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Abstract

Mathematical modeling is a powerful tool in many areas of science. In systems biology, mech-

anistic models are particularly useful to gain insights into biological processes as they can

immediately disclose causal mechanisms. The parameters of such models, e. g. kinetic rate

constants, usually cannot be measured directly but need to be inferred from experimental

data. Continuous-time, discrete-space stochastic processes provide an adequate description

of the amount of molecular species and their interactions within a cell. However, parameter

inference for such processes is usually computationally intractable. Therefore, several approx-

imation models have been developed. One approach that preserves the stochastic nature of

the underlying process is the approximation by Itô diffusion processes. These continuous-time,

continuous-space stochastic processes described by Itô-type stochastic differential equations

(SDEs) are the focus of this thesis. Here, the goal is to enable leveraging the potential of

diffusion processes to generate systems biological insights. To this end, we explore compu-

tationally efficient inference methods for diffusion processes and consider the application of

diffusion processes to a real-world phenomenon in order to study their impact.

Also for diffusion processes, parameter inference is a very challenging problem, in particular

because the corresponding likelihood function is usually intractable. Model parameters can

be estimated from discretely observed data using e. g. Markov chain Monte Carlo (MCMC)

methods that introduce auxiliary data. These methods typically approximate the transition

densities of the process numerically based on the Euler-Maruyama scheme and are computa-

tionally expensive. Using higher-order approximations may accelerate them, but the specific

implementation and benefit remain unclear. Hence, we investigate the utilization and useful-

ness of higher-order approximations in the example of the Milstein scheme and find that, in

fact, the use of the Milstein scheme does improve the estimation accuracy for the parameters

appearing in the diffusion coefficient. However, our study also shows that the applicability of

the Milstein scheme is very limited in this context in the case of multi-dimensional processes.

Concerning the application to a real-world example, we use diffusion processes to model the

translation kinetics after mRNA transfection and infer the model parameters from time-lapse
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fluorescence microscopy data using the open source software Stan. We compare this SDE model

to a corresponding deterministic ordinary differential equation (ODE) model in terms of pa-

rameter identifiability and find that the SDE model provides better identifiability of the kinetic

parameters than the ODE model.

Finally, we provide a sound mathematical foundation for the SDE model of the translation

kinetics by proving the existence and uniqueness of a strong solution of the SDE and that the

Euler-Maruyama approximation of the SDE strongly converges to this solution, although the

standard assumptions from stochastic analysis are not fulfilled.

In summary, this thesis addresses multiple important aspects that need to be considered in

order to harness the capabilities of mathematical modeling to generate systems biological

insights, including mathematical theory, computational efficiency, and consideration of the

specific challenges that arise when working with experimental data. Thus, it provides several

building blocks to pave the way towards a holistic understanding of biological systems.

viii



Zusammenfassung

Mathematische Modellierung ist ein hilfreiches Werkzeug in vielen Wissenschaftsbereichen.

In der Systembiologie sind insbesondere mechanistische Modelle nützlich um Erkenntnisse

über biologische Prozesse zu gewinnen, da sie kausale Zusammenhänge unmittelbar erken-

nen lassen. Die Parameter solcher Modelle können meist nicht direkt gemessen werden

und müssen deshalb anhand von experimentellen Daten geschätzt werden. Stochastische

Prozesse in stetiger Zeit und mit diskretem Zustandsraum liefern eine adäquate Beschrei-

bung der Anzahl von Molekülen und ihrer Interaktionen innerhalb einer Zelle. Da jedoch die

Parameterschätzung für solche Prozesse oft rechnerisch nicht durchführbar ist, wurden ver-

schiedene Approximationsmethoden entwickelt. Eine Vorgehensweise, die die Stochastik des

zugrunde liegenden Prozesses beibehält, ist die Approximation durch Itô-Diffusionsprozesse.

Diese stochastischen Prozesse in stetiger Zeit mit kontinuierlichem Zustandsraum, die durch

stochastische Differentialgleichungen (SDEs) vom Itô-Typ beschrieben werden, stehen im

Fokus dieser Dissertation. Ziel ist es, das Potenzial von Diffusionsprozessen für die Erkennt-

nisgewinnung in der Systembiologie nutzbar zu machen.

Parameterschätzung ist auch für Diffusionsprozesse eine Herausforderung, insbesondere da die

zugehörige Likelihood-Funktion meist nicht analytisch zur Verfügung steht. Die Modellpa-

rameter können aus diskret beobachteten Daten z. B. mithilfe von Markov-Chain-Monte-Carlo

Methoden geschätzt werden, die zusätzliche Datenpunkte einfügen. Diese Methoden approx-

imieren die Übergangsdichten des Prozesses typischerweise numerisch basierend auf dem Euler-

Maruyama-Schema und sind rechnerisch sehr aufwändig. Die Verwendung eines Schemas mit

höherer Konvergenzordnung birgt das Potenzial, die Methoden zu verbessern, aber die genaue

Implementierung und die Vorteile waren unklar. Deshalb untersuchen wir die Verwendung und

den Nutzen eines Schemas höherer Ordnung am Beispiel des Milstein-Schemas und stellen

fest, dass dieses die Schätzgenauigkeit für Parameter, die im Diffusionskoeffizienten vorkom-

men, verbessert. Jedoch zeigen unsere Untersuchungen auch, dass die Anwendbarkeit des

Milstein-Schemas im Falle von mehrdimensionalen Prozessen sehr eingeschränkt ist.



Zusammenfassung

Außerdem verwenden wir Diffusionsprozesse, um die Translationskinetik nach der Transfektion

von mRNA zu modellieren, und schätzen die Modellparameter aus zeitaufgelösten Fluoreszenz-

mikroskopiedaten mithilfe der Open Source Software Stan. Ein Vergleich mit dem zugehörigen

deterministischen Differentialgleichungsmodell zeigt, dass das SDE-Modell zu besserer Identi-

fizierbarkeit der kinetischen Parameter führt.

Schließlich stellen wir das SDE-Modell auf ein sicheres mathematisches Fundament. Wir be-

weisen, dass eine eindeutige starke Lösung der SDE existiert und dass die Euler-Maruyama-

Approximation der SDE stark gegen diese Lösung konvergiert, obwohl die Standardvorausset-

zungen aus der stochastischen Analysis nicht erfüllt sind.

Zusammenfassend behandelt diese Dissertation damit mehrere wichtige Aspekte, die es zu

beachten gilt, um mittels mathematischer Modellierung neue Erkenntnisse in der Systembi-

ologie gewinnen zu können. Diese umfassen vor allem die mathematische Theorie, rechner-

ische Effizienz und die Beachtung der konkreten Herausforderungen, die die Arbeit mit exper-

imentellen Daten mit sich bringt. Somit trägt diese Dissertation dazu bei, den Weg hin zu

einem ganzheitlichen Verständnis von biologischen Systemen zu ebnen.

x
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Chapter 1

Introduction

Mathematical modeling is a powerful tool in many areas of science, including natural and

social sciences (see e. g. Humphreys, 2003, Müller & Kuttler, 2015, Neimark, 2003). By

mathematical modeling, we mean the process of describing a real-world problem or phenomenon

by a mathematical model, e. g. by a set of equations, then using mathematical tools to analyze

and solve the mathematical problem and finally, interpreting and validating the results to gain

a better understanding of the underlying real-world phenomenon. When deciding about the

complexity of the employed model, one has to carefully weigh up the advantages of an elaborate

model describing the real-world problem in detail and the disadvantages of such an elaborate

model in terms of the mathematical tools necessary to analyze it. Therefore, usually only

essential aspects are taken into account. An important step in developing and validating a

mathematical model is to relate real-world data to the model by means of statistics.

Also in systems biology, mathematical models are widely used to gain insights into biological

processes on a variety of different scales including e. g. whole organs or tissues on the macroscale

and cell-to-cell interactions but also intracellular processes on the microscale (Kitano, 2002a,b).

Mechanistic models are particularly useful in this field because they can immediately disclose

causal mechanisms. Comparing the input-output relationship predicted by the model to exper-

imental data allows to verify or falsify the biological hypothesis represented by the model even

when some of the involved quantities are not accessible through experiments (Baker et al.,

2018). Moreover, they can be employed for in-silico experiments of various experimental con-

ditions that might be too difficult, too expensive, or even impossible to perform in real. One

important type of mechanistic models are differential equation models. They can be used to

describe the temporal evolution of the abundance of various biological species in a system.

On the molecular level, the development of time-lapse fluorescence microscopy has enabled

the collection of measurements for the same cells over time (Young et al., 2011). Besides,
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experiments have shown that there is a vast amount of variability of outcomes of gene expres-

sion not only between different cell populations, but also within isogenic cell populations and

even within individual cells which is due to the inherently stochastic nature of the underlying

biological processes (Elowitz et al., 2002, Raj & van Oudenaarden, 2008). Using stochastic

models, i. e. models that explicitly account for this stochasticity, can help improve our ability

to determine model parameters based on experimental data (Munsky et al., 2009).

In general, there are several different sources of variability in data and of discrepancy between

data and a considered model. Theses include (i) measurement error, (ii) uncertainty in model

specification, (iii) intra-individual variability (also known as intrinsic noise), and (iv) inter-

individual variability (also known as extrinsic noise) (see e. g. Kirk et al., 2016, Leander et al.,

2015, Regan et al., 2002). Taking stochasticity into account and considering the uncertainty

that arises from it is an important and useful aspect of the modeling process.

One adequate description of the amount of molecular species and their interactions within a cell

is a continuous-time, discrete-space stochastic process such as a Markov jump process (MJP).

However, parameter inference for MJPs is usually computationally intractable. Therefore,

several approximation models have been developed. One approach that preserves the stochastic

nature of the underlying process is the approximation by Itô diffusion processes. We also

write diffusion processes or just diffusions for short. These continuous-time, continuous-space

stochastic processes described by Itô-type stochastic differential equations (SDEs) are the focus

of this thesis. Our goal is to enable harnessing the potential of diffusion processes to generate

systems biological insights.

Parameter inference for diffusion processes is a very challenging problem, in particular because

the corresponding likelihood function is usually intractable, and the existing inference methods

are computationally expensive. In this thesis, we investigate one potential remedy to this

problem, namely the use of a higher-order approximation scheme of the paths of a diffusion

process. Further, we apply diffusion processes to model the translation kinetics after mRNA

transfection, infer the model parameters from experimental data, and analyze the advantages

in terms of parameter identifiability of this stochastic model compared to a deterministic

ordinary differential equation (ODE) model. Moreover, if we want to leverage the capabilities of

mathematical modeling in generating new insights, we also need to ensure that the underlying

mathematical theory is well founded and sound. Therefore, this aspect is another pillar of

this thesis and we develop essential theoretical results for the SDE model of the translation

kinetics.

2



1.1. Contributions of this thesis

1.1 Contributions of this thesis

While the remainder of this thesis is written from the we-perspective referring to the author

and the reader (and occasionally the supervisor as will become clear below); in this section,

I describe the specific contributions of this thesis and what my role was in obtaining them. The

contributions are delineated in detail in the two main chapters of this thesis, namely Chapters 4

and 5. Here, I only briefly highlight the main points.

The overall goal of this thesis is to enable leveraging the potential of diffusion processes to

generate systems biological insights. To that end, three aims were targeted in the following

way:

• Aim 1: Exploring computationally efficient inference methods for diffusion processes

Parameter estimation for SDEs is a very challenging problem, especially when the diffu-

sion coefficient depends on the process states. The available methods are computation-

ally very expensive. The transition density of the diffusion process usually needs to be

approximated which is commonly done by the Euler-Maruyama scheme.

I investigated how the Milstein scheme, as an approximation scheme of higher conver-

gence order, can be used in the context of Bayesian data augmentation for diffusions and

analyzed whether due to the higher approximation accuracy, fewer imputed data points

would be required such that overall for a fixed computational cost a higher estimation

accuracy can be achieved. I described for what kind of SDEs the Milstein scheme can

be applied in this context and developed an alternative (arguably more straight forward)

derivation of the transition density based on the Milstein scheme. I implemented the

estimation procedures for this study myself in R.

Moreover, I have implemented inference procedures for SDE and ODE models in R and

in the Stan software which provides an efficient C++ implementation of the Hamiltonian

Monte Carlo based No-U-Turn Sampler.

• Aim 2: Analyzing the benefits of an SDE model in terms of parameter identifiability

Using a model that explicitly accounts for the stochasticity inherent to intracellular

processes holds the potential for better identifiability of kinetic parameters. I formulated

an SDE model for the translation kinetics after mRNA transfection and compared it to

an ODE model in terms of structural and practical parameter identifiability. I suggested

two approaches to assess the structural parameter identifiability for the SDE model (by

transforming the model and by simulation) and also implemented a recently suggested

approach using the software DAISY. All three approaches suggested that the SDE model

might yield better parameter identifiability.

3
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Besides, I used the inference procedures implemented in R and Stan to infer parameters

for both model types from simulated as well as (previously published) experimental data.

The results show that the SDE model for the translation kinetics is clearly superior to

the ODE model in terms of identifiability of the kinetic parameters.

• Aim 3: Ensuring a sound mathematical foundation for the SDE model

The diffusion processes that are usually used to approximate biochemical processes do

not fulfill the assumptions for standard results from stochastic analysis that ensure the

existence of a unique solution of an SDE and that the Euler-Maruyama approximation

converges to this solution. While the fundamental importance of these results is obvi-

ous, their derivation is generally neglected when diffusion approximations are applied in

systems biology (and beyond).

I proved the existence and uniqueness of a strong solution of the SDE model for the

translation kinetics after mRNA transfection and that the Euler-Maruyama approximation

of the SDE strongly converges to this solution. These proofs can easily be extended to

further models as explained in Section 5.9.

Chapters 4 mainly addresses Aim 1. My work on this project was supervised by Prof. Dr.

Christiane Fuchs and is published in the article

Pieschner, S. & Fuchs, C. (2020). Bayesian inference for diffusion processes: using higher-order

approximations for transition densities. Royal Society Open Science, 7(10), 200270.

The code of the implementation of the investigated methods and the results of the simula-

tion study are publicly available at https://github.com/fuchslab/Inference_for_SDEs_

with_the_Milstein_scheme.

Chapter 5 addresses all 3 aims and contains two subprojects. The first is devoted to Aim 3

and is contained in Section 5.3. The process of developing the proofs was supervised by Prof.

Dr. Wilfried Grecksch. The second subproject is covered in the remainder of the chapter and

addresses Aims 1 and 2. My work on this part was supervised by Prof. Dr. Christiane Fuchs

and some advice was provided by Prof. Dr. Jan Hasenauer.

1.2 Outline

This thesis is structured as follows: In Chapter 2, we provide background information on

several topics that are relevant to follow the main chapters of this thesis. These include

different ways to represent biochemical processes, Bayesian inference methods, in particular

Markov chain Monte Carlo (MCMC) methods, and the concept of parameter identifiability. In

4
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1.2. Outline

Chapter 3, we give a more detailed introduction to Itô diffusion processes which are the focus

of this thesis. We define what Itô diffusion processes are and give some of their properties

and some examples. As Itô diffusion processes are described by SDEs, we use the terms

“diffusion (process)” and “SDE” interchangeably throughout this thesis. Moreover, we show

how diffusion processes are commonly approximated and how parameter inference can be

performed for them. In Chapter 4, we further study one of the inference methods for diffusion

processes, that is based on Bayesian data augmentation, and investigate how to integrate the

Milstein scheme, as an approximation scheme of higher convergence order, into this framework.

We assess the effectiveness of this new combination in a simulation study and analyze whether

due to the higher approximation accuracy, a higher estimation accuracy can be achieved for a

fixed computational cost. In Chapter 5, we apply diffusion processes to model the translation

kinetics after mRNA transfection. This application is motivated by the availability of time-

lapse fluorescence microscopy data for single cells from an mRNA transfection experiment. For

the SDE model of the translation kinetics, we proof the existence and uniqueness of a strong

solution and that the Euler-Maruyama approximation of the SDE strongly converges to this

solution. Moreover, we compare the SDE model to the corresponding ODE model in terms of

structural and practical parameter identifiability. In Chapter 6, we provide a summary of the

findings of this thesis and conclude with suggestions for further research.

5





Chapter 2

Background

This chapter provides a brief introduction to several topics that are relevant to follow the

contents of this thesis. In Section 2.1, we present different representations of biochemical

processes and shortly discuss their benefits and drawbacks. Furthermore, we give a primer

on Bayesian statistics and Markov chain Monte Carlo (MCMC) methods in Section 2.2 and

introduce the concept of parameter identifiability in Section 2.3.

2.1 Biochemical kinetic models

Biochemical kinetic models (BKMs) are used to describe the interactions and evolution of

different species within a biological organism, e. g. a cell. They have been successfully applied

to various problems and thus receive much attention as is apparent from several recent reviews

on this topic such as Loskot et al. (2019), Schnoerr et al. (2017), Warne et al. (2019). In this

section, we describe several common representations of BKMs.

2.1.1 Markov jump processes

The species within a biological system have a discrete nature. Moreover, random fluctuations

of species numbers play a key role in biological systems. They can have a substantial effect

on the system’s behavior, in particular in the case of low species numbers. Therefore, a

continuous-time, discrete-space Markov process, also called a Markov jump process (MJP),

for which the dynamics are described by the so-called chemical master equation (CME) is

widely accepted to be an appropriate stochastic description of such a system (Gillespie, 1992b,

Schnoerr et al., 2017).
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Definition 2.1. Let (Ω,F ,P) be a complete probability space and consider the measurable

space
(
Nd0,P

(
Nd0
))

, where P
(
Nd0
)

denotes the power set of Nd0. The stochastic process

(X(t))t≥0 with state space Nd0 is called a Markov process if for all n ∈ N, all 0 ≤ t1 < . . . < tn

and x1, . . . ,xn ∈ Nd0, it holds that

P(X(tn) = xn |X(t1) = x1, . . . ,X(tn−1) = xn−1) = P(X(tn) = xn |X(tn−1) = xn−1).

A Markov process is a memoryless process, i. e. future states X(tn) conditioned on the current

state X(tn−1) are independent of the past. The most common description of a BKM by a

MJP assumes that the system is well mixed, in thermal equilibrium, and of constant size V ,

where V is a quantity that appropriately measures the size of the system such as the volume.

Under these assumptions, spatial effects can be neglected and are, therefore, not included in

the model (Schnoerr et al., 2017).

Suppose we consider a system of d species (e. g. d different types of molecules in a cell) denoted

by X1, . . . , Xd and of r reactions R1, . . . , Rr which we define by the following notation:

Rj :
d∑
i=1

s−ij Xi
cj−→

d∑
i=1

s+
ij Xi for j = 1, . . . , r,

where cj ∈ R+ is called the reaction rate constant of reaction Rj and s−ij , s
+
ij ∈ N0 are

the stoichiometric coefficients denoting the number of reactants consumed and the number of

products produced of species Xi by reaction Rj , respectively. For a total number m =
∑d

i=1 s
−
ij

of reactants involved in reaction Rj , we say that reaction Rj is of order m. Further, we define

the stoichiometric matrix S ∈ Nd×r0 by

Sij = s+
ij − s

−
ij for i = 1, . . . , d, and j = 1, . . . , r

and denote the columns of S by Sj which correspond to the net change of the system state

when reaction Rj occurs. Throughout this thesis, we denote vectors and matrices by bold

symbols, vectors are assumed to be column vectors, and the transpose of vector x (and

matrix M) is denoted by xTr (and MTr, respectively).

For a stochastic representation of the kinetic model described above as a MJP, let X(t) =

(X1(t), . . . , Xd(t))
Tr ∈ Nd0 be the random variable denoting the state of the system at time

t ≥ 0. Given that X(t) = x, the probability that reaction Rj occurs within an infinitesimal

time step ∆t and thus changes the system state by Sj is given by

P(X(t+ ∆t) = x+ Sj |X(t) = x) = hj(x, cj)∆t+ o(∆t) for j = 1, . . . , r,

8



2.1. Biochemical kinetic models

where o(∆t)/∆t → 0 for ∆t → 0, and hj(x, cj) is called the hazard or propensity function

or simply reaction rate of reaction Rj . A common choice of the hazard function is the one of

mass-action kinetics type (Wilkinson, 2019), i. e.

hj(x, cj) = cj

d∏
i=1

xi!

(xi − s−ij)! s
−
ij !

for j = 1, . . . , r.

We define P (x, t) = P(X(t) = x |X(t0) = x0) for t ≥ t0 and all x,x0 ∈ Nd0, where the

dependence on the initial state x0 at time t0 is suppressed for simplicity of notation. Then, a

MJP described as above fulfills the following Kolmogorov’s forward equations

∂P (x, t)

∂t
=

r∑
j=1

[hj(x− Sj , cj)P (x− Sj , t)− hj(x, cj)P (x, t)] . (2.1)

In the context of BKMs, Equation (2.1) is known as the CME. It describes the temporal

evolution of the probability distribution of the system states conditional on the initial state.

While its structure is quite simple, analytical solutions of the CME only exist for the simplest

examples of BKMs. Jahnke & Huisinga (2007), for example, derive an analytical solution for

systems of only monomolecular reactions, i. e. m =
∑d

i=1 s
−
ij ≤ 1 and

∑d
i=1 s

+
ij ≤ 1 for all

j = 1, . . . , r. Schnoerr et al. (2017) review further examples for which analytical solutions

exist.

Despite the lack of an analytical solution to (2.1), exact simulation of sample paths is possible

for all MJPs by means of the stochastic simulation algorithm (SSA) that was introduced to

the field of biochemical kinetics by Gillespie (1976, 1977) and thus also came to be known as

Gillespie’s algorithm. The algorithm makes use of the fact that the time intervals between two

successive reactions are exponentially distributed with intensity

h0(x, c) =

r∑
j=1

hj(x, cj),

where c = (c1, . . . , cr)
Tr denotes the vector of the reaction rate constants. It iteratively

samples the time τ until the next reaction and the type k of reaction that occurs next. We

summarize the steps of Gillespie’s algorithm in Algorithm 2.1 in a similar way as Fuchs (2013)

and Wilkinson (2019).

The computational cost of Gillespie’s algorithm becomes cumbersome if many reactions occur

within a short time. This is the case if there are many reaction types or the value of any

hazard function is high, i. e. if the respective rate constant and/or the numbers of the involved

reactants are large. Several more efficient implementation of the exact simulation algorithm

9



Chapter 2. Background

Algorithm 2.1: Gillespie’s algorithm

Input: An initial state x0 and initial time point t0, maximal time point T , the hazard
functions hj and reaction rate constants cj for j = 1, . . . , r.

Set t = t0 and x(t) = x0.
while t < T do

1. Calculate hj(x, cj) for j = 1, . . . , r and h0(x, c).
2. Draw τ ∼ Exp(h0(x(t), c)) and set τ∗ = min{τ, T − t}.
3. Draw the index k ∈ {1, . . . , r} of the next reaction as discrete random variable

with probabilities hj(x, cj)/h0(x, c) for j = 1, . . . , r.
4. Set x(s) = x(t) for all s ∈ (t, t+ τ∗) and x(t+ τ∗) = x(t) + Sk1(τ∗ = τ).
5. Set t = t+ τ

end

Output: A sample path x(t) of MJP (X(t))t≥0 on time interval [t0, T ].

have been suggested such as the next reaction method by Gibson & Bruck (2000) and a re-

finement of this method by Anderson (2007). Despite these improvements, the computational

cost of exact simulation becomes often intractable. Therefore, approximate simulation meth-

ods for MJPs have been developed such as the tau-leaping method (Gillespie, 2001), several

improvements thereof (e. g. in Cao et al., 2006, Tian & Burrage, 2004), and also combinations

of exact and approximate simulation (e. g. in Cao et al., 2005, Marchetti et al., 2016).

Due to the fact that there is generally no analytical solution to the CME (2.1), inference

for MJPs is challenging because in this case the likelihood is not available. Therefore, only

likelihood-free inference approaches are feasible. Those include for example pseudo-marginal

MCMC methods as in Andrieu & Roberts (2009) for exact inference and approximate Bayesian

computation (ABC) as e. g. in Toni et al. (2009) for approximate inference. Both approaches

require several forward simulations of the considered MJP and are thus computationally very

intense. See Warne et al. (2019) for an overview and further references for both classes of meth-

ods. Since inference for MJP representations of BKMs is usually computationally intractable,

several approximations to MJPs have been developed some of which we will introduce in the

next subsection.

2.1.2 Approximation methods

There are several other representations of the BKM introduced in the previous section. To

some extent those can be considered as approximations to the corresponding MJP. The most

commonly used representation is the reaction rate equation (RRE) which is a system of ordinary

differential equations (ODEs) and thus provides a deterministic and state-continuous descrip-

tion of the kinetics. This approach commonly considers concentrations of the different species

10



2.1. Biochemical kinetic models

relative to the system size V instead of absolute numbers. We denote the concentrations by

[X] =
X

V
,

whereby [X] ∈ Rd+. For a large system size V , the concentrations can thus be considered

to be approximately continuous. Moreover, the propensity functions according to classical

mass-action kinetics (Waage & Gulberg, 1986) are defined by

h̃j([X], c̃j) = c̃j

d∏
i=1

[Xi]
s−ij for j = 1, . . . , r,

where the rate constants c̃j ∈ R+ may differ from those introduced in the previous section due

to the different units ofX and [X]. Wilkinson (2019, Chapter 6.7) gives some examples of how

to convert between the different rate constants. For first order reactions, the rate constants

of the stochastic and the deterministic description are equal. We denote the vector-valued

function of all propensity functions by h̃([X], c̃) = (h̃1([X], c̃1), . . . , h̃r([X], c̃r))
Tr. Then the

RRE written in matrix notation reads as follows

d[X](t)

dt
= Sh̃([X](t), c̃), [X](0) =

x0

V
, (2.2)

where S denotes the stoichiometric matrix as defined in the previous section.

The deterministic dynamics described by the RRE (2.2) do not capture the inherently stochas-

tic nature of the underlying process. The RRE is only an appropriate description for a system

that has large numbers of all species such that relative stochastic fluctuations become less

prominent. Moreover, for non-linear dynamics, i. e. in the case of second order reactions and

higher, the solution of the RRE does not necessarily describe the mean behavior of concen-

trations of the corresponding MJP. Nevertheless, the RRE has successfully been applied to

many problems because it has “the advantage of being relatively straightforward to analyse”

(Schnoerr et al., 2017) and several computationally highly efficient software tools are available

for the RRE and other ODE-based approximation approaches (see e. g. Fröhlich et al., 2017,

Kazeroonian et al., 2016, Raue et al., 2015, Stapor et al., 2018). This allows simulation,

analysis, and inference even for large-scale BKMs, i. e. networks with many species and types

of reactions (Fröhlich et al., 2018, Kapfer et al., 2019, Schmiester et al., 2019, Terje Lines

et al., 2019).

Another approach to approximate the MJP from the previous section is the approximation by

a diffusion process which is also state-continuous as the solution of the RRE but it preserves

the stochastic nature of the process. We give a formal introduction to diffusion processes in

Chapter 3 and here only briefly present their role as a representation of a BKM. There are

11



Chapter 2. Background

several different ways how to derive such a diffusion approximation. Fuchs (2013, Chapter 4)

provides an overview of different diffusion approximation techniques and explains that under

mild regularity conditions, all of them yield the same result. In the derivation, many but not

all of the techniques also divide the process states by the system size V (as for the RRE) in

order to obtain smaller jump sizes and thus justify the approximation by a continuous process.

The resulting diffusion approximation, however, can then in most cases easily be scaled again

by V to obtain the scaling of the original process. For simplicity of notation, we therefore

keep the original scaling and state the diffusion approximation in a similar way as derived in

Gillespie (2000).

The approximating diffusion process is described by the following stochastic differential equa-

tion (SDE) which is better known as the chemical Langevin equation (CLE) in this context:

dX(t) = µ(X(t), c)dt+ σ(X(t), c)dB(t), X(0) = x0, (2.3)

with drift function

µ(X(t), c) = Sh(X(t), c)

and diffusion function

σ(X(t), c) =

√
Sdiag{h(X(t), c)}STr,

and where B(t) denotes a q-dimensional standard Brownian motion, S denotes the stoichio-

metric matrix as defined in the previous section, and diag{h(X(t), c)} denotes the diagonal

matrix with the elements of the vector h(X(t), c) = (h1(X(t), c1), . . . , hr(X(t), cr)) of the

hazard functions on the main diagonal. Moreover, for a square matrix A, the square root√
A here denotes any matrix B that satisfies A = BBTr. Thus, one possible choice is

σ(X(t), c) = Sdiag{
√
h(X(t), c)} such that σ(X(t), c) ∈ Rd×r and q = r. However, a

square matrix obtained e. g. by Cholesky factorization such that σ(X(t), c) ∈ Rd×d and q = d

is usually preferred (Wilkinson, 2019, Chapter 8.3).

By preserving the stochastic nature of the process, the diffusion approximation can capture

more information about the underlying process. For systems that only contain zeroth and first

order reactions, the first and second moments of the diffusion approximation coincide with the

moments of the corresponding MJP (Schnoerr et al., 2017); whereas the RRE can only capture

the first moment. The diffusion approximation does not maintain the discrete nature of the

MJP which on the one hand is a disadvantage of this representation, but on the other hand

this allows for more efficient (approximate) simulation of sample paths as the computational

cost only scales with the number of different species in the system instead of with the rate of

12



2.1. Biochemical kinetic models

occurring reactions as for the MJP. Another advantage is that for the diffusion approximation

a wider range of possible inference methods becomes available. We give an overview of these

methods in Section 3.4.

There are ample of further approximation methods for BKMs. Schnoerr et al. (2017) provide

an overview of many of them. Another prominent example is the linear noise approximation

(LNA) which can be considered an intermediate result between the RRE and the CLE (Wallace

et al., 2012). It is appealing because under certain (commonly fulfilled) conditions it has a

tractable likelihood. However, it is also only appropriate for very large-sized systems.

Before we close this section, we want to briefly illustrate the different representations of BKMs

on a small example. Therefore, we consider a linear birth-death process in a similar way as

Wilkinson (2019, Chapter 1.3). This process models the population size of one species X.

The initial size of the population at time t = 0 is X(0) = x0. There are two possible events

(or reactions, in the terminology that we have used so far):

• birth that occurs at rate θ1 ∈ R+ which means each unit of the population on average

gives rise to θ1 new units of the population per time unit, and

• death that occurs at rate θ2 ∈ R+ which means on average the population decreases by

a proportion of θ2 per time unit.

Hence, for a MJP representation of this process, it holds that

P(X(t+ ∆t) = x+ 1 |X(t) = x) = θ1x∆t+ o(∆t) and

P(X(t+ ∆t) = x− 1 |X(t) = x) = θ2x∆t+ o(∆t),

and the process can be simulated using Gillespie’s algorithm described in Algorithm 2.1.

The deterministic representation by an ODE (the RRE) reads

dX(t)

dt
= (θ1 − θ2)X(t), X(0) = x0,

where for the purpose of this illustration we use absolute units instead of concentrations. Its

solution is the deterministic function

X(t) = x0e
(θ1−θ2)t.

The SDE representing the same phenomenon is given by

dX(t) = (θ1 − θ2)X(t) dt+
√
θ1 + θ2 dB(t), X(0) = x0,
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where B(t) is a one-dimensional standard Brownian motion. Trajectories of the (approximate)

solution of this SDE can be generated e. g. based on normally distributed random numbers as

we will explain in Section 3.3.

As an illustration, we simulate trajectories for each of the three representations (MJP, ODE,

SDE) of the linear birth-death process and for two different parameter combinations. We

choose the parameters such that for both scenarios, the difference θ1 − θ2 is equal to −0.05.

We set X(0) = 30 and simulate the processes on the time interval [0, 40]. Figure 2.1 shows the

trajectories. We see that for each parameter combination, the stochastic representations MJP

and SDE give rise to several quite different trajectories while the deterministic ODE model

only yields one trajectory. Moreover, the trajectories of the ODE model are the same for both

parameter combinations as they are determined solely by the difference θ1− θ2 but not by the

individual values of the parameters θ1 and θ2. Hence, it would not be possible to determine the

parameters individually from one observed trajectory by means of the ODE model. Whereas,

for the MJP and the SDE model, we clearly see that the higher values for θ1 and θ2 (in the

lower row of the figure) lead to more variability. This indicates that these two representations

capture information about both parameters individually, not only about their difference, which

yields the potential to also determine both parameters from observed data - a property which

we would like to harness.
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Figure 2.1: Example trajectories for three representations (MJP, ODE, SDE) of a linear birth-
death process with starting value X(0) = 30 and for different values of the birth rate θ1 and
the death rate θ2. For both parameter combinations, the difference θ1− θ2 is equal to −0.05;
and therefore, the ODE trajectories are identical.
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2.2 Bayesian statistics and MCMC methods

Throughout this thesis, we mainly take a Bayesian approach to inference for parametric models.

In Bayesian statistics, we can formulate our assumptions and general knowledge about the

model parameters θ ∈ Θ ⊆ Rp in terms of a prior distribution with probability density p(θ).

After having observed data D about the phenomenon which we are trying to model, we

update our knowledge about the parameter and describe it by the posterior distribution with

density p (θ | D). The relation between the prior and the posterior density is defined by Bayes’

theorem:

p (θ | D) =
p (D |θ) p (θ)

p (D)
, (2.4)

where p(D) denotes the density of the distribution of D and is sometimes called the marginal

density of the evidence, and p (D |θ) denotes the density of the distribution of D conditioned

on θ and is determined by the considered model. Viewed as a function of the parameter,

l (θ | D) := p (D |θ) is called the likelihood (function), and often it is more convenient to con-

sider the log-likelihood L (θ | D) := log l (θ | D). The posterior distribution p (θ | D) represents

our beliefs about how plausible different parameter values are, after we have observed data D.

It is often summarized e. g. by point estimates as its mean, median, and mode or based on

credible intervals (which can be obtained in different ways). Yet, it is important to remember

that in Bayesian statistics the entire distribution constitutes the Bayesian estimate. Compre-

hensive introductions to Bayesian statistics can be found e. g. in Lee (2012) and Gelman et al.

(2013).

Two of the merits of Bayesian methods are the straightforward ways to include prior knowledge

about the model parameter into the inference problem and to assess the uncertainty about

a parameter estimate e. g. based on the posterior variance (see e. g. Berger, 1985, Chapter

4.1). On the other hand, it is often difficult or not possible to derive analytical results for the

posterior distribution, especially as they tend to be very high-dimensional probability distribu-

tions. However, MCMC methods have proved very useful in this context. They can be used to

draw samples from (almost) any probability density function π(θ). The idea behind MCMC

methods is to construct a Markov chain, i. e. a discrete-time Markov process, whose stationary

(sometimes also called invariant) distribution corresponds to the target density π(θ). Before

we will introduce some commonly used MCMC methods, we shortly provide some basic theory

of Markov chains in the following subsection.
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2.2.1 A brief introduction to Markov chain theory

This short introduction to some basic concepts about Markov chains is based on the expositions

in Geyer (1992), Chib & Greenberg (1995), and Robert & Casella (2002). For the following

definitions, let (Ω,F ,P) be a complete probability space and (S,S) a measurable space, which

we will call the state space. S can be continuous, e.g. (S,S) =
(
Rd,B

(
Rd
))

where B
(
Rd
)

is the Borel σ-algebra on Rd, or discrete, e.g. (S,S) =
(
Zd,P

(
Zd
))

where P
(
Zd
)

denotes

the power set of Zd. Analogously to Definition 2.1, we define a discrete-time Markov process

as follows.

Definition 2.2. A discrete-time stochastic process (Xn)n≥0 is called a Markov chain with

respect to the probability measure P, if for all n ∈ N0 and all x0, . . . ,xn+1 ∈ S, it holds that

P (Xn+1 = xn+1|X0 = x0, . . . ,Xn = xn) = P (Xn+1 = xn+1|Xn = xn) (2.5)

given that the conditional probabilities are well defined.

The condition (2.5) is called Markov property and may be interpreted as stating that the

conditional probability of any future state Xn+1, given the past states X0, . . . ,Xn−1 and

the present state Xn, only depends on the present state, but is independent of the past

states. A Markov chain is called homogeneous if the conditional probability distribution

P (Xn+1 = y|Xn = x), representing the probability of moving from state x to state y, is

independent of n. The conditional probability distribution is also called transition kernel, and

in the homogeneous case, it can simply be denoted by P (x,y) := P (Xn+1 = y|Xn = x) for

x,y ∈ S. The formal definition of a stochastic kernel is as follows:

Definition 2.3. A transition kernel is a function P defined on (S,S) such that

• ∀x ∈ S, P (x, .) is a probability measure;

• ∀A ∈ S, P (. , A) is S-measurable.

Two central questions when studying Markov chains are to find conditions for the existence of

a so-called stationary distribution π, as well as conditions under which repeated iterations of

the transition kernel of the Markov chain will converge to π.

Definition 2.4. A probability measure π is stationary (or invariant) for the transition ker-

nel P (. , .) if it satisfies

π(A) =

∫
S
P (x, A)π(dx), ∀A ∈ S.
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In order to ensure that a stationary distribution exists, one of the prerequisites imposed on the

transition kernel in the setup of MCMC methods is irreducibility.

Definition 2.5. Given a measure ϕ on S, the Markov chain (Xn) with transition kernel

P (x,y) is called ϕ-irreducible if for every A ∈ S with ϕ(A) > 0, there exists n such that

Pn(x, A) > 0 for all x ∈ S, where Pn(x, A) denotes the kernel for n transitions obtained by

P 1(x, A) = P (x, A) and Pn(x, A) =
∫
S P

n−1(y, A)P (x, dy).

The property of irreducibility means that the transition kernel allows the chain (Xn) to move

across the entire state space S. It implies that the chain can reach any non-zero measure

region of the state space regardless of what the starting value X0 was. Moreover, there are

the following classification criteria for Markov chains:

Definition 2.6. A Markov chain (Xn) is recurrent if

• there exists a measure φ such that (Xn) is φ-irreducible, and

• for every A ∈ S such that φ(A) > 0, Ex [ηA] = ∞ for all x ∈ A, where ηA =∑∞
n=1 1A(Xn) and 1A(.) denotes the indicator function.

This signifies that a recurrent chain on average visits any set A ∈ S infinitely many times.

Whereas the following property means that the expected return time to any state is finite.

Definition 2.7. A Markov chain (Xn) is positive recurrent if for all states x ∈ S, it holds

that Ex [τ(x)] <∞, where τ(x) = inf{n ∈ N : Xn = x}.

A key result from Markov chain theory states that for any irreducible and positive recurrent

Markov chain (Xn), there exists a (up to a constant) unique stationary probability distribu-

tion π. Note that the mere existence and uniqueness of a stationary probability distribution

does not guarantee that a Markov chain will actually converge to this distribution. This be-

havior can be ensured by further properties such as aperiodicity and ergodicity. See Robert &

Casella (2002) for a derivation of these results.

For MCMC methods, the question is not whether an invariant measure exists but quite the

opposite is the case: the density of the invariant measure is known as it is the target density π(·)
from which we would like to sample. In order to generate samples from π(·), the crucial point is

how to construct a transition kernel P (x,y) whose nth iteration tends to π(·) as n grows large.

That means the chain should be able to start at an arbitrary state x ∈ S and then after a large

number of iterations, the distribution of the generated samples corresponds approximately to

the target distribution. A useful property of a transition kernel in that regard is the so-called

reversibility or detailed-balance condition.
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Definition 2.8. A Markov chain with transition kernel P satisfies the detailed-balance condi-

tion if there exists a function f satisfying

f(x)P (x, dy) = f(y)P (y, dx), for every x,y ∈ S.

If a Markov chain with transition kernel P satisfies the detailed-balance condition with a

probability density function f , it can be shown that this density f is the invariant density of

the chain (see e. g. Robert & Casella, 2002, Theorem 6.46). The detailed-balance condition

is quite restrictive; however, it is not a necessary but a sufficient condition and usually easy to

check.

2.2.2 Examples of MCMC methods

The Metropolis-Hastings algorithm

A basic but very versatile MCMC method that makes use of the detailed-balance condition and

its consequence is the Metropolis-Hastings algorithm. The algorithm was originally suggested

by Metropolis et al. (1953) to generate Markov chains according to a Boltzmann distribution

and later generalized by Hastings (1970).

In each iteration of the algorithm, a new state y is generated from a proposal density q(y|x)

that may depend on the current state x of the Markov chain and satisfies
∫
S q(y|x)dy = 1

(in the case of a discrete state space, the integral is replaced by a sum). In practice, we will

try to choose q, of course, such that it is easy to simulate. Apart from that, there are only two

important requirements for q: Firstly, the ratio π(y)/q(y|x) must be known up to a constant

which is independent of x, and secondly, q(·|x) must have enough dispersion to ensure that

the entire support of π can be explored. Therefore, a minimum requirement is that⋃
x ∈ supp(π)

supp (q(·|x)) ⊃ supp(π),

where supp(g) = {x ∈ S | g(x) > 0} denotes the support of function g.

In order to ensure that the transition kernel of the algorithm satisfies the detailed balance

condition, the proposed state y is only accepted with probability

α(x,y) = min

[
1,
π(y)q(x|y)

π(x)q(y|x)

]
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which is called the Metropolis-Hastings acceptance probability. If the proposed state is rejected

(which happens with probability 1 − α(x,y)), the chain stays in the current state x. The

transition kernel of a Markov chain generated by the Metropolis-Hasting algorithm is thus:

PMH(x,y) = q(y|x)α(x,y) +

(
1−

∫
Rd
q(y|x)α(x,y)dy

)
δx(y),

where δx(·) denotes the Dirac mass in x; and therefore, the second summand gives the

probability of staying in state x. We can easily verify that PMH satisfies the detailed balance

condition with the target density π. For the first summand, we have

q(y|x)α(x,y)π(x) = q(y|x) min

[
1,
π(y)q(x|y)

π(x)q(y|x)

]
π(x) = min [π(x)q(y|x), π(y)q(x|y)]

= q(x|y) min

[
π(x)q(y|x)

π(y)q(y|x)
, 1

]
π(y) = q(x|y)α(y,x)π(y),

and for the second summand,(
1−

∫
Rd
q(y|x)α(x,y)dy

)
δx(y)π(x) =

(
1−

∫
Rd
q(x|y)α(y,x)dx

)
δy(x)π(y)

= 0, if x 6= y.

Hence, the Markov chain generated with the Metropolis-Hastings kernel PMH has the target π

as its stationary distribution. If we let the chain run for infinitely many iterations, we would

obtain a sample distributed according to π. In practice, of course, it is not possible to let

the chain run infinitely long. For a finite chain, we have to ensure that chain has converged

to sampling from the stationary distribution. We will discuss how this can be assessed in

Section 2.2.3. Moreover, in order to reduce the dependence on the initial state in which the

chain was started and thus to reduce the bias this may cause in a finite sample compared

to the stationary distribution, one usually discards several iterations at the beginning of the

chain as a so-called burn-in or warm-up phase (see e. g. Brooks & Roberts, 1998, Gelman

et al., 2013). We summarize the basic steps of the Metropolis-Hastings algorithm (including

a burn-in phase) in Algorithm 2.2.

The acceptance/rejection decision in Step 2 can be implemented by generating a uniform

random variable u ∼ U (0, 1), accepting y if u < α(x,y), and rejecting it otherwise. If the

proposal density is symmetric, i.e. q(y|x) = q(x|y), then the acceptance probability reduces

to α(x,y) = π(y)/π(x). In this case, the proposed state is always accepted if π(y) ≥ π(x),

i.e. if the new state increases the value of the target density, otherwise the process will move

to y only with probability π(y)/π(x) < 1. This property also serves as the basis for several

(stochastic) optimization algorithms such as the simulated annealing algorithm (see Fouskakis

& Draper, 2002, for a review).
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Algorithm 2.2: Metropolis-Hastings algorithm

Input: A target density π(·), the proposal density q(·|·), an initial state x(0),
number of iterations n, and number of samples to discard as burn-in k.

In each iteration i = 1, . . . , n:
Step 1 Generate a new state y according to q(·|x(i−1)).

Step 2 Accept y as x(i) with probability α(x(i−1),y) = min

[
1,

π(y)q(x(i−1)|y)

π(x(i−1))q(y|x(i−1))

]
,

if y is rejected x(i) := x(i−1).

Output: A sample {x(k+1), . . . ,x(n)} approximately distributed according to π(·).

Moreover, it is important to note that in general, the calculation of the acceptance probability

α(x,y) does not require us to know the normalization constant of π(·). As π(·) appears in

the numerator as well as in the denominator of α(x,y), the normalization constant simply

cancels out. So these are two of the features that make MCMC methods such a powerful

tool in Bayesian statistics. They allow us to simulate Markov chains with a desired stationary

distribution and a corresponding density which in Bayesian statistics will usually be the posterior

distribution, even if it is not possible to sample directly from this distribution. Moreover, for

many of these methods, we only need to be able to evaluate the posterior density up to a

constant, i. e. it is sufficient to be able to evaluate the prior density and the likelihood function

as by Bayes’ theorem, we have

p (θ | D) ∝ p (D |θ) p (θ) .

Gibbs-sampling

Another very general MCMC method is the Gibbs sampling algorithm named after the physicist

Josia Willard Gibbs by Geman & Geman (1984) (see Brooks et al., 2011, Chapter 2. for a

historical account). Suppose we want to sample from the p-dimensional distribution p (θ | D)

for parameter θ ∈ Rp. Let θ−j = (θ1, . . . , θj−1, θj+1, . . . , θp) be the vector of all components

of θ except for θj and further suppose that we are able to sample from the (so-called full)

conditional densities pj(θj |θ−j ,D) for j = 1, . . . , p. Then, in each iteration, the components
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of θ can be updated one-by-one as summarized in Algorithm 2.3 where we also include a

burn-in phase.

Algorithm 2.3: Gibbs sampling algorithm

Input: A target density p(· | D), full conditional densities pj(· | ·,D), initial state θ(0),

number of iterations n, and number of samples to discard as burn-in k.

In each iteration i = 1, . . . , n:

For each index j = 1, . . . , p:

Step j Generate θ
(i)
j according to pj

(
·
∣∣∣θ(i−1)
−j ,D

)
with θ

(i−1)
−j =

(
θ

(i)
1 , . . . , θ

(i)
j−1, θ

(i−1)
j+1 , . . . , θ

(i−1)
p

)
.

Output: A sample {θ(k+1), . . . ,θ(n)} approximately distributed according to p(· | D).

Gibbs sampling can be interpreted as a special case of the Metropolis-Hastings algorithm

where in each iteration only one component (or a subset of the components) of the parameter

is updated and every proposal is accepted because with the full conditional density as proposal

density, the acceptance probability is always equal to one (see Lee, 2012, Chapter 9). If several

components are updated at once within one step of the iterations, the procedure is also called

blocked Gibbs sampling. Moreover, in case it is not possible to sample from the full conditional

density directly, we can also use a Metropolis-Hastings draw in each step. This approach is used

in Bayesian data augmentation for the inference for diffusion processes that we will describe

in detail in Section 3.4.1 and investigate further in Chapter 4.

Hamiltonian Monte Carlo methods

The last class of MCMC methods that we want to describe are Hamiltonian Monte Carlo

(HMC) methods (originally called hybrid Monte Carlo methods by Duane et al. (1987)). A

concise description of these methods can be found in Gelman et al. (2013), whereas Betancourt

(2018) gives a rather conceptual introduction, and Neal (2011) gives a detailed account. The

computational cost in each iteration for HMC methods is higher than for basic Gibbs sampling

or Metropolis-Hastings algorithms because HMC makes use of the derivative of the target

distribution, but by that, transitions between the chain states can be generated that efficiently

span the (with respect to the target distribution) important regions of the state space. By

taking into account the information of the gradient, HMC avoids the random walk behavior and

difficulties caused by distributions with high correlations that other MCMC methods exhibit.

Again, we want to sample from the p-dimensional distribution π (θ) for parameter θ ∈ Rp.

Motivated by the physical concept of Hamiltonian dynamics, HMC introduces an auxiliary
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momentum variables ρ ∈ Rp and draws from a joint density p(θ,ρ) = p(ρ |θ)π(θ). The joint

density defines the so-called Hamiltonian

H(θ,ρ) = − log p(θ,ρ) = − log p(ρ |θ)− log π(θ) = K(θ,ρ) + V (θ) (2.6)

that describes the total energy of the system and is equal to the sum of the kinetic energy K

and the potential energy V . In HMC, the distribution of ρ is usually chosen to be independent

of θ. A common choice is ρ ∼ N (0p,M), where N (0p,M) denotes the multivariate normal

distribution with mean vector 0p and covariance matrix M , and M is called the design or (by

analogy to the physical model) mass matrix and often chosen to be a diagonal matrix. Thus,

the kinetic energy becomes

K(ρ) = ρTrM−1ρ/2, (2.7)

where M−1 denotes the inverse matrix of M .

In each iteration of the HMC algorithm, a momentum ρ is sampled (e. g. from N (0p,M)) and

then by analogy to the physical model of the frictionless movement of a marble with position θ

and momentum ρ (describing the marble’s mass and velocity) across a surface, the dynamics,

i. e. the changes in position and momentum, that preserve the total energy are described by

the Hamiltonian equations
dρi
dt

= −∂H
∂θi

,

dθi
dt

=
∂H

∂ρi

for i = 1, . . . , p. With the choice of H, K, and V as in Equations (2.6) and (2.7), we have

dρ

dt
= −∇θ V (θ) = ∇θ log π(θ),

dθ

dt
= ∇ρK(ρ) = M−1ρ,

(2.8)

where ∇x denotes the gradient with respect to x. In each iteration, the Equations (2.8) are

numerically integrated to obtain proposals θ∗ and ρ∗. A common choice of the numerical

integrator is the leap-frog method which first performs half a step for ρ, then a full step for θ

using the new value of the momentum ρ 1
2

, and finally another half step for ρ using the new

values ρ 1
2

and θ∗. The used step size ε and the number L of steps taken in each iteration

are tuning (or hyper) parameters of the algorithm. In a general HMC method, the momentum

variable resulting after the L steps is negated to obtain the proposal (θ∗,ρ∗), but with the

choice of the distribution of ρ as above, the negation does not make a difference due to the

symmetry.
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Finally an accept-reject step is performed analogously to the Metropolis-Hastings algorithm.

That is the proposals are accepted with probability α(θ,ρ,θ∗,ρ∗) = min (1, r) with

r =
π(θ∗)p(ρ∗ |θ∗)
π(θ)p(ρ |θ)

= exp (H(θ,ρ)−H(θ∗,ρ∗)) .

Of the (accepted) proposals, only θ∗ needs to be saved, as a new value for the momentum is

drawn right at the beginning of each iteration independent of previous values. We summarize

these steps in Algorithm 2.4.

Algorithm 2.4: Hamiltonian Monte Carlo algorithm (with leap-frog integrator)

Input: A target density π(·), an initial state θ(0), number of iterations n, mass

matrix M , and step size ε and number L of steps for numerical integration.

In each iteration i = 1, . . . , n:

Step 1 Generate ρ ∼ N (0p,M) and set θ∗ ← θ(i−1) and ρ∗ ← ρ.

Step 2 Repeat L leap-frog steps by setting:

ρ 1
2
← ρ∗ +

1

2
ε∇θ log π(θ∗)

θ∗ ← θ∗ + εM−1ρ 1
2

ρ∗ ← ρ 1
2

+
1

2
ε∇θ log π(θ∗)

Step 3 Accept θ∗ as θ(i) with probability

α(θ(i−1),ρ,θ∗,ρ∗) = min
[
1, exp

(
H(θ(i−1),ρ)−H(θ∗,ρ∗)

)]
,

if θ∗ is rejected θ(i) := θ(i−1).

Output: A sample {θ(1), . . . ,θ(n)} approximately distributed according to π(·).

Two of the limitations of this general HMC algorithm are on the one hand that due to the use

of the derivative with respect to the parameter, it is only suitable for continuous distributions,

and on the other hand, the choice of the tuning parameters is of crucial importance to the

performance of the algorithm and can be cumbersome. The tuning parameters include the

mass matrix M , and step size ε and number L of steps for numerical integration.

An extension of HMC, the No-U-Turn Sampler (NUTS), introduced by Hoffman & Gelman

(2014) includes a way to automatically determine the number L of steps for numerical in-

tegration using an recursive algorithm that grows a binary tree representing leap-frog steps

forward and backward in time which is stopped as soon as further steps do no longer increase

the distance between a newly explored point and the original starting point (i. e. as soon as

the steps start to make a U-turn).
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An efficient C++ implementation of NUTS is provided in the open-source Bayesian inference

package called Stan (Carpenter et al., 2017) which we make use of several times in this thesis

through its R interface rstan (Stan Development Team, 2019). In Stan, the gradient of

the log-posterior distribution is calculated (exactly) by reverse-mode automatic differentiation

(Carpenter et al., 2015). Moreover, Stan can automatically optimize the step size ε to match a

(user-defined) acceptance-rate target based on dual averaging as proposed by Nesterov (2009)

and it also estimates the mass matrix M during a warm-up phase consisting of several stages.

HMC methods that use a fixed symmetric, positive-definite mass matrix M throughout the

algorithm are also called Euclidean HMC. Whereas methods that adapt the matrix M to the

local structure are called Riemann manifold HMC methods and are supposed to allow even

more ”efficient convergence and exploration of the target density” (Girolami & Calderhead,

2011). However, there is evidence that numerical integration can be unstable for Riemann

manifold HMC methods for different reasons including the geometry of the target density as

well as the implementation of the integrator; and therefore, Riemann manifold HMC methods

are not included in Stan and it is rather recommended to reparameterize the considered model

to improve sampling efficiency (see e. g. Betancourt, 2019, Betancourt et al., 2015).

There is a plethora of other MCMC methods each having its advantages and disadvantages

depending on the structure of the considered model. Here, we have only introduced those

methods that will be used in this thesis. For an overview of further methods see e. g. Brooks

et al. (2011). The need for a benchmarking framework to evaluate the performance of the

many different algorithms is addressed by Ballnus et al. (2017) in the context of dynamical

systems modeled by ODEs. We will give a short overview of how to assess the performance of

an MCMC methods based on its output in the next subsection.

2.2.3 Evaluating MCMC output

While in theory, any MCMC method (for which convergence of the transition kernel is ensured)

will give a sample from the target distribution if infinitely many iterations are executed; in

practice, the sample size can only be finite. We have already mentioned this as a reason to cut

off a burn-in/warm-up phase at the beginning of the iterations in order to reduce the chance

of bias due to the starting value. In general, the finite sample size leads to the necessity to

carefully evaluate the MCMC output.

Visual inspection to asses the obtained MCMC chains is still common practice, but also several

so-called convergence tests can be found in literature (see e. g. Brooks & Roberts, 1998).

They aim to assess whether an MCMC chain has already converged to the target distribution.

However, similar to most hypothesis tests, they are not able to proof convergence but may only
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suggest that there is substantial evidence against the hypothesis that a chain has converged.

A quantity that can be used to quantify the degree of convergence when several chains have

been simulated is the R̂ value. The R̂ convergence (or rather stationarity) diagnostic compares

the between- and within-chain variance for individual model parameters and other univariate

quantities of interest. Assume we are considering the scalar parameter ψ for which we have

simulations ψi,j for i = 1, . . . , n and j = 1, . . . ,m and for m chains (after discarding the

warm-up iterations and then splitting each simulated chain in half) of length n. Let

v̂ar+(ψ | D) =
n− 1

n
W +

1

n
B (2.9)

be an estimate for the marginal posterior variance of ψ, where the within-sequence variance W

is defined by

W =
1

m

m∑
j=1

s2
j with s2

j =
1

n− 1

n∑
i=1

(ψij − ψ̄·j)2,

and the between-sequence variance B is defined by

B =
n

m− 1

m∑
j=1

(ψ̄·j − ψ̄··)2 with ψ̄·j =
1

n

n∑
i=1

ψij and ψ̄·· =
1

m

m∑
j=1

ψ̄·j .

Then, R̂ is defined as

R̂ =

√
v̂ar+(ψ | D)

W
.

Due to the splitting of chains in half, R̂ calculated in this way is also known as split-R̂ and

was suggested in Gelman et al. (2013). The value can be interpreted as the factor by which

the scale of the distribution of the current simulations for ψ can be reduced by continuing

the number of iterations to infinity. If chains have mixed well, R̂ is close to 1. Gelman et al.

(2013) state that values up to 1.1 are acceptable. The R̂ reported by Stan is calculated as the

maximum of a so-called rank-normalized split-R̂ and a rank-normalized folded-split-R̂ which

was recently suggested by Vehtari et al. (2020).

Another issue in MCMC sampling is the fact that the draws are not independent but may

even be highly correlated. There are two main causes of high auto-correlation within a chain:

the first may be that only small steps are proposed, so the consecutive chain states are very

close to each other; and the second may be a low acceptance rate (which is the proportion of

proposals that is accepted) such that many consecutive chain states are even equal to each

other. Unfortunately, there is usually a trade-off between large steps and high acceptance

rates as large steps tend to lead to lower acceptance probability. It is important to keep in

mind that such a correlated sample from the parameter posterior distribution does not contain
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the same amount of information as an independent and identically distributed sample. This

issue is addressed by the notion of the effective sample size (ESS). The ESS of a sample of

correlated draws quantifies the size of a corresponding independent and identically distributed

sample that contains the same amount information.

The ESS for a sample of scalar parameter ψ consisting of m chains each of length n (again

after discarding warm-up iterations but without splitting of the chains) can be defined as

neff =
mn

1 + 2
∑∞

t=1 ρt
,

where ρt is the autocorrelation of the sequence ψ at lag t. This quantity can be approximated

in different ways. Here, we give the approximation that is presented in Gelman et al. (2013)

and implemented in rstan. The estimated autocorrelations ρ̂t are computed as

ρ̂t = 1− Vt

2v̂ar+(ψ | D)

for t = 1, . . . , T and, where the estimate v̂ar+ for the marginal posterior variance is calculated

as in (2.9) and the variogram Vt at lag t is calculated as

Vt =
1

m(n− t)

m∑
j=1

n∑
i=t+1

(ψi,j − ψi−t,j)2.

The maximal considered lag T is chosen to be the first odd positive integer for which ρ̂T+1 +

ρ̂T+2 is negative and finally, the ESS is approximated by

n̂eff =
mn

1 + 2
∑T

t=1 ρ̂t
.

Gelman et al. (2013) recommend that a minimum ESS of 10 per simulated chain is achieved.

The between-chain information is taken into account in the calculation of n̂eff by including

the term v̂ar+(ψ | D). Thus, the ESS is affected when we try to sample from multi-modal

distributions. In fact, in the case of well-separated modes and each chain sampling only from

one of these modes, the ESS roughly equals to the number chains divided by the number of

modes.

Vats et al. (2019) also introduced a way to calculate a multivariate ESS and provide an

implementation in the R package mcmcse (Flegal et al., 2020).

Finally, we would like to point out that the common practice of thinning the output chains,

i. e. only keeping every lth element and discarding the rest of the chain before further analysis,

in order to reduce autocorrelation within the sample is in fact advised against by many MCMC
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experts (see e. g. Geyer, 1992, Maceachern & Berliner, 1994). Link & Eaton (2012) state

that “Thinning is often unnecessary and always inefficient, reducing the precision with which

features of the Markov chain are summarised.” The few reasons that justify a use of thinning

include on the one hand a limitation in memory or storage capacity which nowadays will rarely

be the case. And on the other hand, if generating further samples is less computationally

costly than the post-processing of the samples, thinning may also be justified. Owen (2017)

investigates how to determine an optimal thinning frequency in such a case.

We describe some further diagnostics specific to HMC and NUTS in Appendix A.3.1.

2.3 Parameter identifiability

Another important aspect when considering parameter inference problems is the concept of

parameter identifiability which is about the question whether the parameters of a model can be

estimated from a given data set or type. There are two notions with respect to identifiability

(Raue et al., 2009): Structural identifiability exclusively considers the structure of the model

including the model of the observations (sometimes called the observable map) and answers

the question whether the parameters can be uniquely determined if we are given perfect data,

i. e. an infinite amount of data observed without measurement error and continuously in time.

Whereas practical identifiability is concerned with the question whether the parameters can be

determined from a specific data set (which is always finite and usually subject to measurement

error).

Let Mθ be a dynamical model parameterized by a p-dimensional parameter θ ∈ Θ from an

open set Θ ∈ Rp and let Ψ(θ, t) be the “output” of Mθ at time t ≥ t0. For a deterministic

model, Ψ(θ, t) is a (vector-valued) function of the parameter θ for every time point t ≥ t0

and is also known as the observable(s). For a stochastic model, Ψ(θ, t) can be thought of as

the probability measure induced by the random variable of the observable components of the

process state at time point t. Then, we can define the following notions analogously to Chiş

et al. (2011a) for the deterministic case and loosely following Reiersøl (1950) and Rothenberg

(1971) for the stochastic case.

Definition 2.9. A parameter component θi, i = 1, . . . , p, is structurally globally (or uniquely)

identifiable if for any θ, θ′ ∈ Θ, it holds that

Ψ(θ, t) = Ψ(θ′, t) =⇒ θ = θ′ for all t ≥ t0.
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Definition 2.10. A parameter component θi, i = 1, . . . , p, is structurally locally identifiable

if for any θ ∈ Θ, there exists a neighborhood Nθ such that

θ′ ∈ Nθ and Ψ(θ, t) = Ψ(θ′, t) =⇒ θ = θ′ for all t ≥ t0.

Definition 2.11. A parameter component θi, i = 1, . . . , p, is structurally non-identifiable if

for any θ ∈ Θ, there exists no neighborhood Nθ such that

θ′ ∈ Nθ and Ψ(θ, t) = Ψ(θ′, t) =⇒ θ = θ′ for all t ≥ t0.

For ODE models, structural (as well as practical) identifiability analysis is a common step in the

modeling process and design of experiments (Brouwer et al., 2017, Hengl et al., 2007, Janzén

et al., 2016, Raue et al., 2010). And there exist several software tools to assess structural

identifiability for ODE models such as DAISY that implements a differential algebra approach

(Bellu et al., 2007), GenSSI that implements a generating series approach (Chiş et al., 2011b),

and its extension GenSSI 2.0 that also allows for multi-experiment structural identifiability

analysis (Ligon et al., 2017). In contrast with that, there exists hardly any literature on

structural identifiability analysis for SDE models which is probably due to the complex nature

of the problem. One would have to consider and compare infinite-dimensional probability

distributions, and in addition to that, the distributions are not tractable for most models. One

approach to structural identifiability analysis for SDE models has recently been suggested by

Browning et al. (2020). It determines the moment equations of the SDE and uses them as a

surrogate model which consists of ODEs. Thus, the tools for ODE models as mentioned above

can be applied. Also, Komorowski et al. (2011) consider identifiability analysis for the LNA in

the context of maximum likelihood estimation; however, this approach is not transferable to

general SDEs.

Practical identifiability “depends more stongly on the inferential framework and is less clearly

defined in the literature” (Simpson et al., 2020). It is concerned with the question whether for

a given level of credibility or confidence, we can determine a finite or rather sufficiently narrow

interval estimate for a parameter given real and thus imperfect data (i. e. a finite dataset which

is usually subject to measurement error). Since we apply Bayesian inference methods, we are

interested in credible intervals (CIs) and introduce them analogously to Held & Sabanés Bové

(2020, Chapter 6):

For a given credible level α ∈ (0, 1), a credible interval Cαi ⊂ R for parameter component θi,

i = 1, . . . , p, is an interval such that∫
{θ∈Θ | θi∈Cαi }

p(θ | D) dθ = 1− α, (2.10)
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whereby Cαi is not uniquely determined.

There are different approaches to calculate credible (or confidence) intervals. A Bayesian coun-

terpart of the profile likelihood calculation from the context of maximum likelihood estimation

(Raue et al., 2009) is the calculation of the profile posterior

PP(θi | D) = max
θj 6=i

[p(θ | D)],

where for a given value of parameter component θi, i = 1, . . . , p, the (unnormalized) posterior

density p(θ | D) is maximized with respect to all other parameter components (Raue et al.,

2013). However, for SDE models, it is not generally possible to calculate the profile posterior

analytically, since the likelihood and thus the posterior density are usually not tractable.

An alternative is the calculation of credible intervals based on an MCMC sample (Hines et al.,

2014, Simpson et al., 2020). There are different ways how to calculate CIs from a sample

(McElreath, 2016, Chapter 3.2). Two commonly used ways are the following: For a posterior

sample θ1, . . . , θn, the simplest approach to calculate the CI of parameter component θi,

i = 1, . . . , p, is to (implicitly) marginalize over all other parameter components and set

Cαi = {θi | θ(α/2)
i ≤ θi ≤ θ(1−α/2)

i },

where θ
(β)
i denotes the β-quantile of the sample. Another approach is to arrange the sample

in descending order with respect to the corresponding posterior value p(θj | D), j = 1, . . . , n,

determine the (1− α)-quantile q1−α of the reordered posterior values, and then calculate the

range of all values θki such that p(θki | D) > q1−α as the CI Cαi . The CI obtained in the latter

way corresponds to a highest probability density interval (HPDI).

A parameter is considered practically identifiable if the obtained CI is sufficiently tight, but

there is no general quantitative rule what ”sufficiently tight” means. Moreover, Raue et al.

(2013) demonstrate that the CIs obtained from the profile posterior do not necessarily agree

with the CIs obtained based on MCMC samples in the presence of parameter non-identifiability.

The MCMC CIs may indicate non-identifiabilities where the profile posterior CIs do not and

one has to carefully check the MCMC diagnostics to ensure meaningful results. Then again,

for the SDE models as we consider them in this thesis, only inference methods based on

MCMC sampling are feasible as will be explained in detail in the next chapter and carefully

assessing MCMC diagnostics is a prerequisite for meaningful inference in any case.
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Chapter 3

Itô diffusion processes

In this chapter, we define what Itô diffusion processes are, give some of their properties and

some examples, and show how they can be approximated and how parameter inference can be

performed for them. Parts of this chapter, in particular Section 3.4.1, are similar or identical

to the following article:

Pieschner, S. & Fuchs, C. (2020). Bayesian inference for diffusion processes: using higher-order

approximations for transition densities. Royal Society Open Science, 7(10), 200270.

3.1 Definition and basic properties

Let (Ω,F ,P) be a given complete probability space with sample space Ω, σ-algebra F , and

probability measure P defined on (Ω,F) and let this space be equipped with a filtration

F = {Ft}t∈[0,T ] of σ-fields contained in F .

In this thesis, we consider parametric time-homogeneous Itô diffusion processes and infer-

ence for such processes which we will simply call diffusion processes. A d-dimensional time-

homogeneous Itô diffusion process (Xt)t≥0 is a stochastic process that fulfills the following

stochastic differential equation (SDE):

dXt = µ (Xt,θ) dt+ σ (Xt,θ) dBt, X0 = x0, (3.1)

with state space X ⊆ Rd, starting value x0 ∈ X , and an r-dimensional Brownian mo-

tion (Bt)t≥0. The model parameter θ ∈ Θ is from an open set Θ ⊆ Rp. The function

µ : Rd ×Θ→ Rd is usually called the drift coefficient and σ : Rd ×Θ→ Rd×r the diffusion
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coefficient. Equation (3.1) is a symbolic way of writing the stochastic integral equation

Xt = x0 +

∫ t

0
µ (Xs,θ) ds+

∫ t

0
σ (Xs,θ) dBs for all t ≥ 0 P-almost surely,

where the first integral is an ordinary Riemann integral and the second integral is a stochastic

integral in the Itô sense. In the remainder of this section, we omit the dependence of µ and σ

on the parameter θ and focus on some general properties and results for diffusion processes.

More elaborate and general introductions to SDEs can be found e. g. in Øksendal (2003),

Klebaner (2005), Fuchs (2013), and Braumann (2019).

The following theorem provides conditions that ensure the existence and uniqueness of a

solution for SDE (3.1).

Theorem 3.1 (Existence and uniqueness theorem, (Øksendal, 2003)). Let T > 0 and µ :

Rd → Rd, σ : Rd → Rd×r be measurable functions satisfying

‖µ(x)− µ(y)‖+ ‖σ(x)− σ(y)‖ ≤ C1‖x− y‖, x,y ∈ Rd (3.2)

for some positive constant C1, where ‖σ‖2 =
∑
|σij |2.

Let Z be a random variable which is independent of the σ-algebra F (r)
∞ generated by the

Brownian motion {Bs}s≥0 and such that E[‖Z‖2] <∞.

Then the SDE

dXt = µ(x) dt+ σ(x) dBt, 0 ≤ t ≤ T, X0 = Z

has a unique continuous solution Xt(ω) with the property that Xt(ω) is adapted to the

filtration FZt generated by Z and {Bs}0≤s≤t and E
[∫ T

0 ‖Xt‖2dt
]
<∞.

The solution Xt is called a strong solution as it is some functional F (t, (Bs, s ≤ t)) of a given

Brownian motion Bt. The Lipschitz condition (3.2) ensures the (pathwise) uniqueness of the

solution, i. e. given two continuous solutions Xt and X∗t , we have

P

(
sup

0≤t≤T
|Xt −X∗t | = 0

)
= 1.

For our case of time-homogeneous coefficient functions µ and σ, Condition (3.2) also implies

the linear growth bound which ensures that the solution does not explode on [0, T ]. The linear

growth bound for time-dependent coefficient functions µ̃(x, t) and σ̃(x, t) is fulfilled if

‖µ̃(x, t)‖+ ‖σ̃(x, t)‖ ≤ C2(1 + ‖x‖), x ∈ Rd, t ∈ [0, T ]

for some positive constant C2 (cf. Øksendal, 2003, p. 70).
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Lipschitz continuity and linear growth bounds are the standard conditions to ensure existence

and uniqueness of the solution. For several of the models which are studied in this thesis,

however, the Lipschitz condition does not hold due to the occurrence of the square root

function in the diffusion coefficient. Consequently, we need to consider weaker assumptions

that lead to existence and uniqueness. For this reason, let us define the notion of weak

solutions.

Definition 3.2. Given the coefficient functions µ : Rd → Rd and σ : Rd → Rd×r, the process

X̃t is a called a weak solution if there exist a probability space (Ω̃, F̃ , P̃), a filtration {F̃t}t≥0,

and a Brownian motion B̃t with respect to F̃t such that

X̃t = X̃0 +

∫ t

0
µ
(
X̃s,θ

)
ds+

∫ t

0
σ
(
X̃s,θ

)
dB̃s,

where X̃t is F̃t-adapted and has continuous paths with probability one.

There are a number of theorems about the existence of weak solutions. Ikeda & Watanabe

(1981, Theorem 2.3, p. 159) ensure the existence of weak solutions if the coefficient functions µ

and σ are continuous. Moreover, their following theorem gives conditions to ensure existence

of weak solutions with finite second moments and that do not explode.

Theorem 3.3 (Ikeda & Watanabe (1981, Theorem 2.4, p. 163)). If µ(x) and σ(x) are

continuous and satisfy the condition

‖µ(x)‖2 + ‖σ(x)‖2 ≤ C3

(
1 + ‖x‖2

)
for some positive constant C3, then for any solution of Equation (3.1) with E

(
‖X(0)‖2

)
<∞,

we have E
(
‖X(t)‖2

)
<∞ for all t > 0. Thus, X(t) is almost surely non-explosive.

Remark 3.1. Weak existence and pathwise uniqueness imply strong existence: If Xt and Y t

are weak solutions defined on the same probability space with the same initial condition and

the same Brownian motion and pathwise uniqueness holds, i. e.

P{Xt = Y t for all t ≥ 0} = 1,

then Xt (and Y t) are also the strong solution. This is proved in Karatzas & Shreve (1998,

Chapter 5.3.D).

In the case of one-dimensional processes, pathwise uniqueness can be ensured based on the

following corollary where σ is called Hölder continuous with exponent α if

‖σ(x)− σ(y)‖ ≤ C4‖x− y‖α, x,y ∈ Rd
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for some positive constant C4.

Corollary 3.4 (Ikeda & Watanabe (1981), Corollary, p. 168). If µ is Lipschitz continuous and

σ is Hölder continuous with exponent 1/2, then the pathwise uniqueness of solutions holds

for Equation (3.1) in the case d = 1.

In the following, we list some basic properties of diffusion processes. In this thesis, we do not

distinguish between stochastic processes which are stochastic modifications and assume that

the considered processes are separable and continuous in t.

The quadratic variation of the sample paths of an Itô diffusion process (Xt)t≥0 on a time

interval [s, t] is

[X,X][s,t] = lim
δn→0

n∑
i=1

(
X

t
(n)
i

−X
t
(n)
i−1

)(
X

t
(n)
i

−X
t
(n)
i−1

)Tr

=

∫ t

s
σ(Xu)σ(Xu)Tr du,

(3.3)

where the limit is in probability taken over partitions s = t
(n)
0 < t

(n)
1 < . . . < t

(n)
n = t with

δn = max1≤i≤n

(
t
(n)
i − t

(n)
i−1

)
.

Moreover, the diffusion process Xt satisfies the Markov property, i. e. for any 0 ≤ s ≤ t ≤ T

and any Borel set B ∈ B(X ), we have

P (Xt ∈ B |Xu, 0 ≤ u ≤ s) = P (Xt ∈ B |Xs) . (3.4)

The Markov property signifies that conditioned on the present state of the process, future states

are independent of the past. Regarded as a Markov process, Xt can also be characterized by

its initial distribution P(X0) and the transition probability distributions which are conditional

distributions defined by the transition probability

P (Xt ∈ B |Xs = x) =

∫
B
p(s,x; t,y) dy

for 0 ≤ s < t and B ∈ B(X ). The transition probability is the probability that the process will

transition from state x ∈ X at time s to state y ∈ X at time t > s. p(s,x; t,y) denotes the

probability density function of the transition probability distribution and is called the transition

density. For s = t, we define p(s,x; s,y) := δ(y − x), where δ is the Dirac delta function.

The Itô integral and thus also Itô diffusion processes do not adhere to the rules of classical

calculus. Instead, the following theorem states the stochastic counterpart of the chain rule

from classical calculus which is known as Itô formula. The formulation of the Itô formula
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specific for Itô diffusion processes as we state it here follows directly from the general Itô

formula as stated in Øksendal (2003, Chapter 4.2).

Theorem 3.5 (Itô formula). Let Xt be a d-dimensional Itô diffusion process described by an

SDE as in (3.1). Let g(t,x) = (g1(t,x), . . . , gq(t,x)) be a map from [0, T ]×Rd into Rq with

continuous first-order partial derivatives in t and continuous first- and second-order partial

derivatives in x. Then the process

Y (t, ω) = g(t,Xt)

is an Itô process whose kth component Y (k) is given by

dY (k) =
∂gk
∂t

(t,X) dt+

q∑
i=1

∂gk
∂x(i)

(t,X) dX(i) +
1

2

q∑
i=1

q∑
j=1

∂2gk
∂x(i)∂x(j)

(t,X) dX(i) · dX(j),

=

(
∂gk
∂t

(t,X) + µ(X)Tr∇gk(t,X) +
1

2
trace

(
σ(X)σ(X)Tr∇ (∇gk(t,X))

))
dt

+ (∇gk(t,X))Tr σ(X) dBt, (3.5)

where ∇gk denotes the gradient of gk with respect to the components of x and dX(i) ·dX(j) is

computed according to the rules dB(i) ·dt = dt ·dB(j) = (dt)2 = 0 and dB(i) ·dB(j) = δij dt

with δij denoting the Kronecker delta.

3.2 Example models

In this section, we briefly introduce two simple, well-known examples of diffusion processes that

we use as illustrative examples and as benchmark models in Chapter 4. The first example is the

geometric Brownian motion (GBM) which is described by the following one-dimensional SDE:

dXt = αXt dt+ σXt dBt, X0 = x0, (3.6)

with state space X = R+, starting value x0 ∈ X and the two-dimensional parameter θ =

(α, σ)T , where α ∈ R and σ ∈ R+, R+ being the set of all strictly positive real numbers. The

GBM is famous in finance where it models asset prices and is also known as the Black-Scholes-

model (see e. g. Black & Scholes, 1973, Merton, 1973). Braumann (2019) also considers the

GBM to model population growth. For us, the GBM is especially suitable as a benchmark

model because it has an explicit solution. The stochastic process

Xt = x0 exp

((
α− 1

2
σ2

)
t+ σBt

)
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fulfills (3.6) for all t ≥ 0. Hence, the multiplicative increments of the GBM are log-normally

distributed as follows:

Xt

Xs
∼ LN

((
α− 1

2
σ2

)
(t− s) , σ2 (t− s)

)
for t ≥ s ≥ 0, and the transition density P (Xt = y |Xs = x) which we denote by p (s, x; t, y)

is explicitly known as

p (s, x; t, y) =
1√

2π(t− s)σy
exp

−
(

log y − log x−
(
α− 1

2
σ2

)
(t− s)

)2

2σ2(t− s)

 . (3.7)

A derivation of the solution of the GBM and its transition density can be found in Iacus (2008).

Figure 3.1 presents realizations of the GBM for two different parameter combinations.
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(b) α = 1, σ2 = 2

Figure 3.1: Ten trajectories of the GBM described by SDE (3.6) with starting value X0 = 100
and for different parameter combinations. The dashed black line represents the expected value
of the GBM solution E [Xt] = X0 exp(αt).

In some contexts, one considers the logarithm of the GBM, logXt, which is simply a normally

distributed random variable for fixed t, with corresponding SDE

d (logXt) =

(
α− 1

2
σ2

)
dt+ σ dBt, logX0 = log x0. (3.8)

However, we do not employ this transformation here because of the constant diffusion function

in (3.8). For the log-transformed GBM, the approximation methods that we will introduce in

the next section and that we wish to compare in Chapter 4 would yield an identical approxi-

mation.
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3.3. Approximation of the solution of a SDE

Our second example model is the Cox-Ingersoll-Ross (CIR) process which fulfills the one-

dimensional SDE

dXt = α (β −Xt) dt+ σ
√
Xt dBt, X0 = x0, (3.9)

with starting value x0 ∈ R+ and parameters α, β, σ ∈ R+. If 2αβ > σ2, the process is strictly

positive (i. e. X = R+) otherwise it is non-negative (i. e. X = R0). This model was originally

introduced by Feller (1951a,b) to model population growth. Later, Cox, Ingersoll, and Ross

used it to model the evolution of short-term interest rates in Cox et al. (1985) and it became

well-known in finance under their names. The CIR process is also used as the volatility process

in the Heston model introduced by Heston (1993). Etchegaray & Meunier (2019) employ the

CIR process to model bond dynamics in cell adhesion.

The transition density of the CIR process is explicitly known as

p (s, x; t, y) = c
(v
u

) η
2
e−(u+v)Iη(2

√
uv) (3.10)

for t > s ≥ 0, where

c =
2α

σ2
(
1− e−α(t−s)

) , u = cxe−α(t−s), v = cy, η =
2αβ

σ2
− 1,

and Iη denotes the modified Bessel function of the first kind of order η, i. e.

Iη(z) =

∞∑
k=0

(z
2

)2k+η 1

k! Γ(k + η + 1)

for z ∈ R, where Γ is the Gamma function (see e. g. Fuchs, 2013). A derivation of the transition

density is provided in Jeanblanc et al. (2009, Chapter 6.3). There are several algorithms to

generate samples from this density (see e. g. Alfonsi, 2015, Glasserman, 2003). We use the

algorithm presented in Glasserman (2003, p. 124) and state it in Appendix A.1. Figure 3.2

shows realizations of the CIR process for two different parameter combinations.

3.3 Approximation of the solution of an SDE

Unlike the example models from the previous section, most SDEs do not have an analytical

solution and their transition densities are not explicitly known. Instead, numerical approxima-

tion schemes are used for the solution of the SDEs. Kloeden & Platen (1992) have provided

a detailed description of these methods.
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Figure 3.2: Ten trajectories of the CIR process described by SDE (3.9) with starting value
X0 = 10 and for different parameter combinations. The dashed black line represents the
expected value of the CIR process E [Xt] = β − (β −X0) exp(−αt).

The numerical approximation schemes are evaluated through their convergence property. A

discrete-time approximation Y∆ with maximum time step ∆ > 0 converges strongly to the

solution XT of a given SDE at time T if

lim
∆↘0

E
(∥∥XT −Y∆

T

∥∥) = 0.

To compare different approximation schemes, one usually considers their rates of strong con-

vergence. A discrete-time approximation Y∆ with maximum time step ∆ > 0 converges with

strong order γ > 0 to the solution XT of a given SDE at time T if there exists a positive

constant C independent of ∆ and a ∆0 > 0 such that

E
(∥∥XT −Y∆

T

∥∥) ≤ C∆γ

for all ∆ ∈ (0,∆0). Strong convergence ensures a pathwise approximation of the solution

process (Xt)t≥0 of the given SDE as shown in Kloeden & Neuenkirch (2007). The higher the

order of strong convergence is, the faster the mean absolute error between the approximation

and the solution decreases as the maximum time step size ∆ decreases.

Several of the approximation schemes are based on the Itô-Taylor expansion. This stochastic

counterpart of the Taylor expansion is obtained by iteratively applying the Itô formula (3.5) to

the coefficient functions of SDE (3.1) which are assumed to be sufficiently smooth real-valued

functions satisfying a linear growth bound. For the ith component of the process Xt, the
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3.3. Approximation of the solution of a SDE

expansion reads

X
(i)
t = X

(i)
t0

+ µi(Xt0)

∫ t

t0

ds+
r∑
l=1

σil(Xt0)

∫ t

t0

dB(l)
s

+
r∑
l=1

r∑
q=1

d∑
j=1

σjq (Xt0)
∂σil
∂x(j)

(Xt0)

∫ t

t0

∫ s

t0

dB(q)
u dB(l)

s +R(i)

for i = 1, . . . , d and with remainder term R that contains further multiple Itô integrals but

with non-constant integrands.

The most commonly used approximation is the Euler(-Maruyama) scheme which contains

only the time component and the stochastic integral of multiplicity one from the Itô-Taylor

expansion and was first investigated by Maruyama (1955). It can be conveniently written in

vector notation and approximates the d-dimensional solution (Xt)t≥0 of an SDE by setting

Y 0 = x0 and, then, successively calculating the following:

Y k+1 = Y k + µ (Y k) ∆tk + σ (Y k) ∆Bk, (3.11)

where ∆tk = tk+1 − tk, ∆Bk = Btk+1
− Btk , and Y k is the approximation of Xtk for

k = 0, 1, 2, . . . . If the coefficient functions µ and σ fulfill the Lipschitz (and the linear

growth) condition, the Euler scheme has strong order of convergence γ = 0.5.

By adding another term of the Itô-Taylor expansion to Equation (3.11), one obtains the Milstein

scheme that approximates the d-dimensional process (Xt)t≥0 by setting Y 0 = x0 and, then,

successively calculating for the ith component:

Y
(i)
k+1 =Y

(i)
k + µi (Y k) ∆tk +

r∑
l=1

σil (Y k) ∆B
(l)
k

+
r∑
l=1

r∑
q=1

d∑
j=1

σjq (Y k)
∂σil
∂y(r)

(Y k)

∫ tk+1

tk

∫ s

tk

dB(q)
u dB(l)

s

(3.12)

for k = 0, 1, . . . and i = 1, . . . , d.

When σ (Y k) is constant in Y k, the last term vanishes and the Milstein scheme reduces to the

Euler scheme. If µ is once continuously differentiable and σ is twice continuously differentiable

with uniformly Lipschitz continuous derivatives, then the Milstein scheme is strongly convergent

of order 1.0, which is higher than that of the Euler scheme. An illustration of this difference in

the convergence rates for the simulation of SDE trajectories is presented e. g. in Bayram et al.

(2018).
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Note that the stated orders of strong convergence for the two schemes assume Lipschitz

continuity of the coefficient functions. As already mentioned this condition is not fulfilled for

several of the models considered in this thesis. Gyöngy & Rásonyi (2011) provide convergence

rates for the Euler scheme under weaker assumptions. For the case of 1
2 -Hölder continuous

diffusion functions and a discretization time step of ∆ = T/n, they show in their Theorem

2.1 that the Euler scheme achieves only a slower strong convergence rate of 1/ lnn (instead

of ∆
1
2 ).

For the CIR process, Hefter & Herzwurm (2018) prove the strong convergence of a Milstein-

type approximation scheme. They state that for values Xt “away” from zero their scheme

coincides with the classical Milstein scheme as described above. Moreover, the scheme has a

strong rate of convergence of n−( 1
2
−ε) for some small ε > 0 (instead of ∆1) which converges

to zero faster than 1/ lnn as n tends to infinity.

To prove the strong convergence under weaker assumptions, a different representation of the

Euler scheme is usually considered in the literature. As in Gyöngy & Rásonyi (2011), we define

the functions κn : [0, T ]→ [0, T ] for n ≥ 1 by setting κn(T ) := n−1
n T and

κn(t) =
iT

n
for

iT

n
≤ t ≤ (i+ 1)T

n
(3.13)

and for i = 0, . . . , n − 1. Then the Euler approximations of the solution X(t), t ∈ [0, T ], of

Equation (3.1) can be defined as the solutions of

dXn(t) = µ(Xn(κn(t))) dt+ σ(Xn(κn(t))) dB(t), Xn(0) = x0, (3.14)

for each n ≥ 1.

For the Euler approximation of a one-dimensional diffusion process, Gyöngy & Rásonyi (2011)

state the following bounds that can be derived from Krylov (1980, Corollary 12, p. 86).

Lemma 3.6 (Gyöngy & Rásonyi (2011), Lemma 1.2 and Remark 1.2.). Assume that µ and

σ satisfy the linear growth condition, i. e.

‖µ(x)‖+ ‖σ(x)‖ ≤ K(1 + ‖x‖), x ∈ R,

with some K > 0. For each p > 0, there is C > 0, independent of n, such that

E

[
sup

0≤t≤T
|Xn(t)|p

]
≤ C(1 + x0)p (3.15)
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for all n, where C is a constant depending on T , p, and K. Moreover, there is C̃ > 0,

independent of n, such that

E

[
sup

0≤t≤T
|Xn(t)−Xn(κn(t))|p

]
≤ C̃

np/2
(3.16)

for all n, where C̃ is a constant depending on T , p, x0, and K.

Corollary 3.7 (Gyöngy & Rásonyi (2011) Corollary 2.3). Let µ be Lipschitz continuous and

σ Hölder continuous and let x0 ∈ R. Then there is a constant C depending on K, T , and

(x0)2 such that for all n ≥ 2 we have

E

[
sup

0≤t≤T
|X(t)−Xn(t)|

]
≤ C√

lnn
. (3.17)

We will use these results for the proof of convergence of the Euler scheme for the application

model in Section 5.3.2.

3.4 Inference for SDEs

In this thesis, we assume the drift coefficient µ and the diffusion coefficient σ of SDE (3.1) to

be known in parametric form and summarize methods to infer the parameter θ ∈ Rp. A more

detailed overview of these methods can be found e. g. in Sørensen (2004), Fuchs (2013), and

the references therein.

Inference would be straight forward in the hypothetical case of observing a trajectory of

X = (Xt)t≥0 continuously over a time interval [r, s]. In this case, the components of the

parameter θ that appear in the diffusion coefficient can be directly determined from Rela-

tionship (3.3) between the quadratic variation and the diffusion coefficient. Afterwards, the

(log-)likelihood function of the remaining parameter components can be constructed using

Girsanov’s formula and then maximized to obtain an estimate for θ. This approach is pre-

sented for linear SDEs in Le Breton (1977) and described for general SDEs in Fuchs (2013,

Chapter 6.1).

However, in practice, the continuous-time observation of a process is not possible. Therefore,

the inference problem needs to be considered for states x0,x1, . . . ,xn of X observed at

discrete time points 0 = t0 < t1 < . . . < tn. Different asymptotic observation schemes have

been investigated in the literature. Assuming that the states are observed with equidistant time

step ∆ between consecutive observations on a time interval [0, T ] with T = tn = n∆, Iacus

41
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(2008) uses the following terms for the different schemes: In the large-sample scheme, the

time step ∆ remains fixed and T tends to infinity as n → ∞. In the high-frequency scheme,

the upper bound T of the time interval is fixed and the time step ∆ = ∆n goes to zero as

n → ∞. And finally, in the rapidly increasing design, ∆ = ∆n goes to zero and T increases

as n→∞. While the last two schemes are more convenient from a theoretical point of view

as their limit corresponds to continuous-time observations, sometimes only the large-sample

scheme is realistic in practice.

If the SDE yields an analytical solution, the transition densities of the corresponding diffusion

process are explicitly known and parameter estimation can be easily performed through a

maximum likelihood approach, as demonstrated e. g. in Dacunha-Castelle & Florens-Zmirou

(1986). Due to the Markov property of diffusion process X, the likelihood function of θ

factorizes as

Ln(θ) =
n−1∏
k=0

pθ(tk,xk; tk+1,xk+1) (3.18)

and can be evaluated based on the transition densities pθ known up to the parameter θ. Yet

again this procedure is only of little practical use as in the majority of applications, the SDE

model does not have an analytical solution and the transition densities are intractable. Thus,

exact maximum likelihood estimation is usually not possible.

Instead, approximate (sometimes also called quasi or pseudo) maximum likelihood estimation

can be performed by appropriately approximating the likelihood function. The most naive and

at the same time straight forward approach is to approximate the transition density based on

the Euler scheme (3.11). Since the Euler scheme is a linear transformation of the normally-

distributed increments ∆Bk ∼ N (0,∆tkIr) of the Brownian motion, where Ir denotes the

r-dimensional identity matrix, the transition density derived from the Euler scheme is also a

multivariate Gaussian density:

pθ(tk,xk; tk+1,xk+1) ≈ φ
(
xk+1 |xk + µ (xk,θ) ∆tk,σ (xk,θ)σTr (xk,θ) ∆tk

)
for k = 0, . . . , n − 1 and where φ (y |a, b) denotes the multivariate Gaussian density with

mean a ∈ Rd and covariance matrix b ∈ Rd×d evaluated at y ∈ Rd. Hence, the approximated

likelihood function becomes

LEulern (θ) =
n−1∏
k=0

φ
(
xk+1 |xk + µ (xk,θ) ∆tk,σ (xk,θ)σTr (xk,θ) ∆tk

)
. (3.19)

For the large-sample scheme (where the time step between observations is fixed), this naive

approximate maximum likelihood estimator has been shown to be biased and thus inconsistent

as n → ∞ e. g. in Florens-Zmirou (1989) and Lo (1988). For a given dataset, the time step
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and the number of observations is always fixed of course in practice; therefore, when using

this fairly simple approach one has to ensure that the time step between observations is small

enough. However, there are no general rules what ”small enough” means.

In many applications, the time step is rather large. In this case, one has to use more sophisti-

cated approximations for the likelihood or turn to different inference approaches. One way to

analytically approximate the transition density (and hence the likelihood) was proposed by Äıt-

Sahalia (2002) for one-dimensional diffusion processes and extended to the multi-dimensional

case by Äıt-Sahalia (2008). The approach involves an expansion based on modified Hermite

polynomials and the transformation of the diffusion X into a diffusion Y whose diffusion ma-

trix is the identity matrix. This transformation into a so-called unit diffusion, however, is not

generally possible for multi-dimensional diffusions.

The local linearization method is another approach that potentially makes use of the transfor-

mation into a unit diffusion. It has been described in Shoji & Ozaki (1998b) for one-dimensional

diffusion processes and extended to the multi-dimensional case in Shoji & Ozaki (1998a). Af-

ter transformation into a unit diffusion (if this is even necessary), the drift function of the

resulting process is linearized; and thus, the considered diffusion process is approximated by

a linear one. For linear diffusions, explicit solutions exist (cf. e. g. Kloeden & Platen, 1992,

Chapter 4.2). Hence, their transition density is available and can be used as an approximation

of the transition density of the original process.

Another approach approximates the likelihood by numerically solving the Kolmogorov forward

equation (also called Fokker-Planck equation) that is associated with the diffusion process and

that is a deterministic partial differential equation for the transition density. This approach

was used and further developed e. g. in Poulson (1999), Jensen & Poulsen (2002), Hurn et al.

(2007) and Lux (2013).

The simulated maximum likelihood (SML) approach on the other hand uses Monte Carlo

integration to approximate the unknown transition density. The approach was suggested in-

dependently by Pedersen (1995) and Santa-Clara (1995). The idea is to use the Chapman-

Kolmogorov equation to reformulate the transition density as follows

pθ(s,x; t,y) =

∫
X
pθ(s,x; t− δ, z)pθ(t− δ, z; t,y) dz

= Eθ [pθ(t− δ,Xt−δ; t,y) |Xs = x] (3.20)

for small δ with 0 < δ � t − s. One simulates M realizations zj , j = 1, . . . ,M , of Xt−δ

conditioned on Xs = x, e. g. by dividing the interval [s, t − δ] into N − 1 steps and forward

simulating based on the Euler scheme for these smaller time steps, and then approximates the
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expectation in (3.20) by calculating

pM,N
θ (s,x; t,y) =

1

M

M∑
m=1

pEulerθ (t− δ, zj ; t,y), (3.21)

where pEulerθ (t − δ, zj ; t,y) = φ
(
zj |y + µ(zj ,θ)δ,σ(zj ,θ)σTr(zj ,θ)δ

)
is again the transi-

tion density derived from the Euler scheme. Several refinements of the SML approach have

been suggested in the literature. For example, Durham & Gallant (2002) propose to employ

importance sampling when approximating (3.20) by conditioning not only on the initial state

Xs = x but also on the end point Xt = y when simulating the realizations zj . This sampling

method is called the modified-bridge and will be discussed in more detail in the context of

Bayesian data augmentation in Section 3.4.1. Durham & Gallant (2002) also investigate the

use of other variance reduction techniques and the application of a higher-order Itô-Taylor

expansion. Elerian (1998) suggests to approximate the transition density for sampling the real-

izations zj as well as in (3.21) based on the Milstein schemes instead of the Euler scheme. We

will consider the transition density derived from the Milstein scheme in detail in Section 4.1.

Several other estimation techniques have been developed that do not rely on the approximation

of the likelihood function but rather match certain statistics of the diffusion model with the

corresponding statistics of the observed data. An overview of the class of methods based on

so-called estimating functions and the related method of generalized moments can be found

e. g. in Kessler et al. (2012, Chapter 1). Gourieroux et al. (1993) suggested the use of indirect

inference and Gallant & Tauchen (1996) proposed the efficient methods of moments.

With the Exact Algorithm (EA), Beskos & Roberts (2005) introduced a method to exactly

simulate diffusion paths at discrete time points and Beskos et al. (2006a, 2008) further de-

veloped the EA for more general cases. However, in order for the EA to be applicable, again

the transformation into a unit diffusion must be possible and further conditions need to be

satisfied. A variety of statistical inference methods based on the EA have been studied e. g.

by Beskos et al. (2009, 2006b) and Sermaidis et al. (2013).

Donnet & Samson (2013) also review further parameter estimation methods for diffusion

models in the context of pharmacokinetic/pharmacodynamic models including several methods

based on the well known Kalman filter, but also for these methods, state dependence of the

diffusion coefficient is precluded.

For SDEs that are derived as the diffusion approximation of a Markov jump process (MJP) as

described in Section 2.1.2, the diffusion coefficient always depends on the state variable for

non-trivial models. Indeed, for many models, the diffusion coefficient components appearing

in the equation for one component of the process usually depend on several of the process
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components. This renders the transformation into a unit diffusion usually impossible and thus,

many of the inference methods mentioned so far are rarely applicable in this context. Besides,

especially in biological applications, it is commonly not possible to observe all components of

a process directly and one also has to account for measurement error. Therefore, inference

methods are needed that can handle latent variables and noisy observations.

Bayesian inference methods and in particular Markov chain Monte Carlo (MCMC) methods

have been applied very successfully in this context, especially because they also allow for

the inclusion of prior knowledge and for an assessment of the uncertainty of the parameter

estimates. Assume we have observations y0,y1, . . . ,yn observed at discrete time points 0 =

t0 < t1 < . . . < tn and with

yi ∼ h(yi |Xti ,θ) for i = 0, . . . , n,

where h denotes the distribution of yi conditioned on (possibly a transformed subset of the

components of) the diffusion process X and on the parameter vector θ that may include

parameters for the transformation of X. Moreover, the distribution can represent the case

of additive or multiplicative measurement error. In order to obtain the posterior distribution

of the parameter θ given the observed data, we have to marginalize over the states of the

diffusion process:

π (θ | {yk}k=0,...,n) =

∫
Xn+1

π (θ, {Xtk}k=0,...,n | {yk}k=0,...,n) d(Xt0 , . . . ,Xtn).

This marginalization can be achieved by Monte Carlo integration. Therefore, we need to draw

samples from the following conditional density that is reformulated using Bayes’ theorem:

π (θ, {Xtk}k=0,...,n | {yk}k=0,...,n)

∝ π ({yk}k=0,...,n |θ, {Xtk}k=0,...,n)π(θ, {Xtk}k=0,...,n)

= π ({yk}k=0,...,n |θ, {Xtk}k=0,...,n)π({Xtk}k=0,...,n |θ) p(θ)

=

(
n∏
k=0

h(yi |Xti ,θ)

)(
n−1∏
k=0

pθ(tk,Xtk ; tk+1,Xtk+1
)

)
pθ(Xt0) p(θ), (3.22)

where p(θ) denotes the density of the prior distribution for the parameter θ. The transition

density pθ of the diffusion process Xt in the second factor of (3.22) needs to be approximated

as mentioned before. When using the Euler scheme, one has to carefully check whether the

time steps between observations are sufficiently small. Even in the case where the Euler

scheme is eligible, drawing samples from (3.22) is a computationally intense task. This is

due to the high dimension of the conditional density which is equal to p + d(n + 1), where

p is the dimension of the parameter vector θ, d is the dimension of the diffusion process X,
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and n+ 1 is the number of observations. Therefore, highly efficient MCMC methods such as

Hamiltonian Monte Carlo (HMC) sampling have to be used to draw samples from (3.22). For

the case where the time step between observations is too large, methods have been developed

that artificially augment the path of the diffusion process. We will discuss this approach in the

next subsection.

3.4.1 Bayesian data augmentation

For parameter estimation from low-frequency observations, MCMC techniques have been de-

veloped that introduce imputed data points to reduce the time steps between data points.

This concept of Bayesian data imputation goes back to Tanner & Wong (1987) and has been

utilized for the inference of diffusions and developed further by many authors such as Elerian

et al. (2001), Eraker (2001), Roberts & Stramer (2001), and Golightly & Wilkinson (2008).

These methods are applicable to multidimensional processes and were extended for the case

of latent process components as well as for the occurrence of measurement error. Thus, they

are very promising for the use in real data applications (see e. g. Fuchs (2013) and Golightly

& Wilkinson (2006b)).

With low-frequency observations Xobs = (Xτ0 , . . . ,XτM ) of the process (Xt)t≥0 described

by the SDE (3.1), we wish to estimate parameter θ. In this section, we assume for simplicity

that all observations are complete (i.e. there are no latent or unobserved components for all

observations) and that there are no measurement errors. The approximation schemes for the

solution of the SDE as introduced in Section 3.3 are only appropriate for small time steps.

Therefore, we introduce additional data points Ximp at intermediate time points (as visualized

in Figure 3.3 and explained in detail in the following subsections) and estimate the parameter θ

from the augmented path
{
Xobs,Ximp

}
. To this end, a two-step MCMC approach is used to

construct the Markov chain
{
θ(i),X

imp
(i)

}
i=1,...,L

, the elements of which are samples from the

joint posterior distribution π
(
θ,Ximp |Xobs

)
of the parameter and the imputed data points

conditioned on the observations. This construction is achieved via a Gibbs sampling approach

by alternately executing the following two steps:

Step (1) Parameter update: Draw θ(i) ∼ π
(
θ(i) |Xobs,Ximp

(i−1)

)
,

Step (2) Path update: Draw Ximp
(i) ∼ π

(
Ximp

(i) |X
obs, θ(i)

)
.

In both steps, direct sampling from the corresponding conditional distribution is generally

not possible; therefore, a Metropolis-Hastings algorithm is applied. The resulting MCMC

chain
{
θ(i),X

imp
(i)

}
i=l+1,...,L

, after discarding the first l elements as burn-in, can be considered

46



3.4. Inference for SDEs

<latexit sha1_base64="i7C6L6H/Y4od4U0fKN2MxEdQ9Xo=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSIIQklEsBeh4MVjBfsBbSyb7aZdupuE3YlSQv+HFw+KePW/ePPfuG1z0NYHA4/3ZpiZFyRSGHTdb2dldW19Y7OwVdze2d3bLx0cNk2casYbLJaxbgfUcCki3kCBkrcTzakKJG8Fo5up33rk2og4usdxwn1FB5EIBaNopQfsqesu0rSXiXNv0iuV3Yo7A1kmXk7KkKPeK311+zFLFY+QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMfSiCpu/Gx29YScWqVPwljbipDM1N8TGVXGjFVgOxXFoVn0puJ/XifFsOpnIkpS5BGbLwpTSTAm0whIX2jOUI4toUwLeythQ6opQxtU0YbgLb68TJoXFc+teHeX5Vo1j6MAx3ACZ+DBFdTgFurQAAYanuEV3pwn58V5dz7mrStOPnMEf+B8/gAkzJI7</latexit><latexit sha1_base64="0YkTlhECW1SYVTpvrP/ciCqx6ew=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jNs1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mtwu/+8S1EbF6xFnC/YiOlQgFo2ilBxx6w2rNrbs5yDrxClKDAq1h9WswilkacYVMUmP6npugn1GNgkk+rwxSwxPKpnTM+5YqGnHjZ/mpc3JhlREJY21LIcnV3xMZjYyZRYHtjChOzKq3EP/z+imGDT8TKkmRK7ZcFKaSYEwWf5OR0JyhnFlCmRb2VsImVFOGNp2KDcFbfXmddK7qnlv37q9rzUYRRxnO4BwuwYMbaMIdtKANDMbwDK/w5kjnxXl3PpatJaeYOYU/cD5/AAKWjZI=</latexit> <latexit sha1_base64="29ZFitS6rh99TRKOu89WYjf8tZU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mK0B4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i787hPXRsTqEWcJ9yM6ViIUjKKVHnBYG5YrbtVdgmwSLycVyNEalr8Go5ilEVfIJDWm77kJ+hnVKJjk89IgNTyhbErHvG+pohE3frY8dU6urDIiYaxtKSRL9fdERiNjZlFgOyOKE7PuLcT/vH6KYcPPhEpS5IqtFoWpJBiTxd9kJDRnKGeWUKaFvZWwCdWUoU2nZEPw1l/eJJ1a1XOr3v1NpdnI4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4A+fzBwQajZM=</latexit> <latexit sha1_base64="XKQKOO09voqmP2Lpsvbh59KAViU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0YI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzi4HpQrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6KYd3PhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqudWvftapVHP4yjCGZzDJXhwAw24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDwWejZQ=</latexit> <latexit sha1_base64="z4V7z2g0TTw0LXy8w72qEjBdENw=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbArgjkGvHiMYB6QLGF2MkmGzMwuM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dUSKFRd//9gobm1vbO8Xd0t7+weFR+fikZePUMN5ksYxNJ6KWS6F5EwVK3kkMpyqSvB1N7uZ++4kbK2L9iNOEh4qOtBgKRtFJbexn6iqY9csVv+ovQNZJkJMK5Gj0y1+9QcxSxTUySa3tBn6CYUYNCib5rNRLLU8om9AR7zqqqeI2zBbnzsiFUwZkGBtXGslC/T2RUWXtVEWuU1Ec21VvLv7ndVMc1sJM6CRFrtly0TCVBGMy/50MhOEM5dQRyoxwtxI2poYydAmVXAjB6svrpHVdDfxq8HBTqdfyOIpwBudwCQHcQh3uoQFNYDCBZ3iFNy/xXrx372PZWvDymVP4A+/zB/6yj0w=</latexit>

<latexit sha1_base64="SUtSlPHldWNOSF8VIxWNSlaon2o=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvHisYD+wDWGz3bRLN5uwOxFK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vp35nSeujUjUA05S7sd0qEQkGEUrPXaDvI80C8Q0qNbcujsHWSVeQWpQoBlUv/qDhGUxV8gkNabnuSn6OdUomOTTSj8zPKVsTIe8Z6miMTd+Pr94Ss6sMiBRom0pJHP190ROY2MmcWg7Y4ojs+zNxP+8XobRtZ8LlWbIFVssijJJMCGz98lAaM5QTiyhTAt7K2EjqilDG1LFhuAtv7xK2hd1z61795e1xk0RRxlO4BTOwYMraMAdNKEFDBQ8wyu8OcZ5cd6dj0VrySlmjuEPnM8fybGQ9w==</latexit>

<latexit sha1_base64="z1bKE+Qjm3DDbEcVntYNar/7Gl4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqCcpePFYwX5AG8Jmu2mXbjZhdyKU0B/hxYMiXv093vw3btsctPXBwOO9GWbmhakUBl332yltbG5t75R3K3v7B4dH1eOTjkkyzXibJTLRvZAaLoXibRQoeS/VnMah5N1wcjf3u09cG5GoR5ym3I/pSIlIMIpW6vaCHANvFlRrbt1dgKwTryA1KNAKql+DYcKymCtkkhrT99wU/ZxqFEzyWWWQGZ5SNqEj3rdU0ZgbP1+cOyMXVhmSKNG2FJKF+nsip7Ex0zi0nTHFsVn15uJ/Xj/D6MbPhUoz5IotF0WZJJiQ+e9kKDRnKKeWUKaFvZWwMdWUoU2oYkPwVl9eJ52ruufWvYfrWvO2iKMMZ3AOl+BBA5pwDy1oA4MJPMMrvDmp8+K8Ox/L1pJTzJzCHzifPyxUj28=</latexit>

<latexit sha1_base64="ik180x/LtyeZfnbD7MtZciEFyqQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoCcpePFYwX5AG8Jmu2mXbjZhdyKU0B/hxYMiXv093vw3btsctPXBwOO9GWbmhakUBl332yltbG5t75R3K3v7B4dH1eOTjkkyzXibJTLRvZAaLoXibRQoeS/VnMah5N1wcjf3u09cG5GoR5ym3I/pSIlIMIpW6vaCHIPGLKjW3Lq7AFknXkFqUKAVVL8Gw4RlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44d0YurDIkUaJtKSQL9fdETmNjpnFoO2OKY7PqzcX/vH6G0Y2fC5VmyBVbLooySTAh89/JUGjOUE4toUwLeythY6opQ5tQxYbgrb68TjqNuufWvYerWvO2iKMMZ3AOl+DBNTThHlrQBgYTeIZXeHNS58V5dz6WrSWnmDmFP3A+fwAt2Y9w</latexit>

<latexit sha1_base64="cKB/Li9+DVStF4xZHFz2EloFm60=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0JMUvHisYD+gDWGz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05S7sd0qEQkGEUrdbpBjsHlNKjW3Lo7B1klXkFqUKAZVL/6g4RlMVfIJDWm57kp+jnVKJjk00o/MzylbEyHvGepojE3fj4/d0rOrDIgUaJtKSRz9fdETmNjJnFoO2OKI7PszcT/vF6G0Y2fC5VmyBVbLIoySTAhs9/JQGjOUE4soUwLeythI6opQ5tQxYbgLb+8StoXdc+tew9XtcZtEUcZTuAUzsGDa2jAPTShBQzG8Ayv8Oakzovz7nwsWktOMXMMf+B8/gAvXo9x</latexit>

<latexit sha1_base64="DrMkkf6l5EJaPzttsU51xT4Hrlw=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBiyURQU9S8OKxgv2ANITNdtMu3d2E3YlQQn6GFw+KePXXePPfuG1z0NYHA4/3ZpiZF6WCG3Ddb6eytr6xuVXdru3s7u0f1A+PuibJNGUdmohE9yNimOCKdYCDYP1UMyIjwXrR5G7m956YNjxRjzBNWSDJSPGYUwJW8vthDmEuL7yiCOsNt+nOgVeJV5IGKtEO61+DYUIzyRRQQYzxPTeFICcaOBWsqA0yw1JCJ2TEfEsVkcwE+fzkAp9ZZYjjRNtSgOfq74mcSGOmMrKdksDYLHsz8T/PzyC+CXKu0gyYootFcSYwJHj2Px5yzSiIqSWEam5vxXRMNKFgU6rZELzll1dJ97LpuU3v4arRui3jqKITdIrOkYeuUQvdozbqIIoS9Ixe0ZsDzovz7nwsWitOOXOM/sD5/AEu+ZEp</latexit>

<latexit sha1_base64="G16gAyxM7p4BBeaJS3jPqBOOSOs=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIsgCCURQU9S8OKxgv2ANobNdtMu3WzC7kQpIf/DiwdFvPpfvPlv3LY5aOuDgcd7M8zMCxLBNTrOt1VaWV1b3yhvVra2d3b3qvsHbR2nirIWjUWsugHRTHDJWshRsG6iGIkCwTrB+Gbqdx6Z0jyW9zhJmBeRoeQhpwSN9ND1sz6S1M/4mZvnfrXm1J0Z7GXiFqQGBZp+9as/iGkaMYlUEK17rpOglxGFnAqWV/qpZgmhYzJkPUMliZj2stnVuX1ilIEdxsqURHum/p7ISKT1JApMZ0RwpBe9qfif10sxvPIyLpMUmaTzRWEqbIztaQT2gCtGUUwMIVRxc6tNR0QRiiaoignBXXx5mbTP665Td+8uao3rIo4yHMExnIILl9CAW2hCCygoeIZXeLOerBfr3fqYt5asYuYQ/sD6/AFy8JJz</latexit>

?
?

? ?
?

Figure 3.3: Augmented path segment: • represents observed data points and ◦ represents
imputed points.

a sample drawn from the joint posterior distribution π
(
θ,Ximp |Xobs

)
and can be used for a

fully Bayesian analysis. The two steps of the algorithm are described in detail in the following

two subsections. We use π to denote the exact densities of the process that is the (full

conditional) posterior densities as well as the transition densities. The meaning becomes clear

from the arguments. Approximated densities are indicated by a corresponding superscript.

Parameter update

In Step (1), a parameter proposal θ∗ is drawn from a proposal density q
(
θ∗ |θ,Xobs,Ximp

)
which may or may not depend on the imputed and observed data. If a proposal θ∗ = θ+u with

an update u that is independent of the current parameter value θ is used, the proposal strategy

is called a random walk proposal. Proposal θ∗ is accepted with the following probability:

ζ (θ∗,θ) = 1 ∧
π
(
θ∗ |Xobs,Ximp

)
q
(
θ |θ∗,Xobs,Ximp

)
π
(
θ |Xobs,Ximp

)
q
(
θ∗ |θ,Xobs,Ximp

) .
Otherwise, the previous θ value is kept.

Due to Bayes’ theorem and the fact that a diffusion process has the Markov property, the (full

conditional) posterior density can be represented as

π
(
θ |Xobs,Ximp

)
∝

(
n−1∏
k=0

π
(
Xtk+1

|Xtk ,θ
))

p(θ),

where π
(
Xtk+1

|Xtk ,θ
)

denotes the transition density of the process (Xt)t≥0, n + 1 is the

total number of data points in the augmented path, and p denotes the prior density of the

parameter. We choose a random walk proposal where the r components of θ∗ that take values

on the entire real line R are drawn from the normal distribution N (θj , γ
2
j ) for j = 1, . . . , r

and some predefined γj ∈ R+. The (remaining) strictly positive components are drawn from
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a log-normal distribution LN (log θj , γ
2
j ), for j = r + 1, . . . , p. In this case, the acceptance

probability reduces to

ζ (θ∗,θ) = 1 ∧

(
n−1∏
k=0

π
(
Xtk+1

|Xtk ,θ
∗)

π
(
Xtk+1

|Xtk ,θ
) ) p(θ∗)

p(θ)

 p∏
j=r+1

θ∗j
θj

 (3.23)

as derived in (Fuchs, 2013, Chapter 7.1.3).

The transition density π
(
Xtk+1

|Xtk ,θ
)

is generally not explicitly known, but it can be ap-

proximated e. g. by the Euler scheme as described in Section 3.3.

Path update

Since a diffusion process has the Markov property, the likelihood function of parameter θ

factorizes as

π (Xτ0 , . . . ,XτM |θ) = π (Xτ0 |θ)
M∏
i=1

π
(
Xτi |Xτi−1 ,θ

)
(3.24)

and the latent path segments between observations are conditionally independent given the

observations. Hence, it is sufficient to consider the imputation problem in Step (2) only for one

path segment between two consecutive observations Xτi and Xτi+1 . As Figure 3.3 illustrates,

the time interval between the two observations is divided into m subintervals such that the

end points of these intervals are τi = t0 < t1 < · · · < tm = τi+1 and the time steps are ∆tk =

tk+1 − tk for k = 0, . . . ,m − 1. We denote the observations by Xobs
{τi,τi+1} = {Xτi ,Xτi+1}

and the imputed data points by Ximp
(τi,τi+1) = {Xt1 , . . . ,Xtm−1}.

After initializing the imputed data by linear interpolation, the path is updated using the

Metropolis-Hastings algorithm. A proposal Ximp∗
(τi,τi+1) is drawn from a distribution with den-

sity q, which may depend on the observed data, current imputed data, and parameter θ. The

proposal is accepted with the following probability:

ζ
(
Ximp∗

(τi,τi+1),X
imp
(τi,τi+1)

)
= 1 ∧

π
(
Ximp∗

(τi,τi+1)

∣∣Xobs
{τi,τi+1},θ

)
q
(
Ximp

(τi,τi+1)

∣∣Ximp∗
(τi,τi+1),X

obs
{τi,τi+1},θ

)
π
(
Ximp

(τi,τi+1)

∣∣Xobs
{τi,τi+1},θ

)
q
(
Ximp∗

(τi,τi+1)

∣∣Ximp
(τi,τi+1),X

obs
{τi,τi+1},θ

) . (3.25)
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3.4. Inference for SDEs

<latexit sha1_base64="i7C6L6H/Y4od4U0fKN2MxEdQ9Xo=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSIIQklEsBeh4MVjBfsBbSyb7aZdupuE3YlSQv+HFw+KePW/ePPfuG1z0NYHA4/3ZpiZFyRSGHTdb2dldW19Y7OwVdze2d3bLx0cNk2casYbLJaxbgfUcCki3kCBkrcTzakKJG8Fo5up33rk2og4usdxwn1FB5EIBaNopQfsqesu0rSXiXNv0iuV3Yo7A1kmXk7KkKPeK311+zFLFY+QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMfSiCpu/Gx29YScWqVPwljbipDM1N8TGVXGjFVgOxXFoVn0puJ/XifFsOpnIkpS5BGbLwpTSTAm0whIX2jOUI4toUwLeythQ6opQxtU0YbgLb68TJoXFc+teHeX5Vo1j6MAx3ACZ+DBFdTgFurQAAYanuEV3pwn58V5dz7mrStOPnMEf+B8/gAkzJI7</latexit>

<latexit sha1_base64="0YkTlhECW1SYVTpvrP/ciCqx6ew=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jNs1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mtwu/+8S1EbF6xFnC/YiOlQgFo2ilBxx6w2rNrbs5yDrxClKDAq1h9WswilkacYVMUmP6npugn1GNgkk+rwxSwxPKpnTM+5YqGnHjZ/mpc3JhlREJY21LIcnV3xMZjYyZRYHtjChOzKq3EP/z+imGDT8TKkmRK7ZcFKaSYEwWf5OR0JyhnFlCmRb2VsImVFOGNp2KDcFbfXmddK7qnlv37q9rzUYRRxnO4BwuwYMbaMIdtKANDMbwDK/w5kjnxXl3PpatJaeYOYU/cD5/AAKWjZI=</latexit> <latexit sha1_base64="29ZFitS6rh99TRKOu89WYjf8tZU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mK0B4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i787hPXRsTqEWcJ9yM6ViIUjKKVHnBYG5YrbtVdgmwSLycVyNEalr8Go5ilEVfIJDWm77kJ+hnVKJjk89IgNTyhbErHvG+pohE3frY8dU6urDIiYaxtKSRL9fdERiNjZlFgOyOKE7PuLcT/vH6KYcPPhEpS5IqtFoWpJBiTxd9kJDRnKGeWUKaFvZWwCdWUoU2nZEPw1l/eJJ1a1XOr3v1NpdnI4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4A+fzBwQajZM=</latexit> <latexit sha1_base64="z4V7z2g0TTw0LXy8w72qEjBdENw=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbArgjkGvHiMYB6QLGF2MkmGzMwuM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dUSKFRd//9gobm1vbO8Xd0t7+weFR+fikZePUMN5ksYxNJ6KWS6F5EwVK3kkMpyqSvB1N7uZ++4kbK2L9iNOEh4qOtBgKRtFJbexn6iqY9csVv+ovQNZJkJMK5Gj0y1+9QcxSxTUySa3tBn6CYUYNCib5rNRLLU8om9AR7zqqqeI2zBbnzsiFUwZkGBtXGslC/T2RUWXtVEWuU1Ec21VvLv7ndVMc1sJM6CRFrtly0TCVBGMy/50MhOEM5dQRyoxwtxI2poYydAmVXAjB6svrpHVdDfxq8HBTqdfyOIpwBudwCQHcQh3uoQFNYDCBZ3iFNy/xXrx372PZWvDymVP4A+/zB/6yj0w=</latexit>

<latexit sha1_base64="SUtSlPHldWNOSF8VIxWNSlaon2o=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvHisYD+wDWGz3bRLN5uwOxFK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vp35nSeujUjUA05S7sd0qEQkGEUrPXaDvI80C8Q0qNbcujsHWSVeQWpQoBlUv/qDhGUxV8gkNabnuSn6OdUomOTTSj8zPKVsTIe8Z6miMTd+Pr94Ss6sMiBRom0pJHP190ROY2MmcWg7Y4ojs+zNxP+8XobRtZ8LlWbIFVssijJJMCGz98lAaM5QTiyhTAt7K2EjqilDG1LFhuAtv7xK2hd1z61795e1xk0RRxlO4BTOwYMraMAdNKEFDBQ8wyu8OcZ5cd6dj0VrySlmjuEPnM8fybGQ9w==</latexit>

<latexit sha1_base64="z1bKE+Qjm3DDbEcVntYNar/7Gl4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqCcpePFYwX5AG8Jmu2mXbjZhdyKU0B/hxYMiXv093vw3btsctPXBwOO9GWbmhakUBl332yltbG5t75R3K3v7B4dH1eOTjkkyzXibJTLRvZAaLoXibRQoeS/VnMah5N1wcjf3u09cG5GoR5ym3I/pSIlIMIpW6vaCHANvFlRrbt1dgKwTryA1KNAKql+DYcKymCtkkhrT99wU/ZxqFEzyWWWQGZ5SNqEj3rdU0ZgbP1+cOyMXVhmSKNG2FJKF+nsip7Ex0zi0nTHFsVn15uJ/Xj/D6MbPhUoz5IotF0WZJJiQ+e9kKDRnKKeWUKaFvZWwMdWUoU2oYkPwVl9eJ52ruufWvYfrWvO2iKMMZ3AOl+BBA5pwDy1oA4MJPMMrvDmp8+K8Ox/L1pJTzJzCHzifPyxUj28=</latexit>

<latexit sha1_base64="ik180x/LtyeZfnbD7MtZciEFyqQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoCcpePFYwX5AG8Jmu2mXbjZhdyKU0B/hxYMiXv093vw3btsctPXBwOO9GWbmhakUBl332yltbG5t75R3K3v7B4dH1eOTjkkyzXibJTLRvZAaLoXibRQoeS/VnMah5N1wcjf3u09cG5GoR5ym3I/pSIlIMIpW6vaCHIPGLKjW3Lq7AFknXkFqUKAVVL8Gw4RlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44d0YurDIkUaJtKSQL9fdETmNjpnFoO2OKY7PqzcX/vH6G0Y2fC5VmyBVbLooySTAh89/JUGjOUE4toUwLeythY6opQ5tQxYbgrb68TjqNuufWvYerWvO2iKMMZ3AOl+DBNTThHlrQBgYTeIZXeHNS58V5dz6WrSWnmDmFP3A+fwAt2Y9w</latexit>

<latexit sha1_base64="DrMkkf6l5EJaPzttsU51xT4Hrlw=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBiyURQU9S8OKxgv2ANITNdtMu3d2E3YlQQn6GFw+KePXXePPfuG1z0NYHA4/3ZpiZF6WCG3Ddb6eytr6xuVXdru3s7u0f1A+PuibJNGUdmohE9yNimOCKdYCDYP1UMyIjwXrR5G7m956YNjxRjzBNWSDJSPGYUwJW8vthDmEuL7yiCOsNt+nOgVeJV5IGKtEO61+DYUIzyRRQQYzxPTeFICcaOBWsqA0yw1JCJ2TEfEsVkcwE+fzkAp9ZZYjjRNtSgOfq74mcSGOmMrKdksDYLHsz8T/PzyC+CXKu0gyYootFcSYwJHj2Px5yzSiIqSWEam5vxXRMNKFgU6rZELzll1dJ97LpuU3v4arRui3jqKITdIrOkYeuUQvdozbqIIoS9Ixe0ZsDzovz7nwsWitOOXOM/sD5/AEu+ZEp</latexit>

<latexit sha1_base64="G16gAyxM7p4BBeaJS3jPqBOOSOs=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIsgCCURQU9S8OKxgv2ANobNdtMu3WzC7kQpIf/DiwdFvPpfvPlv3LY5aOuDgcd7M8zMCxLBNTrOt1VaWV1b3yhvVra2d3b3qvsHbR2nirIWjUWsugHRTHDJWshRsG6iGIkCwTrB+Gbqdx6Z0jyW9zhJmBeRoeQhpwSN9ND1sz6S1M/4mZvnfrXm1J0Z7GXiFqQGBZp+9as/iGkaMYlUEK17rpOglxGFnAqWV/qpZgmhYzJkPUMliZj2stnVuX1ilIEdxsqURHum/p7ISKT1JApMZ0RwpBe9qfif10sxvPIyLpMUmaTzRWEqbIztaQT2gCtGUUwMIVRxc6tNR0QRiiaoignBXXx5mbTP665Td+8uao3rIo4yHMExnIILl9CAW2hCCygoeIZXeLOerBfr3fqYt5asYuYQ/sD6/AFy8JJz</latexit>

(a) Left-conditioned proposal

<latexit sha1_base64="i7C6L6H/Y4od4U0fKN2MxEdQ9Xo=">AAAB9XicbVBNS8NAEJ34WetX1aOXxSIIQklEsBeh4MVjBfsBbSyb7aZdupuE3YlSQv+HFw+KePW/ePPfuG1z0NYHA4/3ZpiZFyRSGHTdb2dldW19Y7OwVdze2d3bLx0cNk2casYbLJaxbgfUcCki3kCBkrcTzakKJG8Fo5up33rk2og4usdxwn1FB5EIBaNopQfsqesu0rSXiXNv0iuV3Yo7A1kmXk7KkKPeK311+zFLFY+QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMfSiCpu/Gx29YScWqVPwljbipDM1N8TGVXGjFVgOxXFoVn0puJ/XifFsOpnIkpS5BGbLwpTSTAm0whIX2jOUI4toUwLeythQ6opQxtU0YbgLb68TJoXFc+teHeX5Vo1j6MAx3ACZ+DBFdTgFurQAAYanuEV3pwn58V5dz7mrStOPnMEf+B8/gAkzJI7</latexit>

<latexit sha1_base64="0YkTlhECW1SYVTpvrP/ciCqx6ew=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jNs1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mtwu/+8S1EbF6xFnC/YiOlQgFo2ilBxx6w2rNrbs5yDrxClKDAq1h9WswilkacYVMUmP6npugn1GNgkk+rwxSwxPKpnTM+5YqGnHjZ/mpc3JhlREJY21LIcnV3xMZjYyZRYHtjChOzKq3EP/z+imGDT8TKkmRK7ZcFKaSYEwWf5OR0JyhnFlCmRb2VsImVFOGNp2KDcFbfXmddK7qnlv37q9rzUYRRxnO4BwuwYMbaMIdtKANDMbwDK/w5kjnxXl3PpatJaeYOYU/cD5/AAKWjZI=</latexit> <latexit sha1_base64="29ZFitS6rh99TRKOu89WYjf8tZU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mK0B4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i787hPXRsTqEWcJ9yM6ViIUjKKVHnBYG5YrbtVdgmwSLycVyNEalr8Go5ilEVfIJDWm77kJ+hnVKJjk89IgNTyhbErHvG+pohE3frY8dU6urDIiYaxtKSRL9fdERiNjZlFgOyOKE7PuLcT/vH6KYcPPhEpS5IqtFoWpJBiTxd9kJDRnKGeWUKaFvZWwCdWUoU2nZEPw1l/eJJ1a1XOr3v1NpdnI4yjCBVzCNXhQhybcQQvawGAMz/AKb450Xpx352PVWnDymXP4A+fzBwQajZM=</latexit> <latexit sha1_base64="XKQKOO09voqmP2Lpsvbh59KAViU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0YI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzi4HpQrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6KYd3PhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqudWvftapVHP4yjCGZzDJXhwAw24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nDwWejZQ=</latexit> <latexit sha1_base64="z4V7z2g0TTw0LXy8w72qEjBdENw=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbArgjkGvHiMYB6QLGF2MkmGzMwuM71CWPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dUSKFRd//9gobm1vbO8Xd0t7+weFR+fikZePUMN5ksYxNJ6KWS6F5EwVK3kkMpyqSvB1N7uZ++4kbK2L9iNOEh4qOtBgKRtFJbexn6iqY9csVv+ovQNZJkJMK5Gj0y1+9QcxSxTUySa3tBn6CYUYNCib5rNRLLU8om9AR7zqqqeI2zBbnzsiFUwZkGBtXGslC/T2RUWXtVEWuU1Ec21VvLv7ndVMc1sJM6CRFrtly0TCVBGMy/50MhOEM5dQRyoxwtxI2poYydAmVXAjB6svrpHVdDfxq8HBTqdfyOIpwBudwCQHcQh3uoQFNYDCBZ3iFNy/xXrx372PZWvDymVP4A+/zB/6yj0w=</latexit>

<latexit sha1_base64="SUtSlPHldWNOSF8VIxWNSlaon2o=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0JMUvHisYD+wDWGz3bRLN5uwOxFK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vp35nSeujUjUA05S7sd0qEQkGEUrPXaDvI80C8Q0qNbcujsHWSVeQWpQoBlUv/qDhGUxV8gkNabnuSn6OdUomOTTSj8zPKVsTIe8Z6miMTd+Pr94Ss6sMiBRom0pJHP190ROY2MmcWg7Y4ojs+zNxP+8XobRtZ8LlWbIFVssijJJMCGz98lAaM5QTiyhTAt7K2EjqilDG1LFhuAtv7xK2hd1z61795e1xk0RRxlO4BTOwYMraMAdNKEFDBQ8wyu8OcZ5cd6dj0VrySlmjuEPnM8fybGQ9w==</latexit>

<latexit sha1_base64="z1bKE+Qjm3DDbEcVntYNar/7Gl4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqCcpePFYwX5AG8Jmu2mXbjZhdyKU0B/hxYMiXv093vw3btsctPXBwOO9GWbmhakUBl332yltbG5t75R3K3v7B4dH1eOTjkkyzXibJTLRvZAaLoXibRQoeS/VnMah5N1wcjf3u09cG5GoR5ym3I/pSIlIMIpW6vaCHANvFlRrbt1dgKwTryA1KNAKql+DYcKymCtkkhrT99wU/ZxqFEzyWWWQGZ5SNqEj3rdU0ZgbP1+cOyMXVhmSKNG2FJKF+nsip7Ex0zi0nTHFsVn15uJ/Xj/D6MbPhUoz5IotF0WZJJiQ+e9kKDRnKKeWUKaFvZWwMdWUoU2oYkPwVl9eJ52ruufWvYfrWvO2iKMMZ3AOl+BBA5pwDy1oA4MJPMMrvDmp8+K8Ox/L1pJTzJzCHzifPyxUj28=</latexit>

<latexit sha1_base64="ik180x/LtyeZfnbD7MtZciEFyqQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoCcpePFYwX5AG8Jmu2mXbjZhdyKU0B/hxYMiXv093vw3btsctPXBwOO9GWbmhakUBl332yltbG5t75R3K3v7B4dH1eOTjkkyzXibJTLRvZAaLoXibRQoeS/VnMah5N1wcjf3u09cG5GoR5ym3I/pSIlIMIpW6vaCHIPGLKjW3Lq7AFknXkFqUKAVVL8Gw4RlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44d0YurDIkUaJtKSQL9fdETmNjpnFoO2OKY7PqzcX/vH6G0Y2fC5VmyBVbLooySTAh89/JUGjOUE4toUwLeythY6opQ5tQxYbgrb68TjqNuufWvYerWvO2iKMMZ3AOl+DBNTThHlrQBgYTeIZXeHNS58V5dz6WrSWnmDmFP3A+fwAt2Y9w</latexit>

<latexit sha1_base64="cKB/Li9+DVStF4xZHFz2EloFm60=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0JMUvHisYD+gDWGz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg6777ZTW1jc2t8rblZ3dvf2D6uFR2ySZZrzFEpnobkgNl0LxFgqUvJtqTuNQ8k44vpv5nSeujUjUI05S7sd0qEQkGEUrdbpBjsHlNKjW3Lo7B1klXkFqUKAZVL/6g4RlMVfIJDWm57kp+jnVKJjk00o/MzylbEyHvGepojE3fj4/d0rOrDIgUaJtKSRz9fdETmNjJnFoO2OKI7PszcT/vF6G0Y2fC5VmyBVbLIoySTAhs9/JQGjOUE4soUwLeythI6opQ5tQxYbgLb+8StoXdc+tew9XtcZtEUcZTuAUzsGDa2jAPTShBQzG8Ayv8Oakzovz7nwsWktOMXMMf+B8/gAvXo9x</latexit>

<latexit sha1_base64="DrMkkf6l5EJaPzttsU51xT4Hrlw=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBiyURQU9S8OKxgv2ANITNdtMu3d2E3YlQQn6GFw+KePXXePPfuG1z0NYHA4/3ZpiZF6WCG3Ddb6eytr6xuVXdru3s7u0f1A+PuibJNGUdmohE9yNimOCKdYCDYP1UMyIjwXrR5G7m956YNjxRjzBNWSDJSPGYUwJW8vthDmEuL7yiCOsNt+nOgVeJV5IGKtEO61+DYUIzyRRQQYzxPTeFICcaOBWsqA0yw1JCJ2TEfEsVkcwE+fzkAp9ZZYjjRNtSgOfq74mcSGOmMrKdksDYLHsz8T/PzyC+CXKu0gyYootFcSYwJHj2Px5yzSiIqSWEam5vxXRMNKFgU6rZELzll1dJ97LpuU3v4arRui3jqKITdIrOkYeuUQvdozbqIIoS9Ixe0ZsDzovz7nwsWitOOXOM/sD5/AEu+ZEp</latexit>

<latexit sha1_base64="G16gAyxM7p4BBeaJS3jPqBOOSOs=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIsgCCURQU9S8OKxgv2ANobNdtMu3WzC7kQpIf/DiwdFvPpfvPlv3LY5aOuDgcd7M8zMCxLBNTrOt1VaWV1b3yhvVra2d3b3qvsHbR2nirIWjUWsugHRTHDJWshRsG6iGIkCwTrB+Gbqdx6Z0jyW9zhJmBeRoeQhpwSN9ND1sz6S1M/4mZvnfrXm1J0Z7GXiFqQGBZp+9as/iGkaMYlUEK17rpOglxGFnAqWV/qpZgmhYzJkPUMliZj2stnVuX1ilIEdxsqURHum/p7ISKT1JApMZ0RwpBe9qfif10sxvPIyLpMUmaTzRWEqbIztaQT2gCtGUUwMIVRxc6tNR0QRiiaoignBXXx5mbTP665Td+8uao3rIo4yHMExnIILl9CAW2hCCygoeIZXeLOerBfr3fqYt5asYuYQ/sD6/AFy8JJz</latexit>

(b) Bridge proposal

Figure 3.4: Illustration of the different proposal strategies.

Otherwise, the proposal is discarded and the previously imputed data Ximp
(τi,τi+1) is kept. Due

to the Markov property, we have:

π
(
Ximp∗

(τi,τi+1)

∣∣Xobs
{τi,τi+1},θ

)
π
(
Ximp

(τi,τi+1)

∣∣Xobs
{τi,τi+1},θ

) =

m−1∏
k=0

π
(
X∗tk+1

|X∗tk ,θ
)

π
(
Xtk+1

|Xtk ,θ
) ,

where X∗t0 = Xt0 = Xτi , X
∗
tm = Xtm = Xτi+1 , and π

(
Xtk+1

|Xtk ,θ
)

denotes the

transition density of process (Xt)t≥0.

The challenging aspect of the path update step involves determining how to propose new

points. The simplest approach uses the (approximated) transition density to propose a new

point by conditioning only on the point to the left of the new point. We call this proposal

method the left-conditioned (LC) proposal and illustrate it in Figure 3.4a. The proposal density

of an entire path segment is simply the product

qLC

(
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∣∣Xτi,, θ
)

=
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k=0

π
(
X∗tk+1

|X∗tk ,θ
)
, (3.26)

where X∗t0 = Xτi . Thus, the acceptance probability reduces to

ζ
(
Ximp∗

(τi,τi+1),X
imp
(τi,τi+1)

)
= 1 ∧

m−1∏
k=0

π
(
X∗tk+1

|X∗tk ,θ
)

π
(
Xtk+1

|Xtk ,θ
)
m−2∏

k=0

π
(
Xtk+1

|Xtk ,θ
)

π
(
X∗tk+1

|X∗tk ,θ
)


= 1 ∧
π
(
Xτi+1 |X∗tm−1

,θ
)

π
(
Xτi+1 |Xtm−1 ,θ

) ,
where X∗tm = Xtm = Xτi+1 . Here, the transition density again needs to be approximated

e. g. by the Euler scheme from Section 3.3.
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This proposal strategy considers the information from the observation Xτi on the left, while

the proposed path segment is independent of the observation Xτi+1 on the right. This may

lead to a large jump in the last step from Xtm−1 to Xτi+1 , and hence, to an improbable

transition. Therefore, the acceptance probability for the left-conditioned proposal Ximp∗
(τi,τi+1),

and consequently, the acceptance rate of the MCMC sampler is usually low.

A number of more sophisticated proposal strategies have been suggested. Chapter 7.1 in

Fuchs (2013) reviews some of these. Here, we consider the modified bridge (MB) proposal,

which conditions on both the previous data point and the following observation on the right,

as visualized in Figure 3.4b. This strategy was originally proposed by Durham & Gallant

(2002) and first applied in the Bayesian framework in Chib & Shephard (2002). More recently,

Whitaker et al. (2017) suggested improved bridge constructs, and van der Meulen & Schauer

(2017) proposed so-called guided proposals.

For the MB proposal, the proposal density of an entire path segment factorizes again as follows:

qMB

(
Ximp∗

(τi,τi+1)

∣∣Xτi,,Xτi+1 ,θ
)

=

m−2∏
k=0

π
(
X∗tk+1

|X∗tk ,Xτi+1 ,θ
)
,

where X∗t0 = Xτi . We apply Bayes’ theorem and the Markov property to rewrite the left- and

right-conditioned proposal density of one point as

π
(
X∗tk+1

|X∗tk ,Xτi+1 , θ
)
∝ π

(
X∗tk+1

|X∗tk ,θ
)
π
(
Xτi+1 |X∗tk+1

,θ
)

(3.27)

for k = 0, . . . ,m− 2.

In Durham & Gallant (2002), it is suggested to approximate the two transition densities

on the right-hand side by the Euler scheme and to further approximate µ
(
X∗tk+1

,θ
)

and

σ
(
X∗tk+1

,θ
)

by µ
(
X∗tk ,θ

)
and σ

(
X∗tk ,θ

)
, respectively. This way, they obtain that (3.27)

is approximately proportional to a Gaussian density which we will use for the MB proposal

based on the Euler scheme:

πEuler
(
X∗tk+1

|X∗tk ,Xτi+1 ,θ
)

= φ

(
X∗tk+1

∣∣∣X∗tk +

(
Xτi+1 −X∗tk
τi+1 − tk

)
∆tk,

(
τi+1 − tk+1

τi+1 − tk

)
Σ
(
X∗tk ,θ

)
∆tk

)
,

(3.28)

where Σ
(
X∗tk ,θ

)
= σ

(
X∗tk ,θ

)
σTr

(
X∗tk ,θ

)
and φ (· |a, b) denotes the multivariate Gaussian

density with mean a ∈ Rd and covariance matrix b ∈ Rd×d.
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Since the MB proposal takes into account information not only from the left data point but

also from the observation on the right, it does not have a large jump in the last step as the

left-conditioned proposal does.

Thus far, our path update has only been applied to imputed points between two observations. It

can easily be extended to a case with several observations along the path by simply decomposing

the path into independent path proposals, multiplying the respective acceptance probabilities

and collectively accepting or rejecting the proposals. Moreover, the entire path does not have

to be updated all at once, but can be divided into several path segments that are successively

updated. Different algorithms for choosing the update interval are summarized in Fuchs (2013)

and Appendix A.2.1 describes one of them.

3.4.2 Extensions of the basic data augmentation scheme and alternatives

The data augmentation scheme introduced in the previous section can be generalized for the

case of (additive) measurement error and latent components of the diffusion process. The

respective proposal procedures based on the modified bridge proposal and the corresponding

acceptance probabilities are derived e. g. in Fuchs (2013, Chapter 7.2). Several other works

also account for measurement error and latent components e. g. Golightly & Wilkinson (2006b,

2008), and Whitaker et al. (2017).

Another challenge in the context of Bayesian data augmentation and the MCMC scheme

discussed in the previous subsection is the dependence between the parameter components

included in the diffusion function and the missing path segments between two observations

that results from Relationship (3.3) between the diffusion matrix and the quadratic variation

of the process. Roberts & Stramer (2001) were the first to highlight that in the discretized

setting (as we consider it here), this dependence leads to a slower convergence of the MCMC

algorithm as the number of imputed points m − 1 increases. Several approaches have been

developed to overcome this problem. Some of them are summarized in Fuchs (2013, Chapter

7.4). Here, we only mention the approaches that are generally applicable (e. g. that do not

require transformation to a unit diffusion).

One approach was motivated by a reparametrization first used in Chib et al. (2004) and

became to be known as the innovation scheme. The idea is to exploit the bijective relationship

between the diffusion path and the driving Brownian motion conditional on the parameter,

i. e. there is an invertible function that maps between the two processes. The acceptance

probability in the parameter update is conditioned on the Brownian motion (which does not

contain information about the parameter) rather than on the diffusion path and then, the

diffusion path is obtained by transforming the Brownian motion once a new parameter is
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accepted. Thus, the parameter and the imputed path segments are consistent at any step of

the algorithm and the convergence problem is overcome. While Golightly & Wilkinson (2008)

study this approach for general diffusion processes in the discrete-time setting only and refine

it in Wilkinson & Golightly (2010), Fuchs (2013, Chapter 7.4.4) also considers the continuous-

time framework, i. e. where the time step between the imputed data points tends to zero. For

their guided proposals, van der Meulen & Schauer (2017) also make use of the idea of an

innovation process and show that the results obtained in Fuchs (2013) are a special case of

their work.

Golightly & Wilkinson (2006a) introduced a sequential MCMC algorithm (also referred to

as particle filter) that simultaneously updates the parameter vector and the imputed process

states and thus circumvents issues arising from their dependence. They also applied this

algorithm to stochastic kinetic models in Golightly & Wilkinson (2006b). In this sequential

approach, the observations are taken into account one after another to update the posterior

distribution. Hence, it allows for on-line estimation of the parameter vector as additional data

points becomes available (instead of restarting the whole MCMC procedure for every new

data point) which is very useful for real-time data analysis. However, the algorithm suffers

from other problems, e. g. a poor approximation of the posterior in one step of the algorithm

will propagate to the next step. In particular, it may occur that the final approximation of

the posterior distribution based on all currently available data concentrates only on very few

distinct parameter values. This problem becomes the more severe the more observed time

points are available.

Another class of algorithms that combine MCMC and sequential Monte Carlo methods is

known as particle MCMC (pMCMC), a term that was coined in Andrieu et al. (2010). One

representative of the pMCMC methods is the so-called particle marginal Metropolis–Hastings

(PMMH) algorithm. This algorithm can also be interpreted in the light of the pseudo-marginal

approach as described in Beaumont (2003) and Andrieu & Roberts (2009). Golightly &

Wilkinson (2011) use this approach for inference of SDE parameters. The idea of this algorithm

is to construct a Metropolis–Hastings algorithm that targets the posterior distribution of the

parameter vector θ, but since the marginal likelihood needed in the acceptance probability is

intractable, it is approximated using a particle filter. Inside the particle filter, the stochastic

model can either simply be forward simulated or Golightly & Wilkinson (2011) also consider

the use of a bridge construct. In both cases, the parameter vector and the imputed path

segment between observations are jointly updated and no issues from their dependence arise.

Moreover, since the particle filter provides an unbiased estimate of the marginal likelihood,

the PMMH algorithm targets the exact posterior distribution despite using an approximation

in the acceptance probability. However, the algorithm is computationally extremely expensive.

Within each iteration of the Metropolis–Hastings algorithm, N ×M ×m simulation steps for
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the diffusion process are required if N is the number of particles used in the particle filter,

M+1 time points are observed, and m−1 points are imputed between every two observations.

There is also a non-Bayesian approach based on particle filtering called iterated filtering which

is described in Ionides et al. (2006).

More recently, also variational inference approaches have been explored for SDEs e. g. in Ryder

et al. (2018) and Opper (2019); however, there are no results available yet comparing these

approaches to the other inference techniques mentioned in this section.
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Chapter 4

Using higher-order approximations in

Bayesian inference for diffusions

Having introduced several approaches to perform inference for diffusion processes; in this

chapter, we further consider the Bayesian data augmentation method as described in Sec-

tion 3.4.1 that is used to infer the parameter θ ∈ Θ ⊆ Rp from low-frequency observations

Xobs = (Xτ0 , . . . ,XτM ) of a diffusion process (Xt)t≥0 described by SDE

dXt = µ (Xt,θ) dt+ σ (Xt,θ) dBt, X0 = x0, (4.1)

as detailed in Section 3.1. In this approach, the numerical approximation of the transition

densities of the process is necessary not only for calculating the posterior densities, but also

for proposing the imputed data points. In both contexts, the Euler-Maruyama scheme is

the standard approximation technique in the literature (see e. g. Elerian et al., 2001, Eraker,

2001, Golightly & Wilkinson, 2006a, 2008, Roberts & Stramer, 2001). To reduce the amount

of imputed data and the number of necessary iterations for the computationally expensive

estimation method, one possible solution is to employ higher-order approximation schemes.

Therefore, we investigate the utilization and usefulness of such higher-order approximations on

the example of the Milstein scheme introduced in Section 3.3. A closed form of the transition

density based on the Milstein scheme is derived in Elerian (1998). In Tse et al. (2004), this

closed form is used to estimate the parameters of a hyperbolic diffusion process from high-

frequency financial data, but not in the context of Bayesian data augmentation. For the latter,

Elerian et al. (2001) propose the possible use of the Milstein scheme. However, the specific

implementation and benefit of this framework, in particular when using sophisticated proposal

methods, remain unclear, and therefore, are the focus of this work. For our investigation,
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we first derive the transition density of the diffusion process approximated by the Milstein

scheme, then explain how to integrate the Milstein scheme into the framework of Bayesian

data augmentation, and finally assess the effectiveness of this new combination in a simulation

study which is a common approach in the literature (see e.g. Whitaker et al. (2017) and

Mrázek & Posṕı̌sil (2017)). In the simulation study, we consider the GBM and the CIR process

as introduced in Section 3.2. Parts of this chapter are similar or identical to the following

article:

Pieschner, S. & Fuchs, C. (2020). Bayesian inference for diffusion processes: using higher-order

approximations for transition densities. Royal Society Open Science, 7(10), 200270.

4.1 The transition density based on the Milstein scheme

For the reader’s convenience, we restate the formula of the Milstein scheme from Section 3.3.

It approximates the d-dimensional process (Xt)t≥0 by setting Y 0 = x0 and, then, successively

calculating for the ith component:

Y
(i)
k+1 =Y

(i)
k + µi (Y k,θ) ∆tk +

r∑
l=1

σil (Y k,θ) ∆B
(l)
k

+
r∑
l=1

r∑
q=1

d∑
j=1

σjq (Y k,θ)
∂σil
∂y(r)

(Y k,θ)

∫ tk+1

tk

∫ s

tk

dB(q)
u dB(l)

s

(4.2)

for k = 0, 1, . . . and i = 1, . . . , d. We have already pointed out that the convergence

rate of the Milstein scheme is higher than that of the Euler scheme which is the reason for

our investigation. However, there is a severe restriction on the practical applicability of the

Milstein scheme because the stochastic double integral in the last term of (4.2) only yields an

analytical solution for j = l. Although approximation techniques for the double integral exist

(see e.g. Kloeden & Platen (1992)), they are unsuitable for our purposes. On the one hand, we

wish to avoid adding yet another layer of approximation and, thus, additional computational

time. On the other hand, we must find the distribution of Y k+1 based on approximation

schemes (4.2), which is also not explicitly possible when adding another approximation. For

this reason, we focus on models where the double integral appears exclusively for the same

components of the Brownian motion. For example, this is the case when the process is

driven by a one-dimensional Brownian motion (i. e. the diffusion function σ (Y k,θ) is of

dimension d×1). Hence, the diffusion model includes only one source of noise that may affect
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4.1. The transition density based on the Milstein scheme

each of the components of the process. More generally, we require that

σrj (Y k,θ)
∂σil
∂y(r)

(Y k,θ) ≡ 0 (4.3)

for j 6= l so that only j = l is inside the double integral. Relation (4.3) implies the following:

• if an entry σrj (Y k,θ) is non-zero, then the entries of all other columns and all rows

must not depend on Y
(r)
k , and

• if an entry σil (Y k,θ) depends on Y
(r)
k , then the entries of all other columns in row r

must be zero.

In particular, this means that unless the rth row of the diffusion function contains only zeros,

component Y
(r)
k can only appear in one column of the diffusion function (and if it appears,

then the entries of all other columns in row r must be zero). Moreover, each component

of the diffusion process (Xt)t≥0 can only be directly affected by more than one component

of the Brownian motion, if the size of all stochastic effects (i. e. all entries of the diffusion

function) does not depend on the respective component of the diffusion process. Further, if all

d components of the diffusion process appear in the diffusion function, then the process can

be affected by at most d components of the Brownian motion. Besides, if all d components

of the diffusion process appear in the diffusion function and the process shall be affect by

d components of the Brownian motion, the diffusion function must be a (possibly column-wise

permuted) diagonal matrix. In many applications, these are not realistic assumptions.

Assume that the ith component of the diffusion process appears in the ith row of the diffu-

sion function and that the respective entry of the diffusion function does not depend on the

remaining components Y
(r)
k , r 6= i (the contrary would impose restrictions on other rows, as

described above). Then, the ith component of the approximated process is

Y
(i)
k+1 =Y

(i)
k + µi (Y k,θ) ∆tk + σij (Y k,θ) ∆B

(j)
k

+ σij (Y k,θ)
∂σij

∂y(i)
(Y k,θ)

1

2

((
∆B

(j)
k

)2
−∆tk

) (4.4)

for k = 0, 1, . . . and where j is the column index of the one non-zero entry depending on

Y
(i)
k in the ith row of the diffusion function.

Moreover, note that if we consider the approximation Y
(i)
k+1 in Equation (4.4) as a func-

tion g
(

∆B
(j)
k

)
of the increment of the Brownian motion, g is quadratic in ∆B

(j)
k . Therefore,
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Figure 4.1: Three trajectories of a GBM (3.6) with α = 1 and σ2 = 0.25 and their approxi-
mations by the Euler and the Milstein scheme for time steps ∆t = 0.1.

the function g has a global extremum with value

g∗ = Y
(i)
k −

1

2
σij (Y k,θ)

/(
∂σij

∂y(i)
(Y k,θ)

)
+

(
µi (Y k,θ)− 1

2
σij (Y k,θ)

∂σij

∂y(i)
(Y k,θ)

)
∆tk.

(4.5)

Hence, there is a bound on the range of possible values for Y
(i)
k+1 resulting from the Milstein

scheme which might exclude values that the solution process Xtk could take. Whether this is

a lower or upper bound depends on the sign of the diffusion function and its derivative. The

second derivative of g is given by

∂2g(∆B
(j)
k )

∂
(

∆B
(j)
k

)2 = σij (Y k,θ)
∂σij

∂y(i)
(Y k,θ) =: g′′.

Thus, the extremum g∗ is a maximum and puts an upper bound on the possible values of

Y
(i)
k+1 if g′′ < 0, and g∗ is a minimum and puts a lower bound on Y

(i)
k+1 if g′′ > 0. For the

case where g′′ = 0, the Milstein scheme reduces to the Euler scheme.

Since our examples, the GBM and the CIR process, are one-dimensional processes, the double

integral in Equation (4.2) vanishes. The Milstein scheme for the GBM yields the following:

Yk+1 = Yk + αYk∆tk + σYk∆Bk +
1

2
σ2Yk

(
(∆Bk)

2 −∆tk

)
for k = 0, 1, . . . , where the first three summands also correspond to the Euler scheme. Fig-

ure 4.1 illustrates the two approximation schemes. It presents three trajectories of the GBM,

which are represented by red points and which were simulated by setting a seed for the random

number generator and, then, sampling from the exact transition density (3.7). The same seed

was used to sample the increments of the Brownian motion from the normal density and then

transform them by (3.11) and (4.4) to obtain the Euler (black) and the Milstein (blue) approx-
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Figure 4.2: Three approximated trajectories of a CIR process (3.9) with α = 1, β = 1, and
σ2 = 2 approximated by the Euler and the Milstein scheme for time steps ∆t = 0.1.

imation of the trajectories. We observe that in almost all cases, the Milstein approximation is

either closer to or as close to the points of the trajectories as the Euler approximation.

For the CIR process, the Milstein scheme yields the following:

Yk+1 = Yk + α (β − Yk) ∆tk + σ
√
Yk∆Bk +

1

4
σ2
(

(∆Bk)
2 −∆tk

)
(4.6)

for k = 0, 1, . . . , where the first three summands again correspond to the Euler scheme. A

similar illustration as in Figure 4.1 where the approximations are compared to the trajectories of

the true process is not easily possible for the CIR process because sampling from the transition

density (3.10) is not achieved directly but e. g. by generating a normally distributed and a chi-

square distributed random variable and their transformation. Therefore, Figure 4.2 only shows

the approximated trajectories of the CIR process again obtained by sampling the increments

of the Brownian motion and then transforming them by (3.11) and (4.4).

While sampling approximated diffusion paths is fairly straightforward for both approximation

schemes as described above, determining the corresponding transition density is less apparent

for the Milstein scheme. As already pointed out in Section 3.4, the transition density derived

from the Euler scheme is simply a multivariate Gaussian density:

πEuler (Y k+1|Y k,θ) = φ
(
Y k+1|Y k + µ (Y k,θ) ∆tk,σ (Y k,θ)σTr (Y k,θ) ∆tk

)
,

where φ (y|a, b) denotes the multivariate Gaussian density with mean a ∈ Rd and covariance

matrix b ∈ Rd×d evaluated at y.

For the Milstein scheme, deriving the transition density is more complicated, even in the case

of a one-dimensional diffusion process, which we consider here. Elerian (1998) derived the

transition density by first rearranging the Milstein scheme to obtain a transformation of a

non-central chi-squared distributed variable for which the density is known, and then apply-

ing the random variable transformation theorem. Here, we present an alternative derivation
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that directly applies the random variable transformation theorem to increments ∆Bk of the

Brownian motion. Both approaches produce the same result. For simplicity of notation, we

set µk := µ (Yk,θ), σk := σ (Yk,θ), and σ′k := ∂σ (y,θ) /∂y |y=Yk
.

Theorem 4.1. Given a one-dimensional diffusion process described by SDE (4.1), the approx-

imated transition density based on the Milstein scheme (4.4) is as follows:

πMil (Yk+1|Yk,θ) =
exp

(
−Ck(Yk+1)

Dk

)
√

2π
√

∆tk
√
Ak(Yk+1)

·

[
exp

(
−
√
Ak(Yk+1)

Dk

)
+ exp

(√
Ak(Yk+1)

Dk

)]

with

Ak(Yk+1) = (σk)
2 + 2σkσ

′
k

(
Yk+1 − Yk −

(
µk −

1

2
σkσ

′
k

)
∆tk

)
,

Ck(Yk+1) = σk + σ′k

(
Yk+1 − Yk −

(
µk −

1

2
σkσ

′
k

)
∆tk

)
,

Dk = σk
(
σ′k
)2

∆tk

and for

Yk+1 ≥ Yk −
1

2

σk
σ′k

+

(
µk −

1

2
σkσ

′
k

)
∆tk, if σkσ

′
k > 0, (4.7)

and

Yk+1 ≤ Yk −
1

2

σk
σ′k

+

(
µk −

1

2
σkσ

′
k

)
∆tk, if σkσ

′
k < 0. (4.8)

Proof. The Milstein scheme

Yk+1 = Yk + µ (Yk,θ) ∆tk + σ (Yk,θ) ∆Bk +
1

2
σ (Yk,θ)

∂σ

∂y
(Yk,θ)

(
(∆Bk)

2 −∆tk

)
can be considered a variable transformation of the random variable Z ∼ N (0, 1) with den-

sity φ(z) using the transformation function

f(z) = az2 + bz + c,

where the coefficients are defined as

a =
1

2
σ (Yk,θ)

∂σ

∂y
(Yk,θ) ∆tk,

b = σ (Yk,θ)
√

∆tk,
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c = Yk +

[
µ (Yk,θ)− 1

2
σ (Yk,θ)

∂σ

∂y
(Yk,θ)

]
∆tk,

and whose derivative and inverse function are

f ′(z) = 2az + b,

f−1(y) = − b

2a
±
√
b2 + 4a (y − c)

2a
for y ≥ − b

2

4a
+ c.

By applying the random variable transformation theorem as found in Schmidt (2009, p. 269)

or Gillespie (1992a, p.27), the density ρY of Yk+1 can be derived as follows:

ρY (y) =
∑

{z∈R:f(z)=y}

φ(z)

|f ′(z)|

=

φ

(
− b

2a
−
√
b2 + 4a(y − c)

2a

)
∣∣∣∣∣f ′
(
− b

2a
−
√
b2 + 4a(y − c)

2a

)∣∣∣∣∣
+

φ

(
− b

2a
+

√
b2 + 4a(y − c)

2a

)
∣∣∣∣∣f ′
(
− b

2a
+

√
b2 + 4a(y − c)

2a

)∣∣∣∣∣

=

1√
2π

exp

−1

2

(
− b

2a
−
√
b2 + 4a(y − c)

2a

)2


∣∣∣∣∣b+ 2a

(
− b

2a
−
√
b2 + 4a(y − c)

2a

)∣∣∣∣∣

+

1√
2π

exp

−1

2

(
− b

2a
+

√
b2 + 4a(y − c)

2a

)2


∣∣∣∣∣b+ 2a

(
− b

2a
+

√
b2 + 4a(y − c)

2a

)∣∣∣∣∣

=
1√
2π

exp

(
− 1

8a2

(
b2 + 2b

√
b2 + 4a(y − c) + b2 + 4a(y − c)

))
∣∣∣−√b2 + 4a(y − c)

∣∣∣
+

exp

(
− 1

8a2

(
b2 − 2b

√
b2 + 4a(y − c) + b2 + 4a(y − c)

))
∣∣∣√b2 + 4a(y − c)

∣∣∣
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=

exp

(
−b

2 + 2a(y − c)
4a2

)
√

2π
√
b2 + 4a(y − c)

(
exp

(
−
b
√
b2 + 4a(y − c)

4a2

)
+ exp

(
b
√
b2 + 4a(y − c)

4a2

))

=

exp

(
−b

2 + 2a(y − c)
4a2

)
√

2π
√
b2 + 4a(y − c)

· 2 cosh

(
b
√
b2 + 4a(y − c)

4a2

)
.

After substituting the coefficients a, b, and c and abbreviating µk := µ (Yk,θ), σk := σ (Yk,θ),

and σ′k := σ′ (Yk,θ) = ∂σ (y,θ) /∂y
∣∣
y=Yk

, we obtain the transition density based on the

Milstein scheme

πMil (Yk+1|Yk,θ) =

exp

−
(
σk
√

∆tk
)2

+ 2
1

2
σkσ

′
k∆tk

(
Yk+1 − Yk −

(
µk −

1

2
σkσ

′
k

)
∆tk

)
4

(
1

2
σkσ′

k∆tk

)2


√

2π

√(
σk
√

∆tk
)2

+ 4
1

2
σkσ′

k∆tk

(
Yk+1 − Yk −

(
µk −

1

2
σkσ′

k

)
∆tk

)

·

exp

−
σk
√

∆tk

√(
σk
√

∆tk
)2

+ 4
1

2
σkσ′

k∆tk

(
Yk+1 − Yk −

(
µk −

1

2
σkσ′

k

)
∆tk

)
4

(
1

2
σkσ′

k∆tk

)2



+ exp


σk
√

∆tk

√(
σk
√

∆tk
)2

+ 4
1

2
σkσ′

k∆tk

(
Yk+1 − Yk −

(
µk −

1

2
σkσ′

k

)
∆tk

)
4

(
1

2
σkσ′

k∆tk

)2




=

exp

(
−Ck(Yk+1)

Dk

)
√

2π
√

∆tk
√
Ak(Yk+1)

·

[
exp

(
−
√
Ak(Yk+1)

Dk

)
+ exp

(√
Ak(Yk+1)

Dk

)]

with

Ak(Yk+1) = (σk)
2 + 2σkσ

′
k

(
Yk+1 − Yk −

(
µk −

1

2
σkσ

′
k

)
∆tk

)
Ck(Yk+1) = σk + σ′k

(
Yk+1 − Yk −

(
µk −

1

2
σkσ

′
k

)
∆tk

)
Dk = σk

(
σ′k
)2

∆tk
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4.1. The transition density based on the Milstein scheme

and for

Yk+1 ≥ Yk −
1

2

σk
σ′k

+

(
µk −

1

2
σkσ

′
k

)
∆tk, if σkσ

′
k > 0, and

Yk+1 ≤ Yk −
1

2

σk
σ′k

+

(
µk −

1

2
σkσ

′
k

)
∆tk, if σkσ

′
k < 0.

In the case of σk = 0, Yk+1 conditioned on Yk is deterministic. For σ′k = 0, the Milstein

scheme reduces to the Euler scheme.

The bounds in (4.7) and (4.8) coincide with the bound (4.5) on the range of possible val-

ues Yk+1 resulting from the Milstein scheme. For values of Yk+1 within the respective bound,

Ak (Yk+1) is non-negative and its square root takes real values; otherwise, the transition density

is equal to zero. Hence, there is a lower or an upper bound on the support of πMil. Moreover,

one can show that the value of the transition density tends to infinity as Yk+1 approaches the

bound. However, the interval for which the density increases towards infinity may be arbitrarily

narrow depending on the parameter setting.

For the GBM, we have σ (Xt,θ) = σXt with parameter σ > 0, the process taking values

in R+. Therefore, we obtain a lower bound for the possible values of Yk+1:

Yk+1 ≥ Yk
(

1

2
+

(
α− 1

2
σ2

)
∆tk

)
. (4.9)

Depending on the parameter combination θ = (α, σ)T , this lower bound may be negative, in

which case the support of the transition density includes the entire state space of the GBM.

In Figure 4.3, we illustrate the transition densities based on the GBM solution, Euler scheme,

and Milstein scheme for two different parameter settings. We observe that the Milstein tran-

sition density better approximates the mode of the transition density of the solution than the

Euler transition density does. On the other hand, while the support of the Euler transition

density is the set of all real numbers, the Milstein transition density puts zero weight on the

values of Yk+1 that are below the lower bound (4.9), even though some of the values are

feasible according to the transition density of the solution process.

For the CIR process, we have σ (Xt,θ) = σ
√
Xt with parameter σ > 0, the process taking

values in R0. We therefore obtain a lower bound for the possible values of Xtk+1
when applying

the Milstein scheme:

Xtk+1
≥
(
α (β −Xtk)− 1

4
σ2

)
∆tk. (4.10)
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Figure 4.3: Transition densities for a transition from Yk = 100 to Yk+1 with a time step
of ∆tk = 0.1 for two different parameter settings based on the GBM solution, Euler scheme,
and Miltstein scheme, respectively.
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Figure 4.4: Transition densities for a transition from Yk = 3 to Yk+1 with time step ∆tk = 0.1
for two different parameter settings based on the solution of the CIR process, Euler scheme,
and Miltstein scheme, respectively.

Again, depending on the parameter combination θ = (α, β, σ)T , this lower bound may be

negative, in which case the support of the transition density includes the entire state space of

the CIR process.

Figure 4.4 illustrates the transition densities based on the solution of the CIR process, Euler

scheme, and Milstein scheme for two different parameter settings. For a small value of the

diffusion parameter σ2 as in Figure 4.4a, there is only little difference between the approximated

transition densities based on the Euler and the Milstein scheme. This is also apparent from

Equation (4.6). But for a larger value of σ2 as in Figure 4.4b, we observe that the Milstein

transition density again better approximates the mode of the transition density of the solution

than the Euler transition density does.

Other approximation methods for the transition densities were developed for example in Äıt-

Sahalia (2002), Äıt-Sahalia (2008), and Filipović et al. (2013). Here, we focus on the numerical

approximation methods described in Section 3.3. Because for the Bayesian data augmentation
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4.2. Path proposal methods based on the Milstein scheme

method for parameter estimation introduced in Section 3.4.1, it is crucial to not only be able

to approximate the transition density, but also sampling from the resulting density needs to be

possible and fast.

4.2 Path proposal methods based on the Milstein scheme

In this section, we explain how to incorporate the Milstein transition density derived in the pre-

vious section into the framework of Bayesian data augmentation as described in Section 3.4.1.

The Milstein transition density can be used to approximate the likelihood of the diffusion

path in both steps of the method, namely in the acceptance probability of the parameter up-

date (3.23) and of the path update (3.25) as well as in the proposal density of the path update.

For the LC proposal, we can simply plug the Milstein transition density into Equation (3.26).

As already pointed out, this proposal method leads to a large jump in the last step from

Xtm−1 to Xτi+1 which we illustrate by simulations for the GBM and both of the considered

approximation schemes in Figures 4.5a and 4.5b.

Left-conditioned proposals Bridge proposals

●

●

τi τi+1

(a) Left-cond.
Euler proposal

●

●

τi τi+1

(b) Left-cond.
Milstein proposal

●

●

τi τi+1

(c) Modified bridge
Euler proposal

●

●

τi τi+1

(d) Modified bridge
Milstein proposal

●

●

τi τi+1

(e) Diffusion bridge
Milstein proposal

Figure 4.5: Realizations of the two proposal strategies using different approximation schemes.
Fifteen proposed paths for the GBM with α = σ2 = 0.1 on the interval [τi, τi+1] = [0, 1] with
Xτi = 10, Xτi+1 = 25, and m = 10 subintervals.

We now consider the Milstein approximation for the MB proposal, namely for the two factors on

the right-hand side of (3.27). The first factor for the transition from Xtk to X∗tk+1
resembles the

Milstein transition density stated in Theorem 4.1. With the same notation, ∆+ = tm − tk+1,

and tm = τi+1, the second factor for the transition from X∗tk+1
to Xtm is as follows:

πMil
(
Xtm |X∗tk+1

,θ
)

=

exp

(
−
Fm(X∗tk+1

)

Gm(X∗tk+1
)

)
√

2π
√

∆+

√
Em(X∗tk+1

)
×

exp

−
√
Em(X∗tk+1

)

Gm(X∗tk+1
)

+ exp


√
Em(X∗tk+1

)

Gm(X∗tk+1
)
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with

Em(X∗tk+1
) =

(
σ∗k+1

)2
+ 2σ∗k+1σ

∗′
k+1

(
Xtm −X∗tk+1

−
(
µ∗k+1 −

1

2
σ∗k+1σ

∗′
k+1

)
∆+

)
,

Fm(X∗tk+1
) = σ∗k+1 + σ∗′k+1

(
Xtm −X∗tk+1

−
(
µ∗k+1 −

1

2
σ∗k+1σ

∗′
k+1

)
∆+

)
,

Gm(X∗tk+1
) = σ∗k+1

(
σ∗′k+1

)2
∆+

for Em(X∗tk+1
) ≥ 0 (which cannot be rearranged for X∗tk+1

in general); otherwise, the density

is equal to zero. The terms µ∗k+1 and σ∗k+1 are similar to µk+1 and σk+1, but Xtk+1
is replaced

by X∗tk+1
. Here, we do not respectively approximate µk+1 and σk+1 by µk and σk because doing

so does not lead to simplification. Moreover, there is no closed formula for the normalization

constant needed to scale the product of the two transition densities to a proper density.

For the GBM, we have Xt > 0 and σ∗k+1 = σX∗tk+1
> 0 and thus, obtain the following bounds

for πMil
(
Xtm |X∗tk+1

,θ
)

, the second factor in (3.27):

X∗tk+1
≤ Xtm

1

2
+

(
α− 1

2
σ2

)
∆+

=: u2nd, if
1

2
+

(
α− 1

2
σ2

)
∆+ > 0 (Case I),

X∗tk+1
≥ Xtm

1

2
+

(
α− 1

2
σ2

)
∆+

=: l2nd, if
1

2
+

(
α− 1

2
σ2

)
∆+ < 0 (Case II),

and X∗tk+1
≥ 0, if

1

2
+

(
α− 1

2
σ2

)
∆+ = 0 (Case III).

From (4.9), we obtain the following lower bound for πMil
(
X∗tk+1

|X∗tk ,θ
)

, the first factor

in (3.27):

X∗tk+1
≥ X∗tk

(
1

2
+

(
α− 1

2
σ2

)
∆tk

)
=: l1st.

At the same time, proposals X∗tk+1
for the GBM should always be strictly positive to be in

the state space. Let l := max{0, l1st}. The constraints on X∗tk+1
derived from the two

factors in (3.27) lead to three cases for the set D of feasible points of X∗tk+1
for the GBM

(assuming Xtm > 0):

D =


∅, if (Case I) applies and l1st > u2nd,

[l, u2nd] , if (Case I) applies and l1st ≤ u2nd,

[l,∞), if (Case II) or (Case III) apply.
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4.2. Path proposal methods based on the Milstein scheme

Since the MB proposal takes into account information not only from the left data point but

also from the observation on the right, it does not have a large jump in the last step as the

left-conditioned proposal does. This is also apparent in the simulations for the GBM in Figures

4.5c and 4.5d. Therefore, the acceptance probability and acceptance rate are usually higher for

the MB proposal than for the left-conditioned proposal. As Appendix A.2.2 demonstrates, the

acceptance probability is even equal to 1 for the MB proposal if only one data point is imputed

between two observations (i. e. the number of inter-observation intervals is m = 2). This

holds when using the Milstein scheme to approximate the transition density for the likelihood

function and proposal density, but also when using the Euler scheme without the approximation

of µk+1 and σk+1 by µk and σk, respectively.

For the CIR process, we have obtained the lower bound in Equation (4.10) for the possible

values of Xtk+1
when applying the Milstein scheme:

lleft :=

(
α (β −Xtk)− 1

4
σ2

)
∆tk.

The second bound that occurs when combining the MB proposal with the Milstein scheme is

as follows:

Xtk+1
≥ β − 1

α

(
1

∆+
Xtm +

1

4
σ2

)
=: lright.

The set D of feasible points Xtk+1
for the CIR process when combining the MB proposal with

the Milstein scheme is thus D = [l,∞) with l := max (0, lleft, lright).

The density of the MB proposal based on the Euler scheme in Equation (3.28) can also be

interpreted as the density that results from applying the Euler scheme to the following diffusion

process:

dXt =

(
Xτi+1 −Xt

τi+1 − t

)
dt+

√
τi+1 − tk+1

τi+1 − t
σ (Xt,θ) dBt

for t ∈ [tk, tk+1]. See Whitaker et al. (2017) for a detailed discussion of the connection

between the modified bridge and this continuous-time conditioned process. Applying the

Milstein scheme to this process yields another proposal scheme to which we refer as the

diffusion bridge Milstein (DBM) proposal. For the DBM proposal, the proposal density of a

path segment also factorizes as:

qDBM

(
Ximp∗

(τi,τi+1)

∣∣Xτi,, Xτi+1 ,θ
)

=
m−2∏
k=0

π
(
X∗tk+1

|X∗tk , Xτi+1 ,θ
)
,

where X∗t0 = Xτi , and each factor π
(
X∗tk+1

|X∗tk , Xτi+1 ,θ
)

corresponds to the density based

on the Milstein scheme from Theorem 4.1 where we replace
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• µk by (Xτi+1 −Xtk)/(τi+1 − tk),

• σk by
√

(τi+1 − tk+1)/(τi+1 − tk)σ(Xtk ,θ), and

• σ′k by
√

(τi+1 − tk+1)/(τi+1 − tk) ∂σ (y,θ) /∂y |y=Xtk
.

Like the MB proposal, the DBM proposal takes into account information from the observation

on the right and; therefore, it does not have a large jump in the last step as illustrated in

Figure 4.5e.

We have discussed another challenge in the context of Bayesian data augmentation and the

MCMC scheme in Section 3.4.2: the dependence between the parameter components included

in the diffusion function and the missing path segments between two observations that leads

to a slower convergence of the MCMC algorithm as the number of imputed points m − 1

increases. However, since all estimation methods compared here are affected by this issue in

the same way; we do not further consider it here.

To our knowledge, we are the first to utilize the Milstein scheme in the MCMC context

described here.

4.2.1 Implementation

The implementation is relatively straightforward for the majority of the estimation procedures,

and only the combination of the MB proposal and the Milstein approximation requires addi-

tional explanation. As mentioned, when approximating the two factors on the right-hand side

of (3.27) by the transition density based on the Milstein scheme, there is no closed formula for

the normalization constant to obtain a proper density. The normalization is necessary because

the proposal density for a path segment is the product of several of the terms from (3.27),

where the condition on the left point, X∗tk , differs between a newly proposed segment and the

last accepted segment if several consecutive points are imputed. Therefore, the normalization

constants differ and do not cancel out in the acceptance probability. Normalization is not

necessary only in the case where just one point is imputed between two observations (i. e.

m = 2 subintervals) because the left point, Xtk , is always a (fixed) observed point that is

not updated. Thus, the normalization constants cancel out in the acceptance probability. For

m > 2, we numerically integrate the product (3.27) over Xtk+1
to obtain the normalization

constant. The product in (3.27) may be very small (but not zero everywhere in a non-empty

feasible set D) and may thus numerically integrate to zero, especially when the upper interval

bound of the feasible set is infinite. To overcome this problem, we take two measures. First,

we do not integrate over the entire set of feasible points but determine the maximum of the
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product numerically and then integrate over the interval that includes all points with a func-

tion value of at least 10−20 times this maximum. Second, we rescale the product in (3.27) by

dividing by the maximum before integrating.

To sample from the Milstein MB proposal density, we employ rejection sampling. For this,

normalization of the product in (3.27) is not necessary. Again, we numerically determine the

maximum dmax of the product, and the interval I that includes all points with a function value

of at least 10−20 times this maximum. Then, we uniformly sample (u1, u2) from rectangle

I × (0, dmax) and accept u1 as a proposal X∗tk+1
if the unnormalized density value of (3.27)

at u1 is at most u2.

For the combination of the MB proposal and the Milstein approximation, the set of feasible

proposal points may be empty. In this case, our implementation shifts to the Euler approxima-

tion for this point, i. e. the point is proposed with the MB proposal based on the Euler scheme

and also the corresponding factor of the proposal density in the acceptance probability is based

on the Euler scheme. In addition, for all methods, a negative point may be proposed, which is

not feasible for a GBM. Therefore, in this case, we propose a new point. For both cases, we

count the number of times that they occur during the estimation procedure. In the following

simulation study no cases of switching to the Euler scheme occurred and negative proposals

occurred only very rarely (less than 1‰ of the number of iterations in the very worst case).

We implemented the described estimation procedures in R version 3.6.2 (R Core Team, 2019).

The source code of our implementation and the following simulation study is publicly available

at https://github.com/fuchslab/Inference_for_SDEs_with_the_Milstein_scheme.

4.3 Simulation study

Next, we study the computational performance of competing inference methods on the two

benchmark models, the GBM and the CIR process. In Section 3.4.1 and Section 4.2, we have

introduced a number of possible options for the choices to be made when constructing an

estimation method in the framework of Bayesian data augmentation for diffusion processes:

• approximate the transition densities in the likelihood function based on the Euler or

Milstein scheme,

• use the left-conditioned, the MB, or the DBM proposal, and

• use the Euler or Milstein scheme for the proposal densities (for the left-conditioned or

MB proposal).
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Chapter 4. Using higher-order approximations in Bayesian inference for diffusions

In the following, we will omit the left-conditioned proposal due to the inefficiency that we

already pointed out. Instead, we will consider the following four combinations:

(MBE-E) MB proposal and transition density both based on the Euler scheme,

(MBE-M) MB proposal based on the Euler scheme and transition density based on the

Milstein scheme,

(MBM-M) MB proposal and transition density both based on the Milstein scheme, and

(DBM-M) DBM proposal (which is based on the Milstein scheme) and transition density

based on the Milstein scheme.

Combination MBE-M merges the Euler and Milstein scheme. We include it here because it

combines the faster scheme for the proposals (where accuracy is less important) and the more

accurate scheme for the acceptance probability.

In this work, we focus on Bayesian inference by data augmentation and compare the four

approaches listed above. Conceptually different inference procedures, as summarized in the

beginning of Section 3.4 are not considered as competitors here as they would be employed in

different data contexts. There are two aspects that are important to consider when we want

to evaluate the different methods:

a) the accuracy with which the true posterior distribution is approximated based on one of

the approximation schemes and a given number m and

b) the accuracy with which we are able to draw from this approximated posterior distribu-

tion.

We are interested in the overall accuracy, i. e. the combination of a) and b), achieved within

a fixed amount of computational time.

For the simulation study, we generated 100 paths of both benchmark models in the time

interval [0, 1] using the exact transition densities stated in (3.7) for the GBM and in (3.10) for

the CIR process. From each path, we took M = 20 points observed at equidistant time points

(i. e. the inter-observation time ∆t is 0.05) and applied each of the four described estimation

methods once. We imputed data such that we got m = 2 and m = 5 inter-observation

intervals. We also included the case m = 1, i. e. no data was imputed and only Step (1)

from Section 3.4.1, the parameter update, was repeated in the estimation procedure where

the likelihood of the path in the acceptance probability is approximated by the Euler or the

Milstein scheme.
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(a) GBM with θ = (1, 2)Tr and x0 = 100
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Figure 4.6: Trajectories used in the simulation study. The colored lines are 10 examples of
the 100 trajectories used in the simulation study. Each trajectory consists of 20 points used as
observations. The grey-shaded area shows the range of the 100 trajectories. The solid black
line represents the expected value of (a) the GBM E [Xt] = X0 exp(αt) = 100 exp(t) and
(b) the CIR process E [Xt] = β − (β −X0) exp(−αt) = 1 + 9 exp(−t).

Each of the estimation procedures performs the following steps:

1. Draw initial values for the parameter θ from the prior distributions.

2. Initialize Y imp by linear interpolation.

3. Repeat the following steps:

(a) Parameter update: Apply random walk proposals.

i. Draw a proposal for each component of the parameter θ.

ii. Accept the proposals for all components or none.

(b) Path update:

i. Choose an update interval (ta, tb) as described in Appendix A.2.1 with λ = 5.

ii. Draw a proposal Ximp∗
(ta,tb)

according to the investigated method.

iii. Accept or reject the proposal.

We let each procedure run for one hour and evaluate the overall accuracy of the obtained

sample compared to a sample from the true posterior distribution (as described below).

For the GBM, the paths for the simulation study were generated with the parameter combina-

tion θ =
(
α, σ2

)Tr
= (1, 2)Tr and initial value x0 = 100. Figure 4.6a illustrates some of these

paths. For the prior distribution of the parameters, we assumed that they were independently

distributed with α ∼ N (0, 10) and σ2 ∼ IG(κ0 = 2, ν0 = 2), where IG denotes the inverse

gamma distribution with shape parameter κ0 and scale parameter ν0. The a priori expectations
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Figure 4.7: Trace plots of the MCMC chains for parameters α and σ2 of the GBM (3.6)
and of the log-posterior density values for one parameter estimation run using the combination
MBM-M of the modified bridge proposal with m = 2 and the Milstein approximation for
the proposal density and the likelihood function. The red lines represent the true values of
parameters α = 1 and σ2 = 2, the blue solid lines represent the mean, and the blue dashed
lines represent the lower and upper bounds of the highest-probability density interval of 95%
after cutting off the first 5000 values of the chains as burn-in, which is represented by the
green line.

of the parameters are thus E(α) = 0 and E
(
σ2
)

= 2. As proposal densities for the parameters

in Step (3a), we used α∗ ∼ N (αi−1, 0.25) and σ2∗ ∼ LN (log σ2
i−1, 0.25).

Figures 4.7 and 4.8 present the output from one estimation procedure for the GBM on the

example of the combination MBM-M of the MB proposal and the Milstein approximation for

the proposal density and the likelihood function. From each estimation procedure, we obtained

an MCMC chain of dimension n(m− 1) + 2. For each chain, we used the two components for

parameters α and σ2 and calculated the mean, the median, and the variance after cutting off a

burn-in phase of 5000 iterations.To justify our use of independent proposals for the parameter

update, we show in Appendix A.2.3 that the parameters are not strongly correlated.

For the CIR process, we generated the 100 paths with the parameter combination θ =(
α, β, σ2

)Tr
= (1, 1, 2)Tr and initial value x0 = 10. Some of the paths are illustrated in Fig-
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Figure 4.8: Estimated posterior densities for α and σ2 from one parameter estimation run
using the combination MBM-M of the modified bridge proposal and the Milstein approximation
for the proposal and the transition density. Moreover, true values of the parameters, the mean
and the median of the MCMC chains after 5000 iterations burn-in, and the mean and the
median of a sample from the true posterior distribution of the sample path based on the
solution of the GBM are shown.

ure 4.6b. We assumed α to be known and performed the inference methods for the parameters

β and σ2. For the prior distribution of the parameters, we assumed that they were indepen-

dently distributed with β ∼ IG (κb = 3, νb = 3) and σ2 ∼ IG(κs = 3, νs = 4). The a priori

expectations of the parameters are thus E(β) = 3
2 and E

(
σ2
)

= 2. As proposal densities for

the parameters in Step (3a), we used β∗ ∼ LN (log βi−1, 0.25) and σ2∗ ∼ LN (log σ2
i−1, 0.25).

As a benchmark, we also sampled from the true parameter posterior distribution based on

the exact transition densities. We used the Stan software (Carpenter et al., 2017, Stan De-

velopment Team, 2019) which provides an efficient C++ implementation of the HMC-based

No-U-turn sampler as briefly described in Section 2.2.2 to sample from the true parameter

posterior distribution. For each posterior distribution corresponding to one of the 100 sample

paths, we generated four HMC chains with 500,000 iterations each. The first half of the

chains was discarded as warm-up and the remaining draws were combined to give a sample of

size 106. We calculated the multivariate effective sample size (ESS) as defined in Vats et al.

(2019) which provides the size of an independent and identically distributed sample equivalent

to our samples in terms of variance and found that the ESS of the obtained samples from

the true posterior distribution is well over 500,000. For each of these samples, we also calcu-

lated the mean, the median, and the variance and compared them to the respective summary

statistic of the samples from the approximated posterior distribution.

The estimation procedures and time measurements were performed on a cluster of machines

with the following specifications: AMD Opteron(TM) Processor 6376 (1.40GHz), 512GB

DDR3-RAM.
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4.3.1 Results for the GBM

Figures 4.9 and 4.10 and Tables 4.1 and 4.2 summarize the results of running each of the

methods once for one hour for each of the 100 GBM trajectories. Figures 4.9 and 4.10 show

the density plots of the difference between the respective statistic (mean, median, or variance)

calculated for a sample from the approximated posterior distribution obtained by the respective

method and the statistic for a sample from the true posterior distribution of the same sample

path. Each density plot aggregates 100 such difference values, one for each of the 100 GBM

trajectories.
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Figure 4.9: Sampling results for α obtained by each of the estimation procedures. Each
density plot aggregates 100 deviations between the respective statistics (left: mean, middle:
median, right: variance) calculated for the sample from the approximated posterior and for the
sample from the true posterior distribution, one for each of the 100 sample paths of the GBM.
The rows show results for different numbers m of subintervals between two observations. For
m = 1, no data points were imputed and only Step (1) in Section 3.4.1, the parameter update,
was repeated in the estimation procedure.

Table 4.1 tabulates the root mean square error (RMSE) based on these differences for each of

the considered methods, discretization levels m, and statistics. We use the RMSE as the mea-

sure of the overall accuracy. The lower the RMSE is, the higher the accuracy of the respective

method. Table 4.2 empirically evaluates the computational efficiency of the considered meth-

ods, including the number of iterations completed after one hour, the multivariate ESS based

on the obtained sample after discarding a burn-in phase of 5000 iterations, and the acceptance

74



4.3. Simulation study

−0.6 −0.2 0.2 0.6

0.0

0.5

1.0

1.5

Posterior mean σ2

Deviation

m
 =

 1

−0.6 −0.2 0.2 0.6

0.0

0.5

1.0

1.5

2.0

Posterior median σ2

Deviation
−0.4 −0.2 0.0 0.2 0.4

0

1

2

3

4

Posterior variance σ2

Deviation

Euler
Milstein

−0.6 −0.2 0.2 0.6

0

1

2

3

4

5

Deviation

m
 =

 2

−0.6 −0.2 0.2 0.6

0

1

2

3

4

5

Deviation
−0.4 −0.2 0.0 0.2 0.4

0

5

10

15

Deviation

MBE−E
MBE−M
MBM−M
DBM−M

−0.6 −0.2 0.2 0.6

0
2
4
6
8

10
12
14

Deviation

m
 =

 5

−0.6 −0.2 0.2 0.6

0

5

10

15

Deviation
−0.4 −0.2 0.0 0.2 0.4

0

5

10

15

20

25

Deviation

MBE−E
MBE−M
MBM−M
DBM−M

Figure 4.10: Sampling results for σ2 of the GBM as described in Figure 4.9.

rates of the parameter and the path proposals. Each of these quantities is averaged over the

100 GBM trajectories and the coefficient of variation is also stated.

For the drift parameter α of the GBM, the four considered schemes perform comparably

for m = 2 and m = 5. In particular, the use of the Milstein approximation does not improve

the accuracy of the posterior mean and median for the same discretization level m. The

accuracy of the posterior variance is slightly improved by the use of the Milstein approximation

when data are imputed. Moreover, for MBE-E, the accuracy does not consistently improve as

m is increased. Whereas, the accuracy for the methods including the Milstein scheme improves

considerably when imputed data are introduced (i. e. m > 1) and it improves slightly when m

is increased from 2 to 5.

For the diffusion parameter σ2 of the GBM, we clearly see an improvement in overall accuracy

for the methods involving the Milstein scheme. Combination DBM-M turns out to be the most

accurate, closely followed by MBE-M in the case of the mean and median.

According to Table 4.2, the number of iterations completed within one hour varies substantially

among the different estimation procedures. It is always higher for the procedures that use the

Euler approximation, while especially Combination MBM-M is very time-consuming and thus

completes fewer iterations. Similarly, the multivariate ESS varies substantially among the

different estimation procedures. It is higher for m = 2 than for m = 5 for each of the
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Table 4.1: Empirical characteristics for evaluating the overall accuracy of the parameter
estimation procedures for different numbers m of subintervals between two observations ag-
gregated over 100 deviations between the respective statistics calculated for the sample from
the approximated posterior and for the sample from the true posterior distribution, one for
each of the 100 sample paths of the GBM. The lowest RMSE per m and per statistic is printed
in boldface.

Method
RMSEs for α RMSEs for σ2

mean median variance mean median variance

m = 1
Euler 0.282 0.244 0.456 0.638 0.600 0.471

Milstein 0.851 0.780 1.158 0.282 0.265 0.176

m = 2

MBE-E 0.266 0.238 0.526 0.211 0.198 0.141

MBE-M 0.311 0.302 0.476 0.109 0.106 0.057

MBM-M 0.315 0.305 0.470 0.112 0.107 0.057

DBM-M 0.318 0.308 0.485 0.101 0.099 0.044

m = 5

MBE-E 0.277 0.254 0.524 0.113 0.098 0.127

MBE-M 0.288 0.274 0.474 0.031 0.031 0.050

MBM-M 0.292 0.278 0.492 0.040 0.037 0.058

DBM-M 0.291 0.275 0.472 0.031 0.030 0.037

RMSE denotes the root mean square error.

considered estimation procedures. The acceptance rate of the parameters is slightly lower

when the Milstein scheme is used for the approximation of the likelihood function. In addition,

the acceptance rate of the parameters decreases as the number of imputed points increases.

The acceptance rate of the path is highest for Combination MBM-M. For MBE-E, it would be

just as high if one did not substitute µk+1 and σk+1 by µk and σk. For MBE-E, MBE-M, and

DBM-M, the acceptance rate of the path increases as the number of imputed points increases.
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Table 4.2: Empirical characteristics for evaluating the computational efficiency of the param-
eter estimation procedures for different numbers m of subintervals between two observations
aggregated over 100 trajectories of the GBM. Each of the procedures was run for one hour.
Acceptance rates are defined to take values between 0 and 1. For m = 1, no data points
were imputed and only Step (1) in Section 3.4.1, the parameter update, was repeated in the
estimation procedure. Specifications for the computing power are stated in the main text.

Method

Number of
iterations

after 1 hour

Multivariate
effective

sample size

Acceptance
rate of the
parameters

Acceptance
rate of the

path

mean c.v. mean c.v. mean c.v. mean c.v.

m = 1
Euler 25134301 0.03 1273744 0.16 0.518 0.02 − −

Milstein 4454863 0.03 146362 0.41 0.425 0.14 − −

m = 2

MBE-E 8583614 0.03 170827 0.19 0.442 0.01 0.842 0.04

MBE-M 1816144 0.03 24090 0.38 0.417 0.03 0.799 0.05

MBM-M 300870 0.03 6881 0.21 0.417 0.03 1.000 0.00

DBM-M 1754024 0.10 28089 0.31 0.417 0.03 0.839 0.04

m = 5

MBE-E 6765054 0.10 49885 0.18 0.310 0.01 0.892 0.02

MBE-M 892487 0.02 5033 0.24 0.304 0.01 0.844 0.03

MBM-M 78215 0.04 573 0.20 0.304 0.01 0.978 0.01

DBM-M 879227 0.03 5535 0.21 0.304 0.01 0.884 0.02

c.v. denotes the coefficient of variation.

4.3.2 Results for the CIR process

Figures 4.11 and 4.12 and Tables 4.3 and 4.4 summarize the results of the simulation study for

the CIR process. Figures 4.11 and 4.12 show the density plots of the difference between the

respective statistic (mean, median, or variance) calculated for a sample from the approximated

posterior distribution obtained by the respective method and the statistic for a sample from

the true posterior distribution of the same sample path. Table 4.3 tabulates the RMSE based

on these differences for each of the considered methods, discretization levels m, and statistics,

and Table 4.4 empirically evaluates the computational efficiency of the considered methods as

explained in more detail in the beginning of the previous subsection.

Similar to the results for the GBM, the use of the Milstein approximation does not consistently

improve the overall accuracy for the drift parameter β. The accuracy increases (i. e. the

RMSE decreases) for increasing m for most of the methods. Only Combination MBM-M
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Figure 4.11: Sampling results for β obtained by each of the estimation procedures. Each
density plot aggregates 100 deviations between the respective statistics (left: mean, middle:
median, right: variance) calculated for the sample from the approximated posterior and for
the sample from the true posterior distribution, one for each of the 100 sample paths of the
CIR process. The rows show results for different numbers m of subintervals between two
observations. For m = 1, no data points were imputed and only Step (1) from Section 3.4.1,
the parameter update, was repeated in the estimation procedure.

has lower accuracy for m = 5 due to the low sampling efficiency and the resulting low ESS.

For the diffusion parameter σ2, the use of the Milstein approximation and increasing m both

improve the overall accuracy. Again Combination DBM-M achieves the highest accuracy,

closely followed by MBE-M.

Also for the CIR process, the number of iterations completed after one hour and the multi-

variate ESS of the obtained sample vary substantially between the different procedures. Both

quantities are highest for Combination MBE-E, they are similar for MBE-M and DBM-M, and

particularly low for MBM-M.
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Figure 4.12: Sampling results for σ2 of the CIR process as described in Figure 4.11.
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Table 4.3: Empirical characteristics for evaluating the overall accuracy of the parameter
estimation procedures for different numbers m of subintervals between two observations ag-
gregated over 100 deviations between the respective statistics calculated for the sample from
the approximated posterior and for the sample from the true posterior distribution, one for
each of the 100 sample paths of the CIR process. The lowest RMSE per m and per statistic
is printed in boldface.

Method
RMSEs for β RMSEs for σ2

mean median variance mean median variance

m = 1
Euler 0.0179 0.0115 0.0478 0.1603 0.1530 0.0673

Milstein 0.0174 0.0110 0.0587 0.1306 0.1233 0.0595

m = 2

MBE-E 0.0099 0.0064 0.0265 0.0910 0.0865 0.0417

MBE-M 0.0105 0.0063 0.0413 0.0656 0.0619 0.0309

MBM-M 0.0151 0.0120 0.0462 0.0658 0.0625 0.0325

DBM-M 0.0097 0.0061 0.0330 0.0653 0.0617 0.0308

m = 5

MBE-E 0.0052 0.0036 0.0144 0.0400 0.0380 0.0194

MBE-M 0.0077 0.0049 0.0375 0.0271 0.0259 0.0156

MBM-M 0.0307 0.0204 0.1103 0.0509 0.0420 0.0615

DBM-M 0.0085 0.0052 0.0321 0.0270 0.0256 0.0156

RMSE denotes the root mean square error.
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Table 4.4: Empirical characteristics for evaluating the computational efficiency of the param-
eter estimation procedures for different numbers m of subintervals between two observations
aggregated over 100 trajectories of the CIR process. Each of the procedures was run for one
hour. Acceptance rates are defined to take values between 0 and 1. For m = 1, no data points
were imputed and only Step (1) from Section 3.4.1, the parameter update, was repeated in
the estimation procedure. Specifications for the computing power are stated in the main text.

Method

Number of
iterations

after 1 hour

Multivariate
effective

sample size

Acceptance
rate of the
parameters

Acceptance
rate of the

path

mean c.v. mean c.v. mean c.v. mean c.v.

m = 1
Euler 23461023 0.11 2422521 0.14 0.443 0.03 − −

Milstein 4685450 0.03 480549 0.08 0.442 0.03 − −

m = 2

MBE-E 8482241 0.06 422034 0.10 0.384 0.03 0.964 0.01

MBE-M 1944229 0.05 94071 0.10 0.383 0.03 0.957 0.01

MBM-M 186588 0.06 9429 0.13 0.383 0.03 1.000 0.00

DBM-M 1905354 0.04 95262 0.10 0.383 0.03 0.968 0.01

m = 5

MBE-E 6851197 0.05 114344 0.10 0.272 0.03 0.976 0.01

MBE-M 966579 0.04 15599 0.13 0.272 0.03 0.965 0.01

MBM-M 37648 0.12 574 0.25 0.272 0.03 0.993 0.00

DBM-M 906791 0.08 14881 0.14 0.272 0.03 0.975 0.01

c.v. denotes the coefficient of variation.
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4.4 Summary and discussion

We have demonstrated how to implement an algorithm for the parameter estimation of SDEs

from low-frequency data using the Milstein scheme to approximate the transition density of

the underlying process. Our motivation was to improve numerical accuracy and thus reduce

the amount of imputed data and computational overhead. However, our findings are rather

discouraging: We found that this method can be applied to multidimensional processes only

with impractical restrictions. Moreover, we showed that the combination of the MB proposal

with the Milstein scheme for the proposal density may lead to an empty set of possible proposal

points, which would require switching to the Euler scheme in order to proceed. One of the

strengths of the original (Euler-based) MCMC scheme is its generic character and applicability.

Through this, it possesses a practical advantage over otherwise more sophisticated methods

such as the Exact Algorithm (Beskos et al., 2008). This strength does not translate to the

Milstein-based MCMC scheme due to the limited applicability of the Milstein approximation

especially in the multidimensional setting. Thus, methods like the Exact Algorithm may be

a reasonable alternative. The limited applicability of the Milstein approximation would also

persist for advanced forms of the discussed MCMC scheme like the innovation scheme in

Golightly & Wilkinson (2008) or for even more generic algorithms like particle MCMC as

studied in Golightly & Wilkinson (2011).

In our simulation study, we found that the overall accuracy for the estimates for the drift

parameter of the GBM does not necessarily improve when the Milstein scheme is used. Fewer

iterations are completed for the methods involving the Milstein scheme and also the ESS is

substantially lower. Thus, the poor sampling efficiency might outweigh the (potential) increase

in accuracy of the approximation of the posterior distribution. Especially the combination

MBM-M results in a particularly low number of iterations and a low ESS. Due to the already

quite low ESS achieved by the Milstein-based methods for m = 5 subintervals between two

observations, we did not consider higher discretization levels. Moreover, note that tuning the

variance hyperparameters for the random walk proposals of the parameters in Step 3a in the

simulation study to reach an optimal acceptance rate might lead to a higher ESS. However,

since the acceptance rates achieved in the simulation study lie in a range where the sampling

efficiency is rather robust to changes in the acceptance rate as shown in Roberts & Rosenthal

(2001) (in the high-dimensional limit), we do not expect the change in the ESS after tuning

to be substantial.

For the estimates for the GBM diffusion parameter, the overall accuracy is increased by the

use of the Milstein scheme. DBM-M turns out to be the most effective combination in terms

of overall accuracy.
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The results of the simulation study for the CIR process are very similar as for the GBM. The

use of the Milstein approximation does not consistently improve the overall accuracy for the

drift parameter; however, it does improve the accuracy for the diffusion parameter. Again

Combination DBM-M achieves the highest accuracy, closely followed by MBE-M.

It was expected that the use of the Milstein scheme would make a difference for the estimates for

the diffusion parameters because the additional term added by the Milstein scheme compared

to the Euler scheme involves the diffusion function and its derivative. Nevertheless, the general

applicability of the Euler scheme remains a great advantage and the search for different proposal

schemes such as in Whitaker et al. (2017) and van der Meulen & Schauer (2017) rather than

for different numerical discretization schemes may be a more promising way towards more

efficient estimation algorithms for diffusion processes.
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Chapter 5

Application: Modeling translation

kinetics after mRNA transfection

using diffusion processes

In this chapter, we apply Itô diffusion processes to model the translation kinetics after mRNA

transfection and perform parameter inference for this model based on single-cell data from

time-lapse fluorescence microscopy. mRNA transfection is the process of introducing mRNA

into a living cell. mRNA delivery has become increasingly interesting for biomedical applications

because it enables treatment of diseases by means of targeted expression of proteins and it is

transient, avoiding the risk of permanently integrating into the genome (see e. g. Sahin et al.,

2014). One of the most prominent applications of mRNA transfection at the moment are the

mRNA-based vaccine candidates that are already in use or currently under investigation to

prevent COVID-19 infections (DeFrancesco, 2020). In such a context, it is, of course, very

import to have a precise understanding of the dynamics of the underlying processes in order

to be able to control them. Yet, many aspects and the determinants of the mRNA delivery

process and the translation kinetics are difficult to measure and therefore poorly understood.

One of the few ways to measure quantities within a living cell over time (i. e. keeping it

alive is necessary) is the use of fluorescence reporters and fluorescence microscopy. Single-

cell fluorescence data from transfection experiments has been analyzed based on ordinary

differential equation (ODE) modeling in several previous studies e. g. Ligon et al. (2014),

Leonhardt et al. (2014), Fröhlich et al. (2018), and Reiser et al. (2019). Here, we use the

experimental data from Fröhlich et al. (2018) and investigate a stochastic differential equation

(SDE) modeling approach. Our main interest lies in the question whether an SDE model allows
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to identify more model parameters from experimental data compared to the corresponding

ODE model. Moreover, we provide essential theoretical results for the SDE model.

Inference from fluorescence data for SDE models has also been conducted e. g. in Heron et al.

(2007), Finkenstädt et al. (2008), and Komorowski et al. (2009), however for an experimental

setup that also included the transcription process. Finkenstädt et al. (2008) even considered

an SDE and an ODE model in one of their case studies, but their results did not directly

show any differences in the parameter identifiability and the study was not focused on this

aspect. When the main part of our study was conducted there was no published work that

systematically compared the parameter identifiability between an SDE and an ODE model.

Meanwhile, Browning et al. (2020) have recently published a study on this topic investigating

four different example models with simulated data. We include their approach to structural

identifiability analysis for SDE models in our study.

This chapter is composed as follows: We first describe the experimental data in Section 5.1

and formulate the reaction network which we want to consider for the translation kinetics

and its ODE and diffusion approximation in Section 5.2. Then in Section 5.3, we prove the

existence and uniqueness of the solution for the SDE formulation and the convergence of

the Euler approximation to this solution which is one of the most notable contributions of

this chapter. After stating the model of the observations in Section 5.4, we try to assess

and compare the structural identifiability of the parameters for both modeling approaches in

Section 5.5. We define the parameter posteriors for both modeling approaches in Section 5.6,

study the practical identifiability of the parameters based on simulated and experimental data

in Sections 5.7 and 5.8, respectively, and conclude with a summary and discussion of our

findings in Section 5.9.

5.1 Experimental data

We consider data that was collected in the lab of Prof. Joachim Rädler at LMU Munich

and has previously been analyzed (based on ODE modeling) and published in Fröhlich et al.

(2018). The data was generated in an experiment where cells (human hepatoma epithelial cell

line HuH7) were transfected with mRNA encoding a green fluorescence protein (GFP). The

cells were fixed on micro patterned protein arrays and time lapse microscopy images of the

cells were taken every 10 minutes over the course of at least 30 hours (i.e. there are at least

180 measurements per cell). For the first hour, mRNA lipoplexes were added. Afterwards, the

cells were washed with cell culture medium such that no further lipoplex uptake occurs. The

time point at which the lipoplexes were taken up, dissolved and released the mRNA as well as

the number of mRNA molecules released are unknown.
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The released mRNA was translated into a fluorescence protein which caused the cells to

fluoresce. For each image taken during the experiment, the fluorescence intensity is integrated

over squares occupied by one cell in order to obtain one value for the mean fluorescence

intensity per cell and time point (see Fröhlich et al., 2018, for further details about the image

analysis).

The experiment was conducted with two different types of GFP that differ in their protein

lifetime: enhanced GFP (eGFP) and a destabilized enhanced GFP (d2eGFP). For each type

of GFP, three replications of the experiment were conducted. We use the data from the

experiment on April 27, 2016. It contains measurements for more than 800 cells for each type

of GFP. Some trajectories of the mean fluorescence intensity are displayed in Figure 5.1.
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Figure 5.1: Trajectories of the mean fluorescence intensity for seven cells from the mRNA
transfection experiment in Fröhlich et al. (2018) for eGFP and d2eGFP (April 27, 2016),
respectively.

As will become clear in the course of this chapter, ODE models of the translation kinetics of

an individual cell are not globally identifiable with the available experimental data as described

above. Several of the ODE model parameters cannot be uniquely determined based on one

observed fluorescence trajectory. Fröhlich et al. (2018) use a mixed-effect ODE model in order

to incorporate the translation kinetics of several cells and data for both different types of GFP

(eGFP and d2eGFP). Through this approach, they are able to improve parameter identifiability

(by breaking the symmetry between the degradation rate constants); however, their approach

is computationally very intense, required conducting the experiment with two types of GFP,

and still leaves several parameters non-identifiable. Here, we are interested in the question

whether the use of an SDE model can improve the parameter identifiability even when only

one fluorescence trajectory is observed.
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Chapter 5. Application: Modeling translation kinetics after mRNA transfection

5.2 Modeling the translation kinetics

While Fröhlich et al. (2018) use a mixed-effect ODE model in order to incorporate the trans-

lation kinetics of several cells, we will focus on modeling the translation kinetics of one cell in

order to study parameter identifiability based on one observed fluorescence trajectory.

We consider the basic model configuration that models only the (released) mRNA and the

GFP molecules explicitly. Therefore, our model is a dynamic process with two components:

X(t) =

(
X1(t)

X2(t)

)
amount of mRNA molecules,

amount of GFP molecules.

We assume that all mRNA molecules (within one cell) are released at once at the initial time

point denoted by t0. Before t0, there are neither mRNA nor GFP molecules, and at t0, an

amount of m0 mRNA molecules is released, i.e.

X(t) ≡

(
0

0

)
for t < t0 and X(t0) =

(
m0

0

)
.

Conceivable extensions of this basic model configuration are e. g. to include enzymatic degra-

dation of the mRNA and/or the protein, ribosomal binding to the mRNA for translation, and

a maturation step of the protein. However, we will only consider the basic configuration as

described above.

5.2.1 Markov Jump Process

Assuming that the matter within the cell is well-stirred and in thermodynamic equilibrium, an

Markov jump process (MJP) is regarded to be the most adequate representation of this system

after t0. In the basic model configuration, there are three possible reactions:

X1
θ1−→ ∅ degradation of mRNA,

X1
θ2−→ X1 +X2 translation,

X2
θ3−→ ∅ degradation of GFP.
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5.2. Modeling the translation kinetics

The three reactions change the state of the system in the following way and occur with the

following reaction rates:(
X1

X2

)
−→

(
X1 − 1

X2

)
with rate θ1X1,(

X1

X2

)
−→

(
X1

X2 + 1

)
with rate θ2X1,(

X1

X2

)
−→

(
X1

X2 − 1

)
with rate θ3X2.

If we denote the probability distribution of the random variable X(t) by

Pi,j(t) = P(X1(t) = i,X2(t) = j),

the corresponding chemical master equation (CME) reads

∂Pi,j(t)

∂t
= θ1(i+ 1)Pi+1,j(t) + θ2iPi,j−1(t) + θ3(j + 1)Pi,j+1(t)− (θ1i+ θ2i+ θ3j)Pi,j(t).

Although the system contains only first-order reactions, there is no closed-form solution to the

CME. Thus, there is no explicit formula for the transition probability distribution p(X(t)|X(s), θ)

for s < t.

5.2.2 ODE model

The following system of ODEs is a deterministic approximation of the MJP modeling the

dynamics as described above:

dX(t)

dt
=

(
−θ1X1(t)

θ2X1(t)− θ3X2(t)

)
for t ≥ t0. (5.1)

This system admits the solution

X1(t) = m0 exp (−θ1(t− t0)) ,

X2(t) =

 θ2m0
θ3−θ1

(
e−θ1(t−t0) − e−θ3(t−t0)

)
, for θ1 6= θ3,

θ2m0(t− t0)e−θ3(t−t0) , for θ1 = θ3.
(5.2)

Note that the solution for X2(t) is symmetric in the parameters θ1 and θ3.
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5.2.3 SDE model

A stochastic but state-continuous approximation to the MJP in Section 5.2.1 is given by an

Itô diffusion process that is described by the following SDE:

dX(t) =

(
−θ1X1(t)

θ2X1(t)− θ3X2(t)

)
dt+

(√
θ1X1(t) 0

0
√
θ2X1(t) + θ3X2(t)

)
dB(t) (5.3)

for t ≥ t0 and where B(t) is a 2-dimensional standard Brownian motion.

Note that for a diffusion approximation (as well as for the ODE approximation), the size of the

system can play an important role. However, since the model that we consider here contains

only first-order reactions, the size of the system does not affect the interpretation of the kinetic

parameters and does not need to be considered here.

5.3 Essential theoretical results for the SDE model

Before we can further consider the inference problem for the models introduced in the previous

section, we need to ensure that SDE (5.3) is meaningful, i. e. that it admits a unique solution.

Moreover, since there is no known explicit solution of SDE (5.3), we want to apply the Euler

approximation. Hence, we need to show that this approximation scheme converges to the

solution as the time step decreases. While the fundamental importance of both results should

be obvious, their derivations are usually neglected when diffusion approximations are applied

in systems biology. Due to the square root, the diffusion coefficient is not Lipschitz continuous

and general SDE results such as Theorem 3.1 do not apply. Therefore, the proof of existence

and uniqueness of the solution for SDE (5.3) and the proof of convergence of the Euler

approximation are the subject of the following two subsections.

5.3.1 Existence and uniqueness of the solution

We first consider the following modified version of SDE (5.3):

dX1(t) = −θ1X1(t) dt +
√
θ1X1(t) ∨ 0 dB1(t), (5.4a)

dX2(t) = (θ2X1(t)− θ3X2(t)) dt +
√

(θ2X1(t) + θ3X2(t)) ∨ 0 dB2(t), (5.4b)

X1(t0) = m0, (5.4c)

X2(t0) = 0, (5.4d)
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5.3. Essential theoretical results for the SDE model

where ∨ denotes the max operator, i. e. a ∨ b := max(a, b) for a, b ∈ R.

Therefore, we consider the drift coefficient function

µ(x) :=

(
µ1(x1, x2)

µ2(x1, x2)

)
=

(
−θ1x1

θ2x1 − θ3x2

)

and diffusion coefficient function

σ(x) :=

(
σ1(x1, x2) 0

0 σ2(x1, x2)

)
=

(√
θ1(x1 ∨ 0) 0

0
√

(θ2x1 + θ3x2) ∨ 0

)

for x = (x1, x2) ∈ R2.

In the following, we assume without loss of generality that t0 = 0.

Evidently, µ1(x1, x2) and µ2(x1, x2) are (Lipschitz) continuous functions. The square root

function and thus also σ1(x1, x2) and σ2(x1, x2) are Hölder continuous with exponent 1/2.

Moreover, the squared norm of the coefficient functions can be estimated as follows∥∥∥∥∥
(
µ1(x1, x2)

µ2(x1, x2)

)∥∥∥∥∥
2

= θ2
1x

2
1 + (θ2x1 − θ3x2)2

≤ θ2
1x

2
1 + θ2

2x
2
1 + θ2

3x
2
2 + θ2θ3(x2

1 + x2
2)

≤ 3 ·max
{
θ2

1, θ
2
2, θ

2
3

}
(x2

1 + x2
2 + 1)

= C(‖x‖2 + 1)

and ∥∥∥∥∥
(
σ1(x1, x2) 0

0 σ2(x1, x2)

)∥∥∥∥∥
2

= (σ1(x1, x2))2 + (σ2(x1, x2))2

= θ1(x1 ∨ 0) + (θ2x1 + θ3x2) ∨ 0

≤ θ1|x1|+ θ2|x1|+ θ3|x2|

≤ 8 ·max {θ1, θ2, θ3} ((x2
1 + x2

2 + 1)

= C̃(‖x‖2 + 1).

Hence the prerequisites of Theorem 3.3 are fulfilled; and therefore, we know that weak solutions

of SDE (5.4) with finite second moments exist.

Equation (5.4a) describing the evolution of X1(t) does not depend on the second compo-

nent X2(t). Thus, we can consider it as a one-dimensional process which fulfills the pre-

requisites for Corollary 3.4 and obtain that the pathwise uniqueness of solutions holds. Due
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to Remark 3.1, we know that Equation (5.4a) has a unique strong solution. Moreover, the

solution takes non-negative values (cf. Ikeda & Watanabe, 1981, Example 8.2, p.221), so we

can omit the max operator. From Lamberton & Lapeyre (1996, Proposition 6.2.4.), it follows

that for the stopping time

τX1,0 := inf{t > 0 : X1(t) = 0}

it holds that

P{τX1,0 <∞} = 1.

This property that almost all trajectories reach zero in finite time goes well with the interpre-

tation of the solution process as the approximation of a stochastic (discrete) decay process.

Next, we show that Equation (5.4b) describing the evolution of X2(t) has with probability 1

a pathwise unique solution. The idea of the proof is similar to the proof of Theorem 3.2 in

Ikeda & Watanabe (1981, p.168). Then, again due to Remark 3.1, we obtain that this unique

solution is a strong solution.

Theorem 5.1. For the weak solutions of Equation (5.4b), pathwise uniqueness holds.

Proof. As in Ikeda & Watanabe (1981, pp. 168), let 1 > a1 > a2 > . . . > an > . . . > 0 be

defined by ∫ 1

a1

1

u
du = 1,

∫ a1

a2

1

u
du = 2, . . . ,

∫ an−1

an

1

u
du = n, . . . .

Clearly, an −→ 0 as n→∞. Let ψn(u), n = 1, 2, . . . , be a continuous function such that its

support is contained in ]an, an−1[,

0 ≤ ψn(u) ≤ 2

nu
and

∫ an−1

an

ψn(u) du = 1.

Set

ϕn(x) =

∫ |x|
0

∫ y

0
ψn(u) dudy, x ∈ R1.

It is easy to see that ϕn ∈ C2(R1), |ϕ′n(x)| ≤ 1, ϕn(x) ↑ |x| as n→∞, and

ϕn(x) =

∫ |x|
an−1

∫ y

0
ψn(u) du︸ ︷︷ ︸

=1 for y≥an−1

dy +

∫ an−1

an

∫ y

0
ψn(u) du︸ ︷︷ ︸

≥0 for an≤y≤an−1

dy +

∫ an

0

∫ y

0
ψn(u) du︸ ︷︷ ︸

=0 for y≤an

dy

≥
∫ |x|
an−1

1 dy = |x| − an−1. (5.5)
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Suppose Y1, Y2 are two weak solutions of Equation (5.4b) with Y1(0) = Y2(0) = 0, the same

Brownian motion B2(t), and X1 is the strong solution of Equation (5.4a). We introduce the

following stopping times

τX1,r := inf{t > 0 : X1(t) > r}

τY1,r := inf{t > 0 : |Y1(t)| > r}

τY2,r := inf{t > 0 : |Y2(t)| > r},

for r = 1, 2, 3, . . .. Let r be arbitrary but fixed and define τr := τX1,r ∧ τY1,r ∧ τY2,r.

Then we have

Y1(t ∧ τr)− Y2(t ∧ τr) =∫ t∧τr

0
[(θ2X1(s)− θ3Y1(s))− (θ2X1(s)− θ3Y2(s))] ds

+

∫ t∧τr

0

[√
(θ2X1(s) + θ3Y1(s)) ∨ 0−

√
(θ2X1(s) + θ3Y2(s)) ∨ 0

]
dB2(s)

and by Itô’s formula

ϕn(Y1(t ∧ τr)− Y2(t ∧ τr)) =∫ t∧τr

0
ϕ′n(Y1(s)− Y2(s))(θ3(Y2(s)− Y1(s)) ds

+
1

2

∫ t∧τr

0
ϕ′′n(Y1(s)− Y2(s))·[√

(θ2X1(s) + θ3Y1(s)) ∨ 0−
√

(θ2X1(s) + θ3Y2(s)) ∨ 0
]2

ds

+

∫ t∧τr

0
ϕ′n(Y1(s)− Y2(s))·[√

(θ2X1(s) + θ3Y1(s)) ∨ 0−
√

(θ2X1(s) + θ3Y2(s)) ∨ 0
]

dB2(s).

Since the expectation of the last term on the right-hand side is zero, we have

E [ϕn(Y1(t ∧ τr)− Y2(t ∧ τr))] =

E
[∫ t∧τr

0
ϕ′n(Y1(s)− Y2(s))(θ3(Y2(s)− Y1(s)) ds

]
+

1

2
E
[∫ t∧τr

0
ϕ′′n(Y1(s)− Y2(s)) ·[√

(θ2X1(s) + θ3Y1(s)) ∨ 0−
√

(θ2X1(s) + θ3Y2(s)) ∨ 0
]2

ds

]
= I1,r + I2,r.

93



Chapter 5. Application: Modeling translation kinetics after mRNA transfection

Now, we estimate both summands by

|I1,r| =
∣∣∣∣E [∫ t

0
ϕ′n(Y1(s ∧ τr)− Y2(s ∧ τr))(θ3(Y2(s ∧ τr)− Y1(s ∧ τr))) ds

]∣∣∣∣
≤ E

[∫ t

0

∣∣ϕ′n(Y1(s ∧ τr)− Y2(s ∧ τr))
∣∣|θ3(Y2(s ∧ τr)− Y1(s ∧ τr))|ds

]
≤ E

[∫ t

0
θ3|(Y2(s ∧ τr)− Y1(s ∧ τr)| ds

]
= θ3

∫ t

0
E [|(Y2(s ∧ τr)− Y1(s ∧ τr)|] ds

and

|I2,r| =
1

2

∣∣∣∣E [∫ t

0
ϕ′′n(Y1(s ∧ τr)− Y2(s ∧ τr)) ·[√
(θ2X1(s ∧ τr) + θ3Y1(s ∧ τr)) ∨ 0−

√
(θ2X1(s ∧ τr) + θ3Y2(s ∧ τr)) ∨ 0

]2
ds

]∣∣∣∣
≤ 1

2
E
[∫ t

0

∣∣ϕ′′n(Y1(s ∧ τr)− Y2(s ∧ τr))
∣∣ ·[√

(θ2X1(s ∧ τr) + θ3Y1(s ∧ τr)) ∨ 0−
√

(θ2X1(s ∧ τr) + θ3Y2(s ∧ τr)) ∨ 0
]2

ds

]
≤ 1

2
E
[∫ t

0

2

n

1

|Y1(s ∧ τr)− Y2(s ∧ τr))|
·[√

(θ2X1(s ∧ τr) + θ3Y1(s ∧ τr)) ∨ 0−
√

(θ2X1(s ∧ τr) + θ3Y2(s ∧ τr)) ∨ 0
]2

ds

]
.

It follows from the Hölder continuity of the square root function that

|I2,r| ≤
1

2
E
[∫ t

0

2

n

1

|Y1(s ∧ τr)− Y2(s ∧ τr))|
·[√

((θ2X1(s ∧ τr) + θ3Y1(s ∧ τr)) ∨ 0)− ((θ2X1(s ∧ τr) + θ3Y2(s ∧ τr)) ∨ 0)
]2

ds

]
≤ 1

2
E
[∫ t

0

2

n

1

|Y1(s ∧ τr)− Y2(s ∧ τr))|
·[√

(θ2X1(s ∧ τr) + θ3Y1(s ∧ τr))− (θ2X1(s ∧ τr) + θ3Y2(s ∧ τr))
]2

ds

]
=

1

2
E
[∫ t

0

2

n

1

|Y1(s ∧ τr)− Y2(s ∧ τr))|

[√
θ3(Y1(s ∧ τr)− Y2(s ∧ τr))

]2
ds

]
=
tθ3

n
−→ 0 as n→∞ and for every r > 0.
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Consequently, by letting n→∞, we have ϕn(x)→ |x| and

E [|Y1(t ∧ τr)− Y2(t ∧ τr)|] ≤ θ3

∫ t

0
E [|(Y1(s ∧ τr)− Y2(s ∧ τr)|] ds.

By Gronwall’s Lemma (see Theorem A.1 in the appendix), we have

E [|Y1(t ∧ τr)− Y2(t ∧ τr)|] ≤ 0 for all t, r > 0

and thus

E [|Y1(t ∧ τr)− Y2(t ∧ τr)|] = 0 for all t, r > 0.

The last relation implies

P {Y1(t ∧ τr) = Y2(t ∧ τr) for all t, r > 0} = 1

which ensure the pathwise uniqueness of the solution.

Next, we show that the term θ2X1(t) + θ3X2(t) in the radicand of σ2 is non-negative. We

introduce the stopping time

τ−ε := inf {t > 0 : θ2X1(t) + θ3X2(t) = −ε} .

Suppose that P = {τ−ε <∞} > 0. Then, since the trajectories of X(t) are continuous and

θ2X1(0) + θ3X2(0) = θ2m0 > 0, there exists an r < τ−ε such that

θ2X1(t) + θ3X2(t) ≥ 0 for t ∈ ]0, r]

and

θ2X1(t) + θ3X2(t) < 0 for t ∈ ]r, τ−ε[.

In this case, for the second component, X2(t) < − θ2
θ3
X1(t) for t ∈ ]r, τε[ must hold because

X1(t) is non-negative. Moreover, the diffusion coefficient of the second component vanishes

on this time interval and we have

dX2(t) = θ2X1(t)− θ3X2(t) dt for t ∈ ]r, τ−ε[.

As X2(t) is negative for t ∈ ]r, τ−ε[, the right hand side is positive for t ∈ ]r, τ−ε[. Therefore,

X2(t) is increasing for t ∈ ]r, τ−ε[; and thus, the radicand cannot further decrease and cannot

reach −ε. This insight contradicts the assumption that τ−ε is finite. From this, it follows that
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θ2X1(t) + θ3X2(t) stays non-negative and consequently, we can omit taking the maximum of

zero and θ2X1(t) + θ3X2(t).

We have shown that the modified 2-dimensional SDE (5.4) has a unique strong solution.

Moreover, we know that the radicands in the diffusion terms for both components of the

solution process stay non-negative; and consequently, we can omit the max operator in the

respective diffusion coefficient. In conclusion, we obtain that also for the original SDE (5.3)

there exists a unique strong solution.

5.3.2 Convergence of the Euler-Maruyama scheme

In this section, we show that the Euler approximation of the solution X(t) of Equation (5.3)

strongly converges to X(t). We consider the representation of the Euler approximation as

introduced in Equations (3.13) and (3.14) in Section 3.3. For n ≥ 1, let κn : [0, T ] → [0, T ]

be defined by κn(T ) := n−1
n T and

κn(t) =
iT

n
for

iT

n
≤ t ≤ (i+ 1)T

n
, for i = 0, . . . , n− 1. (5.6)

We define the Euler approximation Xn(t) = (Xn
1 (t), Xn

2 (t))Tr of the solution X(t) of Equa-

tion (5.3) by

dXn
1 (t) = −θ1X

n
1 (κn(t)) dt+

√
θ1Xn

1 (κn(t)) dB1(t),

(5.7a)

dXn
2 (t) = (θ2X

n
1 (κn(t))− θ3X

n
2 (κn(t))) dt+

√
θ2Xn

1 (κn(t)) + θ3Xn
2 (κn(t)) dB2(t),

(5.7b)

Xn
1 (t0) = m0, (5.7c)

Xn
2 (t0) = 0, (5.7d)

for t ∈ [t0, T ]. As in the previous subsection, we assume without loss of generality that t0 = 0.

Theorem 5.2 (Convergence of the Euler scheme). For the solution X(t) of Equation (5.3)

and its Euler approximation Xn(t), the solution of Equation (5.7), it holds that

lim
n→∞

sup
0≤t≤T

E ‖X(t)−Xn(t)‖ = 0.

The idea of the proof is again similar to that in Ikeda & Watanabe (1981, pp. 168) and based

on the functions ϕk as introduced in the proof of Theorem 5.1. This idea has also been used
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for proofs of convergence for different types of SDEs e. g. in Gyöngy & Rásonyi (2011), Ngo

& Raguchi (2016), and Yang et al. (2019).

Proof. We can again consider the proof for the first component X1(t) independently as a

one-dimensional equation as it does not depend on X2(t). Therefore, we first show that

lim
n→∞

sup
0≤t≤T

E|X1(t)−Xn
1 (t)| = 0.

With Corollary 3.7, we have

E

[
sup

0≤t≤T
|X1(t)−Xn

1 (t)|

]
≤ C1√

lnn
, (5.8)

where C1 is a constant depending on K, T , and (m0)2, but independent of n.

In particular, we obtain

sup
0≤t≤T

E|X1(t)−Xn
1 (t)| ≤ E

[
sup

0≤t≤T
|X1(t)−Xn

1 (t)|

]
≤ C1√

lnn
−→ 0 for n→∞.

Next, we consider the Euler scheme (5.7b) for the second component X2(t) of Equation (5.3).

We have

X2(t)−Xn
2 (t) = θ2

∫ t

0
X1(s)−Xn

1 (κn(s)) ds+ θ3

∫ t

0
−X2(s) +Xn

2 (κn(s)) ds

+

∫ t

0

√
θ2X1(s) + θ3X2(s)−

√
θ2Xn

1 (κn(s)) + θ3Xn
2 (κn(s)) dB2(s).

We again use the functions ϕk, k = 1, 2, . . . , as constructed in the proof of Theorem 5.1 and

apply the Itô formula to obtain

E [ϕk (X2(t)−Xn
2 (t))] = θ2E

[∫ t

0
ϕ′k (X2(s)−Xn

2 (s)) (X1(s)−Xn
1 (κn(s))) ds

]
+ θ3E

[∫ t

0
ϕ′k (X2(s)−Xn

2 (s)) (X2(s)−Xn
2 (κn(s))) ds

]
+

1

2
E
[∫ t

0
ϕ′′k (X2(s)−Xn

2 (s))
(√

θ2X1(s) + θ3X2(s)

−
√
θ2Xn

1 (κn(s)) + θ3Xn
2 (κn(s))

)2

ds

]
=: R3(t) +R4(t) +R5(t).
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Due to the properties of ϕk (in particular |ϕ′k(x)| ≤ 1), we have

R3(t) ≤ θ2E
[∫ t

0
|X1(s)−Xn

1 (κn(s))|ds
]

= θ2E
[∫ t

0
|X1(s)−Xn

1 (s) +Xn
1 (s)−Xn

1 (κn(s))|ds
]

≤ θ2E
[∫ t

0
|X1(s)−Xn

1 (s)| ds
]

+ θ2E
[∫ t

0
|Xn

1 (s)−Xn
1 (κn(s))| ds

]
≤ θ2E

[∫ T

0
sup

0≤s≤T
|X1(s)−Xn

1 (s)| ds

]
+ θ2E

[∫ T

0
sup

0≤s≤T
|Xn

1 (s)−Xn
1 (κn(s))| ds

]
.

We apply Relation (5.8) to the first term and Relation (3.16) to the second term and obtain

R3(t) ≤ θ2T
C1√
lnn

+ θ2T
C2√
n
. (5.9)

Similarly, we obtain

R4(t) ≤ θ3E
[∫ t

0
|X2(s)−Xn

2 (s)|ds
]

+ θ3E
[∫ t

0
|Xn

2 (s)−Xn
2 (κn(s))|ds

]
(3.16)

≤ θ3E
[∫ t

0
|X2(s)−Xn

2 (s)| ds
]

+ θ3T
C3√
n
. (5.10)

Due to the Hölder continuity of the square root function, we have

R5(t) ≤ 1

2
E
[∫ t

0
ϕ′′k (X2(s)−Xn

2 (s))(√
θ2(X1(s)−Xn

1 (κn(s))) + θ3(X2(s)−Xn
2 (κn(s)))

)2

ds

]

≤ 1

2
E
[∫ t

0
ϕ′′k (X2(s)−Xn

2 (s)) θ2|X1(s)−Xn
1 (κn(s))|ds

]
+

1

2
E
[∫ t

0
ϕ′′k (X2(s)−Xn

2 (s)) θ3|X2(s)−Xn
2 (κn(s))|ds

]
=: R6(t) +R7(t).

With the properties of ϕk (in particular ϕ′′k(x) = ψk(x), 0 ≤ ψk(x) ≤ 2
kx and the support

of ψk is contained in the interval ]ak, ak−1[), it follows that

R6(t) ≤ E
[∫ t

0

1

kak
θ2(X1(s)−Xn

1 (κn(s))) ds

]
≤ 1

kak
θ2

(
E
[∫ t

0
|X1(s)−Xn

1 (s)| ds
]

+ E
[∫ t

0
|Xn

1 (s)−Xn
1 (κn(s))| ds

])
.
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We again apply Relation (5.8) to the first summand and Relation (3.16) to the second summand

and obtain

R6(t) ≤ 1

kak
θ2T

(
C1√
lnn

+
C2√
n

)
. (5.11)

Moreover, we have

R7(t) ≤ θ3

2
E
[∫ t

0
ϕ′′k (X2(s)−Xn

2 (s)) |X2(s)−Xn
2 (s)| ds

]
+
θ3

2
E
[∫ t

0
ϕ′′k (X2(s)−Xn

2 (s)) |Xn
2 (s)−Xn

2 (κn(s))|ds
]

and again use the properties of ϕk to obtain

R7(t) ≤ θ3T

k
+

θ3

kak
E
[∫ t

0
|Xn

2 (s)−Xn
2 (κn(s))| ds

]
≤ θ3T

k
+
θ3T

kak
E

[
sup

0≤t≤T
|Xn

2 (t)−Xn
2 (κn(t))|

]
(3.16)

≤ θ3T

k
+
θ3T

kak
· C3√

n
. (5.12)

By construction (see (5.5)), it holds that ϕk(x) ≥ |x|−ak−1. With this and the Relations (5.9),

(5.10), (5.11), and (5.12), we obtain

E|X2(t)−Xn
2 (t)| ≤ ak−1 + E [ϕk (X2(t)−Xn

2 (t))]

≤ ak−1 + θ2T
C1√
lnn

+ θ2T
C2√
n

+ θ3E
[∫ t

0
|X2(s)−Xn

2 (s)| ds
]

+ θ3T
C3√
n

+
1

kak
θ2T

(
C1√
lnn

+
C2√
n

)
+
θ3T

k
+
θ3T

kak
· C3√

n
.

By Gronwall’s Lemma (see Theorem A.1 in the appendix), it follows that

E|X2(t)−Xn
2 (t)| ≤

(
ak−1 + θ2T

C1√
lnn

+ θ2T
C2√
n

+ θ3T
C3√
n

+
1

kak
θ2T

(
C1√
lnn

+
C2√
n

)
+
θ3T

k
+
θ3T

kak
· C3√

n

)
· eθ3T

≤
(
ak−1 +

θ3T

k
+ CmaxT

(
1

kak
+ 1

)(
θ2√
lnn

+
θ2√
n

+
θ3√
n

))
· eθ3T ,

(5.13)

where Cmax := max {C1, C2, C3}.
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Let ε > 0. As ak → 0 and θ3T
k → 0 for k →∞, there exists a k0(ε) such that for k ≥ k0, it

holds that (
θ3T

k
+ ak−1

)
eθ3T ≤ ε

2
.

We choose k = k0. As 1√
lnn
→ 0 and 1√

n
→ 0 for n→ 0, there exists an n0(ε) such that for

n ≥ n0(ε), it holds that

CmaxT

(
1

k0ak0
+ 1

)(
θ2√
lnn

+
θ2√
n

+
θ3√
n

)
· eθ3T ≤ ε

2
.

With Relation (5.13), it follows that for n ≥ n0(ε)

E|X2(t)−Xn
2 (t)| ≤ ε for all t ∈ [0, T ],

and thus,

sup
0≤t≤T

E|X2(t)−Xn
2 (t)| ≤ ε.

This concludes the proof of Theorem 5.2.

Remark 5.1. From Gyöngy & Rásonyi (2011, Theorem 2.1), we know that the convergence

rate for the Euler approximation Xn
1 (t) of the first component is 1/ lnn, and from Rela-

tion (5.13), we see that the convergence rate for the Euler approximation Xn
2 (t) of the second

component is 1/
√

lnn. Therefore, overall we obtain a convergence rate of 1/
√

lnn for Xn(t).

5.4 Model of the observations

In the experiment described in Section 5.1, neither the amount of mRNA molecules nor that

of GFP molecules can be measured directly. Instead, a fluorescence signal is observed which

is assumed to be a linear transformation of the amount of GFP molecules. Moreover, Fröhlich

et al. (2018) state that “Analysis of processed data suggested a constant offset and multi-

plicative measurement noise in the recorded fluorescence trajectories.” Therefore, denoting

a trajectory of mean fluorescence intensity observed at time points tk, for k = 1, . . . ,K, by

{yk}k=1,...,K , we assume that

log(yk) = log (scale ·X2(tk) + offset) + εk, εk ∼ N (0, σ2),

where the random variables εk are independent.

Note that the observations depend only on the amount X2 of GFP molecules, but not directly

on the amount X1 of mRNA molecules.
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Based on the observations {yk}k=1,...,K , we want to infer the following unknown parameters:

• the three kinetic parameters θ = (θ1, θ2, θ3) that denote the rate constants for mRNA

degradation, translation, and GFP degradation,

• the initial amount m0 of mRNA molecules and the time point t0 at which it is released,

• the scaling factor scale and the offset for the fluorescence signal,

• and the standard deviation σ of the measurement errors.

5.5 Structural identifiability analysis

Our main interest lies in the question which of the model parameters for our two model types

(ODE and SDE) can be inferred from the experimental data as described in Sections 5.1

and 5.4. Here, we first focus on the parameters θ, m0, scale, and offset that drive the

dynamics of the process and the fluorescence signal. We analyze the structural identifiability

which only considers the model equations of the process dynamics and the observation equation

(not the actual data) and assumes that we are in a perfect data situation, i. e. we have an

infinite amount of data observed without measurement error. Plainly speaking, structural

identifiability analysis answers the question whether different parameter combinations can lead

to the same model output. While for ODE models, there are analytical methods to assess

structural identifiability, no such methods exit for SDE models. Therefore, we use several

different approaches to heuristically assess structural identifiability for our SDE model. In the

following subsections, we consider a transformed version of both model types, we make use of

the open source software DAISY as has recently been suggested by Browning et al. (2020),

and finally we also study simulations of both model types.

5.5.1 Transformed models

We can reformulate the differential equations for both model types by setting

Z(t) =

(
Z1(t)

Z2(t)

)
:=

 X1(t)
m0

scale ·X2(t) + offset

 ,

which means that

Z(t) ≡

(
0

offset

)
for t < t0, and Z(t0) =

(
1

offset

)
.
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Hence, the second component of the transformed process models the fluorescence signal which

we assume to be observed.

Transformed ODE model

For the ODE model in Equation (5.1), we obtain the transformed model

dZ(t)

dt
=

(
−θ1Z1(t)

scale θ2m0Z1(t)− θ3(Z2(t)− offset)

)
for t ≥ t0, (5.14)

and the corresponding solution

Z1(t) = exp (−θ1(t− t0)) ,

Z2(t) =

 scale θ2m0
θ3−θ1

(
e−θ1(t−t0) − e−θ3(t−t0)

)
+ offset , for θ1 6= θ3,

scale θ2m0(t− t0)e−θ3(t−t0) + offset , for θ1 = θ3.

The parameters scale, m0, and θ2 appear only as a product. Thus, we can already deduce

from this equation that at most the product of the three parameters will be identifiable but not

the three parameters individually. Moreover, since only Z2(t) is observed and it is symmetric

in the parameters θ1 and θ3 (i. e. switching their values will lead to the same model output),

these two parameters can at most be locally identifiable.

Transformed SDE model

For the SDE model in Equation (5.3), we apply the Itô formula from Theorem 3.5 to obtain

the transformed model

dZ(t) =

(
−θ1Z1(t)

scale θ2m0Z1(t)− θ3(Z2(t)− offset)

)
dt (5.15)

+

√ θ1
m0
Z1(t) 0

0
√

scale
√

scale θ2m0Z1(t) + θ3(Z2(t)− offset)

 dBt for t ≥ t0.

Note that here, the parameters scale and m0 also appear outside the product scale θ2m0.

Therefore, we hope to gain more information about the individual parameters from data for

the SDE model than for the ODE model.
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5.5. Structural identifiability analysis

5.5.2 Using a surrogate model and existing software tools

The open source software DAISY (Differential Algebra for Identifiability of SYstems) was

introduced by Bellu et al. (2007). It is a software tool that implements a differential algebra

algorithm to perform structural identifiability analysis for systems of polynomial or rational

ODEs and that also allows to include unknown initial conditions. Mathematically, the problem

translates into checking the solvability of a very large system of nonlinear algebraic equations.

However, the use of the DAISY software does not require an in-depth understanding of the

underlying theory.

Here, we want to use DAISY to assess the structural identifiability of the parameters in the two

models of the translation kinetics. In order to include the parameters scale and offset, we use

the transformed models from the previous subsection for the identifiability analysis. For the

ODE model in Equation (5.14), the analysis with DAISY is straight forward since it is intended

for the use for ODE models. After applying DAISY, the obtained output shows that when

considering the set of parameters {θ,m0, scale, offset}, the model is non-identifiable. The

DAISY output also reveals that this non-identifiability is due to the fact that the parameters θ1

and θ3 are only locally identifiable and the parameters θ2, m0, and scale are not individually

identifiable, but only their product is. This confirms our assertions from the previous subsection.

Moreover, we obtain that the remaining parameter offset is structurally identifiable.

For SDE models, Browning et al. (2020) suggest to formulate a surrogate model based on

the moment equations of the diffusion process. The moment equations are a system of

ODEs, and thus, DAISY can be applied to this system. For the SDE (5.15), let mij(t) =

E
[
(Z1(t))i(Z2(t))j

]
be the (mixed) moment of the diffusion process of order i and j. The

moments are obtained by applying the Itô formula in Theorem 3.5 to (Z1(t))i(Z2(t))j and

then taking the expectation. Considering the first and the second moments of the process

states results in the following system of ODEs:

dm10(t)

dt
= −θ1m10(t), m10(t0) = 1,

dm01(t)

dt
= scale θ2m0m10(t)− θ3m01(t) + θ3offset, m01(t0) = offset,

dm20(t)

dt
=

θ1

m0
m10(t)− 2θ1m20(t), m20(t0) = 1,

dm02(t)

dt
= scale2θ2m0m10(t) + θ3(scale + 2offset)m01(t)− 2θ3m02(t)

+ 2scale θ2m0m11(t)− scale θ3offset, m02(t0) = offset2,

dm11(t)

dt
= θ3offsetm10(t) + scale θ2m0m20(t)− (θ1 + θ3)m11(t), m11(t0) = offset,
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where the equations for the two first moments m10 and m01 coincide with the ODE model in

Equation (5.14). Since in the experiment, only the fluorescence signal is observed, we consider

the moments that only depend on the second component of the process, i. e. m01 and m02,

as output states for the identifiability analysis. Using DAISY, we obtain that the surrogate

model is globally identifiable, i. e. all six parameter values could be uniquely determined if

we were able to observe the moments m01 and m02 directly, infinitely long over time, and

without measurement error. However, this property of structural identifiability (in particular

when using a surrogate model) is only a necessary, but not a sufficient condition for practical

identifiability. From this result, we cannot conclude that the parameters will be identifiable

from the actual experimental data.

5.5.3 Simulating from the models

Another attempt to assess parameter identifiability is to simulate from both model types for

different parameter settings and compare whether we see differences in the simulation output.

To obtain simulations from the ODE model, we use its solution in Equation (5.2). Since

the ODE model is deterministic, each parameter setting yields one unique output trajectory

while for the SDE model, we simulate several trajectories for each parameter setting using the

Euler-Maruyama scheme with a time step of 0.01 hours.

Keeping the product scale θ2m0 constant

As already pointed out in Subsection 5.5.1, the trajectories of the fluorescence intensity for the

ODE model are identical if the product scale θ2m0 and the remaining parameters are fixed,

even when the individual factors scale, θ2, and m0 vary. Here, we use (approximately) the

mean values for the parameters estimated from the data in Fröhlich et al. (2018), and therefore,

set scale θ2m0 = 350, θ1 = 0.11, θ3 = 0.03, offset = 8.9, and t0 = 0. For the SDE model,

we simulate several trajectories with different values for scale, θ2, and m0 while keeping their

product constant. For each parameter setting, we set the same random seed at the beginning

of the simulation. Figure 5.2 displays the simulated trajectories.

It is evident that the SDE trajectories behave differently for different combinations of scale,

θ2, and m0. For example, when we keep m0 fixed while increasing scale and decreasing θ2,

the variation between but also within the trajectories increases. When we keep scale fixed

while decreasing m0 and increasing θ2, especially the variation between trajectories seems

to increase. And finally, when we keep θ2 fixed while decreasing m0 and increasing scale,

the variation between and within the trajectories increases. Our focus is on estimating the
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Figure 5.2: The ODE trajectory and 20 SDE trajectories of the fluorescence intensity simulated
for different values of m0, θ2, and scale, while keeping their product constant at scale θ2m0 =
350. The remaining parameters are set to θ1 = 0.11, θ3 = 0.03, offset = 8.9, and t0 = 0.

parameters from individual observed trajectories. In this context, especially the difference in

the variation within the trajectories is relevant.

Swapping the degradation rate constants θ1 and θ3

The trajectories of the fluorescence intensity for the ODE model are also identical if the values

for θ1 and θ3 are swapped while the remaining parameters are fixed. We simulate trajectories

for the parameter combinations (θ1, θ3) = (0.11, 0.03) and (θ∗1, θ
∗
3) = (0.03, 0.11), respectively,

while setting the remaining parameters to scale = 17.5, θ2 = 0.1, m0 = 200, offset = 8.9, and

t0 = 0. For the SDE model, we again simulate several trajectories for both parameter settings

and set the same random seed at the beginning of the simulation.

Figure 5.3 shows the ODE trajectory and several SDE trajectories in one panel for each of the

two parameter combinations separately. Whereas, Figure 5.4 presents one SDE trajectory for

each of the two parameter combinations together in one panel. Again, the SDE trajectories

do behave differently for the different parameter combinations. While there seems to be only
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little difference in the variation between the trajectories, the variation within the trajectories

is clearly higher for lower θ1 and higher θ3. This indicates that it may be possible to uniquely

determine the values of θ1 and θ3 even when estimating from only one observed trajectory.
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Figure 5.3: The ODE trajectory and 20 SDE trajectories of the fluorescence intensity simulated
for two parameter combinations where the values of θ1 and θ3 are swapped. The remaining
parameters are set to scale = 17.5, θ2 = 0.1, m0 = 200, offset = 8.9, and t0 = 0.
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Figure 5.4: One trajectory of the fluorescence intensity for the SDE model simulated for each
of the two parameter combinations where the values of θ1 and θ3 are swapped. The remaining
parameters are set to scale = 17.5, θ2 = 0.1, m0 = 200, offset = 8.9, and t0 = 0.
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5.6 Definition of the parameter posteriors

Next, we would like to assess the practical parameter identifiability by trying to estimate the

parameters from observed data as described in Section 5.4. We take a Bayesian approach

to parameter estimation as motivated in Section 2.2 because it allows for uncertainty assess-

ment of the parameter estimates and also for handling unobserved process components and

measurement error by using Markov chain Monte Carlo (MCMC) methods to sample from the

parameter posterior distribution as explained in Section 3.4. Therefore, in this section, we

define the parameter posterior densities for the two model types.

5.6.1 ODE model

For the ODE model, there is a deterministic relationship between the process values X(t) and

the parameters θ, m0 and t0 (or between the fluorescence signal and the parameters including

scale and offset, respectively).

Define the index k∗ := min{k ∈ {1, . . . ,K}|tk ≥ t0} of the first observation time point after

the mRNA molecules are released, then the posterior density π from which we would like to

sample is proportional to

π
(
θ,m0, scale, offset, σ2, t0|{yk}k=1,...,K

)
∝

(
K∏

k=k∗

φ

(
log(yk)

∣∣∣∣log

(
scale

θ2m0

θ3 − θ1

(
e−θ1(t−t0) − e−θ3(t−t0)

)
+ offset

)
, σ2

))

·

(
k∗−1∏
k=1

φ
(
log(yk)

∣∣log (offset) , σ2
))

· p(θ1)p(θ2)p(θ3)p(m0)p(t0)p(scale)p(offset)p(σ2), (5.16)

where φ(·|µ, η2) denotes the density of the normal distribution with mean µ and variance η2

and the p(·) denote the parameter prior densities.

If the priors p(θ1) and p(θ3) are symmetric to each other, then the posterior is also symmetric

with respect to the two degradation rate constants.

The scaling factor scale, the translation rate constant θ2, and the initial amount of mRNA m0

appear only as a product in the likelihood function, therefore, as pointed out before, at most

their product scaleθ2m0 is identifiable.
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5.6.2 SDE model

For the SDE model, the states X(tk), for k = 1, . . . ,K, of the process conditioned on the

parameters θ, m0 and t0 are random numbers (for tk ≥ t0). Hence, we have to marginalize

over the process states to obtain the posterior density of the parameters which we want to

infer:

π
(
θ,m0, scale, offset, σ2, t0|{yk}k=1,...,K

)
=

∫
R2×K
+

π
(
θ,m0, scale, offset, σ2, t0, {X(tk)}k=1,...,K |{yk}k=1,...,K

)
dX(t1) . . . dX(tK).

Therefore, again defining k∗ := min{k ∈ {1, . . . ,K}|tk ≥ t0}, we would need to sample from

π
(
θ,m0, scale, offset, σ2, t0, {X(tk)}k=1,...,K |{yk}k=1,...,K

)
∝

(
K∏
k=1

φ
(
log(yk)

∣∣log (scale ·X2(tk) + offset) , σ2
))

·

(
K−1∏
k=k∗

π (X(tk+1)|X(tk),θ)

)
π (X(tk∗)|θ,m0, t0)

(
k∗−1∏
k=1

δ(‖X(tk)− (0, 0)T ‖)

)

· p(θ)p(m0)p(t0)p(scale)p(offset)p(σ2),

where φ(·|µ, η2) denotes the density of the normal distribution with mean µ and variance η2,

δ(·) denotes the Dirac delta function, ‖ · ‖ denotes a norm (e. g. the l2-norm), and the fac-

tors π (X(tk+1)|X(tk),θ), k = k∗, . . . ,K − 1, denote the transition density of the process.

However, the fact that the process X switches from a deterministic regime before t0 to a

stochastic one after t0 complicates the estimation of t0 together with the remaining parame-

ters. Therefore, we will assume that t0 is determined beforehand, e. g. based on the estimates

for the ODE model. Consequently, we sample from

π
(
θ,m0, scale, offset, σ2, {X(tk)}k=1,...,K |{yk}k=1,...,K , t0

)
∝

(
K∏
k=1

φ
(
log(yk) |log (scale ·X2(tk) + offset) , σ2

))

·

(
K−1∏
k=k∗

π (X(tk+1)|X(tk),θ)

)
π (X(tk∗)|θ,m0, t0)

(
k∗−1∏
k=1

δ(‖X(tk)− (0, 0)T ‖)

)

· p(θ)p(m0)p(scale)p(offset)p(σ2). (5.17)
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While for the ODE model, the posterior distribution is only 8-dimensional and can be sampled

from directly; for the SDE model, we need to sample from a (7+2K)-dimensional distribution

and then marginalize over the 2K dimensions of the process states to obtain the posterior

distribution of the parameters of interest. Moreover, there is no explicit exact expression for

the transition density π (X(tk+1)|X(tk),θ); wherefore, it will be approximated by a normal

density based on the Euler-Maruyama scheme. For this approximation to be appropriate, we

have to ensure that the time steps between observations are small enough. The Milstein

scheme, which we investigated in Chapter 4, cannot be used here since two components

of the diffusion coefficient in Equation (5.3) depend on X1(t). Hence, Relation (4.3) does

not hold. Consequently, the Milstein scheme to approximate the solution of Equation (5.3)

contains stochastic double integrals for which no analytical solution is known; and therefore,

the transition density of the process based on the Milstein scheme is also intractable.

5.7 Estimation based on simulated data

We want to use the open source software Stan that implements the Hamiltonian Monte Carlo

(HMC)-based algorithm No-U-Turn Sampler (NUTS) as described in Section 2.2.2 to sample

from the parameter posteriors as defined in the previous section. In order to assess how well we

can recover the model parameters for both model types from individually observed trajectories,

we first work with simulated data that is generated with Gillespie’s algorithm. For the SDE

model, we first need to check whether it is reasonable to assume that the time steps between

the observations are sufficiently small for the Euler-Maruyama scheme to be appropriate.

5.7.1 Investigating the need for data augmentation

In this section, we focus on the SDE model and investigate whether data augmentation is

necessary for the amount of data that we have available (K = 181 observations per cell with

time step ∆t = 1/6 hours). We simulate one trajectory of the MJP described in Section 5.2.1

with parameters θ1 = 0.11, θ2 = 0.3, θ3 = 0.09, and m0 = 200 using Gillespie’s algorithm. We

assume for now that the amount X2 of GFP is directly observed without error and that for the

amount X1 of mRNA, we only observe the initial value m0 = 200. All observations are without

measurement error and we assume t0 = 0 to be known. Thus, we only estimate the kinetic

parameters θ for the SDE model, and to this end, use Stan and Bayesian data augmentation

with different numbers of inter-observation intervals. A number of inter-observation intervals

of 1 means that we do not impute any points between observations. A number of 2 inter-

observation intervals means that we impute one point between every two observations and
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so on. We generated 4 HMC chains with 1000 iterations after warm-up each. Figure 5.5

shows the median of the obtained posterior sample as the point estimates and the credible

intervals (CIs) for the three kinetic parameters and for different numbers of inter-observation

intervals. Evidently, the estimation results do not improve when increasing the number of

inter-observation intervals. Therefore, we conclude that data augmentation is not necessary

and do not make use of data augmentation in the remaining sections of this chapter.
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Figure 5.5: Point estimates (median of the posterior sample) and 95% CIs for the kinetic
parameters estimated with Stan and Bayesian data augmentation for different numbers of
inter-observations intervals. The black line represents the true parameter values with which
the data was generated.

5.7.2 Simulated data without measurement error

For now, we assume the fluorescence intensity to be observed without measurement error. The

data was simulated with Gillespie’s algorithm with parameters θ = (0.2, 0.32, 0.01), m0 = 240,

t0 = 0.96, scale = 1.8, and offset = 8.5. The simulated fluorescence intensity (without

measurement error) is depicted by the blue dotted line on the right hand side of Figure 5.6.

We use Stan to sample from the posterior distributions of the ODE model and the SDE model

given the simulated data. Since we assume the data to be observed without measurement error,

the parameter offset can be determined directly from the first observation. Therefore, we do not

include measurement error (and thus the parameter σ) and the parameter offset in the posterior

distribution of the SDE model. Whereas for the ODE model, deviations of the observed data

from the deterministic ODE trajectory have to be attributed to measurement error; therefore,

the parameter σ has to be included in the posterior distribution of the ODE model. We also

include the parameter offset for the ODE model in order to avoid degeneracy of the posterior.

We use the following prior distributions: θi∼N≥0(0, 52) for i = 1, 2, 3, m0∼N≥0(300, 3002),

scale ∼ U(0, 30), where N≥a(µ, η2) denotes the normal distribution truncated from below by

a, and additionally for the ODE model, offset∼U(0, 30), σ∼U(0.001, 10), and t0∼U(0, 30).

110



5.7. Estimation based on simulated data

0 5 10 15 20 25 30

0

50

100

150

200

X
1  

(m
R

N
A

)

time [h]

0 5 10 15 20 25 30

0

100

200

300

400

500

600

F
I =

 s
ca

le
 *

  X
2  

+
 o

ffs
et

time [h]

data without error
data with error

Figure 5.6: One trajectory used in the simulation study that was simulated with Gillespie’s
algorithm with parameters θ = (0.2, 0.32, 0.01), m0 = 240, t0 = 0.96, scale = 1.8, and
offset = 8.5, and for the green dotted line, multiplicative measurement error with σ = 0.02
was added to the fluorescence intensity (FI).

For both model types, we generate 8 HMC chains of 5000 iterations and discard the first half

of the iterations as warm-up. Thus, we use a posterior sample of size 20,000 for each model

type in the subsequent analysis. Tables 5.1 and 5.2 summarize the Stan output of the posterior

samples for the ODE and the SDE model, respectively, and also include the true parameter

values that were used to simulate the data for comparison. The tables also contain the 2.5%-,

50%-, and 97.5%-quantiles of the samples. We use the interval between the 2.5%- and the

97.5%-quantile as an estimate of the 95%-CI. For the ODE model, we see that the parameters

offset and t0 are well estimated since mean and median of the sample correspond to the true

value, the CIs are very narrow, the effective sample size (ESS) neff is high and R̂ is equal to 1.

As expected, the measurement error parameter σ is estimated to be higher than the true value

of zero. Of greater interest are the remaining parameters as we can compare the results for

them between the two model types.

We first focus on the two degradation rate constants θ1 and θ3. Our analysis in Section 5.5

already showed that for the ODE model, these two parameters are only locally identifiable

and the posterior distribution is symmetric with respect to them in the case of identical priors

for both parameters. This is also apparent in the density plots in Figure 5.7. The density

estimates of the posterior sample for the ODE model are clearly bimodal. The reason that the

two modes are not exactly symmetric here is that HMC chains usually are only able to explore

one mode and in our example 5 out of the 8 chains happen to end up in the mode where θ1

is higher than θ3 while only 3 chains converge to the other mode. The fact that each chain

only samples from one of the modes is also the reason for the extremely low ESSs and the

very high values of R̂ for θ1 and θ3 in Table 5.1. Moreover, note that neither of the modes
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Table 5.1: Summary of the Stan output for the ODE model given simulated data without
measurement error and the true parameter values that were used to simulate the data. c.v. de-
notes the coefficient of variation and the columns headed by percentages contain the quantiles
of the respective percentage value.

true value mean c.v. 2.5% 50% 97.5% neff R̂

θ1 0.20 0.11 0.634 0.02 0.16 0.17 4 26.65
θ2 0.32 1.52 1.370 0.02 0.64 7.56 12168 1.00
θ3 0.01 0.07 0.943 0.02 0.02 0.16 4 33.00
m0 240.00 204.62 1.017 2.26 135.79 724.38 10984 1.00
scale 1.80 7.02 1.137 0.07 3.46 27.28 9806 1.00
offset 6.50 6.50 0.011 6.37 6.50 6.64 17113 1.00
t0 0.96 0.96 0.002 0.96 0.96 0.97 18718 1.00
σ 0.00 0.03 0.054 0.02 0.03 0.03 16091 1.00
θ2m0 76.80 213.08 2.487 4.57 35.99 1668.06 11087 1.00
θ2scale 0.58 6.46 2.875 0.17 0.92 55.00 7704 1.00
m0scale 432.00 1033.30 2.181 16.48 195.96 7975.22 7899 1.00
θ2m0scale 138.24 124.67 0.007 122.96 124.66 126.38 13299 1.00

and not even the ranges of all values in the posterior sample cover the true parameter values

of θ1 and θ3. For the SDE model on the other hand, Figure 5.7 and Table 5.2 show that the

posterior density is clearly unimodal with respect to θ1 and θ3, the 95% CI are narrow and

cover the true parameter values, mean and median of the sample are close or equal to the true

values, and high ESSs and R̂ values equal to 1 are achieved. Thus, we can conclude that the

parameters θ1 and θ3 are identifiable for the SDE model here.

Next, we consider the translation rate constant θ2, the initial amount m0 of mRNA molecules,

and the factor scale. For the ODE, at most the product θ2m0scale is identifiable. This is also

apparent from the results presented in Table 5.1 and Figure 5.8. For the individual parameters

and also for all products of two out of the three parameters, the 95% CIs are extremely broad

and the mean and median as point estimates are not at all close to the true values. The

reason why there are nevertheless quite high ESSs and R̂ values equal to 1 achieved is that

the variation within each of the HMC chains is very high and thus does not differ substantially

from the variation between the chains for these parameters. For the product θ2m0scale of

all three parameters, the 95% CI is very narrow for posterior sample of the ODE model and

also the ESS is high and R̂ equal to 1. Without knowing the true parameter values, one

would assume that this product is well estimated. However, the 95% CI and even the whole

range of the sample do not cover the true value. For the SDE model, the 95% CI for the

product θ2m0scale is broader, but it covers the true parameter value and also the mean and

the median as point estimates are closer to the true value than the mean and the median for

the ODE model. Moreover, the ESS is quite high and R̂ is equal to 1 for the SDE model. We
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Table 5.2: Summary of the Stan output for the SDE model given simulated data without
measurement error and the true parameter values that were used to simulate the data.

true value mean c.v. 2.5% 50% 97.5% neff R̂

θ1 0.20 0.19 0.108 0.15 0.19 0.23 3120 1.00
θ2 0.32 0.39 0.999 0.09 0.26 1.48 206 1.04
θ3 0.01 0.01 0.167 0.01 0.01 0.02 2514 1.00
m0 240.00 344.37 0.589 57.21 313.25 800.67 184 1.05
scale 1.80 1.66 0.172 1.19 1.62 2.30 3062 1.00
θ2m0 76.80 82.60 0.178 55.68 81.69 113.53 5296 1.00
θ2scale 0.58 0.61 0.923 0.17 0.43 2.21 178 1.05
m0scale 432.00 576.69 0.634 86.08 511.66 1440.41 232 1.04
θ2m0scale 138.24 133.18 0.083 112.47 132.74 156.40 5829 1.00

therefore conclude that the product θ2m0scale is identifiable. The generally lower ESSs are due

to the fact that for the SDE model, we sample from a distribution of much larger dimension

as explained in Section 5.6.2. Additionally, for the SDE model, the parameters scale and θ2m0

have narrow 95% CIs (especially compared to those for the ODE model) that include the true

parameter values, high ESSs, and R̂ values of 1 and can therefore be considered identifiable.

The remaining parameters θ2, m0, θ2scale, and m0scale have rather broad 95% CIs and only

achieve low ESSs and R̂ values higher than 1.02. Hence, they seem to be non-identifiable.

Notice, however, that at least for the parameters θ2 and θ2scale, the 95% CIs are substantially

more narrow for the SDE model compared to the ODE model.

We have simulated another 99 trajectories with the same parameters and performed Stan

sampling in the same way as described in the beginning of this subsection. For each model

type and each posterior sample of the different simulated trajectories, we calculate the length

of the 95% CI and determine the median and the coefficient of variation (c.v.) over these

lengths for each model type. Also, we rescale the lengths of the 95% CI by dividing by

the true parameter value and again determine the median of the normalized quantities. The

rescaling is done to transfer the values to a more similar scale. Note, however, that the values

are nevertheless not directly comparable between different parameters. Moreover, we check

whether the true parameter value that was used to simulate the data is included in the 95% CI.

Table 5.3 shows the aggregated results for the posterior samples of all 100 trajectories and

also includes the length of the interval between the 2.5%- and the 97.5%-quantile of the prior

distributions. Except for the parameters m0 and θ2m0scale, the median length of the 95% CIs

for the SDE model is always smaller than for the ODE model. For parameter θ2m0scale, the

CI lengths are a lot smaller for the ODE model; however, the CIs cover the true parameter

value only 13 out of 100 times while for the SDE model, the true value is covered 93 times.

For the other parameters that we classified as identifiable for the SDE model in the analysis
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Figure 5.7: Density estimates of the posterior samples for parameters θ1 and θ3 for the
SDE (blue, lower triangle) and ODE (green, upper triangle) model given simulated data with-
out measurement error. Diagonal panels: Marginal densities for the respective parameter and
boxplots showing the 95% CI as box, the range of the sample as whiskers, and the median as
thick black line. Off-diagonal panels: Smoothed scatter plots of the two-dimensional projec-
tions of the samples where darker hues signify higher density values. The dotted lines represent
the true parameter values that were used to simulate the data.

of the individual trajectory (i. e. θ1, θ3, scale, and θ2m0), the median length of the 95% CIs

is clearly smaller for the SDE model than for the ODE model and the true parameter value is

covered at least 91 out of 100 times for the SDE model. For parameter m0, the CI lengths are

high for both model types because the parameter is not identifiable for either model type. For

the other parameters that we classified as not identifiable for both model types in the analysis

of the individual trajectory (i. e. θ2, θ2scale, and m0scale), the median length of 95% CIs is

clearly smaller for the SDE model than for the ODE model, at least by a factor of 4.

The last two columns of Table 5.3 are visualized in Figure 5.9 where we plot the median of

the rescaled CI lengths against the number of CIs that cover the true parameter value. The

desirable region of value combinations is in the bottom right corner of the graph where the

number of CIs covering the true value is high and the median rescaled CI length is small. Note

that, clearly, more importance should be given to high numbers of CIs covering the true value

as it is useless to be very certain about a parameter estimate (indicated by a short CI) while the

correct value is not included in the CI. However, even for parameters that are identifiable, we
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5.7. Estimation based on simulated data

Figure 5.8: Density estimates of the posterior samples for parameters θ2, m0, scale, and
their products for the SDE (blue, lower triangle) and ODE (green, upper triangle) model given
simulated data without measurement error. For a detailed description of the figure’s elements,
see Figure 5.7.

do not expect to obtain a coverage of the true value of 100% since we are considering 95% CIs.

Therefore, values of 100 rather tend to hint at non-identifiability. In Figure 5.9, we can see that

for the majority of the parameters, the triangles representing the value combinations for the

SDE model are closer to the desirable region. Only for parameter m0 (which is not identifiable

for either model type), the value combinations are almost the same for both model types. And

as we already pointed out for the product θ2m0scale, the median length of the 95% CIs is

smaller for the ODE model; however, a lot fewer CIs cover the true parameter value for the

ODE model than for the SDE model. Thus, the result obtained for the SDE model is to be

preferred.
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Figure 5.9: Statistics of posterior samples for the two model types aggregated over 100
simulated trajectories without measurement error. The desirable region of value combinations
is in the bottom right corner of the graph.

We provide further Stan-specific diagnostics in Appendix A.3.2. Those mostly show poorer

values for the sampling output for the SDE model than for the ODE model. This is not

surprising as we sample from a much higher-dimensional distribution for the SDE model. We

do not consider the poor diagnostics as a disadvantage of the procedure as they provide

information that we do not even have for other MCMC algorithms and thus cannot compare

to them.
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5.7. Estimation based on simulated data

Table 5.3: Statistics of posterior samples for the two model types aggregated over 100
simulated trajectories without measurement error. We also include the length of the interval
between the 2.5%- and the 97.5%-quantile of the prior distribution.

length of median c.v. of median of number

prior 95% length of lengths of length of CIs of CIs

center 95% CIs 95% CIs rescaled by covering

interval true value true value

θ1
ODE 11.05 0.20 0.009 1.01 58

SDE 11.05 0.09 0.002 0.45 93

θ2
ODE 11.05 7.56 0.002 23.63 100

SDE 11.05 1.88 0.712 5.87 100

θ3
ODE 11.05 0.20 0.010 20.00 61

SDE 11.05 0.01 0.000 0.80 91

m0
ODE 884.82 730.41 0.057 3.04 100

SDE 884.82 735.98 9.868 3.07 100

scale
ODE 28.50 27.27 0.001 15.15 100

SDE 28.50 1.20 0.158 0.67 95

θ2m0
ODE 6056.48 1701.92 2.524 22.16 100

SDE 6056.48 63.60 2.768 0.83 96

θ2scale
ODE 228.08 55.47 0.164 96.29 100

SDE 228.08 2.89 0.762 5.01 100

m0scale
ODE 19271.13 7923.38 8.603 18.34 100

SDE 19271.13 1315.63 86.806 3.05 99

θ2m0scale
ODE 113232.70 3.90 41.595 0.03 13

SDE 113232.70 45.28 0.624 0.33 93
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5.7.3 Simulated data with measurement error

In this section, we use the same simulated data as in the previous section, but for each of the

100 trajectories, we add multiplicative measurement error with parameter σ = 0.02. Again,

we use Stan to sample from the posterior distributions of the ODE model (5.16) and the

SDE model (5.17) for each of the simulated trajectories and use the same priors as stated in

the previous section. We generate 8 HMC chains of 5000 iterations, discard the first half of

the iterations as warm-up, and thus use a posterior samples of size 20,000 in the subsequent

analysis.

At first, we again focus on the results for one of the trajectories, namely the trajectory repre-

sented by the green dotted line in Figure 5.6. Tables 5.4 and 5.5 summarize the Stan output

of the posterior samples for the ODE and the SDE model, respectively. The parameter t0

is estimated very accurately based on the posterior sample for the ODE model. Also, the

parameter offset is well estimated for both model types but with a more narrow 95% CI for

the SDE model. The parameter σ is accurately determined for the SDE model as well. For the

ODE model, σ is again overestimated. Figure 5.10 visualizes the components of the posterior

samples for parameters θ1, θ3, offset, and σ. Again, the bimodality of the posterior with

respect to θ1 and θ3 is apparent for the ODE model and neither the 95% CIs nor the ranges

of the sample cover the true parameter values. For the SDE model on the other hand, the

distribution is unimodal and the 95% CIs do cover the true parameter values for θ1 and θ3.

However, their 2-dimensional smoothed scatter plot in Figure 5.10 is not a simple elliptic shape

(as for the simulated data without measurement error) but almost a banana-like shape. This

may also be the reason for the deteriorated sampling efficiency discernible from the low ESS

and higher R̂-values in Table 5.5.

Figure 5.10 visualizes the components of the posterior samples for parameters θ2, m0, scale,

and their products. For the ODE model, again only the product θ2m0scale is identifiable in

the sense that the corresponding 95% CI is very narrow, the ESS is high, and the R̂-value

is equal to 1. However, the 95% CI again does not cover the true parameter value. For the

SDE model, the 95% CI for θ2m0scale is broader but it does contain the true value. Also,

the ESS is high and the R̂-value is close to 1. Moreover, the parameters scale and θ2m0 have

narrow 95% CIs, high ESSs, and R̂-values close to 1 for the SDE model, and thus, we conclude

that they are identifiable. Note that also for θ2, m0scale, and θ2scale, the 95% CIs are much

narrower for the SDE model than for the ODE model.

In Appendix A.3.3, we include further figures of the sampling output for the trajectory dis-

played in Figure 5.6. They present the same posterior samples as used in this and the previous

subsection. But instead of comparing the posterior samples between the two model types, the
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Table 5.4: Summary of the Stan output for the ODE model given simulated data with
measurement error and the true parameter values that were used to simulate the data.

true value mean c.v. 2.5% 50% 97.5% neff R̂

θ1 0.20 0.11 0.632 0.02 0.15 0.17 4 20.94
θ2 0.32 1.54 1.364 0.02 0.65 7.63 11619 1.00
θ3 0.01 0.07 0.938 0.02 0.02 0.16 4 26.81
m0 240.00 205.41 1.024 2.25 133.96 738.49 10649 1.00
scale 1.80 6.84 1.152 0.07 3.29 27.06 8778 1.00
offset 6.50 6.50 0.013 6.34 6.50 6.67 14496 1.00
t0 0.96 0.96 0.003 0.96 0.96 0.97 17129 1.00
σ 0.02 0.03 0.053 0.03 0.03 0.04 13581 1.00
θ2m0 76.80 217.59 2.441 4.56 37.40 1683.06 9479 1.00
θ2scale 0.58 6.31 2.841 0.17 0.92 54.94 7209 1.00
m0scale 432.00 983.07 2.151 16.20 189.75 7514.28 8054 1.00
θ2m0scale 138.24 123.47 0.009 121.43 123.46 125.58 12035 1.00

posterior samples are compared between the simulated data without and with measurement

error for each model type separately. In summary, we find that for the SDE model, the 95% CIs

increase for almost all parameters except m0 for data with measurement error. Whereas for

the ODE model, there is hardly any difference for most of the parameters between the posterior

samples for the data without and with measurement error since the majority of the parame-

ters is not identifiable anyway. The marginal posterior samples for the parameters offset, t0,

and θ2m0scale are only slightly affected by the measurement error. Only the marginal poste-

rior sample of the measurement error parameter σ is substantially affected and, as expected,

consists of higher values for data with measurement error.

Table 5.6 and Figure 5.12 display the statistics of the posterior samples aggregated over the

100 simulated trajectories. Similar to the results for the simulated data without measurement

error, the median length of the 95% CIs for the SDE model is always smaller than for the ODE

model, except for the parameters m0 and θ2m0scale and additionally σ (which was not included

for the SDE model in the previous subsection). Again, for the majority of the parameters, the

results for the SDE model represented by triangles in Figure 5.12 are closer to the desirable

region of value combinations in the bottom right corner of the graph, except for the parameters

m0, θ2m0scale, and offset. For the parameter offset, the median CI length is slightly higher

for the ODE model than for the SDE model, however, the CIs for the ODE model also contain

the true parameter value more often. So for this parameter, the ODE model, for once, shows

the preferable result.
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Table 5.5: Summary of the Stan output for the SDE model given simulated data with mea-
surement error and the true parameter values that were used to simulate the data.

true value mean c.v. 2.5% 50% 97.5% neff R̂

θ1 0.20 0.16 0.201 0.08 0.17 0.22 304 1.03
θ2 0.32 0.73 1.448 0.07 0.37 3.93 296 1.02
θ3 0.01 0.02 0.660 0.01 0.02 0.05 176 1.04
m0 240.00 274.72 0.742 28.30 224.46 777.96 225 1.04
scale 1.80 1.67 0.430 0.65 1.54 3.36 415 1.02
offset 6.50 6.50 0.007 6.41 6.50 6.60 15599 1.00
σ 0.02 0.02 0.069 0.02 0.02 0.02 2106 1.00
θ2m0 76.80 89.78 0.473 35.58 80.76 191.24 349 1.02
θ2scale 0.58 0.93 1.145 0.16 0.56 4.15 247 1.03
m0scale 432.00 477.62 0.944 29.55 338.17 1697.86 216 1.04
θ2m0scale 138.24 124.39 0.093 102.85 123.92 148.63 2119 1.01

Figure 5.10: Density estimates of the posterior samples for parameters θ1, θ3, offset, and σ
for the SDE (blue, lower triangle) and ODE (green, upper triangle) model given simulated data
with measurement error. For a detailed description of the figure’s elements, see Figure 5.7.

120



5.7. Estimation based on simulated data

Figure 5.11: Density estimates of the posterior samples for parameters θ2, m0, scale, and
their products for the SDE (blue, lower triangle) and ODE (green, upper triangle) model given
simulated data with measurement error. For a detailed description of the figure’s elements,
see Figure 5.7.
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Table 5.6: Statistics of posterior samples for the two model types aggregated over 100
simulated trajectories with measurement error. We also include the length of the interval
between the 2.5%- and the 97.5%-quantile of the prior distribution.

length of median c.v. of median of number

prior 95% length of lengths of length of CIs of CIs

center 95% CIs 95% CIs rescaled by covering

interval true value true value

θ1
ODE 11.05 0.20 0.008 1.01 60

SDE 11.05 0.11 0.016 0.55 90

θ2
ODE 11.05 7.55 0.002 23.59 100

SDE 11.05 3.69 0.996 11.52 99

θ3
ODE 11.05 0.20 0.008 20.35 63

SDE 11.05 0.02 0.094 1.65 89

m0
ODE 884.82 733.85 3.584 3.06 100

SDE 884.82 746.74 5.909 3.11 100

scale
ODE 28.50 27.25 0.002 15.14 100

SDE 28.50 2.54 0.255 1.41 91

θ2m0
ODE 6056.48 1702.37 2.714 22.17 100

SDE 6056.48 223.22 428.350 2.91 92

θ2scale
ODE 228.08 55.70 0.125 96.70 100

SDE 228.08 3.55 0.639 6.16 100

m0scale
ODE 19271.13 7896.07 667.494 18.28 100

SDE 19271.13 1479.13 253.530 3.42 98

θ2m0scale
ODE 113232.70 4.96 38.038 0.04 15

SDE 113232.70 45.56 1.492 0.33 92

offset
ODE 28.50 0.33 0.987 0.05 96

SDE 28.50 0.21 0.016 0.03 84

σ
ODE 9.50 0.01 0.325 0.35 0

SDE 9.50 0.01 0.000 0.25 87
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Figure 5.12: Statistics of posterior samples for the two model types aggregated over 100
simulated trajectories with measurement error. The desirable region of value combinations is
in the bottom right corner of the graph.
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5.8 Estimation based on experimental data

In this section, we use the experimental data published in Fröhlich et al. (2018) and described

in Section 5.1. For each type of GFP (eGFP and d2eGFP), we randomly select 100 observed

trajectories for our analysis and again use Stan to sample from the posterior distributions

of the ODE model (5.16) and the SDE model (5.17) for each of the trajectories using the

same priors as stated in Section 5.7.2. We generate 8 HMC chains of 5000 iterations, discard

the first half of the iterations as warm-up, and thus use a posterior samples of size 20,000

in the subsequent analysis. For each type of GFP, we first analyze the sampling output for

one observed trajectory in detail and then summarize results for all 100 observed trajectories.

Moreover, we provide further Stan-specific diagnostics in Appendix A.3.2.

5.8.1 Experimental dataset 1 (for eGFP)

Tables 5.7 and 5.8 present a summary of the Stan output for the posterior sample of one

observed trajectory for the ODE and the SDE model, respectively, and Figures 5.13 and 5.14

compare the density estimates of these two posterior samples. The results look qualitatively

very similar (almost identical) to those obtained for the simulated data with measurement

error in Section 5.7.3. Therefore, we do not repeat the detailed description but only point out

that the range of values sampled for the parameters θ1 and θ3 for the SDE model is slightly

smaller for the experimental trajectory here. Thus, we do not see the banana-like shape in the

two-dimensional smoothed scatter plot of the two parameters for the SDE model in Figure 5.13

as for the simulated trajectory in Figure 5.10 and the sampling efficiency increases as indicated

by higher ESSs and lower R̂ values for the two parameters in Table 5.8.

The statistics of posterior samples aggregated for 100 experimental trajectories for eGFP in

Table 5.9 are also qualitatively similar to those for the simulated trajectories in Table 5.6. For

the majority of the parameters, the median length of the 95% CI is smaller for the posterior

samples for the SDE model than for those for the ODE model. Only for parameters θ1, θ2,

and θ2m0scale, this is not the case. Note in particular that for the parameters θ2m0 and

scale, which are non-identifiable for the ODE (also apparent from the very long CIs here), the

median length of the 95% CI for the SDE model is again much narrower compared to that of

the ODE and to that of the prior. This indicates that these two parameters are identifiable

for the SDE model also for the experimental data. That the uncertainty of the parameter

estimate for θ2m0scale is greater for the SDE than for the ODE model is consistent with our

results for the simulated data. The parameter θ2 is considered to be non-identifiable for both

model types and the difference between the median CI lengths is relatively small. Finally, for

parameter θ1, we see that the result is more or less the same as for θ3 for the ODE model due
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5.8. Estimation based on experimental data

Table 5.7: Summary of the Stan output for the ODE model given experimental data for eGFP.

mean c.v. 2.5% 50% 97.5% neff R̂

θ1 0.11 0.617 0.02 0.16 0.18 4 13.60
θ2 1.44 1.407 0.01 0.56 7.39 12661 1.00
θ3 0.08 0.903 0.02 0.03 0.18 4 16.98
m0 198.99 1.046 1.75 127.89 731.84 12008 1.00
scale 6.64 1.186 0.05 3.01 27.00 10321 1.00
offset 7.18 0.017 6.94 7.18 7.42 17800 1.00
t0 1.46 0.004 1.44 1.46 1.47 15996 1.00
σ 0.05 0.054 0.04 0.05 0.05 16833 1.00
θ2m0 200.04 2.654 3.17 28.49 1627.75 11121 1.00
θ2scale 5.53 3.043 0.12 0.67 48.94 8535 1.00
m0scale 942.49 2.307 11.63 153.30 7610.72 9270 1.00
θ2m0scale 85.74 0.014 83.35 85.73 88.19 12577 1.00

Table 5.8: Summary of the Stan output for the SDE model given experimental data for eGFP.

mean c.v. 2.5% 50% 97.5% neff R̂

θ1 0.20 0.152 0.14 0.20 0.26 946 1.01
θ2 0.33 1.366 0.04 0.19 1.52 305 1.02
θ3 0.02 0.269 0.01 0.02 0.03 894 1.01
m0 298.35 0.705 34.46 250.62 809.42 218 1.03
scale 2.12 0.309 1.14 2.02 3.69 772 1.01
offset 7.18 0.012 7.01 7.18 7.35 20589 1.00
σ 0.03 0.058 0.03 0.03 0.04 17224 1.00
θ2m0 47.92 0.327 23.41 46.00 83.31 857 1.01
θ2scale 0.60 1.182 0.11 0.37 2.54 256 1.02
m0scale 650.64 0.831 57.98 498.32 2049.93 283 1.02
θ2m0scale 92.71 0.115 73.32 92.15 115.16 2711 1.00

to the symmetry of the posterior distribution with respect to these two parameters. Whereas

for the SDE model there is no symmetry and there is more variance in the posterior samples

with respect to θ1 than to θ3 (indicated by a greater median CI length). The smaller median CI

length of θ1 for the ODE model compared to the SDE model is due to the fact that for many

of the observed trajectories the values of θ1 and θ3 seem to be very close together. In this case,

the posterior distribution of the ODE model appears to be unimodal and the posterior variance

with respect to the two parameters is small (and equal due to the symmetry). Thus, overall

this variance is smaller than the posterior variance with respect to θ1 for the SDE model.
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Chapter 5. Application: Modeling translation kinetics after mRNA transfection

Figure 5.13: Density estimates of the posterior samples for parameters θ1, θ3, offset, and σ
for the SDE (blue, lower triangle) and ODE (green, upper triangle) model given experimental
data for eGFP. Diagonal panels: Marginal densities for the respective parameter and boxplots
showing the 95% CI as box, the range of the sample as whiskers, and the median as thick
black line. Off-diagonal panels: Smoothed scatter plots of the two-dimensional projections of
the samples where darker hues signify higher density values.
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5.8. Estimation based on experimental data

Figure 5.14: Density estimates of the posterior samples for parameters θ2, m0, scale, and
their products for the SDE (blue, lower triangle) and ODE (green, upper triangle) model given
experimental data for eGFP. For a detailed description of the figure’s elements, see Figure 5.13.
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Table 5.9: Statistics of posterior samples aggregated for 100 experimental trajectories for
eGFP.

length of median c.v. of

prior 95% length of lengths of

center 95% CIs 95% CIs

interval

θ1
ODE 11.05 0.11 0.058

SDE 11.05 0.14 0.012

θ2
ODE 11.05 7.91 0.016

SDE 11.05 9.91 0.998

θ3
ODE 11.05 0.11 0.057

SDE 11.05 0.06 0.039

m0
ODE 884.82 747.71 0.212

SDE 884.82 456.80 172.338

scale
ODE 28.50 27.50 0.004

SDE 28.50 4.61 5.288

θ2m0
ODE 6056.48 2032.46 23.287

SDE 6056.48 230.89 219.006

θ2scale
ODE 228.08 68.38 1.879

SDE 228.08 22.01 33.157

m0scale
ODE 19271.13 9093.22 69.292

SDE 19271.13 1392.46 4601.374

θ2m0scale
ODE 113232.70 24.10 57.316

SDE 113232.70 138.03 78.659

offset
ODE 28.50 0.96 2.661

SDE 28.50 0.38 1.086

σ
ODE 9.50 0.01 0.244

SDE 9.50 0.01 0.004
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5.8.2 Experimental dataset 2 (for d2eGFP)

Tables 5.10 and 5.11 present a summary of the Stan output for the posterior sample of one

observed trajectory for d2eGFP for the ODE and the SDE model, respectively, and Figures 5.15

and 5.16 compare the density estimates of these two posterior samples. Here, while of course

still being symmetric, the posterior sample for the ODE model seems to be unimodal with

respect to the parameters θ1 and θ3. This is due to the fact that the values of the two

parameters are likely to be quite close to each other for this trajectory as can also be seen

from the overlapping 95% CIs and the similar mean and median estimates for the SDE model.

For the parameter offset, the mean and median estimates from the posterior samples are very

similar for the ODE and SDE model, but the 95% CI is a lot wider for the ODE model. For

the measurement error parameter σ, the 95% CI for the SDE model is a lot narrower than

that for the ODE model and the locations of the samples are quite far apart with a difference

in the median estimates of 0.16.

Table 5.10: Summary of the Stan output for the ODE model given experimental data for
d2eGFP.

mean c.v. 2.5% 50% 97.5% neff R̂

θ1 0.09 0.079 0.08 0.09 0.11 11585 1.00
θ2 2.03 1.114 0.08 1.17 8.33 12371 1.00
θ3 0.09 0.078 0.08 0.09 0.11 11200 1.00
m0 244.67 0.868 9.82 187.79 761.08 12127 1.00
scale 9.21 0.901 0.35 6.44 28.11 9845 1.00
offset 8.72 0.073 7.52 8.69 10.04 17557 1.00
t0 0.94 0.011 0.92 0.94 0.96 15806 1.00
σ 0.17 0.053 0.15 0.17 0.18 16365 1.00
θ2m0 367.06 1.893 27.97 121.84 2279.87 11547 1.00
θ2scale 12.37 1.907 1.03 4.19 80.33 7681 1.00
m0scale 1756.24 1.569 94.74 672.69 10085.29 8815 1.00
θ2m0scale 786.93 0.026 746.72 786.79 828.01 22688 1.00

For the parameters θ2, m0, scale, and their products, the results look somewhat different from

those for the eGFP trajectory and those for the simulated data. For the product θ2m0scale,

the 95% CI for the SDE model is again a lot wider than for the ODE model, but here, the CIs

do not overlap. For the parameters scale and θ2m0, the 95% CI for the SDE model are again

a lot narrower than for the ODE model, and we consider them as practically identifiable for

the SDE model but not the ODE model. But here, also for the parameters m0, θ2m0, and

m0scale, the 95% CI for the SDE model are much narrower than for the ODE model, and
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Table 5.11: Summary of the Stan output for the SDE model given experimental data for
d2eGFP.

mean c.v. 2.5% 50% 97.5% neff R̂

θ1 0.11 0.244 0.06 0.10 0.17 1494 1.01
θ2 10.36 0.292 5.14 10.18 16.77 1226 1.01
θ3 0.09 0.095 0.08 0.09 0.11 674 1.02
m0 13.45 0.317 7.06 12.73 23.72 954 1.01
scale 4.93 0.212 3.21 4.83 7.27 785 1.01
offset 8.65 0.005 8.57 8.65 8.74 22392 1.00
σ 0.01 0.067 0.01 0.01 0.01 13124 1.00
θ2m0 130.52 0.229 80.35 127.18 196.70 897 1.01
θ2scale 49.67 0.282 27.16 48.09 82.52 838 1.01
m0scale 65.47 0.363 34.66 60.26 125.01 1343 1.01
θ2m0scale 615.77 0.092 509.06 614.02 733.51 17424 1.00

the parameters seem to be practically identifiable. For parameter θ2 the 95% CI for the SDE

model is slightly wider than for the ODE model, however, the distribution looks different.

The statistics of posterior samples aggregated for 100 experimental trajectories for d2eGFP in

Table 5.12 are qualitatively very similar to those for eGFP in Table 5.9. Therefore, we do not

repeat the detailed description. We only point out that again unlike for the ODE model, the

parameters scale and θ2m0 are identifiable for the SDE model which is indicated by the much

narrower median length of the 95% CIs. We also want to mention that here, the median CI

lengths for both degradation rate constants θ1 and θ3 are smaller for the ODE model than

those for the SDE model. This is again due to the fact that for the majority of the observed

trajectories the parameter values seem to be very close to each other; and therefore, the two

modes of the ODE posterior distribution with respect to these parameters simply overlap.

This leads to very narrow CIs which is consistent with our results for the simulated data if

we consider the width of the individual modes there. However, we would like to remind the

reader that the simulated data also showed that often neither of the modes (and sometimes

not even the range of sampled values) covered the true parameter. So assuming that an MJP

is the most appropriate description for the generating process of the experimental data, the

low uncertainty suggested by narrow CIs for the ODE model might be misleading.
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5.8. Estimation based on experimental data

Figure 5.15: Density estimates of the posterior samples for parameters θ1, θ3, offset, and σ
for the SDE (blue, lower triangle) and ODE (green, upper triangle) model given experimental
data for d2eGFP. For a detailed description of the figure’s elements, see Figure 5.13.
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Figure 5.16: Density estimates of the posterior samples for parameters θ2, m0, scale, and
their products for the SDE (blue, lower triangle) and ODE (green, upper triangle) model
given experimental data for d2eGFP. For a detailed description of the figure’s elements, see
Figure 5.13.
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Table 5.12: Statistics of posterior samples aggregated for 100 experimental trajectories for
d2eGFP.

length of median c.v. of

prior 95% length of lengths of

center 95% CIs 95% CIs

interval

θ1
ODE 11.05 0.03 0.061

SDE 11.05 0.12 0.012

θ2
ODE 11.05 7.88 0.006

SDE 11.05 11.61 0.269

θ3
ODE 11.05 0.03 0.062

SDE 11.05 0.07 0.025

m0
ODE 884.82 749.92 0.181

SDE 884.82 76.56 224.650

scale
ODE 28.50 27.55 0.001

SDE 28.50 5.51 5.550

θ2m0
ODE 6056.48 2048.33 15.537

SDE 6056.48 172.02 173.641

θ2scale
ODE 228.08 67.95 0.843

SDE 228.08 34.96 44.862

m0scale
ODE 19271.13 9085.56 56.326

SDE 19271.13 482.87 3408.541

θ2m0scale
ODE 113232.70 40.80 30.553

SDE 113232.70 145.18 83.283

offset
ODE 28.50 2.02 1.751

SDE 28.50 0.79 1.029

σ
ODE 9.50 0.03 0.006

SDE 9.50 0.01 0.005
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5.9 Summary and discussion

In this chapter, we have modeled the translation kinetics after mRNA transfection using a two-

dimensional Itô diffusion process described by an SDE and compared this modeling approach

to one using ODEs. For the SDE model, we have proved the existence and uniqueness of

the solution for the SDE and the convergence of the Euler scheme to this solution. The

proof of these essential results should be a prerequisite to the application of SDE modeling

for obvious reasons. Although SDE approximations by now have received some considerable

attention in systems biology (usually termed chemical Langevin equation (CLE) in this field)

and this type of SDEs generally does not fulfill the assumptions for standard existence and

convergence results, this aspect is usually neglected. In our case, the proofs rely on the fact

that the first component of the process only depends on itself (and the parameters) but not

on the second process component. Nevertheless, the proofs are not straightforward, and in

particular, proofs of convergence of the Euler scheme for SDEs with non-Lipschitz continuous

diffusion coefficient functions are still an active field of research as can be seen from recently

published work, e. g. Yang et al. (2019) where each component of the diffusion coefficient is

only allowed to depend on the respective process component (whereas in our case the diffusion

coefficient of the second component depends on both process components). Our proofs can

be analogously extended for an SDE model of the translation kinetics after mRNA transfection

when including a maturation step for the protein molecules before they start to glow as has

been considered in the context of ODEs in Reiser et al. (2019). More generally speaking, the

idea of the proofs can be sequentially applied to any diffusion approximation

• whose process components can be ordered in a way such that each process compo-

nent Xi(t) depends at most on the process components Xj(t) with j ≤ i; and

• that only includes first order reactions, i. e. the terms inside the square root functions of

the diffusion coefficient are linear.

An extension to SDE models such as considered in case study 3 in Finkenstädt et al. (2008)

where a deterministic, continuous function for the transcription process is included for the first

process component is also feasible.

Moreover, we have studied the parameter identifiability for both modeling approaches (SDE

vs. ODE) for the case that we observe a fluorescence signal which we assume to be a linear

transformation of the amount of protein molecules (corrupted by multiplicative measurement

error). For the ODE model, previous studies had already shown that the degradation rate

constants θ1 and θ3 for the mRNA and the protein are only locally identifiable, and only the

product θ2m0scale of the translation rate constant, the initial amount of mRNA molecules
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transfected, and the scaling factor of the fluorescence signal is identifiable but the three pa-

rameters individually are not identifiable. In order to try to assess structural identifiability of

the SDE model, we transformed the model, used the DAISY software, and also simulated from

the model. Each of the approaches indicated that the SDE model might lead to better param-

eter identifiability. The most systematic approach is the one based on the surrogate model and

DAISY as suggested by Browning et al. (2020); however, it only provides a necessary condition

(even) for structural identifiability of the SDE model parameters. While checking this neces-

sary condition is certainly useful especially e. g. when designing an experiment, it cannot help

us confirm a difference in the parameter identifiability between the SDE and the ODE model.

Especially because we are interested in the parameter identifiability based on one observed

trajectory and the DAISY-based approach assumes that we were able to observe the first and

the second moment of the fluorescence signal. Even when we take into account that we have

several observed trajectories available from the experiment, these do not provide information

about the moments because the initial time point t0 of mRNA release is different for every tra-

jectory and also for the other parameters, in particular for m0, assuming that they are equal for

all observed cells does not seem reasonable. By simulating from the SDE model, we were able

to assess the differences in the variation within individual trajectories for different parameter

combinations. We saw that the variation within trajectories was clearly higher for lower θ1 and

higher θ3 which suggest that they are structurally globally identifiable. The variation within

trajectories was also higher for higher values of scale and lower values of the product θ2m0.

Whereas there did not seem to be much difference in the variation within trajectories when the

values of scale and θ2m0 were kept constant and only the individual values of θ2 and m0 varied.

Therefore, scale and θ2m0 seem to be structurally identifiable, but θ2 and m0 do not. While

this simple simulation approach worked out well for the model considered here, one of its weak

points is, of course, the somewhat subjective visual assessment of the variation within trajecto-

ries. A more quantitative approach to this would be to simulate a large number of trajectories

(with very small time step) for every considered parameter combination, to approximate the

quadratic variation for each trajectory, and then, to compare these values between individual

trajectories started with the same seed for different parameter combinations and to compare

also the distributions of these values for different parameter combinations. Another drawback

of both simulation-based approaches is the fact that the analysis is based on a finite set of

parameter combinations that can be considered; and thus, drawing general conclusions for the

entire parameter space may be problematic.

Finally, we have assessed the practical parameter identifiability for both model types by sam-

pling from the parameter posterior distribution given simulated data without and with mea-

surement error and the experimental data published in Fröhlich et al. (2018). We found that

the parameters θ1 and θ3 are indeed globally identifiable for the SDE model given individual

trajectories, unlike for the ODE model. And not only the product θ2m0scale but also the
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parameter scale and the product θ2m0 are globally identifiable for the SDE model. Moreover,

for the simulated data, the 95% CIs for the identifiable parameters for the SDE model covered

the true parameter value adequately many times. Whereas for the ODE model, the true pa-

rameter values for the parameters θ1, θ3, and θ2m0scale were not covered by the 95% CIs for

many of the posterior samples and were sometimes not even included in the range of values in

the sample. The fact that the parameters θ1 and θ3 can be adequately determined using the

SDE modeling approach given an individual trajectory renders the multi-experiment approach

with different mRNA constructs and the computationally intense hierarchical optimization al-

gorithm used in Fröhlich et al. (2018) unnecessary in the case that the determination of these

parameters is the main objective. Besides, assuming that an MJP is the most appropriate

description of the underlying dynamics, we saw that the estimated parameter values for a

single cell trajectory based on the ODE model cannot be trusted even when narrow 95% CIs

suggest low uncertainty. While the SDE model is clearly superior in terms of the information

that we are able to extract from a single trajectory about the parameters that determine the

dynamics of the underlying process, it has nevertheless several disadvantages. First of all, we

were not able to include the estimation of the initial time point t0 of mRNA release into the

Stan sampling procedure. We believe that this is not easily possible due to the fact that for the

SDE model, the process switches from a deterministic evolution to a stochastic one at t0 and

including t0 as a parameter in the posterior distribution leads to non-smoothness of the poste-

rior distribution which cannot be handled by HMC sampling as it makes use of the derivative

of the log-posterior. Other sampling approaches such as particle MCMC might alleviate this

problem, but to our knowledge, no examples of inferring a random time point for SDE models

have been investigated so far and would thus require further work. Another drawback of the

SDE model are the higher computational costs as we need to sample from a higher-dimensional

distribution (due to the random process values) than for the ODE model. For the SDE model,

the sampling in our study takes on average almost 5.5 hours while for the ODE model, it

averages at about 20 minutes. In general, estimation procedures for SDE models are more

complex and unlike for ODE models, publicly available software tools are rare and usually not

generally applicable. There is definitely a need to further develop such tools for SDE models

in order to harness their full potential, especially with regard to better identifiability of kinetic

parameters. On the other hand, combining both modeling approaches as we have done here

by first determining t0 based on the ODE model and then estimating the kinetic parameters

based on the SDE model is clearly also meaningful.
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Summary and conclusion

In this thesis, we considered inference methods for diffusion processes described by SDEs,

applied diffusions to model the translation kinetics after mRNA transfection, proved important

theoretical results of this model, and compared this SDE model to an ODE model in terms of

parameter identifiability.

We investigated the use of a higher-order approximation scheme in the context of Bayesian data

augmentation for inference for diffusion processes with the aim of improving computational

efficiency and thus obtaining more accurate estimation results within a given computational

time. We found that, in fact, the use of the Milstein scheme does improve the estimation

accuracy for the parameters appearing in the diffusion coefficient. However, our study also

shows that the applicability of the Milstein scheme is very limited in this context in the case

of multi-dimensional processes. This is a major drawback compared to the generally appli-

cable Euler scheme. Even for the comparatively small reaction network that we considered

in Chapter 5 and that represents two species and three reactions, the methods based on the

Milstein scheme considered in Chapter 4 cannot be applied as two components of the diffusion

coefficient depend on the first process component. Yet, our analysis answers a natural question

that had not been addressed in the literature previously.

For the application in Chapter 5, we instead use the open source software Stan that provides

an efficient implementation of a general state-of-the-art MCMC method and achieve good

sampling results. Even though some of the diagnostics that are specific to Stan are not perfect

for the sampling output for the SDE model, the diagnostics that one would commonly look at

for general MCMC output are satisfying and inference from simulated data shows that most

parameters can be adequately recovered. We do not consider the poor Stan-specific diagnostics

as a disadvantage of the procedure, as they provide information that we do not even have for
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other MCMC algorithms. One major advantage of using Stan is that hardly any hand-tuning

is required unlike for other MCMC algorithms. Comparing its performance to other MCMC

methods in the context of SDE inference is a direction for future work. Also, a recent review

and a comprehensive benchmark study for a wide range of MCMC methods for SDE inference

represents relevant future work.

Moreover, our results for the application example in Chapter 5 showed that the SDE model

provides better identifiability of the kinetic parameters than the ODE model. We found that

the degradation rate constants of mRNA and GFP are indeed globally identifiable for the SDE

model given individual trajectories, while for the ODE model they are only locally identifiable

due to symmetry. Besides, not only the product θ2m0scale of the translation rate constant, the

initial amount of the mRNA, and the scaling factor of the fluorescence signal is identifiable as

for the ODE model, but also the parameter scale and the product θ2m0 are globally identifiable

for the SDE model. Not all model parameters could be determined solely from the fluorescence

signal of the GFP molecules. Additional experiments to gain information about one of the two

unidentifiable parameters (the initial amount m0 of mRNA and the translation rate constant θ2)

would be necessary in order to be able to also estimate the other. Also, we combined both

modeling approaches to predetermine the initial time point t0. Still, our results once again

underline that using a model that explicitly accounts for inherent stochasticity can lead to

additional parameter identifiability. Despite this potential, SDE models are not that commonly

applied for parameter inference from experimental data, neither in method articles nor in

application articles. From the application side, one crucial reason for this gap is probably the

lack in the available software tools for inference for SDE models (and other stochastic kinetic

models). Even method articles that simply publish the code used to generate the results for

the article are rare. To facilitate the intelligibility of this thesis, all relevant code used to obtain

the results included in this work is made publicly available. Developing widely applicable tools

is an enormous task but it is a necessary step to make stochastic models more usable and to

leverage their potential. Therefore, future research should focus on this development, at best

by an interdisciplinary team in order to make sustainable and rapid progress.

We have also proved essential theoretical results for the considered SDE model and pointed

out several important further examples for which our proofs can be easily extended. How-

ever, an extension to general diffusion approximations would require substantial further work.

Nevertheless these results are crucial. Especially for inference from individual time-lapse tra-

jectories of which more and more are becoming available with the advancement of single-cell

experimental methods, ensuring strong uniqueness of the solution and strong convergence of

the approximation scheme is necessary. Furthermore, it would be very interesting to see further

work on mathematical results about structural identifiability of SDE model parameters based

on individual observed trajectories.
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As pointed out before, in order to harness the capabilities of mathematical modeling to generate

practical insights, ensuring a sound mathematical foundation is key. Moreover, it is important

to develop tools that render analyzing and solving the corresponding mathematical problem

(computationally) feasible within an acceptable amount of time. Likewise, one has to find ways

how to deal with the challenges that arise when working with experimental data (e. g. finite

amount of data, unobservable components). This thesis addresses all three of these aspects in

the context of SDE models for intracellular processes and thus provides further building blocks

to pave the way towards a holistic understanding of biological systems.
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Appendix

A.1 Mathematical basics

Gronwall’s lemma

An important tool to obtain estimates in the context of ordinary as well as stochastic differential

equations is Gronwall’s lemma (also known as Gronwall’s inequality). There are different

formulations of Gronwall’s lemma. Here, we state the most simple formulation that is suitable

for our purposes.

Theorem A.1. (Gronwall’s lemma) Let T > 0 and c ≥ 0. Let u(·) be a non-negative

continuous function on [0, T ], and let β(·) be a non-negative continuous and integrable function

on [0, T ]. If

u(t) ≤ c+

∫ t

0
β(s)u(s) ds for all t ∈ [0, T ],

then

u(t) ≤ c exp

(∫ t

0
β(s) ds

)
for all t ∈ [0, T ].

A proof of Theorem A.1 and more general formulations of Gronwall’s lemma can be found e. g.

in Pachpatte (1998).
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Algorithm for the exact simulation of the Cox-Ingersoll-Ross (CIR) process

For the exact simulation of the CIR process described by SDE (3.9) at time points 0 = t0 <

t1 . . . < tn and with d = 4αβ/σ2, we use the following algorithm as stated in Glasserman

(2003, p. 124):

Case 1: d > 1

For i = 0, . . . , n− 1

• c ← σ2
(
1− e−α(ti+1−ti)

)
/(4α)

• λ ← Xti e
−α(ti+1−ti)/c

• generate Z ∼ N (0, 1)

• generate Y ∼ χ2
d−1

• Xti+1 ← c

[(
Z +
√
λ
)2

+ Y

]
Case 2: d ≤ 1

For i = 0, . . . , n− 1

• c ← σ2
(
1− e−α(ti+1−ti)

)
/(4α)

• λ ← Xti e
−α(ti+1−ti)/c

• generate N ∼ Po(λ/2)

• generate Y ∼ χ2
d+2N

• Xti+1 ← cY

where χ2
k denotes the central chi-square distribution with k degrees of freedom and Po(λ)

denotes the Poisson distribution with parameter λ.

A.2 Details for Bayesian data augmentation for diffusion pro-

cesses

A.2.1 Choice of path update interval

For choosing the update interval in the simulation study in Section 4.3, we use the random

block size algorithm as suggested in (Elerian et al., 2001). Assuming that the augmented

path contains a total of n + 1 data points Y0, . . . , Yn, it is divided into update segments

Y(c0,c1), Y(c1,c2), . . . by the following algorithm:
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1. Set c0 = 0 and j = 1.

2. While cj−1 < n:

(a) Draw Z ∼ Po(λ) and set cj = min{cj−1 + Z, n}.

(b) Increment j.

Here, Po(λ) denotes the Poisson distribution with parameter λ.

Such a random choice of the path update interval is a simple way to vary the set of points

that are updated together within one iteration.

A.2.2 Derivation of the acceptance probability for the modified bridge (MB)

proposal for m = 2 inter-observation intervals

As stated in Section 3.4.1, the acceptance probability for the path update between two con-

secutive observations Xτi and Xτi+1 with the MB proposal is

ζ
(
Ximp∗

(τi,τi+1), X
imp
(τi,τi+1)

)
= 1 ∧

π
(
Ximp∗

(τi,τi+1)

∣∣Xobs
{τi,τi+1}, θ

)
qMB

(
Ximp

(τi,τi+1)

∣∣Xτi,, Xτi+1 , θ
)

π
(
Ximp

(τi,τi+1)

∣∣Xobs
{τi,τi+1}, θ

)
qMB

(
Ximp∗

(τi,τi+1)

∣∣Xτi,, Xτi+1 , θ
)

= 1 ∧
m−1∏
k=0

π
(
X∗tk+1

|X∗tk , θ
)

π
(
Xtk+1

|Xtk , θ
) m−2∏
k=0

π
(
Xtk+1

|Xtk , Xτi+1 , θ
)

π
(
X∗tk+1

|X∗tk , Xτi+1 , θ
)

where X∗t0 = Xt0 = Xτi and X∗tm = Xtm = Xτi+1 . For the case where only one data point is

imputed between two observations (i.e. m = 2) this reduces to

ζ
(
Ximp∗

(τi,τi+1), X
imp
(τi,τi+1)

)
= 1 ∧

π
(
X∗t1 |Xτi , θ

)
π
(
Xτi+1 |X∗t1 , θ

)
π (Xt1 |Xτi , θ)π

(
Xτi+1 |Xt1 , θ

) π (Xt1 |Xτi , Xτi+1 , θ
)

π
(
X∗t1 |Xτi , Xτi+1 , θ

)
= 1 ∧

[
π
(
X∗t1 |Xτi , θ

)
π
(
Xτi+1 |X∗t1 , θ

)
π (Xt1 |Xτi , θ)π

(
Xτi+1 |Xt1 , θ

)
π (Xt1 |Xτi , θ) π

(
Xτi+1 |Xt1 , θ

)
/π
(
Xτi+1 |Xτi , θ

)
π
(
X∗t1 |Xτi , θ

)
π
(
Xτi+1 |X∗t1 , θ

)
/π
(
Xτi+1 |Xτi , θ

)]
= 1.

This relation holds for any (approximated) transition density π
(
Xtk+1

|Xtk , θ
)
.
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A.2.3 Analysis of the correlation between the parameters

In this section, we provide several plots (see Figures A.1, A.2, A.3, and A.4) showing that the

parameters of the two benchmark models are not strongly correlated in order to justify our use

of independent parameter proposals in the simulation study in Section 4.3.
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Figure A.1: Two-dimensional density plots of the parameter samples from the true posterior
distribution for exemplary paths of the GBM.
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Figure A.2: Histograms of the values of Pearson’s correlation coefficient calculated for each
of the 100 sample paths of the GBM for the parameter samples from the true posterior
distributions and the parameter samples from the approximated posterior distributions obtained
with one of the four considered methods for m = 5.
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Figure A.3: Two-dimensional density plots of the parameter samples from the true posterior
distribution for exemplary paths of the CIR process.
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Figure A.4: Histograms of the values of Pearson’s correlation coefficient calculated for each
of the 100 sample paths of the CIR process for the parameter samples from the true posterior
distributions and the parameter samples from the approximated posterior distributions obtained
with one of the four considered methods for m = 5.

A.3 Details of the parameter estimation for the translation ki-

netics models

In this section, we provide some additional information about the sampling diagnostics and the

estimation results for the models of the translation kinetics in Sections 5.7 and 5.8.

A.3.1 Further diagnostics of MCMC output specific to HMC and NUTS

In addition to the quality indicators for MCMC output mentioned in Section 2.2.3, Stan reports

further quantities that are specific to HMC and NUTS and are of interest to assess sampling

efficiency. These include the number of divergent transitions, the tree depth, and the (energy)

Bayesian fraction of missing (BFMI) which we briefly describe below. See the Stan reference

manual for more detailed explanations (Stan Development Team, 2019).

Integrating the Hamiltonian equations (2.8) in Section 2.2.2 analytically would preserve the

value of the Hamiltonian H(θ,ρ); however, since analytical integration is not possible for

most problems of interest, the equations are numerically integrated which leads to numerical

errors. If the difference between H(θ,ρ) of the starting point and H(θ∗,ρ∗) of the proposed

point at the end of the simulated Hamiltonian trajectory becomes too large (where the default

threshold is 103), Stan will classify the starting point as one of a divergent transition. If many

of such starting points of divergent transitions are concentrated within a region of parameter
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space, this may be an indication that the curvature of the posterior is very high in this region

and that the step size ε is too large to adequately explore this region.

As briefly mentioned in Section 2.2.2, NUTS builds up a binary tree when determining the

number L of leapfrog steps to take before a U-turn would occur. Stan records the depth of

this tree for each iteration and thus also the corresponding starting point. Moreover, the user

can specify a maximum tree depth d to avoid long execution times due too many steps; as

at most 2d−1 leapfrog steps are taken in each iteration. The default value is d = 10. Hitting

this maximum means that NUTS is terminated prematurely (i. e. more steps would have been

possible before a U-turn) and Stan counts how many times this occurs. Reasons for having to

take many steps may be a too small step size due to poor adaptation to a posterior of varying

curvature or targeting a very high acceptance rate.

According to Betancourt et al. (2015), the BFMI indicates how well the energy sets of the

Hamiltonian are explored. Let E = H(θ,ρ) be the total energy, π(E|ρ) the energy transition

distribution, and π(E) the marginal energy distribution. If π(E|ρ) is substantially more narrow

than π(E), then a HMC chain may not be able to completely explore the tails of the target

distribution. The BFMI quantifies the mismatch between the two distributions and is defined

and approximated by

BFMI :=
Eπ
[
V arπE|ρ [E|ρ]

]
V arπE [E]

≈
∑N

n=1(En − En−1)2∑N
n=0(En − Ē)2

=: B̂FMI.

The Stan development team recommends to ensure that the value of B̂FMI is greater

than 0.2.

A.3.2 Stan specific diagnostics for the sampling output for the translation

kinetics models

Here, we summarize the Stan specific diagnostics described in A.3.1 for the HMC output from

Sections 5.7 and 5.8. Tables A.1 and A.2 present the statistics of the number of divergent

transition, Tables A.3 and A.4 the statistics of the number of times that the user-specified

maximal tree depth was exceeded, and Tables A.5 and A.6 that statistics of the BFMI.

Overall, all three diagnostics show poorer values for the sampling output for the SDE model

than for the ODE model. This is not surprising as we sample from a much higher-dimensional

distribution for the SDE model. We do not consider the poor diagnostics as a disadvantage

of the procedure as they provide information that we do not even have for other MCMC

algorithms and thus cannot compare to them.
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Table A.1: Statistics for the Stan diagnostic of the number of divergent transitions for the
SDE model. The 100 sampling outputs per dataset are categorized by the number of divergent
transitions that occurred after warm-up, i. e. during a total of 20,000 iterations. Hence, the
values in columns 1 to 4 sum to 100. Column 5 gives the maximum number of divergent
transitions that occurred after warm-up for one sampling output.

dataset none 1− 10 11− 100 > 100 maximum

simulated data without error 37 10 25 28 1644

simulated data with error 88 4 5 3 568

experimental data for eGFP 93 4 3 0 39

experimental data for d2eGFP 90 3 6 1 540

Table A.2: Statistics for the Stan diagnostic of the number of divergent transitions for the
ODE model. See Table A.1 for a detailed description.

dataset none 1− 10 11− 100 > 100 maximum

simulated data without error 100 0 0 0 0

simulated data with error 100 0 0 0 0

experimental data for eGFP 99 1 0 0 1

experimental data for d2eGFP 92 8 0 0 2

Table A.3: Statistics for the Stan diagnostic of the number of times that the maximal tree
depth was exceeded for the SDE model. The user-defined maximal tree depth was set to a
value of 15 prior to sampling. The 100 sampling outputs per dataset are categorized by the
number of times that the maximal tree depth was exceeded after warm-up, i. e. during a total
of 20,000 iterations. Hence, the values in columns 1 to 4 sum to 100. Column 5 gives the
maximum number of times that the maximal tree depth was exceeded after warm-up for one
sampling output.

dataset none 1− 10 11− 100 > 100 maximum

simulated data without error 99 0 1 0 11

simulated data with error 10 26 21 43 7126

experimental data for eGFP 25 19 31 25 1976

experimental data for d2eGFP 95 2 3 0 59

147



Appendix A. Appendix

Table A.4: Statistics for the Stan diagnostic of the number of times that the maximal tree
depth was exceeded for the ODE model. See Table A.3 for a detailed description.

dataset none 1− 10 11− 100 > 100 maximum

simulated data without error 91 6 0 3 2500

simulated data with error 96 0 0 4 2500

experimental data for eGFP 97 0 0 3 2500

experimental data for d2eGFP 100 0 0 0 0

Table A.5: Statistics for the Stan diagnostic B̂FMI for the SDE model. Each of the 100
sampling outputs per dataset consists of 8 HMC chains for each of which B̂FMI is calculated.
Then, we determine the minimum and the mean over the 8 chains. The table presents the
mean and the standard deviation (s.d.) of these minima and means aggregated over the 100
sampling outputs per dataset.

dataset
mean of s.d. of mean of s.d. of

minima minima means means

simulated data without error 0.03 0.01 0.05 0.01

simulated data with error 0.05 0.02 0.07 0.01

experimental data for eGFP 0.05 0.04 0.08 0.04

experimental data for d2eGFP 0.07 0.05 0.09 0.05

Table A.6: Statistics for the Stan diagnostic B̂FMI for the ODE model. See Table A.5 for
a detailed description.

dataset
mean of s.d. of mean of s.d. of

minima minima means means

simulated data without error 0.95 0.19 1.03 0.06

simulated data with error 0.95 0.15 1.03 0.06

experimental data for eGFP 0.94 0.19 1.03 0.05

experimental data for d2eGFP 0.90 0.23 1.02 0.05
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A.3.3 Additional figures of the estimation results

Results for simulated data

Figures A.5, A.6, A.7, and A.8 show the same sampling output (the four posterior samples

for the two simulated data sets depicted in Figure 5.6) as Figures 5.7, 5.8, 5.10, and 5.11 in

Section 5.7; however here, the results are not compared between the ODE and the SDE model

but between simulated data with and without measurement error.

For the SDE, we see in Figure A.5 that the occurrence of measurement error substantially

impacts the distribution of the posterior sample with respect to the parameters θ1 and θ3.

The shape of the two dimensional projection changes from an elliptic shape to a banana-like

shape. Especially for θ3, the 95% CI and the range of values in the posterior sample increase

a lot and the true parameter value is only barely covered by the 95% CI for simulated data

with measurement error.

Figure A.5: Density estimates of the posterior samples for parameters θ1 and θ3 for the SDE
model given simulated data without (blue, lower triangle) and with (red, upper triangle) mea-
surement error. Diagonal panels: Marginal densities for the respective parameter and boxplots
showing the 95% CI as box, the range of the sample as whiskers, and the median as thick
black line. Off-diagonal panels: Smoothed scatter plots of the two-dimensional projections of
the samples where darker hues signify higher density values. The dotted lines represent the
true parameter values that were used to simulate the data.
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Similarly for the parameters θ2, m0, scale and their products, Figure A.6 shows that there is

quite a difference between the distributions of the posterior samples for the simulated data

without and with measurement error. In particular for the parameters scale and θ2m0 which

we consider to be identifiable, the 95% CIs increase substantially for data with measurement

error, and also the appearance of the two-dimensional projections with respect to these two

parameters changes a lot, from a slightly bent ellipse to a clear banana shape. For the

product θ2m0scale, the dispersion of the posterior samples changes only slightly which is

apparent from the similar lengths of the 95% CIs in Figure A.6 and also from the similar

c.v. in Tables 5.2 and 5.5 (0.083 for data without measurement error and 0.093 for data

with measurement error). The location of the sample measured e. g. by the median slightly

shifts away from the true parameter value for the data with measurement error; however, the

true value is still included in the 95% CIs. Only for parameter m0 for which we also did not

see much difference in the posterior samples for the ODE vs. SDE model, the occurrence of

measurement error does not seem to affect the posterior sample much. For the remaining

parameters θ2, θ2scale, and m0scale which we do not consider to be identifiable but for which

the 95% CIs of the posterior samples for the SDE model were clearly more narrow than the

95% CIs of the corresponding posterior sample for the ODE model, the 95% CIs and ranges of

values of the posterior sample for the SDE model for data with measurement error are broader

than for data without measurement error.

For the ODE model, Figures A.7 and A.8 show that there is hardly any difference for most of

the parameters between the posterior sample for the data without and with measurement error

since the majority of the parameters are not identifiable anyway. For the parameters offset

and t0, there is a slight difference. For the measurement error parameter σ, the posterior

sample consists of higher values for data with measurement error as expected. Note that for

both simulated datasets, the range of the posterior sample does not include the true parameter

value for σ. Finally for the product θ2m0scale, the dispersion of the posterior sample increases

only slightly for data with measurement error and the location of the sample shifts away from

the true parameter value. Also for this parameter, the range of the posterior sample does not

include the true parameter value for both simulated datasets.

Figure A.9 shows the statistics of the posterior samples for the simulated data without and

with measurement error aggregated over 100 simulated trajectories. It visualizes the last

two columns of Tables 5.3 and 5.6 and compares the results of the posterior samples for

the simulated data without to those with measurement error separately for the SDE and the

ODE model within each plot, instead of comparing the two model types separately for each

kind of data as in Figures 5.9 and 5.12.
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Figure A.6: Density estimates of the posterior samples for parameters θ2, m0, scale, and
their products for the SDE model given simulated data without (blue, lower triangle) and
with (red, upper triangle) measurement error. Diagonal panels: Marginal densities for the
respective parameter and boxplots showing the 95% CI as box, the range of the sample as
whiskers, and the median as thick black line. Off-diagonal panels: Smoothed scatter plots of
the two-dimensional projections of the samples where darker hues signify higher density values.
The dotted lines represent the true parameter values that were used to simulate the data.
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Figure A.7: Density estimates of the posterior samples for parameters θ1 and θ3 for the ODE
model given simulated data without (green, lower triangle) and with (red, upper triangle) mea-
surement error. Diagonal panels: Marginal densities for the respective parameter and boxplots
showing the 95% CI as box, the range of the sample as whiskers, and the median as thick
black line. Off-diagonal panels: Smoothed scatter plots of the two-dimensional projections of
the samples where darker hues signify higher density values. The dotted lines represent the
true parameter values that were used to simulate the data. For the parameter σ, the dotted
line only represents the true value for the data with measurement error. For the data without
measurement error, σ is equal to 0.
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Figure A.8: Density estimates of the posterior samples for parameters θ2, m0, scale, and
their products for the ODE model given simulated data without (green, lower triangle) and
with (red, upper triangle) measurement error. Diagonal panels: Marginal densities for the
respective parameter and boxplots showing the 95% CI as box, the range of the sample as
whiskers, and the median as thick black line. Off-diagonal panels: Smoothed scatter plots of
the two-dimensional projections of the samples where darker hues signify higher density values.
The dotted lines represent the true parameter values that were used to simulate the data.
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Figure A.9: Statistics of posterior samples for the simulated data without and with mea-
surement error aggregated over 100 simulated trajectories. The desirable region of value
combinations is in the bottom right corner of each graph.
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J. O. (2014). Single-cell mRNA transfection studies: delivery, kinetics and statistics by

numbers. Nanomedicine, 10(4), 679–688.
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Abbreviations

ABC approximate Bayesian computation.

BFMI Bayesian fraction of missing.

BKM biochemical kinetic model.

c.v. coefficient of variation.

CI credible interval.

CIR Cox-Ingersoll-Ross.

CLE chemical Langevin equation.

CME chemical master equation.

DBM diffusion bridge Milstein.

ESS effective sample size.

GBM geometric Brownian motion.

GFP green fluorescence protein.

HMC Hamiltonian Monte Carlo.

HPDI highest probability density interval.

LC left-conditioned.

LNA linear noise approximation.



List of abbreviations

MB modified bridge.

MCMC Markov chain Monte Carlo.

MJP Markov jump process.

mRNA messenger ribonucleic acid.

NUTS No-U-Turn Sampler.

ODE ordinary differential equation.

RMSE root mean square error.

RRE reaction rate equation.

s.d. standard deviation.

SDE stochastic differential equation.

SSA stochastic simulation algorithm.
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Symbols

N The natural numbers.

N0 The non-negative integers, i. e. N0 = N ∪ {0}.
Z The integers.

R The real numbers.

R+ The non-negative real numbers, i. e. R+ = {x ∈ R |x ≥ 0}.
R∗+ The positive real numbers, i. e. R∗+ = {x ∈ R |x > 0}.

∨ The max operator, i. e. a ∨ b := max(a, b) for a, b ∈ R.

a,A Vectors and matrices are denoted by bold symbols.

aTr,ATr The transpose of vector a and matrix A, respectively.

Id The d× d-dimensional identity matrix.

U(a, b) The uniform distribution on the interval [a, b] ⊂ R.

Exp(λ) The exponential distribution with intensity parameter λ ∈ R∗+.

Po(λ) The Poisson distribution with parameter λ ∈ R∗+.

φ(· |µ, η2) The density of the normal distribution with mean µ and variance η2.

N (µ, η2) The normal distribution with mean µ and variance η2.

N≥a(µ, η2) The truncated normal distribution with mean µ and variance η2 truncated

from below by a.

LN (µ, η2) The lognormal distribution, i.e. X ∼ LN (µ, η2) ⇔ log(X) ∼ N (µ, η2).
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