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Kurzfassung 

In diesem Projekt wurde ein NMPC-Algorithmus (Nonlinear Model Predictive Control) für das 

Rapid-Prototyping dieser Art von Reglern in einer Simulationsumgebung programmiert. 

Basierend auf FALCON.m, die Optimalsteuerungstoolbox für MATLAB, entwickelt am Institut 

für Flugsystemdynamik der Technischen Universität München, kann der in diesem Projekt 

implementierte Algorithmus eine generische Zielfunktion annehmen und jedes dynamische 

System verwenden, das mit differential-algebraischen Gleichungen modelliert ist. Während der 

Entwicklung des NMPC-Algorithmus wurden in Simulink verschiedene dynamische Systeme 

mit steigendem Komplexitätsgrad modelliert, um den Controller zu testen. Als Beispiel für ein 

hochkomplexes System wurde der Regler für das zeitoptimale Manövrieren eines autonomen 

Formula-Student-Rennwagens getestet. In der Simulation konnte der NMPC-Regler eine 

vergleichbare Rundenzeit erreichen wie das reale Fahrzeug, das von einem menschlichen 

Fahrer auf der gleichen Strecke gesteuert wurde. 

 

Abstract 

In this project, a Nonlinear Model Predictive Control (NMPC) algorithm was programmed for 

rapid-prototyping of this kind of controllers in a simulation environment. Based on FALCON.m, 

the Optimal Control toolbox for MATLAB developed at the Institute for Flight System Dynamics 

of the Technical University of Munich, the algorithm implemented in this project can take a 

generic objective function and use any dynamic system modelled with differential algebraic 

equations. During the development of the NMPC algorithm, different dynamic systems with 

increasing levels of complexity were modelled in Simulink to test the controller. As an example 

of a highly complex system, the controller was tested for time-optimal maneuvering of an 

autonomous Formula Student racecar. In simulation, the NMPC controller was able to achieve 

a comparable laptime to that of the real-life vehicle piloted by a human driver on the same 

track. 
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1 Introduction 

Autonomous cars have been gaining more and more attention in the last years, with many 

automotive companies investing in their research [1]. Now, there are even racing competitions 

introducing autonomous driving into motorsports. One of them is Roborace [2], which is 

currently in the development and testing phase. Another one is Formula Student Driverless 

(FSD), which held its first event at the Formula Student Germany (FSG) in August 2017 [3, 4]. 

Both of these competitions require cars to maneuver autonomously around a track by steering 

the tires and by driving or braking each wheel independently. 

One of the main difficulties of autonomous driving is how to control the vehicle dynamics of the 

car by steering, accelerating and braking in real-time so that the car follows a desired trajectory 

[5]. To maintain the desired path, it is not only necessary to control the car at each given time 

point, but the controller should also look ahead into the path, particularly at higher speeds [6]. 

This problem becomes even harder in motorsports where the lap-time should be minimized, 

and the desired path might not be given per se, but rather as left and right boundaries that 

allow to optimize the path between them. Nonlinear model predictive control (NMPC) is a very 

promising method to tackle this challenge. 

The current chapter will provide a broader motivation for the project, as well as the state of the 

art concerning it. Also, the goals and contributions of this thesis will be addressed, and the last 

section explains how this document is structured. 

1.1 Motivation 

Self-driving technology has become an important topic for the automotive industry in recent 

years. This technology is expected to open new markets, create new products and reshape 

the automotive industry and its relationship to other businesses [7]. Some of the benefits that 

autonomous cars can bring with them include [8, 9]:  

• Road safety and reduction of car crashes:  A downtrend in the number of crashes 

and in the severity of crashes can already be seen with the implementation of driver 

assistance systems like the Electronic Stability Program (ESP) and the Anti-Lock 

Brakes System (ABS). As human error is the cause for 90% of car crashes, fully 

autonomous vehicles could prevent many of the crashes nowadays. 

• Congestion:  Autonomous vehicles can accelerate and brake automatically to maintain 

a constant speed and constant distance to the vehicle in front. This not only reduces 

traffic, but also increases the capacity of the road, since the distance between cars can 

be kept to a minimum. Vehicles connected between each other and to the traffic system 

have also a big potential to decrease inner-city congestion. Furthermore, a reduction 

in crashes would also reduce traffic jams. 

• Utilization of idle time: While riding in an autonomous vehicle, passengers could 

engage in other productive activities. Römer et al. [7] estimate that autonomous 

vehicles could free up about 1.9 trillion minutes of idle time by 2030. 

• Land use: Parking spaces are expected to decrease in number and size, especially in 

urban areas. Instead, spaces for pick-up and drop-off of passengers would be 

Formula#_CTVL00150b12777c441400d9825a8b835990117
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necessary, but most of the freed-up space could be used for other purposes, for 

example as green-areas. 

• Environment: Since most of the autonomous cars would be electric vehicles, their 

direct emissions of greenhouse gases would be zero. Autonomous vehicles have also 

a big potential to drive more efficiently than a human driver. 

Most of the big automakers and automotive suppliers are investing in the research and 

development of self-driving technology. This can be appreciated in the number of patents 

published in this area [1]. Many of them have also either founded or acquired start-ups that 

should leap the development of self-driving vehicles, mostly specializing in software. A few 

examples of these companies are Autonomous Intelligent Driving (subsidiary of Audi) [10], 

Zenuity (founded by Volvo and Autoliv) [11] and Elektrobit (bought by Continental in 2015) [12]. 

Also, businesses in the computer and semiconductor industry, e.g. Intel [13] and NVIDIA [14], 

are developing both hardware and software dedicated for Advanced Driver Assistance 

Systems (ADAS) and Autonomous Driving (AD).  

An important aspect for bringing autonomous driving vehicles into the streets will be consumer 

acceptance. A way to foster mass acceptance of these technologies could be through 

motorsports: showing the public that driverless vehicles can work under extreme conditions at 

high speeds could increase their confidence in this technology. Motorsport events could also 

boost the technological developments in this field. 

 

Figure 1-1:  Roborace – Hardware Overview [15]  

An example of an autonomous racing series is carried out by Roborace. This is a company 

that is creating one of the first motorsport events for self-driving vehicles [2], which will go with 

the same name as the company. Roborace offers a full-size All-Wheel-Driven electric vehicle 

as a platform for teams to deploy their self-driving software and race around a track. Currently, 

the company has been presenting their development car at the FIA’s Formula E races, where 

the car drives autonomously, sometimes comparing the lap-times that the software achieved 

to ones set by a professional driver on the same vehicle.  
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Another motorsport event for autonomous cars, the Formula Student Driverless [3, 4]. As the 

name suggests, this competition is conceived for students. It allows students to design and 

build full scale racing cars and run them in international events against other universities. In 

this thesis, the racecar simulation presented in chapter 4 uses a model and parameters that 

correspond to a Formula Student vehicle.  

The Formula Student Driverless competitions are composed of several disciplines that are 

divided into two categories: the dynamic and the static events. The dynamic disciplines include 

Acceleration, which is a 75 meters straight line, Skidpad, a figure 8 where the maximum lateral 

acceleration is tested, Trackdrive, a stint around a track set up with cones, and Efficiency, 

where the energy-use during the Trackdrive is scored. In every discipline, each of the 

autonomous cars drives alone on the track and the teams get points based on their lap-times. 

In the static disciplines, the teams have the chance to present a Business Plan and a Cost 

Report for the car, as well as an Engineering Design and an Autonomous Design, where the 

teams show their ideas, calculations and simulations, and get judged by experts in the field 

[16].  

In 2017, in the first Formula Student Driverless event, the team of the Swiss Federal Institute 

of Technology in Zurich (ETH Zürich) completed the competition successfully. For motion 

planning and control, this team used software from embotech AG [17], a swiss start-up that 

specializes in embedded Nonlinear Model Predictive Control [18]. The following figure shows 

a plot where the prediction horizon of the NMPC algorithm can be appreciated (right) next to 

camera footage of the team’s car driving on a typical Formula Student  track (left) [19]. This 

example shows a successful implementation of a Nonlinear Model Predictive Control for the 

same application as in this project. However, the algorithm implemented in this thesis differs 

from the one provided by embotech AG. 

Figure 1-2:  Formula Student car of the Technical University of Munich's team, TUfast 

Formula#_CTVL00150b12777c441400d9825a8b835990117
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As described in [5] and [6], motion planning and motion control are two of the key technologies 

that make autonomous driving possible. Planning is the decision-making process used to 

calculate the trajectory that brings the vehicle from a start location to an end location. Control 

refers to the actions that are taken by the vehicle’s actuators to follow the planned trajectory. 

These two software components can be combined into one algorithm using, for example, 

Model Predictive Control. 

Thus, for this project, a Nonlinear Model Predictive Control (NMPC) algorithm was 

implemented in MATLAB / Simulink to control a simulated Formula Student racecar. This 

implementation is based on the MATLAB toolbox for Optimal Control, FALCON.m, which was 

developed at the institute for Flight System Dynamics of the Technical University of Munich. 

Furthermore, the vehicle for which this controller was developed has the possibility to drive 

and brake each tire independently, see Appendix B. Therefore, since NMPC is able to handle 

systems with multiple inputs and complex constraints [20], it provides a good solution for this 

challenge.  

1.2 State of the art 

In this section, the state of the art concerning topics relevant to this thesis are presented. 

Subsection 1.2.1 gives an overview of the field of Autonomous Vehicles, introducing the six 

levels of Autonomous Driving and then presenting the different elements that compose an 

autonomous driving system. The second subsection enlists and explains several strategies of 

Nonlinear Model Predictive Control, later deriving a justification for the strategy that was 

implemented in this project, the Real-Time Iteration scheme. In 1.2.3, some examples of 

successful projects that employed NMPC in the automotive industry are introduced, also 

presenting applications that used RTI. Subsection 1.2.4 briefly presents two applications 

Optimal Control in motorsports, describing their relevance for this project. 

1.2.1 Autonomous Vehicles 

The Society of Automotive Engineers, SAE International, introduced a new standard, SAE 

J3016 [21], for autonomous cars in 2014. This standard, called “Taxonomy and Definitions for 

Terms Related to On-Road Motor Vehicle Automated Driving Systems”, introduces new 

terminology for this field as well as the six levels of driving automation. Many of these 

definitions and their acronyms have already been widely adopted in the automotive industry 

and the research community. The most important include: 

Figure 1-3:  Visualization of the NMPC of the Formula Student team of the ETH Zurich, AMZ [22] 
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• Dynamic Driving Task (DDT):  Operational and tactical functions required to operate 

a vehicle on the road, excluding the selection and scheduling of destinations. 

• Operational Design Domain (ODD):  Operating conditions under which an 

autonomous system is designed to function, for example environmental, geographical 

or time-of-day restrictions. 

• Minimal Risk Condition:  Condition to which a vehicle may be brought to reduce the 

risk of a crash when a DDT cannot be completed. 

• Automated Driving System (ADS):  Software and hardware that are together able to 

perform an entire DDT. This term is used to describe levels 3 to 5 of driving automation 

(see Table 1-1). 

• DDT Fallback:  Response of an ADS to reach a minimal risk condition due to a system 

failure or exit of the ODD. 

The six levels of driving automation introduced in the SAE J3016 standard are summarized in 

Table 1-1. They go from level 0, which corresponds to no automation, to level 5, which is the 

level at which the vehicle can complete all driving tasks entirely on its own. The system 

required in a Formula Student car to be able to complete the competition must achieve level 

4, as there cannot be a human driver in the car to monitor the environment or to react in case 

of failure. However, the ODD is limited to driving on a track with specific characteristics [16]. 

Table 1-1:  Levels of Driving Automation for on-road vehicles [22] 

An Automated Driving System is composed of multiple software elements. Cheng [5] divides 

these into 4 categories:  

• Environment Perception and Modelling:  Collect data from various sensors (camera, 

lidar, radar, etc.) and extract features like colors, edges and contours. These are then 

classified into objects, e.g. lanes, signs, vehicles and pedestrians. This software 
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component should also be able to track the objects it detects and, based on their 

movements, predict their future position to avoid collisions.  

• Localization and Map Building:  Based on the environment model and other 

information like geographic maps, create a local map around the vehicle and locate 

and track the vehicle’s position in that map. A class of algorithms that combines these 

functions is called SLAM, which stands for Simultaneous Localization and Mapping. 

• Path Planning and Decision-Making:  Compute a trajectory from an initial location to 

a goal location avoiding both static and dynamic obstacles. Since the environment and 

the position of the vehicle in it are continuously changing, the path planning algorithm 

must constantly adapt to the new context. 

• Motion Control:  Control the vehicle’s actuators in order to follow the trajectory 

calculated by the path planning algorithm. The motion control can be divided into two 

categories: longitudinal, corresponding to velocity and distance, and lateral, 

corresponding to lane keeping. However, the longitudinal and lateral motions are 

coupled through the characteristics of the tire and of the vehicle. Therefore, more 

advanced controllers handle the longitudinal and lateral dynamics simultaneously. 

The focus of this thesis lies in path planning and motion control of an autonomous racecar 

using Nonlinear Model Predictive Control. NMPC is able to control both the longitudinal and 

the lateral dynamics of the car collectively (as shown in [23–27]), as well as to handle nonlinear 

constraints on the actuators and on the vehicle state. In the following subsection, different 

NMPC algorithms are introduced and compared. 

1.2.2 Overview of NMPC Strategies 

Model predictive control (MPC) is a type of feedback control that relies on a model of the 

system to predict its behavior, which can be used to optimize a cost function over a finite time 

horizon, as in an optimal control problem [28]. This type of controller is mostly used for 

trajectory tracking and stabilization of the system, and it can efficiently handle actuator 

saturations and other operational constraints. These features have made MPC a popular 

solution for slow systems in the process industry since the late 1970s. Nevertheless, 

applications for which a linear model is not accurate enough require the use of Nonlinear Model 

Predictive Control (NMPC). Although NMPC poses many challenges in terms of computational 

resources, especially for fast dynamic systems, this type of controller has been successfully 

implemented in many applications similar to this project [23–27, 29–32], and is expected to 

become more and more common [33, 34]. 

The basic idea of NMPC is to solve a nonlinear optimal control problem at each sampling 

iteration (see chapter 2 for a detailed explanation). Since solving this is a difficult task, there 

have been several proposals of techniques to perform these computations more efficiently. 

Camacho and Bordons introduce several techniques in [34] like Suboptimal NMPC, Use of 

Short Horizons, Feedback Linearization, etc. Furthermore, the NMPC algorithms can be 

categorized according to the method they use to solve the underlaying optimal control problem 

(sequentially/single-shooting or simultaneously/multiple-shooting) [35] or according to the type 

of solver they use for the optimization (interior-point or active-set) [36]. 

The so-called Real-Time Iteration scheme (RTI), presented in [33, 36–38],  is an approach for 

NMPC that has been applied to many different fields. This method performs a Sequential 

Quadratic Programming (SQP) iteration at every sampling timestep, dividing the computation 

into a “Preparation Phase” and a “Feedback Phase” in order to include the most recent sensor 

LTV-MPC#_CTVL001b60087c56f9c4ff2b19a1a4ed1e995ef
LTV-MPC#_CTVL001b60087c56f9c4ff2b19a1a4ed1e995ef
Design#_CTVL0010f744996bee844daac4ce57a31a5d76d
Predictive#_CTVL001b4b7cf84c63b48679f0e781099ee5095
Nonlinear#_CTVL001581f273f0d894e08821f8658964e20c3
A#_CTVL0016995e73b3f6648b89ae9fd4edad9c8ad
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measurements into the optimization. Furthermore, it uses initial value embedding (see section 

0) to correct the difference between the predicted state and the actual state of the system. This 

algorithm has been implemented into the ACADO Toolkit [39], which automatically generates 

C-code for a generic system using qpOASES [40] as quadratic problem solver. 

The Multistep, Newton-Type Control Strategy [41] of Li and Biegler, proposed in 1989, also 

performs one Quadratic Programming (QP) step every sampling iteration. It is based, however, 

in a sequential discretization of the optimal control problem and assumes no model mismatch. 

This means that the actual state of the system is not incorporated into the algorithm, though 

the authors propose using parameter estimation to compensate for disturbances and 

uncertainties.  

Another approach is the Continuation/GMRES Method proposed by Ohtsuka [42], which 

likewise takes only one optimization step at every sampling time and uses sequential 

discretization. Nevertheless, instead of using an SQP-method, it takes the inequality 

constraints into account by inserting a penalty term into the cost function (similar to an interior-

point method). A variation of this method is presented in [43], where multiple-shooting 

discretization is used.  

The Advanced Step Controller by Zavala and Biegler [44] is another algorithm for NMPC. The 

basic idea of this algorithm is to solve the optimal control problem of a future predicted state 

of the system till convergence, once the solution is ready, the predicted state is compared to 

the actual state and the solution is corrected by using sensitivity analysis methods. 

In this project, the Real-Time Iteration scheme (RTI) was implemented. The reason for this 

were the many applications for which the RTI has been employed, especially the ones sharing 

similarities with this project [24, 26, 29–31]. Also, the RTI algorithm has been explained in 

detail in multiple sources, for example in [33] and [36–38], and is fairly simple to implement 

using FALCON.m as starting point. The structure of this algorithm is explained in section 2.4.  

The optimization problem divides the NMPC algorithm into two further categories: Tracking 

NMPC and Economic NMPC. The most common use of NMPC is, as stated before, tracking 

of a predefined trajectory. In this case, the objective function of the optimization penalizes the 

“distance” of the system’s state vector to the state vector of the reference trajectory.  Economic 

NMPC generalizes the optimization problem, where the objective function can, in principle, be 

any quantity that relates to the problem [28]. Time-optimal driving of an autonomous racecar 

is an example of economic NMPC [31].  

1.2.3 NMPC in Automotive Applications 

Model Predictive Control, and also Nonlinear Model Predictive Control, have been researched 

for the use in road vehicles since the early 1990’s. MPC has been applied to control several 

components of the car including engine, transmission, steering, suspension, energy 

management and thermal management. A survey of applications of MPC in the automotive 

industry can be found in [45], which also enumerates various applications for autonomous 

vehicles.  

Falcone et al. [32] implemented two different tracking MPC algorithms to control the steering 

of an autonomous car. For both of the algorithms, a bicycle model of the car, in which the two 

tires of each axle are reduced to one to decrease the complexity of the model, and a Pacejka 

tire model [46] were used. Moreover, both approaches have only the differences of the controls 

(Δ𝒖) as optimization variables. The first approach takes the nonlinear differential equations as 

Model#_CTVL00138e2fbc74f32401c9c63cd76019daf5c
Design#_CTVL0010f744996bee844daac4ce57a31a5d76d
Time-optimal#_CTVL001ab4b5d941aa5487bb51c0fe60fb7a1b7
A#_CTVL0016995e73b3f6648b89ae9fd4edad9c8ad
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constraints and solves a full nonlinear problem at every timestep. The second approach 

linearizes the model at each sample time, using the current measurements as operating point 

for the linearization. Thus, the optimization problem is reduced to a quadratic problem. Both 

controllers were tested in simulation and experimentally. 

The approach that solves the nonlinear problem was extended with a full vehicle model with 

wheel dynamics in [23] to also control braking. This controller was also tested in simulation. 

For experimental tests, the authors modified the controller and used a suboptimal MPC, in 

which the nonlinear vehicle model is linearized successively. Gao et al. [25] use the same 

setup as in [23] for obstacle avoidance. Here, a reference trajectory that violates the obstacles 

is given to the model. Thus, the MPC controller must find a trajectory that avoids these 

obstacles, which are provided to the algorithm as an additional cost function. In this paper, the 

authors suggest keeping a certain number of control inputs 𝒖 at the end of the prediction 

horizon constant in order to reduce the number of optimization variables. In comparison to 

shortening the horizon length, this method still predicts the behavior of the states of the system, 

but for a Zero-Order Hold of the controls. They also propose a two level MPC algorithm, in 

which the higher level uses a point-mass model to calculate the new trajectory that avoids the 

obstacles, and the lower level performs the tracking task using the full vehicle model. 

Katriniok et al. [27] extended the work in [32] to track a path reaching the traction limit of the 

tires. In this paper, the authors propose to linearize the system dynamics using the predicted 

states and controls as operating points. This method is very similar to the Real-Time Iteration 

scheme. However, it does not divide the algorithm into a “Preparation Phase” and a “Feedback 

Phase”. It also does not include the states in the optimization variables and therefore does not 

use initial value embedding to correct the prediction horizon. In all the models described above, 

the tire loads are assumed constant (compare to section 4.1.2). 

The RTI algorithm has also been implemented for several applications regarding ground 

vehicles, particularly using the ACADO Toolkit. Frasch et al. [24] used this algorithm for 

obstacle avoidance of an autonomous vehicle employing a full vehicle model with wheel 

dynamics and a Pacejka tire model. This model also includes tire load transfer calculated with 

a first order lag. This application was extended in [26] to include a model of the vehicle 

suspension, so that the model has 15 states and 6 controls in total. In [24] and [26] the 

dynamics are discretized over space to simplify the handling of the obstacles. 

Verschueren et al. [29–31] also used the RTI scheme to control model racecars around a track. 

Here, a bicycle model was used, and the dynamics of the model were also discretized over 

space. However, an economic objective function was employed in these publications, namely 

to minimize the lap-time. In [29] and [30], because of the spatial reformulation of the dynamics, 

the time was made a state and the optimization problem could be formulated as a tracking 

NMPC. Later in [31], the authors used an actual economic NMPC and employed the exact 

Hessian of the problem in their algorithm. 

1.2.4 Optimal Control in Motorsport 

As NMPC is based on the solution of an optimal control problem at each iteration, it may be 

remarked that several authors have applied both indirect and direct methods of optimal control 

to solve minimal time manoeuvring problems for race cars. Surveys of publications in this field 

can be found in [47] and [48].  

Time-optimal#_CTVL001ab4b5d941aa5487bb51c0fe60fb7a1b7
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Geiger [47] is of particular interest for this project. In their project, the author used the optimal 

control toolbox FALCON.m [49] to predict the lap times of a Formula Student racecar. In [48], 

van Koutrik uses a full vehicle model, but neglects the wheel dynamics, as is done for the 

NMPC in chapter 4 of this thesis. Moreover, in this project, a similar tire model was used as 

the one employed by van Koutrik. 

1.3 Goals and Contribution 

This section presents the goals that were set for this project, as well as the limitations of the 

product that resulted from it, Falcon NMPC. The contributions that this project makes are also 

outlined in this section. 

The primary objective of this project is to implement a Nonlinear Model Predictive Control 

algorithm based on the Optimal Control Toolbox FALCON.m [49]. This control algorithm should 

be tested on different models with increasing levels of complexity. The performance of the 

controller should be evaluated based on conventional metrics, e.g. command response and 

disturbance response. Furthermore, the NMPC algorithm should be used to control a 

simulation model of an autonomous vehicle with full torque vectoring capabilities. As 

secondary objective, the NMPC algorithm is to be programmed in a way that allows it to handle 

a model of the generic system to be controlled and any cost function. 

The NMPC implementation, which in this thesis will be referred to as Falcon NMPC, is 

programmed in MATLAB and provides an interface to Simulink with a so-called S-Function. 

The implementation is coded with object-oriented programming, allowing to use any optimal 

control problem that can be set up in FALCON.m, as described in Appendix A. The code also 

provides an interface for the user to create user-defined plots or to perform other tasks on the 

controller during simulation.  

For this project, the Real-Time Iteration scheme [33] was implemented. This algorithm was 

tested for a cart with one degree of freedom (section 3.1), for an inverted pendulum on a cart 

(section 3.2) and for a double inverted pendulum on a cart (section 3.3). The model used in 

the NMPC of the double inverted pendulum includes an algebraic loop. Several experiments 

to tackle this algebraic loop were performed in the corresponding section. 

Furthermore, an extension of the RTI method to handle economic NMPC, as in [50] and [31], 

was also implemented. In this extension, an exact Hessian of the optimal control problem is 

used, assuring positive-definiteness with so-called regularization methods (see section 2.2.3). 

This was evaluated with a point-mass model on a racetrack with a time-optimal objective 

function (section 3.4) and was finally applied for the full vehicle model in chapter 4. In these 

models, using the exact Hessian was also compared to using a constant hessian. Moreover, 

several adaptations of the BFGS Hessian approximation for NMPC (see section 2.2.3) were 

implemented and tested with the inverted pendulum (section 3.2) and with the point-mass 

model (section 3.4). 

Falcon NMPC has, however, some limitations. The code cannot be compiled, and it cannot be 

autogenerated into C-code with MATLAB. Therefore, it cannot be used in a real-time target to 

control an actual plant. The reason for this is the fact that object-oriented programming was 

used in order to simplify the interaction for the user. To run an NMPC in an embedded system, 

the algorithm, as well as some parts of FALCON.m, would have to be reprogrammed. Also, 
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the S-Function of Falcon NMPC runs synchronously within the model. Thus, the simulation 

waits until both the Feedback Phase and the Preparation Phase of the RTI algorithm are 

completed before continuing the simulation, even if the sampling time of the NMC is larger 

than the step-size of the simulation. This means that the simulation might not run in real-time, 

even in cases where the timing of the controller would allow it in real-life.  

Thus, Falcon NMPC can be used to quickly setup and test NMPC controllers in simulation. 

The algorithm presented in this thesis to control an autonomous racecar with full torque 

vectoring capabilities serves as a proof-of-concept for further development and implementation 

on real-time hardware. Future work will be discussed in chapter 5. 

1.4 Structure of the thesis 

This thesis is organized as follows:  

Chapter 1 entails an introduction to the topic. In this chapter, a motivation for the project is 

presented, followed by an overview of the state of the art of different subjects that concern the 

project. Afterwards, the goals and the contribution of this thesis are portrayed. 

Chapter 2 presents the necessary concepts for understanding how the Nonlinear Model 

Predictive Control algorithm implemented in this thesis works. As mentioned before, the 

implementation of the algorithm is based on the Optimal Control toolbox FALCON.m. This 

chapter also explains conceptually how this implementation was done. However, more 

information can be found in Appendix A. 

Chapter 3 describes some experiments that were performed during the development of this 

project as well as the results and insights that were extracted from these experiments. For 

these tests, four different dynamic systems were considered in simulation: a one-degree-of-

freedom point mass, an inverted pendulum on a cart, a double inverted pendulum on a cart 

and a two-degrees-of-freedom point mass with a time-optimal maneuvering objective. 

Chapter 4 contains the core topic of this thesis: the NMPC implementation for a time-optimal 

control of an autonomous racecar. Both the simulation model and the model used for the 

NMPC are described in this chapter. Afterwards, the results of the simulation are compared to 

a lap driven by a human driver in the real-life racecar. The results are also compared to the 

theoretical optimum calculated using an Optimal Control method. 

Chapter 5 gives a brief conclusion of the project and suggests topics for future work for 

extending the scope of this thesis. The literature sources used throughout this project are listed 

in References. 

Finally, this document includes four appendixes. Appendix A presents the object-oriented 

implementation of the NMPC algorithm in MATLAB/Simulink. Appendix B describes the 

hardware of the real-life vehicle modelled in chapter 4. The method applied to generate the 

racing track from logged data is presented in Appendix C. 
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2 Nonlinear Model Predictive Control 

In this chapter, the main topic of this thesis, Nonlinear Model Predictive Control (NMPC), is 

discussed. The chapter starts by introducing the general algorithm for NMPC and then 

progressively presents the necessary aspects for the NMPC algorithm implemented in this 

project, the Real-Time Iteration scheme (RTI).  

NMPC is a class of controller algorithms for the feedback control of nonlinear systems. This 

type of controllers is based on the online solution of an optimization problem. The most 

common applications of NMPC are tracking and stabilization of the system. In this case, the 

task of the optimization problem is to determine the control inputs of the system so that its 

states follow a reference trajectory as good as possible. However, as will be discussed in 

section 2.4, the objective function of the problem could be virtually any quantity of the system, 

in which case the algorithm is known as Economic NMPC. Furthermore, as expressed in its 

name, NMPC is model-based, which means that a model of the plant is needed for the internal 

calculations of the algorithm.  

The general implementation of a Nonlinear Model Predictive Controller in discrete time is 

structured as follows [36]: 

1. Get the current state of the system 

2. Predict and optimize the future behavior of the system on a limited window of discrete 

time steps (horizon) 

3. Implement the first control input on the real actuators 

4. Move the optimization horizon one step further and repeat from step 1. 

This procedure is executed periodically every sampling time 𝑇𝑠. Due to the time horizon in step 

2. and step 4., NMPC is also known as receding horizon control. This window contains 𝑁 

samples, so that the time horizon comprises the time 𝑇𝐻 = 𝑇𝑠 ∙ (𝑁 − 1) . 

It may be remarked that the version of NMPC for linear systems is simply known as Model 

Predictive Control (MPC). Most MPC applications lead to a convex optimization problem. 

However, the optimization problem in Nonlinear MPC applications is typically non-convex. 

2.1 The Optimization Problem 

As discussed before, Nonlinear Model Predictive Control is an optimization-based algorithm. 

The optimization problem in this algorithm is an Optimal Control Problem (OCP) of the form: 

min
𝒙,𝒗,𝒖

   ∑ 𝐿(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖)

𝑁−1

𝑖=0

+ 𝐸(𝒙𝑁)              

subject to 𝒙0 − 𝒙̅𝑛 = 𝟎

𝒙𝑖+1 − 𝒇𝑑(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖) = 𝟎, 𝑖 = 0,… ,𝑁 − 1

𝒈(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖) = 𝟎, 𝑖 = 0,… ,𝑁 − 1

𝒉(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖) ≤ 𝟎, 𝑖 = 0,… ,𝑁 − 1

𝒓(𝒙𝑁) ≤ 𝟎

 

 (2-1) 
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where 𝒙𝑖 denotes the differential states, 𝒗𝑖 the algebraic states and 𝒖𝑖 the controls of the 

system [36]. Representing the system in this form allows to cover systems given as Differential 

Algebraic Equations (DAE). Note that the system is provided in discrete form, where 

𝒇𝑑(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖) contains the discrete system dynamics. Therefore, continuous time systems must 

be discretized using the sampling time 𝑇𝑠, see subsection 2.1.2. The index 𝑖 denotes the values 

that correspond to the same timestep, where 𝒙𝑖 is considered for the timesteps 0 to 𝑁 and 𝒗𝑖 

and 𝒖𝑖 for the timesteps 0 to 𝑁 − 1. 

𝐿(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖) and 𝐸(𝒙𝑁) are scalar objective functions known as stage cost and terminal cost 

respectively. The functions 𝒈(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖) and 𝒉(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖) include respectively the equality and 

inequality constraints of the system. Finally, the constraint 𝒓(𝒙𝑁) ≤ 𝟎 is known as terminal 

constraint. 

The task of the optimization problem in a NMPC is to determine the control values 𝝁(𝒙̅𝑛), also 

known as feedback values, that minimize the given objective function for the current state 𝒙̅𝑛. 

The constraint 𝒙0 − 𝒙̅𝑛 = 𝟎 ensures that the initial state of the prediction 𝒙0 corresponds to the 

current state of the system. The following figure shows a representation of the NMPC 

algorithm. The values 𝒙𝑖
∗ and 𝒖𝑖

∗ represent the optimal state and control values determined by 

the optimization solver.  

 

Figure 2-1:  Representation of the NMPC algorithm [28] 

In principle, there are two ways to solve an optimal control problem: using an indirect method 

or a direct method. For the indirect methods, the Hamiltonian of the problem is constructed 

and Pontryagin’s maximum principle is used to solve the optimization. Moreover, indirect 

methods use continuous time dynamics. On the contrary, direct methods use discretized 

dynamics equations as in the problem in (2-1). In this thesis, FALCON.m was used, which is a 

MATLAB toolbox for solving optimal control problems with direct methods. The benefits of a 

direct approach compared to an indirect solution, will be clarified in the next subsection. 
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2.1.1 FALCON.m 

FALCON.m [49] is a MATLAB toolbox developed at the institute for Flight System Dynamics 

of the Technical University of Munich. This toolbox provides the possibility to build and solve 

Optimal Control Problems using a direct method.  

In general, an OCP consists of an objective function, a set of differential equations, a set of 

control inputs, a set of parameters and an optional set of constraints. Using the notation 

presented in the documentation of FALCON.m [49], an optimal control problem can be 

mathematically formulated as: 

min
𝒖, 𝒑

𝐽(𝒙(𝑡), 𝒖(𝑡), 𝒑) (2-2) 

where 𝒙(𝑡) are the state variables, 𝒖(𝑡) the controls and 𝒑 the parameters of the system. These 

are subject to the physical constraints of the system given by the differential equations (2-3).  

𝒙̇ = 𝒇(𝒙(𝑡), 𝒖(𝑡), 𝒑) (2-3) 

Furthermore, 𝒙(𝑡), 𝒖(𝑡) and 𝒑 are limited by lower and upper bounds: 

𝒙lb ≤ 𝒙(𝑡) ≤ 𝒙ub (2-4) 

𝒖lb ≤ 𝒖(𝒕) ≤ 𝒖ub (2-5) 

𝒑𝑙𝑏 ≤ 𝒑 ≤ 𝒑ub (2-6) 

Additionally, the optimal control problem may be subject to nonlinear constraints of the form: 

𝒈lb ≤ 𝒈(𝒙(𝑡),𝒖(𝑡), 𝒑) ≤ 𝒈ub (2-7) 

These nonlinear constraints can be imposed over the entire time interval (path constraints) or 

only at specified time points 𝑡𝑗 (point constraints). It can be noted that if the lower bound lb and 

the upper bound ub are set to the same value, equations (2-4) to (2-7) correspond to equality 

constraints.  

The time interval considered in the OCP is [𝑡0  𝑡𝑓], where both 𝑡0 and 𝑡𝑓 can be either optimized 

as parameters or set fixed. In general, the functional 𝐽 to be minimized in equation (2-1) is 

called a Bolza cost function and has the form:  

𝐽(𝒙(𝑡), 𝒖(𝑡), 𝒑) = 𝑚(𝒙(𝑡𝑗),𝒖(𝑡𝑗), 𝒑) + ∫ 𝑙(𝒙(𝜏), 𝒖(𝜏), 𝒑) 𝑑𝜏

𝑡𝑓

𝑡0

 (2-8) 

In this function, the expression 𝑚(𝒙(𝑡𝑗),𝒖(𝑡𝑗), 𝒑) is also referred to as a Mayer cost function 

and the integral term is also called a Lagrange cost function. It may be remarked that the Mayer 

cost function may contain state values and control values for multiple time points 𝑡𝑗. 

Additionally, FALCON.m offers the possibility of constructing multiphase optimal control 

problems. By using this functionality, each of the phases may receive a different set of 

parameters, path constraints, Lagrange cost functions and even a different model. 
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Direct Methods 

As mentioned before, FALCON.m uses a direct method to solve the OCP. In the direct 

methods, the trajectories of the states and controls of the system are discretized first. This 

reduces the infinite dimension of time of the trajectories to a finite one. Afterwards, a parametric 

optimization problem with the following Lagrange function can be built: 

ℒ(𝒛, 𝝀) = 𝐽(𝒛) + 𝝀T ∙ 𝒉(𝒛) (2-9) 

where the optimization variables 𝒛 include the discretized state variables 𝒙𝑖, the discretized 

control variables 𝒖𝑖 and the parameters 𝒑. In the equation above, 𝝀 is the vector of the 

Lagrange multipliers and 𝒉(𝒛) represents the equality and inequality constraints, which include 

the limitations (2-4)-(2-6) as well as the point and path constraints (2-7) and the so called 

defects, which arise from the physical constraints (2-3), see Figure 2-3. The OCP is therefore 

transformed into a large parametric optimization problem.  

The direct methods can be divided into multiple sorts. Here, the multiple shooting method and 

the collocation method are introduced. Their main difference is the number of discretized 

timepoints for the state variables that are included as optimization variables. FALCON.m offers 

the possibility of using either of the two methods. 

In both methods, the control history must be discretized on a grid, which is called the control 

grid. This discretization parametrizes the control inputs 𝒖(𝑡) by, in general, piecewise 

polynomial functions. To be able to evaluate the path and point constraints (2-7) in a finite 

number of points, the trajectories of the state variables are also discretized into the so-called 

integration grid. For simplicity, these grids are usually set equal. The following figure shows an 

overview of the discretization grids for the multiple shooting and collocation methods. 

Integration 

grid

Control grid

Multiple 

shooting

Collocation

t0 tf

:  State value chosen by the optimizer  

Figure 2-2:  Multiple shooting vs. collocation 

Multiple shooting 

The multiple shooting method lets the optimizer choose the state vector at multiple points in 

the integration grid. These are marked by blue triangles in Figure 2-2. As stated above, the 

controls have to be optimized for every discretization point in the control grid. Therefore, the 

optimization vector 𝒛 may be constructed as follows 

𝒛 = [𝑡𝑓 𝑥0 𝑢0 𝑢1 𝑢2 𝑥3 𝑢3 𝑢4 𝑢5 𝑥6 𝑢6 𝑢7 𝑢8 …] (2-10) 
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Presented here is the case of a model with a single state variable and a single control and 𝑡𝑓 

as the only parameter that is optimized. As can be seen, in the multiple shooting method, only 

the values of the state variables 𝑥0, 𝑥3, 𝑥6, … can be changed directly by the optimizer. These 

states are called the multiple shooting nodes. Their values and the history of the controls are 

used to calculate the state variables for each point in the integration grid. This is done by 

numerical integration with explicit methods like the Euler forward method or another Runge-

Kutta method [51]. Exemplary results of this integration can be seen in Figure 2-3.  

 

Figure 2-3:  Multiple shooting defects 

In this graph, the state (blue line) is integrated from 𝑡0 till 𝑡3, where it is again set by the 

optimizer. The difference between the result of the integration and the value set by the 

optimizer is called a defect and is introduced to the problem as a constraint that must vanish. 

This constraint is shown in the following equation, where 𝑥𝑖,𝑒𝑛𝑑  represents the value of a state 

at the end of the integration from one multiple shooting node to the next, and 𝑥𝑖+1,𝑖𝑛𝑖 represents 

the value of the same state at the next multiple shooting node: 

𝑑𝑒𝑓𝑒𝑐𝑡 = 𝑥𝑖,end − 𝑥𝑖+1,ini =
!
0 (2-11) 

The values of the multiple shooting nodes and the values of the controls have a strong 

influence on the trajectory of the model. Therefore, if the system is unstable or if nonlinearities 

are involved, short integration intervals show superior local convergence [36]. Thus, the 

simulation is divided into multiple integrations to make the optimization process more robust. 

This comes at the cost of a larger optimization vector. 

A special case of multiple shooting discretization where only the stating time 𝑡0 is used as 

shooting node is called single shooting. In this case, only the initial state, the discretized 

controls and the parameters can be set directly by the optimization solver. 

𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡

― State
― Control
― Defects

● Set by optimizer
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Collocation 

As seen in Figure 2-2, the collocation method allows the optimizer to set the values of the state 

vector at each point in the integration grid. Thus, the optimization vector 𝒛 for a model with one 

state and one control may look like: 

𝒛 = [𝑡𝑓 𝑥0 𝑢0 𝑥1 𝑢1 𝑥2 𝑢2 𝑥3 𝑢3 𝑥4 𝑢4 𝑥5 𝑢5 …] (2-12) 

Therefore, instead of having several integration steps, only one integration step is necessary 

for each discretization point. This makes the collocation method much more robust than the 

multiple shooting method, because instabilities in the integration are avoided to a large extent. 

Moreover, since the next step is known in advance, because it is set by the optimizer, implicit 

integration methods can be used, for example the trapezoidal method. It is also possible to 

interpolate the state trajectories between two points in the integration grid by Lagrange 

Polynomials, using Legendre/Radau integration methods [52]. The parameters of the 

polynomials would in this case also be part of the optimization variables, which further 

improves the convergence rate and reliability of the algorithm. However, collocation methods 

results in a larger optimization vector and more constraints than multiple shooting methods. 

Using FALCON.m for NMPC 

Now that FALCON.m and the basic principles behind direct optimal control have been 

introduced, the connection to the optimal control problem used in NMPC, equation (2-1), can 

be detailed. For more information on the actual implementation see Appendix A. 

First, the time interval of the OCP must be fixed to represent the prediction horizon [0 , 𝑇𝐻]. 

Furthermore, since the NMPC algorithm is executed periodically, the control grid should be 

discretized taking the sampling time 𝑇𝑠 into account. Moreover, the integration grid is kept equal 

to the control grid. 

Using discretized controls and state values, the Bolza cost function (2-8) shows similarities to 

the cost function in (2-1). The terminal cost can be represented by a Mayer cost function using 

the final state values 𝒙𝑁 = 𝒙(𝑇𝐻). Moreover, in FALCON.m, the integral of the Lagrange cost 

function is evaluated using a trapezoidal approximation: 

∫ 𝑙(𝒙(𝜏), 𝒖(𝜏), 𝒑) 𝑑𝜏

𝑇𝐻

0

≈
1

2
∙ ∑(𝑙(𝒙𝑖 , 𝒖𝑖 , 𝒑) + 𝑙(𝒙𝑖+1, 𝒖𝑖+1, 𝒑))

𝑁−1

𝑖=0

 (2-13) 

This term can be reformulated to: 

1

2
∙ 𝑙(𝒙0, 𝒖0, 𝒑) + ∑(𝑙(𝒙𝑖 , 𝒖𝑖 , 𝒑) + 𝑙(𝒙𝑖+1, 𝒖𝑖+1, 𝒑))

𝑁−1

𝑖=1

+
1

2
∙ 𝑙(𝒙𝑁 , 𝒖𝑁 , 𝒑) (2-14) 

Therefore, the original objective function in (2-1) can be represented equivalently in 

FALCON.m by adding the term 
1

2
∙ 𝑙(𝒙0, 𝒖0, 𝒑) +

1

2
∙ 𝑙(𝒙𝑁 , 𝒖𝑁 , 𝒑) as Mayer costs. 

The constraints for the discrete system dynamics in (2-1) are comparable to the defects 

described above. However, the controls that are actually implemented on the actuators of the 

system, are assumed constant during each timestep, i.e. a Zero Order Hold (ZOH) is assumed 
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(see Figure 2-1). This should be considered in the discretization of the dynamics, which will be 

covered in the next subsection.  

In FALCON.m, the algebraic variables 𝒗𝑖 can be regarded as controls that are subject to some 

algebraic equality constraints 𝒈(𝒙𝑖 , 𝒗𝑖 , 𝒖𝑖) = 𝟎, see section 3.3 for an example. Therefore, the 

algebraic variables will be neglected for the rest of this chapter. Furthermore, all equality and 

inequality constraints in the problem (2-1) can be represented as path or point constraints (2-7) 

in FALCON.m.  

The parameters 𝒑 are not directly part of the OCP (2-1) and are therefore not considered in 

this project. However, a constant parameter set from outside of the NMPC could be 

represented as a state 𝑥 with no dynamics, i.e. 𝑥̇ = 0. This parameter would thus be part of 

the initial value embedding, discussed in section 0. 

2.1.2 Discretization and Algorithmic Differentiation 

As mentioned before, the continuous time model of the system (2-3) needs to be discretized 

in order to be handled numerically in the optimization. This is done by numerical integration 

methods, also known as integrators [36]. These methods can be categorized into two groups: 

explicit, which only use the previous state values, and implicit, which require information about 

future state values.  

The optimization solver requires also the derivatives of the numerical integration. The 

calculation of these derivatives is known as algorithmic differentiation of the integrators. It is 

important to note that, if an exact Hessian is used for the optimization (see section 2.2.3), the 

second order derivatives will also be needed. For this project, two explicit numerical integrators 

were implemented for FALCON.m: The Forward Euler method and the 4th-order Runge-Kutta 

(ERK4) method.  

Forward Euler 

The Forward Euler method has the form: 

𝒙𝑖+1 = 𝒙𝑖 + 𝑇𝑠 ∙ 𝒇(𝒙𝑖 , 𝒖𝑖) (2-15) 

where 𝒙𝑖 and 𝒙𝑖+1 represent the current and the next state respectively, 𝒇(𝒙𝑖 , 𝒖𝑖) is the vector-

valued function that contains the system dynamics and 𝑇𝑠 is the stepsize for the integration, 

which is set equal to the sampling time in an NMPC scheme. The defect constraints can 

therefore be formulated as: 

𝒅𝒆𝒇𝑖 =𝒙𝑖+1 − 𝒙𝑖 − 𝑇𝑠 ∙ 𝒇(𝒙𝑖 , 𝒖𝑖) = 𝟎 (2-16) 

with the derivatives: 

∇𝒙𝑖+1𝒅𝒆𝒇𝑖 = 𝑰

∇𝒙𝑖 𝒅𝒆𝒇𝑖 = −𝑰 − 𝑇𝑠 ∙ ∇𝒙𝑖  𝒇(𝒙𝑖 , 𝒖𝑖)

∇𝒖𝑖 𝒅𝒆𝒇𝑖 = −𝑇𝑠 ∙ ∇𝒖𝑖  𝒇(𝒙𝑖 , 𝒖𝑖)
 (2-17) 
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The second derivatives are provided by: 

∇𝒙𝑖+1𝒙𝑖+1
2 𝒅𝒆𝒇𝑖 = 𝟎

∇𝒙𝑖 𝒙𝑖
2 𝒅𝒆𝒇𝑖 = −𝑇𝑠 ∙ ∇𝒙𝑖 𝒙𝑖

2  𝒇(𝒙𝑖 , 𝒖𝑖)

∇𝒖𝑖 𝒖𝑖
2 𝒅𝒆𝒇𝑖 = −𝑇𝑠 ∙ ∇𝒖𝑖 𝒖𝑖

2  𝒇(𝒙𝑖 , 𝒖𝑖)

∇𝒙𝑖 𝒖𝑖
2 𝒅𝒆𝒇𝑖 = −𝑇𝑠 ∙ ∇𝒙𝑖 𝒖𝑖

2  𝒇(𝒙𝑖 , 𝒖𝑖)

∇𝒖𝑖 𝒙𝑖
2 𝒅𝒆𝒇𝑖 = ∇𝒙𝑖 𝒖𝑖

2 𝒅𝒆𝒇𝑖
T

 (2-18) 

Explicit 4th-order Runge-Kutta 

With the explicit 4th-order Runge-Kutta method, the defects and their derivatives can be 

calculated by the following algorithm [36]: 

Algorithm 1:  Explicit 4th-order Runge-Kutta (ERK4)  

Input:  𝒙𝑖 and 𝒖𝑖 

𝑎1 = 0 ;  𝑎2 =
1
2⁄  ;  𝑎3 =

1
2⁄  ;  𝑎4 = 1 

𝒌0 = 𝟎 ;  𝒌𝑥,0 = 𝟎 ;  𝒌𝑢,0 = 𝟎 

for  𝑗 = 1,… ,4 

 

𝒌𝑗 = 𝒇(𝒙𝑖 + 𝑎𝑗𝑇𝑠𝒌𝑗−1 , 𝒖𝑖)

𝒌𝑥,𝑗 = ∇𝒙𝑖𝒇(𝒙𝑖 + 𝑎𝑗𝑇𝑠𝒌𝑗−1 , 𝒖𝑖) ∙ (𝑰 + 𝑎𝑗𝑇𝑠𝒌𝑥,𝑗−1)

𝒌𝑢,𝑗 = ∇𝒖𝑖𝒇(𝒙𝑖 + 𝑎𝑗𝑇𝑠𝒌𝑗−1 , 𝒖𝑖) + ∇𝒙𝑖𝒇(𝒙𝑖 + 𝑎𝑗𝑇𝑠𝒌𝑗−1, 𝒖𝑖) ∙ 𝑎𝑗𝑇𝑠𝒌𝑢,𝑗−1

 

end for 

 𝒅𝒆𝒇𝑖 = 𝒙𝑖+1 − 𝒙𝑖 −
𝑇𝑠
6
⁄ ∙ (𝒌1 + 2𝒌2 + 2𝒌3 + 𝒌4) = 𝟎 

 

∇𝒙𝑖+1𝒅𝒆𝒇𝑖 = 𝑰

∇𝒙𝑖 𝒅𝒆𝒇𝑖 = −𝑰 −
𝑇𝑠
6⁄ ∙ (𝒌𝑥,1 + 2𝒌𝑥,2 + 2𝒌𝑥,3 + 𝒌𝑥,4)

∇𝒖𝑖 𝒅𝒆𝒇𝑖 = −
𝑇𝑠
6⁄ ∙ (𝒌𝑢,1 + 2𝒌𝑢,2 + 2𝒌𝑢,3 + 𝒌𝑢,4)

 

 

  

This algorithm must be repeated for the timesteps 𝑖 = 0,… ,𝑁 − 1. The second derivatives 

could also be calculated in a similar fashion. However, the second derivatives are used when 

building the Hessian of the Lagrange function (2-9), which includes a term of the form 

𝝀𝑇∇𝒛
2𝒉(𝒛), where 𝝀 is the vector of the Lagrange multipliers and 𝒉(𝒛) represents the equality 

constraints (including the defects) and the active inequality constraints. Therefore, for an 

accurate result of the Hessian, the Lagrange multipliers 𝝀 corresponding to the defects would 

also need to be propagated with a similar recursion to the one in Algorithm 1. These Lagrange 

multipliers converge to the adjoint variables of the continuous system. A proper algorithm for 

the Hessian calculation can be found in [50], its implementation was, however, out of the scope 

of this thesis. 

It may be remarked that the control grid in FALCON.m includes the control inputs at the end 

of the time horizon 𝒖𝑁 (in the case of algebraic variables also 𝒗𝑁). These values are not 

included in the problem (2-1), because Zero Order Hold of the controls is assumed. Therefore, 

these values should be removed from the optimization variables. 
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Trapezoidal 

As a final comment, the Trapezoidal method, which is an implicit integrator, is the default 

discretization method of FALCON.m. Implicit integrators show a superior performance for stiff 

systems and are simple to implement for Optimal Control Problems [36]. However, the 

Trapezoidal method (equation (2-19)) does not assume Zero Order Hold of the controls. This 

can be appreciated by the fact that 𝒖𝑖+1 is used: 

𝒙𝑖+1 = 𝒙𝑖 +
𝑇𝑠
2
∙ (𝒇(𝒙𝑖, 𝒖𝑖) + 𝒇(𝒙𝑖+1, 𝒖𝑖+1)) (2-19) 

To tackle this issue when using the Trapezoidal method, the following equation to calculate 

the control inputs 𝝁(𝒙̅𝑛) was implemented in this project: 

𝝁(𝒙̅𝑛)  =
1

2
∙ (𝒖0

∗ + 𝒖1
∗) (2-20) 

where 𝒖0
∗  and 𝒖1

∗  are the optimal control values of the first two timesteps. Furthermore, since 
1

2
∙ 𝒖1

∗  is applied to the actuators “prematurely”, an additional constraint 𝒖0 = 𝒖1
∗  is inserted to 

the OCP. This approach was tested with two simulation models and will be discussed further 

in sections 3.1 and 3.3. 

2.1.3 Shift – Online Initialization 

To solve the Optimal Control Problem (2-1) in a fast and reliable manner, an adequate initial 

guess should be provided for the optimization [33]. Since the prediction horizon is “shifted” 

periodically every sampling time 𝑇𝑠, then an obvious initial guess is to use the values of the 

previous optimal solution: 

𝒙𝑖
guess

= 𝒙𝑖+1
∗  , 𝑖 = 0,… ,𝑁 − 1

𝒖𝑖
guess

= 𝒖𝑖+1
∗  , 𝑖 = 0,… ,𝑁 − 2

 (2-21) 

The values for the last timestep 𝒙𝑁
guess

 can be calculated by forward simulation using an explicit 

integration method: 

𝒙𝑁
guess

= 𝒇𝑑(𝒙𝑁−1
guess

, 𝒖𝑁−1
guess

) (2-22) 

This ensures that the defect constraints are satisfied. For selecting the last control values 

𝒖𝑁−1
𝑔𝑢𝑒𝑠𝑠

, several strategies are possible: 

• If there is a known control law 𝝁(𝒙𝑁−1
guess) that stabilizes the system for the given system 

state, this control law could be used: 𝒖𝑁−1
guess

= 𝝁(𝒙𝑁−1
guess

)  

• A simpler approach is to copy the previous control values: 𝒖𝑁−1
guess

= 𝒖𝑁−2
guess

= 𝒖𝑁−1
∗  

An initial guess of the Lagrange multipliers 𝝀𝑔𝑢𝑒𝑠𝑠  can also be provided to many optimization 

solvers. As for the optimization variables 𝒙𝑖 and 𝒖𝑖 , providing an initial guess of the Lagrange 

multipliers can boost the performance of the algorithm. Furthermore, as mentioned before, the 

Lagrange Multipliers are needed for calculating the exact Hessian of the OCP. For their initial 

guess, the Lagrange multipliers corresponding to the defects and the path constraints can also 

be shifted as in (2-21). For their last timestep, these Lagrange multipliers can be either copied 
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from the previous one or set to zero. For the terminal constraint, the best initial guess is the 

one corresponding to the last optimal solution. 

2.1.4 Stability 

Proving stability of nonlinear systems, including closed-loop systems, can be a difficult task. 

This is especially true if a complex controller, like NMPC, is used. Here, a simple proof for a 

closed-loop system using Tracking NMPC is provided [36]. 

Here, it is assumed that the system is provided with a steady-state and feasible setpoint 𝒙ref, 

i.e. 𝑓(𝒙ref, 𝒖∗) = 𝟎. Through a transformation, this setpoint and the controls 𝒖∗ can be set to 

zero without loss of generality. A typical objective function for Tracking NMPC is 

𝐽(𝒙, 𝒖) = 𝒙T𝑸𝒙+ 𝒖T𝑹𝒖 with positive definite matrices 𝑸 and 𝑹. Furthermore, an equality 

terminal constraint 𝒙𝑁 = 𝒙
ref = 𝟎 is included in the problem to ensure that the system reaches 

the setpoint. At the timestep 𝑡𝑛 the solution 𝝁(𝒙̅𝑛) of the Optimal Control Problem is 

implemented to the system actuators. Provided that there are no model mismatch and no 

disturbances, the prediction 𝒙1
∗  matches the new actual state 𝒙̅𝑛+1. Therefore, the shifted 

prediction horizon with 𝒖𝑁−1 = 𝟎 and 𝒙𝑁 = 𝟎 is already the new optimal solution according to 

the objective function 𝐽(𝒙,𝒖). This would be repeated every timestep 𝑇𝑠 until the setpoint is 

reached. In that case, the system is and stays in steady-state, as the objective function is at 

the (global) minimum. 

More detailed stability proofs, also without the terminal equality constraint and for Economic 

NMPC, can be found in [28]. 

2.2 Newton-Type Optimization 

In this section, the Newton-type optimization solvers will be introduced briefly. An Optimal 

Control Problem can be transcribed to a nonlinear optimization problem. Hence, it must be 

solved using Nonlinear Programming (NLP). A nonlinear problem has the following form: 

min
𝒛
   𝑓(𝒛)

subject to    𝒈(𝒛) = 𝟎

𝒉(𝒛) ≤ 𝟎

 (2-23) 

Here, the function 𝑓(𝒛) is called the objective or cost function, 𝒈(𝒛) and 𝒉(𝒛) are respectively 

the equality and inequality constraints. All 𝑓(𝒛), 𝒈(𝒛) and 𝒉(𝒛) must be twice continuously 

differentiable. First-order necessary conditions for a local minimizer 𝒛∗ are [36, 53]: 

∇𝒛 ℒ(𝒛
∗, 𝝀∗, 𝝁∗) = 𝟎

𝒈(𝒛∗) = 𝟎

𝒉(𝒛∗) ≤ 𝟎
𝝁∗ ≥ 𝟎

𝜇𝑖
∗ ℎ𝑖(𝒛

∗) = 0,    for all 𝒉(𝒛)

 (2-24) 

where the Lagrange function of this problem is formulated as (compare to equation (2-9)): 

ℒ(𝒛, 𝝀, 𝝁) = 𝑓(𝒛) + 𝝀T 𝒈(𝒛) + 𝝁T 𝒉(𝒛) (2-25) 
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with the derivative: 

∇𝒛 ℒ(𝒛, 𝝀, 𝝁) = ∇𝒛 𝑓(𝒛) + ∇𝒛 𝒈(𝒛) 𝝀 + ∇𝒛 𝒉(𝒛) 𝝁 (2-26) 

Here, 𝝀 and 𝝁 are called the Lagrange multipliers or dual variables. The conditions (2-24) are 

also known as the Karush-Kuhn-Tucker (KKT) conditions of optimality. Second-order 

necessary conditions can be found in [53]. 

Quadratic Programming (QP) solvers solve a special case of nonlinear problems, quadratic 

problems. These problems have a quadratic cost function and 𝒈(𝒛) and 𝒉(𝒛) are affine. 

Therefore, a quadratic problem has the form: 

min
𝒛
   𝒄T𝒛 +

1

2
𝒛T B 𝒛

subject to    𝑨𝒛 − 𝒃 = 𝟎
𝑪𝒛 − 𝒅 ≤ 𝟎

 (2-27) 

As mentioned before, this section is only a brief introduction to Newton-type optimization. 

Topics like line-search algorithms, merit functions or Trust-Region methods will not be 

discussed here. These and other subjects are treated in detail in [53], for example. 

2.2.1 Equality Constrained Optimization 

The main idea of the Newton-type optimization methods, in the case of no inequality 

constraints, is to use Newton’s method to find points that solve the nonlinear KKT conditions 

[36]: 

∇𝒛 ℒ(𝒛
∗, 𝝀∗) = 0

𝒈(𝒛∗) = 0
 (2-28) 

Starting with an initial guess 𝒘0, Newton’s method can be employed to find the zero-crossings 

of the vector-valued function 𝑭(𝒘) by iterating: 

𝒘𝑘+1 = 𝒘𝑘 − (
𝜕𝑭(𝒘𝑘)

𝜕𝒘𝑘
)

−1

𝑭(𝒘𝑘) (2-29) 

For an equality constrained optimization, this algorithm looks as follows: 

Algorithm 2:  Newton-type equality constrained optimization  

Input:  initial guess 𝒛0 and 𝝀0 , tolerance 𝜖 

𝑘 = 0 

while ‖∇𝒛 ℒ(𝒛𝑘 , 𝝀𝑘)‖ ≥ 𝜖 or ‖𝒈(𝒛𝑘)‖ ≥ 𝜖 

 get  𝒛𝑘+1 and  𝝀𝑘+1 from: 

 

[
 𝒛𝑘+1 
𝝀𝑘+1

] = [
 𝒛𝑘 
0
] − [

∇𝒛𝒛
2  ℒ(𝒛𝑘 , 𝝀𝑘) ∇𝒛𝒈(𝒛𝑘)

∇𝒛𝒈
𝑇(𝒛𝑘) 0

]

−1

[
∇𝒛𝑓(𝒛𝑘)

𝒈(𝒛𝑘)
] (2-30) 

 𝑘 = 𝑘 + 1 

end while 
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The Hessian of the Lagrange function H𝑘 = ∇𝒛𝒛
2  ℒ(𝒛𝑘 , 𝝀𝑘) in equation (2-30) might be difficult 

to compute, therefore, it is usually approximated. Methods for approximating the Hessian will 

be covered in section 2.2.3. The matrix  

[
∇𝒛𝒛
2  ℒ(𝒛𝑘 , 𝝀𝑘) ∇𝒛𝒈(𝒛𝑘)

∇𝒛𝒈
𝑇(𝒛𝑘) 0

] (2-31) 

is known as the KKT matrix and is in general symmetric indefinite.  

It can be shown that one iteration of Algorithm 2 is equivalent to solving the following quadradic 

problem, see [36]: 

min
𝒛
   ∇𝐳𝑓(𝒛𝑘)

T (𝒛 − 𝒛𝑘) +
1

2
(𝒛 − 𝒛𝑘)

T H𝑘 (𝒛 − 𝒛𝑘)

subject to    𝒈(𝒛𝑘) + ∇𝐳𝒈(𝒛𝑘)
T (𝒛 − 𝒛𝑘) = 0

 (2-32) 

2.2.2 Handling Inequality Constraints 

For solving a nonlinear problem with inequality constraints, the complementarity conditions 

must be taken into account: 

𝒉(𝒛∗) ≤ 𝟎
𝝁∗ ≥ 𝟎

𝜇𝑖
∗ ℎ𝑖(𝒛

∗) = 0,    for all 𝒉(𝒛)
 (2-33) 

These KKT conditions are non-smooth, and there are different methods to deal with them. 

These methods will be presented here. 

Interior-Point methods 

The idea of the interior-point methods is to smoothen the complementarity conditions by 

inserting a constant 𝜏 > 0. The complementarity conditions are then replaced by: 

𝜇𝑖
∗  ℎ𝑖(𝒛

∗) + 𝜏 = 0,    for all 𝒉(𝒛) (2-34) 

It can be noted that this equality is equivalent to the hyperbola 𝜇𝑖
∗ = −

𝜏

ℎ𝑖(𝒛
∗)
 . Therefore, by 

observing that  
𝜏

ℎ𝑖(𝒛
∗)
∙ ∇𝒛ℎ𝑖(𝒛) = 𝜏 ∇𝒛 log(−ℎ𝑖(𝒛)) , this new complementarity condition can be 

interpreted as replacing the inequality constraints with an additional term in the cost function 

(see the first KKT condition in (2-24) and equation (2-26)): 

min
𝒛
   𝑓(𝒛) − 𝜏∑log(−ℎ𝑖(𝒛))

subject to    𝒈(𝒛) = 𝟎
 (2-35) 

Normally, the optimization is started with a large value 𝜏, which is then reduced as the iterations 

advance. It can be noted that the new objective function tends towards infinity when ℎ𝑖(𝒛) → 0. 

Therefore, even for a small 𝜏 this objective function prevents the inequality constraints from 

being violated. 
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Sequential Quadratic Programming 

Sequential Quadratic Programming (SQP) is based on the quadratic problem interpretation 

(2-32). In each iteration, this approach solves an inequality constrained QP problem that is 

obtained by linearizing the constraint functions and approximating the objective function by a 

quadratic function: 

min
𝒛
   ∇𝐳𝑓(𝒛𝑘)

T (𝒛 − 𝒛𝑘) +
1

2
(𝒛 − 𝒛𝑘)

T H𝑘 (𝒛 − 𝒛𝑘)

subject to    𝒈(𝒛𝑘) + ∇𝐳𝒈(𝒛𝑘)
T (𝒛 − 𝒛𝑘) = 0

    𝒉(𝒛𝑘) + ∇𝐳𝒉(𝒛𝑘)
T (𝒛 − 𝒛𝑘) ≤ 0

 (2-36) 

The method to solve the quadratic problem depends however on the implementation. QP 

solvers usually use either an interior-point method or an active set method (described next). 

Active Set methods 

The idea in active set methods is that, if the set of active inequality constraints (the inequality 

constraints where ℎ𝑖(𝒛) =
!
0 ), i.e. the active set, is known, then one can directly solve an 

equality constrained optimization. Thus, these methods iteratively refine their guess of the 

active set, often called the working set, and solve an equality constrained optimization every 

iteration.  

This equality constrained optimization is particularly easy to solve in the case of affine 

inequality constraints, as in quadratic problems of the form (2-27). Moreover, an active set 

method can be easily warm-started, if there is a series of related problems to be solved. This 

is the case for Sequential Quadratic Programming and for problems in the context of model 

predictive control [36]. 

2.2.3 About the Hessian 

In this subsection, a few remarks on the Hessian H𝑘 of the Lagrange function will be made. As 

mentioned before, the Hessian is necessary to solve an optimization problem with a Newton-

type method, regardless of the approach used to handle the inequality constraints. For a 

general inequality constrained nonlinear optimization, the Hessian is defined as: 

H𝑘 ≔ ∇𝒛𝒛
2  ℒ(𝒛𝑘 , 𝝀𝑘 , 𝝁𝑘) (2-37) 

see equation (2-26). However, the calculation of this matrix is sometimes difficult, and it is 

therefore often approximated by a matrix 𝐵𝑘 ≈ H𝑘  , which will be discussed in this subsection. 

In general, the Hessian is symmetric and indefinite. Note that in a quadratic problem (2-27) the 

eigenvalues of the Hessian H𝑘 = B make the problem convex or non-convex, i.e. if it is possible 

to solve the problem in polynomial time [36]. If B is positive semi-definite (B ≽ 0), then the 

problem is convex and can be solved, and if B is positive definite (B ≻ 0), then the problem is 

strictly convex and always has a unique minimizer 𝒛∗. 
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It may be remarked that for an Optimal Control Problem of the form (2-1), the Lagrange function 

is separable [52]: 

ℒ(𝒛, 𝝀, 𝝁) =∑ℒ𝑖(𝒛𝑖 , 𝝀, 𝝁)

𝑁

𝑖=0

 (2-38) 

Therefore, the Hessian has a block-diagonal form: 

H = ∇𝒛𝒛
2 ℒ(𝒛, 𝝀, 𝝁) =

[
 
 
 
 
∇𝒛0𝒛0
2 ℒ0(𝒛0, 𝝀, 𝝁) 0 0 0

0 ∇𝒛1𝒛1
2 ℒ1(𝒛1, 𝝀, 𝝁) 0 0

0 0     …    0
0 0 0 ∇𝒛𝑁𝒛𝑁

2 ℒ𝑁(𝒛𝑁 , 𝝀, 𝝁)]
 
 
 
 

 (2-39) 

The KKT matrix also has a similar form. Note that, for the sake of readability, the iteration index 

𝑘 has been omitted above. In this thesis, the Hessian blocks are represented by H𝑘,𝑖 =

∇𝒛𝑖𝒛𝑖
2 ℒ𝑖(𝒛𝑘,𝑖 , 𝝀𝑘 , 𝝁𝑘) for 𝑖 = 0,… ,𝑁. It is important to remark that ℒ0(𝒛0, 𝝀, 𝝁) , ℒ𝑁(𝒛𝑁 , 𝝀, 𝝁) and 

ℒ𝑖(𝒛𝑖 , 𝝀, 𝝁) ∀ 𝑖 = 1,… ,𝑁 − 1 have a different structure, due to the initial value constraints and 

the terminal constraints. 

Exact Hessian 

An obvious way of obtaining the Hessian is to calculate the second derivative of the Lagrange 

function directly: B𝑘 = H𝑘 = ∇𝒛𝒛
2  ℒ(𝒛𝑘 , 𝝀𝑘 , 𝝁𝑘) . For this, algorithmic differentiation is used, as 

introduced in section 2.1.2.  

Also, instead of calculating the Hessian directly, it could also be calculated by finite differences. 

However, the accuracy of finite differences may be poor, especially if finite differences is also 

used to calculate the first derivatives [36]. 

Since the exact Hessian is in general indefinite, it needs to be regularized, i.e. one needs to 

get a positive semidefinite approximation of the exact Hessian, to be able to solve the nonlinear 

problem. This is important for both interior-point and SQP methods [54]. 

Regularization methods 

Regularization or convexification methods are used on the Hessian matrix, to make the 

optimization problem convex, and thus be able to solve it. In this project, two regularization 

methods presented in [54] were implemented, project and mirror: 

 B𝑘,𝑖 = project(H𝑘,𝑖) ≔ 𝑉𝑖  [ max(𝜖, 𝐷𝑖) ] 𝑉𝑖
−1 (2-40) 

 B𝑘,𝑖 = mirror(H𝑘,𝑖) ≔ 𝑉𝑖  [ max(𝜖, abs(𝐷𝑖)) ] 𝑉𝑖
−1 (2-41) 

where H𝑘,𝑖 = 𝑉𝑖  𝐷𝑖  𝑉𝑖
−1 is the eigenvalue decomposition of each Hessian block. This means 

that the eigenvalues of H𝑘,𝑖 are displayed on the diagonal matrix 𝐷𝑖  , and 𝑉𝑖 is only a 

transformation matrix. In (2-40) and (2-41) the max  function is performed elementwise to the 

diagonal matrix 𝐷𝑖 and 𝜖 is a small positive number.  

Therefore, these regularization methods ensure that the Hessian becomes positive definite, by 

making all of its eigenvalues positive. In project the negative eigenvalues are “projected” to a 
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small positive value. In mirror their absolute value is taken into account so that their magnitude 

stays the same. 

In [54], another convexification method is presented, which shows benefits in the context of 

OCPs. This procedure was however not implemented in this thesis. The authors in [31] also 

suggest that the regularization methods above can be applied to the full-Hessian or to the 

condensed Hessian (see subsection 2.2.5), instead of to each block separately. 

Gauss-Newton 

The Gauss-Newton method can be used for a special class of optimization problems that have 

an objective function of the form 𝑓(𝒛) =
1

2
‖𝑹(𝒛)‖2

2  [36]. This kind of objective function is given 

in many applications, for example in least-squares parameter fitting or in tracking NMPC. 

One can see that the quadratic approximation of this objective function at iterate 𝒛𝑘  results in 

a convex quadratic function: 

1

2
‖𝑹(𝒛)‖2

2   ≈   
1

2
‖𝑹(𝒛𝑘) + ∇𝒛𝑹(𝒛𝑘)

T(𝒛 − 𝒛𝑘)‖2
2
  =

1

2
𝑹(𝒛𝑘)

T𝑹(𝒛𝑘)⏟          
= 𝑐𝑜𝑛𝑠𝑡.

+ (𝒛 − 𝒛𝑘)
T  ∇𝒛𝑹(𝒛𝑘) 𝑹(𝒛𝑘)⏟          

= ∇𝒛𝑓(𝒛𝑘)

+
1

2
(𝒛 − 𝒛𝑘)

T  ∇𝒛𝑹(𝒛𝑘) ∇𝒛𝑹(𝒛𝑘)
T⏟            

=: B𝑘

(𝒛 − 𝒛𝑘)
 (2-42) 

This equation can be compared to the quadratic problem (2-36) of an SQP iteration. It can be 

noted, that the Gauss-Newton Hessian approximation B𝑘 ≔ ∇𝒛𝑹(𝒛𝑘) ∇𝒛𝑹(𝒛𝑘)
T does not 

depend on the Lagrange multipliers, and therefore it does not include the second order 

derivatives of the constraints. Equation (2-43) shows the comparison of the Gauss-Newton 

approximation to the exact Hessian: 

∇𝒛𝒛
2 ℒ(𝒛, 𝝀, 𝝁) = ∇𝒛𝑹(𝒛𝒌) ∇𝒛𝑹(𝒛𝑘)

T + ∑𝑅𝑗(𝒛) ∇𝒛𝒛
2 𝑅𝑗(𝒛𝒌) + ∑𝜆𝑗 ∇𝒛𝒛

2 𝑔𝑗(𝒛)

 = B𝑘 + 𝑂(‖𝑹(𝒛𝑘)‖) + 𝑂(‖𝝀‖)
 (2-43) 

BFGS 

Another important approach for approximating the Hessian of the Lagrange function is with the 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula: 

B𝑘+1 = B𝑘 +
B𝑘 𝒔𝑘 𝒔𝑘

T B𝑘

𝒔𝑘
T B𝑘 𝒔𝑘

+
𝒚𝑘 𝒚𝑘

T

𝒚𝑘
𝑇 𝒔𝑘

 (2-44) 

with     𝒔𝑘 = 𝒛k+1 − 𝒛𝑘     and     𝒚𝑘 = ∇𝒛 ℒ(𝒛𝑘+1, 𝝀𝑘+1, 𝝁𝑘+1) − ∇𝒛 ℒ(𝒛𝑘 , 𝝀𝑘 , 𝝁𝑘) (2-45) 

In this formula, the Hessian approximation B𝑘+1 is calculated using information from the last 

iteration 𝑘 [53]. B0 must be initialized with a positive definite matrix.  

The BFGS formula delivers a positive definite approximation of the Hessian, provided that the 

curvature condition 𝒔𝑘
T 𝒚𝑘 > 0 is satisfied. This condition may not always hold. Therefore, 

Nocedal and Wright [53] suggest two options: 

1. Skip the update, i.e. B𝑘+1 = B𝑘 , in case the curvature condition is not satisfied. One 

can reinitialize the Hessian approximation if too many updates have been skipped 
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2. Replace 𝒚𝑘 in (2-44) with 𝒓𝑘 = 𝜃𝑘𝒚𝑘 + (1 − 𝜃𝑘) B𝑘 𝒔𝑘 , where 𝜃𝑘 is calculated as in 

(2-46) with the damping factor 𝛿 ∈ ]0; 1[ .  

 𝜃𝑘 = {

    1 if   𝒔𝑘
T 𝒚𝑘 ≥ 𝛿 𝒔𝑘

T B𝑘 𝒔𝑘
(1 − 𝛿) 𝒔𝑘

T B𝑘 𝒔𝑘

𝒔𝑘
T B𝑘 𝒔𝑘 − 𝒔𝑘

T 𝒚𝑘
     otherwise

 (2-46) 

In the context of NMPC, Quirynen et al. [50] mention that it is not recommendable to use the 

BFGS Hessian approximation. They argue that a jump in the states  𝑥̅0 (for example due to 

disturbances) may cause a poor approximation and many BFGS updates may be needed to 

recover a good convergence rate. However, BFGS is the default Hessian approximation 

method in embotech’s FORCES PRO [55], and was therefore implemented and tested in this 

project. FORCES PRO also has the peculiarity that each Hessian block B𝑘,𝑖 ≈ H𝑘,𝑖 is updated 

individually. It should be remarked that, to match the new 𝒛𝑘+1 and ∇𝒛 ℒ(𝒛𝑘+1, 𝝀𝑘+1, 𝝁𝑘+1), a 

shifting procedure may have to be performed on the previous ones. 

2.2.4 Survey of Optimization Solvers 

In this subsection, some newton-type optimization solvers will be listed. All of these were 

considered to be implemented in Falcon NMPC. However, only IPOPT and qpDUNES have 

been applied as part of this thesis. 

Interior-Point 

IPOPT is a well-known NLP solver based on an interior-point method. It can solve problems of 

the form [56]: 

min
𝒛
   𝑓(𝒛) (objective function)

subject to    𝒈lb ≤ 𝒈(𝒛) ≤ 𝒈ub    (nonlinear constraints)

𝒛lb ≤   𝒛  ≤ 𝒛ub (upper/lower bounds)

 (2-47) 

This solver also allows to pass an exact Hessian of the problem, and for quadratic problems 

the Hessian can be fixed so that it is only evaluated once. IPOPT is the default solver for 

FALCON.m, and was therefore the solver that was employed the most during this project.  

FORCES PRO is another nonlinear solver based on an interior-point method. This solver is 

tailored for nonlinear optimal control problems with horizon length 𝑁 : 

min
𝒛
   ∑  

𝑁−1

𝑖=0

𝑓𝑖 (𝒛𝑖  , 𝒑𝑖) (nonlinear separable objective)

subject to    𝒛0 = 𝒛init (initial equality)

𝒛𝑖+1 = 𝒇𝑑(𝒛𝑖  , 𝒑𝑖) ∀ 𝑖 = 0,… ,𝑁 − 1     (inter-stage equality)

𝒛𝑁 = 𝒛final (final equality)

   𝒛𝑙𝑏 ≤     𝒛   ≤ 𝒛𝑢𝑏 (upper/lower bounds)

𝒈𝑙𝑏 ≤ 𝒈(𝒛, 𝒑) ≤ 𝒈𝑢𝑏 (nonlinear constraints)

 (2-48) 

where 𝒛init and 𝒛final are respectively the initial and final boundary conditions for the states 

and the controls and 𝒑𝑘 are parameters that can be changed in real-time. Furthermore, 
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FORCES PRO offers the possibility to compile and download the code to an embedded 

platform. 

Sequential Quadratic Programming 

SNOPT is an SQP solver, in which the QP iterations use an active-set approach. The nonlinear 

problem may have the form [57]: 

min
𝒛
   𝑓(𝒛) (nonlinear objective)

subject to    𝒈lb ≤ 𝒈(𝒛) ≤ 𝒈ub    (nonlinear constraints)

𝒂lb ≤  𝑨 𝒛 ≤ 𝒂ub (linear constraints)

𝒛lb ≤   𝒛  ≤ 𝒛ub (upper/lower bounds)

 (2-49) 

This solver is also interfaced with FALCON.m, however it has not been implemented to solve 

the NMPC optimal control problem during this project. 

Quadratic Programming 

qpOASES is an active-set QP solver, that can use known information about the solutions of 

previous problems to speed-up the solution of the current problem [40]. This parametric active-

set method is of special interest for Model Predictive Control applications. qpOASES takes 

problems of the form: 

min
𝒛
   
1

2
 𝒛T H 𝒛 + 𝒇T𝐳 (quadratic objective)

subject to    𝒂lb ≤  𝑨 𝒛 ≤ 𝒂ub    (linear constraints)
 (2-50) 

Although this solver can be provided with sparse matrices, it works best for dense (non-sparse) 

problems. Therefore, the authors suggest to use condensing (see next subsection) as a 

preprocessing step, in the case of having an Optimal Control Problem. 

qpDUNES is a QP solver especially designed for MPC problems of the form [58]: 

min
𝒛
   ∑  

𝑁−1

𝑖=0

( 
1

2
𝒛𝑖
T H𝑖  𝒛𝑖 + 𝒇𝑖

T 𝒛𝑖  )     (quadratic separable objective)

subject to   𝒛𝑖+1 = 𝑪𝑖  𝒛𝑖 + 𝒄𝑖            ∀ 𝑖 = 0,… , 𝑁 − 1  (linear inter-stage equality)

𝒅𝑖,lb ≤ 𝑫𝑖  𝒛 ≤ 𝒅𝑖,ub    ∀ 𝑖 = 0,… ,𝑁 − 1 (linear intra-stage constraints)

 (2-51) 

This solver can only handle strictly convex problems, therefore all H𝑖 must be positive definite 

(H𝑖 ≻ 0   ∀ 𝑖 = 0,… ,𝑁). Since the Lagrange function of an OCP is separable (see equation 

(2-38)), qpDUNES works by solving the dual problem: 

max
𝝀
 ∑ 𝑓𝑖

∗(𝜆)

𝑁−1

𝑖=0

where    𝑓𝑖
∗(𝜆)   ≔ min

𝒛𝑖
     
1

2
𝒛𝑖
T H𝑖  𝒛𝑖 + (𝒇𝑖

T + [
𝝀𝑖
𝝀𝑖+1

]
T

[
−𝑬𝑖
𝑪𝑖
]) 𝒛𝑖 + 𝝀𝑖+1

T  𝒄𝑖

subject to   𝒅𝑖,lb ≤ 𝑫𝑖  𝒛 ≤ 𝒅𝑖,ub

with 𝑬𝑖 = [𝑰    𝟎]

 (2-52) 
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The advantage of this algorithm is that the subproblems 𝑓𝑖
∗(𝜆) are independent and can 

therefore be solved in parallel, using for example qpOASES. It can be remarked that the blocks 

of two or more timesteps 𝑖 could be combined into one, thus varying the number of 

subproblems [59]. qpDUNES was implemented and tested in this project, see section 0. 

2.2.5 Condensing 

Condensing is a preprocessing procedure performed on an Optimal Control Problem to reduce 

the size of the optimization. This method is only introduced briefly, since it was not 

implemented as part of this thesis. 

If one regards a discretized OCP as in (2-1) and linearizes it for a minor iteration of an SQP 

method, one gets equality constraints of the form: 

Δ𝒙𝑖+1 = 𝒂𝑖 + 𝑨𝑖Δ𝒙𝑖 + 𝑩𝑖Δ𝒖𝑖 (2-53) 

The idea is to eliminate all states Δ𝒙𝑖 from the optimization variables, as they are known 

through forward integration using the equation above (provided that the start Δ𝒙0 and the 

controls Δ𝒖𝑖 are known). Hence only the controls are left as optimization variables and the KKT 

matrix becomes dense (lower triangular). The Lagrange multipliers corresponding to the 

constraints (2-53) that are eliminated from the problem can also be obtained in a 

postprocessing step. This method is particularly beneficial if the number of states is large 

compared to the number of controls. Efficient algorithms for condensing can be found in [60]. 

It is important to remark that using a condensing method differs from applying a single shooting 

method in the OCP, since more information is taken into account in the optimization. 

2.3 Parametric Nonlinear Optimization 

Parametric optimization is a field of nonlinear optimization that deals with evaluating the impact 

that a small perturbation in a parameter 𝑝 has on the optimal solution 𝒛∗ and the corresponding 

value of the objective function 𝐽(𝒛∗). The methods presented here will be used later to manage 

the discrepancies between the predicted initial state 𝒙0 (after shifting) and the measured (or 

estimated) current state  𝒙̅𝑛 . 

A generic parametric NLP has the form: 

min
𝒛
   𝑓(𝒛, 𝑝)

subject to    𝒈(𝒛, 𝑝) = 𝟎

𝒉(𝒛, 𝑝) ≤ 𝟎

 (2-54) 

where 𝑝 is a fixed parameter in the optimization. 

2.3.1 Sensitivity Analysis 

Post-optimal sensitivity analysis or parameter sensitivity analysis was first introduced by 

Fiacco [61], who uses the implicit function theorem to show the differentiability of the solution 

𝒛∗ of a nonlinear optimization problem. This principle was then applied to optimal control theory 

by Büskens [62]. The main idea of sensitivity analysis is to express the influence that a 
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perturbation of a parameter 𝑝  has on the optimal optimization variables 𝒛 and the Lagrange 

multipliers 𝝀 and 𝝁 by a Taylor series expansion: 

𝒛(𝑝) ≈ 𝒛0 +
𝜕𝒛

𝜕𝑝
(𝑝0) ∙ (𝑝 − 𝑝0)

𝝀(𝑝) ≈ 𝝀0 +
𝜕𝝀

𝜕𝑝
(𝑝0) ∙ (𝑝 − 𝑝0)

𝝁(𝑝) ≈ 𝝁0 +
𝜕𝝁

𝜕𝑝
(𝑝0) ∙ (𝑝 − 𝑝0)

 (2-55) 

In the equations above, 𝑝0 denotes the unperturbed parameter, also called the reference or 

nominal parameter. Furthermore,  𝒛0 = 𝒛
∗(𝑝0), 𝝀0 = 𝝀

∗(𝑝0) and 𝝁0 = 𝝁
∗(𝑝0) represent the 

optimal solution vector and the Lagrange multipliers for the unperturbed parameter. The partial 

derivatives 
𝜕𝒛

𝜕𝑝
(𝑝0), 

𝜕𝝀

𝜕𝑝
(𝑝0) and 

𝜕𝝁

𝜕𝑝
(𝑝0) can be calculated using the explicit formulae for the 

sensitivity differentials as proposed by Fiacco: 

[
 
 
 
 
 
∇𝒛𝒛
2  ℒ ∇𝒛𝒈 ∇𝒛𝒉a

∇𝒛𝒈
T 𝟎 𝟎

∇𝒛𝒉a
T 𝟎 𝟎 ]

 
 
 
 
 

 

[
 
 
 
 
 
 

 

𝜕𝒛

𝜕𝑝

𝜕𝝀

𝜕𝑝

𝜕𝝁a
𝜕𝑝

 

]
 
 
 
 
 
 

+
𝜕

𝜕𝑝

[
 
 
 
 
 
∇𝒛 ℒ

𝒈

𝒉a ]
 
 
 
 
 

= 𝟎 (2-56) 

where the functions ∇𝒛𝒛
2  ℒ, ∇𝒛𝒈, ∇𝒛𝒉a, ∇𝒛 ℒ, 𝒈 and 𝒉a are evaluated at 𝒛0, 𝝀0, 𝝁0. This 

expression is derived from the necessary conditions for optimality (2-24). One can see that the 

left matrix is the KKT matrix of an SQP problem, thus computing the sensitivities of the problem 

is computationally cheap as this matrix is already constructed during the optimization. 

This method is only applicable if all active inequality constraints (denoted here with 𝒉a) are 

strictly active, i.e. the corresponding Lagrange multipliers 𝝁a are greater than zero. 

Furthermore, the active set must stay the same for the new parameter. Thus, the Lagrange 

multiplier corresponding to the inactive inequality constraints must remain zero, that is: 

𝝁ã = 𝟎 (2-57) 

In [63], Büskens and Maurer present a method to predict the maximum and minimum values 

that the parameter 𝑝 can adopt without changing the active set. However, in NMPC the current 

state 𝒙̅0 is in general changing continuously. Therefore, one cannot assume that the optimal 

solution does not change the active set. This is where the predictor-corrector path-following 

methods introduced in the next subsection come into use. 

2.3.2 Predictor-Corrector Path-Following Methods 

Path-following is one important tool of parametric optimization, especially for real-time 

applications. The idea is that the path that a parameter 𝑝 makes, has a corresponding path in 

the solution space (𝒛∗, 𝝀∗, 𝝁∗). Thus, the task is to find and follow the parameter 𝑝 in the solution 

space. 
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By combining equations (2-55), (2-56) and (2-57) one arrives at the conditions [36]: 

[
 
 
 
 
∇𝒛𝒛
2  ℒ ∇𝒛𝒈 ∇𝒛𝒉a

∇𝒛𝒈
T 𝟎 𝟎

∇𝒛𝒉a
T 𝟎 𝟎 ]

 
 
 
 

 

[
 
 
 
 

 

Δ𝒛

Δ𝝀

Δ𝝁a

 

]
 
 
 
 

+
𝜕

𝜕𝑝

[
 
 
 
 
∇𝒛 ℒ

𝒈

𝒉a ]
 
 
 
 

(𝑝 − 𝑝̅) = 𝟎

Δ𝝁ã = 𝟎

 (2-58) 

where Δ𝒛 = 𝒛(𝑝) − 𝒛̅, Δ𝝀 = 𝝀(𝑝) − 𝝀̅, Δ𝝁a = 𝝁a(𝑝) − 𝝁̅a and Δ𝝁ã = 𝝁ã(𝑝) − 𝝁̅ã. Note that the 

index 0 has been replaced with a bar ( ⬚̅ ) to denote that these values are arbitrary and do not 

need to correspond to a converged solution.  

Furthermore, the solution with  𝑝̅ must satisfy the following equations (compare the KKT 

conditions (2-24)): 

[
 
 
 
 
∇𝒛𝒛
2  ℒ ∇𝒛𝒈 ∇𝒛𝒉a

∇𝒛𝒈
T 𝟎 𝟎

∇𝒛𝒉a
T 𝟎 𝟎 ]

 
 
 
 

 

[
 
 
 
 

 

0

𝝀̅

𝝁̅a

 

]
 
 
 
 

+

[
 
 
 
 
∇𝒛 𝑓

𝒈

𝒉a ]
 
 
 
 

= 𝟎

𝝁ã0 = 𝟎

 (2-59) 

Adding (2-58) and (2-59) together results in: 

[
 
 
 
 
∇𝒛𝒛
2  ℒ ∇𝒛𝒈 ∇𝒛𝒉a

∇𝒛𝒈
T 𝟎 𝟎

∇𝒛𝒉a
T 𝟎 𝟎 ]

 
 
 
 

 

[
 
 
 
 

 

Δ𝒛

𝝀(𝑝)

𝝁a(𝑝)

 

]
 
 
 
 

+

[
 
 
 
 
∇𝒛 𝑓

𝒈

𝒉a ]
 
 
 
 

+
𝜕

𝜕𝑝

[
 
 
 
 
∇𝒛 ℒ

𝒈

𝒉a ]
 
 
 
 

(𝑝 − 𝑝̅) = 𝟎

𝝁ã(𝑝) = 𝟎

 (2-60) 

One can observe that (2-60) are the KKT conditions corresponding to the quadratic problem 

min
Δ𝒛
   
1

2
Δ𝒛T H Δ𝒛 + ∇𝐳𝑓

T Δ𝒛 + (𝑝 − 𝑝̅)T ∇𝒛𝑝
2  ℒ Δ𝒛

subject to    𝒈 + ∇𝐳𝒈
T Δ𝒛 + ∇p𝒈

T (𝑝 − 𝑝̅) = 0

    𝒉 + ∇𝐳𝒉
T Δ𝒛 + ∇p𝒉

T (𝑝 − 𝑝̅) ≤ 0

 (2-61) 

where H = ∇𝒛𝒛
2  ℒ, ∇𝐳𝑓, ∇𝒛𝑝  ℒ, ∇𝒛𝒈, ∇𝒛𝒉, 𝒈 and 𝒉 are evaluated at  𝒛̅, 𝝀̅, 𝝁̅ and 𝑝̅. One can prove 

that the solution of this quadratic problem is a piecewise-linear approximation of the solution 

of the perturbed nonlinear problem [36]. This is depicted for an example in Figure 2-4. The 

grey lines show the exact solution in relation to 𝑝 and the dashed lines the linear approximation 

for 𝒛∗(𝑝̅) and 𝜇∗(𝑝̅). 

Also, one can see that for 𝑝 ≠ 𝑝̅ and (𝒛̅, 𝝀̅, 𝝁̅) = (𝒛∗, 𝝀∗, 𝝁∗) the QP delivers a linear prediction 

for the parameter 𝑝, as in the previous subsection. For 𝑝 = 𝑝̅ and (𝒛̅, 𝝀̅, 𝝁̅) ≠ (𝒛∗, 𝝀∗, 𝝁∗) then 

the QP performs a corrective Newton-step towards the solution of the nonlinear problem 

(𝒛∗, 𝝀∗, 𝝁∗) as in a regular SQP method. Hence, this QP is called a predictor-corrector method. 

In the equations above, the predictor part is marked in red and the corrector part in blue.  
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It can be remarked that these methods can be implemented in SQP and in interior-point 

frameworks. Since the interior-point methods smoothen the inequality constraints depending 

a parameter 𝜏 (see Interior-Point methods in section 2.2.2), then the performance of the 

predictor-corrector method depends strongly on 𝜏. This is presented in detail in [36] and [64]. 

 

Figure 2-4:  Visualization of predictor-corrector path-following methods [36].  

2.3.3 Parametric Embedding 

The idea of parametric embedding is to reformulate the parametric NLP (2-54), so that the 

parameter 𝑝 only enters linearly in the constraints. This is achieved by inserting a new 

optimization variable 𝜃: 

min
𝒛,𝜃

   𝑓(𝒛, 𝜃)

subject to    𝒈(𝒛, 𝜃) = 𝟎

𝒉(𝒛, 𝜃) ≤ 𝟎

𝑝 − 𝜃 = 0

 (2-62) 

This means that the functions H, ∇𝐳𝑓, ∇𝒛𝑝  ℒ, ∇𝒛𝒈, ∇𝒛𝒉, 𝒈 and 𝒉 in the predictor-corrector (2-61) 

are not evaluated using 𝑝̅ but using 𝜃. Therefore, 𝜃 is the “old parameter” with which the 

linearization for the quadratic problem (2-61) is done and 𝑝 is the “new parameter” with which 

the QP is solved [65]. Applied to the path-following method (2-61), this results in: 
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min
Δ𝒛
   
1

2
Δ𝒛T H Δ𝒛 + ∇𝐳𝑓

T Δ𝒛 + ΔθT ∇𝒛𝑝
2  ℒ Δ𝒛

subject to    𝒈 + ∇𝐳𝒈
T Δ𝒛 + ∇p𝒈

T Δθ = 0

    𝒉 + ∇𝐳𝒉
T Δ𝒛 + ∇p𝒉

T Δθ ≤ 0

𝑝 − 𝜃 − Δ𝜃 = 0

 (2-63) 

It can be noted that the NMPC optimization problem (2-1) already has this form, taking the 

measured (or estimated) states 𝒙̅𝑛 as parameters. This is known as initial value embedding 

and is extremely beneficial in the Real-Time Iteration scheme, as it allows the algorithm to be 

divided into two phases. 

2.4 The Real-Time Iteration Scheme 

The Real-Time Iteration scheme, also known as RTI, is the Nonlinear Model Predictive Control 

algorithm that was implemented for this thesis. It was first introduced by Diehl et al. in [37]. 

Since then, this algorithm has become “one of the most successful and largely used 

approaches to fast NMPC” [33]. 

The basic idea of the algorithm is to solve the optimal control problem (2-1) with a path-

following SQP framework in which only one quadratic problem per sampling time is solved. 

There is no line-search, thus a full Newton-step is taken between the SQP iterations. The 

sampling time must therefore be chosen so that all the necessary calculations for constructing 

the QP problem and solving the QP problem can be done during one sampling time. This 

sampling time must also be considered for the discretization of the Optimal Control Problem.  

The path-following method (2-63) can thus be applied for the OCP (2-1) with parametric 

embedding of the initial states 𝒙̅, resulting in a QP problem of the form: 

min
Δ𝒛
   
1

2
Δ𝒛T H Δ𝒛 + ∇𝐳𝑓

T Δ𝒛

subject to    𝒈 + ∇𝐳𝒈
T Δ𝒛 = 0

    𝒉 + ∇𝐳𝒉
T Δ𝒛 ≤ 0

𝒙0 − 𝒙̅𝑛 = 𝟎

 (2-64) 

The initial value embedding of  𝒙̅𝑛 allows to divide the RTI scheme into two phases, a 

Preparation Phase, where the QP problem is constructed, and a Feedback Phase, where the 

QP is solved. Finally, the RTI algorithm has the form: 
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Algorithm 3:  Real-Time Iteration (RTI)  

Preparation Phase   (performed before 𝑡𝑛) 

Input:  previous NMPC solution, reference 𝒙ref 

Perform Shift as in section 2.1.3 to get initial guess (𝒙guess, 𝒖guess). 

Evaluate H, ∇𝐳𝑓, ∇𝒛𝒈, ∇𝒛𝒉, 𝒈 and 𝒉 using the initial guess 

Perform all possible computations (e.g. condensing, matrix factorizations)  

Build QP problem (2-64) omitting the equality constraints 𝒙0 − 𝒙̅𝑛 = 𝟎 

Output:  QP problem (2-64) 

 

Feedback Phase   (performed upon availability of  𝑥̅𝑛) 

Input:  QP problem from Preparation Phase 

Introduce the constraints 𝒙0 − 𝒙̅𝑛 = 𝟎 

Solve QP problem 

Apply full Newton-step (𝒙∗, 𝒖∗) ← (𝒙guess , 𝒖guess) + (Δ𝒙, Δ𝒖) 

Implement 𝝁(𝒙̅𝑛) = 𝒖0
∗  on the system’s actuators 

Output:  NMPC solution (𝒙∗, 𝒖∗) 

 

  

The reason for the separation in two phases is that the Feedback Phase is generally much 

shorter than the Preparation Phase. Depending on the application, the Feedback Phase can 

even be several orders of magnitude shorter than the Preparation Phase [36]. Therefore, in 

the Preparation Phase a guess is used for the calculation of all matrices necessary for the QP 

problem. The phase is taken from the previous prediction via shifting. Then the Feedback 

Phase is performed once the measurement of  𝑥̅𝑛 is available, thus ensuring that the time 

between receiving the measurement and implementing the solution on the actuators is kept as 

short as possible. This is depicted in Figure 2-5.  

 

Figure 2-5:  Preparation and Feedback phases of the RTI scheme [36] 

Analyses on the error bounds and closed-loop stability of the RTI scheme can be found in [38] 

and [66]. In [33], Gros et al. describe the algorithm in detail and present several remarks, 

examples and comparisons relevant for an implementation of the algorithm. 
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RTI for tracking 

As mentioned before, Nonlinear Model Predictive Control is usually employed for tracking 

applications, i.e. for following a reference trajectory. A commonly used objective function for 

this kind of applications is  

min
𝒙,𝒖

∑
1

2
[ 
Δ𝒙𝑖
Δ𝒖𝑖

 ]
T

[ 
𝑸 𝑺

𝑺𝑇 𝑹
 ] [ 

Δ𝒙𝑖
Δ𝒖𝑖

 ]
⏟                

𝐿(𝒙𝑖,𝒖𝑖)

𝑁−1

𝑖=0

+
1

2
 Δ𝒙𝑁

T  𝑷 Δ𝒙𝑁⏟        
𝐸(𝒙𝑁)

 (2-65) 

with Δ𝒙𝑖 = 𝒙𝑖 − 𝒙𝑖
ref and Δ𝒖𝑖 = 𝒖𝑖 − 𝒖𝑖

ref, where 𝒙ref is the reference for the states and 𝒖ref is 

the reference for the controls. The matrices 𝑸, 𝑹, 𝑺 and 𝑷 become tuning parameters for the 

algorithm. 

One can observe that the objective function has the same form as in (2-42) for the Gauss-

Newton Hessian approximation. Therefore, a Gauss-Newton Hessian approximation is 

normally used with the RTI scheme, which significantly reduces the computational efforts 

compared to an exact Hessian algorithm. For the objective function (2-65) the Gauss-Newton 

Hessian approximation becomes constant and therefore, it must not be computed: 

B𝑘 =

[
 
 
 
 
 

 

𝑸 𝑺

𝑺𝑇 𝑹
   

 ⋱   

  
𝑸 𝑺

𝑺𝑇 𝑹
 

   𝑷

 

]
 
 
 
 
 

 (2-66) 

In the tests performed in this thesis, no reference for the controls was considered and the 𝑺 

matrix was set to zero. Therefore, the objective function was reduced to: 

min
𝒙,𝒖

   ∑
1

2
 ((𝒙𝑖 − 𝒙𝑖

ref)
T
 𝑸 (𝒙𝑖 − 𝒙𝑖

ref) + 𝒖𝑖
T 𝑹 𝒖𝑖)⏟                          

𝐿(𝒙𝑖,𝒖𝑖)

𝑁−1

𝑖=0

+
1

2
 (𝒙𝑁 − 𝒙𝑁

ref)
T
𝑷 (𝒙𝑁 − 𝒙𝑁

ref)
⏟                  

𝐸(𝒙𝑁)

 (2-67) 

It is suggested to pre-compute a feasible reference trajectory 𝒙ref, so that the NMPC only has 

to reject perturbations. However, it is also possible to let the controller plan the trajectory. In 

this case, it is beneficial to perform a procedure similar as the shifting in section 2.1.3, and 

slowly introduce the reference at the end of the prediction horizon. This allows the RTI scheme 

to converge before it needs to start moving [33]. 

Linear MPC vs. RTI 

A Linear Model Predictive Control has the following optimal control problem [33]: 

min
𝒙,𝒖

   ∑
1

2
 [ 
Δ𝒙𝑖
Δ𝒖𝑖

 ]
T

[ 
𝑸 𝑺

𝑺𝑇 𝑹
 ] [ 

Δ𝒙𝑖
Δ𝒖𝑖

 ]

𝑁−1

𝑖=0

subject to   Δ𝒙0 = 𝒙̅𝑛 − 𝒙0
ref

Δ𝒙𝑖+1 = 𝑨𝑖Δ𝒙𝑖 + 𝑩𝑖Δ𝒖𝑖 + 𝒂𝑖 𝑖 = 0,… ,𝑁 − 1

𝑪𝑖Δ𝒙𝑖 +𝑫𝑖Δ𝒖𝑖 + 𝒉𝑖 ≤ 0 𝑖 = 0,… ,𝑁 − 1

 (2-68) 
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In this case, the matrices 𝑨𝑖, 𝑩𝑖, 𝑪𝑖 and 𝑫𝑖, as well as the vectors 𝒂𝑖 and 𝒉𝑖 are calculated a 

priori offline and are therefore constant. These matrices are usually obtained from the 

linearization about the reference trajectory (𝒙ref, 𝒖ref). The QP problem (2-68) is then solved 

at every sampling time. 

The Real-Time Iteration scheme can be seen as an extension of Linear MPC, where the only 

difference is that these matrices are calculated online. The linearization is done at the guess 

provided by the last prediction instead of at the reference trajectory. However, one can observe 

that, if a Gauss-Newton Hessian approximation is used and the system’s equations are 

evaluated at (𝒙ref, 𝒖ref), then the RTI scheme delivers the same control law as a linear MPC. 

RTI for economic NMPC 

An economic NMPC application is an application for which the cost function of the OCP does 

not have the form (2-65). Therefore, the objective in economic NMPC is not necessarily to 

minimize the error between a reference trajectory and the actual state of system, but it can be 

to minimize any value concerning the system. This cost function can thus be represented by 

the objective function of problem (2-1): 

min
𝒙,𝒖

   ∑ 𝐿(𝒙𝑖 , 𝒖𝑖)

𝑁−1

𝑖=0

+ 𝐸(𝒙𝑁)   (2-69) 

where 𝐿(𝒙𝑖 , 𝒖𝑖) and 𝐸(𝒙𝑁) can be any nonlinear function of the states and the controls [28]. 

Note however that the objective function is still divided into a stage cost and a terminal cost. 

For an objective function of this form, it might not be possible to construct a Gauss-Newton 

approximation of the Hessian of the Lagrange function. Even if one can be constructed, it might 

not be a constant matrix. Therefore, when using an economic objective function, one must 

generally calculate a Hessian at each sampling time. 

For a time-optimal driving problem, Verschueren et al. [31] suggest using an exact Hessian 

calculation with the project regularization method as presented in Regularization methods in 

section 2.2.3. In [67], the authors provide a method to formulate a tracking NMPC that is locally 

equivalent to the economic NMPC. This method allows to apply methods and analyses known 

for tracking NMPC. 

In this thesis, the OCPs for the point mass model in section 3.4 and for the racecar model in 

chapter 4 use an economic cost function. Several experiments were performed with these 

models using different Hessian approximations. The results of these tests can be seen in the 

corresponding sections. 
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3 Preliminary Tests 

This chapter presents a series of simulative experiments that were used during the 

development of the Nonlinear Model Predictive Control Toolbox, Falcon NMPC. Each of the 

models increases in complexity in comparison to the previous one, and each of the 

experiments tests a different part of the NMPC algorithm. All simulation models were built in 

Simscape, the MATLAB toolbox for physical systems simulation. At the end of the chapter, 

section 3.5 presents a summary of the different experiments and their results, which lead to 

the NMPC setup used for the racecar model in the next chapter. 

3.1 1-DoF Cart 

3.1.1 Modelling 

Simulation model 

The first model that was used to test the NMPC in this thesis is simply a mass 𝑚𝐶 = 0.1 𝑘𝑔 

with one translational degree of freedom. In Simscape this is represented with a prismatic joint 

between the mass and the world frame. The gravitational field 𝑔 = 9.81 𝑚/𝑠2 of the model is 

perpendicular to the joint and has therefore no impact on the movement of the mass. 

Additionally, a force 𝐹 = 𝑓(𝜇) ∙ 10 𝑁 acts on the mass, which depends on a function 𝑓(𝜇) of 

the control value 𝜇. Figure 3-1 shows a schematic of this model. 

𝑔 𝑠 

𝐹 

𝑚𝐶  
 

Figure 3-1:  1-DoF Cart – Schematic 

NMPC model 

The equations of motion for the model above are  

𝑠̇ = 𝑣

𝑣̇ =
𝑓(𝜇) ∙ 10 𝑁

𝑚𝐶

 (3-1) 

where 𝑠 represents the mass’ position and 𝑣 its velocity. The control 𝜇 is restricted to values 

between −1 and 1. The function 𝑓(𝜇) will be describe below. 

3.1.2 Results 

In the tests with this model a Tracking NMPC was considered, for which the objective function 

(2-67) was used. The 𝑸, 𝑹 and 𝑷 matrices were set to: 

𝑸 = 𝑷 = [
10 0
0 0.01

]

𝑹 = 0.1

 (3-2) 
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The sampling time was set to 𝑇𝑠 = 0.05 𝑠 and the horizon length to 𝑇𝐻 = 2 𝑠. For these tests, 

the conventional RTI algorithm with Gauss-Newton Hessian approximation was used.  

The reference trajectory for all tests was a pulsating function for the position 𝑠 and constant 

zero for the velocity 𝑣. This reference was inserted at the end of the prediction horizon, as 

suggested in the paragraph RTI for tracking in section 2.4. 

Trapezoidal discretization with vs. without approach (2-20) 

Here, the function 𝑓(𝜇) was set to 

𝑓(𝜇) = 𝜇 (3-3) 

In the first test of the NMPC algorithm, a trapezoidal discretization method was used, where 

instead of applying the control 𝜇 using equation (2-20), it was set to the first value in the 

prediction horizon 𝜇 = 𝒖0
∗ = 𝜇0

∗ . The results of this test are shown in Figure 3-2. 

As one can see, the actual position 𝑠 shows an overshoot that is not present in the prediction. 

The reason for this is that with the trapezoidal discretization, the NMPC does not take a Zero 

Order Hold (ZOH) of the control 𝜇 into account. At an arbitrary time-point 𝑡𝑛+1, the NMPC 

predicts a velocity 

𝑣𝑛+1 = 𝑣𝑛 +
𝑇𝑠
2
∙ (
𝜇𝑛 ∙ 10 𝑁

𝑚𝐶
+
𝜇𝑛+1 ∙ 10 𝑁

𝑚𝐶
) (3-4) 

as can be seen from equation (2-19). However, taking into account the ZOH of the control 

outputted by the controller, the actual velocity can be calculated analytically by 
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Figure 3-2:  1-DoF Cart – Trapezoidal discretization without approach (2-20) 
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𝑣(𝑡𝑛+1) = 𝑣(𝑡𝑛) + ∫
𝜇𝑛 ∙ 10 𝑁

𝑚𝐶
𝜕𝜏

𝑡𝑛+1

𝑡𝑛

= 𝑣(𝑡𝑛) +
𝜇𝑛 ∙ 10 𝑁

𝑚𝐶
∙ (𝑡𝑛+1 − 𝑡𝑛)

= 𝑣(𝑡𝑛) +
𝜇𝑛 ∙ 10 𝑁

𝑚𝐶
∙ 𝑇𝑠 

(3-5) 

Assuming that at the time point 𝑡𝑛 the predicted velocity 𝑣𝑛 equals the actual velocity 𝑣(𝑡𝑛), 

𝑣𝑛+1 and 𝑣(𝑡𝑛+1) are in general not equal. However, if the approach (2-20) was used, one can 

see that 𝑣𝑛+1 and 𝑣(𝑡𝑛+1) would be identical: 

𝑣(𝑡𝑛+1) = 𝑣(𝑡𝑛) + ∫
1
2⁄ ∙ (𝜇𝑛 + 𝜇𝑛+1) ∙ 10 𝑁

𝑚𝐶
𝜕𝜏

𝑡𝑛+1

𝑡𝑛

= 𝑣(𝑡𝑛) +
1

2
∙
(𝜇𝑛 + 𝜇𝑛+1) ∙ 10 𝑁

𝑚𝐶
∙ 𝑇𝑠 (3-6) 

Since 𝜇𝑛+1 is outputted “prematurely”, it is added as constraint to the OCP in the next timestep, 

as described in the Trapezoidal paragraph in section 2.1.2. The results applying this method 

are shown in Figure 3-3. As one can see, this method alleviates the problem with the 

overshoots and the actual trajectory follows the predicted one.  Therefore, this method was 

implemented as default for Trapezoidal discretization in Falcon NMPC. However, as it will be 

shown next, this method does not work as well in case that the input enters nonlinearly into 

the system. 

Trapezoidal vs. ERK4 discretization 

For this test, the function 𝑓(𝜇) was set to 

𝑓(𝜇) = 𝜇 + 0.5 ∙ sin (2𝜋 ∙ 𝜇) (3-7) 

so that the system has a strongly nonlinear dependence on the input 𝜇. Figure 3-4 shows the 

output of this function for 𝜇 ∈ [−1; 1]. 
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Figure 3-3:  1-DoF Cart – Trapezoidal discretization with approach (2-20) 
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As can be seen in the figure below, the NMPC with Trapezoidal discretization does no longer 

manage to control the system for this setup. The reason for this is again that the NMPC does 

not deliver an accurate prediction because the ZOH of the input is not considered, not even 

with the approach used before (Figure 3-5). The results with equation (2-20) are similar to the 

ones applying a Zero-Order Hold, they are however not depicted here.  

 

Figure 3-5:  1-DoF Cart – Trapezoidal discretization for nonlinear input function 

Nevertheless, explicit Runge-Kutta methods do assume a Zero Order Hold of the control 

values. Therefore, running this same experiment with an explicit 4th-order Runge-Kutta (ERK4) 

method results in the plots shown in Figure 3-6. It can be appreciated that the actual states 

follow the prediction exactly and the performance of the algorithm is similar to that in Figure 

3-3. It can be remarked that using a Forward Euler method delivers comparable results, 

although they are not presented here. 
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Figure 3-4:  1-DoF Cart – Nonlinear function 𝒇(𝝁) 
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Model mismatch 

In the previous experiments the model used for the NMPC controller matched the simulation 

model exactly. To test the performance of the controller in case that the models have 

discrepancies, the simulation model was modified as follows: 

• The mass was increased to 𝑚modif = 0.12 𝑘𝑔 

• The prismatic joint was inclined 10°, so that the gravitational field influences the mass 

• A damping of 𝑘𝑑 = 1
𝑁
𝑚
𝑠⁄
 was introduced to the prismatic joint. 

These changes are summarized in blue in the following schematic: 

10

𝑔 𝑠 
𝐹 𝑚modif  

10° 𝑘𝑑  

 

Figure 3-7:  1-DoF Cart – Schematic with model mismatch 

In this model, the nonlinear function (3-7) was kept for the control values. Furthermore, an 

ERK4 discretization method was used. Figure 3-8 shows the results of this test. In this case, 

the predicted trajectory cannot be followed exactly, as seen clearly in the velocity plot. 

Nevertheless, the NMPC manages to control the system sufficiently well. 

It may be remarked that, in the case that there is a model mismatch, a stationary control 

deviation may be found. In this example, a small control deviation is given due to the gravity 

acting on the mass. This control deviation minimizes the objective function, which is dependent 
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Figure 3-6:  1-DoF Cart – ERK4 discretization for nonlinear input function 
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on the deviation (𝒙𝑖 − 𝒙𝑖
ref) and on the control values 𝒖𝑖. Therefore, a way to reduce this 

deviation is to make the values of 𝑹 smaller. However, this can also affect the transient 

behavior of the system. Another method would be to add an integral controller on top of the 

NMPC. In the NMPC, this I-controller would be modelled as a state so that it can be considered 

via initial value embedding. 

3.2 Inverted Pendulum  

3.2.1 Modelling 

Simulation model 

 Here, a typical system used in control theory, an inverted pendulum on a cart is presented. In 

Simscape, the 1-DoF cart of the last section was extended by another mass 𝑚𝑃 = 0.1 𝑘𝑔 

connected to the cart with a revolute joint separated by a distance of 𝑙 = 0.5 𝑚. The schematic 

is shown below. In this case, the force 𝐹 is applied directly by the controller. 
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Figure 3-8:  1-DoF Cart – ERK4 discretization with model mismatch 
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𝑔 𝑠 

𝐹 

𝑚𝐶  

𝑚𝑃  

𝜃 𝑙 

 

Figure 3-9:  Inverted pendulum – Schematic 

NMPC model 

The equations of motion for this system can be derived using Lagrangian equations [68]. This 

method allows to formulate the equations of motion based on a set of independent generalized 

coordinates 𝒒 , in this case the displacement 𝑠 and the angle 𝜃. First, one calculates the total 

kinetic energy 𝑇 and the total potential energy 𝑉 of the system: 

𝑇 =
1

2
𝑚𝐶 𝑠̇

2 +
1

2
𝑚𝑃  ((

𝑑

𝑑𝑡
(𝑠 + 𝑙 sin𝜃))

2

+ (
𝑑

𝑑𝑡
(−𝑙 cos 𝜃))

2

)

=
1

2
(𝑚𝐶 +𝑚𝑃) 𝑠̇

2 +𝑚𝑃𝑙𝑠̇𝜃̇ cos 𝜃 +
1

2
𝑚𝑃𝑙

2𝜃̇2

𝑉 = 𝑚𝑃𝑔𝑙 cos 𝜃

 (3-8) 

Then the equations of motion are given by 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝒒̇
) −

𝜕𝑇

𝜕𝒒
+
𝜕𝑉

𝜕𝒒
− 𝑸𝑛𝑐 = 𝟎 (3-9) 

where the non-conservative forces and torques are considered by 

𝑸𝑛𝑐 =∑
𝜕𝒓𝑗1
𝜕𝒒

T

𝑭𝑗1
𝑗1

+∑
𝜕𝝎

𝜕𝒒̇

T

𝑴𝑗2
𝑗2

 (3-10) 

with the force 𝑭𝑗1 acting on the point 𝒓𝑗1 and the torque 𝑴𝑗2  acts on a body with the angular 

velocity 𝝎. In planar coordinates, the position where the force 𝐹 acts can be represented as 

𝒓𝐹 = [𝑠 0]T and the vector of the force is 𝑭 = [𝐹 0]T. Hence, using the Lagrangian 

equations, one gets: 

(𝑚𝐶 +𝑚𝑃)𝑠̈ + 𝑚𝑃𝑙𝜃̈ cos 𝜃 − 𝑚𝑃𝑙𝜃̇
2 sin 𝜃 = 𝐹

𝑚𝑃𝑙𝑠̈ cos 𝜃 − 𝑚𝑃𝑙𝑠̇𝜃̇ sin 𝜃 + 𝑚𝑃𝑙
2𝜃̈ + 𝑚𝑃𝑙𝑠̇𝜃̇ sin𝜃 +𝑚𝑃𝑔𝑙 sin 𝜃 = 0

 (3-11) 
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Solving these equations for 𝑠̈ and 𝜃̈ result in the equations of motion: 

𝑠̈ =
𝑚𝑃𝑙𝜃̇

2 sin 𝜃 +𝑚𝑃𝑔 sin𝜃 cos 𝜃 + 𝐹

𝑚𝐶 +𝑚𝑃 sin
2 𝜃

𝜃̈ = −
𝑚𝑃𝑙𝜃̇

2 sin 𝜃 cos 𝜃 + (𝑚𝐶 +𝑚𝑃)𝑔 sin𝜃 + 𝐹 cos𝜃

𝑚𝐶𝑙 + 𝑚𝑃𝑙 sin
2 𝜃

 (3-12) 

The state vector of the system is thus 𝒙 = [𝑠 𝑠̇ 𝜃 𝜃̇]
T. 

3.2.2 Results 

The tests with this model also concerned a tracking application with the objective function 

(2-67). The 𝑸, 𝑹 and 𝑷 matrices were set to: 

𝑸 = 𝑷 = [

10 0 0 0
0 1 0 0
0 0 10 0
0 0 0 1

]

𝑹 = 0.01

 (3-13) 

The sampling time was set to 𝑇𝑠 = 0.05 𝑠 and the horizon length to 𝑇𝐻 = 2 𝑠. ERK4 was 

employed as discretization method. In most of the tests, the conventional RTI algorithm with 

Gauss-Newton Hessian approximation was used. In the last experiment the Gauss-Newton 

Hessian approximation is compared to a BFGS and an exact Hessian algorithm. 

The reference trajectory concerns a swing-up of the pendulum followed by a step for the 

position 𝑠, and then a swing-down of the pendulum staying on the same spot. This reference 

was inserted at the end of the prediction horizon, as for the previous simulation. 

RTI vs. Converged Full OCP 

This test regarded the optimality that the RTI algorithm reaches compared to solving the full 

nonlinear OCP till convergence at every sampling time. In Falcon NMPC, one can solve the 
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Figure 3-10:  Inverted pendulum – RTI vs. converged full problem, optimization time 
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nonlinear OCP using the set_solveFullProblem method (see Appendix A). In both cases IPOPT 

was used as the optimization solver. 

The Real-Time Iteration scheme linearizes the defect constraints at every sampling time. As 

one can appreciate form the equations of motion (3-12), these constraints are strongly 

nonlinear. However, the RTI algorithm performs just as well as solving the full OCP, see Figure 

3-11. Furthermore, the quadratic problems can be solved in less than 0.01 𝑠, whereas the full 

nonlinear problem may take up to 1.06 𝑠 to get solved, see Figure 3-10.  

It may be remarked that for solving the full OCP, the exact hessian was used (this is set when 

creating the FALCON.m problem), but solving with the default BFGS Hessian of IPOPT creates 

Figure 3-11:  Inverted pendulum – RTI vs. converged full OCP, states 
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only sighlty worse results. For the full problem all constraints, the objective and the Hessian 

must be evaluated at every iteration of the optimization, which accounts for part of the time 

seen in Figure 3-10. On the other hand, for the RTI this is performed in the Preparation Phase. 

One can also see that, for the full OCP case, the planning of the swing-up and swing-down of 

the pendulum takes more computation time than the parts where the pendulum only has to be 

stabilized. However, solving the QP problems in the RTI algorithm always takes approximately 

the same computation time. 

Gros et al. also present a similar test in [33] with comparable results. In this publication, other 

experiments can be found as well, for example, a variation of the sampling time, a variation of 

the horizon length, etc. 

Infeasible and non-stationary setpoints 

Here, the behavior of the RTI controller was tested for the case that non-stationary and 

infeasible setpoints are provided as reference. To test this, two constraints were added to the 

problem: 

• The state 𝑠 must be between −1 𝑚 and 1 𝑚 

• The horizontal position of the tip of the pendulum 𝑥tip = 𝑠 + 2𝑙 sin𝜃 must be greater 

than or equal to zero (𝑥𝑡𝑖𝑝 ≥ 0). This is a nonlinear path constraint 

On top of this, for the swing-up of the pendulum, the reference for 𝜃 was set to 4 instead of 𝜋, 

so that this reference gives a non-stationary point. Also, the reference for 𝑠 was set to 1.5 𝑚 

which is clearly infeasible for the first constraint described above. The results of this test can 

be appreciated in Figure 3-12. 

In these plots one can see that: 

• 𝑠 is always less than 1 𝑚, so that the first constraint is always satisfied, although the 

reference is greater 

• 𝜃 is kept positive until the cart has advanced to 𝑠 = 1 𝑚. This is done to satisfy the 

second constraint (compare to the swing-up in Figure 3-11) 

• after the swing-up, 𝜃 stays at a value close to 𝜋. Although at the end of the prediction 

horizon the controller tries to get closer to the reference, this is never applied. The 

reason for this is that the reference for 𝑠̇ and 𝜃̇, which are zero, keep the system in a 

stationary state. For a different choice of the 𝑸 and 𝑷 matrices, this might not be the 

case. 
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IPOPT vs. qpDUNES 

With this model, the other optimization solver implemented in this thesis, qpDUNES was also 

tested. During different tests, it was found that qpDUNES did not manage to solve the quadratic 

problems appropriately when other constraints than the defect constraints become part of the 

active-set. Therefore, for the tests presented here, the constraints described above were 

removed.  

Both solvers deliver the same results, not only for the trajectory planning for swing-ups, but 

also in the case of model mismatch or external perturbations (not depicted here). However, as 

one can see in Figure 3-13, the Feedback Phase, which is the phase in which the quadratic 

Figure 3-12:  Inverted pendulum – RTI for non-stationary and infeasible setpoints 
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problem is solved, is much shorter with qpDUNES than with IPOPT. The average calculation 

time with qpDUNES is, for the tests performed in this thesis, an order of magnitude smaller 

than that with IPOPT. The main difference between the two, apart from their internal 

algorithms, is that IPOPT is made for solving general nonlinear problems and thus, it interfaces 

with MATLAB in every iteration to get new values of the objective function, constraints and 

their gradients. On the other hand, qpDUNES is tailored for QP problems of the form (2-27) 

and therefore, all of the gradients are constant, so that qpDUNES only receives one set of 

values at the start of the Feedback Phase. 

Unfortunately, because of the issues described above, IPOPT was the solver that was used 

for the rest of this project. Nevertheless, as mentioned in the introduction, this project “only” 

delivers a module for rapid prototyping of NMPC algorithms that is only suitable for simulation. 

Therefore, the choice of using IPOPT instead of another solver does not constrain the scope 

of this thesis. 

External perturbation 

Next, it was tested how the RTI algorithm performed in the case of external perturbations. For 

this test, an external force of 0.5 𝑁 was exerted on the center of mass 𝑚𝑃, perpendicular to the 

rotational degree of freedom 𝜃, from second 4 until second 4.5 of the simulation. In Figure 

3-14, it can be observed that at second 4 the system reacts to the external force by moving 

the cart in positive 𝑠 direction, which was not taken into account in the prediction. This allows 

to keep the pendulum on top of the cart (𝜃 ≈ 𝜋) until the external force is removed. 
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Figure 3-13:  Inverted pendulum – IPOPT (left) vs. qpDUNES (right) 
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Gauss-Newton vs. BFGS vs. Exact Hessian 

It is known that the time-optimal objective function for the racecar problem in the next chapter 

is not a tracking application and thus the Gauss-Newton Hessian cannot be used for that 

problem. Therefore, the BFGS approximations and the regularization methods described in 

section 2.2.3 were implemented and tested with this model. For these tests, the discretization 

method was set to Forward Euler, since the exact Hessian has not been implemented for the 

ERK4. These tests were performed with the external perturbation described above.  

Figure 3-14:  Inverted pendulum – External perturbation 
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It was found that the blockwise calculation of the BFGS approximation does not work stably 

for this model. This is true for both of the methods that keep the Hessian positive definite (see 

section 2.2.3), both with and without shifting the Hessian blocks. This is also true if the 

Lagrange multipliers are set to zero, so that the second derivatives of the constraints are 

neglected in the calculation. 

Using the BFGS formula to calculate the whole Hessian, instead of blockwise, gives much 

better results. In this case, both the skipping method and the damping method for keeping the 

Hessian positive definite (see section 2.2.3) perform comparably well. It was found that 

performing a shift of the Hessian blocks is favorable, especially when the perturbation force 

acts on the system. Furthermore, as mentioned in section 2.2.3, the BFGS formula needs an 

initial matrix for the Hessian approximation. Providing a good guess for this matrix, for example 

the Gauss-Newton Hessian, improves the behavior of the closed-loop system significantly. 

The exact Hessian also shows good results for this path-following and stabilization application. 

It must be noted that IPOPT performs a convexification (regularization of the Hessian) 

internally, so it is not necessary to provide a positive definite Hessian. However, using the 

project regularization method presented in section 2.2.3, slightly reduces the timing in the 

Feedback Phase. The mirror regularization method, however, destabilizes the system when 

the external force acts on the system. It may be remarked that the Lagrange multipliers should 

be shifted, as mentioned in section 2.1.3. For this procedure, it was found beneficial to set the 

Lagrange multipliers corresponding to the last defects to zero. 

The figures in the next page depict the values in the Hessian for different methods during the 

swing-up (second 2) and during the perturbation (second 4.5). The color and the size of the 

dots represent the absolute value of the element in the matrix. These figures only show the 

values for the first three stages. 

One can observe that the (constant) Gauss-Newton Hessian approximation differs from the 

others. This is because the Lagrange multipliers adopt values unequal to 0 during dynamic 

events, ensuring that the defects constraints are satisfied. In Figure 3-17, all the values in the 

diagonal have almost the same value. Especially the elements that correspond to the control 

values, for example (5,5), are as big as the other values in the diagonal, which is not the case 

for the Gauss-Newton Hessian. This makes the system become sluggish and the BFGS 

approximation never converges to the exact Hessian. Initializing the BGFS algorithm with the 

Gauss-Newton Hessian improves the behavior of the system and the BFGS Hessian 

converges to the exact Hessian when the system is stationary. In Figure 3-19, one can see 

that the exact Hessian gets very big values during the external perturbation. This is because 

the Lagrange multipliers become larger when the system does not follow the prediction. For 

the BFGS Hessian, this is not the case, as it would take the algorithm more iterations to 

converge to the exact Hessian. 
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Figure 3-15:  Inverted pendulum – Gauss-Newton 
Hessian (constant matrix) 
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Figure 3-16:  Inverted pendulum – Exact Hessian 
with 𝐩𝐫𝐨𝐣𝐞𝐜𝐭 regularization (at swing-up) 

    10 1 1 

 

 

 

 

10

1 

1 

0

1

 

 

 

 

Figure 3-17:  Inverted pendulum – BFGS Hessian 
with damping approach initialized with identity 

matrix (at swing-up) 
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Figure 3-18:  Inverted pendulum – BFGS Hessian 
with damping approach initialized with 

Gauss-Newton approximation (at swing-up) 

Figure 3-19:  Inverted pendulum – Exact Hessian 
with project regularization (at perturbation)             
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Figure 3-20:  Inverted pendulum – BFGS Hessian 
with damping approach initialized with Gauss 

Newton approximation (at perturbation) 
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3.3 Double Inverted Pendulum  

3.3.1 Modelling 

Simulation model 

The inverted pendulum of the previous section was then extended by a second pendulum with 

the mass 𝑚𝑃2 = 0.1 𝑘𝑔. In Simscape, this second mass is mounted with another revolute joint 

which is at a distance 𝑙 from 𝑚𝑃 and from 𝑚𝑃2. The figure below displays the schematic of this 

model. 

𝑔 𝑠 

𝐹 

𝑚𝐶  

𝑚𝑃  
𝜃 𝑙 

𝑙 
𝑙 

𝑚𝑃2 

 

Figure 3-21: Double inverted pendulum – Schematic 

NMPC model 

The equations of motion of the system in Figure 3-21 can also be calculated analytically [69], 

however they are much more complex than the ones in the previous section (equations (3-12)). 

Furthermore, the objective of this simulation was to test the NMPC with an algebraic loop, as 

the racecar model also contains algebraic loops (see section 4.1.2). Therefore, the model for 

the NMPC was obtained based on the schematic in Figure 3-22.  

𝑔 
𝑠 

𝐹 
𝑚𝐶  

𝑚𝑃  
𝜃 𝑙 

𝑙 

𝑚𝑃2 

𝑭C  𝜑C  

𝑦 
𝑥 

−𝑭C  

 

Figure 3-22:  Double inverted pendulum – Schematic for NMPC model 
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Here, the mass 𝑚𝑃2 is separated from the rest of the system and can move “freely” in the 

𝑥𝑦-plane. On this mass acts a constraining force 𝑭𝐶 = 𝐹𝐶 [
cos 𝜑𝐶
sin𝜑𝐶

]  and an equal and opposite 

force acts on the tip of the pendulum. The angle 𝜑𝐶  can be calculated by 

tan 𝜑𝐶 =
−𝑦 − 2𝑙 cos 𝜃

−𝑥 + 𝑠 + 2𝑙 sin 𝜃
 (3-14) 

With the force −𝑭𝐶  , the non-conservative forces become 

𝑸𝑛𝑐 = [ 
1 0

0 0
 ]

⏟    

𝜕𝒓𝐹
𝜕𝒒

T

[ 
𝐹

0
 ] + [ 

1 0

2𝑙 cos 𝜃 2𝑙 sin𝜃
 ]

⏟            

𝜕𝒓𝐹𝐶
𝜕𝒒

T

[ 
−𝐹𝐶 cos 𝜑𝐶

−𝐹𝐶 sin𝜑𝐶
 ] 

(3-15) 

Augmenting these to the equations of motion (3-12) results in 

𝑠̈ =
𝑚𝑃𝑙𝜃̇

2 sin 𝜃 +𝑚𝑃𝑔sin 𝜃 cos𝜃 + 𝐹 − 𝐹𝐶 cos𝜑𝐶 + 2𝐹𝐶 cos𝜃 cos(𝜑𝐶 − 𝜃)

𝑚𝐶 +𝑚𝑃 sin
2 𝜃

𝜃̈ = −
𝑚𝑃𝑙𝜃̇

2 sin 𝜃 cos 𝜃 + (𝑚𝐶 +𝑚𝑃)𝑔 sin 𝜃 + (𝐹 − 𝐹𝐶 cos𝜑𝐶) cos 𝜃 +  2𝐹𝐶 (
𝑚𝐶

𝑚𝑃
+ 1) cos(𝜑𝐶 − 𝜃) 

𝑚𝐶𝑙 + 𝑚𝑃𝑙 sin
2 𝜃

 (3-16) 

The equations of motion of the point mass 𝑚𝑃2 are trivially given by: 

𝑥̈ =
𝐹𝐶 cos 𝜑𝐶
𝑚𝑃2

𝑦̈ =
𝐹𝐶 sin𝜑𝐶
𝑚𝑃2

− 𝑔

 (3-17) 

The state vector of the system is thus 𝒙 = [𝑠 𝑠̇ 𝜃 𝜃̇ 𝑥 𝑦 𝑥̇ 𝑦̇]T. 

The constraining force 𝐹𝐶  is inserted to the OCP as a control, so that it can be set by the 

optimization solver. However, a constraint must also be added, in order to maintain the 

distance 𝑙 between the tip of the pendulum and 𝑚𝑃2. This constraint has the form: 

𝑙2 − ((𝑠 + 2𝑙 sin 𝜃 − 𝑥)2 + (−2𝑙 cos 𝜃 − 𝑦)2) = 0 (3-18) 
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Figure 3-23:  Double inverted pendulum – ERK4 discretization 
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Figure 3-24:  Double inverted pendulum – Trapezoidal discretization 
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3.3.2 Results 

For the following tests with this model, the objective function (2-67) was also used, as it also 

concerned a tracking application. Therefore, the Gauss-Newton approximation of the Hessian 

could be employed. In this case, the 𝑸, 𝑹 and 𝑷 matrices were set to: 

𝑸 = 𝑷 = diag([10 0.01 10 1 0.1 10 1 1]T)

𝑹 = [
0.01 0

0 0.0001
]

 (3-19) 

where the function diag(𝑣) makes a square matrix with the elements of the vector 𝑣 in its 

diagonal. The second nonzero value in 𝑹 corresponds to the force 𝑭𝐶  that closes the algebraic 

loop of the NMPC model. 

The sampling time was set to 𝑇𝑠 = 0.025 𝑠 and the horizon length to 𝑇𝐻 = 1.25 𝑠. Note that the 

sampling time was halved compared to the one for the single inverted pendulum. This was 

done in order to cope with the more complex dynamics of this model. However, the horizon 

length was also reduced, so that the NMPC algorithm must plan the trajectory in a shorter time, 

although it has more iterations to perform the planning. 

The reference trajectory concerns a swing-up of the pendulum while the position 𝑠 is increased 

to 1 𝑚. As before, this reference was inserted at the end of the prediction horizon. 

ERK4 vs. Trapezoidal discretization 

The figures in the previous pages show the performance of the RTI algorithm for the double 

inverted pendulum with two different integration methods: Explicit 4th-order Runge-Kutta 

method (ERK4) and the Trapezoidal method. A similar test was performed with the 1-DoF Cart 

(see section 3.1.2). From those tests, the conclusion was that the ERK4 discretization 

outperformed the trapezoidal discretization, especially in the case of nonlinearities. However, 

with the double inverted pendulum, a new phenomenon becomes apparent: The algebraic loop 

makes this problem stiff, and therefore the NMPC controller performs better with the 

trapezoidal method. 

A stiff system is one which has a “very stable” mode [36]. For example, the system 𝑥̇ = −𝜆𝑥 

with a very large 𝜆 ≫ 1 is very stable. This can be seen in the exact solution of its differential 

equation 𝑥(𝑡) = 𝑥0 𝑒
−𝜆(𝑡−𝑡0), where 𝑥0 is the initial condition of the system at time 𝑡0. For 𝜆 ≫

1 , the system decays very quickly to zero. For this kind of systems, implicit integration 

methods, like the trapezoidal method, perform much better than explicit ones. 

An algebraic loop can be regarded as an infinitely fast mode of the system. Therefore, the 

NMPC model is stiff. One can see that with the trapezoidal method, the system reaches 

stationarity faster than with ERK4. As mentioned before, there exist implicit methods that 

assume Zero-Order Hold of the control values. Therefore, implementing one of these methods 

should be considered as future work for this project. 

External perturbation 

This system was also tested with an external perturbation. At second 5 of the simulation, a 

force of 1 𝑁 is exerted on the mass 𝑚𝑃2 perpendicularly to its rotational degree of freedom for 
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0.1 seconds. As can be seen in Figure 3-25 and Figure 3-26, the NMPC algorithm with the 

ERK4 discretization method performs similarly well as with the trapezoidal method. This is 

because the displacements stay relatively small, so that the linearization in the RTI method 

remains accurate. 

Figure 3-25:  Double inverted pendulum – External perturbation with trapezoidal discretization 
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In the figure below, one can see some oscillations in the 𝑦-velocity of the mass 𝑚𝑃2 ( 𝑦̇ ). These 

come from numerical errors resulting from the stiff system. However, the oscillations are not 

present in the actual system, as the algorithms used in Simscape are able to calculate the 

system states accurately.  

Figure 3-26:  Double inverted pendulum – External perturbation with ERK4 discretization 
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3.4 Point Mass on Formula Student Track 

Before trying the NMPC on the full autonomous racecar model, several tests were performed 

using a point mass model. This point mass model is not a vehicle model and therefore, it does 

not represent an actual car. However, it was used to gain insights about the Optimal Control 

Problem for time-optimal racing on a track. 

3.4.1 Modelling 

Simulation model 

The simulation model concerns only a point mass 𝑚 that can move on an 𝑥𝑦-plane, i.e. it has 

two translational degrees of freedom. On this mass acts a damping force 𝑫 opposite to the 

velocity 𝒗 of the mass and an input force 𝑭 at an angle 𝜓 with respect to the 𝑥-axis. The 

absolute value of this force 𝐹 ∈ [−4 𝑘𝑁 ; 4 𝑘𝑁] and the time derivative of its direction 𝜓̇ ∈

[−
𝜋

2
𝑟𝑎𝑑

𝑠⁄  ;  
𝜋

2
𝑟𝑎𝑑

𝑠⁄  ] are the inputs for this model. The value 𝜓̇ can be compared to the yaw 

rate of the racecar model (see section 4.1.5), therefore 𝜓 may be called the absolute yaw angle 

of the point mass. The damping force 𝑫 is defined in Simscape in the joint for the point mass 

with a damping coefficient of 𝑘𝑑 = 25
𝑁
𝑚
𝑠⁄
 .  

𝑛 𝜃 

𝒗 

𝜁 

𝑭 
𝛽 

𝜓 

𝑠 

𝑥 

𝑦 

𝑚 

𝑫 

 

Figure 3-27:  Point Mass – Schematic 

To simplify the definition of the track-border constraints, the NMPC model is defined in track 

coordinates. The track is defined by the path coordinate 𝑠 , the course angle 𝜃(𝑠) of the midline 

of the track and the track width 𝑏. In this project 𝑏 was assumed constant and 𝜃 is defined by 

cubic splines and measured against the 𝑥-axis. For more information about how the track is 

constructed, see Appendix C. It must be remarked that the derivative of the course angle 𝜃 

with respect to the path coordinate 𝑠 gives the curvature 𝐶 =
𝜕𝜃(𝑠)

𝜕𝑠
  [70]. 

In order to provide the correct states to the NMPC, the states in the track-coordinate system 

must be calculated in the simulation model as well. These states are the path coordinate 𝑠, the 
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normal coordinate 𝑛, the relative yaw angle 𝜁 and the slip angle 𝛽. The derivatives of 𝑠 and 𝑛 

can be calculated by: 

𝑠̇ =
𝑣 cos(atan𝒗 − 𝜃)

1 − 𝑛 𝐶

𝑛̇ = 𝑣 sin(atan𝒗 − 𝜃)

 (3-20) 

where 𝑣 is the absolute value of the velocity vector 𝒗 and atan 𝒗 is its angle with respect to the 

𝑥-axis. Integrating these equations over time provides the actual values of 𝑠 and 𝑛. The values 

of the course angle 𝜃 and the curvature 𝐶 can be obtained by evaluating their splines definition 

using the path coordinate 𝑠.  

The relative yaw angle 𝜁, which is the angle of the force 𝑭 with respect to the tangential line of 

the midline of the track, and the slip angle 𝛽, which is the angle between the force vector 𝑭 

and the velocity vector 𝒗, can be computed as: 

𝜁 = 𝜓 − 𝜃

𝛽 = atan𝒗 − 𝜓
 (3-21) 

where the absolute yaw angle 𝜓 is obtained by integration of the control 𝜓̇ . 

NMPC model 

The equations of motion for this model in the track-coordinate system are 

𝑠̇ =
𝑣 cos(𝜁 + 𝛽)

1 − 𝑛 𝐶

𝑛̇ = 𝑣 sin(𝜁 + 𝛽)

𝑣̇ =
𝐹

𝑚
cos 𝛽 −

𝑘𝑑 𝑣

𝑚

𝛽̇ = −𝜓̇ −
𝐹

𝑚 𝑣
sin𝛽

𝜁̇ = 𝜓̇ − 𝐶 𝑠̇

 (3-22) 

These equations can be compared to the equations of motion of a racing car in [47, 48, 70] 

and in the next chapter. The curvature 𝐶 is obtained by evaluating its splines definition using 

the path coordinate 𝑠. Moreover, the power 𝑃 that the force 𝑭 exerts on the point mass is 

constrained to ±80 𝑘𝑊. This power is obtained by 

𝑃 = 𝐹 𝑣 cos 𝛽 (3-23) 

3.4.2 Results 

This is the first economic NMPC application tested in this thesis. The goal is to make the point 

mass go around the track in minimum time. Therefore, the objective function of the NMPC 

Optimal#_CTVL00113b93ea5cd244b81ac5a5231fbb433b7
Optimal#_CTVL001c1f469097343429a9d5e4af39fd5f101
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Optimal Control Problem was formulated to maximize the distance that the point mass travels 

in its prediction horizon: 

min
𝒙,𝒖

−𝑠𝑁 (3-24) 

where 𝑠𝑁 is the path coordinate at the end of the prediction horizon. Since the reference does 

not play a role in the optimization, it can be set to zero (or any other value). However, Falcon 

NMPC requires a grid of reference values, see Appendix A.  

Since the differential equation for the slip angle 𝛽̇ contains a division by the speed 𝑣, the NMPC 

cannot be started at standstill. Therefore, it is started when the speed is greater than 1 𝑚 𝑠⁄ . 

Before that, the controller outputs 𝐹 = 1000 𝑁 and 𝜓̇ = 0 𝑟𝑎𝑑 𝑠⁄  . At the start, the initial guess 

for the optimization problem is a ramp from 0 𝑚 to 100 𝑚 for 𝑠, constant 10𝑚 𝑠⁄  for 𝑣 and 

constant 1000 𝑁 for 𝐹, all other values are zero.  

The track in these tests consists of the Formula Student Germany track generated with logged 

data from TUfast’s electric racecar eb016. More information on the import of the track can be 

found in Appendix C. The total length of the track is 1 184 meters and the width of the track 

was set to constant 4 meters.  As the mass in Simscape has a diameter of 2 𝑚, the normal 

coordinate 𝑛 was limited to ±1 𝑚. Furthermore, the slip angle 𝛽 was limited to ±1 3⁄ 𝜋 and the 

relative yaw angle 𝜁 to ±1 2⁄ 𝜋 . 

It must be remarked that for the tests described next, the computation time for the solver 

(IPOPT) was limited to 0.5 𝑠. In many timesteps, the solver did not converge properly, however 

its output was still used. Therefore, the results of these tests might not be reproduced exactly, 

but the conclusions following from them should still apply. 

Modification on the Shift Procedure 

For the first tests, Forward Euler was used as discretization method, as the tests were 

performed with an exact Hessian calculation. For these tests, no regularization method was 

used, so IPOPT performs the convexification of the quadratic problem. Furthermore, the 

horizon length was set to 𝑇𝐻 = 5 𝑠 and the sampling time to 𝑇𝑠 = 0.05 𝑠. 

During the tests performed with this model, it was found that not setting the final path 

coordinate 𝑠𝑁
guess

 by forward simulation during the shift procedure (as suggested by equation 

(2-22)), but leaving it with its last value, results in significantly better performance of the NMPC: 

𝑠𝑁
guess

= 𝑠𝑁
∗  (= 𝑠𝑁−1

guess) (3-25) 

Figure 3-28 shows the results of a simulation in which all the states were set by forward 

simulation and a simulation with the approach described above. Although the speed profile is 

not decisive for which result is better, one can see that with the approach (3-25) the lap is 

finished first. The reason for this is that without this approach the point mass “gets stuck” at 

several points in the track. This is also the case for all of the Hessian approximations 

implemented in this project. These simulations were repeated multiple times with similar 

results. Therefore, the approach (3-25) was used for the experiments described next. 

At the time of writing of this thesis, the reason for why this approach improves the controller’s 

performance is not entirely clear. However, it has to do with the fact that the gradient of the 
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objective function (3-24) and the gradient of the defect constraint for 𝑠̇ in the last stage 

(𝑁 − 1) → (𝑁) point in the same direction, namely increasing 𝑠𝑁  .  

Hessian of the Objective Function vs. Hessian of the Lagrangian  

In the following tests, the performance of the NMPC using a Hessian calculation with and 

without the second order derivatives of the constraints was compared. The second case 

(without the constraints) is equivalent to setting all Lagrange multipliers to zero, so that only 

the second order derivative of the objective function is considered. This was inspired by the 

fact that the Gauss-Newton approximation does not consider the second order derivatives of 

the constraints. For the tests described here, the horizon length was kept at 𝑇𝐻 = 5 𝑠 and the 

sampling time at 𝑇𝑠 = 0.05 𝑠. Forward Euler was used as discretization method.  

Figure 3-29 shows the results of simulations using an exact Hessian calculation. The blue line 

considers the second order derivatives of the constraints (Hessian of the Lagrange function), 

the red line does not (Hessian of the objective function). In both cases, no regularization 

Figure 3-28:  Point mass – Modification on the shift procedure 
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method was used. In the figure, it can be regarded that both simulations have relatively similar 

results. In the speed profile, one can observe that both approaches perform equally good (the 

speed trajectory is almost identical) in several parts of the track. These are parts where the 

Lagrange multipliers have small values, because satisfying the constraints is not strongly 

concurrent with the objective function. The lap-time with both approaches is also almost the 

same. 

Similar simulations were performed using a BFGS Hessian approximation. The results are 

shown in Figure 3-30. These simulations show significantly poorer performance of the 

controller compared to the exact Hessian simulations shown above. However, it can be 

appreciated here as well, that in some parts of the track, both controllers give almost identical 

trajectories. 

Figure 3-29:  Point mass – Exact Hessian with and without second derivatives of the constraints 
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Exact Hessian vs. Constant Hessian 

Taking a closer look at the objective function of the Optimal Control Problem (3-24), one can 

see that it is a linear function 𝐸(𝒙𝑁) = −𝑠𝑁 . This means that its second derivative is zero. 

Therefore, if the second order derivatives of the constraints are not considered in the Hessian, 

the Hessian is a constant zero matrix. A zero matrix is not strictly positive definite and if it was 

not for the constraints, the minimization of the objective function would tend to −∞. 

Therefore, to try to help improve the optimization procedure, some simulations were performed 

with a constant Hessian. This constant Hessian would have small positive values in its 

diagonal, making it strictly positive definite. Note that doing this is equivalent to adding a 

tracking cost function of the form (2-65), where 𝑸, 𝑹 and 𝑷 have values only in their diagonal 

and the references for the states and for the controls are 𝒙𝑖
guess

 and 𝒖𝑖
guess

 respectively. As will 

be discussed in the next chapter, using this method provides good tuning parameters to 

improve the robustness of the NMC.  

Figure 3-30:  Point mass – BFGS Hessian with and without second derivatives of the constraints 
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Figure 3-31 shows the comparison of a simulation with a constant (non-zero) Hessian and the 

exact Hessian without the second derivatives of the constraints, which is a constant zero 

matrix. For the constant Hessian, the 𝑸, 𝑹 and 𝑷 matrices were set to: 

𝑸 = 𝑷 = diag([10−16 10−16 10−16 10−16 10−16]
T)

𝑹 = [
10−32 0

0 10−32
]

 (3-26) 

where the function diag(𝑣) makes a square matrix with the elements of the vector 𝑣 in its 

diagonal. For these tests, the horizon length was kept at 𝑇𝐻 = 5 𝑠 and the sampling time at 

𝑇𝑠 = 0.05 𝑠. Forward Euler was used as discretization method.  

One can see that, except for a small part at 𝑠 ≈ 100 𝑚, the speed profiles as well as the lap-

times are almost identical. However, the path that the point mass follows with the constant 

Hessian is much smoother, see for example shortly before 𝑠 = 1 𝑘𝑚 in the map. This is 

Figure 3-31:  Point mass – Exact Hessian compared to Constant Hessian 
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because of the improved convergence of the optimization solver, as the Hessian is strictly 

positive definite. 

Forward Euler vs. ERK4 

The exact calculation of the second order derivatives of the explicit 4 th-order Runge-Kutta 

(ERK4) discretization method were not implemented in this project. However, as a constant 

Hessian can be used without a big loss of performance (see the previous tests), the ERK4 

discretization method can be compared to the Forward Euler. 

The idea is to keep the NMPC using the Forward Euler method as before (𝑇𝐻 = 5 𝑠 , 

 𝑇𝑠 = 0.05 𝑠) but, with the ERK4 method, increase the sampling time to 𝑇𝑠 = 0.1 𝑠. For this 

simulations the constant Hessian was kept as before, i.e. (3-26). Figure 3-32 shows the results. 

One can see that the ERK4 outperforms the Forward Euler discretization method, although the 

sampling frequency of the latter is double the one of the ERK4. This also means that the 

outputs of the controller 𝝁 = 𝒖1
∗  are kept constant (zero-order hold) for twice as long in the 

Figure 3-32:  Point mass – Forward Euler compared to ERK4 with constant Hessian 
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ERK4 case. However, the reason why the ERK4 performs better is that its prediction is more 

accurate. This means that in the Feedback Phase the initial guess for the states 𝒙1
guess

 matches 

the actual states 𝒙̅ better, so that the controller does not have to make large corrections. 

As will be discussed in the next chapter, an ERK4 discretization method and a constant 

Hessian were used in the NMPC for the autonomous racecar model. 

3.5 Summary 

This section summarizes the preliminary tests performed with the NMPC algorithm during this 

project, as well as the conclusions following from these tests. With the 1-DoF Cart, the Inverted 

Pendulum and the Double Inverted Pendulum, tracking NMPC applications were regarded. An 

economic NMPC application was considered in section 3.4 with the point mass model. 

Tracking NMPC 

Table 3-1 provides a summary of the conclusions following from the preliminary tests 

concerning tracking NMPC applications: 

Model Test Conclusions 

1
-D

o
F

 C
a

rt
 

Trapezoidal 

discretization with vs. 

without approach (2-20) 

The output 𝝁(𝒙̅𝑛) of the NMPC algorithm is held 

constant until the next sampling time 𝑡𝑛+1. This is not 

considered with the trapezoidal discretization.  

Therefore, using approach (2-20) might improve the 

performance of the NMPC if trapezoidal discretization 

is used.  

Trapezoidal vs. ERK4 

discretization 

The trapezoidal method might not be robust in systems 

with nonlinearities, even using approach (2-20). The 

reasons are the same as described above. 

Therefore, a discretization method that considers that 

the output 𝝁(𝒙̅𝑛) is held constant between sampling 

times usually gives better results. This is the case for 

the ERK4 discretization. 

Model mismatch 

The NMPC controller gave a very good performance in 

this test. The NMPC algorithm minimizes the given 

objective function. Therefore, in the case of the cost 

(2-67), the 𝑸, 𝑹 and 𝑷 matrices can be used to tune the 

algorithm. 

In
v
e

rt
e

d
 

P
e

n
d

u
lu

m
 

RTI vs. Converged Full 

OCP 

If the horizon length and the sampling time are chosen 

correctly, the RTI scheme gives practically identical 

results as converging the full nonlinear OCP in every 

timestep. However, the RTI algorithm only takes a 

fraction of the time and its timing is more uniform. 

(Continued in the next page…) 

Table 3-1:  Summary of preliminary tests on tracking NMPC applications 
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Model Test Conclusions 
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t.
) 

Infeasible and non-

stationary setpoints 

The NMPC algorithm can handle infeasible and non-

stationary setpoints as reference. It minimizes the 

given objective function. Therefore, in the case of the 

cost (2-67), the 𝑸, 𝑹 and 𝑷 matrices can be used to 

tune the algorithm. Although the RTI method linearizes 

all constraints, it also handles nonlinear constraints 

satisfactorily. 

IPOPT vs. qpDUNES 

Using a dedicated QP solver like qpDUNES for solving 

the quadratic problems in every timestep of the RTI 

algorithm significantly reduces the time spent in the 

Feedback Phase of the algorithm. However, IPOPT is 

much more versatile and was therefore used for the 

rest of this thesis. 

External perturbation 
The NMPC reacts satisfactorily to external 

perturbations. In this case also, the 𝑸, 𝑹 and 𝑷 matrices 

can be used to tune the performance algorithm. 

Gauss-Newton vs. 

BFGS vs. Exact 

Hessian  

The different Hessian approximations were compared 

graphically.  

The BFGS approximation calculated blockwise did not 

work stably in this test. However, if the BFGS formula 

is used for the full Hessian gives good performance, 

especially if a shift procedure is performed and the 

Hessian approximation is initialized. 

Concerning the exact Hessian, the project 

regularization method gives good results. However, the 

mirror regularization method makes the system 

unstable in the case of external perturbations. 
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ERK4 vs. Trapezoidal 

discretization 

The NMPC model includes an algebraic loop and is 

therefore stiff. Since implicit integration methods (like 

the trapezoidal) work better for stiff systems, the 

trapezoidal method with approach (2-20) gave better 

results than the ERK4 in these tests. 

However, in case of strong nonlinearities, using the 

trapezoidal method might make the system unstable, 

see the results with the 1-DoF Cart. 

External perturbation 
The NMPC also reacts satisfactorily to external 

perturbations with this model. This was tested with the 

ERK4 and the trapezoidal discretization methods.  

Table 3-2:  Summary of preliminary tests on tracking NMPC applications (continued) 

 

Economic NMPC 

Here, the results and conclusions that followed from the tests concerning an economic NMPC 

application are summarized. The insights that were obtained in these tests will be applied for 

the autonomous racecar model in the next chapter. 
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Model Test Conclusions 
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Modification on the Shift 

Procedure 

In this test, it was found that a slight modification on the 

shift procedure (before the Preparation Phase), 

significantly improves the performance and the 

robustness of the NMPC formulation for maximum 

progress in the defined time horizon. 

Note that this is not a general conclusion for any 

economic NMPC application. However, this 

modification will be applied for the autonomous 

racecar, as the objective function is identical. 

Hessian of the Objective 

Function vs. Hessian of 

the Lagrangian 

These tests showed that neglecting the second-order 

derivatives of the constraints in the Hessian gives 

similar results as incorporating them in the QP problem. 

This means using the Hessian of the objective function 

instead of the Hessian of the Lagrange function. 

This was inspired by the fact that the Gauss-Newton 

approximation also neglects the second-order 

derivatives of the constraints. These tests were 

performed with an exact Hessian calculation and with a 

BFGS Hessian approximation. 

Exact Hessian vs. 

Constant Hessian 

The exact Hessian of the objective function is a zero 

matrix. If this matrix is used for the QP problem in the 

RTI scheme, the quadratic problem is not strictly 

convex. Therefore, using a matrix with small positive 

numbers in its diagonal improves the convergence of 

the QP problem significantly. This also improves the 

performance of the controller. 

Forward Euler vs. ERK4  

These tests compared the performance between the 

Forward Euler discretization method and the ERK4 

method with a larger sampling time. Due to its better 

accuracy in the prediction, the ERK4 discretization 

method gave better results despite the sampling time 

being twice as big. 

Table 3-3:  Summary of preliminary tests on economic NMPC applications 
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4 Autonomous Racecar 

This chapter contains the core of this thesis, namely the implementation of the Nonlinear Model 

Predictive Control algorithm for an autonomous racecar. As mentioned in the introduction, the 

characteristics and parameters of the vehicle presented here correspond to a Formula Student 

car, specifically the eb016. This is an electric all-wheel-driven racecar car of the Formula 

Student team of the Technical University of Munich. More details about this car can be found 

in Appendix B. 

The first section of this chapter describes how the simulation model and the model used for 

the NMPC are built and how they differ from each other. A brief summary comparing both 

models can be found in subsection 4.1.7. Then, section 4.2 discusses how the NMPC was 

tuned and presents the results of the simulations. 

4.1 Modelling 

For both the simulation model and the NMPC model, the standard vehicle coordinate system 

(𝑥𝑉 , 𝑦𝑉 , 𝑧𝑉) defined in the ISO 8855 [71] was used. The vehicle reference point used for this 

system is the center of gravity, simplifying the construction of the Newtonian equations of 

motion. In this system, the 𝑥𝑉-axis points forward, the 𝑦𝑉-axis to the left and the 𝑧𝑉-axis upward. 

This coordinate system is displayed in Figure 4-1. 

Also relevant for this thesis is the wheel coordinate system (𝑥𝑊, 𝑦𝑊, 𝑧𝑊), which is also defined 

in the ISO 8855. In this system, the 𝑥𝑊-axis is parallel to local plane of the road, the 𝑦𝑊-axis 

is the wheel rotation axis and the 𝑥𝑊𝑧𝑊-plane is the midplane of the tire, so that 𝑧𝑊 points 

upwards. In this thesis, the toe and camber angles as well as the Ackermann steering angle 

are neglected, and the road is assumed to be flat. This means that the 𝑧𝑉 and the 𝑧𝑊 axes of 

all wheels are always parallel and the 𝑥𝑊 of both front tires are deflected only by the same 

steering angle 𝛿𝐹 with respect to 𝑥𝑉. The wheel coordinate system is used in this thesis to 

represent the forces and torques acting on each wheel. In the following sections, this system 

is also denoted by two letters corresponding to each wheel, for example 𝐹𝐿 for the front-left 

wheel. 

𝑥𝑉 

𝑦𝑉 

𝑥𝑉 

𝑦𝑉 

𝑧𝑉 

𝑥𝑊 

𝑦𝑊 𝛿𝐹 

𝜓̇ 

𝒗 
𝛽 

Figure 4-1:  Racecar modelling – Coordinate system and states 

𝑤𝑏 

𝑡𝑟𝑅 
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Furthermore, the ISO 8855 also defines other values that are used in this thesis. The slip angle 

𝛽 is the angle between the velocity vector 𝒗 of the center of gravity of the vehicle and the 

𝑥𝑉-axis. The yaw angle 𝜓 is the angle between the 𝑥𝑉-axis and the 𝑥𝐸-axis of an earth-fixed 

frame, which, like in this project, is usually assumed to be an inertial frame. The time derivative 

of this angle gives the angular velocity of the vehicle about its 𝑧𝑉-axis, which is known as its 

yaw rate 𝜓̇. Note that the definitions in the norm are slightly different from the ones presented 

here. However, the pitch and roll motions of the vehicle as well as its translation in 𝑧𝑉-direction 

are neglected in this thesis, and thus the definitions presented here are equivalent to the ones 

in the norm. 

It may be noted that the subsystems presented in the following subsections are ordered in the 

same sequence as they are calculated in the NMPC model. 

4.1.1 Aerodynamic Forces 

Simulation model 

Over the last few years, Formula Student teams have spent lots of effort into developing high-

downforce aerodynamic packages for their racecars. The motivation for this is to increase the 

aerodynamic grip of the car to achieve higher lateral (and longitudinal) accelerations and be 

able to drive at higher speeds in the corners. An example of these racecars is found in Figure 

1-2. In this thesis, the aerodynamic forces were modelled as follows: 

𝐿 =
1

2
 𝜌 𝐶𝐿𝐴 𝑣

2

𝐷 = −
1

2
 𝜌 𝐶𝐷𝐴 𝑣

2

 (4-1) 

where 𝐿 is the lift (negative downforce) and 𝐷 is the drag, 𝜌 = 1.225
𝑘𝑔

𝑚3⁄  represents the air 

density, 𝑣 the absolute value of the velocity of the car and 𝐶𝐿𝐴 = −5.78 𝑚
2 and 𝐶𝐷𝐴 = 1.82 𝑚

2 

are the lift and drag coefficients respectively, multiplied by their reference surface area 𝐴. 

These last values are obtained by CFD simulations and validated on track with spring-travel 

and ride-height sensors with constant-speed tests and coasting tests. 

The drag 𝐷 acts opposite to the velocity vector 𝒗. This means that in 𝑥𝑉-direction one obtains 

𝐷 cos 𝛽 and in 𝑦𝑉-direction 𝐷 sin𝛽. The lift 𝐿 acts in 𝑧𝑉 direction and is split between the front 

and rear axle by the aerodynamic balance 𝑏𝑎𝑙𝐴 = 0.46, see the next subsection. It may be 

remarked that the shifting of wheel loads due to the torque that the drag generates on the 

vehicle is already considered in this aerodynamic balance.  

NMPC model 

For the NMPC model, the aerodynamic forces are calculated identically as for the simulation 

model. 

4.1.2 Wheel Loads 

The vertical forces of the tires need to be calculated dynamically, as they are constantly 

changing depending on the state of the vehicle. For example, during a braking procedure the 

wheel loads are shifted to the front, while in a corner the outer wheels get more load than the 
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inner ones. This is known as wheel load redistribution. The wheel loads are important inputs 

for the tire model described in the next subsection. 

Simulation model 

For the simulation model, a steady-state wheel load redistribution calculation was used, thus 

neglecting the damping forces. A similar calculation is described in [72]. The inputs for this 

calculation are:  

• the overall mass 𝑚 = 250 𝑘𝑔, which is the sum of the sprung mass 𝑚Spr and the 

unsprung masses 𝑚Unspr . It may be remarked that the overall mass used in this thesis 

includes the weight the driver. This is done to be able to compare the results of the 

NMPC algorithm to an actual driven lap, see section 4.2 

• the unsprung mass 𝑚𝑈𝑛𝑠𝑝𝑟 = 14 𝑘𝑔, which includes the mass of the wheel, the tire, the 

wheel hub, the upright, the (outboard) motor and gear box, and half of the mass of the 

suspension for each wheel. Thus, 𝑚 = 𝑚Spr + 4 ∙ 𝑚Unspr . 

• the distance 𝑥CoG = 0.78 𝑚 between the center of gravity (CoG) of the overall mass and 

center of the front axle 

• the height 𝑧CoG = 0.3 𝑚 of the center of gravity (CoG) of the overall mass with respect 

to the road 

• the height of the center of gravity of the unsprung masses, which for this calculation is 

assumed to be equal to the undeflected tire radius 𝑟tire = 0.224 𝑚   

• the wheel base 𝑤𝑏 = 1.55 𝑚 and the front and rear track widths 𝑡𝑟F = 1.2 𝑚 and 

𝑡𝑟R = 1.2 𝑚 (see Figure 4-1) 

• the height of the roll axis at the front and rear axles 𝑧RC,F = 0.044 𝑚 and 

𝑧RC,R = 0.079 𝑚, also known as front and rear roll centers 

• the roll moment distribution ΦRoll = 0.6, which is calculated considering the springs’ 

and anti-roll-bars’ (ARBs) stiffnesses. 

• the lift 𝐿 calculated by equation (4-1) and the aerodynamic balance 𝑏𝑎𝑙A 

• the longitudinal and lateral accelerations 𝑎𝑥 and 𝑎𝑦 of the CoG of the overall mass 

• the gravitational acceleration of the earth 𝑔 = 9.80665𝑚 𝑠2⁄  

First, the sprung mass acting on the front and rear axles in standstill can be calculated 

respectively by: 

𝑚Spr,F = 𝑚 ∙
𝑤𝑏 − 𝑥CoG

𝑤𝑏
− 2 ∙ 𝑚Unspr

𝑚Spr,R = 𝑚 ∙
𝑥CoG
𝑤𝑏

− 2 ∙ 𝑚Unspr

 (4-2) 

The height of the center of gravity of the sprung mass can then be computed as: 

𝑧CoG,Spr =
𝑚 𝑧CoG − 4 𝑚Unspr 𝑟tire

𝑚Spr,F +𝑚Spr,R
 (4-3) 

The calculation of the wheel load at the front left tire is shown exemplarily in equation (4-4). 

The wheel loads at the other tires can be calculated analogically. It must be noted that wheel 

loads are contact forces and thus having a negative wheel load is physically impossible. 
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Therefore, in the simulation model the wheel loads are saturated to be greater than or equal 

to 0 𝑁 . 

𝐹z,FL = (
1

2
𝑚Spr,F +𝑚Unspr) ∙ 𝑔 (static load)

− 𝑚Spr,F

𝑧CoG,Spr − 𝑧RC,F

𝑡𝑟F
(1 −ΦRoll) 𝑎𝑦    (lateral redistr. acting on springs & ARBs)

− 𝑚Spr,F

𝑧RC,F
𝑡𝑟F

𝑎𝑦 (lateral redistr. acting directly on RC)

− 2 𝑚Unspr

𝑟tire
𝑡𝑟𝐹

 𝑎𝑦 (lateral redistr. due to unsprung mass)

−
1

2
𝑚
𝑧CoG
𝑤𝑏

 𝑎𝑥 (longitudinal load redistr. )

−
1

2
𝐿 𝑏𝑎𝑙A (aerodynamic wheel load)

 (4-4) 

It may be noted that this calculation creates an algebraic loop, since the wheel loads are 

necessary to calculate the tire forces and the tire forces are used to compute the longitudinal 

and lateral accelerations 𝑎𝑥 and 𝑎𝑦, which are inputs for the wheel loads calculation. In a more 

detailed model, the wheel loads would concern a dynamic calculation considering the damper 

forces and the tire deflection. In this project, this algebraic loop was relaxed by a first-order lag 

of 0.001 𝑠 on the wheel loads fed to the tire model. 

NMPC model 

For the NMPC model, the wheel loads calculation was simplified. Taking the wheel load at the 

front-left tire as an example, it is calculated as: 

𝐹z,FL = (
1

2
𝑚Spr,F +𝑚Unspr) ∙ 𝑔 (static load)

− 𝑚
𝑧CoG
𝑡𝑟F

(1 −ΦRoll) 𝑎𝑦    (lateral load redistr. )

−
1

2
𝑚
𝑧CoG
𝑤𝑏

 𝑎𝑥 (longitudinal load redistr. )

−
1

2
𝐿 𝑏𝑎𝑙A (aerodynamic wheel load)

 (4-5) 

This is the same calculation that is used in [47], [48] and [70]. These publications solve the 

algebraic loop inside the OCP. However, in this project it was found useful to relax the algebraic 

loop with a first-order lag on the lateral and longitudinal accelerations using the sampling time 

as time constant. Since 𝑎𝑥 and 𝑎𝑦 then become states, this allows to use the measurements 

of these values in the initial value embedding of the NMPC. Note that relaxing this algebraic  

loop is a method that can be found frequently in literature, for example in [24]. 

4.1.3 Tire Forces 

A tire model is employed to represent the contact forces between the tires and the road. In this 

thesis, a tire model based on the TMeasy model proposed by Rill [73]. However, in this project 

the TMeasy model was modified to improve its accuracy and its suitability for Optimal Control 

applications, using the Pacejka’s similarity method [46] for calculating the combined forces. 

Both the simulation model and the NMPC model use the TMeasy calculations, but some 

simplifications are made for the NMPC model in order to improve its performance. Tire 
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dynamics, for example the relaxation length, were, however, ignored in this thesis. It may be 

remarked that van Koutrik also used a TMeasy tire model in his work [48]. 

Simulation model 

The TMeasy model, like many other tire models (e.g. Pacejka’s Magic Formula [46]), is a 

semiempirical model based on observations concerning the movement of the thread particles 

of a tire. These observations lead to the unitless longitudinal slip 𝑠𝑥 and lateral slip 𝑠𝑦 

definitions: 

𝑠𝑥 =
𝑟𝐸𝑁 − 𝑣𝑥,𝑊 

𝑟𝐸𝑁

𝑠𝑦 =
−𝑣𝑦,𝑊

𝑟𝐸𝑁

 (4-6) 

where 𝑣𝑥,𝑊 and 𝑣𝑦,𝑊 are the components of the velocity of the wheel center in the 

corresponding wheel coordinate system, 𝑁 is the wheel speed of the tire and 𝑟𝐸 is its effective 

roll radius, also known as its dynamic radius, calculated by: 

𝑟𝐸 = 𝜆𝑟
𝑙𝑖𝑛 𝑟0 + (1 − 𝜆𝑟

𝑙𝑖𝑛)𝑟𝐿 (4-7) 

In this equation, 𝜆𝑟
𝑙𝑖𝑛 always assumes a value between zero and one. The dynamic tire radius 

is thus, according to the TMeasy model, a value between the unloaded radius 𝑟0 = 𝑟𝑡𝑖𝑟𝑒  , which 

is the radius of the undeflected tire, and the loaded radius 𝑟𝐿 , which is dependent on the wheel 

load: 

𝑟𝐿 = 𝑟0 −
𝐹𝑧,𝑊

𝑐𝑧
𝑙𝑖𝑛

 (4-8) 

where 𝑐𝑧
𝑙𝑖𝑛 denotes the vertical stiffness of the tire. Note that the longitudinal and lateral slips 

are not defined for 𝑁 = 0𝑟𝑎𝑑 𝑠⁄  , a state that is given at standstill and at wheel lockage during 

braking. Therefore, in this thesis, the input 𝑁 was saturated by a lower value of 1 𝑟𝑎𝑑 𝑠⁄  . 

The longitudinal and lateral slips are then normalized using 𝑠𝑀,𝑥
𝑙𝑖𝑛  and 𝑠𝑀,𝑦

𝑙𝑖𝑛  which are the slip 

values at which the tire reaches the longitudinal and lateral peak forces in pure longitudinal 

(𝑠𝑦 = 0) or pure lateral (𝑠𝑥 = 0) conditions respectively. The normalized longitudinal and lateral 

slips are denoted by 𝜎𝑥 and 𝜎𝑦 respectively and are computed as:  

𝜎𝑥 =
𝑠𝑥

𝑠𝑀,𝑥
𝑙𝑖𝑛

𝜎𝑦 =
𝑠𝑦

𝑠𝑀,𝑦
𝑙𝑖𝑛

 (4-9) 

The combined normalized slip 𝜎 is then calculated as the Euclidean norm of the components 

𝜎𝑥 and 𝜎𝑦  : 

𝜎 = √𝜎𝑥2 + 𝜎𝑦2 (4-10) 
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The longitudinal force 𝐹𝑥,𝑊 and the lateral force 𝐹𝑦,𝑊 are calculated by piecewise defined 

functions. The function for 𝐹𝑥,𝑊 is given in equation (4-11), 𝐹𝑦,𝑊 is defined analogically. Note 

that these forces are not calculated exactly as proposed by Rill [73], but Pacejka’s similarity 

method [46] was employed to calculate the combined slip forces 𝐹𝑥,𝑊 and 𝐹𝑦,𝑊 separately. It 

may be remarked that 𝐹𝑥,𝑊 and 𝐹𝑦,𝑊 are given in the wheel coordinate system corresponding 

to each tire. 

𝐹𝑥,𝑊 =

{
 
 
 
 
 
 

 
 
 
 
 
 𝑑𝐹0,𝑥

𝑞𝑢𝑎𝑑
 𝑠𝑀,𝑥
𝑙𝑖𝑛  𝜎𝑥

𝜎2 + (
𝑠𝑀,𝑥
𝑙𝑖𝑛

𝐹𝑀,𝑥
𝑞𝑢𝑎𝑑  𝑑𝐹0,𝑥

𝑞𝑢𝑎𝑑
− 2)𝜎 + 1

for  𝜎 ≤ 1

𝜎𝑥
𝜎

(

 
 
 

𝐹𝑀,𝑥
𝑞𝑢𝑎𝑑

− (𝐹𝑀,𝑥
𝑞𝑢𝑎𝑑

− 𝐹𝑆,𝑥
𝑞𝑢𝑎𝑑)

(𝜎 − 1)2

(
𝑠𝑆,𝑥
𝑙𝑖𝑛

𝑠𝑀,𝑥
𝑙𝑖𝑛 − 1)

2  

(

 
 
3 − 2 ∙

𝜎 − 1

𝑠𝑆,𝑥
𝑙𝑖𝑛

𝑠𝑀,𝑥
𝑙𝑖𝑛 − 1

)

 
 

)

 
 
 

  for  1 < 𝜎 ≤
𝑠𝑆,𝑥
𝑙𝑖𝑛

𝑠𝑀,𝑥
𝑙𝑖𝑛

𝜎𝑥
𝜎
 𝐹𝑆,𝑥
𝑞𝑢𝑎𝑑

for  𝜎 >
𝑠𝑆,𝑥
𝑙𝑖𝑛

𝑠𝑀,𝑥
𝑙𝑖𝑛

 (4-11) 

Figure 4-2 shows an exemplary curve of 𝐹𝑥,𝑊 in pure longitudinal slip conditions, i.e. 𝑠𝑦 = 0 . 

As mentioned before, the tire model has a strong dependency on the wheel load 𝐹𝑧,𝑊 . In the 

equations above, this dependency is represented by the superscripts ⬚𝑙𝑖𝑛 and ⬚𝑞𝑢𝑎𝑑 , which 

denote a linear or a quadratic interpolation of the parameter depending on the wheel load.  

 

Figure 4-2:  Tire forces – TMeasy parameters [74] 

Each of these parameters is thus provided for two specified wheel loads 𝐹𝑧
(1)

 and 𝐹𝑧
(2)

 to 

perform the interpolation, where 𝐹𝑧
(2) > 𝐹𝑧

(1)
. The linear interpolation is trivial. The quadratic 

interpolation is defined so that the parameter results in zero for zero wheel load [73]. For 

example, the maximum longitudinal force 𝐹𝑀,𝑥
𝑞𝑢𝑎𝑑

 is calculated by: 

𝐹𝑀,𝑥
𝑞𝑢𝑎𝑑 = 𝐹𝑀,𝑥

(1) 𝐹𝑧

𝐹𝑧
(1)
+
𝐹𝑀,𝑥
(2)  𝐹𝑧

(1) − 𝐹𝑀,𝑥
(1)  𝐹𝑧

(2)

𝐹𝑧
(1) 𝐹𝑧

(2)
∙
𝐹𝑧
2 − 𝐹𝑧 𝐹𝑧

(1)

𝐹𝑧
(2) − 𝐹𝑧

(1) 
 (4-12) 

𝐹𝑥 

𝑠𝑥 𝑠𝑆,𝑥 𝑠𝑀,𝑥 

𝐹𝑀,𝑥 

𝐹𝑆,𝑥 
𝑑𝐹0,𝑥 

adhesion 

full sliding 
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The tire parameters are fitted to flat-trac testbench data. During the fitting process, several 

conditions need to be taken into account, for example that: 

• 𝐹𝑧
(2)

 is greater than the maximum wheel load expected in the application of the tire 

model 

• the linearly interpolated parameters are positive for 𝐹𝑧,𝑊 = 0 𝑁 

• the curvature of the parabola of the quadratically interpolated parameters is negative, 

so that the interpolation has a degressive trend 

• the focal point of the parabolas of the quadratically interpolated parameters is not 

before 𝐹𝑧
(2)

, so that the function is always increasing 

Furthermore, a factor 𝜆𝜇 = 0.5 is used to scale the tire model parameters to adapt the flat-trac 

testbench values to the friction achieved on an asphalt track. This scaling is performed as 

proposed by Rill [74]: 

𝑠𝑀,𝑥
𝑙𝑖𝑛 ← 𝜆𝜇 𝑠𝑀,𝑥

𝑙𝑖𝑛 𝐹𝑀,𝑥
𝑞𝑢𝑎𝑑

← 𝜆𝜇 𝐹𝑀,𝑥
𝑞𝑢𝑎𝑑

𝑠𝑆,𝑥
𝑙𝑖𝑛 ← 𝜆𝜇  𝑠𝑆,𝑥

𝑙𝑖𝑛 𝐹𝑆,𝑥
𝑞𝑢𝑎𝑑

← 𝜆𝜇 𝐹𝑆,𝑥
𝑞𝑢𝑎𝑑

𝑠𝑀,𝑦
𝑙𝑖𝑛 ← 𝜆𝜇 𝑠𝑀,𝑦

𝑙𝑖𝑛 𝐹𝑀,𝑦
𝑞𝑢𝑎𝑑

← 𝜆𝜇 𝐹𝑀,𝑦
𝑞𝑢𝑎𝑑

𝑠𝑆,𝑦
𝑙𝑖𝑛 ← 𝜆𝜇  𝑠𝑆,𝑦

𝑙𝑖𝑛 𝐹𝑆,𝑦
𝑞𝑢𝑎𝑑

← 𝜆𝜇 𝐹𝑆,𝑦
𝑞𝑢𝑎𝑑

 (4-13) 

NMPC model 

The NMPC model uses the same tire forces calculation as the simulation model. However, the 

longitudinal slip 𝑠𝑥 is used as input, so that it does not have to be calculated. The reason for 

this is that the wheel dynamics are neglected in the NMPC model, see next subsection. Also, 

the tire radius is assumed constant and the effective roll radius is set equal to the undeflected 

tire radius, i.e. 𝑟𝐸 = 𝑟tire . 

Furthermore, path constraints are imposed on the NMPC so that the combined normalized slip 

𝜎 of every tire is always less or equal to 0.95 . This helps to ensure that the tires are not 

operated above their traction limit, ensuring a stable performance of the system. Therefore, 

only the first part of the piecewise defined functions for 𝐹𝑥,𝑊 and 𝐹𝑦,𝑊 needs to be implemented, 

see equation (4-11). Moreover, the friction scaling parameter was reduced to 𝜆𝜇 = 0.4 for the 

prediction, so that the tire limit is not overestimated.  

In Simscape, the 𝑣𝑥,𝑊 and 𝑣𝑦,𝑊 velocities of the tires can be directly obtained by a Transform 

Sensor. However, in the NMPC model, these values need to be calculated using the model’s 

states and controls. For instance, the velocity components for the front-left wheel center 

denoted in the corresponding wheel coordinate system are computed by: 

[

𝑣𝑥,𝐹𝐿

𝑣𝑦,𝐹𝐿
] = [

cos 𝛿𝐹 sin 𝛿𝐹

−sin𝛿𝐹 cos 𝛿𝐹

] [
𝑣𝑥,𝑉 −

𝑡𝑟𝐹
2
 𝜓̇

𝑣𝑦,𝑉 + 𝑥𝐶𝑜𝐺  𝜓̇

] (4-14) 

where 𝑣𝑥,𝑉 = 𝑣 cos 𝛽 and 𝑣𝑦,𝑉 = 𝑣 sin𝛽 are the longitudinal and lateral velocity components of 

the center of gravity of the vehicle represented in the vehicle coordinate system. 
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4.1.4 Wheel Dynamics, Traction Control and Powertrain 

Simulation model 

In Simscape, the wheels are modelled as rotational inertia blocks connected to the overall 

mass by revolute joints. On each rotational inertia 𝐼𝑊 = 0.12 𝑘𝑔𝑚2 acts a total torque 𝑇T𝑜𝑡𝑎𝑙 

that is composed of three parts:  the torque applied by each motor and gearbox 𝑇motor, the 

torque resulting from the tire forces 𝑇tire and the torque produced by the rolling resistance of 

the tire and bearings 𝑇roll : 

𝑇Total = 𝑇motor + 𝑇tire + 𝑇roll (4-15) 

For this equation, the torques 𝑇tire and 𝑇roll are given by [74] 

𝑇tire = −𝑟𝐿 ∙ 𝐹𝑥

𝑇roll = −𝐹𝑧  𝑟tire (𝑘𝑅0  +  𝑘𝑅1 𝑣𝑥)
 (4-16) 

where the parameters 𝑘𝑅0 = 0.053 and 𝑘𝑅1 = 0.0013 (
𝑚
𝑠⁄ )
−1 are obtained by coasting tests 

of the actual vehicle.  

The motor torques, however, are set by the inverters, which use a wheel speed controller to 

try to keep the tires below their traction limit, i.e. 𝜎 ≤ 1. This is known as traction control. In the 

simulation model, the motor torque, which is the output of the traction control, is calculated by 

𝑇motor = 𝑇𝐹𝐹 + 𝑘𝑃(𝑁𝑐𝑚𝑑 −𝑁) + 𝑏𝑢𝑓 (4-17) 

where 𝑏𝑢𝑓 is a buffer for the integral controller, which is set by 

𝑏𝑢𝑓 ←
awu

 𝑏𝑢𝑓 + 𝑘𝐼(𝑁𝑐𝑚𝑑 −𝑁) (4-18) 

The torque 𝑇𝐹𝐹 is a feed-forward estimate for the traction control, 𝑁𝑐𝑚𝑑 is the wheel speed 

command for the controller and 𝑁 represents the actual wheel speed of the tire. The 

parameters of the controller are set to 𝑘𝑃 = 1 𝑁𝑚(
𝑟𝑎𝑑

𝑠⁄ )
−1

  and 𝑘𝐼 = 0.1 𝑁𝑚(
𝑟𝑎𝑑

𝑠⁄ )
−1

 . An 

anti-windup procedure (awu) is used to limit the buffer of the integral controller. Furthermore, 

the output of the controller is saturated to the maximum and minimum torque that the motors 

and gearboxes can exert on each wheel, namely ±400 𝑁𝑚. As one can see, no braking force 

is modelled, as it is assumed that only the motors are used to decelerate the car by 

regenerative braking. 

It may be remarked that the exact same controller is running on the actual eb016, see Appendix 

B. Both the feed-forward torque 𝑇𝐹𝐹 and the target wheel speed 𝑁𝑐𝑚𝑑 need to be set by the 

NMPC algorithm. 

NMPC model 

The wheel spin dynamics are usually much faster than the vehicle longitudinal and lateral 

dynamics,  with natural frequencies up to an order of magnitude larger at about 50 𝐻𝑧 [75]. To 

represent these dynamics the NPMC model would need to have a sampling time of less than 

0.02 𝑠 or use an implicit solver. Therefore, the wheel dynamics are frequently neglected for 

Optimal Control applications, see [48]. Moreover, the traction control on the actual car runs at 
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a much higher frequency (~12 𝑘𝐻𝑧), so that it can be assumed that the setpoint for the wheel 

speeds can be reached fast enough. 

Therefore, the longitudinal slip 𝑠𝑥 of each tire is used as control in the NMPC model. The feed-

forward torque 𝑇𝐹𝐹 and the wheel speed setpoint 𝑁𝑐𝑚𝑑 are then calculated as model outputs 

by: 

𝑇𝐹𝐹 = 𝐹𝑥 ∙ 𝑟tire

𝑁𝑐𝑚𝑑 =
𝑣𝑥,𝑊

𝑟tire (1 − 𝑠𝑥)

 (4-19) 

These outputs of the NMPC model are used as controls in the simulation model. Therefore, 

they need to be updated after the Feedback Phase of the RTI algorithm. In Falcon NMPC, this 

is done by setting the recalcModelOutputs property to true, see Appendix A. 

Each of the motors (together with the gearboxes) can set up to ±400 𝑁𝑚 of torque and has a 

peak mechanical power of ±25 𝑘𝑊. These constraints are taken into account in the NMPC 

optimization problem, where the mechanical power is calculated as 𝑃 = 𝑇𝐹𝐹  𝑁𝑐𝑚𝑑 . 

Furthermore, the maximum allowed electrical power output is 80 𝑘𝑊 [16]. Considering the 

efficiency of the powertrain (~0.8), the sum of the mechanical power of all motors is therefore 

limited to 𝑃Total = 64 𝑘𝑊 in the NMPC model. 

4.1.5 Longitudinal and Lateral Dynamics 

Simulation model 

The longitudinal and lateral dynamics of the racecar model are represented by a planar joint 

in Simscape. Therefore, the vehicle has two translational and one rotational degree of freedom. 

The overall mass 𝑚 of the vehicle, which is visualized by the vehicle’s chassis, is attached to 

this joint. On this mass act the aerodynamic drag and the tire forces at their respective 

positions. Furthermore, the front tires are rotated by the steering angle 𝛿𝐹. 

The NMPC does not provide the steering angle 𝛿𝐹 directly, but its derivative 𝛿̇𝐹. Therefore, in 

the simulation model, it must be integrated and passed to the NMPC as a state. This is done 

for two reasons: first, this provides a clean way to constrain the time derivative of the steering 

angle to a physically reasonable limit, second, this allows the steering angle to have a more 

continuous trend instead of being piecewise constant.  

To be able to provide the NMPC with the correct state values, the slip angle needs to be 

calculated in the simulation model. This is done by: 

𝛽 = atan 𝒗𝑉 (4-20) 

where 𝒗𝑉 denotes the velocity vector of the overall mass object represented in the vehicle 

coordinate system. 

NMPC model 

The equations of motion for the longitudinal and lateral dynamics of the vehicle are given by 

equation (4-21), compare to equations of motion in [47, 48, 70]. The absolute value of the 

velocity of the CoG of the overall mass is represented by 𝑣, the vehicle’s slip angle by 𝛽 and 

its yaw rate by 𝜓̇. 

Optimal#_CTVL00113b93ea5cd244b81ac5a5231fbb433b7
Optimal#_CTVL001c1f469097343429a9d5e4af39fd5f101
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𝑣̇ =
𝐹𝑥 cos 𝛽 + 𝐹𝑦 sin 𝛽

𝑚

𝛽̇ =
𝐹𝑦 cos 𝛽 − 𝐹𝑥 sin 𝛽

𝑚 𝑣
− 𝜓̇

𝜓̈ =
𝑀𝑧
𝐼𝑧𝑧

 (4-21) 

where 𝐹𝑥 and 𝐹𝑦 are the total longitudinal and lateral forces and 𝑀𝑧 is the total yaw moment 

acting on the vehicle. Hence, 𝐼𝑧𝑧 = 150 𝑘𝑔𝑚
2 denotes the total yaw inertia of the vehicle.  

The forces 𝐹𝑥 and 𝐹𝑦 and the torque 𝑀𝑧 are calculated by: 

[

𝐹𝑥

𝐹𝑦

] = [
𝐷 cos 𝛽

𝐷 sin𝛽
] + [

cos 𝛿𝐹 −sin 𝛿𝐹

sin 𝛿𝐹 cos 𝛿𝐹

] [

𝐹𝑥,𝐹𝐿 + 𝐹𝑥,𝐹𝑅

𝐹𝑦,𝐹𝐿 + 𝐹𝑦,𝐹𝑅

] + [

𝐹𝑥,𝑅𝐿 + 𝐹𝑥,𝑅𝑅

𝐹𝑦,𝑅𝐿 + 𝐹𝑦,𝑅𝑅

]

𝑤ℎ𝑖𝑡𝑒𝑠𝑝𝑎𝑐𝑒
𝑤ℎ𝑖𝑡𝑒𝑠𝑝𝑎𝑐𝑒

𝑀𝑧 = [−
𝑡𝑟𝐹
2

𝑥𝐶𝑜𝐺] [
cos 𝛿𝐹 −sin 𝛿𝐹

sin 𝛿𝐹 cos 𝛿𝐹

] [

𝐹𝑥,𝐹𝐿

𝐹𝑦,𝐹𝐿

] + [
𝑡𝑟𝐹
2

𝑥𝐶𝑜𝐺] [
cos 𝛿𝐹 −sin𝛿𝐹

sin 𝛿𝐹 cos 𝛿𝐹

] [

𝐹𝑥,𝐹𝑅

𝐹𝑦,𝐹𝑅

]

+ [−
𝑡𝑟𝑅
2

𝑤𝑏 − 𝑥𝐶𝑜𝐺] [

𝐹𝑥,𝑅𝐿

𝐹𝑦,𝑅𝐿

] + [
𝑡𝑟𝑅
2

𝑤𝑏 − 𝑥𝐶𝑜𝐺] [

𝐹𝑥,𝑅𝑅

𝐹𝑦,𝑅𝑅

]

 (4-22) 

As described before, the steering angle 𝛿𝐹 is a model state. Its time derivative 𝛿̇𝐹 is thus a 

control value, which must be integrated as the differential equations of the other states. 

Furthermore, the longitudinal and lateral accelerations can be calculated by  

𝑎𝑥 =
𝐹𝑥
𝑚

𝑎𝑦 =
𝐹𝑦

𝑚

 (4-23) 

These are used to calculate the states of the accelerations used for the wheel loads calculation. 

As mentioned before, a first-order lag of the accelerations is employed for this purpose, see 

subsection 4.1.2. 

4.1.6 Track Model 

As for the point mass model presented in section 3.4 of this thesis, the position of the racecar 

is represented in track coordinates. This track coordinates are the path coordinate 𝑠, the 

normal coordinate 𝑛 and the relative yaw angle 𝜁. As in section 3.4, the track is defined by the 

course angle 𝜃(𝑠) of its midline, which is built by cubic splines, and the constant track width 

𝑏 = 4 𝑚. The course angle 𝜃(𝑠) is measured against the inertial 𝑥𝐸-axis and its derivative with 

respect to the path coordinate 𝑠 gives the curvature 𝐶 =
𝜕𝜃(𝑠)

𝜕𝑠
 of the track.  

The figure below shows the definitions of the angles and track coordinates used in this thesis. 

It may be remarked that the track used in this project was imported from logged data of the 

actual vehicle. For more information on this, see Appendix C. 
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𝑛 𝜃 

𝒗 

𝜁 𝛽 

𝜓 

𝑠 

𝑥𝐸  

𝑦𝐸  

𝑚 

 

Figure 4-3:  Racecar model – Definition of track values 

Simulation model 

The track coordinates 𝑠 and 𝑛 as well as the relative yaw angle 𝜁 need to be computed in the 

simulation model to be able to pass them to the NMPC model. These are calculated as for the 

point mass model in section 3.4. The path coordinate 𝑠 and the normal coordinate 𝑛 are 

obtained by integration of their time derivatives: 

𝑠̇ =
𝑣 cos(atan𝒗𝐸 − 𝜃)

1 − 𝑛 𝐶

𝑛̇ = 𝑣 sin(atan 𝒗 − 𝜃)

 (4-24) 

where 𝑣 is the absolute value of the velocity vector 𝒗 and atan 𝒗𝐸 is its angle with respect to 

the inertial 𝑥𝐸-axis. The values of the course angle 𝜃 and the curvature 𝐶 can be obtained by 

evaluating their splines definition using the value of the path coordinate 𝑠.  

The relative yaw angle can be obtained simply by: 

𝜁 = 𝜓 − 𝜃 (4-25) 

where 𝜓 is the absolute yaw angle of the vehicle given directly by the planar joint of the 

Simscape model. 

NMPC model 

The differential equations of the racecar’s position in track coordinates and of the relative yaw 

angle are given by: 

𝑠̇ =
𝑣 cos(𝜁 + 𝛽)

1 − 𝑛 𝐶

𝑛̇ = 𝑣 sin(𝜁 + 𝛽)

𝜁̇ = 𝜓̇ − 𝐶 𝑠̇

 (4-26) 

These differential equations can be compared to the ones used in [47, 48, 70]. 

Optimal#_CTVL00113b93ea5cd244b81ac5a5231fbb433b7
Optimal#_CTVL001c1f469097343429a9d5e4af39fd5f101
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4.1.7 Summary 

This subsection offers a summary comparing the subsystems used in the racecar model in 

Simscape and in the FALCON.m model for the NMPC. This comparison is presented in 

Table 4-1. 

Subsystem Simulation model NMPC model 

Aerodynamic 

Forces 

Lift and drag forces calculated from 

aerodynamic equations. Constant lift 

and drag coefficients and aerodynamic 

balance are used. 

Identical to simulation model. 

Wheel Loads 

Steady-state calculation based on 

longitudinal and lateral accelerations, 

and aerodynamic lift and balance. 

Takes into account forces acting on 

roll centers. 

Same as in simulation model. 

However, the roll center heights are 

neglected. 

Tire Forces 

Full TMeasy tire model using 

Pacejka’s similarity method for the 

combined forces calculation. The 

friction scaling coefficient is set to 𝜆𝜇 =

0.5 . 

Same as in simulation model, but with 

constant tire radius 𝑟tire . Furthermore, 

only the first part of the piecewise 

defined force functions is used, as the 

NMPC is constrained to work only 

below the traction limit of the tire. The 

friction scaling coefficient is lowered to 

𝜆𝜇 = 0.4 so that the traction limit is not 

overestimated. 

Wheel Dynamics, 

Traction Control 

and Powertrain 

Wheel spin dynamics are modelled 

with revolute joints in Simscape.  

Traction control is implemented as a 

PI-controller of the wheel speed plus a 

feed-forward control. The same 

controller is implemented in the actual 

car, see Appendix B. 

Wheel dynamics neglected. Therefore, 

the wheel speeds are obtained using 

the longitudinal slip 𝑠𝑥 of each tire, 

which are control values of the NMPC 

model. This wheel speed is used as 

setpoint for the traction control.  

The feed-forward control torque is 

calculated using values of the tire 

model. This value is constrained in the 

NMPC to satisfy the peak torque and 

peak power limits of the motors and 

that of the overall system. 

Longitudinal and 

Lateral Dynamics 

Modelled with a planar joint in 

Simscape. 

Modelled as differential equations of 

motion for the absolute speed 𝑣, the 

slip angle 𝛽 and the yaw rate 𝜓̇ of the 

vehicle 

Track Model 

The path coordinate 𝑠 and the normal 

coordinate 𝑛 are obtained through 

integration of differential equations. 

The relative yaw rate 𝜁 is obtained by 

subtraction of the track course angle 𝜃 

from the absolute yaw angle 𝜓. 

The path coordinate 𝑠, the normal 

coordinate 𝑛 and the relative yaw 

rate  𝜁 are obtained from differential 

equations. 

Table 4-1:  Racecar models – Comparison of simulation model and NMPC model 
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Finally, the states and controls of the NMPC model are listed in Table 4-2. 

 

 Symbol Description Min Max 

s
ta

te
s
 

𝑠 Path coordinate 0 𝑚 inf  𝑚 

𝑛 Normal coordinate −1 m 1 𝑚 

𝜁 Relative yaw angle −𝜋 4⁄  𝑟𝑎𝑑 𝜋
4⁄  𝑟𝑎𝑑 

𝑣 Speed 1 𝑚 𝑠⁄  inf  𝑚 𝑠⁄  

𝛽 Slip angle −𝜋 2⁄  𝑟𝑎𝑑 𝜋
2⁄  𝑟𝑎𝑑 

𝜓̇ Yaw rate −2 𝑟𝑎𝑑 𝑠⁄  2 𝑟𝑎𝑑 𝑠⁄  

𝑎𝑥 Longitudinal acceleration −30 𝑚 𝑠2⁄  30 𝑚 𝑠2⁄  

𝑎𝑦 Lateral acceleration −30 𝑚 𝑠2⁄  30 𝑚 𝑠2⁄  

𝛿𝐹 Steering angle −0.5 𝑟𝑎𝑑 0.5 𝑟𝑎𝑑 

c
o
n
tr

o
ls

 

𝛿̇𝐹 Time derivative of steering angle −5 𝑟𝑎𝑑 𝑠⁄  5 𝑟𝑎𝑑 𝑠⁄  

𝑠𝑥,𝐹𝐿 Longitudinal slip of front-left tire −0.15 0.15 

𝑠𝑥,𝐹𝑅 Longitudinal slip of front-right tire −0.15 0.15 

𝑠𝑥,𝑅𝐿 Longitudinal slip of rear-left tire −0.15 0.15 

𝑠𝑥,𝑅𝑅 Longitudinal slip of rear-right tire −0.15 0.15 

Table 4-2:  Racecar NMC model – States and controls 

 

The outputs of the NMPC model are listed in Table 4-3. At this point it is reminded that the 

following values are used as input for the racecar simulation model: 

• the time derivative of the steering angle 𝛿̇𝐹  , which is integrated in the simulation model 

to get the actual steering angle 

• the wheel speed commands 𝑁𝑐𝑚𝑑 , as setpoint for the PI part of the traction control 

algorithm 

• the feed-forward torques 𝑇𝐹𝐹  , as feed-forward for the traction controller 

All the other outputs are only used as nonlinear constraints for the system. 
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 Symbol Description Min Max 

o
u
tp

u
ts

 
𝜎𝐹𝐿 Normalized combined slip of front-left tire − inf   0.95 

𝜎𝐹𝑅 Normalized combined slip of front-right tire − inf   0.95 

𝜎𝑅𝐿 Normalized combined slip of rear-left tire − inf   0.95 

𝜎𝑅𝑅 Normalized combined slip of rear-right tire − inf   0.95 

𝑁𝑐𝑚𝑑,𝐹𝐿 Wheel speed command for front-left wheel − inf  𝑟𝑎𝑑 𝑠⁄  inf  𝑟𝑎𝑑 𝑠⁄  

𝑁𝑐𝑚𝑑,𝐹𝑅 Wheel speed command for front-right wheel − inf  𝑟𝑎𝑑 𝑠⁄  inf  𝑟𝑎𝑑 𝑠⁄  

𝑁𝑐𝑚𝑑,𝑅𝐿 Wheel speed command for rear-left wheel − inf  𝑟𝑎𝑑 𝑠⁄  inf  𝑟𝑎𝑑 𝑠⁄  

𝑁𝑐𝑚𝑑,𝑅𝑅 Wheel speed command for rear-right wheel − inf  𝑟𝑎𝑑 𝑠⁄  inf  𝑟𝑎𝑑 𝑠⁄  

𝑇𝐹𝐹,𝐹𝐿 Feed-forward torque of front-left wheel −400 𝑁𝑚 400 𝑁𝑚 

𝑇𝐹𝐹,𝐹𝑅 Feed-forward torque of front-right wheel −400 𝑁𝑚 400 𝑁𝑚 

𝑇𝐹𝐹,𝑅𝐿 Feed-forward torque of rear-left wheel −400 𝑁𝑚 400 𝑁𝑚 

𝑇𝐹𝐹,𝑅𝑅 Feed-forward torque of rear-right wheel −400 𝑁𝑚 400 𝑁𝑚 

𝑃𝐹𝐿 Mechanical power at front-left wheel −25 𝑘𝑊 25𝑘𝑊 

𝑃𝐹𝑅 Mechanical power at front-right wheel −25 𝑘𝑊 25𝑘𝑊 

𝑃𝑅𝐿 Mechanical power at rear-left wheel −25 𝑘𝑊 25𝑘𝑊 

𝑃𝑅𝑅 Mechanical power at rear-right wheel −25 𝑘𝑊 25𝑘𝑊 

𝑃Total Total mechanical power − inf  𝑘𝑊 64 𝑘𝑊 

Table 4-3:  Racecar NMC model – Outputs  

4.2 Results 

As mentioned in the introduction, the time-optimal maneuvering of the racecar on the track is 

an economic NMPC application. In this case, the objective function for the Optimal Control 

Problem was formulated as for the point mass model in the previous chapter: 

min
𝒙,𝒖

−𝑠𝑁 (4-27) 

In this cost function the distance that the racecar travels in its prediction horizon is maximized. 

Thus, 𝑠𝑁 represents the path coordinate at the end of the prediction horizon. As for the point 

mass model, the reference values for Falcon NMPC can be set to zero, as they do not take 

part in the problem. 

In the NMPC model, the differential equation for the slip angle 𝛽̇ contains a division by the 

speed 𝑣. Therefore, like for the point mass model, the NMPC algorithm cannot be started at 
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standstill. The speed 𝑣 in the NMPC model is thus limited to a minimum of 1𝑚 𝑠⁄  , see Table 

4-2. The NMPC model is therefore started when the speed of the vehicle is above 2 𝑚 𝑠⁄  and 

is turned off when the speed drops below 1𝑚 𝑠⁄  . This hysteresis was added to avoid chattering. 

When the NMPC controller is switched off, the outputs to the racecar are: 

𝛿̇𝐹 = 0
𝑟𝑎𝑑

𝑠⁄

𝑁𝑐𝑚𝑑,𝐹𝐿 = 𝑁𝑐𝑚𝑑,𝐹𝑅 = 𝑁𝑐𝑚𝑑,𝑅𝐿 = 𝑁𝑐𝑚𝑑,𝑅𝑅 = 5
𝑟𝑎𝑑

𝑠⁄

𝑇𝐹𝐹,𝐹𝐿 = 𝑇𝐹𝐹,𝐹𝑅 = 100 𝑁𝑚

𝑇𝐹𝐹,𝑅𝐿 = 𝑇𝐹𝐹,𝑅𝑅 = 150 𝑁𝑚

 (4-28) 

This ensures that the vehicle accelerates forward to reach the necessary 2 𝑚 𝑠⁄  to activate the 

NMPC. 

The horizon length for the NMPC was set to 𝑇𝐻 = 2.5 𝑠 and the sampling time to 𝑇𝑠 = 0.05 𝑠, 

so that the Optimal Control Problem is composed of 50 stages. The approach (3-25), which 

sets the path coordinate 𝑠𝑁
guess

 after the shifting procedure of the RTI algorithm, was also used 

here. Furthermore, the optimization problems were solved using a constant Hessian as for the 

point mass model, setting the 𝑸, 𝑹 and 𝑷 matrices to: 

𝑸 = 𝑷 = 10−16 ∙ 𝐼9x9

𝑹 = 10−2 ∙ 𝐼5x5

 (4-29) 

where 𝐼𝑛x𝑛  represents an identity matrix of 𝑛 rows and 𝑛 columns. As mentioned in section 

3.4.2, using a constant Hessian for the optimization problem is equivalent to including a 

tracking cost function of the form (2-65), where the references for the states and for the controls 

are their initial guesses, i.e. their values after the shifting procedure. Therefore, the objective 

function becomes: 

min
𝒙,𝒖

−𝑠𝑁 +∑
1

2
((𝒙𝑖 − 𝒙𝑖

guess)
T
 𝑸 (𝒙𝑖 − 𝒙𝑖

guess) + (𝒖𝑖 − 𝒖𝑖
guess)

T
 𝑹 (𝒖𝑖 − 𝒖𝑖

guess))

𝑁−1

𝑖=0

+ (𝒙𝑁 − 𝒙𝑁
guess)

T
 𝑷 (𝒙𝑁 − 𝒙𝑁

guess) 

(4-30) 

The 𝑸, 𝑹 and 𝑷 matrices can thus be used to tune the NMPC algorithm, penalizing the 

difference of the state and control values from the previous solution. During the tests with this 

model, it was found that setting the costs corresponding to the controls, i.e. the values in 𝑹, to 

a relatively large value of 10−2 significantly improves the robustness of the algorithm. However, 

it must be noted that these values modify the cost function (4-27) considerably. 

For the results presented next, a 4th-order explicit Runge-Kutta (ERK4) discretization was 

used. The track considered for these tests was imported from logged data of the actual vehicle, 

see Appendix C. Therefore, the logged data of the lap driven by a human pilot is compared to 

the results of the simulation using the NMPC algorithm to control the car. Afterwards, these 

results are compared to the theoretical optimum calculated with Optimal Control using the 

same model as in the NMPC algorithm. 
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NMPC vs. fastest Driven Lap 

Figure 4-4 compares the performance of the NMPC algorithm in simulation against the real-

life vehicle piloted by a human driver. The track corresponds to the Endurance event at the 

Formula Student Germany and the logged data corresponds to the fastest lap of TUfast’s 

electric vehicle, the eb016, in the year 2016.  

 

Figure 4-4:  Racecar – NMPC vs. fastest Driven Lap 
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It must be remarked that the lap with the real-life vehicle described above was driven with the 

maximum electric power output set to 50 𝑘𝑊. Thus, for the comparison presented here, the 

value of the maximum mechanical power for the NMPC model was set to 𝑃Total = 40 𝑘𝑊, 

considering the power losses of the powertrain (efficiency ~80%). 

As can be seen in the figure above, the laptime achieved with the NMPC algorithm is almost 

identical to the one achieved by the human driver, differing by less than 0.7 seconds in the 

~70 𝑠 lap. However, the speed profiles show some discrepancies. These discrepancies are 

mainly the result of the import method of the track, which was generated using logged data, 

see Appendix C. This means that only the averaged driven line can be imported, which for this 

project was assumed to be the midline of the track. This is of course not the case and using 

this method reduces the curvature of the track in certain spots, for example in the chicane 

shortly after the starting line. This allows the simulation model to drive these curves at a higher 

velocity. Moreover, this also allows the NMPC algorithm to “cut the curves”. Therefore, 

although the driven line is 1184 𝑚 (as well as the midline and thus also the path coordinate 𝑠), 

the simulation model controlled by the NMPC travels only a total distance of 1152 𝑚. 

In the longitudinal acceleration plot, one can observe that the forward acceleration phases are 

matched quite well by the controller. However, the braking phases do not reach the same 

deceleration. This is due to the fact that the mechanical brakes were not modelled in this 

project, thus limiting the braking power to that that the electric motors can produce by 

regenerative braking.  

The lateral acceleration achieved by the NMPC controller is qualitatively very close to that in 

the logged data. Nevertheless, its absolute value is about 80% smaller for most of the lap. The 

reason for this is that, in the NMPC model, the friction scaling factor is set to 𝜆𝜇 = 0.4, which 

is 80% of the value set for the simulation model. This is done to ensure that the traction limit 

of the tires is never overestimated. This would be the case in the first chicane, where both plots 

have almost identical values. 

In conclusion, the NMPC algorithm only achieves the same laptime as the human driver, 

because the construction of the track creates inconsistencies in its curvature. If the exact same 

track would be used, the NMPC controller would be slightly slower. However, the speed and 

acceleration profiles achieved by the NMPC algorithm are already quite close to the ones 

achieved by the human driver. 

NMPC vs. Optimal Control 

Here, the performance of the NMPC algorithm to control the simulation model is compared to 

the actual optimum calculated with Optimal Control using the NMPC vehicle model. The results 

of this comparison are shown in Figure 4-5. The track is the as described before. For these 

results, the maximum mechanical power was elevated to the maximum allowed of 

𝑃Total = 64 𝑘𝑊 . 

However, the model used for the full Optimal Control Problem was slightly modified to 

incorporate more effects. First, the algebraic loop created by the wheel loads redistribution 

calculation was solved directly in the optimization problem. This was done using the 

accelerations as slack variables. Second, the calculation of the effective radii of the tires were 

included in the model. 
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As can be seen in the plots, the results show more similarity than compared to the real-life 

driven lap. This is because for both models, the track is identical, so that both can “cut the 

curves” similarly.  

Figure 4-5:  Racecar – NMPC vs. Optimal Control 
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However, the differences between the results are encountered because of three reasons: 

• The NMPC algorithm uses a prediction horizon of 𝑇𝐻 = 2.5 𝑠, while in the Optimal 

Control Problem the entire lap is optimized at once 

• At every sampling time, the NMPC algorithm only solves an approximation of the 

nonlinear problem. This means that the optimum of the full nonlinear problem might not 

be reached for the control values 𝝁 outputted by the NMPC algorithm. 

• There are several discrepancies between the simulation model and the NMPC model, 

so that the prediction of the NMPC algorithm does not match the actual behavior of the 

simulation model exactly. This means that the controller needs to make corrections 

constantly. 

This last point is the reason for the inconsistency in the speed profiles at the path coordinate 

𝑠 = 400 𝑚 . In the simulation model, the effective roll radius 𝑟𝐸 of the tires is taken into account, 

which is neglected in the NMPC model. Since the commanded wheel speed is calculated as  

𝑁𝑐𝑚𝑑 =
𝑣𝑥,𝑊

𝑟tire (1 − 𝑠𝑥)
 (4-31) 

(see section 4.1.4) and 𝑟tire > 𝑟𝐸 , the commanded wheel speed results too small. Therefore, 

the longitudinal slip in the simulation model is also smaller than predicted preventing the 

vehicle from accelerating. Beside this, the performance of the NMPC algorithm is very 

satisfactory. 
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5 Conclusions and perspective 

5.1 Summary 

In this thesis, a Nonlinear Model Predictive Control (NMPC) algorithm was implemented. 

Specifically, the Real-Time Iteration scheme [33] was programmed in object-oriented MATLAB 

and interfaced with Simulink. This was done based on FALCON.m, which is an Optimal Control 

toolbox for MATLAB that was developed at the Institute for Flight System Dynamics of the 

Technical University of Munich. 

This project can therefore be regarded as an extension of FALCON.m for rapid-prototyping of 

NMPC controllers in simulation. The theoretical background of the NMPC algorithm 

implemented in this thesis is presented in chapter 2. During the development of the project, 

the algorithm was tested on several dynamic systems with increasing levels of complexity, 

which are presented in chapter 3. The results of the simulations performed with these systems 

finally lead to the configuration of the NMPC algorithm that was used for the control of the 

autonomous racecar model in chapter 4. 

In chapter 4, a highly complex nonlinear racecar model was simulated and controlled by an 

NMPC algorithm. The controller uses a slightly simplified model of the system. The 

performance of the controller in simulation was satisfactory. The results of the simulation were 

compared to logged of the real-life vehicle on the same track. The results were also compared 

to the theoretical optimum calculated using Optimal Control. 

5.2 Future work 

In the following paragraphs, some recommendations for future work are listed: 

Graphical User Interface 

The NMPC implementation that resulted from this work is already quite versatile and user 

friendly, as this was one of the objectives of the thesis. However, a graphical user interface 

would further improve the user friendliness of the code. Since the NMPC is programmed in an 

object-oriented way, the implementation of a GUI should be straightforward. This could be 

done simply as a Simulink Mask. 

Interfaces to other solvers 

In this thesis, interfaces to the NLP solver IPOPT and the QP solver qpDUNES were 

implemented and tested. However, there exist other solvers that have very interesting 

properties for model predictive control, for example qpOASES. Furthermore, a condensing 

strategy [60] could be implemented to compare the performance of a condensed problem 

against the solving the full QP problem. This could be combined with a block-condensing 

strategy as proposed in [59]. 

Investigate relevance of Hessian Sparsity 

For the experiments with the BFGS Hessian approximation and the regularization methods of 

the exact Hessian, it was assumed that the Hessian sparsity structure was the same as for the 

exact Hessian (without regularization). It should be investigated if the performance of these 
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algorithms gets affected if the Hessian sparsity structure is modified inside these algorithms. 

Furthermore, a regularization method that conserves the Hessian sparsity is proposed in [54]. 

This algorithm could also be implemented. 

Other NMPC algorithms 

Other NMPC algorithms could be made part of Falcon NMPC. For example, the Advanced 

Step Controller by Zavala and Biegler [44], which was briefly presented in section 1.2.2, is in 

interesting candidate. A similar method to this is used in embotech’s product [18]. The 

implementation of this algorithm should be straightforward, as it can be compared to solving 

the full nonlinear problem, as is done with the method set_solveFullProblem in Falcon NMPC, 

see Appendix A and example in section 3.2, and performing linear sensitivity analysis 

afterwards, which is already part of FALCON.m. 

Code generation 

The NMPC implementation in this project, Falcon NMPC, is currently only usable for rapid-

prototyping in simulation, specifically in Simulink. FALCON.m is already able to generate C 

code for the models and constraints. Therefore, the generation of C code for the rest of the 

functions could be considered as future work. This C code could then be compiled to run on 

an embedded target. 

On autonomous racecar control 

For the control of the autonomous racecar, several methods could be investigated further. 

First, a Multilevel NMPC implementation is suggested, in which the trajectory planning and the 

trajectory tracking functions are separated. The trajectory planning could then be performed 

with a lower resolution, with spatial discretization as in [26, 31, 48, 70], and for a longer 

prediction horizon (or for the full track). For the trajectory planning, using other NMPC 

algorithms like the Advanced Step Controller by Zavala and Biegler [44] could be beneficial. 

For the trajectory tracking, an RTI scheme with constant Gauss-Newton Hessian could be 

used. 

 

Time-optimal#_CTVL001ab4b5d941aa5487bb51c0fe60fb7a1b7
Optimal#_CTVL00113b93ea5cd244b81ac5a5231fbb433b7
Optimal#_CTVL001c1f469097343429a9d5e4af39fd5f101
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Appendix A:  NMPC Implementation 

This appendix describes the implementation of the Nonlinear Model Predictive Control in 

object-oriented MATLAB code. First, the structure of the software files and folders is described. 

Afterwards, the MATLAB S-Function, which runs during the simulation in Simulink, is 

explained. Finally, the methods of the NMPC class that can be called by the user are listed 

and detailed. 

The code contained in the CD attached to this thesis (see folder called ‘Code’) is made up of 

the following folders: 

• ‘+falcon’ that are modified files of the FALCON.m version used in this project 

• ‘Falcon NMPC’ which contains all the files that correspond to the NMPC controller 

• ‘Cart’, ‘InversePendulum’, ‘DoublePendulum’, ‘PointMass’, ‘Racecar’ which correspond 

to the experiments performed during this project and can be seen as examples 

 n ‘Falcon NMPC’, one can find 

• ‘@NMPC’, which is a MATLAB class-definition folder for the NMPC objects 

• ‘+NMPC_Plots’ which is a MATLAB package folder containing different standard plots 

and a template for creating new plots 

• ‘NMPC_addLQR_Cost.m’ a function to add a new cost function of the form (2-67) to 

the problem 

• ‘NMPC_createLQR_Cost.m’ a function to create the cost function needed for the 

function above 

• ‘NMPC_createProblem_TEMPLATE.m’ a template function to create a FALCON.m 

problem as is needed for the NMPC class 

• ‘NMPC_sfun.m’ the S-Function that runs while the Simulink simulation is running 

• ‘NMPC_SimulinkLibrary.slx’ a Simulink Library that contains one masked system that 

entails the S-Function mentioned above 

• ‘qpDUNES.mexw64’ the built function for the optimization solver qpDUNES from the 

repository https://github.com/jfrasch/qpDUNES.git 

• ‘qpDUNES_dev.mexw64’ the built function for the optimization solver qpDUNES from 

the repository https://github.com/qpDUNES/qpDUNES-dev.git 

• ‘qpDUNES_options.m’ a function that creates the default options for qpDUNES 

The masked subsystem contained in ‘NMPC_SimulinkLibrary.slx’ can be put inside a Simulink 

application. This mask requires a NMPC object as a parameter. During a simulation, the 

following procedure is performed: 

1. Initialize NMPC, including a first Preparation Phase 

2. Update the current state of the system 

3. Perform the Feedback Phase and set current control values 

4. Get next reference values and perform Shift 

5. Perform Preparation Phase 

6. If simulation continues go to 2., otherwise terminate 

After each of these points, the plotting interface is called, so that the plots can be updated 

according to the step that is being performed. 

https://github.com/jfrasch/qpDUNES.git
https://github.com/qpDUNES/qpDUNES-dev.git
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The following list describes the methods of the NMPC class that can be employed by the user 

to change the settings of the NMPC object. For all of the methods that include a Name,Value 

pair with name ’force’, a value true allows to run the method during simulation without 

bringing a pop-up. The default is false. 

NMPC object constructor 
obj = NMPC(Problem, T_s, T_H, varargin) 

Inputs: 

Problem: Either a function as in ‘NMPC_createProblem_TEMPLATE.m’ (recommended), which 

is called the ProblemConstructor, or a FALCON.m problem  

T_s:  Sampling time of NMPC in seconds 

T_H:  Horizon length in seconds 

varargin:  not yet implemented, can be left out 

Outputs: 

obj:  NMPC object  

Reconstruct Problem 
NMPC(varargin) 

Inputs: 

Name,Value:  ’force’, boolean 

Set Sampling Time 
setSamplingTime(SamplingTime) 

Inputs: 

SamplingTime: New sampling time in seconds  

Set Horizon Length 
setHorizonLength(HorizonLength, varargin) 

Inputs: 

HorizonLength: New horizon length in seconds 

Name,Value:  ’force’, boolean 

Set Hessian approximation and regularization method 
setHessApprox(HessApprox, varargin) 

Inputs: 

HessApprox: One of the following: 'Gauss-Newton', 'BFGS', 'BFGS-noConstraints', 

'Exact-noConstraints', 'Exact', 'UserProvided' 

Name,Value:  ’HessReg’, one of the following: 'None','Project'(default),'Mirror'         

’force’, boolean 
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Set Optimization Solver 

setSolver(solverName, varargin)  

Inputs: 

solverName: Either ’IPOPT’ or ’qpDUNES’  

Name,Value:  'maxIter', default: 100 

            'maxCPUTime', default: 0.1 

            'OptimalityTolerance', default: 1e-6 

            'PrintLevel', default: 0 

 ’force’, boolean 

Set properties for BFGS Hessian approximation 
setBFGS(UpdateSize, PosDefStrategy, inp1, Shift, ReevalG, Init, varargin) 

Inputs: 

UpdateSize: Either ’Block’ for blockwise updates or ’Full’ for an update of the entire Hessian 

PosDefStrategy: Strategy for keeping the BFGS Hessian approximation positive definite. Must be 

either ’Damped' or ’Skip’ 

inp1: Damping factor for ’Damped', maximum number of skips before reinitializing for 

’Skip’ 

Shift: Boolean that defines if a blockwise shift of the Hessian, the Jacobian and the 

optimization variables of the last iteration should be performed before the update 

ReevalG: Boolean that defines if the Jacobian should be reevaluated (since there are change 

because of the shift and the new references) 

Init: Scalar, vector or matrix used for the blockwise initialization of the BFGS Hessian 

Name,Value:  ’force’, Boolean 

Set User-defined Hessian 
setUserHessian(Type, Size, HessFcn, HSparsity, varargin) 

Inputs: 

Type: Either ’Constant’ for a constant Hessian or ’FunctionHandle’ for if Hessian is 

calculated by a function 

Size: Either ’Block’ for blockwise updates or ’Full’ for an update of the entire Hessian 

HessFcn: Either a numeric constant or a function handle to the function that calculate the Hessian 

HSparsity: A sparse matrix defining the sparsity structure of the Hessian 

Name,Value:  ’force’, boolean 
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Set Shift Strategy 
setShiftStrategy(Controls, States, Reference, LagrangeMultipliers, varargin) 

Inputs: 

Controls: Either ’last’ or a numeric value or a cell-array with the same length as the control 

values containing ’last’ or numeric values as elements. A numeric value sets this 

value for the control at the end of the prediction horizon, ’last’ uses the last value. 

States: Either ’last’ or ’simulate’ or a numeric value or a cell-array with the same length 

as the state values containing ’last’ or ’simulate’ or numeric values as elements. 

A numeric value sets this value for the state at the end of the prediction horizon, ’last’ 

uses the last value, ’simulate’ uses the result of a forward simulation of the system 

with an explicit 4th-order Runge-Kutta method. 

Reference: Either ’one’ for setting the only the reference at the end of the prediction horizon or 

’all’ for setting the entire prediction horizon 

LagrangeMultipliers: Either 

Name,Value:  ’force’, boolean 

Switch for Solving Full Nonlinear Problem at every sampling time 
set_solveFullProblem(tf, varargin) 

Inputs: 

tf:  boolean 

Name,Value:  ’force’, boolean 

Switch to Set the State and Control values into the Falcon.Problem after the Feedback 

Phase 
set_save2Problem(tf, varargin) 

Inputs: 

tf: boolean 

Name,Value:  ’force’, boolean 

Switch to Recalculate and get the model Outputs after the Feedback Phase 
set_recalcModelOutputs(tf, varargin)  

Inputs: 

tf: boolean  

Name,Value:  ’force’, boolean 

Add New Plot 
addNewPlot(PlotName,PlotFcnHandle,PlotData,varargin) 

Inputs: 

PlotName: String to name the plot, every plot must have a different name 

PlotFcnHandle: Function handle to the plotting function. A template can be found in the 

‘+NMPC_Plots’ folder. However, the function can be saved anywhere in the MATLAB 

path, not necessarily in ‘+NMPC_Plots’. 

PlotData: Constant data specific to the plot, it can be anything. 

Name,Value:  ’force’, boolean 
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Remove Plot by name 
removePlot(PlotName,varargin) 

Inputs: 

PlotName: Name of the plot to be removed 

Name,Value:  ’force’, boolean 

Remove All Plots 
removeAllPlots(varargin)  

Inputs:  

Name,Value:  ’force’, boolean 
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Appendix B:  About the Formula Student car – eb016 

The car that the algorithm presented in this thesis was developed for is TUfast’s eb01 . TUfast 

is the Formula Student team of the Technical University of Munich. This team engineers and 

build an electric racecar every year since 2011 for the Formula Student competitions. The 

eb01  is the car built in the year  01  and therefore TUfast’s sixth electric car.  t was also the 

TUfast’s third all-wheel driven car and the first using outboard motors. This means that each 

tire is driven individually by one electric motor mounted directly at the wheel. 

Each of the motors is controlled individually by the inverters, which set the output torque of the 

motors based on a wheel speed control. Therefore, each of the inverters receives four values 

every 10 𝑚𝑠 :  A feed-forward torque 𝑇𝐹𝐹, a wheel speed command 𝑁𝑐𝑚𝑑 and a lower and 

upper limit for the output torque 𝑇𝑙𝑖𝑚,lo and 𝑇𝑙𝑖𝑚,up . In this thesis, these limits where neglected, 

assuming that they can be set at the minimum and maximum values of the motor respectively. 

The communication with the inverters is done over CAN-Bus. It must be noted that the values 

for 𝑇𝐹𝐹 and 𝑁𝑐𝑚𝑑 calculated in this project, correspond to values at the wheel. Before they are 

passed to the inverters, the must be scaled using the ratio of the gearboxes (𝑖 = 14.385). 

In this thesis, it is assumed that the state vector of the NMPC model is known exactly at every 

timestep of the simulation. The states of the NMPC model are listed in the table below: 

Symbol Name of the state Sensor EKF 

𝑠 Path coordinate - no 

𝑛 Normal coordinate - no 

𝜁 Relative yaw angle - no 

𝑣 Speed Correvit, GPS yes 

𝛽 Slip angle Correvit yes 

𝜓̇ Yaw rate MEMS yes 

𝑎𝑥 Longitudinal acceleration MEMS yes 

𝑎𝑦 Lateral acceleration MEMS yes 

𝛿𝐹 Steering angle Potentiometer no 

Table 6-1:  Racecar NMC model – States and corresponding sensor 

This list also shows if a sensor that can directly measure the state value is included in the car. 

Furthermore, an Extended Kalman Filter (EKF) runs on the electronic control unit of the eb016. 

This algorithm is a model-based filter also used for state estimation. Therefore, the states 

extracted from the EKF are not only filtered, but they also provide a good estimate of the state 

in case of sensor failure. However, at the time of writing of this thesis, the EKF does not include 

the states for the position (𝑠 and 𝑛) and the heading (𝜁) of the car and these values would have 

to be obtained in another way. 
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Appendix C:  Track Import 

The track used for the experiments with the point mass model in section 3.4 and for the tests 

with the autonomous racecar model in chapter 4, was imported using measured (and filtered) 

data. The data used here corresponds to the Endurance event of Formula Student Germany 

in the year 2016, specifically the laps driven by the first driver. It must be remarked that the 

midline of the track generated with this method corresponds to a driven line and not the midline 

of the actual track. 

The main data used for the track generation is the distance, the speed, the yaw rate and the 

lateral acceleration, but other signals like the slip angle can also be used to improve the quality 

of the import. All of these signals were directly measured by sensors (see Appendix B) and 

most of them were filtered with a model based Extended Kalman Filter. The idea is to calculate 

the curvature of the track and then integrate it over distance to get the course angle. The 

curvature 𝐶 can be calculated using the yaw rate 𝜓̇ or the lateral acceleration 𝑎𝑦 and the speed 

𝑣 of the car by 

𝐶𝜓̇ =
𝜓̇

𝑣

𝐶𝑎𝑦 =
𝑎𝑦

𝑣2

 (6-1) 

These two values can then be averaged with a weight 𝑤 ∈ [0,1] to get 𝐶 = 𝑤 𝐶𝜓̇ + (1 − 𝑤) 𝐶𝑎𝑦. 

The integration over the distance to get the course angle 𝜃 must then be done numerically. 

This is done in by 

𝜃 = cumsum(𝐶 grad(𝑠)) + 𝜃start (6-2) 

where 𝜃start is the value of the course angle at the start of the track, 𝑠 is the distance, the 

function grad(𝑠) calculates the numerical gradient of 𝑠, i.e. 𝜕𝑠 ≈ grad(𝑠), and the function 

cumsum(𝑧) creates a cumulative sum of the elements of vector 𝑧. 

If the track is closed, as in the case of the Endurance event, the course angle 𝜃 should be 

2𝜋 + 𝜃𝑠𝑡𝑎𝑟𝑡 at the end of the lap. However, because of sensor noise and bias, this is not 

necessarily the case. Moreover, a closed lap should satisfy the following conditions for the 2D 

position (𝑥end, 𝑦end) at the end of the lap: 

𝑥end =∑cos 𝜃  grad(𝑠) =
!
0

𝑦end =∑sin𝜃  grad(𝑠) =
!
0

 (6-3) 
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Therefore, the following algorithm is used to make these corrections: 

Algorithm 4:  Newton-type equality constrained optimization  

Input:  𝑠 , 𝐶 

1. Calculate scaling factor for course angle:  𝑠𝑐 = ∑𝐶 grad(𝑠)/2𝜋 

2. Get first estimate of course angle:  𝜃 = 𝑠𝑐 ∙ cumsum(𝐶 grad(𝑠)) + 𝜃start  

3. Calculate 𝑥end and 𝑦end with equation (6-3) 

4. Calculate the corrected gradients 𝜕𝑥 and 𝜕𝑦 by 

 

𝜕𝑥 = cos 𝜃  grad(𝑠) − 𝑥end/numel(𝜃)

𝜕𝑦 = sin 𝜃  grad(𝑠) − 𝑦end/numel(𝜃)

 (6-4) 

where  numel(𝜃)  is the number of elements of  𝜃. 

5. Calculate the corrected course angle:  𝜃 = atan
𝜕𝑦

𝜕𝑥
 

 

  

Finally, the coordinates (𝑥, 𝑦) of the track can be computed by: 

𝑥 = cumsum(cos 𝜃  grad(𝑠))

𝑦 = cumsum(sin 𝜃  grad(𝑠))

 (6-5) 

Plotting these for the multiple laps in the data results in a plot as in  

 

Figure 6-1:  Track import – 2D coordinates 

For the models in this project, the course angle 𝜃 and its derivative with respect to the track 

distance 𝑠, i.e. the curvature 𝐶 =
𝜕𝜃

𝜕𝑠
 , are relevant. Therefore, the course angle 𝜃 of all laps 
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together was fitted using cubic splines. This procedure was done using the SPLINEFIT function 

for MATLAB. The breaks for the splines were set manually. Figure 6-2 shows the start of the 

procedure, the black line shows the splines approximation and the asterisks (*) their breaks. 

Breaks are added and moved until the fit is satisfactory.  

It must be noted that this procedure may create a small displacement of the coordinates 

(𝑥end, 𝑦end) at the end of the track again, as is the case in this project. This displacement is 

unfortunately more complicated to correct and was neglected in this project. 

The advantage of using splines to fit the data is that one gets a smooth and differentiable input 

for the models. For this project, these algorithms to build a track using logged data were 

implemented as a Graphical User Interface, called Track Generator. 

 

Figure 6-2:  Track import – Course angle 

 


