach
consists of two parts, a slip detector and a regrasp planner.
Both models are learned from real-world experiments with
ground-truth label. An initial antipodal grasp pose is chosen
to be executed. Then the slip is detected by a slip detector
during lifting the object. Afterwards a regrasp planner pre-
dicts a new stable grasp pose by predicting the location of
center of mass based on the feedback of the slip detector and
also other sensor modules. We demonstrate that our learning
based slip detector and regrasp planner effectively gener-
alizes learned knowledge to detect slip and regrasp while
grasping novel objects. We believe our proposed algorithm
can potentially be an Add-on algorithm for general grasp
planners used for applications such as pick and place.

The proposed algorithm can only correct the grasp pose
in one direction where the rotational slip happens. This
functionality has limitations for objects with complex shapes,
thus the dataset and the number of objects are limited. In
the future, we will attempt to collect more data either by
a better automatic self-supervised data collection process or
by generating synthetic data from simulation. Also a more
general regrasp algorithm will be studied for objects with
complex geometries, to detect slip and plan regrasp.
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