
Technische Universität München

Institute of Flight System Dynamics

Nonlinear Model Predictive Control for an

Autonomous Racecar

–

Nichtlineare modelprädiktive Regelung für ein autonomes Rennfahrzeug

Masterarbeit

Author: Francisco Sevilla

Matriculation Number: 03621157

Supervisors: Benedikt Grüter, M.Sc.

 Prof. Dr.-Ing. Florian Holzapfel

July 2018

 Statutory Declaration

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page iii

Statutory Declaration

I, Francisco Sevilla, declare on oath towards the Institute of Flight System Dynamics of

Technische Universität München, that I have prepared the present Master thesis

independently and with the aid of nothing but the resources listed in the bibliography.

This thesis has neither as-is nor similarly been submitted to any other university.

Garching, 31 July 2018

Francisco Sevilla

 Abstract

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page v

Kurzfassung

In diesem Projekt wurde ein NMPC-Algorithmus (Nonlinear Model Predictive Control) für das

Rapid-Prototyping dieser Art von Reglern in einer Simulationsumgebung programmiert.

Basierend auf FALCON.m, die Optimalsteuerungstoolbox für MATLAB, entwickelt am Institut

für Flugsystemdynamik der Technischen Universität München, kann der in diesem Projekt

implementierte Algorithmus eine generische Zielfunktion annehmen und jedes dynamische

System verwenden, das mit differential-algebraischen Gleichungen modelliert ist. Während der

Entwicklung des NMPC-Algorithmus wurden in Simulink verschiedene dynamische Systeme

mit steigendem Komplexitätsgrad modelliert, um den Controller zu testen. Als Beispiel für ein

hochkomplexes System wurde der Regler für das zeitoptimale Manövrieren eines autonomen

Formula-Student-Rennwagens getestet. In der Simulation konnte der NMPC-Regler eine

vergleichbare Rundenzeit erreichen wie das reale Fahrzeug, das von einem menschlichen

Fahrer auf der gleichen Strecke gesteuert wurde.

Abstract

In this project, a Nonlinear Model Predictive Control (NMPC) algorithm was programmed for

rapid-prototyping of this kind of controllers in a simulation environment. Based on FALCON.m,

the Optimal Control toolbox for MATLAB developed at the Institute for Flight System Dynamics

of the Technical University of Munich, the algorithm implemented in this project can take a

generic objective function and use any dynamic system modelled with differential algebraic

equations. During the development of the NMPC algorithm, different dynamic systems with

increasing levels of complexity were modelled in Simulink to test the controller. As an example

of a highly complex system, the controller was tested for time-optimal maneuvering of an

autonomous Formula Student racecar. In simulation, the NMPC controller was able to achieve

a comparable laptime to that of the real-life vehicle piloted by a human driver on the same

track.

 Table of Contents

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page vii

Table of Contents

List of Figures .. ix

List of Tables ... xi

Table of Acronyms .. xiii

1 Introduction ...1

1.1 Motivation ...1

1.2 State of the art ..4

1.2.1 Autonomous Vehicles ..4

1.2.2 Overview of NMPC Strategies ...6

1.2.3 NMPC in Automotive Applications ...7

1.2.4 Optimal Control in Motorsport ..8

1.3 Goals and Contribution ...9

1.4 Structure of the thesis ..10

2 Nonlinear Model Predictive Control ...11

2.1 The Optimization Problem ..11

2.1.1 FALCON.m ...13

2.1.2 Discretization and Algorithmic Differentiation...17

2.1.3 Shift – Online Initialization ...19

2.1.4 Stability ...20

2.2 Newton-Type Optimization ...20

2.2.1 Equality Constrained Optimization ...21

2.2.2 Handling Inequality Constraints ...22

2.2.3 About the Hessian ...23

2.2.4 Survey of Optimization Solvers ...26

2.2.5 Condensing ...28

2.3 Parametric Nonlinear Optimization ...28

2.3.1 Sensitivity Analysis ..28

2.3.2 Predictor-Corrector Path-Following Methods ...29

2.3.3 Parametric Embedding ..31

2.4 The Real-Time Iteration Scheme ..32

3 Preliminary Tests...36

3.1 1-DoF Cart ...36

3.1.1 Modelling ...36

3.1.2 Results ..36

3.2 Inverted Pendulum ...41

List of Figures

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page viii Francisco Sevilla

3.2.1 Modelling ...41

3.2.2 Results ..43

3.3 Double Inverted Pendulum ...51

3.3.1 Modelling ...51

 ..53

3.3.2 Results ..55

3.4 Point Mass on Formula Student Track ..58

3.4.1 Modelling ...58

3.4.2 Results ..59

3.5 Summary ..66

4 Autonomous Racecar ..69

4.1 Modelling ..69

4.1.1 Aerodynamic Forces ...70

4.1.2 Wheel Loads ...70

4.1.3 Tire Forces ..72

4.1.4 Wheel Dynamics, Traction Control and Powertrain..76

4.1.5 Longitudinal and Lateral Dynamics ..77

4.1.6 Track Model ..78

4.1.7 Summary ...80

4.2 Results ...82

5 Conclusions and perspective ...88

5.1 Summary ..88

5.2 Future work ..88

6 References ..90

Appendix A : NMPC Implementation .. i

Appendix B : About the Formula Student car – eb016 .. vi

Appendix C : Track Import ... vii

 List of Figures

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page ix

List of Figures

Figure 1-1: Roborace – Hardware Overview [15] ...2

Figure 1-2: Formula Student car of the Technical University of Munich's team, TUfast3

Figure 1-3: Visualization of the NMPC of the Formula Student team of the ETH Zurich, AMZ

[22] ...4

Figure 2-1: Representation of the NMPC algorithm [28] ..12

Figure 2-2: Multiple shooting vs. collocation ..14

Figure 2-3: Multiple shooting defects ...15

Figure 2-4: Visualization of predictor-corrector path-following methods [36].31

Figure 2-5: Preparation and Feedback phases of the RTI scheme [36]33

Figure 3-1: 1-DoF Cart – Schematic ..36

Figure 3-2: 1-DoF Cart – Trapezoidal discretization without approach (2-20)37

Figure 3-3: 1-DoF Cart – Trapezoidal discretization with approach (2-20)38

Figure 3-4: 1-DoF Cart – Nonlinear function 𝒇(𝝁) ..39

Figure 3-5: 1-DoF Cart – Trapezoidal discretization for nonlinear input function39

Figure 3-6: 1-DoF Cart – ERK4 discretization for nonlinear input function40

Figure 3-7: 1-DoF Cart – Schematic with model mismatch ..40

Figure 3-8: 1-DoF Cart – ERK4 discretization with model mismatch41

Figure 3-9: Inverted pendulum – Schematic ..42

Figure 3-10: Inverted pendulum – RTI vs. converged full problem, optimization time43

Figure 3-11: Inverted pendulum – RTI vs. converged full OCP, states44

Figure 3-12: Inverted pendulum – RTI for non-stationary and infeasible setpoints46

Figure 3-13: Inverted pendulum – IPOPT (left) vs. qpDUNES (right)47

Figure 3-14: Inverted pendulum – External perturbation ..48

Figure 3-15: Inverted pendulum – Gauss-Newton Hessian (constant matrix)50

Figure 3-16: Inverted pendulum – Exact Hessian with 𝐩𝐫𝐨𝐣𝐞𝐜𝐭 regularization (at swing-up) 50

Figure 3-17: Inverted pendulum – BFGS Hessian with damping approach initialized with

identity matrix (at swing-up) ..50

Figure 3-18: Inverted pendulum – BFGS Hessian with damping approach initialized with

Gauss-Newton approximation (at swing-up) ...50

Figure 3-19: Inverted pendulum – Exact Hessian with project regularization (at perturbation)

… ...50

Figure 3-20: Inverted pendulum – BFGS Hessian with damping approach initialized with

Gauss Newton approximation (at perturbation)...50

Figure 3-21: Double inverted pendulum – Schematic ...51

Figure 3-22: Double inverted pendulum – Schematic for NMPC model51

https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492239
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492240
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492240
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492247
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492248
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492249
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492251
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492253
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492255
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492256
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492257
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492258
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492259
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492260
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492261
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492262
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492262
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492263
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492263
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492264
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492264
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492265
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492265

List of Figures

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page x Francisco Sevilla

Figure 3-23: Double inverted pendulum – ERK4 discretization ..53

Figure 3-24: Double inverted pendulum – Trapezoidal discretization54

Figure 3-25: Double inverted pendulum – External perturbation with trapezoidal discretization

 ...56

Figure 3-26: Double inverted pendulum – External perturbation with ERK4 discretization ...57

Figure 3-27: Point Mass – Schematic ..58

Figure 3-28: Point mass – Modification on the shift procedure ...61

Figure 3-29: Point mass – Exact Hessian with and without second derivatives of the

constraints ..62

Figure 3-30: Point mass – BFGS Hessian with and without second derivatives of the

constraints ..63

Figure 3-31: Point mass – Exact Hessian compared to Constant Hessian64

Figure 3-32: Point mass – Forward Euler compared to ERK4 with constant Hessian65

Figure 4-1: Racecar modelling – Coordinate system and states ..69

Figure 4-2: Tire forces – TMeasy parameters [74] ...74

Figure 4-3: Racecar model – Definition of track values ..79

Figure 4-4: Racecar – NMPC vs. fastest Driven Lap..84

Figure 4-5: Racecar – NMPC vs. Optimal Control ...86

Figure 6-1: Track import – 2D coordinates .. viii

Figure 6-2: Track import – Course angle .. ix

https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492268
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492269
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492270
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492270
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492271
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492273
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492274
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492274
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492275
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492275
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492276
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492277
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492278
https://d.docs.live.net/ab70a902c0010ace/Master%20Thesis%20-%20NMPC/Masterarbeit.docx#_Toc523492282

 List of Tables

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page xi

List of Tables

Table 1-1: Levels of Driving Automation for on-road vehicles [22] ...5

Table 3-1: Summary of preliminary tests on tracking NMPC applications66

Table 3-2: Summary of preliminary tests on tracking NMPC applications (continued)67

Table 3-3: Summary of preliminary tests on economic NMPC applications68

Table 4-1: Racecar models – Comparison of simulation model and NMPC model...............80

Table 4-2: Racecar NMC model – States and controls ..81

Table 4-3: Racecar NMC model – Outputs ..82

Table 6-1: Racecar NMC model – States and corresponding sensor vi

 Table of Acronyms

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page xiii

Table of Acronyms

Acronym Description

AD Autonomous Driving

ADAS Advanced Driver Assistance Systems

ADS Automated Driving System

DAE Differential Algebraic Equation

DDT Dynamic Driving Task

ESP Electronic Stability Program

ERK4 Explicit 4th-order Runge-Kutta method

FSG Formula Student Germany

MPC (Linear) Model Predictive Control

NMPC Nonlinear Model Predictive Control

OC Optimal Control

OCP Optimal Control Problem

ODD Operational Design Domain

QP Quadratic Programming

RTI Real-Time Iteration scheme

SQP Sequential Quadratic Programming

TUM Technical University of Munich

ZOH Zero-Order Hold

 1 Introduction

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 1 / 93

1 Introduction

Autonomous cars have been gaining more and more attention in the last years, with many

automotive companies investing in their research [1]. Now, there are even racing competitions

introducing autonomous driving into motorsports. One of them is Roborace [2], which is

currently in the development and testing phase. Another one is Formula Student Driverless

(FSD), which held its first event at the Formula Student Germany (FSG) in August 2017 [3, 4].

Both of these competitions require cars to maneuver autonomously around a track by steering

the tires and by driving or braking each wheel independently.

One of the main difficulties of autonomous driving is how to control the vehicle dynamics of the

car by steering, accelerating and braking in real-time so that the car follows a desired trajectory

[5]. To maintain the desired path, it is not only necessary to control the car at each given time

point, but the controller should also look ahead into the path, particularly at higher speeds [6].

This problem becomes even harder in motorsports where the lap-time should be minimized,

and the desired path might not be given per se, but rather as left and right boundaries that

allow to optimize the path between them. Nonlinear model predictive control (NMPC) is a very

promising method to tackle this challenge.

The current chapter will provide a broader motivation for the project, as well as the state of the

art concerning it. Also, the goals and contributions of this thesis will be addressed, and the last

section explains how this document is structured.

1.1 Motivation

Self-driving technology has become an important topic for the automotive industry in recent

years. This technology is expected to open new markets, create new products and reshape

the automotive industry and its relationship to other businesses [7]. Some of the benefits that

autonomous cars can bring with them include [8, 9]:

• Road safety and reduction of car crashes: A downtrend in the number of crashes

and in the severity of crashes can already be seen with the implementation of driver

assistance systems like the Electronic Stability Program (ESP) and the Anti-Lock

Brakes System (ABS). As human error is the cause for 90% of car crashes, fully

autonomous vehicles could prevent many of the crashes nowadays.

• Congestion: Autonomous vehicles can accelerate and brake automatically to maintain

a constant speed and constant distance to the vehicle in front. This not only reduces

traffic, but also increases the capacity of the road, since the distance between cars can

be kept to a minimum. Vehicles connected between each other and to the traffic system

have also a big potential to decrease inner-city congestion. Furthermore, a reduction

in crashes would also reduce traffic jams.

• Utilization of idle time: While riding in an autonomous vehicle, passengers could

engage in other productive activities. Römer et al. [7] estimate that autonomous

vehicles could free up about 1.9 trillion minutes of idle time by 2030.

• Land use: Parking spaces are expected to decrease in number and size, especially in

urban areas. Instead, spaces for pick-up and drop-off of passengers would be

Formula#_CTVL00150b12777c441400d9825a8b835990117
Recent#_CTVL00192b3a6a7c495496685a49459937f4e03

1 Introduction

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 2 / 93 Francisco Sevilla

necessary, but most of the freed-up space could be used for other purposes, for

example as green-areas.

• Environment: Since most of the autonomous cars would be electric vehicles, their

direct emissions of greenhouse gases would be zero. Autonomous vehicles have also

a big potential to drive more efficiently than a human driver.

Most of the big automakers and automotive suppliers are investing in the research and

development of self-driving technology. This can be appreciated in the number of patents

published in this area [1]. Many of them have also either founded or acquired start-ups that

should leap the development of self-driving vehicles, mostly specializing in software. A few

examples of these companies are Autonomous Intelligent Driving (subsidiary of Audi) [10],

Zenuity (founded by Volvo and Autoliv) [11] and Elektrobit (bought by Continental in 2015) [12].

Also, businesses in the computer and semiconductor industry, e.g. Intel [13] and NVIDIA [14],

are developing both hardware and software dedicated for Advanced Driver Assistance

Systems (ADAS) and Autonomous Driving (AD).

An important aspect for bringing autonomous driving vehicles into the streets will be consumer

acceptance. A way to foster mass acceptance of these technologies could be through

motorsports: showing the public that driverless vehicles can work under extreme conditions at

high speeds could increase their confidence in this technology. Motorsport events could also

boost the technological developments in this field.

Figure 1-1: Roborace – Hardware Overview [15]

An example of an autonomous racing series is carried out by Roborace. This is a company

that is creating one of the first motorsport events for self-driving vehicles [2], which will go with

the same name as the company. Roborace offers a full-size All-Wheel-Driven electric vehicle

as a platform for teams to deploy their self-driving software and race around a track. Currently,

the company has been presenting their development car at the FIA’s Formula E races, where

the car drives autonomously, sometimes comparing the lap-times that the software achieved

to ones set by a professional driver on the same vehicle.

 1 Introduction

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 3 / 93

Another motorsport event for autonomous cars, the Formula Student Driverless [3, 4]. As the

name suggests, this competition is conceived for students. It allows students to design and

build full scale racing cars and run them in international events against other universities. In

this thesis, the racecar simulation presented in chapter 4 uses a model and parameters that

correspond to a Formula Student vehicle.

The Formula Student Driverless competitions are composed of several disciplines that are

divided into two categories: the dynamic and the static events. The dynamic disciplines include

Acceleration, which is a 75 meters straight line, Skidpad, a figure 8 where the maximum lateral

acceleration is tested, Trackdrive, a stint around a track set up with cones, and Efficiency,

where the energy-use during the Trackdrive is scored. In every discipline, each of the

autonomous cars drives alone on the track and the teams get points based on their lap-times.

In the static disciplines, the teams have the chance to present a Business Plan and a Cost

Report for the car, as well as an Engineering Design and an Autonomous Design, where the

teams show their ideas, calculations and simulations, and get judged by experts in the field

[16].

In 2017, in the first Formula Student Driverless event, the team of the Swiss Federal Institute

of Technology in Zurich (ETH Zürich) completed the competition successfully. For motion

planning and control, this team used software from embotech AG [17], a swiss start-up that

specializes in embedded Nonlinear Model Predictive Control [18]. The following figure shows

a plot where the prediction horizon of the NMPC algorithm can be appreciated (right) next to

camera footage of the team’s car driving on a typical Formula Student track (left) [19]. This

example shows a successful implementation of a Nonlinear Model Predictive Control for the

same application as in this project. However, the algorithm implemented in this thesis differs

from the one provided by embotech AG.

Figure 1-2: Formula Student car of the Technical University of Munich's team, TUfast

Formula#_CTVL00150b12777c441400d9825a8b835990117

1 Introduction

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 4 / 93 Francisco Sevilla

As described in [5] and [6], motion planning and motion control are two of the key technologies

that make autonomous driving possible. Planning is the decision-making process used to

calculate the trajectory that brings the vehicle from a start location to an end location. Control

refers to the actions that are taken by the vehicle’s actuators to follow the planned trajectory.

These two software components can be combined into one algorithm using, for example,

Model Predictive Control.

Thus, for this project, a Nonlinear Model Predictive Control (NMPC) algorithm was

implemented in MATLAB / Simulink to control a simulated Formula Student racecar. This

implementation is based on the MATLAB toolbox for Optimal Control, FALCON.m, which was

developed at the institute for Flight System Dynamics of the Technical University of Munich.

Furthermore, the vehicle for which this controller was developed has the possibility to drive

and brake each tire independently, see Appendix B. Therefore, since NMPC is able to handle

systems with multiple inputs and complex constraints [20], it provides a good solution for this

challenge.

1.2 State of the art

In this section, the state of the art concerning topics relevant to this thesis are presented.

Subsection 1.2.1 gives an overview of the field of Autonomous Vehicles, introducing the six

levels of Autonomous Driving and then presenting the different elements that compose an

autonomous driving system. The second subsection enlists and explains several strategies of

Nonlinear Model Predictive Control, later deriving a justification for the strategy that was

implemented in this project, the Real-Time Iteration scheme. In 1.2.3, some examples of

successful projects that employed NMPC in the automotive industry are introduced, also

presenting applications that used RTI. Subsection 1.2.4 briefly presents two applications

Optimal Control in motorsports, describing their relevance for this project.

1.2.1 Autonomous Vehicles

The Society of Automotive Engineers, SAE International, introduced a new standard, SAE

J3016 [21], for autonomous cars in 2014. This standard, called “Taxonomy and Definitions for

Terms Related to On-Road Motor Vehicle Automated Driving Systems”, introduces new

terminology for this field as well as the six levels of driving automation. Many of these

definitions and their acronyms have already been widely adopted in the automotive industry

and the research community. The most important include:

Figure 1-3: Visualization of the NMPC of the Formula Student team of the ETH Zurich, AMZ [22]

 1 Introduction

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 5 / 93

• Dynamic Driving Task (DDT): Operational and tactical functions required to operate

a vehicle on the road, excluding the selection and scheduling of destinations.

• Operational Design Domain (ODD): Operating conditions under which an

autonomous system is designed to function, for example environmental, geographical

or time-of-day restrictions.

• Minimal Risk Condition: Condition to which a vehicle may be brought to reduce the

risk of a crash when a DDT cannot be completed.

• Automated Driving System (ADS): Software and hardware that are together able to

perform an entire DDT. This term is used to describe levels 3 to 5 of driving automation

(see Table 1-1).

• DDT Fallback: Response of an ADS to reach a minimal risk condition due to a system

failure or exit of the ODD.

The six levels of driving automation introduced in the SAE J3016 standard are summarized in

Table 1-1. They go from level 0, which corresponds to no automation, to level 5, which is the

level at which the vehicle can complete all driving tasks entirely on its own. The system

required in a Formula Student car to be able to complete the competition must achieve level

4, as there cannot be a human driver in the car to monitor the environment or to react in case

of failure. However, the ODD is limited to driving on a track with specific characteristics [16].

Table 1-1: Levels of Driving Automation for on-road vehicles [22]

An Automated Driving System is composed of multiple software elements. Cheng [5] divides

these into 4 categories:

• Environment Perception and Modelling: Collect data from various sensors (camera,

lidar, radar, etc.) and extract features like colors, edges and contours. These are then

classified into objects, e.g. lanes, signs, vehicles and pedestrians. This software

1 Introduction

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 6 / 93 Francisco Sevilla

component should also be able to track the objects it detects and, based on their

movements, predict their future position to avoid collisions.

• Localization and Map Building: Based on the environment model and other

information like geographic maps, create a local map around the vehicle and locate

and track the vehicle’s position in that map. A class of algorithms that combines these

functions is called SLAM, which stands for Simultaneous Localization and Mapping.

• Path Planning and Decision-Making: Compute a trajectory from an initial location to

a goal location avoiding both static and dynamic obstacles. Since the environment and

the position of the vehicle in it are continuously changing, the path planning algorithm

must constantly adapt to the new context.

• Motion Control: Control the vehicle’s actuators in order to follow the trajectory

calculated by the path planning algorithm. The motion control can be divided into two

categories: longitudinal, corresponding to velocity and distance, and lateral,

corresponding to lane keeping. However, the longitudinal and lateral motions are

coupled through the characteristics of the tire and of the vehicle. Therefore, more

advanced controllers handle the longitudinal and lateral dynamics simultaneously.

The focus of this thesis lies in path planning and motion control of an autonomous racecar

using Nonlinear Model Predictive Control. NMPC is able to control both the longitudinal and

the lateral dynamics of the car collectively (as shown in [23–27]), as well as to handle nonlinear

constraints on the actuators and on the vehicle state. In the following subsection, different

NMPC algorithms are introduced and compared.

1.2.2 Overview of NMPC Strategies

Model predictive control (MPC) is a type of feedback control that relies on a model of the

system to predict its behavior, which can be used to optimize a cost function over a finite time

horizon, as in an optimal control problem [28]. This type of controller is mostly used for

trajectory tracking and stabilization of the system, and it can efficiently handle actuator

saturations and other operational constraints. These features have made MPC a popular

solution for slow systems in the process industry since the late 1970s. Nevertheless,

applications for which a linear model is not accurate enough require the use of Nonlinear Model

Predictive Control (NMPC). Although NMPC poses many challenges in terms of computational

resources, especially for fast dynamic systems, this type of controller has been successfully

implemented in many applications similar to this project [23–27, 29–32], and is expected to

become more and more common [33, 34].

The basic idea of NMPC is to solve a nonlinear optimal control problem at each sampling

iteration (see chapter 2 for a detailed explanation). Since solving this is a difficult task, there

have been several proposals of techniques to perform these computations more efficiently.

Camacho and Bordons introduce several techniques in [34] like Suboptimal NMPC, Use of

Short Horizons, Feedback Linearization, etc. Furthermore, the NMPC algorithms can be

categorized according to the method they use to solve the underlaying optimal control problem

(sequentially/single-shooting or simultaneously/multiple-shooting) [35] or according to the type

of solver they use for the optimization (interior-point or active-set) [36].

The so-called Real-Time Iteration scheme (RTI), presented in [33, 36–38], is an approach for

NMPC that has been applied to many different fields. This method performs a Sequential

Quadratic Programming (SQP) iteration at every sampling timestep, dividing the computation

into a “Preparation Phase” and a “Feedback Phase” in order to include the most recent sensor

LTV-MPC#_CTVL001b60087c56f9c4ff2b19a1a4ed1e995ef
LTV-MPC#_CTVL001b60087c56f9c4ff2b19a1a4ed1e995ef
Design#_CTVL0010f744996bee844daac4ce57a31a5d76d
Predictive#_CTVL001b4b7cf84c63b48679f0e781099ee5095
Nonlinear#_CTVL001581f273f0d894e08821f8658964e20c3
A#_CTVL0016995e73b3f6648b89ae9fd4edad9c8ad

 1 Introduction

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 7 / 93

measurements into the optimization. Furthermore, it uses initial value embedding (see section

0) to correct the difference between the predicted state and the actual state of the system. This

algorithm has been implemented into the ACADO Toolkit [39], which automatically generates

C-code for a generic system using qpOASES [40] as quadratic problem solver.

The Multistep, Newton-Type Control Strategy [41] of Li and Biegler, proposed in 1989, also

performs one Quadratic Programming (QP) step every sampling iteration. It is based, however,

in a sequential discretization of the optimal control problem and assumes no model mismatch.

This means that the actual state of the system is not incorporated into the algorithm, though

the authors propose using parameter estimation to compensate for disturbances and

uncertainties.

Another approach is the Continuation/GMRES Method proposed by Ohtsuka [42], which

likewise takes only one optimization step at every sampling time and uses sequential

discretization. Nevertheless, instead of using an SQP-method, it takes the inequality

constraints into account by inserting a penalty term into the cost function (similar to an interior-

point method). A variation of this method is presented in [43], where multiple-shooting

discretization is used.

The Advanced Step Controller by Zavala and Biegler [44] is another algorithm for NMPC. The

basic idea of this algorithm is to solve the optimal control problem of a future predicted state

of the system till convergence, once the solution is ready, the predicted state is compared to

the actual state and the solution is corrected by using sensitivity analysis methods.

In this project, the Real-Time Iteration scheme (RTI) was implemented. The reason for this

were the many applications for which the RTI has been employed, especially the ones sharing

similarities with this project [24, 26, 29–31]. Also, the RTI algorithm has been explained in

detail in multiple sources, for example in [33] and [36–38], and is fairly simple to implement

using FALCON.m as starting point. The structure of this algorithm is explained in section 2.4.

The optimization problem divides the NMPC algorithm into two further categories: Tracking

NMPC and Economic NMPC. The most common use of NMPC is, as stated before, tracking

of a predefined trajectory. In this case, the objective function of the optimization penalizes the

“distance” of the system’s state vector to the state vector of the reference trajectory. Economic

NMPC generalizes the optimization problem, where the objective function can, in principle, be

any quantity that relates to the problem [28]. Time-optimal driving of an autonomous racecar

is an example of economic NMPC [31].

1.2.3 NMPC in Automotive Applications

Model Predictive Control, and also Nonlinear Model Predictive Control, have been researched

for the use in road vehicles since the early 1990’s. MPC has been applied to control several

components of the car including engine, transmission, steering, suspension, energy

management and thermal management. A survey of applications of MPC in the automotive

industry can be found in [45], which also enumerates various applications for autonomous

vehicles.

Falcone et al. [32] implemented two different tracking MPC algorithms to control the steering

of an autonomous car. For both of the algorithms, a bicycle model of the car, in which the two

tires of each axle are reduced to one to decrease the complexity of the model, and a Pacejka

tire model [46] were used. Moreover, both approaches have only the differences of the controls

(Δ𝒖) as optimization variables. The first approach takes the nonlinear differential equations as

Model#_CTVL00138e2fbc74f32401c9c63cd76019daf5c
Design#_CTVL0010f744996bee844daac4ce57a31a5d76d
Time-optimal#_CTVL001ab4b5d941aa5487bb51c0fe60fb7a1b7
A#_CTVL0016995e73b3f6648b89ae9fd4edad9c8ad

1 Introduction

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 8 / 93 Francisco Sevilla

constraints and solves a full nonlinear problem at every timestep. The second approach

linearizes the model at each sample time, using the current measurements as operating point

for the linearization. Thus, the optimization problem is reduced to a quadratic problem. Both

controllers were tested in simulation and experimentally.

The approach that solves the nonlinear problem was extended with a full vehicle model with

wheel dynamics in [23] to also control braking. This controller was also tested in simulation.

For experimental tests, the authors modified the controller and used a suboptimal MPC, in

which the nonlinear vehicle model is linearized successively. Gao et al. [25] use the same

setup as in [23] for obstacle avoidance. Here, a reference trajectory that violates the obstacles

is given to the model. Thus, the MPC controller must find a trajectory that avoids these

obstacles, which are provided to the algorithm as an additional cost function. In this paper, the

authors suggest keeping a certain number of control inputs 𝒖 at the end of the prediction

horizon constant in order to reduce the number of optimization variables. In comparison to

shortening the horizon length, this method still predicts the behavior of the states of the system,

but for a Zero-Order Hold of the controls. They also propose a two level MPC algorithm, in

which the higher level uses a point-mass model to calculate the new trajectory that avoids the

obstacles, and the lower level performs the tracking task using the full vehicle model.

Katriniok et al. [27] extended the work in [32] to track a path reaching the traction limit of the

tires. In this paper, the authors propose to linearize the system dynamics using the predicted

states and controls as operating points. This method is very similar to the Real-Time Iteration

scheme. However, it does not divide the algorithm into a “Preparation Phase” and a “Feedback

Phase”. It also does not include the states in the optimization variables and therefore does not

use initial value embedding to correct the prediction horizon. In all the models described above,

the tire loads are assumed constant (compare to section 4.1.2).

The RTI algorithm has also been implemented for several applications regarding ground

vehicles, particularly using the ACADO Toolkit. Frasch et al. [24] used this algorithm for

obstacle avoidance of an autonomous vehicle employing a full vehicle model with wheel

dynamics and a Pacejka tire model. This model also includes tire load transfer calculated with

a first order lag. This application was extended in [26] to include a model of the vehicle

suspension, so that the model has 15 states and 6 controls in total. In [24] and [26] the

dynamics are discretized over space to simplify the handling of the obstacles.

Verschueren et al. [29–31] also used the RTI scheme to control model racecars around a track.

Here, a bicycle model was used, and the dynamics of the model were also discretized over

space. However, an economic objective function was employed in these publications, namely

to minimize the lap-time. In [29] and [30], because of the spatial reformulation of the dynamics,

the time was made a state and the optimization problem could be formulated as a tracking

NMPC. Later in [31], the authors used an actual economic NMPC and employed the exact

Hessian of the problem in their algorithm.

1.2.4 Optimal Control in Motorsport

As NMPC is based on the solution of an optimal control problem at each iteration, it may be

remarked that several authors have applied both indirect and direct methods of optimal control

to solve minimal time manoeuvring problems for race cars. Surveys of publications in this field

can be found in [47] and [48].

Time-optimal#_CTVL001ab4b5d941aa5487bb51c0fe60fb7a1b7

 1 Introduction

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 9 / 93

Geiger [47] is of particular interest for this project. In their project, the author used the optimal

control toolbox FALCON.m [49] to predict the lap times of a Formula Student racecar. In [48],

van Koutrik uses a full vehicle model, but neglects the wheel dynamics, as is done for the

NMPC in chapter 4 of this thesis. Moreover, in this project, a similar tire model was used as

the one employed by van Koutrik.

1.3 Goals and Contribution

This section presents the goals that were set for this project, as well as the limitations of the

product that resulted from it, Falcon NMPC. The contributions that this project makes are also

outlined in this section.

The primary objective of this project is to implement a Nonlinear Model Predictive Control

algorithm based on the Optimal Control Toolbox FALCON.m [49]. This control algorithm should

be tested on different models with increasing levels of complexity. The performance of the

controller should be evaluated based on conventional metrics, e.g. command response and

disturbance response. Furthermore, the NMPC algorithm should be used to control a

simulation model of an autonomous vehicle with full torque vectoring capabilities. As

secondary objective, the NMPC algorithm is to be programmed in a way that allows it to handle

a model of the generic system to be controlled and any cost function.

The NMPC implementation, which in this thesis will be referred to as Falcon NMPC, is

programmed in MATLAB and provides an interface to Simulink with a so-called S-Function.

The implementation is coded with object-oriented programming, allowing to use any optimal

control problem that can be set up in FALCON.m, as described in Appendix A. The code also

provides an interface for the user to create user-defined plots or to perform other tasks on the

controller during simulation.

For this project, the Real-Time Iteration scheme [33] was implemented. This algorithm was

tested for a cart with one degree of freedom (section 3.1), for an inverted pendulum on a cart

(section 3.2) and for a double inverted pendulum on a cart (section 3.3). The model used in

the NMPC of the double inverted pendulum includes an algebraic loop. Several experiments

to tackle this algebraic loop were performed in the corresponding section.

Furthermore, an extension of the RTI method to handle economic NMPC, as in [50] and [31],

was also implemented. In this extension, an exact Hessian of the optimal control problem is

used, assuring positive-definiteness with so-called regularization methods (see section 2.2.3).

This was evaluated with a point-mass model on a racetrack with a time-optimal objective

function (section 3.4) and was finally applied for the full vehicle model in chapter 4. In these

models, using the exact Hessian was also compared to using a constant hessian. Moreover,

several adaptations of the BFGS Hessian approximation for NMPC (see section 2.2.3) were

implemented and tested with the inverted pendulum (section 3.2) and with the point-mass

model (section 3.4).

Falcon NMPC has, however, some limitations. The code cannot be compiled, and it cannot be

autogenerated into C-code with MATLAB. Therefore, it cannot be used in a real-time target to

control an actual plant. The reason for this is the fact that object-oriented programming was

used in order to simplify the interaction for the user. To run an NMPC in an embedded system,

the algorithm, as well as some parts of FALCON.m, would have to be reprogrammed. Also,

1 Introduction

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 10 / 93 Francisco Sevilla

the S-Function of Falcon NMPC runs synchronously within the model. Thus, the simulation

waits until both the Feedback Phase and the Preparation Phase of the RTI algorithm are

completed before continuing the simulation, even if the sampling time of the NMC is larger

than the step-size of the simulation. This means that the simulation might not run in real-time,

even in cases where the timing of the controller would allow it in real-life.

Thus, Falcon NMPC can be used to quickly setup and test NMPC controllers in simulation.

The algorithm presented in this thesis to control an autonomous racecar with full torque

vectoring capabilities serves as a proof-of-concept for further development and implementation

on real-time hardware. Future work will be discussed in chapter 5.

1.4 Structure of the thesis

This thesis is organized as follows:

Chapter 1 entails an introduction to the topic. In this chapter, a motivation for the project is

presented, followed by an overview of the state of the art of different subjects that concern the

project. Afterwards, the goals and the contribution of this thesis are portrayed.

Chapter 2 presents the necessary concepts for understanding how the Nonlinear Model

Predictive Control algorithm implemented in this thesis works. As mentioned before, the

implementation of the algorithm is based on the Optimal Control toolbox FALCON.m. This

chapter also explains conceptually how this implementation was done. However, more

information can be found in Appendix A.

Chapter 3 describes some experiments that were performed during the development of this

project as well as the results and insights that were extracted from these experiments. For

these tests, four different dynamic systems were considered in simulation: a one-degree-of-

freedom point mass, an inverted pendulum on a cart, a double inverted pendulum on a cart

and a two-degrees-of-freedom point mass with a time-optimal maneuvering objective.

Chapter 4 contains the core topic of this thesis: the NMPC implementation for a time-optimal

control of an autonomous racecar. Both the simulation model and the model used for the

NMPC are described in this chapter. Afterwards, the results of the simulation are compared to

a lap driven by a human driver in the real-life racecar. The results are also compared to the

theoretical optimum calculated using an Optimal Control method.

Chapter 5 gives a brief conclusion of the project and suggests topics for future work for

extending the scope of this thesis. The literature sources used throughout this project are listed

in References.

Finally, this document includes four appendixes. Appendix A presents the object-oriented

implementation of the NMPC algorithm in MATLAB/Simulink. Appendix B describes the

hardware of the real-life vehicle modelled in chapter 4. The method applied to generate the

racing track from logged data is presented in Appendix C.

 2 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 11 / 93

2 Nonlinear Model Predictive Control

In this chapter, the main topic of this thesis, Nonlinear Model Predictive Control (NMPC), is

discussed. The chapter starts by introducing the general algorithm for NMPC and then

progressively presents the necessary aspects for the NMPC algorithm implemented in this

project, the Real-Time Iteration scheme (RTI).

NMPC is a class of controller algorithms for the feedback control of nonlinear systems. This

type of controllers is based on the online solution of an optimization problem. The most

common applications of NMPC are tracking and stabilization of the system. In this case, the

task of the optimization problem is to determine the control inputs of the system so that its

states follow a reference trajectory as good as possible. However, as will be discussed in

section 2.4, the objective function of the problem could be virtually any quantity of the system,

in which case the algorithm is known as Economic NMPC. Furthermore, as expressed in its

name, NMPC is model-based, which means that a model of the plant is needed for the internal

calculations of the algorithm.

The general implementation of a Nonlinear Model Predictive Controller in discrete time is

structured as follows [36]:

1. Get the current state of the system

2. Predict and optimize the future behavior of the system on a limited window of discrete

time steps (horizon)

3. Implement the first control input on the real actuators

4. Move the optimization horizon one step further and repeat from step 1.

This procedure is executed periodically every sampling time 𝑇𝑠. Due to the time horizon in step

2. and step 4., NMPC is also known as receding horizon control. This window contains 𝑁

samples, so that the time horizon comprises the time 𝑇𝐻 = 𝑇𝑠 ∙ (𝑁 − 1) .

It may be remarked that the version of NMPC for linear systems is simply known as Model

Predictive Control (MPC). Most MPC applications lead to a convex optimization problem.

However, the optimization problem in Nonlinear MPC applications is typically non-convex.

2.1 The Optimization Problem

As discussed before, Nonlinear Model Predictive Control is an optimization-based algorithm.

The optimization problem in this algorithm is an Optimal Control Problem (OCP) of the form:

min
𝒙,𝒗,𝒖

 ∑ 𝐿(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖)

𝑁−1

𝑖=0

+ 𝐸(𝒙𝑁)

subject to 𝒙0 − 𝒙̅𝑛 = 𝟎

𝒙𝑖+1 − 𝒇𝑑(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖) = 𝟎, 𝑖 = 0,… ,𝑁 − 1

𝒈(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖) = 𝟎, 𝑖 = 0,… ,𝑁 − 1

𝒉(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖) ≤ 𝟎, 𝑖 = 0,… ,𝑁 − 1

𝒓(𝒙𝑁) ≤ 𝟎

 (2-1)

2 Nonlinear Model Predictive Control

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 12 / 93 Francisco Sevilla

where 𝒙𝑖 denotes the differential states, 𝒗𝑖 the algebraic states and 𝒖𝑖 the controls of the

system [36]. Representing the system in this form allows to cover systems given as Differential

Algebraic Equations (DAE). Note that the system is provided in discrete form, where

𝒇𝑑(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖) contains the discrete system dynamics. Therefore, continuous time systems must

be discretized using the sampling time 𝑇𝑠, see subsection 2.1.2. The index 𝑖 denotes the values

that correspond to the same timestep, where 𝒙𝑖 is considered for the timesteps 0 to 𝑁 and 𝒗𝑖

and 𝒖𝑖 for the timesteps 0 to 𝑁 − 1.

𝐿(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖) and 𝐸(𝒙𝑁) are scalar objective functions known as stage cost and terminal cost

respectively. The functions 𝒈(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖) and 𝒉(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖) include respectively the equality and

inequality constraints of the system. Finally, the constraint 𝒓(𝒙𝑁) ≤ 𝟎 is known as terminal

constraint.

The task of the optimization problem in a NMPC is to determine the control values 𝝁(𝒙̅𝑛), also

known as feedback values, that minimize the given objective function for the current state 𝒙̅𝑛.

The constraint 𝒙0 − 𝒙̅𝑛 = 𝟎 ensures that the initial state of the prediction 𝒙0 corresponds to the

current state of the system. The following figure shows a representation of the NMPC

algorithm. The values 𝒙𝑖
∗ and 𝒖𝑖

∗ represent the optimal state and control values determined by

the optimization solver.

Figure 2-1: Representation of the NMPC algorithm [28]

In principle, there are two ways to solve an optimal control problem: using an indirect method

or a direct method. For the indirect methods, the Hamiltonian of the problem is constructed

and Pontryagin’s maximum principle is used to solve the optimization. Moreover, indirect

methods use continuous time dynamics. On the contrary, direct methods use discretized

dynamics equations as in the problem in (2-1). In this thesis, FALCON.m was used, which is a

MATLAB toolbox for solving optimal control problems with direct methods. The benefits of a

direct approach compared to an indirect solution, will be clarified in the next subsection.

 2 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 13 / 93

2.1.1 FALCON.m

FALCON.m [49] is a MATLAB toolbox developed at the institute for Flight System Dynamics

of the Technical University of Munich. This toolbox provides the possibility to build and solve

Optimal Control Problems using a direct method.

In general, an OCP consists of an objective function, a set of differential equations, a set of

control inputs, a set of parameters and an optional set of constraints. Using the notation

presented in the documentation of FALCON.m [49], an optimal control problem can be

mathematically formulated as:

min
𝒖, 𝒑

𝐽(𝒙(𝑡), 𝒖(𝑡), 𝒑) (2-2)

where 𝒙(𝑡) are the state variables, 𝒖(𝑡) the controls and 𝒑 the parameters of the system. These

are subject to the physical constraints of the system given by the differential equations (2-3).

𝒙̇ = 𝒇(𝒙(𝑡), 𝒖(𝑡), 𝒑) (2-3)

Furthermore, 𝒙(𝑡), 𝒖(𝑡) and 𝒑 are limited by lower and upper bounds:

𝒙lb ≤ 𝒙(𝑡) ≤ 𝒙ub (2-4)

𝒖lb ≤ 𝒖(𝒕) ≤ 𝒖ub (2-5)

𝒑𝑙𝑏 ≤ 𝒑 ≤ 𝒑ub (2-6)

Additionally, the optimal control problem may be subject to nonlinear constraints of the form:

𝒈lb ≤ 𝒈(𝒙(𝑡),𝒖(𝑡), 𝒑) ≤ 𝒈ub (2-7)

These nonlinear constraints can be imposed over the entire time interval (path constraints) or

only at specified time points 𝑡𝑗 (point constraints). It can be noted that if the lower bound lb and

the upper bound ub are set to the same value, equations (2-4) to (2-7) correspond to equality

constraints.

The time interval considered in the OCP is [𝑡0 𝑡𝑓], where both 𝑡0 and 𝑡𝑓 can be either optimized

as parameters or set fixed. In general, the functional 𝐽 to be minimized in equation (2-1) is

called a Bolza cost function and has the form:

𝐽(𝒙(𝑡), 𝒖(𝑡), 𝒑) = 𝑚(𝒙(𝑡𝑗),𝒖(𝑡𝑗), 𝒑) + ∫ 𝑙(𝒙(𝜏), 𝒖(𝜏), 𝒑) 𝑑𝜏

𝑡𝑓

𝑡0

 (2-8)

In this function, the expression 𝑚(𝒙(𝑡𝑗),𝒖(𝑡𝑗), 𝒑) is also referred to as a Mayer cost function

and the integral term is also called a Lagrange cost function. It may be remarked that the Mayer

cost function may contain state values and control values for multiple time points 𝑡𝑗.

Additionally, FALCON.m offers the possibility of constructing multiphase optimal control

problems. By using this functionality, each of the phases may receive a different set of

parameters, path constraints, Lagrange cost functions and even a different model.

2 Nonlinear Model Predictive Control

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 14 / 93 Francisco Sevilla

Direct Methods

As mentioned before, FALCON.m uses a direct method to solve the OCP. In the direct

methods, the trajectories of the states and controls of the system are discretized first. This

reduces the infinite dimension of time of the trajectories to a finite one. Afterwards, a parametric

optimization problem with the following Lagrange function can be built:

ℒ(𝒛, 𝝀) = 𝐽(𝒛) + 𝝀T ∙ 𝒉(𝒛) (2-9)

where the optimization variables 𝒛 include the discretized state variables 𝒙𝑖, the discretized

control variables 𝒖𝑖 and the parameters 𝒑. In the equation above, 𝝀 is the vector of the

Lagrange multipliers and 𝒉(𝒛) represents the equality and inequality constraints, which include

the limitations (2-4)-(2-6) as well as the point and path constraints (2-7) and the so called

defects, which arise from the physical constraints (2-3), see Figure 2-3. The OCP is therefore

transformed into a large parametric optimization problem.

The direct methods can be divided into multiple sorts. Here, the multiple shooting method and

the collocation method are introduced. Their main difference is the number of discretized

timepoints for the state variables that are included as optimization variables. FALCON.m offers

the possibility of using either of the two methods.

In both methods, the control history must be discretized on a grid, which is called the control

grid. This discretization parametrizes the control inputs 𝒖(𝑡) by, in general, piecewise

polynomial functions. To be able to evaluate the path and point constraints (2-7) in a finite

number of points, the trajectories of the state variables are also discretized into the so-called

integration grid. For simplicity, these grids are usually set equal. The following figure shows an

overview of the discretization grids for the multiple shooting and collocation methods.

Integration

grid

Control grid

Multiple

shooting

Collocation

t0 tf

: State value chosen by the optimizer

Figure 2-2: Multiple shooting vs. collocation

Multiple shooting

The multiple shooting method lets the optimizer choose the state vector at multiple points in

the integration grid. These are marked by blue triangles in Figure 2-2. As stated above, the

controls have to be optimized for every discretization point in the control grid. Therefore, the

optimization vector 𝒛 may be constructed as follows

𝒛 = [𝑡𝑓 𝑥0 𝑢0 𝑢1 𝑢2 𝑥3 𝑢3 𝑢4 𝑢5 𝑥6 𝑢6 𝑢7 𝑢8 …] (2-10)

 2 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 15 / 93

Presented here is the case of a model with a single state variable and a single control and 𝑡𝑓

as the only parameter that is optimized. As can be seen, in the multiple shooting method, only

the values of the state variables 𝑥0, 𝑥3, 𝑥6, … can be changed directly by the optimizer. These

states are called the multiple shooting nodes. Their values and the history of the controls are

used to calculate the state variables for each point in the integration grid. This is done by

numerical integration with explicit methods like the Euler forward method or another Runge-

Kutta method [51]. Exemplary results of this integration can be seen in Figure 2-3.

Figure 2-3: Multiple shooting defects

In this graph, the state (blue line) is integrated from 𝑡0 till 𝑡3, where it is again set by the

optimizer. The difference between the result of the integration and the value set by the

optimizer is called a defect and is introduced to the problem as a constraint that must vanish.

This constraint is shown in the following equation, where 𝑥𝑖,𝑒𝑛𝑑 represents the value of a state

at the end of the integration from one multiple shooting node to the next, and 𝑥𝑖+1,𝑖𝑛𝑖 represents

the value of the same state at the next multiple shooting node:

𝑑𝑒𝑓𝑒𝑐𝑡 = 𝑥𝑖,end − 𝑥𝑖+1,ini =
!
0 (2-11)

The values of the multiple shooting nodes and the values of the controls have a strong

influence on the trajectory of the model. Therefore, if the system is unstable or if nonlinearities

are involved, short integration intervals show superior local convergence [36]. Thus, the

simulation is divided into multiple integrations to make the optimization process more robust.

This comes at the cost of a larger optimization vector.

A special case of multiple shooting discretization where only the stating time 𝑡0 is used as

shooting node is called single shooting. In this case, only the initial state, the discretized

controls and the parameters can be set directly by the optimization solver.

𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡

― State
― Control
― Defects

● Set by optimizer

2 Nonlinear Model Predictive Control

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 16 / 93 Francisco Sevilla

Collocation

As seen in Figure 2-2, the collocation method allows the optimizer to set the values of the state

vector at each point in the integration grid. Thus, the optimization vector 𝒛 for a model with one

state and one control may look like:

𝒛 = [𝑡𝑓 𝑥0 𝑢0 𝑥1 𝑢1 𝑥2 𝑢2 𝑥3 𝑢3 𝑥4 𝑢4 𝑥5 𝑢5 …] (2-12)

Therefore, instead of having several integration steps, only one integration step is necessary

for each discretization point. This makes the collocation method much more robust than the

multiple shooting method, because instabilities in the integration are avoided to a large extent.

Moreover, since the next step is known in advance, because it is set by the optimizer, implicit

integration methods can be used, for example the trapezoidal method. It is also possible to

interpolate the state trajectories between two points in the integration grid by Lagrange

Polynomials, using Legendre/Radau integration methods [52]. The parameters of the

polynomials would in this case also be part of the optimization variables, which further

improves the convergence rate and reliability of the algorithm. However, collocation methods

results in a larger optimization vector and more constraints than multiple shooting methods.

Using FALCON.m for NMPC

Now that FALCON.m and the basic principles behind direct optimal control have been

introduced, the connection to the optimal control problem used in NMPC, equation (2-1), can

be detailed. For more information on the actual implementation see Appendix A.

First, the time interval of the OCP must be fixed to represent the prediction horizon [0 , 𝑇𝐻].

Furthermore, since the NMPC algorithm is executed periodically, the control grid should be

discretized taking the sampling time 𝑇𝑠 into account. Moreover, the integration grid is kept equal

to the control grid.

Using discretized controls and state values, the Bolza cost function (2-8) shows similarities to

the cost function in (2-1). The terminal cost can be represented by a Mayer cost function using

the final state values 𝒙𝑁 = 𝒙(𝑇𝐻). Moreover, in FALCON.m, the integral of the Lagrange cost

function is evaluated using a trapezoidal approximation:

∫ 𝑙(𝒙(𝜏), 𝒖(𝜏), 𝒑) 𝑑𝜏

𝑇𝐻

0

≈
1

2
∙ ∑(𝑙(𝒙𝑖 , 𝒖𝑖 , 𝒑) + 𝑙(𝒙𝑖+1, 𝒖𝑖+1, 𝒑))

𝑁−1

𝑖=0

 (2-13)

This term can be reformulated to:

1

2
∙ 𝑙(𝒙0, 𝒖0, 𝒑) + ∑(𝑙(𝒙𝑖 , 𝒖𝑖 , 𝒑) + 𝑙(𝒙𝑖+1, 𝒖𝑖+1, 𝒑))

𝑁−1

𝑖=1

+
1

2
∙ 𝑙(𝒙𝑁 , 𝒖𝑁 , 𝒑) (2-14)

Therefore, the original objective function in (2-1) can be represented equivalently in

FALCON.m by adding the term
1

2
∙ 𝑙(𝒙0, 𝒖0, 𝒑) +

1

2
∙ 𝑙(𝒙𝑁 , 𝒖𝑁 , 𝒑) as Mayer costs.

The constraints for the discrete system dynamics in (2-1) are comparable to the defects

described above. However, the controls that are actually implemented on the actuators of the

system, are assumed constant during each timestep, i.e. a Zero Order Hold (ZOH) is assumed

 2 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 17 / 93

(see Figure 2-1). This should be considered in the discretization of the dynamics, which will be

covered in the next subsection.

In FALCON.m, the algebraic variables 𝒗𝑖 can be regarded as controls that are subject to some

algebraic equality constraints 𝒈(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖) = 𝟎, see section 3.3 for an example. Therefore, the

algebraic variables will be neglected for the rest of this chapter. Furthermore, all equality and

inequality constraints in the problem (2-1) can be represented as path or point constraints (2-7)

in FALCON.m.

The parameters 𝒑 are not directly part of the OCP (2-1) and are therefore not considered in

this project. However, a constant parameter set from outside of the NMPC could be

represented as a state 𝑥 with no dynamics, i.e. 𝑥̇ = 0. This parameter would thus be part of

the initial value embedding, discussed in section 0.

2.1.2 Discretization and Algorithmic Differentiation

As mentioned before, the continuous time model of the system (2-3) needs to be discretized

in order to be handled numerically in the optimization. This is done by numerical integration

methods, also known as integrators [36]. These methods can be categorized into two groups:

explicit, which only use the previous state values, and implicit, which require information about

future state values.

The optimization solver requires also the derivatives of the numerical integration. The

calculation of these derivatives is known as algorithmic differentiation of the integrators. It is

important to note that, if an exact Hessian is used for the optimization (see section 2.2.3), the

second order derivatives will also be needed. For this project, two explicit numerical integrators

were implemented for FALCON.m: The Forward Euler method and the 4th-order Runge-Kutta

(ERK4) method.

Forward Euler

The Forward Euler method has the form:

𝒙𝑖+1 = 𝒙𝑖 + 𝑇𝑠 ∙ 𝒇(𝒙𝑖 , 𝒖𝑖) (2-15)

where 𝒙𝑖 and 𝒙𝑖+1 represent the current and the next state respectively, 𝒇(𝒙𝑖 , 𝒖𝑖) is the vector-

valued function that contains the system dynamics and 𝑇𝑠 is the stepsize for the integration,

which is set equal to the sampling time in an NMPC scheme. The defect constraints can

therefore be formulated as:

𝒅𝒆𝒇𝑖 =𝒙𝑖+1 − 𝒙𝑖 − 𝑇𝑠 ∙ 𝒇(𝒙𝑖 , 𝒖𝑖) = 𝟎 (2-16)

with the derivatives:

∇𝒙𝑖+1𝒅𝒆𝒇𝑖 = 𝑰

∇𝒙𝑖 𝒅𝒆𝒇𝑖 = −𝑰 − 𝑇𝑠 ∙ ∇𝒙𝑖 𝒇(𝒙𝑖 , 𝒖𝑖)

∇𝒖𝑖 𝒅𝒆𝒇𝑖 = −𝑇𝑠 ∙ ∇𝒖𝑖 𝒇(𝒙𝑖 , 𝒖𝑖)
 (2-17)

2 Nonlinear Model Predictive Control

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 18 / 93 Francisco Sevilla

The second derivatives are provided by:

∇𝒙𝑖+1𝒙𝑖+1
2 𝒅𝒆𝒇𝑖 = 𝟎

∇𝒙𝑖 𝒙𝑖
2 𝒅𝒆𝒇𝑖 = −𝑇𝑠 ∙ ∇𝒙𝑖 𝒙𝑖

2 𝒇(𝒙𝑖 , 𝒖𝑖)

∇𝒖𝑖 𝒖𝑖
2 𝒅𝒆𝒇𝑖 = −𝑇𝑠 ∙ ∇𝒖𝑖 𝒖𝑖

2 𝒇(𝒙𝑖 , 𝒖𝑖)

∇𝒙𝑖 𝒖𝑖
2 𝒅𝒆𝒇𝑖 = −𝑇𝑠 ∙ ∇𝒙𝑖 𝒖𝑖

2 𝒇(𝒙𝑖 , 𝒖𝑖)

∇𝒖𝑖 𝒙𝑖
2 𝒅𝒆𝒇𝑖 = ∇𝒙𝑖 𝒖𝑖

2 𝒅𝒆𝒇𝑖
T

 (2-18)

Explicit 4th-order Runge-Kutta

With the explicit 4th-order Runge-Kutta method, the defects and their derivatives can be

calculated by the following algorithm [36]:

Algorithm 1: Explicit 4th-order Runge-Kutta (ERK4)

Input: 𝒙𝑖 and 𝒖𝑖

𝑎1 = 0 ; 𝑎2 =
1
2⁄ ; 𝑎3 =

1
2⁄ ; 𝑎4 = 1

𝒌0 = 𝟎 ; 𝒌𝑥,0 = 𝟎 ; 𝒌𝑢,0 = 𝟎

for 𝑗 = 1,… ,4

𝒌𝑗 = 𝒇(𝒙𝑖 + 𝑎𝑗𝑇𝑠𝒌𝑗−1 , 𝒖𝑖)

𝒌𝑥,𝑗 = ∇𝒙𝑖𝒇(𝒙𝑖 + 𝑎𝑗𝑇𝑠𝒌𝑗−1 , 𝒖𝑖) ∙ (𝑰 + 𝑎𝑗𝑇𝑠𝒌𝑥,𝑗−1)

𝒌𝑢,𝑗 = ∇𝒖𝑖𝒇(𝒙𝑖 + 𝑎𝑗𝑇𝑠𝒌𝑗−1 , 𝒖𝑖) + ∇𝒙𝑖𝒇(𝒙𝑖 + 𝑎𝑗𝑇𝑠𝒌𝑗−1, 𝒖𝑖) ∙ 𝑎𝑗𝑇𝑠𝒌𝑢,𝑗−1

end for

 𝒅𝒆𝒇𝑖 = 𝒙𝑖+1 − 𝒙𝑖 −
𝑇𝑠
6
⁄ ∙ (𝒌1 + 2𝒌2 + 2𝒌3 + 𝒌4) = 𝟎

∇𝒙𝑖+1𝒅𝒆𝒇𝑖 = 𝑰

∇𝒙𝑖 𝒅𝒆𝒇𝑖 = −𝑰 −
𝑇𝑠
6⁄ ∙ (𝒌𝑥,1 + 2𝒌𝑥,2 + 2𝒌𝑥,3 + 𝒌𝑥,4)

∇𝒖𝑖 𝒅𝒆𝒇𝑖 = −
𝑇𝑠
6⁄ ∙ (𝒌𝑢,1 + 2𝒌𝑢,2 + 2𝒌𝑢,3 + 𝒌𝑢,4)

This algorithm must be repeated for the timesteps 𝑖 = 0,… ,𝑁 − 1. The second derivatives

could also be calculated in a similar fashion. However, the second derivatives are used when

building the Hessian of the Lagrange function (2-9), which includes a term of the form

𝝀𝑇∇𝒛
2𝒉(𝒛), where 𝝀 is the vector of the Lagrange multipliers and 𝒉(𝒛) represents the equality

constraints (including the defects) and the active inequality constraints. Therefore, for an

accurate result of the Hessian, the Lagrange multipliers 𝝀 corresponding to the defects would

also need to be propagated with a similar recursion to the one in Algorithm 1. These Lagrange

multipliers converge to the adjoint variables of the continuous system. A proper algorithm for

the Hessian calculation can be found in [50], its implementation was, however, out of the scope

of this thesis.

It may be remarked that the control grid in FALCON.m includes the control inputs at the end

of the time horizon 𝒖𝑁 (in the case of algebraic variables also 𝒗𝑁). These values are not

included in the problem (2-1), because Zero Order Hold of the controls is assumed. Therefore,

these values should be removed from the optimization variables.

 2 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 19 / 93

Trapezoidal

As a final comment, the Trapezoidal method, which is an implicit integrator, is the default

discretization method of FALCON.m. Implicit integrators show a superior performance for stiff

systems and are simple to implement for Optimal Control Problems [36]. However, the

Trapezoidal method (equation (2-19)) does not assume Zero Order Hold of the controls. This

can be appreciated by the fact that 𝒖𝑖+1 is used:

𝒙𝑖+1 = 𝒙𝑖 +
𝑇𝑠
2
∙ (𝒇(𝒙𝑖, 𝒖𝑖) + 𝒇(𝒙𝑖+1, 𝒖𝑖+1)) (2-19)

To tackle this issue when using the Trapezoidal method, the following equation to calculate

the control inputs 𝝁(𝒙̅𝑛) was implemented in this project:

𝝁(𝒙̅𝑛) =
1

2
∙ (𝒖0

∗ + 𝒖1
∗) (2-20)

where 𝒖0
∗ and 𝒖1

∗ are the optimal control values of the first two timesteps. Furthermore, since
1

2
∙ 𝒖1

∗ is applied to the actuators “prematurely”, an additional constraint 𝒖0 = 𝒖1
∗ is inserted to

the OCP. This approach was tested with two simulation models and will be discussed further

in sections 3.1 and 3.3.

2.1.3 Shift – Online Initialization

To solve the Optimal Control Problem (2-1) in a fast and reliable manner, an adequate initial

guess should be provided for the optimization [33]. Since the prediction horizon is “shifted”

periodically every sampling time 𝑇𝑠, then an obvious initial guess is to use the values of the

previous optimal solution:

𝒙𝑖
guess

= 𝒙𝑖+1
∗ , 𝑖 = 0,… ,𝑁 − 1

𝒖𝑖
guess

= 𝒖𝑖+1
∗ , 𝑖 = 0,… ,𝑁 − 2

 (2-21)

The values for the last timestep 𝒙𝑁
guess

 can be calculated by forward simulation using an explicit

integration method:

𝒙𝑁
guess

= 𝒇𝑑(𝒙𝑁−1
guess

, 𝒖𝑁−1
guess

) (2-22)

This ensures that the defect constraints are satisfied. For selecting the last control values

𝒖𝑁−1
𝑔𝑢𝑒𝑠𝑠

, several strategies are possible:

• If there is a known control law 𝝁(𝒙𝑁−1
guess) that stabilizes the system for the given system

state, this control law could be used: 𝒖𝑁−1
guess

= 𝝁(𝒙𝑁−1
guess

)

• A simpler approach is to copy the previous control values: 𝒖𝑁−1
guess

= 𝒖𝑁−2
guess

= 𝒖𝑁−1
∗

An initial guess of the Lagrange multipliers 𝝀𝑔𝑢𝑒𝑠𝑠 can also be provided to many optimization

solvers. As for the optimization variables 𝒙𝑖 and 𝒖𝑖 , providing an initial guess of the Lagrange

multipliers can boost the performance of the algorithm. Furthermore, as mentioned before, the

Lagrange Multipliers are needed for calculating the exact Hessian of the OCP. For their initial

guess, the Lagrange multipliers corresponding to the defects and the path constraints can also

be shifted as in (2-21). For their last timestep, these Lagrange multipliers can be either copied

2 Nonlinear Model Predictive Control

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 20 / 93 Francisco Sevilla

from the previous one or set to zero. For the terminal constraint, the best initial guess is the

one corresponding to the last optimal solution.

2.1.4 Stability

Proving stability of nonlinear systems, including closed-loop systems, can be a difficult task.

This is especially true if a complex controller, like NMPC, is used. Here, a simple proof for a

closed-loop system using Tracking NMPC is provided [36].

Here, it is assumed that the system is provided with a steady-state and feasible setpoint 𝒙ref,

i.e. 𝑓(𝒙ref, 𝒖∗) = 𝟎. Through a transformation, this setpoint and the controls 𝒖∗ can be set to

zero without loss of generality. A typical objective function for Tracking NMPC is

𝐽(𝒙, 𝒖) = 𝒙T𝑸𝒙+ 𝒖T𝑹𝒖 with positive definite matrices 𝑸 and 𝑹. Furthermore, an equality

terminal constraint 𝒙𝑁 = 𝒙
ref = 𝟎 is included in the problem to ensure that the system reaches

the setpoint. At the timestep 𝑡𝑛 the solution 𝝁(𝒙̅𝑛) of the Optimal Control Problem is

implemented to the system actuators. Provided that there are no model mismatch and no

disturbances, the prediction 𝒙1
∗ matches the new actual state 𝒙̅𝑛+1. Therefore, the shifted

prediction horizon with 𝒖𝑁−1 = 𝟎 and 𝒙𝑁 = 𝟎 is already the new optimal solution according to

the objective function 𝐽(𝒙,𝒖). This would be repeated every timestep 𝑇𝑠 until the setpoint is

reached. In that case, the system is and stays in steady-state, as the objective function is at

the (global) minimum.

More detailed stability proofs, also without the terminal equality constraint and for Economic

NMPC, can be found in [28].

2.2 Newton-Type Optimization

In this section, the Newton-type optimization solvers will be introduced briefly. An Optimal

Control Problem can be transcribed to a nonlinear optimization problem. Hence, it must be

solved using Nonlinear Programming (NLP). A nonlinear problem has the following form:

min
𝒛
 𝑓(𝒛)

subject to 𝒈(𝒛) = 𝟎

𝒉(𝒛) ≤ 𝟎

 (2-23)

Here, the function 𝑓(𝒛) is called the objective or cost function, 𝒈(𝒛) and 𝒉(𝒛) are respectively

the equality and inequality constraints. All 𝑓(𝒛), 𝒈(𝒛) and 𝒉(𝒛) must be twice continuously

differentiable. First-order necessary conditions for a local minimizer 𝒛∗ are [36, 53]:

∇𝒛 ℒ(𝒛
∗, 𝝀∗, 𝝁∗) = 𝟎

𝒈(𝒛∗) = 𝟎

𝒉(𝒛∗) ≤ 𝟎
𝝁∗ ≥ 𝟎

𝜇𝑖
∗ ℎ𝑖(𝒛

∗) = 0, for all 𝒉(𝒛)

 (2-24)

where the Lagrange function of this problem is formulated as (compare to equation (2-9)):

ℒ(𝒛, 𝝀, 𝝁) = 𝑓(𝒛) + 𝝀T 𝒈(𝒛) + 𝝁T 𝒉(𝒛) (2-25)

 2 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 21 / 93

with the derivative:

∇𝒛 ℒ(𝒛, 𝝀, 𝝁) = ∇𝒛 𝑓(𝒛) + ∇𝒛 𝒈(𝒛) 𝝀 + ∇𝒛 𝒉(𝒛) 𝝁 (2-26)

Here, 𝝀 and 𝝁 are called the Lagrange multipliers or dual variables. The conditions (2-24) are

also known as the Karush-Kuhn-Tucker (KKT) conditions of optimality. Second-order

necessary conditions can be found in [53].

Quadratic Programming (QP) solvers solve a special case of nonlinear problems, quadratic

problems. These problems have a quadratic cost function and 𝒈(𝒛) and 𝒉(𝒛) are affine.

Therefore, a quadratic problem has the form:

min
𝒛
 𝒄T𝒛 +

1

2
𝒛T B 𝒛

subject to 𝑨𝒛 − 𝒃 = 𝟎
𝑪𝒛 − 𝒅 ≤ 𝟎

 (2-27)

As mentioned before, this section is only a brief introduction to Newton-type optimization.

Topics like line-search algorithms, merit functions or Trust-Region methods will not be

discussed here. These and other subjects are treated in detail in [53], for example.

2.2.1 Equality Constrained Optimization

The main idea of the Newton-type optimization methods, in the case of no inequality

constraints, is to use Newton’s method to find points that solve the nonlinear KKT conditions

[36]:

∇𝒛 ℒ(𝒛
∗, 𝝀∗) = 0

𝒈(𝒛∗) = 0
 (2-28)

Starting with an initial guess 𝒘0, Newton’s method can be employed to find the zero-crossings

of the vector-valued function 𝑭(𝒘) by iterating:

𝒘𝑘+1 = 𝒘𝑘 − (
𝜕𝑭(𝒘𝑘)

𝜕𝒘𝑘
)

−1

𝑭(𝒘𝑘) (2-29)

For an equality constrained optimization, this algorithm looks as follows:

Algorithm 2: Newton-type equality constrained optimization

Input: initial guess 𝒛0 and 𝝀0 , tolerance 𝜖

𝑘 = 0

while ‖∇𝒛 ℒ(𝒛𝑘 , 𝝀𝑘)‖ ≥ 𝜖 or ‖𝒈(𝒛𝑘)‖ ≥ 𝜖

 get 𝒛𝑘+1 and 𝝀𝑘+1 from:

[
 𝒛𝑘+1
𝝀𝑘+1

] = [
 𝒛𝑘
0
] − [

∇𝒛𝒛
2 ℒ(𝒛𝑘 , 𝝀𝑘) ∇𝒛𝒈(𝒛𝑘)

∇𝒛𝒈
𝑇(𝒛𝑘) 0

]

−1

[
∇𝒛𝑓(𝒛𝑘)

𝒈(𝒛𝑘)
] (2-30)

 𝑘 = 𝑘 + 1

end while

2 Nonlinear Model Predictive Control

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 22 / 93 Francisco Sevilla

The Hessian of the Lagrange function H𝑘 = ∇𝒛𝒛
2 ℒ(𝒛𝑘 , 𝝀𝑘) in equation (2-30) might be difficult

to compute, therefore, it is usually approximated. Methods for approximating the Hessian will

be covered in section 2.2.3. The matrix

[
∇𝒛𝒛
2 ℒ(𝒛𝑘 , 𝝀𝑘) ∇𝒛𝒈(𝒛𝑘)

∇𝒛𝒈
𝑇(𝒛𝑘) 0

] (2-31)

is known as the KKT matrix and is in general symmetric indefinite.

It can be shown that one iteration of Algorithm 2 is equivalent to solving the following quadradic

problem, see [36]:

min
𝒛
 ∇𝐳𝑓(𝒛𝑘)

T (𝒛 − 𝒛𝑘) +
1

2
(𝒛 − 𝒛𝑘)

T H𝑘 (𝒛 − 𝒛𝑘)

subject to 𝒈(𝒛𝑘) + ∇𝐳𝒈(𝒛𝑘)
T (𝒛 − 𝒛𝑘) = 0

 (2-32)

2.2.2 Handling Inequality Constraints

For solving a nonlinear problem with inequality constraints, the complementarity conditions

must be taken into account:

𝒉(𝒛∗) ≤ 𝟎
𝝁∗ ≥ 𝟎

𝜇𝑖
∗ ℎ𝑖(𝒛

∗) = 0, for all 𝒉(𝒛)
 (2-33)

These KKT conditions are non-smooth, and there are different methods to deal with them.

These methods will be presented here.

Interior-Point methods

The idea of the interior-point methods is to smoothen the complementarity conditions by

inserting a constant 𝜏 > 0. The complementarity conditions are then replaced by:

𝜇𝑖
∗ ℎ𝑖(𝒛

∗) + 𝜏 = 0, for all 𝒉(𝒛) (2-34)

It can be noted that this equality is equivalent to the hyperbola 𝜇𝑖
∗ = −

𝜏

ℎ𝑖(𝒛
∗)
 . Therefore, by

observing that
𝜏

ℎ𝑖(𝒛
∗)
∙ ∇𝒛ℎ𝑖(𝒛) = 𝜏 ∇𝒛 log(−ℎ𝑖(𝒛)) , this new complementarity condition can be

interpreted as replacing the inequality constraints with an additional term in the cost function

(see the first KKT condition in (2-24) and equation (2-26)):

min
𝒛
 𝑓(𝒛) − 𝜏∑log(−ℎ𝑖(𝒛))

subject to 𝒈(𝒛) = 𝟎
 (2-35)

Normally, the optimization is started with a large value 𝜏, which is then reduced as the iterations

advance. It can be noted that the new objective function tends towards infinity when ℎ𝑖(𝒛) → 0.

Therefore, even for a small 𝜏 this objective function prevents the inequality constraints from

being violated.

 2 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 23 / 93

Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is based on the quadratic problem interpretation

(2-32). In each iteration, this approach solves an inequality constrained QP problem that is

obtained by linearizing the constraint functions and approximating the objective function by a

quadratic function:

min
𝒛
 ∇𝐳𝑓(𝒛𝑘)

T (𝒛 − 𝒛𝑘) +
1

2
(𝒛 − 𝒛𝑘)

T H𝑘 (𝒛 − 𝒛𝑘)

subject to 𝒈(𝒛𝑘) + ∇𝐳𝒈(𝒛𝑘)
T (𝒛 − 𝒛𝑘) = 0

 𝒉(𝒛𝑘) + ∇𝐳𝒉(𝒛𝑘)
T (𝒛 − 𝒛𝑘) ≤ 0

 (2-36)

The method to solve the quadratic problem depends however on the implementation. QP

solvers usually use either an interior-point method or an active set method (described next).

Active Set methods

The idea in active set methods is that, if the set of active inequality constraints (the inequality

constraints where ℎ𝑖(𝒛) =
!
0), i.e. the active set, is known, then one can directly solve an

equality constrained optimization. Thus, these methods iteratively refine their guess of the

active set, often called the working set, and solve an equality constrained optimization every

iteration.

This equality constrained optimization is particularly easy to solve in the case of affine

inequality constraints, as in quadratic problems of the form (2-27). Moreover, an active set

method can be easily warm-started, if there is a series of related problems to be solved. This

is the case for Sequential Quadratic Programming and for problems in the context of model

predictive control [36].

2.2.3 About the Hessian

In this subsection, a few remarks on the Hessian H𝑘 of the Lagrange function will be made. As

mentioned before, the Hessian is necessary to solve an optimization problem with a Newton-

type method, regardless of the approach used to handle the inequality constraints. For a

general inequality constrained nonlinear optimization, the Hessian is defined as:

H𝑘 ≔ ∇𝒛𝒛
2 ℒ(𝒛𝑘 , 𝝀𝑘 , 𝝁𝑘) (2-37)

see equation (2-26). However, the calculation of this matrix is sometimes difficult, and it is

therefore often approximated by a matrix 𝐵𝑘 ≈ H𝑘 , which will be discussed in this subsection.

In general, the Hessian is symmetric and indefinite. Note that in a quadratic problem (2-27) the

eigenvalues of the Hessian H𝑘 = B make the problem convex or non-convex, i.e. if it is possible

to solve the problem in polynomial time [36]. If B is positive semi-definite (B ≽ 0), then the

problem is convex and can be solved, and if B is positive definite (B ≻ 0), then the problem is

strictly convex and always has a unique minimizer 𝒛∗.

2 Nonlinear Model Predictive Control

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 24 / 93 Francisco Sevilla

It may be remarked that for an Optimal Control Problem of the form (2-1), the Lagrange function

is separable [52]:

ℒ(𝒛, 𝝀, 𝝁) =∑ℒ𝑖(𝒛𝑖 , 𝝀, 𝝁)

𝑁

𝑖=0

 (2-38)

Therefore, the Hessian has a block-diagonal form:

H = ∇𝒛𝒛
2 ℒ(𝒛, 𝝀, 𝝁) =

[

∇𝒛0𝒛0
2 ℒ0(𝒛0, 𝝀, 𝝁) 0 0 0

0 ∇𝒛1𝒛1
2 ℒ1(𝒛1, 𝝀, 𝝁) 0 0

0 0 … 0
0 0 0 ∇𝒛𝑁𝒛𝑁

2 ℒ𝑁(𝒛𝑁 , 𝝀, 𝝁)]

 (2-39)

The KKT matrix also has a similar form. Note that, for the sake of readability, the iteration index

𝑘 has been omitted above. In this thesis, the Hessian blocks are represented by H𝑘,𝑖 =

∇𝒛𝑖𝒛𝑖
2 ℒ𝑖(𝒛𝑘,𝑖 , 𝝀𝑘 , 𝝁𝑘) for 𝑖 = 0,… ,𝑁. It is important to remark that ℒ0(𝒛0, 𝝀, 𝝁) , ℒ𝑁(𝒛𝑁 , 𝝀, 𝝁) and

ℒ𝑖(𝒛𝑖 , 𝝀, 𝝁) ∀ 𝑖 = 1,… ,𝑁 − 1 have a different structure, due to the initial value constraints and

the terminal constraints.

Exact Hessian

An obvious way of obtaining the Hessian is to calculate the second derivative of the Lagrange

function directly: B𝑘 = H𝑘 = ∇𝒛𝒛
2 ℒ(𝒛𝑘 , 𝝀𝑘 , 𝝁𝑘) . For this, algorithmic differentiation is used, as

introduced in section 2.1.2.

Also, instead of calculating the Hessian directly, it could also be calculated by finite differences.

However, the accuracy of finite differences may be poor, especially if finite differences is also

used to calculate the first derivatives [36].

Since the exact Hessian is in general indefinite, it needs to be regularized, i.e. one needs to

get a positive semidefinite approximation of the exact Hessian, to be able to solve the nonlinear

problem. This is important for both interior-point and SQP methods [54].

Regularization methods

Regularization or convexification methods are used on the Hessian matrix, to make the

optimization problem convex, and thus be able to solve it. In this project, two regularization

methods presented in [54] were implemented, project and mirror:

 B𝑘,𝑖 = project(H𝑘,𝑖) ≔ 𝑉𝑖 [max(𝜖, 𝐷𝑖)] 𝑉𝑖
−1 (2-40)

 B𝑘,𝑖 = mirror(H𝑘,𝑖) ≔ 𝑉𝑖 [max(𝜖, abs(𝐷𝑖))] 𝑉𝑖
−1 (2-41)

where H𝑘,𝑖 = 𝑉𝑖 𝐷𝑖 𝑉𝑖
−1 is the eigenvalue decomposition of each Hessian block. This means

that the eigenvalues of H𝑘,𝑖 are displayed on the diagonal matrix 𝐷𝑖 , and 𝑉𝑖 is only a

transformation matrix. In (2-40) and (2-41) the max function is performed elementwise to the

diagonal matrix 𝐷𝑖 and 𝜖 is a small positive number.

Therefore, these regularization methods ensure that the Hessian becomes positive definite, by

making all of its eigenvalues positive. In project the negative eigenvalues are “projected” to a

 2 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 25 / 93

small positive value. In mirror their absolute value is taken into account so that their magnitude

stays the same.

In [54], another convexification method is presented, which shows benefits in the context of

OCPs. This procedure was however not implemented in this thesis. The authors in [31] also

suggest that the regularization methods above can be applied to the full-Hessian or to the

condensed Hessian (see subsection 2.2.5), instead of to each block separately.

Gauss-Newton

The Gauss-Newton method can be used for a special class of optimization problems that have

an objective function of the form 𝑓(𝒛) =
1

2
‖𝑹(𝒛)‖2

2 [36]. This kind of objective function is given

in many applications, for example in least-squares parameter fitting or in tracking NMPC.

One can see that the quadratic approximation of this objective function at iterate 𝒛𝑘 results in

a convex quadratic function:

1

2
‖𝑹(𝒛)‖2

2 ≈
1

2
‖𝑹(𝒛𝑘) + ∇𝒛𝑹(𝒛𝑘)

T(𝒛 − 𝒛𝑘)‖2
2
 =

1

2
𝑹(𝒛𝑘)

T𝑹(𝒛𝑘)⏟
= 𝑐𝑜𝑛𝑠𝑡.

+ (𝒛 − 𝒛𝑘)
T ∇𝒛𝑹(𝒛𝑘) 𝑹(𝒛𝑘)⏟

= ∇𝒛𝑓(𝒛𝑘)

+
1

2
(𝒛 − 𝒛𝑘)

T ∇𝒛𝑹(𝒛𝑘) ∇𝒛𝑹(𝒛𝑘)
T⏟

=: B𝑘

(𝒛 − 𝒛𝑘)
 (2-42)

This equation can be compared to the quadratic problem (2-36) of an SQP iteration. It can be

noted, that the Gauss-Newton Hessian approximation B𝑘 ≔ ∇𝒛𝑹(𝒛𝑘) ∇𝒛𝑹(𝒛𝑘)
T does not

depend on the Lagrange multipliers, and therefore it does not include the second order

derivatives of the constraints. Equation (2-43) shows the comparison of the Gauss-Newton

approximation to the exact Hessian:

∇𝒛𝒛
2 ℒ(𝒛, 𝝀, 𝝁) = ∇𝒛𝑹(𝒛𝒌) ∇𝒛𝑹(𝒛𝑘)

T + ∑𝑅𝑗(𝒛) ∇𝒛𝒛
2 𝑅𝑗(𝒛𝒌) + ∑𝜆𝑗 ∇𝒛𝒛

2 𝑔𝑗(𝒛)

 = B𝑘 + 𝑂(‖𝑹(𝒛𝑘)‖) + 𝑂(‖𝝀‖)
 (2-43)

BFGS

Another important approach for approximating the Hessian of the Lagrange function is with the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula:

B𝑘+1 = B𝑘 +
B𝑘 𝒔𝑘 𝒔𝑘

T B𝑘

𝒔𝑘
T B𝑘 𝒔𝑘

+
𝒚𝑘 𝒚𝑘

T

𝒚𝑘
𝑇 𝒔𝑘

 (2-44)

with 𝒔𝑘 = 𝒛k+1 − 𝒛𝑘 and 𝒚𝑘 = ∇𝒛 ℒ(𝒛𝑘+1, 𝝀𝑘+1, 𝝁𝑘+1) − ∇𝒛 ℒ(𝒛𝑘 , 𝝀𝑘 , 𝝁𝑘) (2-45)

In this formula, the Hessian approximation B𝑘+1 is calculated using information from the last

iteration 𝑘 [53]. B0 must be initialized with a positive definite matrix.

The BFGS formula delivers a positive definite approximation of the Hessian, provided that the

curvature condition 𝒔𝑘
T 𝒚𝑘 > 0 is satisfied. This condition may not always hold. Therefore,

Nocedal and Wright [53] suggest two options:

1. Skip the update, i.e. B𝑘+1 = B𝑘 , in case the curvature condition is not satisfied. One

can reinitialize the Hessian approximation if too many updates have been skipped

2 Nonlinear Model Predictive Control

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 26 / 93 Francisco Sevilla

2. Replace 𝒚𝑘 in (2-44) with 𝒓𝑘 = 𝜃𝑘𝒚𝑘 + (1 − 𝜃𝑘) B𝑘 𝒔𝑘 , where 𝜃𝑘 is calculated as in

(2-46) with the damping factor 𝛿 ∈]0; 1[.

 𝜃𝑘 = {

 1 if 𝒔𝑘
T 𝒚𝑘 ≥ 𝛿 𝒔𝑘

T B𝑘 𝒔𝑘
(1 − 𝛿) 𝒔𝑘

T B𝑘 𝒔𝑘

𝒔𝑘
T B𝑘 𝒔𝑘 − 𝒔𝑘

T 𝒚𝑘
 otherwise

 (2-46)

In the context of NMPC, Quirynen et al. [50] mention that it is not recommendable to use the

BFGS Hessian approximation. They argue that a jump in the states 𝑥̅0 (for example due to

disturbances) may cause a poor approximation and many BFGS updates may be needed to

recover a good convergence rate. However, BFGS is the default Hessian approximation

method in embotech’s FORCES PRO [55], and was therefore implemented and tested in this

project. FORCES PRO also has the peculiarity that each Hessian block B𝑘,𝑖 ≈ H𝑘,𝑖 is updated

individually. It should be remarked that, to match the new 𝒛𝑘+1 and ∇𝒛 ℒ(𝒛𝑘+1, 𝝀𝑘+1, 𝝁𝑘+1), a

shifting procedure may have to be performed on the previous ones.

2.2.4 Survey of Optimization Solvers

In this subsection, some newton-type optimization solvers will be listed. All of these were

considered to be implemented in Falcon NMPC. However, only IPOPT and qpDUNES have

been applied as part of this thesis.

Interior-Point

IPOPT is a well-known NLP solver based on an interior-point method. It can solve problems of

the form [56]:

min
𝒛
 𝑓(𝒛) (objective function)

subject to 𝒈lb ≤ 𝒈(𝒛) ≤ 𝒈ub (nonlinear constraints)

𝒛lb ≤ 𝒛 ≤ 𝒛ub (upper/lower bounds)

 (2-47)

This solver also allows to pass an exact Hessian of the problem, and for quadratic problems

the Hessian can be fixed so that it is only evaluated once. IPOPT is the default solver for

FALCON.m, and was therefore the solver that was employed the most during this project.

FORCES PRO is another nonlinear solver based on an interior-point method. This solver is

tailored for nonlinear optimal control problems with horizon length 𝑁 :

min
𝒛
 ∑

𝑁−1

𝑖=0

𝑓𝑖 (𝒛𝑖 , 𝒑𝑖) (nonlinear separable objective)

subject to 𝒛0 = 𝒛init (initial equality)

𝒛𝑖+1 = 𝒇𝑑(𝒛𝑖 , 𝒑𝑖) ∀ 𝑖 = 0,… ,𝑁 − 1 (inter-stage equality)

𝒛𝑁 = 𝒛final (final equality)

 𝒛𝑙𝑏 ≤ 𝒛 ≤ 𝒛𝑢𝑏 (upper/lower bounds)

𝒈𝑙𝑏 ≤ 𝒈(𝒛, 𝒑) ≤ 𝒈𝑢𝑏 (nonlinear constraints)

 (2-48)

where 𝒛init and 𝒛final are respectively the initial and final boundary conditions for the states

and the controls and 𝒑𝑘 are parameters that can be changed in real-time. Furthermore,

 2 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 27 / 93

FORCES PRO offers the possibility to compile and download the code to an embedded

platform.

Sequential Quadratic Programming

SNOPT is an SQP solver, in which the QP iterations use an active-set approach. The nonlinear

problem may have the form [57]:

min
𝒛
 𝑓(𝒛) (nonlinear objective)

subject to 𝒈lb ≤ 𝒈(𝒛) ≤ 𝒈ub (nonlinear constraints)

𝒂lb ≤ 𝑨 𝒛 ≤ 𝒂ub (linear constraints)

𝒛lb ≤ 𝒛 ≤ 𝒛ub (upper/lower bounds)

 (2-49)

This solver is also interfaced with FALCON.m, however it has not been implemented to solve

the NMPC optimal control problem during this project.

Quadratic Programming

qpOASES is an active-set QP solver, that can use known information about the solutions of

previous problems to speed-up the solution of the current problem [40]. This parametric active-

set method is of special interest for Model Predictive Control applications. qpOASES takes

problems of the form:

min
𝒛

1

2
 𝒛T H 𝒛 + 𝒇T𝐳 (quadratic objective)

subject to 𝒂lb ≤ 𝑨 𝒛 ≤ 𝒂ub (linear constraints)
 (2-50)

Although this solver can be provided with sparse matrices, it works best for dense (non-sparse)

problems. Therefore, the authors suggest to use condensing (see next subsection) as a

preprocessing step, in the case of having an Optimal Control Problem.

qpDUNES is a QP solver especially designed for MPC problems of the form [58]:

min
𝒛
 ∑

𝑁−1

𝑖=0

(
1

2
𝒛𝑖
T H𝑖 𝒛𝑖 + 𝒇𝑖

T 𝒛𝑖) (quadratic separable objective)

subject to 𝒛𝑖+1 = 𝑪𝑖 𝒛𝑖 + 𝒄𝑖 ∀ 𝑖 = 0,… , 𝑁 − 1 (linear inter-stage equality)

𝒅𝑖,lb ≤ 𝑫𝑖 𝒛 ≤ 𝒅𝑖,ub ∀ 𝑖 = 0,… ,𝑁 − 1 (linear intra-stage constraints)

 (2-51)

This solver can only handle strictly convex problems, therefore all H𝑖 must be positive definite

(H𝑖 ≻ 0 ∀ 𝑖 = 0,… ,𝑁). Since the Lagrange function of an OCP is separable (see equation

(2-38)), qpDUNES works by solving the dual problem:

max
𝝀
 ∑ 𝑓𝑖

∗(𝜆)

𝑁−1

𝑖=0

where 𝑓𝑖
∗(𝜆) ≔ min

𝒛𝑖

1

2
𝒛𝑖
T H𝑖 𝒛𝑖 + (𝒇𝑖

T + [
𝝀𝑖
𝝀𝑖+1

]
T

[
−𝑬𝑖
𝑪𝑖
]) 𝒛𝑖 + 𝝀𝑖+1

T 𝒄𝑖

subject to 𝒅𝑖,lb ≤ 𝑫𝑖 𝒛 ≤ 𝒅𝑖,ub

with 𝑬𝑖 = [𝑰 𝟎]

 (2-52)

2 Nonlinear Model Predictive Control

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 28 / 93 Francisco Sevilla

The advantage of this algorithm is that the subproblems 𝑓𝑖
∗(𝜆) are independent and can

therefore be solved in parallel, using for example qpOASES. It can be remarked that the blocks

of two or more timesteps 𝑖 could be combined into one, thus varying the number of

subproblems [59]. qpDUNES was implemented and tested in this project, see section 0.

2.2.5 Condensing

Condensing is a preprocessing procedure performed on an Optimal Control Problem to reduce

the size of the optimization. This method is only introduced briefly, since it was not

implemented as part of this thesis.

If one regards a discretized OCP as in (2-1) and linearizes it for a minor iteration of an SQP

method, one gets equality constraints of the form:

Δ𝒙𝑖+1 = 𝒂𝑖 + 𝑨𝑖Δ𝒙𝑖 + 𝑩𝑖Δ𝒖𝑖 (2-53)

The idea is to eliminate all states Δ𝒙𝑖 from the optimization variables, as they are known

through forward integration using the equation above (provided that the start Δ𝒙0 and the

controls Δ𝒖𝑖 are known). Hence only the controls are left as optimization variables and the KKT

matrix becomes dense (lower triangular). The Lagrange multipliers corresponding to the

constraints (2-53) that are eliminated from the problem can also be obtained in a

postprocessing step. This method is particularly beneficial if the number of states is large

compared to the number of controls. Efficient algorithms for condensing can be found in [60].

It is important to remark that using a condensing method differs from applying a single shooting

method in the OCP, since more information is taken into account in the optimization.

2.3 Parametric Nonlinear Optimization

Parametric optimization is a field of nonlinear optimization that deals with evaluating the impact

that a small perturbation in a parameter 𝑝 has on the optimal solution 𝒛∗ and the corresponding

value of the objective function 𝐽(𝒛∗). The methods presented here will be used later to manage

the discrepancies between the predicted initial state 𝒙0 (after shifting) and the measured (or

estimated) current state 𝒙̅𝑛 .

A generic parametric NLP has the form:

min
𝒛
 𝑓(𝒛, 𝑝)

subject to 𝒈(𝒛, 𝑝) = 𝟎

𝒉(𝒛, 𝑝) ≤ 𝟎

 (2-54)

where 𝑝 is a fixed parameter in the optimization.

2.3.1 Sensitivity Analysis

Post-optimal sensitivity analysis or parameter sensitivity analysis was first introduced by

Fiacco [61], who uses the implicit function theorem to show the differentiability of the solution

𝒛∗ of a nonlinear optimization problem. This principle was then applied to optimal control theory

by Büskens [62]. The main idea of sensitivity analysis is to express the influence that a

 2 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 29 / 93

perturbation of a parameter 𝑝 has on the optimal optimization variables 𝒛 and the Lagrange

multipliers 𝝀 and 𝝁 by a Taylor series expansion:

𝒛(𝑝) ≈ 𝒛0 +
𝜕𝒛

𝜕𝑝
(𝑝0) ∙ (𝑝 − 𝑝0)

𝝀(𝑝) ≈ 𝝀0 +
𝜕𝝀

𝜕𝑝
(𝑝0) ∙ (𝑝 − 𝑝0)

𝝁(𝑝) ≈ 𝝁0 +
𝜕𝝁

𝜕𝑝
(𝑝0) ∙ (𝑝 − 𝑝0)

 (2-55)

In the equations above, 𝑝0 denotes the unperturbed parameter, also called the reference or

nominal parameter. Furthermore, 𝒛0 = 𝒛
∗(𝑝0), 𝝀0 = 𝝀

∗(𝑝0) and 𝝁0 = 𝝁
∗(𝑝0) represent the

optimal solution vector and the Lagrange multipliers for the unperturbed parameter. The partial

derivatives
𝜕𝒛

𝜕𝑝
(𝑝0),

𝜕𝝀

𝜕𝑝
(𝑝0) and

𝜕𝝁

𝜕𝑝
(𝑝0) can be calculated using the explicit formulae for the

sensitivity differentials as proposed by Fiacco:

[

∇𝒛𝒛
2 ℒ ∇𝒛𝒈 ∇𝒛𝒉a

∇𝒛𝒈
T 𝟎 𝟎

∇𝒛𝒉a
T 𝟎 𝟎]

[

𝜕𝒛

𝜕𝑝

𝜕𝝀

𝜕𝑝

𝜕𝝁a
𝜕𝑝

]

+
𝜕

𝜕𝑝

[

∇𝒛 ℒ

𝒈

𝒉a]

= 𝟎 (2-56)

where the functions ∇𝒛𝒛
2 ℒ, ∇𝒛𝒈, ∇𝒛𝒉a, ∇𝒛 ℒ, 𝒈 and 𝒉a are evaluated at 𝒛0, 𝝀0, 𝝁0. This

expression is derived from the necessary conditions for optimality (2-24). One can see that the

left matrix is the KKT matrix of an SQP problem, thus computing the sensitivities of the problem

is computationally cheap as this matrix is already constructed during the optimization.

This method is only applicable if all active inequality constraints (denoted here with 𝒉a) are

strictly active, i.e. the corresponding Lagrange multipliers 𝝁a are greater than zero.

Furthermore, the active set must stay the same for the new parameter. Thus, the Lagrange

multiplier corresponding to the inactive inequality constraints must remain zero, that is:

𝝁ã = 𝟎 (2-57)

In [63], Büskens and Maurer present a method to predict the maximum and minimum values

that the parameter 𝑝 can adopt without changing the active set. However, in NMPC the current

state 𝒙̅0 is in general changing continuously. Therefore, one cannot assume that the optimal

solution does not change the active set. This is where the predictor-corrector path-following

methods introduced in the next subsection come into use.

2.3.2 Predictor-Corrector Path-Following Methods

Path-following is one important tool of parametric optimization, especially for real-time

applications. The idea is that the path that a parameter 𝑝 makes, has a corresponding path in

the solution space (𝒛∗, 𝝀∗, 𝝁∗). Thus, the task is to find and follow the parameter 𝑝 in the solution

space.

2 Nonlinear Model Predictive Control

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 30 / 93 Francisco Sevilla

By combining equations (2-55), (2-56) and (2-57) one arrives at the conditions [36]:

[

∇𝒛𝒛
2 ℒ ∇𝒛𝒈 ∇𝒛𝒉a

∇𝒛𝒈
T 𝟎 𝟎

∇𝒛𝒉a
T 𝟎 𝟎]

[

Δ𝒛

Δ𝝀

Δ𝝁a

]

+
𝜕

𝜕𝑝

[

∇𝒛 ℒ

𝒈

𝒉a]

(𝑝 − 𝑝̅) = 𝟎

Δ𝝁ã = 𝟎

 (2-58)

where Δ𝒛 = 𝒛(𝑝) − 𝒛̅, Δ𝝀 = 𝝀(𝑝) − 𝝀̅, Δ𝝁a = 𝝁a(𝑝) − 𝝁̅a and Δ𝝁ã = 𝝁ã(𝑝) − 𝝁̅ã. Note that the

index 0 has been replaced with a bar (⬚̅) to denote that these values are arbitrary and do not

need to correspond to a converged solution.

Furthermore, the solution with 𝑝̅ must satisfy the following equations (compare the KKT

conditions (2-24)):

[

∇𝒛𝒛
2 ℒ ∇𝒛𝒈 ∇𝒛𝒉a

∇𝒛𝒈
T 𝟎 𝟎

∇𝒛𝒉a
T 𝟎 𝟎]

[

0

𝝀̅

𝝁̅a

]

+

[

∇𝒛 𝑓

𝒈

𝒉a]

= 𝟎

𝝁ã0 = 𝟎

 (2-59)

Adding (2-58) and (2-59) together results in:

[

∇𝒛𝒛
2 ℒ ∇𝒛𝒈 ∇𝒛𝒉a

∇𝒛𝒈
T 𝟎 𝟎

∇𝒛𝒉a
T 𝟎 𝟎]

[

Δ𝒛

𝝀(𝑝)

𝝁a(𝑝)

]

+

[

∇𝒛 𝑓

𝒈

𝒉a]

+
𝜕

𝜕𝑝

[

∇𝒛 ℒ

𝒈

𝒉a]

(𝑝 − 𝑝̅) = 𝟎

𝝁ã(𝑝) = 𝟎

 (2-60)

One can observe that (2-60) are the KKT conditions corresponding to the quadratic problem

min
Δ𝒛

1

2
Δ𝒛T H Δ𝒛 + ∇𝐳𝑓

T Δ𝒛 + (𝑝 − 𝑝̅)T ∇𝒛𝑝
2 ℒ Δ𝒛

subject to 𝒈 + ∇𝐳𝒈
T Δ𝒛 + ∇p𝒈

T (𝑝 − 𝑝̅) = 0

 𝒉 + ∇𝐳𝒉
T Δ𝒛 + ∇p𝒉

T (𝑝 − 𝑝̅) ≤ 0

 (2-61)

where H = ∇𝒛𝒛
2 ℒ, ∇𝐳𝑓, ∇𝒛𝑝 ℒ, ∇𝒛𝒈, ∇𝒛𝒉, 𝒈 and 𝒉 are evaluated at 𝒛̅, 𝝀̅, 𝝁̅ and 𝑝̅. One can prove

that the solution of this quadratic problem is a piecewise-linear approximation of the solution

of the perturbed nonlinear problem [36]. This is depicted for an example in Figure 2-4. The

grey lines show the exact solution in relation to 𝑝 and the dashed lines the linear approximation

for 𝒛∗(𝑝̅) and 𝜇∗(𝑝̅).

Also, one can see that for 𝑝 ≠ 𝑝̅ and (𝒛̅, 𝝀̅, 𝝁̅) = (𝒛∗, 𝝀∗, 𝝁∗) the QP delivers a linear prediction

for the parameter 𝑝, as in the previous subsection. For 𝑝 = 𝑝̅ and (𝒛̅, 𝝀̅, 𝝁̅) ≠ (𝒛∗, 𝝀∗, 𝝁∗) then

the QP performs a corrective Newton-step towards the solution of the nonlinear problem

(𝒛∗, 𝝀∗, 𝝁∗) as in a regular SQP method. Hence, this QP is called a predictor-corrector method.

In the equations above, the predictor part is marked in red and the corrector part in blue.

 2 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 31 / 93

It can be remarked that these methods can be implemented in SQP and in interior-point

frameworks. Since the interior-point methods smoothen the inequality constraints depending

a parameter 𝜏 (see Interior-Point methods in section 2.2.2), then the performance of the

predictor-corrector method depends strongly on 𝜏. This is presented in detail in [36] and [64].

Figure 2-4: Visualization of predictor-corrector path-following methods [36].

2.3.3 Parametric Embedding

The idea of parametric embedding is to reformulate the parametric NLP (2-54), so that the

parameter 𝑝 only enters linearly in the constraints. This is achieved by inserting a new

optimization variable 𝜃:

min
𝒛,𝜃

 𝑓(𝒛, 𝜃)

subject to 𝒈(𝒛, 𝜃) = 𝟎

𝒉(𝒛, 𝜃) ≤ 𝟎

𝑝 − 𝜃 = 0

 (2-62)

This means that the functions H, ∇𝐳𝑓, ∇𝒛𝑝 ℒ, ∇𝒛𝒈, ∇𝒛𝒉, 𝒈 and 𝒉 in the predictor-corrector (2-61)

are not evaluated using 𝑝̅ but using 𝜃. Therefore, 𝜃 is the “old parameter” with which the

linearization for the quadratic problem (2-61) is done and 𝑝 is the “new parameter” with which

the QP is solved [65]. Applied to the path-following method (2-61), this results in:

2 Nonlinear Model Predictive Control

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 32 / 93 Francisco Sevilla

min
Δ𝒛

1

2
Δ𝒛T H Δ𝒛 + ∇𝐳𝑓

T Δ𝒛 + ΔθT ∇𝒛𝑝
2 ℒ Δ𝒛

subject to 𝒈 + ∇𝐳𝒈
T Δ𝒛 + ∇p𝒈

T Δθ = 0

 𝒉 + ∇𝐳𝒉
T Δ𝒛 + ∇p𝒉

T Δθ ≤ 0

𝑝 − 𝜃 − Δ𝜃 = 0

 (2-63)

It can be noted that the NMPC optimization problem (2-1) already has this form, taking the

measured (or estimated) states 𝒙̅𝑛 as parameters. This is known as initial value embedding

and is extremely beneficial in the Real-Time Iteration scheme, as it allows the algorithm to be

divided into two phases.

2.4 The Real-Time Iteration Scheme

The Real-Time Iteration scheme, also known as RTI, is the Nonlinear Model Predictive Control

algorithm that was implemented for this thesis. It was first introduced by Diehl et al. in [37].

Since then, this algorithm has become “one of the most successful and largely used

approaches to fast NMPC” [33].

The basic idea of the algorithm is to solve the optimal control problem (2-1) with a path-

following SQP framework in which only one quadratic problem per sampling time is solved.

There is no line-search, thus a full Newton-step is taken between the SQP iterations. The

sampling time must therefore be chosen so that all the necessary calculations for constructing

the QP problem and solving the QP problem can be done during one sampling time. This

sampling time must also be considered for the discretization of the Optimal Control Problem.

The path-following method (2-63) can thus be applied for the OCP (2-1) with parametric

embedding of the initial states 𝒙̅, resulting in a QP problem of the form:

min
Δ𝒛

1

2
Δ𝒛T H Δ𝒛 + ∇𝐳𝑓

T Δ𝒛

subject to 𝒈 + ∇𝐳𝒈
T Δ𝒛 = 0

 𝒉 + ∇𝐳𝒉
T Δ𝒛 ≤ 0

𝒙0 − 𝒙̅𝑛 = 𝟎

 (2-64)

The initial value embedding of 𝒙̅𝑛 allows to divide the RTI scheme into two phases, a

Preparation Phase, where the QP problem is constructed, and a Feedback Phase, where the

QP is solved. Finally, the RTI algorithm has the form:

 2 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 33 / 93

Algorithm 3: Real-Time Iteration (RTI)

Preparation Phase (performed before 𝑡𝑛)

Input: previous NMPC solution, reference 𝒙ref

Perform Shift as in section 2.1.3 to get initial guess (𝒙guess, 𝒖guess).

Evaluate H, ∇𝐳𝑓, ∇𝒛𝒈, ∇𝒛𝒉, 𝒈 and 𝒉 using the initial guess

Perform all possible computations (e.g. condensing, matrix factorizations)

Build QP problem (2-64) omitting the equality constraints 𝒙0 − 𝒙̅𝑛 = 𝟎

Output: QP problem (2-64)

Feedback Phase (performed upon availability of 𝑥̅𝑛)

Input: QP problem from Preparation Phase

Introduce the constraints 𝒙0 − 𝒙̅𝑛 = 𝟎

Solve QP problem

Apply full Newton-step (𝒙∗, 𝒖∗) ← (𝒙guess , 𝒖guess) + (Δ𝒙, Δ𝒖)

Implement 𝝁(𝒙̅𝑛) = 𝒖0
∗ on the system’s actuators

Output: NMPC solution (𝒙∗, 𝒖∗)

The reason for the separation in two phases is that the Feedback Phase is generally much

shorter than the Preparation Phase. Depending on the application, the Feedback Phase can

even be several orders of magnitude shorter than the Preparation Phase [36]. Therefore, in

the Preparation Phase a guess is used for the calculation of all matrices necessary for the QP

problem. The phase is taken from the previous prediction via shifting. Then the Feedback

Phase is performed once the measurement of 𝑥̅𝑛 is available, thus ensuring that the time

between receiving the measurement and implementing the solution on the actuators is kept as

short as possible. This is depicted in Figure 2-5.

Figure 2-5: Preparation and Feedback phases of the RTI scheme [36]

Analyses on the error bounds and closed-loop stability of the RTI scheme can be found in [38]

and [66]. In [33], Gros et al. describe the algorithm in detail and present several remarks,

examples and comparisons relevant for an implementation of the algorithm.

2 Nonlinear Model Predictive Control

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 34 / 93 Francisco Sevilla

RTI for tracking

As mentioned before, Nonlinear Model Predictive Control is usually employed for tracking

applications, i.e. for following a reference trajectory. A commonly used objective function for

this kind of applications is

min
𝒙,𝒖

∑
1

2
[
Δ𝒙𝑖
Δ𝒖𝑖

]
T

[
𝑸 𝑺

𝑺𝑇 𝑹
] [

Δ𝒙𝑖
Δ𝒖𝑖

]
⏟

𝐿(𝒙𝑖,𝒖𝑖)

𝑁−1

𝑖=0

+
1

2
 Δ𝒙𝑁

T 𝑷 Δ𝒙𝑁⏟
𝐸(𝒙𝑁)

 (2-65)

with Δ𝒙𝑖 = 𝒙𝑖 − 𝒙𝑖
ref and Δ𝒖𝑖 = 𝒖𝑖 − 𝒖𝑖

ref, where 𝒙ref is the reference for the states and 𝒖ref is

the reference for the controls. The matrices 𝑸, 𝑹, 𝑺 and 𝑷 become tuning parameters for the

algorithm.

One can observe that the objective function has the same form as in (2-42) for the Gauss-

Newton Hessian approximation. Therefore, a Gauss-Newton Hessian approximation is

normally used with the RTI scheme, which significantly reduces the computational efforts

compared to an exact Hessian algorithm. For the objective function (2-65) the Gauss-Newton

Hessian approximation becomes constant and therefore, it must not be computed:

B𝑘 =

[

𝑸 𝑺

𝑺𝑇 𝑹

 ⋱

𝑸 𝑺

𝑺𝑇 𝑹

 𝑷

]

 (2-66)

In the tests performed in this thesis, no reference for the controls was considered and the 𝑺

matrix was set to zero. Therefore, the objective function was reduced to:

min
𝒙,𝒖

 ∑
1

2
 ((𝒙𝑖 − 𝒙𝑖

ref)
T
 𝑸 (𝒙𝑖 − 𝒙𝑖

ref) + 𝒖𝑖
T 𝑹 𝒖𝑖)⏟

𝐿(𝒙𝑖,𝒖𝑖)

𝑁−1

𝑖=0

+
1

2
 (𝒙𝑁 − 𝒙𝑁

ref)
T
𝑷 (𝒙𝑁 − 𝒙𝑁

ref)
⏟

𝐸(𝒙𝑁)

 (2-67)

It is suggested to pre-compute a feasible reference trajectory 𝒙ref, so that the NMPC only has

to reject perturbations. However, it is also possible to let the controller plan the trajectory. In

this case, it is beneficial to perform a procedure similar as the shifting in section 2.1.3, and

slowly introduce the reference at the end of the prediction horizon. This allows the RTI scheme

to converge before it needs to start moving [33].

Linear MPC vs. RTI

A Linear Model Predictive Control has the following optimal control problem [33]:

min
𝒙,𝒖

 ∑
1

2
 [
Δ𝒙𝑖
Δ𝒖𝑖

]
T

[
𝑸 𝑺

𝑺𝑇 𝑹
] [

Δ𝒙𝑖
Δ𝒖𝑖

]

𝑁−1

𝑖=0

subject to Δ𝒙0 = 𝒙̅𝑛 − 𝒙0
ref

Δ𝒙𝑖+1 = 𝑨𝑖Δ𝒙𝑖 + 𝑩𝑖Δ𝒖𝑖 + 𝒂𝑖 𝑖 = 0,… ,𝑁 − 1

𝑪𝑖Δ𝒙𝑖 +𝑫𝑖Δ𝒖𝑖 + 𝒉𝑖 ≤ 0 𝑖 = 0,… ,𝑁 − 1

 (2-68)

 2 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 35 / 93

In this case, the matrices 𝑨𝑖, 𝑩𝑖, 𝑪𝑖 and 𝑫𝑖, as well as the vectors 𝒂𝑖 and 𝒉𝑖 are calculated a

priori offline and are therefore constant. These matrices are usually obtained from the

linearization about the reference trajectory (𝒙ref, 𝒖ref). The QP problem (2-68) is then solved

at every sampling time.

The Real-Time Iteration scheme can be seen as an extension of Linear MPC, where the only

difference is that these matrices are calculated online. The linearization is done at the guess

provided by the last prediction instead of at the reference trajectory. However, one can observe

that, if a Gauss-Newton Hessian approximation is used and the system’s equations are

evaluated at (𝒙ref, 𝒖ref), then the RTI scheme delivers the same control law as a linear MPC.

RTI for economic NMPC

An economic NMPC application is an application for which the cost function of the OCP does

not have the form (2-65). Therefore, the objective in economic NMPC is not necessarily to

minimize the error between a reference trajectory and the actual state of system, but it can be

to minimize any value concerning the system. This cost function can thus be represented by

the objective function of problem (2-1):

min
𝒙,𝒖

 ∑ 𝐿(𝒙𝑖 , 𝒖𝑖)

𝑁−1

𝑖=0

+ 𝐸(𝒙𝑁) (2-69)

where 𝐿(𝒙𝑖 , 𝒖𝑖) and 𝐸(𝒙𝑁) can be any nonlinear function of the states and the controls [28].

Note however that the objective function is still divided into a stage cost and a terminal cost.

For an objective function of this form, it might not be possible to construct a Gauss-Newton

approximation of the Hessian of the Lagrange function. Even if one can be constructed, it might

not be a constant matrix. Therefore, when using an economic objective function, one must

generally calculate a Hessian at each sampling time.

For a time-optimal driving problem, Verschueren et al. [31] suggest using an exact Hessian

calculation with the project regularization method as presented in Regularization methods in

section 2.2.3. In [67], the authors provide a method to formulate a tracking NMPC that is locally

equivalent to the economic NMPC. This method allows to apply methods and analyses known

for tracking NMPC.

In this thesis, the OCPs for the point mass model in section 3.4 and for the racecar model in

chapter 4 use an economic cost function. Several experiments were performed with these

models using different Hessian approximations. The results of these tests can be seen in the

corresponding sections.

3 Preliminary Tests

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 36 / 93 Francisco Sevilla

3 Preliminary Tests

This chapter presents a series of simulative experiments that were used during the

development of the Nonlinear Model Predictive Control Toolbox, Falcon NMPC. Each of the

models increases in complexity in comparison to the previous one, and each of the

experiments tests a different part of the NMPC algorithm. All simulation models were built in

Simscape, the MATLAB toolbox for physical systems simulation. At the end of the chapter,

section 3.5 presents a summary of the different experiments and their results, which lead to

the NMPC setup used for the racecar model in the next chapter.

3.1 1-DoF Cart

3.1.1 Modelling

Simulation model

The first model that was used to test the NMPC in this thesis is simply a mass 𝑚𝐶 = 0.1 𝑘𝑔

with one translational degree of freedom. In Simscape this is represented with a prismatic joint

between the mass and the world frame. The gravitational field 𝑔 = 9.81 𝑚/𝑠2 of the model is

perpendicular to the joint and has therefore no impact on the movement of the mass.

Additionally, a force 𝐹 = 𝑓(𝜇) ∙ 10 𝑁 acts on the mass, which depends on a function 𝑓(𝜇) of

the control value 𝜇. Figure 3-1 shows a schematic of this model.

𝑔 𝑠

𝐹

𝑚𝐶

Figure 3-1: 1-DoF Cart – Schematic

NMPC model

The equations of motion for the model above are

𝑠̇ = 𝑣

𝑣̇ =
𝑓(𝜇) ∙ 10 𝑁

𝑚𝐶

 (3-1)

where 𝑠 represents the mass’ position and 𝑣 its velocity. The control 𝜇 is restricted to values

between −1 and 1. The function 𝑓(𝜇) will be describe below.

3.1.2 Results

In the tests with this model a Tracking NMPC was considered, for which the objective function

(2-67) was used. The 𝑸, 𝑹 and 𝑷 matrices were set to:

𝑸 = 𝑷 = [
10 0
0 0.01

]

𝑹 = 0.1

 (3-2)

 3 Preliminary Tests

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 37 / 93

The sampling time was set to 𝑇𝑠 = 0.05 𝑠 and the horizon length to 𝑇𝐻 = 2 𝑠. For these tests,

the conventional RTI algorithm with Gauss-Newton Hessian approximation was used.

The reference trajectory for all tests was a pulsating function for the position 𝑠 and constant

zero for the velocity 𝑣. This reference was inserted at the end of the prediction horizon, as

suggested in the paragraph RTI for tracking in section 2.4.

Trapezoidal discretization with vs. without approach (2-20)

Here, the function 𝑓(𝜇) was set to

𝑓(𝜇) = 𝜇 (3-3)

In the first test of the NMPC algorithm, a trapezoidal discretization method was used, where

instead of applying the control 𝜇 using equation (2-20), it was set to the first value in the

prediction horizon 𝜇 = 𝒖0
∗ = 𝜇0

∗ . The results of this test are shown in Figure 3-2.

As one can see, the actual position 𝑠 shows an overshoot that is not present in the prediction.

The reason for this is that with the trapezoidal discretization, the NMPC does not take a Zero

Order Hold (ZOH) of the control 𝜇 into account. At an arbitrary time-point 𝑡𝑛+1, the NMPC

predicts a velocity

𝑣𝑛+1 = 𝑣𝑛 +
𝑇𝑠
2
∙ (
𝜇𝑛 ∙ 10 𝑁

𝑚𝐶
+
𝜇𝑛+1 ∙ 10 𝑁

𝑚𝐶
) (3-4)

as can be seen from equation (2-19). However, taking into account the ZOH of the control

outputted by the controller, the actual velocity can be calculated analytically by

0 10 1

time s

 0

 10

0

10

 0

v

0 10 1

time s

 0.

0

0.

1

1.

s

Actual

Reference

Prediction

Figure 3-2: 1-DoF Cart – Trapezoidal discretization without approach (2-20)

3 Preliminary Tests

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 38 / 93 Francisco Sevilla

𝑣(𝑡𝑛+1) = 𝑣(𝑡𝑛) + ∫
𝜇𝑛 ∙ 10 𝑁

𝑚𝐶
𝜕𝜏

𝑡𝑛+1

𝑡𝑛

= 𝑣(𝑡𝑛) +
𝜇𝑛 ∙ 10 𝑁

𝑚𝐶
∙ (𝑡𝑛+1 − 𝑡𝑛)

= 𝑣(𝑡𝑛) +
𝜇𝑛 ∙ 10 𝑁

𝑚𝐶
∙ 𝑇𝑠

(3-5)

Assuming that at the time point 𝑡𝑛 the predicted velocity 𝑣𝑛 equals the actual velocity 𝑣(𝑡𝑛),

𝑣𝑛+1 and 𝑣(𝑡𝑛+1) are in general not equal. However, if the approach (2-20) was used, one can

see that 𝑣𝑛+1 and 𝑣(𝑡𝑛+1) would be identical:

𝑣(𝑡𝑛+1) = 𝑣(𝑡𝑛) + ∫
1
2⁄ ∙ (𝜇𝑛 + 𝜇𝑛+1) ∙ 10 𝑁

𝑚𝐶
𝜕𝜏

𝑡𝑛+1

𝑡𝑛

= 𝑣(𝑡𝑛) +
1

2
∙
(𝜇𝑛 + 𝜇𝑛+1) ∙ 10 𝑁

𝑚𝐶
∙ 𝑇𝑠 (3-6)

Since 𝜇𝑛+1 is outputted “prematurely”, it is added as constraint to the OCP in the next timestep,

as described in the Trapezoidal paragraph in section 2.1.2. The results applying this method

are shown in Figure 3-3. As one can see, this method alleviates the problem with the

overshoots and the actual trajectory follows the predicted one. Therefore, this method was

implemented as default for Trapezoidal discretization in Falcon NMPC. However, as it will be

shown next, this method does not work as well in case that the input enters nonlinearly into

the system.

Trapezoidal vs. ERK4 discretization

For this test, the function 𝑓(𝜇) was set to

𝑓(𝜇) = 𝜇 + 0.5 ∙ sin (2𝜋 ∙ 𝜇) (3-7)

so that the system has a strongly nonlinear dependence on the input 𝜇. Figure 3-4 shows the

output of this function for 𝜇 ∈ [−1; 1].

0 10 1

time s

 10

0

10

v

0 10 1

time s

 0.

0

0.

1

1.

s

Actual

Reference

Prediction

Figure 3-3: 1-DoF Cart – Trapezoidal discretization with approach (2-20)

 3 Preliminary Tests

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 39 / 93

As can be seen in the figure below, the NMPC with Trapezoidal discretization does no longer

manage to control the system for this setup. The reason for this is again that the NMPC does

not deliver an accurate prediction because the ZOH of the input is not considered, not even

with the approach used before (Figure 3-5). The results with equation (2-20) are similar to the

ones applying a Zero-Order Hold, they are however not depicted here.

Figure 3-5: 1-DoF Cart – Trapezoidal discretization for nonlinear input function

Nevertheless, explicit Runge-Kutta methods do assume a Zero Order Hold of the control

values. Therefore, running this same experiment with an explicit 4th-order Runge-Kutta (ERK4)

method results in the plots shown in Figure 3-6. It can be appreciated that the actual states

follow the prediction exactly and the performance of the algorithm is similar to that in Figure

3-3. It can be remarked that using a Forward Euler method delivers comparable results,

although they are not presented here.

0 10 1

time s

 0

0

 0

 0

v

0 10 1

time s

0

s

Actual

Reference

Prediction

Figure 3-4: 1-DoF Cart – Nonlinear function 𝒇(𝝁)

3 Preliminary Tests

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 40 / 93 Francisco Sevilla

Model mismatch

In the previous experiments the model used for the NMPC controller matched the simulation

model exactly. To test the performance of the controller in case that the models have

discrepancies, the simulation model was modified as follows:

• The mass was increased to 𝑚modif = 0.12 𝑘𝑔

• The prismatic joint was inclined 10°, so that the gravitational field influences the mass

• A damping of 𝑘𝑑 = 1
𝑁
𝑚
𝑠⁄
 was introduced to the prismatic joint.

These changes are summarized in blue in the following schematic:

10

𝑔 𝑠
𝐹 𝑚modif

10° 𝑘𝑑

Figure 3-7: 1-DoF Cart – Schematic with model mismatch

In this model, the nonlinear function (3-7) was kept for the control values. Furthermore, an

ERK4 discretization method was used. Figure 3-8 shows the results of this test. In this case,

the predicted trajectory cannot be followed exactly, as seen clearly in the velocity plot.

Nevertheless, the NMPC manages to control the system sufficiently well.

It may be remarked that, in the case that there is a model mismatch, a stationary control

deviation may be found. In this example, a small control deviation is given due to the gravity

acting on the mass. This control deviation minimizes the objective function, which is dependent

0 10 1

time s

 10

0

10

v

0 10 1

time s

 0.

0

0.

1

1.
s

Actual

Reference

Prediction

Figure 3-6: 1-DoF Cart – ERK4 discretization for nonlinear input function

 3 Preliminary Tests

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 41 / 93

on the deviation (𝒙𝑖 − 𝒙𝑖
ref) and on the control values 𝒖𝑖. Therefore, a way to reduce this

deviation is to make the values of 𝑹 smaller. However, this can also affect the transient

behavior of the system. Another method would be to add an integral controller on top of the

NMPC. In the NMPC, this I-controller would be modelled as a state so that it can be considered

via initial value embedding.

3.2 Inverted Pendulum

3.2.1 Modelling

Simulation model

 Here, a typical system used in control theory, an inverted pendulum on a cart is presented. In

Simscape, the 1-DoF cart of the last section was extended by another mass 𝑚𝑃 = 0.1 𝑘𝑔

connected to the cart with a revolute joint separated by a distance of 𝑙 = 0.5 𝑚. The schematic

is shown below. In this case, the force 𝐹 is applied directly by the controller.

0 10 1

time s

 10

0

10

v

0 10 1

time s

 0.

0

0.

1

1.
s

Actual

Reference

Prediction

Figure 3-8: 1-DoF Cart – ERK4 discretization with model mismatch

3 Preliminary Tests

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 42 / 93 Francisco Sevilla

𝑔 𝑠

𝐹

𝑚𝐶

𝑚𝑃

𝜃 𝑙

Figure 3-9: Inverted pendulum – Schematic

NMPC model

The equations of motion for this system can be derived using Lagrangian equations [68]. This

method allows to formulate the equations of motion based on a set of independent generalized

coordinates 𝒒 , in this case the displacement 𝑠 and the angle 𝜃. First, one calculates the total

kinetic energy 𝑇 and the total potential energy 𝑉 of the system:

𝑇 =
1

2
𝑚𝐶 𝑠̇

2 +
1

2
𝑚𝑃 ((

𝑑

𝑑𝑡
(𝑠 + 𝑙 sin𝜃))

2

+ (
𝑑

𝑑𝑡
(−𝑙 cos 𝜃))

2

)

=
1

2
(𝑚𝐶 +𝑚𝑃) 𝑠̇

2 +𝑚𝑃𝑙𝑠̇𝜃̇ cos 𝜃 +
1

2
𝑚𝑃𝑙

2𝜃̇2

𝑉 = 𝑚𝑃𝑔𝑙 cos 𝜃

 (3-8)

Then the equations of motion are given by

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝒒̇
) −

𝜕𝑇

𝜕𝒒
+
𝜕𝑉

𝜕𝒒
− 𝑸𝑛𝑐 = 𝟎 (3-9)

where the non-conservative forces and torques are considered by

𝑸𝑛𝑐 =∑
𝜕𝒓𝑗1
𝜕𝒒

T

𝑭𝑗1
𝑗1

+∑
𝜕𝝎

𝜕𝒒̇

T

𝑴𝑗2
𝑗2

 (3-10)

with the force 𝑭𝑗1 acting on the point 𝒓𝑗1 and the torque 𝑴𝑗2 acts on a body with the angular

velocity 𝝎. In planar coordinates, the position where the force 𝐹 acts can be represented as

𝒓𝐹 = [𝑠 0]T and the vector of the force is 𝑭 = [𝐹 0]T. Hence, using the Lagrangian

equations, one gets:

(𝑚𝐶 +𝑚𝑃)𝑠̈ + 𝑚𝑃𝑙𝜃̈ cos 𝜃 − 𝑚𝑃𝑙𝜃̇
2 sin 𝜃 = 𝐹

𝑚𝑃𝑙𝑠̈ cos 𝜃 − 𝑚𝑃𝑙𝑠̇𝜃̇ sin 𝜃 + 𝑚𝑃𝑙
2𝜃̈ + 𝑚𝑃𝑙𝑠̇𝜃̇ sin𝜃 +𝑚𝑃𝑔𝑙 sin 𝜃 = 0

 (3-11)

 3 Preliminary Tests

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 43 / 93

Solving these equations for 𝑠̈ and 𝜃̈ result in the equations of motion:

𝑠̈ =
𝑚𝑃𝑙𝜃̇

2 sin 𝜃 +𝑚𝑃𝑔 sin𝜃 cos 𝜃 + 𝐹

𝑚𝐶 +𝑚𝑃 sin
2 𝜃

𝜃̈ = −
𝑚𝑃𝑙𝜃̇

2 sin 𝜃 cos 𝜃 + (𝑚𝐶 +𝑚𝑃)𝑔 sin𝜃 + 𝐹 cos𝜃

𝑚𝐶𝑙 + 𝑚𝑃𝑙 sin
2 𝜃

 (3-12)

The state vector of the system is thus 𝒙 = [𝑠 𝑠̇ 𝜃 𝜃̇]
T.

3.2.2 Results

The tests with this model also concerned a tracking application with the objective function

(2-67). The 𝑸, 𝑹 and 𝑷 matrices were set to:

𝑸 = 𝑷 = [

10 0 0 0
0 1 0 0
0 0 10 0
0 0 0 1

]

𝑹 = 0.01

 (3-13)

The sampling time was set to 𝑇𝑠 = 0.05 𝑠 and the horizon length to 𝑇𝐻 = 2 𝑠. ERK4 was

employed as discretization method. In most of the tests, the conventional RTI algorithm with

Gauss-Newton Hessian approximation was used. In the last experiment the Gauss-Newton

Hessian approximation is compared to a BFGS and an exact Hessian algorithm.

The reference trajectory concerns a swing-up of the pendulum followed by a step for the

position 𝑠, and then a swing-down of the pendulum staying on the same spot. This reference

was inserted at the end of the prediction horizon, as for the previous simulation.

RTI vs. Converged Full OCP

This test regarded the optimality that the RTI algorithm reaches compared to solving the full

nonlinear OCP till convergence at every sampling time. In Falcon NMPC, one can solve the

0 1 9 10

time s

0

0.

0.

0.

0.

1

ti
m

e
 i
n
 o

p
ti
m

iz
a
ti
o
n
 s

o
lv

e
r
 s

Full OCP

RT

Figure 3-10: Inverted pendulum – RTI vs. converged full problem, optimization time

3 Preliminary Tests

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 44 / 93 Francisco Sevilla

nonlinear OCP using the set_solveFullProblem method (see Appendix A). In both cases IPOPT

was used as the optimization solver.

The Real-Time Iteration scheme linearizes the defect constraints at every sampling time. As

one can appreciate form the equations of motion (3-12), these constraints are strongly

nonlinear. However, the RTI algorithm performs just as well as solving the full OCP, see Figure

3-11. Furthermore, the quadratic problems can be solved in less than 0.01 𝑠, whereas the full

nonlinear problem may take up to 1.06 𝑠 to get solved, see Figure 3-10.

It may be remarked that for solving the full OCP, the exact hessian was used (this is set when

creating the FALCON.m problem), but solving with the default BFGS Hessian of IPOPT creates

Figure 3-11: Inverted pendulum – RTI vs. converged full OCP, states

 3 Preliminary Tests

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 45 / 93

only sighlty worse results. For the full problem all constraints, the objective and the Hessian

must be evaluated at every iteration of the optimization, which accounts for part of the time

seen in Figure 3-10. On the other hand, for the RTI this is performed in the Preparation Phase.

One can also see that, for the full OCP case, the planning of the swing-up and swing-down of

the pendulum takes more computation time than the parts where the pendulum only has to be

stabilized. However, solving the QP problems in the RTI algorithm always takes approximately

the same computation time.

Gros et al. also present a similar test in [33] with comparable results. In this publication, other

experiments can be found as well, for example, a variation of the sampling time, a variation of

the horizon length, etc.

Infeasible and non-stationary setpoints

Here, the behavior of the RTI controller was tested for the case that non-stationary and

infeasible setpoints are provided as reference. To test this, two constraints were added to the

problem:

• The state 𝑠 must be between −1 𝑚 and 1 𝑚

• The horizontal position of the tip of the pendulum 𝑥tip = 𝑠 + 2𝑙 sin𝜃 must be greater

than or equal to zero (𝑥𝑡𝑖𝑝 ≥ 0). This is a nonlinear path constraint

On top of this, for the swing-up of the pendulum, the reference for 𝜃 was set to 4 instead of 𝜋,

so that this reference gives a non-stationary point. Also, the reference for 𝑠 was set to 1.5 𝑚

which is clearly infeasible for the first constraint described above. The results of this test can

be appreciated in Figure 3-12.

In these plots one can see that:

• 𝑠 is always less than 1 𝑚, so that the first constraint is always satisfied, although the

reference is greater

• 𝜃 is kept positive until the cart has advanced to 𝑠 = 1 𝑚. This is done to satisfy the

second constraint (compare to the swing-up in Figure 3-11)

• after the swing-up, 𝜃 stays at a value close to 𝜋. Although at the end of the prediction

horizon the controller tries to get closer to the reference, this is never applied. The

reason for this is that the reference for 𝑠̇ and 𝜃̇, which are zero, keep the system in a

stationary state. For a different choice of the 𝑸 and 𝑷 matrices, this might not be the

case.

3 Preliminary Tests

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 46 / 93 Francisco Sevilla

IPOPT vs. qpDUNES

With this model, the other optimization solver implemented in this thesis, qpDUNES was also

tested. During different tests, it was found that qpDUNES did not manage to solve the quadratic

problems appropriately when other constraints than the defect constraints become part of the

active-set. Therefore, for the tests presented here, the constraints described above were

removed.

Both solvers deliver the same results, not only for the trajectory planning for swing-ups, but

also in the case of model mismatch or external perturbations (not depicted here). However, as

one can see in Figure 3-13, the Feedback Phase, which is the phase in which the quadratic

Figure 3-12: Inverted pendulum – RTI for non-stationary and infeasible setpoints

 3 Preliminary Tests

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 47 / 93

problem is solved, is much shorter with qpDUNES than with IPOPT. The average calculation

time with qpDUNES is, for the tests performed in this thesis, an order of magnitude smaller

than that with IPOPT. The main difference between the two, apart from their internal

algorithms, is that IPOPT is made for solving general nonlinear problems and thus, it interfaces

with MATLAB in every iteration to get new values of the objective function, constraints and

their gradients. On the other hand, qpDUNES is tailored for QP problems of the form (2-27)

and therefore, all of the gradients are constant, so that qpDUNES only receives one set of

values at the start of the Feedback Phase.

Unfortunately, because of the issues described above, IPOPT was the solver that was used

for the rest of this project. Nevertheless, as mentioned in the introduction, this project “only”

delivers a module for rapid prototyping of NMPC algorithms that is only suitable for simulation.

Therefore, the choice of using IPOPT instead of another solver does not constrain the scope

of this thesis.

External perturbation

Next, it was tested how the RTI algorithm performed in the case of external perturbations. For

this test, an external force of 0.5 𝑁 was exerted on the center of mass 𝑚𝑃, perpendicular to the

rotational degree of freedom 𝜃, from second 4 until second 4.5 of the simulation. In Figure

3-14, it can be observed that at second 4 the system reacts to the external force by moving

the cart in positive 𝑠 direction, which was not taken into account in the prediction. This allows

to keep the pendulum on top of the cart (𝜃 ≈ 𝜋) until the external force is removed.

0 10

time s

0

0.00

0.00

0.00

0.00

0.01
T
im

in
g

s

0 10

time s

0

0.00

0.00

0.00

0.00

0.01 Shift

Preparation Phase

Feedback Phase

Figure 3-13: Inverted pendulum – IPOPT (left) vs. qpDUNES (right)

3 Preliminary Tests

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 48 / 93 Francisco Sevilla

Gauss-Newton vs. BFGS vs. Exact Hessian

It is known that the time-optimal objective function for the racecar problem in the next chapter

is not a tracking application and thus the Gauss-Newton Hessian cannot be used for that

problem. Therefore, the BFGS approximations and the regularization methods described in

section 2.2.3 were implemented and tested with this model. For these tests, the discretization

method was set to Forward Euler, since the exact Hessian has not been implemented for the

ERK4. These tests were performed with the external perturbation described above.

Figure 3-14: Inverted pendulum – External perturbation

 3 Preliminary Tests

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 49 / 93

It was found that the blockwise calculation of the BFGS approximation does not work stably

for this model. This is true for both of the methods that keep the Hessian positive definite (see

section 2.2.3), both with and without shifting the Hessian blocks. This is also true if the

Lagrange multipliers are set to zero, so that the second derivatives of the constraints are

neglected in the calculation.

Using the BFGS formula to calculate the whole Hessian, instead of blockwise, gives much

better results. In this case, both the skipping method and the damping method for keeping the

Hessian positive definite (see section 2.2.3) perform comparably well. It was found that

performing a shift of the Hessian blocks is favorable, especially when the perturbation force

acts on the system. Furthermore, as mentioned in section 2.2.3, the BFGS formula needs an

initial matrix for the Hessian approximation. Providing a good guess for this matrix, for example

the Gauss-Newton Hessian, improves the behavior of the closed-loop system significantly.

The exact Hessian also shows good results for this path-following and stabilization application.

It must be noted that IPOPT performs a convexification (regularization of the Hessian)

internally, so it is not necessary to provide a positive definite Hessian. However, using the

project regularization method presented in section 2.2.3, slightly reduces the timing in the

Feedback Phase. The mirror regularization method, however, destabilizes the system when

the external force acts on the system. It may be remarked that the Lagrange multipliers should

be shifted, as mentioned in section 2.1.3. For this procedure, it was found beneficial to set the

Lagrange multipliers corresponding to the last defects to zero.

The figures in the next page depict the values in the Hessian for different methods during the

swing-up (second 2) and during the perturbation (second 4.5). The color and the size of the

dots represent the absolute value of the element in the matrix. These figures only show the

values for the first three stages.

One can observe that the (constant) Gauss-Newton Hessian approximation differs from the

others. This is because the Lagrange multipliers adopt values unequal to 0 during dynamic

events, ensuring that the defects constraints are satisfied. In Figure 3-17, all the values in the

diagonal have almost the same value. Especially the elements that correspond to the control

values, for example (5,5), are as big as the other values in the diagonal, which is not the case

for the Gauss-Newton Hessian. This makes the system become sluggish and the BFGS

approximation never converges to the exact Hessian. Initializing the BGFS algorithm with the

Gauss-Newton Hessian improves the behavior of the system and the BFGS Hessian

converges to the exact Hessian when the system is stationary. In Figure 3-19, one can see

that the exact Hessian gets very big values during the external perturbation. This is because

the Lagrange multipliers become larger when the system does not follow the prediction. For

the BFGS Hessian, this is not the case, as it would take the algorithm more iterations to

converge to the exact Hessian.

3 Preliminary Tests

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 50 / 93 Francisco Sevilla

 10 1 1

10

1

1

0

1

9

10

Figure 3-15: Inverted pendulum – Gauss-Newton
Hessian (constant matrix)

 10 1 1

10

1

1

0

10

1

Figure 3-16: Inverted pendulum – Exact Hessian
with 𝐩𝐫𝐨𝐣𝐞𝐜𝐭 regularization (at swing-up)

 10 1 1

10

1

1

0

1

Figure 3-17: Inverted pendulum – BFGS Hessian
with damping approach initialized with identity

matrix (at swing-up)

 10 1 1

10

1

1

0

10

1

 0

 0

Figure 3-18: Inverted pendulum – BFGS Hessian
with damping approach initialized with

Gauss-Newton approximation (at swing-up)

Figure 3-19: Inverted pendulum – Exact Hessian
with project regularization (at perturbation)

…

 10 1 1

10

1

1

0

 0

 0

 0

 0

100

1 0

1 0

Figure 3-20: Inverted pendulum – BFGS Hessian
with damping approach initialized with Gauss

Newton approximation (at perturbation)

 3 Preliminary Tests

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 51 / 93

3.3 Double Inverted Pendulum

3.3.1 Modelling

Simulation model

The inverted pendulum of the previous section was then extended by a second pendulum with

the mass 𝑚𝑃2 = 0.1 𝑘𝑔. In Simscape, this second mass is mounted with another revolute joint

which is at a distance 𝑙 from 𝑚𝑃 and from 𝑚𝑃2. The figure below displays the schematic of this

model.

𝑔 𝑠

𝐹

𝑚𝐶

𝑚𝑃
𝜃 𝑙

𝑙
𝑙

𝑚𝑃2

Figure 3-21: Double inverted pendulum – Schematic

NMPC model

The equations of motion of the system in Figure 3-21 can also be calculated analytically [69],

however they are much more complex than the ones in the previous section (equations (3-12)).

Furthermore, the objective of this simulation was to test the NMPC with an algebraic loop, as

the racecar model also contains algebraic loops (see section 4.1.2). Therefore, the model for

the NMPC was obtained based on the schematic in Figure 3-22.

𝑔
𝑠

𝐹
𝑚𝐶

𝑚𝑃
𝜃 𝑙

𝑙

𝑚𝑃2

𝑭C 𝜑C

𝑦
𝑥

−𝑭C

Figure 3-22: Double inverted pendulum – Schematic for NMPC model

3 Preliminary Tests

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 52 / 93 Francisco Sevilla

Here, the mass 𝑚𝑃2 is separated from the rest of the system and can move “freely” in the

𝑥𝑦-plane. On this mass acts a constraining force 𝑭𝐶 = 𝐹𝐶 [
cos 𝜑𝐶
sin𝜑𝐶

] and an equal and opposite

force acts on the tip of the pendulum. The angle 𝜑𝐶 can be calculated by

tan 𝜑𝐶 =
−𝑦 − 2𝑙 cos 𝜃

−𝑥 + 𝑠 + 2𝑙 sin 𝜃
 (3-14)

With the force −𝑭𝐶 , the non-conservative forces become

𝑸𝑛𝑐 = [
1 0

0 0
]

⏟

𝜕𝒓𝐹
𝜕𝒒

T

[
𝐹

0
] + [

1 0

2𝑙 cos 𝜃 2𝑙 sin𝜃
]

⏟

𝜕𝒓𝐹𝐶
𝜕𝒒

T

[
−𝐹𝐶 cos 𝜑𝐶

−𝐹𝐶 sin𝜑𝐶
]

(3-15)

Augmenting these to the equations of motion (3-12) results in

𝑠̈ =
𝑚𝑃𝑙𝜃̇

2 sin 𝜃 +𝑚𝑃𝑔sin 𝜃 cos𝜃 + 𝐹 − 𝐹𝐶 cos𝜑𝐶 + 2𝐹𝐶 cos𝜃 cos(𝜑𝐶 − 𝜃)

𝑚𝐶 +𝑚𝑃 sin
2 𝜃

𝜃̈ = −
𝑚𝑃𝑙𝜃̇

2 sin 𝜃 cos 𝜃 + (𝑚𝐶 +𝑚𝑃)𝑔 sin 𝜃 + (𝐹 − 𝐹𝐶 cos𝜑𝐶) cos 𝜃 + 2𝐹𝐶 (
𝑚𝐶

𝑚𝑃
+ 1) cos(𝜑𝐶 − 𝜃)

𝑚𝐶𝑙 + 𝑚𝑃𝑙 sin
2 𝜃

 (3-16)

The equations of motion of the point mass 𝑚𝑃2 are trivially given by:

𝑥̈ =
𝐹𝐶 cos 𝜑𝐶
𝑚𝑃2

𝑦̈ =
𝐹𝐶 sin𝜑𝐶
𝑚𝑃2

− 𝑔

 (3-17)

The state vector of the system is thus 𝒙 = [𝑠 𝑠̇ 𝜃 𝜃̇ 𝑥 𝑦 𝑥̇ 𝑦̇]T.

The constraining force 𝐹𝐶 is inserted to the OCP as a control, so that it can be set by the

optimization solver. However, a constraint must also be added, in order to maintain the

distance 𝑙 between the tip of the pendulum and 𝑚𝑃2. This constraint has the form:

𝑙2 − ((𝑠 + 2𝑙 sin 𝜃 − 𝑥)2 + (−2𝑙 cos 𝜃 − 𝑦)2) = 0 (3-18)

 3 Preliminary Tests

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 53 / 93

Figure 3-23: Double inverted pendulum – ERK4 discretization

3 Preliminary Tests

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 54 / 93 Francisco Sevilla

Figure 3-24: Double inverted pendulum – Trapezoidal discretization

 3 Preliminary Tests

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 55 / 93

3.3.2 Results

For the following tests with this model, the objective function (2-67) was also used, as it also

concerned a tracking application. Therefore, the Gauss-Newton approximation of the Hessian

could be employed. In this case, the 𝑸, 𝑹 and 𝑷 matrices were set to:

𝑸 = 𝑷 = diag([10 0.01 10 1 0.1 10 1 1]T)

𝑹 = [
0.01 0

0 0.0001
]

 (3-19)

where the function diag(𝑣) makes a square matrix with the elements of the vector 𝑣 in its

diagonal. The second nonzero value in 𝑹 corresponds to the force 𝑭𝐶 that closes the algebraic

loop of the NMPC model.

The sampling time was set to 𝑇𝑠 = 0.025 𝑠 and the horizon length to 𝑇𝐻 = 1.25 𝑠. Note that the

sampling time was halved compared to the one for the single inverted pendulum. This was

done in order to cope with the more complex dynamics of this model. However, the horizon

length was also reduced, so that the NMPC algorithm must plan the trajectory in a shorter time,

although it has more iterations to perform the planning.

The reference trajectory concerns a swing-up of the pendulum while the position 𝑠 is increased

to 1 𝑚. As before, this reference was inserted at the end of the prediction horizon.

ERK4 vs. Trapezoidal discretization

The figures in the previous pages show the performance of the RTI algorithm for the double

inverted pendulum with two different integration methods: Explicit 4th-order Runge-Kutta

method (ERK4) and the Trapezoidal method. A similar test was performed with the 1-DoF Cart

(see section 3.1.2). From those tests, the conclusion was that the ERK4 discretization

outperformed the trapezoidal discretization, especially in the case of nonlinearities. However,

with the double inverted pendulum, a new phenomenon becomes apparent: The algebraic loop

makes this problem stiff, and therefore the NMPC controller performs better with the

trapezoidal method.

A stiff system is one which has a “very stable” mode [36]. For example, the system 𝑥̇ = −𝜆𝑥

with a very large 𝜆 ≫ 1 is very stable. This can be seen in the exact solution of its differential

equation 𝑥(𝑡) = 𝑥0 𝑒
−𝜆(𝑡−𝑡0), where 𝑥0 is the initial condition of the system at time 𝑡0. For 𝜆 ≫

1 , the system decays very quickly to zero. For this kind of systems, implicit integration

methods, like the trapezoidal method, perform much better than explicit ones.

An algebraic loop can be regarded as an infinitely fast mode of the system. Therefore, the

NMPC model is stiff. One can see that with the trapezoidal method, the system reaches

stationarity faster than with ERK4. As mentioned before, there exist implicit methods that

assume Zero-Order Hold of the control values. Therefore, implementing one of these methods

should be considered as future work for this project.

External perturbation

This system was also tested with an external perturbation. At second 5 of the simulation, a

force of 1 𝑁 is exerted on the mass 𝑚𝑃2 perpendicularly to its rotational degree of freedom for

3 Preliminary Tests

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 56 / 93 Francisco Sevilla

0.1 seconds. As can be seen in Figure 3-25 and Figure 3-26, the NMPC algorithm with the

ERK4 discretization method performs similarly well as with the trapezoidal method. This is

because the displacements stay relatively small, so that the linearization in the RTI method

remains accurate.

Figure 3-25: Double inverted pendulum – External perturbation with trapezoidal discretization

 3 Preliminary Tests

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 57 / 93

In the figure below, one can see some oscillations in the 𝑦-velocity of the mass 𝑚𝑃2 (𝑦̇). These

come from numerical errors resulting from the stiff system. However, the oscillations are not

present in the actual system, as the algorithms used in Simscape are able to calculate the

system states accurately.

Figure 3-26: Double inverted pendulum – External perturbation with ERK4 discretization

3 Preliminary Tests

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 58 / 93 Francisco Sevilla

3.4 Point Mass on Formula Student Track

Before trying the NMPC on the full autonomous racecar model, several tests were performed

using a point mass model. This point mass model is not a vehicle model and therefore, it does

not represent an actual car. However, it was used to gain insights about the Optimal Control

Problem for time-optimal racing on a track.

3.4.1 Modelling

Simulation model

The simulation model concerns only a point mass 𝑚 that can move on an 𝑥𝑦-plane, i.e. it has

two translational degrees of freedom. On this mass acts a damping force 𝑫 opposite to the

velocity 𝒗 of the mass and an input force 𝑭 at an angle 𝜓 with respect to the 𝑥-axis. The

absolute value of this force 𝐹 ∈ [−4 𝑘𝑁 ; 4 𝑘𝑁] and the time derivative of its direction 𝜓̇ ∈

[−
𝜋

2
𝑟𝑎𝑑

𝑠⁄ ;
𝜋

2
𝑟𝑎𝑑

𝑠⁄] are the inputs for this model. The value 𝜓̇ can be compared to the yaw

rate of the racecar model (see section 4.1.5), therefore 𝜓 may be called the absolute yaw angle

of the point mass. The damping force 𝑫 is defined in Simscape in the joint for the point mass

with a damping coefficient of 𝑘𝑑 = 25
𝑁
𝑚
𝑠⁄
 .

𝑛 𝜃

𝒗

𝜁

𝑭
𝛽

𝜓

𝑠

𝑥

𝑦

𝑚

𝑫

Figure 3-27: Point Mass – Schematic

To simplify the definition of the track-border constraints, the NMPC model is defined in track

coordinates. The track is defined by the path coordinate 𝑠 , the course angle 𝜃(𝑠) of the midline

of the track and the track width 𝑏. In this project 𝑏 was assumed constant and 𝜃 is defined by

cubic splines and measured against the 𝑥-axis. For more information about how the track is

constructed, see Appendix C. It must be remarked that the derivative of the course angle 𝜃

with respect to the path coordinate 𝑠 gives the curvature 𝐶 =
𝜕𝜃(𝑠)

𝜕𝑠
 [70].

In order to provide the correct states to the NMPC, the states in the track-coordinate system

must be calculated in the simulation model as well. These states are the path coordinate 𝑠, the

 3 Preliminary Tests

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 59 / 93

normal coordinate 𝑛, the relative yaw angle 𝜁 and the slip angle 𝛽. The derivatives of 𝑠 and 𝑛

can be calculated by:

𝑠̇ =
𝑣 cos(atan𝒗 − 𝜃)

1 − 𝑛 𝐶

𝑛̇ = 𝑣 sin(atan𝒗 − 𝜃)

 (3-20)

where 𝑣 is the absolute value of the velocity vector 𝒗 and atan 𝒗 is its angle with respect to the

𝑥-axis. Integrating these equations over time provides the actual values of 𝑠 and 𝑛. The values

of the course angle 𝜃 and the curvature 𝐶 can be obtained by evaluating their splines definition

using the path coordinate 𝑠.

The relative yaw angle 𝜁, which is the angle of the force 𝑭 with respect to the tangential line of

the midline of the track, and the slip angle 𝛽, which is the angle between the force vector 𝑭

and the velocity vector 𝒗, can be computed as:

𝜁 = 𝜓 − 𝜃

𝛽 = atan𝒗 − 𝜓
 (3-21)

where the absolute yaw angle 𝜓 is obtained by integration of the control 𝜓̇ .

NMPC model

The equations of motion for this model in the track-coordinate system are

𝑠̇ =
𝑣 cos(𝜁 + 𝛽)

1 − 𝑛 𝐶

𝑛̇ = 𝑣 sin(𝜁 + 𝛽)

𝑣̇ =
𝐹

𝑚
cos 𝛽 −

𝑘𝑑 𝑣

𝑚

𝛽̇ = −𝜓̇ −
𝐹

𝑚 𝑣
sin𝛽

𝜁̇ = 𝜓̇ − 𝐶 𝑠̇

 (3-22)

These equations can be compared to the equations of motion of a racing car in [47, 48, 70]

and in the next chapter. The curvature 𝐶 is obtained by evaluating its splines definition using

the path coordinate 𝑠. Moreover, the power 𝑃 that the force 𝑭 exerts on the point mass is

constrained to ±80 𝑘𝑊. This power is obtained by

𝑃 = 𝐹 𝑣 cos 𝛽 (3-23)

3.4.2 Results

This is the first economic NMPC application tested in this thesis. The goal is to make the point

mass go around the track in minimum time. Therefore, the objective function of the NMPC

Optimal#_CTVL00113b93ea5cd244b81ac5a5231fbb433b7
Optimal#_CTVL001c1f469097343429a9d5e4af39fd5f101

3 Preliminary Tests

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 60 / 93 Francisco Sevilla

Optimal Control Problem was formulated to maximize the distance that the point mass travels

in its prediction horizon:

min
𝒙,𝒖

−𝑠𝑁 (3-24)

where 𝑠𝑁 is the path coordinate at the end of the prediction horizon. Since the reference does

not play a role in the optimization, it can be set to zero (or any other value). However, Falcon

NMPC requires a grid of reference values, see Appendix A.

Since the differential equation for the slip angle 𝛽̇ contains a division by the speed 𝑣, the NMPC

cannot be started at standstill. Therefore, it is started when the speed is greater than 1 𝑚 𝑠⁄ .

Before that, the controller outputs 𝐹 = 1000 𝑁 and 𝜓̇ = 0 𝑟𝑎𝑑 𝑠⁄ . At the start, the initial guess

for the optimization problem is a ramp from 0 𝑚 to 100 𝑚 for 𝑠, constant 10𝑚 𝑠⁄ for 𝑣 and

constant 1000 𝑁 for 𝐹, all other values are zero.

The track in these tests consists of the Formula Student Germany track generated with logged

data from TUfast’s electric racecar eb016. More information on the import of the track can be

found in Appendix C. The total length of the track is 1 184 meters and the width of the track

was set to constant 4 meters. As the mass in Simscape has a diameter of 2 𝑚, the normal

coordinate 𝑛 was limited to ±1 𝑚. Furthermore, the slip angle 𝛽 was limited to ±1 3⁄ 𝜋 and the

relative yaw angle 𝜁 to ±1 2⁄ 𝜋 .

It must be remarked that for the tests described next, the computation time for the solver

(IPOPT) was limited to 0.5 𝑠. In many timesteps, the solver did not converge properly, however

its output was still used. Therefore, the results of these tests might not be reproduced exactly,

but the conclusions following from them should still apply.

Modification on the Shift Procedure

For the first tests, Forward Euler was used as discretization method, as the tests were

performed with an exact Hessian calculation. For these tests, no regularization method was

used, so IPOPT performs the convexification of the quadratic problem. Furthermore, the

horizon length was set to 𝑇𝐻 = 5 𝑠 and the sampling time to 𝑇𝑠 = 0.05 𝑠.

During the tests performed with this model, it was found that not setting the final path

coordinate 𝑠𝑁
guess

 by forward simulation during the shift procedure (as suggested by equation

(2-22)), but leaving it with its last value, results in significantly better performance of the NMPC:

𝑠𝑁
guess

= 𝑠𝑁
∗ (= 𝑠𝑁−1

guess) (3-25)

Figure 3-28 shows the results of a simulation in which all the states were set by forward

simulation and a simulation with the approach described above. Although the speed profile is

not decisive for which result is better, one can see that with the approach (3-25) the lap is

finished first. The reason for this is that without this approach the point mass “gets stuck” at

several points in the track. This is also the case for all of the Hessian approximations

implemented in this project. These simulations were repeated multiple times with similar

results. Therefore, the approach (3-25) was used for the experiments described next.

At the time of writing of this thesis, the reason for why this approach improves the controller’s

performance is not entirely clear. However, it has to do with the fact that the gradient of the

 3 Preliminary Tests

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 61 / 93

objective function (3-24) and the gradient of the defect constraint for 𝑠̇ in the last stage

(𝑁 − 1) → (𝑁) point in the same direction, namely increasing 𝑠𝑁 .

Hessian of the Objective Function vs. Hessian of the Lagrangian

In the following tests, the performance of the NMPC using a Hessian calculation with and

without the second order derivatives of the constraints was compared. The second case

(without the constraints) is equivalent to setting all Lagrange multipliers to zero, so that only

the second order derivative of the objective function is considered. This was inspired by the

fact that the Gauss-Newton approximation does not consider the second order derivatives of

the constraints. For the tests described here, the horizon length was kept at 𝑇𝐻 = 5 𝑠 and the

sampling time at 𝑇𝑠 = 0.05 𝑠. Forward Euler was used as discretization method.

Figure 3-29 shows the results of simulations using an exact Hessian calculation. The blue line

considers the second order derivatives of the constraints (Hessian of the Lagrange function),

the red line does not (Hessian of the objective function). In both cases, no regularization

Figure 3-28: Point mass – Modification on the shift procedure

3 Preliminary Tests

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 62 / 93 Francisco Sevilla

method was used. In the figure, it can be regarded that both simulations have relatively similar

results. In the speed profile, one can observe that both approaches perform equally good (the

speed trajectory is almost identical) in several parts of the track. These are parts where the

Lagrange multipliers have small values, because satisfying the constraints is not strongly

concurrent with the objective function. The lap-time with both approaches is also almost the

same.

Similar simulations were performed using a BFGS Hessian approximation. The results are

shown in Figure 3-30. These simulations show significantly poorer performance of the

controller compared to the exact Hessian simulations shown above. However, it can be

appreciated here as well, that in some parts of the track, both controllers give almost identical

trajectories.

Figure 3-29: Point mass – Exact Hessian with and without second derivatives of the constraints

 3 Preliminary Tests

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 63 / 93

Exact Hessian vs. Constant Hessian

Taking a closer look at the objective function of the Optimal Control Problem (3-24), one can

see that it is a linear function 𝐸(𝒙𝑁) = −𝑠𝑁 . This means that its second derivative is zero.

Therefore, if the second order derivatives of the constraints are not considered in the Hessian,

the Hessian is a constant zero matrix. A zero matrix is not strictly positive definite and if it was

not for the constraints, the minimization of the objective function would tend to −∞.

Therefore, to try to help improve the optimization procedure, some simulations were performed

with a constant Hessian. This constant Hessian would have small positive values in its

diagonal, making it strictly positive definite. Note that doing this is equivalent to adding a

tracking cost function of the form (2-65), where 𝑸, 𝑹 and 𝑷 have values only in their diagonal

and the references for the states and for the controls are 𝒙𝑖
guess

 and 𝒖𝑖
guess

 respectively. As will

be discussed in the next chapter, using this method provides good tuning parameters to

improve the robustness of the NMC.

Figure 3-30: Point mass – BFGS Hessian with and without second derivatives of the constraints

3 Preliminary Tests

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 64 / 93 Francisco Sevilla

Figure 3-31 shows the comparison of a simulation with a constant (non-zero) Hessian and the

exact Hessian without the second derivatives of the constraints, which is a constant zero

matrix. For the constant Hessian, the 𝑸, 𝑹 and 𝑷 matrices were set to:

𝑸 = 𝑷 = diag([10−16 10−16 10−16 10−16 10−16]
T)

𝑹 = [
10−32 0

0 10−32
]

 (3-26)

where the function diag(𝑣) makes a square matrix with the elements of the vector 𝑣 in its

diagonal. For these tests, the horizon length was kept at 𝑇𝐻 = 5 𝑠 and the sampling time at

𝑇𝑠 = 0.05 𝑠. Forward Euler was used as discretization method.

One can see that, except for a small part at 𝑠 ≈ 100 𝑚, the speed profiles as well as the lap-

times are almost identical. However, the path that the point mass follows with the constant

Hessian is much smoother, see for example shortly before 𝑠 = 1 𝑘𝑚 in the map. This is

Figure 3-31: Point mass – Exact Hessian compared to Constant Hessian

 3 Preliminary Tests

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 65 / 93

because of the improved convergence of the optimization solver, as the Hessian is strictly

positive definite.

Forward Euler vs. ERK4

The exact calculation of the second order derivatives of the explicit 4 th-order Runge-Kutta

(ERK4) discretization method were not implemented in this project. However, as a constant

Hessian can be used without a big loss of performance (see the previous tests), the ERK4

discretization method can be compared to the Forward Euler.

The idea is to keep the NMPC using the Forward Euler method as before (𝑇𝐻 = 5 𝑠 ,

 𝑇𝑠 = 0.05 𝑠) but, with the ERK4 method, increase the sampling time to 𝑇𝑠 = 0.1 𝑠. For this

simulations the constant Hessian was kept as before, i.e. (3-26). Figure 3-32 shows the results.

One can see that the ERK4 outperforms the Forward Euler discretization method, although the

sampling frequency of the latter is double the one of the ERK4. This also means that the

outputs of the controller 𝝁 = 𝒖1
∗ are kept constant (zero-order hold) for twice as long in the

Figure 3-32: Point mass – Forward Euler compared to ERK4 with constant Hessian

3 Preliminary Tests

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 66 / 93 Francisco Sevilla

ERK4 case. However, the reason why the ERK4 performs better is that its prediction is more

accurate. This means that in the Feedback Phase the initial guess for the states 𝒙1
guess

 matches

the actual states 𝒙̅ better, so that the controller does not have to make large corrections.

As will be discussed in the next chapter, an ERK4 discretization method and a constant

Hessian were used in the NMPC for the autonomous racecar model.

3.5 Summary

This section summarizes the preliminary tests performed with the NMPC algorithm during this

project, as well as the conclusions following from these tests. With the 1-DoF Cart, the Inverted

Pendulum and the Double Inverted Pendulum, tracking NMPC applications were regarded. An

economic NMPC application was considered in section 3.4 with the point mass model.

Tracking NMPC

Table 3-1 provides a summary of the conclusions following from the preliminary tests

concerning tracking NMPC applications:

Model Test Conclusions

1
-D

o
F

 C
a

rt

Trapezoidal

discretization with vs.

without approach (2-20)

The output 𝝁(𝒙̅𝑛) of the NMPC algorithm is held

constant until the next sampling time 𝑡𝑛+1. This is not

considered with the trapezoidal discretization.

Therefore, using approach (2-20) might improve the

performance of the NMPC if trapezoidal discretization

is used.

Trapezoidal vs. ERK4

discretization

The trapezoidal method might not be robust in systems

with nonlinearities, even using approach (2-20). The

reasons are the same as described above.

Therefore, a discretization method that considers that

the output 𝝁(𝒙̅𝑛) is held constant between sampling

times usually gives better results. This is the case for

the ERK4 discretization.

Model mismatch

The NMPC controller gave a very good performance in

this test. The NMPC algorithm minimizes the given

objective function. Therefore, in the case of the cost

(2-67), the 𝑸, 𝑹 and 𝑷 matrices can be used to tune the

algorithm.

In
v
e

rt
e

d

P
e

n
d

u
lu

m

RTI vs. Converged Full

OCP

If the horizon length and the sampling time are chosen

correctly, the RTI scheme gives practically identical

results as converging the full nonlinear OCP in every

timestep. However, the RTI algorithm only takes a

fraction of the time and its timing is more uniform.

(Continued in the next page…)

Table 3-1: Summary of preliminary tests on tracking NMPC applications

 3 Preliminary Tests

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 67 / 93

Model Test Conclusions

In
v
e

rt
e

d
 P

e
n
d

u
lu

m

(c
o
n

t.
)

Infeasible and non-

stationary setpoints

The NMPC algorithm can handle infeasible and non-

stationary setpoints as reference. It minimizes the

given objective function. Therefore, in the case of the

cost (2-67), the 𝑸, 𝑹 and 𝑷 matrices can be used to

tune the algorithm. Although the RTI method linearizes

all constraints, it also handles nonlinear constraints

satisfactorily.

IPOPT vs. qpDUNES

Using a dedicated QP solver like qpDUNES for solving

the quadratic problems in every timestep of the RTI

algorithm significantly reduces the time spent in the

Feedback Phase of the algorithm. However, IPOPT is

much more versatile and was therefore used for the

rest of this thesis.

External perturbation
The NMPC reacts satisfactorily to external

perturbations. In this case also, the 𝑸, 𝑹 and 𝑷 matrices

can be used to tune the performance algorithm.

Gauss-Newton vs.

BFGS vs. Exact

Hessian

The different Hessian approximations were compared

graphically.

The BFGS approximation calculated blockwise did not

work stably in this test. However, if the BFGS formula

is used for the full Hessian gives good performance,

especially if a shift procedure is performed and the

Hessian approximation is initialized.

Concerning the exact Hessian, the project

regularization method gives good results. However, the

mirror regularization method makes the system

unstable in the case of external perturbations.

D
o

u
b

le
 I
n

v
e

rt
e

d
 P

e
n
d

u
lu

m

ERK4 vs. Trapezoidal

discretization

The NMPC model includes an algebraic loop and is

therefore stiff. Since implicit integration methods (like

the trapezoidal) work better for stiff systems, the

trapezoidal method with approach (2-20) gave better

results than the ERK4 in these tests.

However, in case of strong nonlinearities, using the

trapezoidal method might make the system unstable,

see the results with the 1-DoF Cart.

External perturbation
The NMPC also reacts satisfactorily to external

perturbations with this model. This was tested with the

ERK4 and the trapezoidal discretization methods.

Table 3-2: Summary of preliminary tests on tracking NMPC applications (continued)

Economic NMPC

Here, the results and conclusions that followed from the tests concerning an economic NMPC

application are summarized. The insights that were obtained in these tests will be applied for

the autonomous racecar model in the next chapter.

3 Preliminary Tests

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 68 / 93 Francisco Sevilla

Model Test Conclusions

P
o

in
t

M
a

s
s
 o

n
 F

o
rm

u
la

 S
tu

d
e
n

t
T

ra
c
k

Modification on the Shift

Procedure

In this test, it was found that a slight modification on the

shift procedure (before the Preparation Phase),

significantly improves the performance and the

robustness of the NMPC formulation for maximum

progress in the defined time horizon.

Note that this is not a general conclusion for any

economic NMPC application. However, this

modification will be applied for the autonomous

racecar, as the objective function is identical.

Hessian of the Objective

Function vs. Hessian of

the Lagrangian

These tests showed that neglecting the second-order

derivatives of the constraints in the Hessian gives

similar results as incorporating them in the QP problem.

This means using the Hessian of the objective function

instead of the Hessian of the Lagrange function.

This was inspired by the fact that the Gauss-Newton

approximation also neglects the second-order

derivatives of the constraints. These tests were

performed with an exact Hessian calculation and with a

BFGS Hessian approximation.

Exact Hessian vs.

Constant Hessian

The exact Hessian of the objective function is a zero

matrix. If this matrix is used for the QP problem in the

RTI scheme, the quadratic problem is not strictly

convex. Therefore, using a matrix with small positive

numbers in its diagonal improves the convergence of

the QP problem significantly. This also improves the

performance of the controller.

Forward Euler vs. ERK4

These tests compared the performance between the

Forward Euler discretization method and the ERK4

method with a larger sampling time. Due to its better

accuracy in the prediction, the ERK4 discretization

method gave better results despite the sampling time

being twice as big.

Table 3-3: Summary of preliminary tests on economic NMPC applications

 4 Autonomous Racecar

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 69 / 93

4 Autonomous Racecar

This chapter contains the core of this thesis, namely the implementation of the Nonlinear Model

Predictive Control algorithm for an autonomous racecar. As mentioned in the introduction, the

characteristics and parameters of the vehicle presented here correspond to a Formula Student

car, specifically the eb016. This is an electric all-wheel-driven racecar car of the Formula

Student team of the Technical University of Munich. More details about this car can be found

in Appendix B.

The first section of this chapter describes how the simulation model and the model used for

the NMPC are built and how they differ from each other. A brief summary comparing both

models can be found in subsection 4.1.7. Then, section 4.2 discusses how the NMPC was

tuned and presents the results of the simulations.

4.1 Modelling

For both the simulation model and the NMPC model, the standard vehicle coordinate system

(𝑥𝑉 , 𝑦𝑉 , 𝑧𝑉) defined in the ISO 8855 [71] was used. The vehicle reference point used for this

system is the center of gravity, simplifying the construction of the Newtonian equations of

motion. In this system, the 𝑥𝑉-axis points forward, the 𝑦𝑉-axis to the left and the 𝑧𝑉-axis upward.

This coordinate system is displayed in Figure 4-1.

Also relevant for this thesis is the wheel coordinate system (𝑥𝑊, 𝑦𝑊, 𝑧𝑊), which is also defined

in the ISO 8855. In this system, the 𝑥𝑊-axis is parallel to local plane of the road, the 𝑦𝑊-axis

is the wheel rotation axis and the 𝑥𝑊𝑧𝑊-plane is the midplane of the tire, so that 𝑧𝑊 points

upwards. In this thesis, the toe and camber angles as well as the Ackermann steering angle

are neglected, and the road is assumed to be flat. This means that the 𝑧𝑉 and the 𝑧𝑊 axes of

all wheels are always parallel and the 𝑥𝑊 of both front tires are deflected only by the same

steering angle 𝛿𝐹 with respect to 𝑥𝑉. The wheel coordinate system is used in this thesis to

represent the forces and torques acting on each wheel. In the following sections, this system

is also denoted by two letters corresponding to each wheel, for example 𝐹𝐿 for the front-left

wheel.

𝑥𝑉

𝑦𝑉

𝑥𝑉

𝑦𝑉

𝑧𝑉

𝑥𝑊

𝑦𝑊 𝛿𝐹

𝜓̇

𝒗
𝛽

Figure 4-1: Racecar modelling – Coordinate system and states

𝑤𝑏

𝑡𝑟𝑅

4 Autonomous Racecar

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 70 / 93 Francisco Sevilla

Furthermore, the ISO 8855 also defines other values that are used in this thesis. The slip angle

𝛽 is the angle between the velocity vector 𝒗 of the center of gravity of the vehicle and the

𝑥𝑉-axis. The yaw angle 𝜓 is the angle between the 𝑥𝑉-axis and the 𝑥𝐸-axis of an earth-fixed

frame, which, like in this project, is usually assumed to be an inertial frame. The time derivative

of this angle gives the angular velocity of the vehicle about its 𝑧𝑉-axis, which is known as its

yaw rate 𝜓̇. Note that the definitions in the norm are slightly different from the ones presented

here. However, the pitch and roll motions of the vehicle as well as its translation in 𝑧𝑉-direction

are neglected in this thesis, and thus the definitions presented here are equivalent to the ones

in the norm.

It may be noted that the subsystems presented in the following subsections are ordered in the

same sequence as they are calculated in the NMPC model.

4.1.1 Aerodynamic Forces

Simulation model

Over the last few years, Formula Student teams have spent lots of effort into developing high-

downforce aerodynamic packages for their racecars. The motivation for this is to increase the

aerodynamic grip of the car to achieve higher lateral (and longitudinal) accelerations and be

able to drive at higher speeds in the corners. An example of these racecars is found in Figure

1-2. In this thesis, the aerodynamic forces were modelled as follows:

𝐿 =
1

2
 𝜌 𝐶𝐿𝐴 𝑣

2

𝐷 = −
1

2
 𝜌 𝐶𝐷𝐴 𝑣

2

 (4-1)

where 𝐿 is the lift (negative downforce) and 𝐷 is the drag, 𝜌 = 1.225
𝑘𝑔

𝑚3⁄ represents the air

density, 𝑣 the absolute value of the velocity of the car and 𝐶𝐿𝐴 = −5.78 𝑚
2 and 𝐶𝐷𝐴 = 1.82 𝑚

2

are the lift and drag coefficients respectively, multiplied by their reference surface area 𝐴.

These last values are obtained by CFD simulations and validated on track with spring-travel

and ride-height sensors with constant-speed tests and coasting tests.

The drag 𝐷 acts opposite to the velocity vector 𝒗. This means that in 𝑥𝑉-direction one obtains

𝐷 cos 𝛽 and in 𝑦𝑉-direction 𝐷 sin𝛽. The lift 𝐿 acts in 𝑧𝑉 direction and is split between the front

and rear axle by the aerodynamic balance 𝑏𝑎𝑙𝐴 = 0.46, see the next subsection. It may be

remarked that the shifting of wheel loads due to the torque that the drag generates on the

vehicle is already considered in this aerodynamic balance.

NMPC model

For the NMPC model, the aerodynamic forces are calculated identically as for the simulation

model.

4.1.2 Wheel Loads

The vertical forces of the tires need to be calculated dynamically, as they are constantly

changing depending on the state of the vehicle. For example, during a braking procedure the

wheel loads are shifted to the front, while in a corner the outer wheels get more load than the

 4 Autonomous Racecar

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 71 / 93

inner ones. This is known as wheel load redistribution. The wheel loads are important inputs

for the tire model described in the next subsection.

Simulation model

For the simulation model, a steady-state wheel load redistribution calculation was used, thus

neglecting the damping forces. A similar calculation is described in [72]. The inputs for this

calculation are:

• the overall mass 𝑚 = 250 𝑘𝑔, which is the sum of the sprung mass 𝑚Spr and the

unsprung masses 𝑚Unspr . It may be remarked that the overall mass used in this thesis

includes the weight the driver. This is done to be able to compare the results of the

NMPC algorithm to an actual driven lap, see section 4.2

• the unsprung mass 𝑚𝑈𝑛𝑠𝑝𝑟 = 14 𝑘𝑔, which includes the mass of the wheel, the tire, the

wheel hub, the upright, the (outboard) motor and gear box, and half of the mass of the

suspension for each wheel. Thus, 𝑚 = 𝑚Spr + 4 ∙ 𝑚Unspr .

• the distance 𝑥CoG = 0.78 𝑚 between the center of gravity (CoG) of the overall mass and

center of the front axle

• the height 𝑧CoG = 0.3 𝑚 of the center of gravity (CoG) of the overall mass with respect

to the road

• the height of the center of gravity of the unsprung masses, which for this calculation is

assumed to be equal to the undeflected tire radius 𝑟tire = 0.224 𝑚

• the wheel base 𝑤𝑏 = 1.55 𝑚 and the front and rear track widths 𝑡𝑟F = 1.2 𝑚 and

𝑡𝑟R = 1.2 𝑚 (see Figure 4-1)

• the height of the roll axis at the front and rear axles 𝑧RC,F = 0.044 𝑚 and

𝑧RC,R = 0.079 𝑚, also known as front and rear roll centers

• the roll moment distribution ΦRoll = 0.6, which is calculated considering the springs’

and anti-roll-bars’ (ARBs) stiffnesses.

• the lift 𝐿 calculated by equation (4-1) and the aerodynamic balance 𝑏𝑎𝑙A

• the longitudinal and lateral accelerations 𝑎𝑥 and 𝑎𝑦 of the CoG of the overall mass

• the gravitational acceleration of the earth 𝑔 = 9.80665𝑚 𝑠2⁄

First, the sprung mass acting on the front and rear axles in standstill can be calculated

respectively by:

𝑚Spr,F = 𝑚 ∙
𝑤𝑏 − 𝑥CoG

𝑤𝑏
− 2 ∙ 𝑚Unspr

𝑚Spr,R = 𝑚 ∙
𝑥CoG
𝑤𝑏

− 2 ∙ 𝑚Unspr

 (4-2)

The height of the center of gravity of the sprung mass can then be computed as:

𝑧CoG,Spr =
𝑚 𝑧CoG − 4 𝑚Unspr 𝑟tire

𝑚Spr,F +𝑚Spr,R
 (4-3)

The calculation of the wheel load at the front left tire is shown exemplarily in equation (4-4).

The wheel loads at the other tires can be calculated analogically. It must be noted that wheel

loads are contact forces and thus having a negative wheel load is physically impossible.

4 Autonomous Racecar

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 72 / 93 Francisco Sevilla

Therefore, in the simulation model the wheel loads are saturated to be greater than or equal

to 0 𝑁 .

𝐹z,FL = (
1

2
𝑚Spr,F +𝑚Unspr) ∙ 𝑔 (static load)

− 𝑚Spr,F

𝑧CoG,Spr − 𝑧RC,F

𝑡𝑟F
(1 −ΦRoll) 𝑎𝑦 (lateral redistr. acting on springs & ARBs)

− 𝑚Spr,F

𝑧RC,F
𝑡𝑟F

𝑎𝑦 (lateral redistr. acting directly on RC)

− 2 𝑚Unspr

𝑟tire
𝑡𝑟𝐹

 𝑎𝑦 (lateral redistr. due to unsprung mass)

−
1

2
𝑚
𝑧CoG
𝑤𝑏

 𝑎𝑥 (longitudinal load redistr.)

−
1

2
𝐿 𝑏𝑎𝑙A (aerodynamic wheel load)

 (4-4)

It may be noted that this calculation creates an algebraic loop, since the wheel loads are

necessary to calculate the tire forces and the tire forces are used to compute the longitudinal

and lateral accelerations 𝑎𝑥 and 𝑎𝑦, which are inputs for the wheel loads calculation. In a more

detailed model, the wheel loads would concern a dynamic calculation considering the damper

forces and the tire deflection. In this project, this algebraic loop was relaxed by a first-order lag

of 0.001 𝑠 on the wheel loads fed to the tire model.

NMPC model

For the NMPC model, the wheel loads calculation was simplified. Taking the wheel load at the

front-left tire as an example, it is calculated as:

𝐹z,FL = (
1

2
𝑚Spr,F +𝑚Unspr) ∙ 𝑔 (static load)

− 𝑚
𝑧CoG
𝑡𝑟F

(1 −ΦRoll) 𝑎𝑦 (lateral load redistr.)

−
1

2
𝑚
𝑧CoG
𝑤𝑏

 𝑎𝑥 (longitudinal load redistr.)

−
1

2
𝐿 𝑏𝑎𝑙A (aerodynamic wheel load)

 (4-5)

This is the same calculation that is used in [47], [48] and [70]. These publications solve the

algebraic loop inside the OCP. However, in this project it was found useful to relax the algebraic

loop with a first-order lag on the lateral and longitudinal accelerations using the sampling time

as time constant. Since 𝑎𝑥 and 𝑎𝑦 then become states, this allows to use the measurements

of these values in the initial value embedding of the NMPC. Note that relaxing this algebraic

loop is a method that can be found frequently in literature, for example in [24].

4.1.3 Tire Forces

A tire model is employed to represent the contact forces between the tires and the road. In this

thesis, a tire model based on the TMeasy model proposed by Rill [73]. However, in this project

the TMeasy model was modified to improve its accuracy and its suitability for Optimal Control

applications, using the Pacejka’s similarity method [46] for calculating the combined forces.

Both the simulation model and the NMPC model use the TMeasy calculations, but some

simplifications are made for the NMPC model in order to improve its performance. Tire

 4 Autonomous Racecar

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 73 / 93

dynamics, for example the relaxation length, were, however, ignored in this thesis. It may be

remarked that van Koutrik also used a TMeasy tire model in his work [48].

Simulation model

The TMeasy model, like many other tire models (e.g. Pacejka’s Magic Formula [46]), is a

semiempirical model based on observations concerning the movement of the thread particles

of a tire. These observations lead to the unitless longitudinal slip 𝑠𝑥 and lateral slip 𝑠𝑦

definitions:

𝑠𝑥 =
𝑟𝐸𝑁 − 𝑣𝑥,𝑊

𝑟𝐸𝑁

𝑠𝑦 =
−𝑣𝑦,𝑊

𝑟𝐸𝑁

 (4-6)

where 𝑣𝑥,𝑊 and 𝑣𝑦,𝑊 are the components of the velocity of the wheel center in the

corresponding wheel coordinate system, 𝑁 is the wheel speed of the tire and 𝑟𝐸 is its effective

roll radius, also known as its dynamic radius, calculated by:

𝑟𝐸 = 𝜆𝑟
𝑙𝑖𝑛 𝑟0 + (1 − 𝜆𝑟

𝑙𝑖𝑛)𝑟𝐿 (4-7)

In this equation, 𝜆𝑟
𝑙𝑖𝑛 always assumes a value between zero and one. The dynamic tire radius

is thus, according to the TMeasy model, a value between the unloaded radius 𝑟0 = 𝑟𝑡𝑖𝑟𝑒 , which

is the radius of the undeflected tire, and the loaded radius 𝑟𝐿 , which is dependent on the wheel

load:

𝑟𝐿 = 𝑟0 −
𝐹𝑧,𝑊

𝑐𝑧
𝑙𝑖𝑛

 (4-8)

where 𝑐𝑧
𝑙𝑖𝑛 denotes the vertical stiffness of the tire. Note that the longitudinal and lateral slips

are not defined for 𝑁 = 0𝑟𝑎𝑑 𝑠⁄ , a state that is given at standstill and at wheel lockage during

braking. Therefore, in this thesis, the input 𝑁 was saturated by a lower value of 1 𝑟𝑎𝑑 𝑠⁄ .

The longitudinal and lateral slips are then normalized using 𝑠𝑀,𝑥
𝑙𝑖𝑛 and 𝑠𝑀,𝑦

𝑙𝑖𝑛 which are the slip

values at which the tire reaches the longitudinal and lateral peak forces in pure longitudinal

(𝑠𝑦 = 0) or pure lateral (𝑠𝑥 = 0) conditions respectively. The normalized longitudinal and lateral

slips are denoted by 𝜎𝑥 and 𝜎𝑦 respectively and are computed as:

𝜎𝑥 =
𝑠𝑥

𝑠𝑀,𝑥
𝑙𝑖𝑛

𝜎𝑦 =
𝑠𝑦

𝑠𝑀,𝑦
𝑙𝑖𝑛

 (4-9)

The combined normalized slip 𝜎 is then calculated as the Euclidean norm of the components

𝜎𝑥 and 𝜎𝑦 :

𝜎 = √𝜎𝑥2 + 𝜎𝑦2 (4-10)

4 Autonomous Racecar

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 74 / 93 Francisco Sevilla

The longitudinal force 𝐹𝑥,𝑊 and the lateral force 𝐹𝑦,𝑊 are calculated by piecewise defined

functions. The function for 𝐹𝑥,𝑊 is given in equation (4-11), 𝐹𝑦,𝑊 is defined analogically. Note

that these forces are not calculated exactly as proposed by Rill [73], but Pacejka’s similarity

method [46] was employed to calculate the combined slip forces 𝐹𝑥,𝑊 and 𝐹𝑦,𝑊 separately. It

may be remarked that 𝐹𝑥,𝑊 and 𝐹𝑦,𝑊 are given in the wheel coordinate system corresponding

to each tire.

𝐹𝑥,𝑊 =

{

 𝑑𝐹0,𝑥

𝑞𝑢𝑎𝑑
 𝑠𝑀,𝑥
𝑙𝑖𝑛 𝜎𝑥

𝜎2 + (
𝑠𝑀,𝑥
𝑙𝑖𝑛

𝐹𝑀,𝑥
𝑞𝑢𝑎𝑑 𝑑𝐹0,𝑥

𝑞𝑢𝑎𝑑
− 2)𝜎 + 1

for 𝜎 ≤ 1

𝜎𝑥
𝜎

(

𝐹𝑀,𝑥
𝑞𝑢𝑎𝑑

− (𝐹𝑀,𝑥
𝑞𝑢𝑎𝑑

− 𝐹𝑆,𝑥
𝑞𝑢𝑎𝑑)

(𝜎 − 1)2

(
𝑠𝑆,𝑥
𝑙𝑖𝑛

𝑠𝑀,𝑥
𝑙𝑖𝑛 − 1)

2

(

3 − 2 ∙

𝜎 − 1

𝑠𝑆,𝑥
𝑙𝑖𝑛

𝑠𝑀,𝑥
𝑙𝑖𝑛 − 1

)

)

 for 1 < 𝜎 ≤
𝑠𝑆,𝑥
𝑙𝑖𝑛

𝑠𝑀,𝑥
𝑙𝑖𝑛

𝜎𝑥
𝜎
 𝐹𝑆,𝑥
𝑞𝑢𝑎𝑑

for 𝜎 >
𝑠𝑆,𝑥
𝑙𝑖𝑛

𝑠𝑀,𝑥
𝑙𝑖𝑛

 (4-11)

Figure 4-2 shows an exemplary curve of 𝐹𝑥,𝑊 in pure longitudinal slip conditions, i.e. 𝑠𝑦 = 0 .

As mentioned before, the tire model has a strong dependency on the wheel load 𝐹𝑧,𝑊 . In the

equations above, this dependency is represented by the superscripts ⬚𝑙𝑖𝑛 and ⬚𝑞𝑢𝑎𝑑 , which

denote a linear or a quadratic interpolation of the parameter depending on the wheel load.

Figure 4-2: Tire forces – TMeasy parameters [74]

Each of these parameters is thus provided for two specified wheel loads 𝐹𝑧
(1)

 and 𝐹𝑧
(2)

 to

perform the interpolation, where 𝐹𝑧
(2) > 𝐹𝑧

(1)
. The linear interpolation is trivial. The quadratic

interpolation is defined so that the parameter results in zero for zero wheel load [73]. For

example, the maximum longitudinal force 𝐹𝑀,𝑥
𝑞𝑢𝑎𝑑

 is calculated by:

𝐹𝑀,𝑥
𝑞𝑢𝑎𝑑 = 𝐹𝑀,𝑥

(1) 𝐹𝑧

𝐹𝑧
(1)
+
𝐹𝑀,𝑥
(2) 𝐹𝑧

(1) − 𝐹𝑀,𝑥
(1) 𝐹𝑧

(2)

𝐹𝑧
(1) 𝐹𝑧

(2)
∙
𝐹𝑧
2 − 𝐹𝑧 𝐹𝑧

(1)

𝐹𝑧
(2) − 𝐹𝑧

(1)
 (4-12)

𝐹𝑥

𝑠𝑥 𝑠𝑆,𝑥 𝑠𝑀,𝑥

𝐹𝑀,𝑥

𝐹𝑆,𝑥
𝑑𝐹0,𝑥

adhesion

full sliding

 4 Autonomous Racecar

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 75 / 93

The tire parameters are fitted to flat-trac testbench data. During the fitting process, several

conditions need to be taken into account, for example that:

• 𝐹𝑧
(2)

 is greater than the maximum wheel load expected in the application of the tire

model

• the linearly interpolated parameters are positive for 𝐹𝑧,𝑊 = 0 𝑁

• the curvature of the parabola of the quadratically interpolated parameters is negative,

so that the interpolation has a degressive trend

• the focal point of the parabolas of the quadratically interpolated parameters is not

before 𝐹𝑧
(2)

, so that the function is always increasing

Furthermore, a factor 𝜆𝜇 = 0.5 is used to scale the tire model parameters to adapt the flat-trac

testbench values to the friction achieved on an asphalt track. This scaling is performed as

proposed by Rill [74]:

𝑠𝑀,𝑥
𝑙𝑖𝑛 ← 𝜆𝜇 𝑠𝑀,𝑥

𝑙𝑖𝑛 𝐹𝑀,𝑥
𝑞𝑢𝑎𝑑

← 𝜆𝜇 𝐹𝑀,𝑥
𝑞𝑢𝑎𝑑

𝑠𝑆,𝑥
𝑙𝑖𝑛 ← 𝜆𝜇 𝑠𝑆,𝑥

𝑙𝑖𝑛 𝐹𝑆,𝑥
𝑞𝑢𝑎𝑑

← 𝜆𝜇 𝐹𝑆,𝑥
𝑞𝑢𝑎𝑑

𝑠𝑀,𝑦
𝑙𝑖𝑛 ← 𝜆𝜇 𝑠𝑀,𝑦

𝑙𝑖𝑛 𝐹𝑀,𝑦
𝑞𝑢𝑎𝑑

← 𝜆𝜇 𝐹𝑀,𝑦
𝑞𝑢𝑎𝑑

𝑠𝑆,𝑦
𝑙𝑖𝑛 ← 𝜆𝜇 𝑠𝑆,𝑦

𝑙𝑖𝑛 𝐹𝑆,𝑦
𝑞𝑢𝑎𝑑

← 𝜆𝜇 𝐹𝑆,𝑦
𝑞𝑢𝑎𝑑

 (4-13)

NMPC model

The NMPC model uses the same tire forces calculation as the simulation model. However, the

longitudinal slip 𝑠𝑥 is used as input, so that it does not have to be calculated. The reason for

this is that the wheel dynamics are neglected in the NMPC model, see next subsection. Also,

the tire radius is assumed constant and the effective roll radius is set equal to the undeflected

tire radius, i.e. 𝑟𝐸 = 𝑟tire .

Furthermore, path constraints are imposed on the NMPC so that the combined normalized slip

𝜎 of every tire is always less or equal to 0.95 . This helps to ensure that the tires are not

operated above their traction limit, ensuring a stable performance of the system. Therefore,

only the first part of the piecewise defined functions for 𝐹𝑥,𝑊 and 𝐹𝑦,𝑊 needs to be implemented,

see equation (4-11). Moreover, the friction scaling parameter was reduced to 𝜆𝜇 = 0.4 for the

prediction, so that the tire limit is not overestimated.

In Simscape, the 𝑣𝑥,𝑊 and 𝑣𝑦,𝑊 velocities of the tires can be directly obtained by a Transform

Sensor. However, in the NMPC model, these values need to be calculated using the model’s

states and controls. For instance, the velocity components for the front-left wheel center

denoted in the corresponding wheel coordinate system are computed by:

[

𝑣𝑥,𝐹𝐿

𝑣𝑦,𝐹𝐿
] = [

cos 𝛿𝐹 sin 𝛿𝐹

−sin𝛿𝐹 cos 𝛿𝐹

] [
𝑣𝑥,𝑉 −

𝑡𝑟𝐹
2
 𝜓̇

𝑣𝑦,𝑉 + 𝑥𝐶𝑜𝐺 𝜓̇

] (4-14)

where 𝑣𝑥,𝑉 = 𝑣 cos 𝛽 and 𝑣𝑦,𝑉 = 𝑣 sin𝛽 are the longitudinal and lateral velocity components of

the center of gravity of the vehicle represented in the vehicle coordinate system.

4 Autonomous Racecar

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 76 / 93 Francisco Sevilla

4.1.4 Wheel Dynamics, Traction Control and Powertrain

Simulation model

In Simscape, the wheels are modelled as rotational inertia blocks connected to the overall

mass by revolute joints. On each rotational inertia 𝐼𝑊 = 0.12 𝑘𝑔𝑚2 acts a total torque 𝑇T𝑜𝑡𝑎𝑙

that is composed of three parts: the torque applied by each motor and gearbox 𝑇motor, the

torque resulting from the tire forces 𝑇tire and the torque produced by the rolling resistance of

the tire and bearings 𝑇roll :

𝑇Total = 𝑇motor + 𝑇tire + 𝑇roll (4-15)

For this equation, the torques 𝑇tire and 𝑇roll are given by [74]

𝑇tire = −𝑟𝐿 ∙ 𝐹𝑥

𝑇roll = −𝐹𝑧 𝑟tire (𝑘𝑅0 + 𝑘𝑅1 𝑣𝑥)
 (4-16)

where the parameters 𝑘𝑅0 = 0.053 and 𝑘𝑅1 = 0.0013 (
𝑚
𝑠⁄)
−1 are obtained by coasting tests

of the actual vehicle.

The motor torques, however, are set by the inverters, which use a wheel speed controller to

try to keep the tires below their traction limit, i.e. 𝜎 ≤ 1. This is known as traction control. In the

simulation model, the motor torque, which is the output of the traction control, is calculated by

𝑇motor = 𝑇𝐹𝐹 + 𝑘𝑃(𝑁𝑐𝑚𝑑 −𝑁) + 𝑏𝑢𝑓 (4-17)

where 𝑏𝑢𝑓 is a buffer for the integral controller, which is set by

𝑏𝑢𝑓 ←
awu

 𝑏𝑢𝑓 + 𝑘𝐼(𝑁𝑐𝑚𝑑 −𝑁) (4-18)

The torque 𝑇𝐹𝐹 is a feed-forward estimate for the traction control, 𝑁𝑐𝑚𝑑 is the wheel speed

command for the controller and 𝑁 represents the actual wheel speed of the tire. The

parameters of the controller are set to 𝑘𝑃 = 1 𝑁𝑚(
𝑟𝑎𝑑

𝑠⁄)
−1

 and 𝑘𝐼 = 0.1 𝑁𝑚(
𝑟𝑎𝑑

𝑠⁄)
−1

 . An

anti-windup procedure (awu) is used to limit the buffer of the integral controller. Furthermore,

the output of the controller is saturated to the maximum and minimum torque that the motors

and gearboxes can exert on each wheel, namely ±400 𝑁𝑚. As one can see, no braking force

is modelled, as it is assumed that only the motors are used to decelerate the car by

regenerative braking.

It may be remarked that the exact same controller is running on the actual eb016, see Appendix

B. Both the feed-forward torque 𝑇𝐹𝐹 and the target wheel speed 𝑁𝑐𝑚𝑑 need to be set by the

NMPC algorithm.

NMPC model

The wheel spin dynamics are usually much faster than the vehicle longitudinal and lateral

dynamics, with natural frequencies up to an order of magnitude larger at about 50 𝐻𝑧 [75]. To

represent these dynamics the NPMC model would need to have a sampling time of less than

0.02 𝑠 or use an implicit solver. Therefore, the wheel dynamics are frequently neglected for

Optimal Control applications, see [48]. Moreover, the traction control on the actual car runs at

 4 Autonomous Racecar

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 77 / 93

a much higher frequency (~12 𝑘𝐻𝑧), so that it can be assumed that the setpoint for the wheel

speeds can be reached fast enough.

Therefore, the longitudinal slip 𝑠𝑥 of each tire is used as control in the NMPC model. The feed-

forward torque 𝑇𝐹𝐹 and the wheel speed setpoint 𝑁𝑐𝑚𝑑 are then calculated as model outputs

by:

𝑇𝐹𝐹 = 𝐹𝑥 ∙ 𝑟tire

𝑁𝑐𝑚𝑑 =
𝑣𝑥,𝑊

𝑟tire (1 − 𝑠𝑥)

 (4-19)

These outputs of the NMPC model are used as controls in the simulation model. Therefore,

they need to be updated after the Feedback Phase of the RTI algorithm. In Falcon NMPC, this

is done by setting the recalcModelOutputs property to true, see Appendix A.

Each of the motors (together with the gearboxes) can set up to ±400 𝑁𝑚 of torque and has a

peak mechanical power of ±25 𝑘𝑊. These constraints are taken into account in the NMPC

optimization problem, where the mechanical power is calculated as 𝑃 = 𝑇𝐹𝐹 𝑁𝑐𝑚𝑑 .

Furthermore, the maximum allowed electrical power output is 80 𝑘𝑊 [16]. Considering the

efficiency of the powertrain (~0.8), the sum of the mechanical power of all motors is therefore

limited to 𝑃Total = 64 𝑘𝑊 in the NMPC model.

4.1.5 Longitudinal and Lateral Dynamics

Simulation model

The longitudinal and lateral dynamics of the racecar model are represented by a planar joint

in Simscape. Therefore, the vehicle has two translational and one rotational degree of freedom.

The overall mass 𝑚 of the vehicle, which is visualized by the vehicle’s chassis, is attached to

this joint. On this mass act the aerodynamic drag and the tire forces at their respective

positions. Furthermore, the front tires are rotated by the steering angle 𝛿𝐹.

The NMPC does not provide the steering angle 𝛿𝐹 directly, but its derivative 𝛿̇𝐹. Therefore, in

the simulation model, it must be integrated and passed to the NMPC as a state. This is done

for two reasons: first, this provides a clean way to constrain the time derivative of the steering

angle to a physically reasonable limit, second, this allows the steering angle to have a more

continuous trend instead of being piecewise constant.

To be able to provide the NMPC with the correct state values, the slip angle needs to be

calculated in the simulation model. This is done by:

𝛽 = atan 𝒗𝑉 (4-20)

where 𝒗𝑉 denotes the velocity vector of the overall mass object represented in the vehicle

coordinate system.

NMPC model

The equations of motion for the longitudinal and lateral dynamics of the vehicle are given by

equation (4-21), compare to equations of motion in [47, 48, 70]. The absolute value of the

velocity of the CoG of the overall mass is represented by 𝑣, the vehicle’s slip angle by 𝛽 and

its yaw rate by 𝜓̇.

Optimal#_CTVL00113b93ea5cd244b81ac5a5231fbb433b7
Optimal#_CTVL001c1f469097343429a9d5e4af39fd5f101

4 Autonomous Racecar

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 78 / 93 Francisco Sevilla

𝑣̇ =
𝐹𝑥 cos 𝛽 + 𝐹𝑦 sin 𝛽

𝑚

𝛽̇ =
𝐹𝑦 cos 𝛽 − 𝐹𝑥 sin 𝛽

𝑚 𝑣
− 𝜓̇

𝜓̈ =
𝑀𝑧
𝐼𝑧𝑧

 (4-21)

where 𝐹𝑥 and 𝐹𝑦 are the total longitudinal and lateral forces and 𝑀𝑧 is the total yaw moment

acting on the vehicle. Hence, 𝐼𝑧𝑧 = 150 𝑘𝑔𝑚
2 denotes the total yaw inertia of the vehicle.

The forces 𝐹𝑥 and 𝐹𝑦 and the torque 𝑀𝑧 are calculated by:

[

𝐹𝑥

𝐹𝑦

] = [
𝐷 cos 𝛽

𝐷 sin𝛽
] + [

cos 𝛿𝐹 −sin 𝛿𝐹

sin 𝛿𝐹 cos 𝛿𝐹

] [

𝐹𝑥,𝐹𝐿 + 𝐹𝑥,𝐹𝑅

𝐹𝑦,𝐹𝐿 + 𝐹𝑦,𝐹𝑅

] + [

𝐹𝑥,𝑅𝐿 + 𝐹𝑥,𝑅𝑅

𝐹𝑦,𝑅𝐿 + 𝐹𝑦,𝑅𝑅

]

𝑤ℎ𝑖𝑡𝑒𝑠𝑝𝑎𝑐𝑒
𝑤ℎ𝑖𝑡𝑒𝑠𝑝𝑎𝑐𝑒

𝑀𝑧 = [−
𝑡𝑟𝐹
2

𝑥𝐶𝑜𝐺] [
cos 𝛿𝐹 −sin 𝛿𝐹

sin 𝛿𝐹 cos 𝛿𝐹

] [

𝐹𝑥,𝐹𝐿

𝐹𝑦,𝐹𝐿

] + [
𝑡𝑟𝐹
2

𝑥𝐶𝑜𝐺] [
cos 𝛿𝐹 −sin𝛿𝐹

sin 𝛿𝐹 cos 𝛿𝐹

] [

𝐹𝑥,𝐹𝑅

𝐹𝑦,𝐹𝑅

]

+ [−
𝑡𝑟𝑅
2

𝑤𝑏 − 𝑥𝐶𝑜𝐺] [

𝐹𝑥,𝑅𝐿

𝐹𝑦,𝑅𝐿

] + [
𝑡𝑟𝑅
2

𝑤𝑏 − 𝑥𝐶𝑜𝐺] [

𝐹𝑥,𝑅𝑅

𝐹𝑦,𝑅𝑅

]

 (4-22)

As described before, the steering angle 𝛿𝐹 is a model state. Its time derivative 𝛿̇𝐹 is thus a

control value, which must be integrated as the differential equations of the other states.

Furthermore, the longitudinal and lateral accelerations can be calculated by

𝑎𝑥 =
𝐹𝑥
𝑚

𝑎𝑦 =
𝐹𝑦

𝑚

 (4-23)

These are used to calculate the states of the accelerations used for the wheel loads calculation.

As mentioned before, a first-order lag of the accelerations is employed for this purpose, see

subsection 4.1.2.

4.1.6 Track Model

As for the point mass model presented in section 3.4 of this thesis, the position of the racecar

is represented in track coordinates. This track coordinates are the path coordinate 𝑠, the

normal coordinate 𝑛 and the relative yaw angle 𝜁. As in section 3.4, the track is defined by the

course angle 𝜃(𝑠) of its midline, which is built by cubic splines, and the constant track width

𝑏 = 4 𝑚. The course angle 𝜃(𝑠) is measured against the inertial 𝑥𝐸-axis and its derivative with

respect to the path coordinate 𝑠 gives the curvature 𝐶 =
𝜕𝜃(𝑠)

𝜕𝑠
 of the track.

The figure below shows the definitions of the angles and track coordinates used in this thesis.

It may be remarked that the track used in this project was imported from logged data of the

actual vehicle. For more information on this, see Appendix C.

 4 Autonomous Racecar

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 79 / 93

𝑛 𝜃

𝒗

𝜁 𝛽

𝜓

𝑠

𝑥𝐸

𝑦𝐸

𝑚

Figure 4-3: Racecar model – Definition of track values

Simulation model

The track coordinates 𝑠 and 𝑛 as well as the relative yaw angle 𝜁 need to be computed in the

simulation model to be able to pass them to the NMPC model. These are calculated as for the

point mass model in section 3.4. The path coordinate 𝑠 and the normal coordinate 𝑛 are

obtained by integration of their time derivatives:

𝑠̇ =
𝑣 cos(atan𝒗𝐸 − 𝜃)

1 − 𝑛 𝐶

𝑛̇ = 𝑣 sin(atan 𝒗 − 𝜃)

 (4-24)

where 𝑣 is the absolute value of the velocity vector 𝒗 and atan 𝒗𝐸 is its angle with respect to

the inertial 𝑥𝐸-axis. The values of the course angle 𝜃 and the curvature 𝐶 can be obtained by

evaluating their splines definition using the value of the path coordinate 𝑠.

The relative yaw angle can be obtained simply by:

𝜁 = 𝜓 − 𝜃 (4-25)

where 𝜓 is the absolute yaw angle of the vehicle given directly by the planar joint of the

Simscape model.

NMPC model

The differential equations of the racecar’s position in track coordinates and of the relative yaw

angle are given by:

𝑠̇ =
𝑣 cos(𝜁 + 𝛽)

1 − 𝑛 𝐶

𝑛̇ = 𝑣 sin(𝜁 + 𝛽)

𝜁̇ = 𝜓̇ − 𝐶 𝑠̇

 (4-26)

These differential equations can be compared to the ones used in [47, 48, 70].

Optimal#_CTVL00113b93ea5cd244b81ac5a5231fbb433b7
Optimal#_CTVL001c1f469097343429a9d5e4af39fd5f101

4 Autonomous Racecar

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 80 / 93 Francisco Sevilla

4.1.7 Summary

This subsection offers a summary comparing the subsystems used in the racecar model in

Simscape and in the FALCON.m model for the NMPC. This comparison is presented in

Table 4-1.

Subsystem Simulation model NMPC model

Aerodynamic

Forces

Lift and drag forces calculated from

aerodynamic equations. Constant lift

and drag coefficients and aerodynamic

balance are used.

Identical to simulation model.

Wheel Loads

Steady-state calculation based on

longitudinal and lateral accelerations,

and aerodynamic lift and balance.

Takes into account forces acting on

roll centers.

Same as in simulation model.

However, the roll center heights are

neglected.

Tire Forces

Full TMeasy tire model using

Pacejka’s similarity method for the

combined forces calculation. The

friction scaling coefficient is set to 𝜆𝜇 =

0.5 .

Same as in simulation model, but with

constant tire radius 𝑟tire . Furthermore,

only the first part of the piecewise

defined force functions is used, as the

NMPC is constrained to work only

below the traction limit of the tire. The

friction scaling coefficient is lowered to

𝜆𝜇 = 0.4 so that the traction limit is not

overestimated.

Wheel Dynamics,

Traction Control

and Powertrain

Wheel spin dynamics are modelled

with revolute joints in Simscape.

Traction control is implemented as a

PI-controller of the wheel speed plus a

feed-forward control. The same

controller is implemented in the actual

car, see Appendix B.

Wheel dynamics neglected. Therefore,

the wheel speeds are obtained using

the longitudinal slip 𝑠𝑥 of each tire,

which are control values of the NMPC

model. This wheel speed is used as

setpoint for the traction control.

The feed-forward control torque is

calculated using values of the tire

model. This value is constrained in the

NMPC to satisfy the peak torque and

peak power limits of the motors and

that of the overall system.

Longitudinal and

Lateral Dynamics

Modelled with a planar joint in

Simscape.

Modelled as differential equations of

motion for the absolute speed 𝑣, the

slip angle 𝛽 and the yaw rate 𝜓̇ of the

vehicle

Track Model

The path coordinate 𝑠 and the normal

coordinate 𝑛 are obtained through

integration of differential equations.

The relative yaw rate 𝜁 is obtained by

subtraction of the track course angle 𝜃

from the absolute yaw angle 𝜓.

The path coordinate 𝑠, the normal

coordinate 𝑛 and the relative yaw

rate 𝜁 are obtained from differential

equations.

Table 4-1: Racecar models – Comparison of simulation model and NMPC model

 4 Autonomous Racecar

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 81 / 93

Finally, the states and controls of the NMPC model are listed in Table 4-2.

 Symbol Description Min Max

s
ta

te
s

𝑠 Path coordinate 0 𝑚 inf 𝑚

𝑛 Normal coordinate −1 m 1 𝑚

𝜁 Relative yaw angle −𝜋 4⁄ 𝑟𝑎𝑑 𝜋
4⁄ 𝑟𝑎𝑑

𝑣 Speed 1 𝑚 𝑠⁄ inf 𝑚 𝑠⁄

𝛽 Slip angle −𝜋 2⁄ 𝑟𝑎𝑑 𝜋
2⁄ 𝑟𝑎𝑑

𝜓̇ Yaw rate −2 𝑟𝑎𝑑 𝑠⁄ 2 𝑟𝑎𝑑 𝑠⁄

𝑎𝑥 Longitudinal acceleration −30 𝑚 𝑠2⁄ 30 𝑚 𝑠2⁄

𝑎𝑦 Lateral acceleration −30 𝑚 𝑠2⁄ 30 𝑚 𝑠2⁄

𝛿𝐹 Steering angle −0.5 𝑟𝑎𝑑 0.5 𝑟𝑎𝑑

c
o
n
tr

o
ls

𝛿̇𝐹 Time derivative of steering angle −5 𝑟𝑎𝑑 𝑠⁄ 5 𝑟𝑎𝑑 𝑠⁄

𝑠𝑥,𝐹𝐿 Longitudinal slip of front-left tire −0.15 0.15

𝑠𝑥,𝐹𝑅 Longitudinal slip of front-right tire −0.15 0.15

𝑠𝑥,𝑅𝐿 Longitudinal slip of rear-left tire −0.15 0.15

𝑠𝑥,𝑅𝑅 Longitudinal slip of rear-right tire −0.15 0.15

Table 4-2: Racecar NMC model – States and controls

The outputs of the NMPC model are listed in Table 4-3. At this point it is reminded that the

following values are used as input for the racecar simulation model:

• the time derivative of the steering angle 𝛿̇𝐹 , which is integrated in the simulation model

to get the actual steering angle

• the wheel speed commands 𝑁𝑐𝑚𝑑 , as setpoint for the PI part of the traction control

algorithm

• the feed-forward torques 𝑇𝐹𝐹 , as feed-forward for the traction controller

All the other outputs are only used as nonlinear constraints for the system.

4 Autonomous Racecar

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 82 / 93 Francisco Sevilla

 Symbol Description Min Max

o
u
tp

u
ts

𝜎𝐹𝐿 Normalized combined slip of front-left tire − inf 0.95

𝜎𝐹𝑅 Normalized combined slip of front-right tire − inf 0.95

𝜎𝑅𝐿 Normalized combined slip of rear-left tire − inf 0.95

𝜎𝑅𝑅 Normalized combined slip of rear-right tire − inf 0.95

𝑁𝑐𝑚𝑑,𝐹𝐿 Wheel speed command for front-left wheel − inf 𝑟𝑎𝑑 𝑠⁄ inf 𝑟𝑎𝑑 𝑠⁄

𝑁𝑐𝑚𝑑,𝐹𝑅 Wheel speed command for front-right wheel − inf 𝑟𝑎𝑑 𝑠⁄ inf 𝑟𝑎𝑑 𝑠⁄

𝑁𝑐𝑚𝑑,𝑅𝐿 Wheel speed command for rear-left wheel − inf 𝑟𝑎𝑑 𝑠⁄ inf 𝑟𝑎𝑑 𝑠⁄

𝑁𝑐𝑚𝑑,𝑅𝑅 Wheel speed command for rear-right wheel − inf 𝑟𝑎𝑑 𝑠⁄ inf 𝑟𝑎𝑑 𝑠⁄

𝑇𝐹𝐹,𝐹𝐿 Feed-forward torque of front-left wheel −400 𝑁𝑚 400 𝑁𝑚

𝑇𝐹𝐹,𝐹𝑅 Feed-forward torque of front-right wheel −400 𝑁𝑚 400 𝑁𝑚

𝑇𝐹𝐹,𝑅𝐿 Feed-forward torque of rear-left wheel −400 𝑁𝑚 400 𝑁𝑚

𝑇𝐹𝐹,𝑅𝑅 Feed-forward torque of rear-right wheel −400 𝑁𝑚 400 𝑁𝑚

𝑃𝐹𝐿 Mechanical power at front-left wheel −25 𝑘𝑊 25𝑘𝑊

𝑃𝐹𝑅 Mechanical power at front-right wheel −25 𝑘𝑊 25𝑘𝑊

𝑃𝑅𝐿 Mechanical power at rear-left wheel −25 𝑘𝑊 25𝑘𝑊

𝑃𝑅𝑅 Mechanical power at rear-right wheel −25 𝑘𝑊 25𝑘𝑊

𝑃Total Total mechanical power − inf 𝑘𝑊 64 𝑘𝑊

Table 4-3: Racecar NMC model – Outputs

4.2 Results

As mentioned in the introduction, the time-optimal maneuvering of the racecar on the track is

an economic NMPC application. In this case, the objective function for the Optimal Control

Problem was formulated as for the point mass model in the previous chapter:

min
𝒙,𝒖

−𝑠𝑁 (4-27)

In this cost function the distance that the racecar travels in its prediction horizon is maximized.

Thus, 𝑠𝑁 represents the path coordinate at the end of the prediction horizon. As for the point

mass model, the reference values for Falcon NMPC can be set to zero, as they do not take

part in the problem.

In the NMPC model, the differential equation for the slip angle 𝛽̇ contains a division by the

speed 𝑣. Therefore, like for the point mass model, the NMPC algorithm cannot be started at

 4 Autonomous Racecar

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 83 / 93

standstill. The speed 𝑣 in the NMPC model is thus limited to a minimum of 1𝑚 𝑠⁄ , see Table

4-2. The NMPC model is therefore started when the speed of the vehicle is above 2 𝑚 𝑠⁄ and

is turned off when the speed drops below 1𝑚 𝑠⁄ . This hysteresis was added to avoid chattering.

When the NMPC controller is switched off, the outputs to the racecar are:

𝛿̇𝐹 = 0
𝑟𝑎𝑑

𝑠⁄

𝑁𝑐𝑚𝑑,𝐹𝐿 = 𝑁𝑐𝑚𝑑,𝐹𝑅 = 𝑁𝑐𝑚𝑑,𝑅𝐿 = 𝑁𝑐𝑚𝑑,𝑅𝑅 = 5
𝑟𝑎𝑑

𝑠⁄

𝑇𝐹𝐹,𝐹𝐿 = 𝑇𝐹𝐹,𝐹𝑅 = 100 𝑁𝑚

𝑇𝐹𝐹,𝑅𝐿 = 𝑇𝐹𝐹,𝑅𝑅 = 150 𝑁𝑚

 (4-28)

This ensures that the vehicle accelerates forward to reach the necessary 2 𝑚 𝑠⁄ to activate the

NMPC.

The horizon length for the NMPC was set to 𝑇𝐻 = 2.5 𝑠 and the sampling time to 𝑇𝑠 = 0.05 𝑠,

so that the Optimal Control Problem is composed of 50 stages. The approach (3-25), which

sets the path coordinate 𝑠𝑁
guess

 after the shifting procedure of the RTI algorithm, was also used

here. Furthermore, the optimization problems were solved using a constant Hessian as for the

point mass model, setting the 𝑸, 𝑹 and 𝑷 matrices to:

𝑸 = 𝑷 = 10−16 ∙ 𝐼9x9

𝑹 = 10−2 ∙ 𝐼5x5

 (4-29)

where 𝐼𝑛x𝑛 represents an identity matrix of 𝑛 rows and 𝑛 columns. As mentioned in section

3.4.2, using a constant Hessian for the optimization problem is equivalent to including a

tracking cost function of the form (2-65), where the references for the states and for the controls

are their initial guesses, i.e. their values after the shifting procedure. Therefore, the objective

function becomes:

min
𝒙,𝒖

−𝑠𝑁 +∑
1

2
((𝒙𝑖 − 𝒙𝑖

guess)
T
 𝑸 (𝒙𝑖 − 𝒙𝑖

guess) + (𝒖𝑖 − 𝒖𝑖
guess)

T
 𝑹 (𝒖𝑖 − 𝒖𝑖

guess))

𝑁−1

𝑖=0

+ (𝒙𝑁 − 𝒙𝑁
guess)

T
 𝑷 (𝒙𝑁 − 𝒙𝑁

guess)

(4-30)

The 𝑸, 𝑹 and 𝑷 matrices can thus be used to tune the NMPC algorithm, penalizing the

difference of the state and control values from the previous solution. During the tests with this

model, it was found that setting the costs corresponding to the controls, i.e. the values in 𝑹, to

a relatively large value of 10−2 significantly improves the robustness of the algorithm. However,

it must be noted that these values modify the cost function (4-27) considerably.

For the results presented next, a 4th-order explicit Runge-Kutta (ERK4) discretization was

used. The track considered for these tests was imported from logged data of the actual vehicle,

see Appendix C. Therefore, the logged data of the lap driven by a human pilot is compared to

the results of the simulation using the NMPC algorithm to control the car. Afterwards, these

results are compared to the theoretical optimum calculated with Optimal Control using the

same model as in the NMPC algorithm.

4 Autonomous Racecar

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 84 / 93 Francisco Sevilla

NMPC vs. fastest Driven Lap

Figure 4-4 compares the performance of the NMPC algorithm in simulation against the real-

life vehicle piloted by a human driver. The track corresponds to the Endurance event at the

Formula Student Germany and the logged data corresponds to the fastest lap of TUfast’s

electric vehicle, the eb016, in the year 2016.

Figure 4-4: Racecar – NMPC vs. fastest Driven Lap

 4 Autonomous Racecar

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 85 / 93

It must be remarked that the lap with the real-life vehicle described above was driven with the

maximum electric power output set to 50 𝑘𝑊. Thus, for the comparison presented here, the

value of the maximum mechanical power for the NMPC model was set to 𝑃Total = 40 𝑘𝑊,

considering the power losses of the powertrain (efficiency ~80%).

As can be seen in the figure above, the laptime achieved with the NMPC algorithm is almost

identical to the one achieved by the human driver, differing by less than 0.7 seconds in the

~70 𝑠 lap. However, the speed profiles show some discrepancies. These discrepancies are

mainly the result of the import method of the track, which was generated using logged data,

see Appendix C. This means that only the averaged driven line can be imported, which for this

project was assumed to be the midline of the track. This is of course not the case and using

this method reduces the curvature of the track in certain spots, for example in the chicane

shortly after the starting line. This allows the simulation model to drive these curves at a higher

velocity. Moreover, this also allows the NMPC algorithm to “cut the curves”. Therefore,

although the driven line is 1184 𝑚 (as well as the midline and thus also the path coordinate 𝑠),

the simulation model controlled by the NMPC travels only a total distance of 1152 𝑚.

In the longitudinal acceleration plot, one can observe that the forward acceleration phases are

matched quite well by the controller. However, the braking phases do not reach the same

deceleration. This is due to the fact that the mechanical brakes were not modelled in this

project, thus limiting the braking power to that that the electric motors can produce by

regenerative braking.

The lateral acceleration achieved by the NMPC controller is qualitatively very close to that in

the logged data. Nevertheless, its absolute value is about 80% smaller for most of the lap. The

reason for this is that, in the NMPC model, the friction scaling factor is set to 𝜆𝜇 = 0.4, which

is 80% of the value set for the simulation model. This is done to ensure that the traction limit

of the tires is never overestimated. This would be the case in the first chicane, where both plots

have almost identical values.

In conclusion, the NMPC algorithm only achieves the same laptime as the human driver,

because the construction of the track creates inconsistencies in its curvature. If the exact same

track would be used, the NMPC controller would be slightly slower. However, the speed and

acceleration profiles achieved by the NMPC algorithm are already quite close to the ones

achieved by the human driver.

NMPC vs. Optimal Control

Here, the performance of the NMPC algorithm to control the simulation model is compared to

the actual optimum calculated with Optimal Control using the NMPC vehicle model. The results

of this comparison are shown in Figure 4-5. The track is the as described before. For these

results, the maximum mechanical power was elevated to the maximum allowed of

𝑃Total = 64 𝑘𝑊 .

However, the model used for the full Optimal Control Problem was slightly modified to

incorporate more effects. First, the algebraic loop created by the wheel loads redistribution

calculation was solved directly in the optimization problem. This was done using the

accelerations as slack variables. Second, the calculation of the effective radii of the tires were

included in the model.

4 Autonomous Racecar

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 86 / 93 Francisco Sevilla

As can be seen in the plots, the results show more similarity than compared to the real-life

driven lap. This is because for both models, the track is identical, so that both can “cut the

curves” similarly.

Figure 4-5: Racecar – NMPC vs. Optimal Control

 4 Autonomous Racecar

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 87 / 93

However, the differences between the results are encountered because of three reasons:

• The NMPC algorithm uses a prediction horizon of 𝑇𝐻 = 2.5 𝑠, while in the Optimal

Control Problem the entire lap is optimized at once

• At every sampling time, the NMPC algorithm only solves an approximation of the

nonlinear problem. This means that the optimum of the full nonlinear problem might not

be reached for the control values 𝝁 outputted by the NMPC algorithm.

• There are several discrepancies between the simulation model and the NMPC model,

so that the prediction of the NMPC algorithm does not match the actual behavior of the

simulation model exactly. This means that the controller needs to make corrections

constantly.

This last point is the reason for the inconsistency in the speed profiles at the path coordinate

𝑠 = 400 𝑚 . In the simulation model, the effective roll radius 𝑟𝐸 of the tires is taken into account,

which is neglected in the NMPC model. Since the commanded wheel speed is calculated as

𝑁𝑐𝑚𝑑 =
𝑣𝑥,𝑊

𝑟tire (1 − 𝑠𝑥)
 (4-31)

(see section 4.1.4) and 𝑟tire > 𝑟𝐸 , the commanded wheel speed results too small. Therefore,

the longitudinal slip in the simulation model is also smaller than predicted preventing the

vehicle from accelerating. Beside this, the performance of the NMPC algorithm is very

satisfactory.

5 Conclusions and perspective

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 88 / 93 Francisco Sevilla

5 Conclusions and perspective

5.1 Summary

In this thesis, a Nonlinear Model Predictive Control (NMPC) algorithm was implemented.

Specifically, the Real-Time Iteration scheme [33] was programmed in object-oriented MATLAB

and interfaced with Simulink. This was done based on FALCON.m, which is an Optimal Control

toolbox for MATLAB that was developed at the Institute for Flight System Dynamics of the

Technical University of Munich.

This project can therefore be regarded as an extension of FALCON.m for rapid-prototyping of

NMPC controllers in simulation. The theoretical background of the NMPC algorithm

implemented in this thesis is presented in chapter 2. During the development of the project,

the algorithm was tested on several dynamic systems with increasing levels of complexity,

which are presented in chapter 3. The results of the simulations performed with these systems

finally lead to the configuration of the NMPC algorithm that was used for the control of the

autonomous racecar model in chapter 4.

In chapter 4, a highly complex nonlinear racecar model was simulated and controlled by an

NMPC algorithm. The controller uses a slightly simplified model of the system. The

performance of the controller in simulation was satisfactory. The results of the simulation were

compared to logged of the real-life vehicle on the same track. The results were also compared

to the theoretical optimum calculated using Optimal Control.

5.2 Future work

In the following paragraphs, some recommendations for future work are listed:

Graphical User Interface

The NMPC implementation that resulted from this work is already quite versatile and user

friendly, as this was one of the objectives of the thesis. However, a graphical user interface

would further improve the user friendliness of the code. Since the NMPC is programmed in an

object-oriented way, the implementation of a GUI should be straightforward. This could be

done simply as a Simulink Mask.

Interfaces to other solvers

In this thesis, interfaces to the NLP solver IPOPT and the QP solver qpDUNES were

implemented and tested. However, there exist other solvers that have very interesting

properties for model predictive control, for example qpOASES. Furthermore, a condensing

strategy [60] could be implemented to compare the performance of a condensed problem

against the solving the full QP problem. This could be combined with a block-condensing

strategy as proposed in [59].

Investigate relevance of Hessian Sparsity

For the experiments with the BFGS Hessian approximation and the regularization methods of

the exact Hessian, it was assumed that the Hessian sparsity structure was the same as for the

exact Hessian (without regularization). It should be investigated if the performance of these

 5 Conclusions and perspective

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 89 / 93

algorithms gets affected if the Hessian sparsity structure is modified inside these algorithms.

Furthermore, a regularization method that conserves the Hessian sparsity is proposed in [54].

This algorithm could also be implemented.

Other NMPC algorithms

Other NMPC algorithms could be made part of Falcon NMPC. For example, the Advanced

Step Controller by Zavala and Biegler [44], which was briefly presented in section 1.2.2, is in

interesting candidate. A similar method to this is used in embotech’s product [18]. The

implementation of this algorithm should be straightforward, as it can be compared to solving

the full nonlinear problem, as is done with the method set_solveFullProblem in Falcon NMPC,

see Appendix A and example in section 3.2, and performing linear sensitivity analysis

afterwards, which is already part of FALCON.m.

Code generation

The NMPC implementation in this project, Falcon NMPC, is currently only usable for rapid-

prototyping in simulation, specifically in Simulink. FALCON.m is already able to generate C

code for the models and constraints. Therefore, the generation of C code for the rest of the

functions could be considered as future work. This C code could then be compiled to run on

an embedded target.

On autonomous racecar control

For the control of the autonomous racecar, several methods could be investigated further.

First, a Multilevel NMPC implementation is suggested, in which the trajectory planning and the

trajectory tracking functions are separated. The trajectory planning could then be performed

with a lower resolution, with spatial discretization as in [26, 31, 48, 70], and for a longer

prediction horizon (or for the full track). For the trajectory planning, using other NMPC

algorithms like the Advanced Step Controller by Zavala and Biegler [44] could be beneficial.

For the trajectory tracking, an RTI scheme with constant Gauss-Newton Hessian could be

used.

Time-optimal#_CTVL001ab4b5d941aa5487bb51c0fe60fb7a1b7
Optimal#_CTVL00113b93ea5cd244b81ac5a5231fbb433b7
Optimal#_CTVL001c1f469097343429a9d5e4af39fd5f101

6 References

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 90 / 93 Francisco Sevilla

6 References

[1] H. Bardt, “Autonomes Fahren: Eine Herausforderung für die deutsche Autoindustrie,”

(German), IW-Trends Vierteljahresschrift zur empirischen Wirtschaftsforschung, vol. 43,

no. 2, pp. 39–55, 2016.

[2] FIA, Formula E & Kinetik announce driverless support series. United Kingdom, 2015.

[3] S. Hemer and S. Seewaldt, “Startklar für die Formula Student Driverless,”

Sonderprojekte ATZ/MTZ, vol. 21, no. S5, pp. 12–17, 2016.

[4] F. Meier, “Formula Student Driverless — Autonom am Start,” Sonderprojekte ATZ/MTZ,

vol. 22, no. S2, pp. 14–15, 2017.

[5] H. Cheng, Autonomous intelligent vehicles: Theory, algorithms, and implementation.

London, New York: Springer, 2011.

[6] S. Pendleton et al., “Perception, Planning, Control, and Coordination for Autonomous

Vehicles,” Machines, vol. 5, no. 1, p. 6, 2017.

[7] M. Römer, S. Gaenzle, and C. Weiss, “How Automakers Can Survive the Self-Driving

Era,” A.T. Kearney. Online Available:

https://www.atkearney.com/automotive/article?/a/how-automakers-can-survive-the-self-

driving-era. Accessed on: Jul. 11 2018.

[8] S. A. Bagloee, M. Tavana, M. Asadi, and T. Oliver, “Autonomous vehicles: Challenges,

opportunities, and future implications for transportation policies,” J. Mod. Transport., vol.

24, no. 4, pp. 284–303, 2016.

[9] S. Hörl, F. Ciari, and K. W. Axhausen, “Recent perspectives on the impact of

autonomous vehicles,” 01 .

[10] Audi AG, Audi mit wichtigen Weichenstellungen in herausforderndem Geschäftsjahr

2016. Ingolstadt,Germany, 2018.

[11] Volvo Car Corporation, Volvo Cars and Autoliv announce the launch of Zenuity, 2017.

[12] Continental AG, Continental Closes Acquisition of Elektrobit Automotive.

Hanover/Erlangen, 2015.

[13] Intel Corporation, BMW Group, Intel and Mobileye Team Up to Bring Fully Autonomous

Driving to Streets by 2021. Munich, 2016.

[14] NVIDIA Corporation, NVIDIA Announces World’s First Functionally Safe AI Self-Driving

Platform. CES, 2018.

[15] Roborace, Media Assets: Roborace unveils tech capabilities on the production version

of the car. [Online] Available: https://roborace.com/media/. Accessed on: Jul. 11 2018.

[16] Formula Student Germany, “Formula Student Rules 01 ,” 01 . Online Available:

https://www.formulastudent.de/fileadmin/user_upload/all/2018/rules/FS-

Rules_2018_V1.1.pdf. Accessed on: Jul. 14 2018.

[17] embotech AG, ETH Team wins Formula Student Driverless competition using embotech

Software. 13.08.2017.

[18] A. Domahidi and J. Jerez, FORCES Professional.

[19] AMZFormulaStudent, Autonomous Racing: AMZ Driverless with flüela.

[20] L. T. Biegler, “Efficient Solution of Dynamic Optimization and NMPC Problems,” in

Nonlinear Model Predictive Control, F. Allgöwer and A. Zheng, Eds., Basel: Birkhäuser

Basel, 2000, pp. 219–243.

[21] Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-

Road Motor Vehicles, 2018.

[22] SAE International, Automated Driving: Levels of Driving Automation are defined in new

SAE International Standard J3016, 2014.

 6 References

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 91 / 93

[23] P. Falcone, H. Eric Tseng, F. Borrelli, J. Asgari, and D. Hrovat, “MPC-based yaw and

lateral stabilisation via active front steering and braking,” Vehicle System Dynamics, vol.

46, no. sup1, pp. 611–628, 2008.

[24] J. V. Frasch et al., “An Auto-generated Nonlinear MPC Algorithm for Real-Time

Obstacle Avoidance of Ground Vehicles,” in Proceedings of the European Control

Conference (ECC), 2013, pp. 4136–4141.

[25] Y. Gao, T. Lin, F. Borrelli, E. Tseng, and D. Hrovat, “Predictive Control of Autonomous

Ground Vehicles With Obstacle Avoidance on Slippery Roads,” in Proceedings of the

ASME Dynamic Systems and Control Conference--2010: Presented at 2010 ASME

Dynamic Systems and Control Conference, September 12-15, 2010 Cambridge, Mass.,

USA, Cambridge, Massachusetts, USA, 2010, pp. 265–272.

[26] M. Zanon, J. V. Frasch, M. Vukov, S. Sager, and M. Diehl, “Model Predictive Control of

Autonomous Vehicles,” in vol. , Optimization and Optimal Control in Automotive

Systems, H. Waschl, I. Kolmanovsky, M. Steinbuch, and L. del Re, Eds., Cham:

Springer International Publishing, 2014, pp. 41–57.

[27] A. Katriniok and D. Abel, “LTV-MPC approach for lateral vehicle guidance by front

steering at the limits of vehicle dynamics,” in 2011 50th IEEE Conference on Decision

and Control and European Control Conference: (CDC-ECC) ; 12 - 15 Dec. 2011,

Orlando, FL, USA, Orlando, FL, USA, 2011, pp. 6828–6833.

[28] L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Cham: Springer

International Publishing, 2017.

[29] R. Verschueren, “Design and mplementation of a Time-Optimal Controller for Model

Race Cars,” KU Leuven, 01 .

[30] R. Verschueren, S. D. Bruyne, M. Zanon, J. V. Frasch, and M. Diehl, “Towards Time-

Optimal Race Car Driving using Nonlinear MPC in Real-Time,” in Proceedings of the

IEEE Conference on Decision and Control (CDC), 2014, pp. 2505–2510.

[31] R. Verschueren, M. Zanon, R. Quirynen, and M. Diehl, “Time-optimal Race Car Driving

using an Online Exact Hessian based Nonlinear MPC Algorithm,” in Proceedings of the

European Control Conference (ECC), 2016.

[32] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive Active Steering

Control for Autonomous Vehicle Systems,” IEEE Trans. Contr. Syst. Technol., vol. 15,

no. 3, pp. 566–580, 2007.

[33] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From linear to nonlinear

MPC: Bridging the gap via the real-time iteration,” International Journal of Control, vol.

20, no. 1, pp. 1–19, 2017.

[34] E. F. Camacho and C. Bordons, “Nonlinear Model Predictive Control: An Introductory

Review,” in Lecture notes in control and information sciences, vol. 358, Assessment and

future directions of nonlinear model predictive control, R. Findeisen, F. Allgower, and L.

T. Biegler, Eds., Berlin: Springer, 2007, pp. 1–16.

[35] R. Findeisen and F. Allgöwer, An Introduction to Nonlinear Model Predictive Control,

2002.

[36] M. Diehl and S. Gros, Numerical Optimal Control: (draft), 2017.

[37] M. Diehl et al., “Real-time optimization and nonlinear model predictive control of

processes governed by differential-algebraic equations,” Journal of Process Control, vol.

12, no. 4, pp. 577–585, 2002.

[38] M. Diehl, H. G. Bock, and J. P. Schlöder, “A Real-Time Iteration Scheme for Nonlinear

Optimization in Optimal Feedback Control,” SIAM J. Control Optim., vol. 43, no. 5, pp.

1714–1736, 2005.

6 References

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page 92 / 93 Francisco Sevilla

[39] B. Houska, H. J. Ferreau, M. Vukov, and R. Quirynen, “ACADO Toolkit User’s Manual,”

[40] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl, “qpOASES: A

parametric active-set algorithm for quadratic programming,” Math. Prog. Comp., vol. 6,

no. 4, pp. 327–363, 2014.

[41] W. C. Li, L. T. Biegler, and C.-M. U. E. D. R. Center, Multistep, Newton-type Control

Strategies for Constrained, Nonlinear Processes: Engineering Design Research Center,

1989.

[42] T. Ohtsuka, “A continuation/GMRES method for fast computation of nonlinear receding

horizon control,” Automatica, vol. 40, no. 4, pp. 563–574, 2004.

[43] Y. Shimizu, T. Ohtsuka, and M. Diehl, “A real-time algorithm for nonlinear receding

horizon control using multiple shooting and continuation/Krylov method,” Int. J. Robust

Nonlinear Control, vol. 19, no. 8, pp. 919–936, 2009.

[44] V. M. Zavala and L. T. Biegler, “The advanced-step NMPC controller: Optimality,

stability and robustness,” Automatica, vol. 45, no. 1, pp. 86–93, 2009.

[45] D. Hrovat, S. Di Cairano, H. E. Tseng, and . V. Kolmanovsky, “The development of

Model Predictive Control in automotive industry: A survey,” in IEEE International

Conference on Control Applications (CCA), 2012: Dubrovnik, Croatia, 3-5 Oct. 2012 ;

[part of] 2012 IEEE Multi-Conference on Systems and Control (MSC), Dubrovnik,

Croatia, 2012, pp. 295–302.

[46] H. B. Pacejka, I. Besselink, and H. B. T. a. v. d. Pacejka, Tire and vehicle dynamics, 3rd

ed. Amsterdam, London: Butterworth-Heinemann, 2012.

[47] T. Geiger, “Fahrstrategieoptimierung für ein Rennfahrzeug,” Master of Science Thesis,

Lehrstuhl für Fahrzeugtechnik, Technische Universität München, 2016.

[48] S. van Koutrik, “Optimal Control for Race Car Minimum Time Maneuvering,” Master of

Science Thesis, Delft University of Technology, 2015.

[49] M. Rieck, M. Bittner, B. Grüter, J. Diepolder, “FALCON.m: User Guide,” Technische

Universität München, Aug. 2016.

[50] R. Quirynen et al., “Symmetric algorithmic differentiation based exact Hessian SQP

method and software for Economic MPC,” in IEEE 53rd Annual Conference on Decision

and Control (CDC), 2014: 15-17 Dec. 2014, Los Angeles, California, USA, Los Angeles,

CA, USA, 2014, pp. 2752–2757.

[51] J. T. Betts, Practical methods for optimal control using nonlinear programming.

Philadelphia, Pa.: Society for Industrial and Applied Mathematics, 2001.

[52] S. Gros, “Shooting & Direct Collocation,” 01 .

[53] J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY: Springer

Science+Business Media, LLC.; Springer e-books, 2006.

[54] R. Verschueren, M. Zanon, R. Quirynen, and M. Diehl, “A Sparsity Preserving

Convexification Procedure for Indefinite Quadratic Programs Arising in Direct Optimal

Control,” SIAM J. Optim., vol. 27, no. 3, pp. 2085–2109, 2017.

[55] A. Domahidi and J. Jerez, FORCES Professional. Available:

http://embotech.com/FORCES-Pro. Accessed on: Aug. 01 2018.

[56] Andreas Wächter, “Short Tutorial: Getting Started With popt in 90 Minutes,” BM T.J.

Watson Research Center.

[57] P. E. Gill, W. Murray, and M. A. Saunders, “User’s Guide for SNOPT Version :

Software for Large-Scale Nonlinear Programming,” Jun. 00 .

[58] J. V. Frasch, S. Sager, and M. Diehl, “A parallel quadratic programming method for

dynamic optimization problems,” Math. Prog. Comp., vol. 7, no. 3, pp. 289–329, 2015.

 6 References

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page 93 / 93

[59] D. Kouzoupis, R. Quirynen, J. V. Frasch, and M. Diehl, “Block Condensing for Fast

Nonlinear MPC with the Dual Newton Strategy,” IFAC-PapersOnLine, vol. 48, no. 23,

pp. 26–31, 2015.

[60] J. Andersson, “A General-Purpose Software Framework for Dynamic Optimization,”

Dissertation, Faculty of Engineering Science, KU Leuven, Heverlee, Belgium, 2013.

[61] A. V. Fiacco, Introduction to sensitivity and stability analysis in nonlinear programming.

New York: Academic Press, 1983.

[62] C. Büskens, Optimierungsmethoden und Sensitivitätsanalyse für optimale

Steuerprozesse mit Steuer- und Zustands-Beschränkungen. Münster (Westfalen), Univ.,

Diss., 1998, 1998.

[63] C. Büskens and H. Maurer, “Sensitivity Analysis and Real-Time Optimization of

Parametric Nonlinear Programming Problems,” in Online Optimization of Large Scale

Systems, M. Grötschel, S. O. Krumke, and J. Rambau, Eds., Berlin, Heidelberg:

Springer Berlin Heidelberg, 2001, pp. 3–16.

[64] S. Gros, “Parametric Optimization,” 01 .

[65] S. Gros, “From linear MPC to real-time NMPC,” 01 .

[66] R. Findeisen, H. G. Bock, M. Diehl, F. Allgöwer, and J. P. Schlöder, “Nominal stability of

real-time iteration scheme for nonlinear model predictive control,” IEE Proceedings -

Control Theory and Applications, vol. 152, no. 3, pp. 296–308, 2005.

[67] M. Zanon, S. Gros, and M. Diehl, “A tracking MPC formulation that is locally equivalent

to economic MPC,” Journal of Process Control, vol. 45, pp. 30–42, 2016.

[68] D. Rixen, “Engineering Dynamics: Lecture Notes - Version .0 (draft),” Winter Semester

2016-2017.

[69] A. Bogdanov, “Optimal control of a double inverted pendulum on a cart,” Oregon Health

and Science University, Tech. Rep. CSE-04-006, OGI School of Science and

Engineering, Beaverton, OR, 2004.

[70] G. Perantoni and D. J.N. Limebeer, “Optimal control for a Formula One car with variable

parameters,” Vehicle System Dynamics, vol. 52, no. 5, pp. 653–678, 2013.

[71] Road vehicles -- Vehicle dynamics and road-holding ability -- Vocabulary, ISO

8855:2011, 2011.

[72] M. Trzesniowski, Rennwagentechnik. Wiesbaden: Springer Fachmedien Wiesbaden,

2014.

[73] G. Rill, Simulation von Kraftfahrzeugen. Braunschweig: Vieweg, 1994.

[74] G. Rill, Road vehicle dynamics: Fundamentals and modeling / Georg Rill. Boca Raton,

FL: CRC Press, 2012.

[75] R. Lot and N. Bianco, “The significance of high-order dynamics in lap time simulations,”

in The dynamics of vehicles on roads and tracks: Proceedings of the 24th Symposium of

the International Association for Vehicle System Dynamics (IAVSD 2015), Graz, Austria,

17-21 August 2015, M. Rosenberger, M. Plöchl, K. Six, and J. Edelmann, Eds., Leiden:

CRC Press/Balkema, 2016, pp. 553–562.

 Appendix A: NMPC Implementation

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page i

Appendix A: NMPC Implementation

This appendix describes the implementation of the Nonlinear Model Predictive Control in

object-oriented MATLAB code. First, the structure of the software files and folders is described.

Afterwards, the MATLAB S-Function, which runs during the simulation in Simulink, is

explained. Finally, the methods of the NMPC class that can be called by the user are listed

and detailed.

The code contained in the CD attached to this thesis (see folder called ‘Code’) is made up of

the following folders:

• ‘+falcon’ that are modified files of the FALCON.m version used in this project

• ‘Falcon NMPC’ which contains all the files that correspond to the NMPC controller

• ‘Cart’, ‘InversePendulum’, ‘DoublePendulum’, ‘PointMass’, ‘Racecar’ which correspond

to the experiments performed during this project and can be seen as examples

 n ‘Falcon NMPC’, one can find

• ‘@NMPC’, which is a MATLAB class-definition folder for the NMPC objects

• ‘+NMPC_Plots’ which is a MATLAB package folder containing different standard plots

and a template for creating new plots

• ‘NMPC_addLQR_Cost.m’ a function to add a new cost function of the form (2-67) to

the problem

• ‘NMPC_createLQR_Cost.m’ a function to create the cost function needed for the

function above

• ‘NMPC_createProblem_TEMPLATE.m’ a template function to create a FALCON.m

problem as is needed for the NMPC class

• ‘NMPC_sfun.m’ the S-Function that runs while the Simulink simulation is running

• ‘NMPC_SimulinkLibrary.slx’ a Simulink Library that contains one masked system that

entails the S-Function mentioned above

• ‘qpDUNES.mexw64’ the built function for the optimization solver qpDUNES from the

repository https://github.com/jfrasch/qpDUNES.git

• ‘qpDUNES_dev.mexw64’ the built function for the optimization solver qpDUNES from

the repository https://github.com/qpDUNES/qpDUNES-dev.git

• ‘qpDUNES_options.m’ a function that creates the default options for qpDUNES

The masked subsystem contained in ‘NMPC_SimulinkLibrary.slx’ can be put inside a Simulink

application. This mask requires a NMPC object as a parameter. During a simulation, the

following procedure is performed:

1. Initialize NMPC, including a first Preparation Phase

2. Update the current state of the system

3. Perform the Feedback Phase and set current control values

4. Get next reference values and perform Shift

5. Perform Preparation Phase

6. If simulation continues go to 2., otherwise terminate

After each of these points, the plotting interface is called, so that the plots can be updated

according to the step that is being performed.

https://github.com/jfrasch/qpDUNES.git
https://github.com/qpDUNES/qpDUNES-dev.git

Appendix A: NMPC Implementation

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page ii Francisco Sevilla

The following list describes the methods of the NMPC class that can be employed by the user

to change the settings of the NMPC object. For all of the methods that include a Name,Value

pair with name ’force’, a value true allows to run the method during simulation without

bringing a pop-up. The default is false.

NMPC object constructor
obj = NMPC(Problem, T_s, T_H, varargin)

Inputs:

Problem: Either a function as in ‘NMPC_createProblem_TEMPLATE.m’ (recommended), which

is called the ProblemConstructor, or a FALCON.m problem

T_s: Sampling time of NMPC in seconds

T_H: Horizon length in seconds

varargin: not yet implemented, can be left out

Outputs:

obj: NMPC object

Reconstruct Problem
NMPC(varargin)

Inputs:

Name,Value: ’force’, boolean

Set Sampling Time
setSamplingTime(SamplingTime)

Inputs:

SamplingTime: New sampling time in seconds

Set Horizon Length
setHorizonLength(HorizonLength, varargin)

Inputs:

HorizonLength: New horizon length in seconds

Name,Value: ’force’, boolean

Set Hessian approximation and regularization method
setHessApprox(HessApprox, varargin)

Inputs:

HessApprox: One of the following: 'Gauss-Newton', 'BFGS', 'BFGS-noConstraints',

'Exact-noConstraints', 'Exact', 'UserProvided'

Name,Value: ’HessReg’, one of the following: 'None','Project'(default),'Mirror'

’force’, boolean

 Appendix A: NMPC Implementation

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page iii

Set Optimization Solver

setSolver(solverName, varargin)

Inputs:

solverName: Either ’IPOPT’ or ’qpDUNES’

Name,Value: 'maxIter', default: 100

 'maxCPUTime', default: 0.1

 'OptimalityTolerance', default: 1e-6

 'PrintLevel', default: 0

 ’force’, boolean

Set properties for BFGS Hessian approximation
setBFGS(UpdateSize, PosDefStrategy, inp1, Shift, ReevalG, Init, varargin)

Inputs:

UpdateSize: Either ’Block’ for blockwise updates or ’Full’ for an update of the entire Hessian

PosDefStrategy: Strategy for keeping the BFGS Hessian approximation positive definite. Must be

either ’Damped' or ’Skip’

inp1: Damping factor for ’Damped', maximum number of skips before reinitializing for

’Skip’

Shift: Boolean that defines if a blockwise shift of the Hessian, the Jacobian and the

optimization variables of the last iteration should be performed before the update

ReevalG: Boolean that defines if the Jacobian should be reevaluated (since there are change

because of the shift and the new references)

Init: Scalar, vector or matrix used for the blockwise initialization of the BFGS Hessian

Name,Value: ’force’, Boolean

Set User-defined Hessian
setUserHessian(Type, Size, HessFcn, HSparsity, varargin)

Inputs:

Type: Either ’Constant’ for a constant Hessian or ’FunctionHandle’ for if Hessian is

calculated by a function

Size: Either ’Block’ for blockwise updates or ’Full’ for an update of the entire Hessian

HessFcn: Either a numeric constant or a function handle to the function that calculate the Hessian

HSparsity: A sparse matrix defining the sparsity structure of the Hessian

Name,Value: ’force’, boolean

Appendix A: NMPC Implementation

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page iv Francisco Sevilla

Set Shift Strategy
setShiftStrategy(Controls, States, Reference, LagrangeMultipliers, varargin)

Inputs:

Controls: Either ’last’ or a numeric value or a cell-array with the same length as the control

values containing ’last’ or numeric values as elements. A numeric value sets this

value for the control at the end of the prediction horizon, ’last’ uses the last value.

States: Either ’last’ or ’simulate’ or a numeric value or a cell-array with the same length

as the state values containing ’last’ or ’simulate’ or numeric values as elements.

A numeric value sets this value for the state at the end of the prediction horizon, ’last’

uses the last value, ’simulate’ uses the result of a forward simulation of the system

with an explicit 4th-order Runge-Kutta method.

Reference: Either ’one’ for setting the only the reference at the end of the prediction horizon or

’all’ for setting the entire prediction horizon

LagrangeMultipliers: Either

Name,Value: ’force’, boolean

Switch for Solving Full Nonlinear Problem at every sampling time
set_solveFullProblem(tf, varargin)

Inputs:

tf: boolean

Name,Value: ’force’, boolean

Switch to Set the State and Control values into the Falcon.Problem after the Feedback

Phase
set_save2Problem(tf, varargin)

Inputs:

tf: boolean

Name,Value: ’force’, boolean

Switch to Recalculate and get the model Outputs after the Feedback Phase
set_recalcModelOutputs(tf, varargin)

Inputs:

tf: boolean

Name,Value: ’force’, boolean

Add New Plot
addNewPlot(PlotName,PlotFcnHandle,PlotData,varargin)

Inputs:

PlotName: String to name the plot, every plot must have a different name

PlotFcnHandle: Function handle to the plotting function. A template can be found in the

‘+NMPC_Plots’ folder. However, the function can be saved anywhere in the MATLAB

path, not necessarily in ‘+NMPC_Plots’.

PlotData: Constant data specific to the plot, it can be anything.

Name,Value: ’force’, boolean

 Appendix A: NMPC Implementation

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page v

Remove Plot by name
removePlot(PlotName,varargin)

Inputs:

PlotName: Name of the plot to be removed

Name,Value: ’force’, boolean

Remove All Plots
removeAllPlots(varargin)

Inputs:

Name,Value: ’force’, boolean

Appendix B: About the Formula Student car – eb016

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page vi Francisco Sevilla

Appendix B: About the Formula Student car – eb016

The car that the algorithm presented in this thesis was developed for is TUfast’s eb01 . TUfast

is the Formula Student team of the Technical University of Munich. This team engineers and

build an electric racecar every year since 2011 for the Formula Student competitions. The

eb01 is the car built in the year 01 and therefore TUfast’s sixth electric car. t was also the

TUfast’s third all-wheel driven car and the first using outboard motors. This means that each

tire is driven individually by one electric motor mounted directly at the wheel.

Each of the motors is controlled individually by the inverters, which set the output torque of the

motors based on a wheel speed control. Therefore, each of the inverters receives four values

every 10 𝑚𝑠 : A feed-forward torque 𝑇𝐹𝐹, a wheel speed command 𝑁𝑐𝑚𝑑 and a lower and

upper limit for the output torque 𝑇𝑙𝑖𝑚,lo and 𝑇𝑙𝑖𝑚,up . In this thesis, these limits where neglected,

assuming that they can be set at the minimum and maximum values of the motor respectively.

The communication with the inverters is done over CAN-Bus. It must be noted that the values

for 𝑇𝐹𝐹 and 𝑁𝑐𝑚𝑑 calculated in this project, correspond to values at the wheel. Before they are

passed to the inverters, the must be scaled using the ratio of the gearboxes (𝑖 = 14.385).

In this thesis, it is assumed that the state vector of the NMPC model is known exactly at every

timestep of the simulation. The states of the NMPC model are listed in the table below:

Symbol Name of the state Sensor EKF

𝑠 Path coordinate - no

𝑛 Normal coordinate - no

𝜁 Relative yaw angle - no

𝑣 Speed Correvit, GPS yes

𝛽 Slip angle Correvit yes

𝜓̇ Yaw rate MEMS yes

𝑎𝑥 Longitudinal acceleration MEMS yes

𝑎𝑦 Lateral acceleration MEMS yes

𝛿𝐹 Steering angle Potentiometer no

Table 6-1: Racecar NMC model – States and corresponding sensor

This list also shows if a sensor that can directly measure the state value is included in the car.

Furthermore, an Extended Kalman Filter (EKF) runs on the electronic control unit of the eb016.

This algorithm is a model-based filter also used for state estimation. Therefore, the states

extracted from the EKF are not only filtered, but they also provide a good estimate of the state

in case of sensor failure. However, at the time of writing of this thesis, the EKF does not include

the states for the position (𝑠 and 𝑛) and the heading (𝜁) of the car and these values would have

to be obtained in another way.

 Appendix C: Track Import

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page vii

Appendix C: Track Import

The track used for the experiments with the point mass model in section 3.4 and for the tests

with the autonomous racecar model in chapter 4, was imported using measured (and filtered)

data. The data used here corresponds to the Endurance event of Formula Student Germany

in the year 2016, specifically the laps driven by the first driver. It must be remarked that the

midline of the track generated with this method corresponds to a driven line and not the midline

of the actual track.

The main data used for the track generation is the distance, the speed, the yaw rate and the

lateral acceleration, but other signals like the slip angle can also be used to improve the quality

of the import. All of these signals were directly measured by sensors (see Appendix B) and

most of them were filtered with a model based Extended Kalman Filter. The idea is to calculate

the curvature of the track and then integrate it over distance to get the course angle. The

curvature 𝐶 can be calculated using the yaw rate 𝜓̇ or the lateral acceleration 𝑎𝑦 and the speed

𝑣 of the car by

𝐶𝜓̇ =
𝜓̇

𝑣

𝐶𝑎𝑦 =
𝑎𝑦

𝑣2

 (6-1)

These two values can then be averaged with a weight 𝑤 ∈ [0,1] to get 𝐶 = 𝑤 𝐶𝜓̇ + (1 − 𝑤) 𝐶𝑎𝑦.

The integration over the distance to get the course angle 𝜃 must then be done numerically.

This is done in by

𝜃 = cumsum(𝐶 grad(𝑠)) + 𝜃start (6-2)

where 𝜃start is the value of the course angle at the start of the track, 𝑠 is the distance, the

function grad(𝑠) calculates the numerical gradient of 𝑠, i.e. 𝜕𝑠 ≈ grad(𝑠), and the function

cumsum(𝑧) creates a cumulative sum of the elements of vector 𝑧.

If the track is closed, as in the case of the Endurance event, the course angle 𝜃 should be

2𝜋 + 𝜃𝑠𝑡𝑎𝑟𝑡 at the end of the lap. However, because of sensor noise and bias, this is not

necessarily the case. Moreover, a closed lap should satisfy the following conditions for the 2D

position (𝑥end, 𝑦end) at the end of the lap:

𝑥end =∑cos 𝜃 grad(𝑠) =
!
0

𝑦end =∑sin𝜃 grad(𝑠) =
!
0

 (6-3)

Appendix C: Track Import

 Nonlinear Model Predictive Control for an Autonomous Racecar
Page viii Francisco Sevilla

Therefore, the following algorithm is used to make these corrections:

Algorithm 4: Newton-type equality constrained optimization

Input: 𝑠 , 𝐶

1. Calculate scaling factor for course angle: 𝑠𝑐 = ∑𝐶 grad(𝑠)/2𝜋

2. Get first estimate of course angle: 𝜃 = 𝑠𝑐 ∙ cumsum(𝐶 grad(𝑠)) + 𝜃start

3. Calculate 𝑥end and 𝑦end with equation (6-3)

4. Calculate the corrected gradients 𝜕𝑥 and 𝜕𝑦 by

𝜕𝑥 = cos 𝜃 grad(𝑠) − 𝑥end/numel(𝜃)

𝜕𝑦 = sin 𝜃 grad(𝑠) − 𝑦end/numel(𝜃)

 (6-4)

where numel(𝜃) is the number of elements of 𝜃.

5. Calculate the corrected course angle: 𝜃 = atan
𝜕𝑦

𝜕𝑥

Finally, the coordinates (𝑥, 𝑦) of the track can be computed by:

𝑥 = cumsum(cos 𝜃 grad(𝑠))

𝑦 = cumsum(sin 𝜃 grad(𝑠))

 (6-5)

Plotting these for the multiple laps in the data results in a plot as in

Figure 6-1: Track import – 2D coordinates

For the models in this project, the course angle 𝜃 and its derivative with respect to the track

distance 𝑠, i.e. the curvature 𝐶 =
𝜕𝜃

𝜕𝑠
 , are relevant. Therefore, the course angle 𝜃 of all laps

 Appendix C: Track Import

Nonlinear Model Predictive Control for an Autonomous Racecar
Francisco Sevilla Page ix

together was fitted using cubic splines. This procedure was done using the SPLINEFIT function

for MATLAB. The breaks for the splines were set manually. Figure 6-2 shows the start of the

procedure, the black line shows the splines approximation and the asterisks (*) their breaks.

Breaks are added and moved until the fit is satisfactory.

It must be noted that this procedure may create a small displacement of the coordinates

(𝑥end, 𝑦end) at the end of the track again, as is the case in this project. This displacement is

unfortunately more complicated to correct and was neglected in this project.

The advantage of using splines to fit the data is that one gets a smooth and differentiable input

for the models. For this project, these algorithms to build a track using logged data were

implemented as a Graphical User Interface, called Track Generator.

Figure 6-2: Track import – Course angle

