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Abstract
In a (linear) parametric optimization problem, the objective value of each feasible solu-
tion is an affine function of a real-valued parameter and one is interested in computing
a solution for each possible value of the parameter. For many important parametric
optimization problems including the parametric versions of the shortest path problem,
the assignment problem, and the minimum cost flow problem, however, the piecewise
linear functionmapping the parameter to the optimal objective value of the correspond-
ing non-parametric instance (the optimal value function) can have super-polynomially
many breakpoints (points of slope change). This implies that any optimal algorithm
for such a problem must output a super-polynomial number of solutions. We provide
a method for lifting approximation algorithms for non-parametric optimization prob-
lems to their parametric counterparts that is applicable to a general class of parametric
optimization problems. The approximation guarantee achieved by this method for a
parametric problem is arbitrarily close to the approximation guarantee of the algo-
rithm for the corresponding non-parametric problem. It outputs polynomially many
solutions and has polynomial running time if the non-parametric algorithm has poly-
nomial running time. In the case that the non-parametric problem can be solved exactly
in polynomial time or that an FPTAS is available, the method yields an FPTAS. In
particular, under mild assumptions, we obtain the first parametric FPTAS for each
of the specific problems mentioned above and a (3/2 + ε)-approximation algorithm
for the parametric metric traveling salesman problem. Moreover, we describe a post-
processing procedure that, if the non-parametric problem can be solved exactly in
polynomial time, further decreases the number of returned solutions such that the
method outputs at most twice as many solutions as needed at minimum for achieving
the desired approximation guarantee.
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1 Introduction

In a linear parametric optimization problem, the objective function value of a feasible
solution does not only depend on the solution itself but also on a parameter λ ∈ R,
where this dependence is given by an affine-linear function of λ. The goal is to find an
optimal solution for each possible parameter value, where, under some assumptions
(e.g., if the set of feasible solutions is finite), an optimal solution can be given by a
finite collection of intervals (−∞, λ1], [λ1, λ2], . . . , [λK−1, λK ], [λK ,+∞) together
with one feasible solution for each interval that is optimal for all values of λ within
the corresponding interval.

The function mapping each parameter value λ ∈ R to the optimal objective value
of the non-parametric problem induced by λ is called the optimal value function (or
the optimal cost curve). The above structure of optimal solutions implies that the
optimal value function is piecewise linear and concave in the case of a minimization
problem (convex in case of a maximization problem) and its breakpoints (points of
slope change) are exactly the points λ1, . . . , λK (assuming that K was chosen as small
as possible).

There is a large body of literature that considers linear parametric optimization
problems in which the objective values of feasible solutions are affine-linear functions
of a real-valued parameter. These problems often arise naturally from important non-
parametric problems. Karp and Orlin (1981) observe that the minimum mean cycle
problem can be reduced to the parametric shortest path problem (Carstensen 1983b;
Mulmuley and Shah 2001). Young et al. (2006) note that parametric shortest path
problems appear in the process of solving theminimumbalance problem, theminimum
concave-cost dynamic network flow problem (Graves and Orlin 1985), and matrix
scaling (Orlin and Rothblum 1985; Schneider and Schneider 1991). Other prominent
examples include the parametric assignment problem (Gassner and Klinz 2010) and
the parametric minimum cost flow problem (Carstensen 1983a). Moreover, parametric
versions of general linear programs, mixed integer programs, and nonlinear programs
(where the most general cases consider also non-affine dependence on the parameter
as well as constraints depending on the parameter) are widely studied—see Mitsos
and Barton (2009) for an extensive literature review.

The number of breakpoints is a natural measure for the complexity of a parametric
optimization problem since it determines the number of different solutions that are
needed in order to solve the parametric problem to optimality. Moreover, any instance
of a parametric optimization problemwith K breakpoints in the optimal value function
can be solved by using a general method of Eisner and Severance (1976), which
requires to solve O(K ) non-parametric problems for fixed values of the parameter.

Carstensen (1983a) shows that the number of breakpoints in the optimal value
function of any parametric binary integer program becomes linear in the number of
variables when the slopes and/or intercepts of the affine-linear functions are integers
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in {−M, . . . , M} for some constant M ∈ N. In most parametric problems, however,
the number of possible slopes and intercepts is exponential and/or the variables are not
binary. While there exist some parametric optimization problems such as the paramet-
ric minimum spanning tree problem (Fernández-Baca et al. 1996) or several special
cases of the parametric maximum flow problem (Arai et al. 1993; Gallo et al. 1989;
McCormick 1999; Scutellà 2007) for which the number of breakpoints is polynomial
in the input size even without any additional assumptions, the optimal value func-
tion of most parametric optimization problems can have super-polynomially many
breakpoints in the worst case—see, e.g., Carstensen (1983b), Nikolova et al. (2006)
for the parametric shortest path problem, Gassner and Klinz (2010) for the parametric
assignment problem, and Ruhe (1988) for the parametric minimum cost flow problem.
This, in particular, implies that there cannot exist any polynomial-time algorithm for
these problems even if P = NP, which provides a strong motivation for the design of
approximation algorithms.

To the best of our knowledge, the only existing approximation algorithms for a
parametric optimization problem are the approximation schemes for the parametric
version of the 0–1 knapsack problem presented in Giudici et al. (2017), Holzhauser
and Krumke (2017). Additionally, an approximation scheme for the variant of the 0–1
knapsack problem in which the weights of the items (instead of the profits) depend on
the parameter has recently been provided in Halman et al. (2018).

If only positive values are allowed for the parameter λ, linear parametric opti-
mization is closely related to computing supported solutions in biobjective linear
optimization problems. Approximating the set of supported solutions inmultiobjective
optimization has been considered in Daskalakis et al. (2016), Diakonikolas (2011),
Diakonikolas and Yannakakis (2008). Under some additional assumptions, approx-
imation in linear parametric optimization problems and approximating supported
solutions in biobjective linear optimization problems are equivalent (Diakonikolas
2011; Diakonikolas and Yannakakis 2008). For these overlapping cases, many of the
algorithms presented here are similar to the ones studied in Daskalakis et al. (2016),
Diakonikolas (2011), Diakonikolas and Yannakakis (2008).

Our contribution InSect. 3,weprovide a polynomial-time (parametric) approximation
method for a general class of parametric optimization problems whose non-parametric
versions have a polynomial-time approximation algorithm available. This means that,
for any problem from this class, the method computes a set of solutions that approx-
imate all feasible solutions for all values of λ within the given interval of allowed
parameter values. The approximation guarantee of this method depends on the approx-
imation guarantee achievable for the corresponding non-parametric problem. If the
non-parametric problem can be approximated within a factor of β ≥ 1, then, for any
ε > 0, the parametric problem can be approximatedwithin a factor of (1+ε)·β in time
polynomial in the size of the input and in 1

ε
. Thus, if an FPTAS or an exact algorithm

for the non-parametric problem is available, we obtain a (parametric) FPTAS for the
parametric problem.

Moreover, in Sect. 4, we provide an algorithm for parametric problems whose
non-parametric version is solvable exactly that, given any β-approximation S of car-
dinality |S| for the parametric problem, computes aminimum-cardinality subset S′ of S
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that still forms aβ-approximation. The running timeof this algorithm is quadratic in |S|
in general. However, we show that, if this algorithm is applied to a β-approximation
computed by the approximation method from Sect. 3, then (i) the running time can be
reduced to being linear in |S| and (ii) the cardinality of the computed subset S′ is at
most twice as large as the cardinality of any β-approximation for the given problem
instance. We will see that this factor of two is best possible in the sense that, for the
studied problem class, no algorithm can achieve a better factor in general.

Our approximation method can be viewed as an approximate version of the well-
known Eisner-Severance method for parametric optimization problems (Eisner and
Severance 1976). It applies, in particular, to all parametric optimization problems for
which the parameter varies on the nonnegative real line, the non-parametric problem
can be approximated in polynomial time, and the slopes and intercepts of the value
functions of the feasible solutions are nonnegative integer values below a polynomial-
time computable upper bound. Under mild assumptions, we obtain the first parametric
FPTAS for the parametric versions of the shortest path problem, the assignment prob-
lem, and a general class of mixed integer linear programming problems over integral
polytopes, which includes the minimum cost flow problem as a special case. As we
discuss in the applications of our method presented in Sect. 5, the number of break-
points can be super-polynomial for each of these parametric problems even under our
assumptions, which implies that the problems do not admit any polynomial-time exact
algorithms. We moreover obtain a ( 32 + ε)-approximation for the parametric version
of the APX-hard metric traveling salesman problem.

This work extends our conference paper (Bazgan et al. 2019), in which a less
adaptive version of the algorithm is presented only for the special case where the
non-parametric problem can be solved exactly. Moreover, the question of computing
approximations with small cardinality is not considered in the conference paper.

2 Preliminaries

In the following, we consider a general parametric minimization or maximization
problem Π of the following form:

min /max fx (λ) := a(x) + λ · b(x)
s. t. x ∈ X (1)

The goal is to provide an optimal solution to this optimization problem for every λ ∈ I ,
where I = [λmin,∞) for some λmin ∈ R, which is given as part of the input of the
problem. More precisely, a solution x∗

λ ∈ X is sought, for every λ ∈ I , such that

fx∗
λ
(λ) = f (λ) := min /maxx∈X fx (λ),

where f : I → R is the optimal cost curve mapping each parameter value to its
corresponding optimal objective function value. It is assumed that the optimal cost
curve is well-defined, i.e., min /maxx∈X fx (λ) exists for every λ ∈ I . It is easy to see
that the optimal cost curve f is continuous and concave (for minimization problems)
or convex (for maximization problems).

123



Journal of Combinatorial Optimization

For any λ ∈ I , we call the non-parametric problem obtained from Π by fixing the
parameter value to λ the non-parametric version of Π .

Even though all our results apply to minimization as well as maximization prob-
lems, we focus on minimization problems in the rest of the paper in order to simplify
the exposition. All our arguments can be straightforwardly adapted to maximization
problems.

We assume that the functions a, b : X → R defining the intercepts and slopes
of the value functions, respectively, are polynomial-time computable, and that we
can compute positive rational bounds LB and UB such that b(x), fx (λmin) ∈ {0} ∪
[LB,UB] for all x ∈ X in polynomial time. In particular, this implies that LB and
UB are of polynomial encoding length.1 These assumptions ensure that the objective
function values fx (λ) are nonnegative for all x ∈ X and λ ∈ I , which is a usual
requirement when considering approximation. The bounds LB and UB are guaranteed
to exist, e.g., for combinatorial optimization problems for which the decision version
of the non-parametric problem is in NP, and also for problems where a(x) and b(x)
only attain nonnegative integer values of polynomial encoding length (we can choose
LB = 1 in this case).

We say that a solution x ∈ S ⊆ X is supported in S if x is optimal within S for some
parameter value, i.e., if fx (λ) = minx ′∈S fx ′(λ) for at least one λ ∈ I . If a solution
x ∈ X is supported in X , we simply call x supported.

For two solutions x, x ′ ∈ X for which b(x) 
= b(x ′), we define μ(x, x ′) ∈ R to be
the value where the two lines fx (·) and fx ′(·) intersect, i.e., the parameter value for
which fx (μ(x, x ′)) = fx ′(μ(x, x ′)) (which is not necessarily contained in I ):

μ(x, x ′) := a(x ′) − a(x)

b(x) − b(x ′)

Note that μ(x, x ′) = μ(x ′, x) for all x, x ′ ∈ X with b(x) 
= b(x ′). The following
simple lemma covers the most important property of μ(x, x ′).

Lemma 1 If b(x) > b(x ′), then the following two equivalences hold:

fx (λ) ≤ fx ′(λ) ⇔ λ ≤ μ(x, x ′)

and

fx (λ) ≥ fx ′(λ) ⇔ λ ≥ μ(x, x ′).

Proof fx (λ) can be written as

fx (λ) = fx (μ(x, x ′)) + (λ − μ(x, x ′)) · b(x)
= fx ′(μ(x, x ′)) + (λ − μ(x, x ′)) · b(x)

for any x, x ′ ∈ X and λ ∈ I . 
�
1 Note that, the numerical values of LB and UB can still be exponential in the input size of the problem.
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Our goal is approximating linear parametric optimization problems, that is, for
every λ ∈ I , finding a solution xλ ∈ X that is approximately optimal for λ. We want
the total number of solutions used for approximating the parametric problem to be
finite. When given a finite set S ⊆ X of solutions, we would obviously assign them
to the parameter values in a way such that each parameter value λ ∈ I is assigned a
solution xλ ∈ S such that

fxλ = min
x∈S fx (λ). (2)

This can be done easily using Lemma 1. A simple (yet not necessarily the most
efficient) way to do this is to compute the value μ(x, x ′) for every pair of solutions
x, x ′ ∈ X with b(x) 
= b(x ′), partition I into subintervals defined by these values,
and then determine a solution xλ satisfying (2) for an arbitrary parameter value λ

in each of these subintervals. Lemma 1 then ensures that xλ also satisfies (2) for all
other parameter values inside the corresponding interval. It is, therefore, reasonable
to define approximations for parametric optimization problems as follows:

Definition 1 For α ≥ 1, an α-approximation for an instance of a parametric optimiza-
tion problem Π is a finite set S ⊆ X such that, for any λ ∈ I , there exists a solution
x ∈ S that is α-approximate for (the non-parametric problem instance obtained by
fixing the parameter value to) λ, i.e., for which

fx (λ) ≤ α · f (λ).

An algorithm A that computes an α-approximation in polynomial time for every
instance of Π is called an α-approximation algorithm for Π .

A polynomial-time approximation scheme (PTAS) for Π is a family (Aε)ε>0 of
algorithms such that, for every ε > 0, algorithm Aε is a (1 + ε)-approximation algo-
rithm for Π . A PTAS (Aε)ε>0 for Π is called a fully polynomial-time approximation
scheme (FPTAS) if the running time of Aε is additionally polynomial in 1/ε.

3 A general approximationmethod

We now present our method for approximating a general parametric optimization
problem Π as in (1). We assume that there is an algorithm available that can approx-
imate the non-parametric version of Π for any λ ∈ I . More precisely, we assume
that, for some β ≥ 1, we have an algorithm algβ that, given any fixed λ ∈ I , com-
putes a β-approximate solution for λ.2 Our method uses algβ as a blackbox in order
to compute an approximation for the parametric problem. The approximation quality
achievable by the method is arbitrarily close to β, i.e., for any ε > 0, we can compute a
((1+ε) ·β)-approximation for the parametric problem. If the non-parametric problem
can be solved exactly in polynomial time (i.e., if β = 1) or admits a (non-parametric)
FPTAS, our method yields a (parametric) FPTAS.

2 The approximationguaranteeβ maybe a constant or dependon thegiven instance, butmust be independent
of λ.
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The running time of algβ will be denoted by Talgβ
, where we assume that this

running time is at least as large as the time needed to compute the objective value
fx (λ) = a(x) + λ · b(x) of any feasible solution x ∈ X in the non-parametric
problem.3

We first describe the general functioning of the algorithm before formally stating it
and proving several auxiliary results needed for proving its correctness and analyzing
its running time.

The algorithm starts with the initial parameter interval [λ∗, λ∗], where λ∗ is chosen
such that a β-approximate solution x∗ for λ∗ is ((1 + ε) · β)-approximate for all
λ ∈ [λmin, λ∗] and λ∗ is chosen such that a β-approximate solution x∗ for λ∗ is
((1 + ε) · β)-approximate for all λ ∈ [λ∗,+∞) (see Proposition 1).

The algorithm maintains a queue Q, whose elements ([λ�, λr ], x�, xr ) consist of
a subinterval [λ�, λr ] of the interval [λ∗, λ∗] and β-approximate solutions x�, xr
for the respective interval boundaries λ�, λr . The queue is initialized as Q =
{([λ∗, λ∗], x∗, x∗)}, where x∗, x∗ are β-approximate for λ∗, λ∗, respectively.

After the initialization, in each iteration, the algorithm extracts an element
([λ�, λr ], x�, xr ) from the queue and first checks if one of the two conditions
fx�

(λr ) ≤ fxr (λr ) or fxr (λ�) ≤ fx�
(λ�) holds, in which case one of the two solu-

tions x�, xr is β-approximate for the whole interval [λ�, λr ]. Otherwise, the algorithm
considers the line connecting (λ�, fx�

(λ�)) and (λr , fxr (λr )). If this line is not more
than a factor of (1+ε) (measured in the second coordinate) away fromeither the line fx�

or the line fxr , we know that x� or xr is ((1+ε)·β)-approximatewithin thewhole inter-
val [λ�, λr ] (see Proposition 2). This condition can be checked easily at λ = μ(x�, xr ),
where fx�

and fxr intersect, since this must be the value within [λ�, λr ] where this
distance is maximum.

Otherwise, [λ�, λr ] is bisected into the subintervals [λ�, λm] and [λm, λr ], where
λm := μ(x�, xr ). This means that a β-approximate solution xm for λm is computed
and the two triples ([λ�, λm], x�, xm) and ([λm, λr ], xm, xr ) are added to the queue in
order to be explored. Proposition 3 states that [λ�, λr ] will not be bisected if λm is too
close to either λ� or λr , which ensures a polynomial number of iterations performed
by the algorithm in total.

Before proving the auxiliary results mentioned in the algorithm description above,
we state two helpful lemmas about general properties of approximations. The first
lemma shows that a solution that is α-approximate for two different parameter values
must also be α-approximate for all parameter values in between.

Lemma 2 Let∅ 
= [λ, λ̄] ⊆ I be a compact interval and letα ≥ 1. If some solution x ∈
X is α-approximate for λ and for λ̄ then x is α-approximate for all λ ∈ [λ, λ̄].

3 This technical assumption—which is satisfied for most relevant algorithms—is made in order to be able
to express the running time of our algorithm in terms of Talgβ

. If the assumption is removed, our results

still hold when replacing Talgβ
in the running time of our algorithm by the maximum of Talgβ

and the

time needed for computing any value fx (λ)
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Algorithm 1:An approximation algorithm for parametric optimization problems
input : An instance of a parametric optimization problem Π as in (1), ε > 0, a β-approximation

algorithm algβ for the non-parametric version of Π

output: A ((1 + ε) · β)-approximation for the given instance of Π

1 Compute LB and UB

2 λ∗ ← λmin + 1
β

· ε · LB
UB ; λ

∗ ← λmin + β · 1
ε · UB

LB
3 x∗ ← algβ(λ∗); x∗ ← algβ(λ∗)

4 Q ← {([λ∗, λ∗], x∗, x∗)} /* queue of intervals still to be considered */
5 S ← {x∗, x∗} /* solution set */
6 while Q 
= ∅ do
7 Extract some element ([λ�, λr ], x�, xr ) from Q
8 if fx� (λr ) ≤ fxr (λr ) then
9 S ← S ∪ {x�}

10 else if fxr (λ�) ≤ fx� (λ�) then
11 S ← S ∪ {xr }
12 else
13 λm ← μ(x�, xr )

14 if fx� (λm ) ≤ (1 + ε) ·
(

λr−λm
λr−λ�

· fx� (λ�) + λm−λ�
λr−λ�

· fxr (λr )
)
then

15 S ← S ∪ {x�, xr }
16 else
17 xm ← algβ(λm )

18 Q ← Q ∪ {([λ�, λm ], x�, xm ), ([λm , λr ], xm , xr )}

19 return S

Proof Fix some λ ∈ [λ, λ̄]. Then λ = γ λ + (1− γ )λ̄ for some γ ∈ [0, 1] and we can
compute:

fx (λ) = a(x) + λb(x)

= a(x) + (γ λ + (1 − γ )λ̄) · b(x)
= γ · (a(x) + λb(x)

) + (1 − γ ) · (a(x) + λ̄b(x)
)

= γ · fx (λ) + (1 − γ ) · fx (λ̄)

≤ γ · α · f (λ) + (1 − γ ) · α · f (λ̄)

= α · (
γ · f (λ) + (1 − γ ) · f (λ̄)

)

≤ α · f (λ).

Here, the first inequality follows by the assumption, and the second inequality follows
from concavity of the optimal cost curve. 
�
The next lemma covers an important property of μ(·, ·).
Lemma 3 Let α ≥ 1, let ∅ 
= [λ, λ̄] ⊆ I be a compact interval and let the solutions x
and x̄ be α-approximate for λ and λ̄, respectively. Assume that b(x) 
= b(x̄). Then the
following statements are equivalent:

(i) For any λ ∈ [λ, λ̄], either x or x̄ is α-approximate for λ.
(ii) x is α-approximate for μ(x, x̄).
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(iii) x̄ is α-approximate for μ(x, x̄).
(iv) x is α-approximate for all λ ∈ [λ,μ(x, x̄)] and x̄ is α-approximate for all λ ∈

[μ(x, x̄), λ̄].

Proof “(ii) ⇔ (iii)” holds since fx (μ(x, x̄)) = fx̄ (μ(x, x̄)) by Lemma 1. “(ii) ∧ (iii)
⇒ (iv)” follows from applying Lemma 2. “(iv) ⇒ (i)” is trivial. “(i) ⇒ (ii) ∨ (iii)”
follows immediately when choosing λ := μ(x, x̄) in (i). 
�

The next result justifies our choice of the initial parameter interval [λ∗, λ∗] in Algo-
rithm 1.

Proposition 1 Let 0 < ε < 1 and β ≥ 1. Define λ∗ ∈ I and λ∗ ∈ I as in Algorithm 1:

λ∗ := λmin + 1

β
· ε · LB

UB
, (3)

λ∗ := λmin + β · 1
ε

· UB
LB

. (4)

Then any solution x∗ ∈ X that is β-approximate for λ∗ is ((1 + ε) · β)-approximate
for all λ ≤ λ∗, and any solution x∗ ∈ X that is β-approximate for λ∗ is ((1+ ε) · β)-
approximate for all λ ≥ λ∗.

Proof We first prove the statement for λ∗. Let x∗ be β-approximate for λ∗ as defined
in (3). Let λ ∈ [λmin, λ∗] and let x ∈ X be optimal for λ. Then fx∗(λ∗) ≤ β · f (λ∗) ≤
β · fx (λ∗), i.e.,

fx∗(λmin) + (λ∗ − λmin)︸ ︷︷ ︸
= 1

β
·ε· LBUB

· b(x∗) ≤ β · ( fx (λmin) + (λ∗ − λmin)︸ ︷︷ ︸
= 1

β
·ε· LBUB

· b(x)).

Reordering terms and using the assumption that 0 ≤ b(x), b(x∗) ≤ UB, we obtain

fx∗(λmin) − β · fx (λmin) ≤ (β · b(x) − b(x∗)) · 1
β

· ε · LB
UB

≤ β · UB · 1
β

· ε · LB
UB

= ε · LB.

Now, if fx (λmin) = 0, this means fx∗(λmin) ≤ ε · LB < LB, so also fx∗(λmin) = 0.
Otherwise, if fx (λmin) ≥ LB, this implies

fx∗(λmin) ≤ β · fx (λmin) + ε · LB ≤ (β + ε) · fx (λmin) ≤ (1 + ε) · β · fx (λmin).

Since λ ∈ [λmin, λ∗], the claim follows by Lemma 2.
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Now, we prove the statement for λ∗. Let λ > λ∗ and let x ∈ X be optimal for λ.
Then fx∗(λ∗) ≤ β · f (λ∗) ≤ β · fx (λ∗), i.e.,

fx∗(λmin) + (λ∗ − λmin)︸ ︷︷ ︸
=β· 1

ε
·UBLB

·b(x∗) ≤ β · (
fx (λmin) + (λ∗ − λmin)︸ ︷︷ ︸

=β· 1
ε
·UBLB

·b(x)).

Reordering terms and using that 0 ≤ fx (λmin), fx∗(λmin) ≤ UB, we obtain

b(x∗) − β · b(x) ≤ β · fx (λmin) − fx∗(λmin)

β · 1
ε

· UB
LB

≤ β · UB
β · 1

ε
· UB
LB

= ε · LB.

Now, if b(x) = 0, we get b(x∗) ≤ ε · LB < LB, so also b(x∗) = 0. Otherwise, if
b(x) ≥ LB, we obtain

b(x∗) ≤ β · b(x) + ε · LB ≤ (β + ε) · b(x) ≤ (1 + ε) · β · b(x).

Consequently, using that x∗ is β-approximate for λ∗, we can conclude that

fx∗(λ) = fx∗(λ∗)︸ ︷︷ ︸
≤β· f (λ∗)

+ (λ − λ∗)︸ ︷︷ ︸
≥0

· b(x∗)︸ ︷︷ ︸
≤(1+ε)·β·b(x)

≤ β · fx (λ
∗) + (λ − λ∗) · (1 + ε) · β · b(x)

≤ (1 + ε) · β · ( fx (λ∗) + (λ − λ∗) · b(x))
= (1 + ε) · β · fx (λ)

= (1 + ε) · β · f (λ).


�
Remark 1 In the case where fx (λmin) and b(x) only attain values from a discrete
set, i.e., for all x, x ′ ∈ X either fx (λmin) = fx ′(λmin) or | fx (λmin) − fx ′(λmin)| ≥
LB and also either b(x) = b(x ′) or |b(x) − b(x ′)| ≥ LB (e.g., in problems with
fx (λmin), b(x) ∈ N≥0 for all x ∈ X ), we can choose λ∗ and λ∗ independently of ε in
Proposition 1. Analogous arguments as in the proof above show that the lemma then
holds true for the following values:

λ∗ := λmin + 1

β
· LB

UB + 1

λ∗ := λmin + β · UB + 1

LB

This choice leads to a slightly better running time for Algorithm 1 as we will see in
Remark 2.

The following proposition ensures that the set of solutions returned by Algorithm 1
is in fact an approximation of the desired quality. For two solutions x, x̄ that are β-
approximate for the two boundaries λ, λ̄, the proposition compares the value of the
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Fig. 1 Illustration of the line intersecting fx at λ and fx̄ at λ̄, which is considered in Propositions 2 and 3

unique affine-linear function that intersects fx at λ and fx̄ at λ̄ (this function does
not necessarily correspond to a feasible solution x ∈ X ) to the value of those two
functions at their intersection point μ(x, x̄) (see Fig. 1).

The proposition states that, if those two values differ by no more than a factor of α,
the solutions x and x̄ (together) are (α · β)-approximate for the whole interval [λ, λ̄].
The reason for this is that, since the optimal cost curve is concave and x, x̄ are β-
approximate for λ and λ̄, respectively, the connecting function is a lower bound for
β · f (λ) within the interval [λ, λ̄].

Proposition 2 Let α, β ≥ 1, let ∅ 
= [λ, λ̄] ⊆ I be a compact interval and let the
solutions x and x̄ beβ-approximate forλand λ̄, respectively. Assume that b(x) 
= b(x̄),
μ(x, x̄) ∈ [λ, λ̄], and

fx (μ(x, x̄)) = fx̄ (μ(x, x̄)) ≤ α ·
(

λ̄ − μ(x, x̄)

λ̄ − λ
· fx (λ) + μ(x, x̄) − λ

λ̄ − λ
· fx̄ (λ̄)

)
.

Then x is (α · β)-approximate for all λ ∈ [λ,μ(x, x̄)] and x̄ is (α · β)-approximate
for all λ ∈ [μ(x, x̄), λ̄].

Proof Lemma 3 implies that it suffices to show that x̄ is (α · β)-approximate for
μ(x, x̄). First, note that we can write μ(x, x̄) as

λ̄ − μ(x, x̄)

λ̄ − λ
· λ + μ(x, x̄) − λ

λ̄ − λ
· λ̄ = (λλ̄ − μ(x, x̄) · λ) + (μ(x, x̄) · λ̄ − λλ̄)

λ̄ − λ

= μ(x, x̄) · (λ̄ − λ)

λ̄ − λ

= μ(x, x̄).
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Now, use concavity of the optimal cost curve f :

fx̄ (μ(x, x̄)) ≤ α ·
(

λ̄ − μ(x, x̄)

λ̄ − λ
· fx (λ) + μ(x, x̄) − λ

λ̄ − λ
· fx̄ (λ̄)

)

≤ α ·
(

λ̄ − μ(x, x̄)

λ̄ − λ
· β · f (λ) + μ(x, x̄) − λ

λ̄ − λ
· β · f (λ̄)

)

= α · β ·
(

λ̄ − μ(x, x̄)

λ̄ − λ
· f (λ) + μ(x, x̄) − λ

λ̄ − λ
· f (λ̄)

)

≤ α · β · f

(
λ̄ − μ(x, x̄)

λ̄ − λ
· λ + μ(x, x̄) − λ

λ̄ − λ
· λ̄

)

= α · β · f (μ(x, x̄)).


�
Next,we show that the condition of Proposition 2 is always fulfilled ifμ(x, x̄)−λmin

differs from either λ−λmin or λ̄−λmin by not more than a factor of α. This allows us to
compute a polynomial bound on the number of iterations performed by Algorithm 1.

Proposition 3 Let α ≥ 1. Let ∅ 
= [λ, λ̄] ⊆ I be a compact interval and let x, x̄ ∈ X
be feasible solutions such that fx (λ) < fx̄ (λ) and fx̄ (λ̄) < fx (λ̄). If one of the
following holds:

(i) μ(x, x̄) − λmin ≤ α · (λ − λmin)

(ii) μ(x, x̄) − λmin ≥ 1
α

· (λ̄ − λmin)

then we have

fx (μ(x, x̄)) ≤ α ·
(

λ̄ − μ(x, x̄)

λ̄ − λ
· fx (λ) + μ(x, x̄) − λ

λ̄ − λ
· fx̄ (λ̄)

)
.

Proof We write μ := μ(x, x̄) for short and define

b̃ := fx̄ (λ̄) − fx (λ)

λ̄ − λ
.

First, note that μ ∈ [λ, λ̄] and b(x) > b(x̄). Moreover, note that

(λ̄ − λ) · b̃ = fx̄ (λ̄) − fx (λ)

= ( fx̄ (μ) + (λ̄ − μ) · b(x̄)) − ( fx (μ) − (μ − λ) · b(x))
= (λ̄ − μ) · b(x̄) + (μ − λ) · b(x),

which implies that 0 ≤ b(x̄) ≤ b̃ ≤ b(x). We now prove the claim for (i). We can
write

λ̄ − μ

λ̄ − λ
· fx (λ) + μ − λ

λ̄ − λ
· fx̄ (λ̄) = fx (λ) + b̃ · (μ − λ),
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so it is to show that, if (i) holds, then fx (μ) ≤ α · ( fx (λ) + b̃ · (μ − λ)). This is a
simple computation:

fx (μ) = fx (λmin) + (μ − λmin) · b(x)
≤ fx (λmin) + α · (λ − λmin) · b(x)
≤ α · ( fx (λmin) + (λ − λmin) · b(x))
= α · fx (λ)

≤ α ·
(
fx (λ) + b̃ · (μ − λ)

)
,

where the first inequality follows from (i) and the second inequality holds since
fx (λmin) ≥ 0.
We now prove the statement for the case that (ii) holds. Similar to above, we can

write

λ̄ − μ

λ̄ − λ
· fx (λ) + μ − λ

λ̄ − λ
· fx̄ (λ̄) = fx̄ (λ̄) − b̃ · (λ̄ − μ),

so it is to show that (ii) implies fx̄ (μ) ≤ α · ( fx̄ (λ) − b̃ · (λ̄ − μ)). We first compute

fx̄ (λ̄) − (λ̄ − λmin) · b̃ = fx (λ) − (λ − λmin) · b̃
≥ fx (λ) − (λ − λmin) · b(x) = fx (λmin ≥ 0

where the first equality holds since

(λ̄ − λmin) · b̃ − (λ − λmin) · b̃ = (λ̄ − λ) · b̃ = fx̄ (λ̄) − fx (λ).

Now, we are ready to calculate

fx̄ (μ) ≤ fx̄ (λ̄)

= α · 1
α

· fx̄ (λ̄)

≤ α · μ − λmin

λ̄ − λmin
· fx̄ (λ̄)

= α ·
(
fx̄ (λ̄) − (λ̄ − μ) · fx̄ (λ̄)

λ̄ − λmin

)

≤ α · (
fx̄ (λ̄) − (λ̄ − μ) · b̃),

where the second inequality follows from (ii) and the last inequality follows from the
previous computation. 
�

We are now ready to state the main theorem of this section.

123



Journal of Combinatorial Optimization

Theorem 1 Algorithm 1 returns a ((1 + ε) · β)-approximation in time

O
(
TLB/UB + Talgβ

·
(
1

ε
· log 1

ε
+ 1

ε
· log UB

LB
+ 1

ε
· logβ

))
,

where TLB/UB denotes the time needed for computing the bounds LB and UB,
and Talgβ

denotes the running time of algβ .

Proof We first note that, at any given time during the execution of Algorithm 1, any
element ([λ�, λr ], x�, xr ) of Q satisfies fx�

(λ�) ≤ β · f (λ�) and fxr (λr ) ≤ β · f (λr ).
In order to prove the approximation guarantee, let λ ∈ I be chosen arbitrarily.

We show the following statement: At the beginning of each iteration of the while
loop starting in line 6, either λ ∈ [λ�, λr ] for some element ([λ�, λr ], x�, xr ) of Q or
fx (λ) ≤ (1 + ε) · β · f (λ) for some element x of S. Since Q = ∅ at termination, the
approximation guarantee then follows.

At the beginning of the first iteration of the while loop, we have Q =
{([λ∗, λ∗], x∗, x∗)} and S = {x∗, x∗}. So, if λ ∈ I \ [λ∗, λ∗], the statement fol-
lows immediately from Proposition 1. Let the statement now hold at the beginning of
some iteration of the while-loop. We show that the statement holds at the end of this
iteration. Let ([λ�, λr ], x�, xr ) be the element that is extracted from Q in this iteration
and assume that λ ∈ [λ�, λr ] since, otherwise, there is nothing to show.We distinguish
four cases: If fx�

(λr ) ≤ fxr (λr ), then x� is added to S, which is β-approximate for
λ ∈ [λ�, λr ] by Lemma 2 in this case. If fxr (λ�) ≤ fx�

(λ�), then xr is added to S,
which is then β-approximate for λ ∈ [λ�, λr ] by Lemma 2. Otherwise, we know that

b(x�) > b(xr ). If fx�
(λm) ≤ (1 + ε) ·

(
λr−λm
λr−λ�

· fx�
(λ�) + λm−λ�

λr−λ�
· fxr (λr )

)
, then x�

and xr are added to S and the statement holds due to Proposition 2. In the remaining
case, ([λ�, λm], x�, xm) and ([λm, λr ], xm, xr ) are added to Q, and we (trivially) have
λ ∈ [λ�, λr ] = [λ�, λm] ∪ [λm, λr ].

We prove now the bound on the running time. Starting with the initial inter-
val [λ∗, λ∗], Algorithm 1 iteratively extracts an element ([λ�, λr ], x�, xr ) from the
queue Q and checks whether the interval [λ�, λr ] has to be further bisected into two
subintervals [λ�, λm] and [λm, λr ] that need to be further explored.During this process,
algβ is called once exactly each time an interval is bisected, computing an optimal
solution xm for the newly created interval boundary λm . This procedure ensures that
at any given time during the execution of Algorithm 1, there does not exist a value
λ ∈ I for which algβ has been called so far and that lies in the interior of an interval
that belongs to one of the current elements of Q.

First, consider the case that I = [λmin,∞) for some λmin ∈ R. For all i ∈ Z, define
the values

λi := λmin + (1 + ε)i . (5)

We show that, for each i ∈ Z for which

λ∗ < λi+1 and λi < λ∗, (6)
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there exists at most one value λ in the interval [λi , λi+1] for which algβ is called
during the execution of Algorithm 1. Note that these intervals (together) cover the
initial interval [λ∗, λ∗], outside of which algβ is never called in Algorithm 1.

Consider one of these intervals and, for the sake of a contradiction, assume that
λ, λ′ ∈ [λi , λi+1] are two values for which algβ is called during the execution of
Algorithm 1. We assume without loss of generality that algβ is not called for any
value in between λ and λ′ during the execution of Algorithm 1 and that algβ is called
for λ before algβ is called for λ′.

Consider the iteration of the while loop during which algβ is called for λ′, i.e.,
where λ′ = λm = μ(xl , xr ). The value λ cannot lie in the interior of [λ�, λr ] due to our
previous observation. Also, λ cannot lie outside of [λ�, λr ] as this would contradict
our assumption that algβ is not called for any value in between λ and λ′ during the
execution of Algorithm 1 since algβ must have been called for λ� and λr earlier.
Thus, we must have λ� = λ or λr = λ. But now, since λ − λmin and λ′ − λmin differ
by a factor of at most 1 + ε, Proposition 3 implies that either fx�

(λr ) ≤ fxr (λr ),
fxr (λ�) ≤ fx�

(λ�), or

fx�
(λ′) ≤ (1 + ε) ·

(
λr − λ′

λr − λ�

· fx�
(λ�) + λ′ − λ�

λr − λ�

· fxr (λr )

)
,

and, thus, algβ is not called for λ′.
It remains to count the number of values λi for i ∈ Z that satisfy (5) and (6), which

are satisfied exactly for all i ∈ Z with

log1+ε

(
1

β
· ε · LB

UB

)
− 1 < i < log1+ε

(
β · 1

ε
· UB
LB

)
.

So, this number is in O( 1
ε

· log 1
ε

+ 1
ε

· log UB
LB + 1

ε
· logβ). Adding the time TLB/UB

needed for computing the bounds LB,UBat the beginning of the algorithm, this proves
the bound on the running time. 
�
Moreover, we obtain the following corollary:

Corollary 1 If either an exact algorithm alg = alg1 or a (non-parametric) FPTAS
is available for the non-parametric version, then Algorithm 1 yields an FPTAS. If a
(non-parametric) PTAS is available for the non-parametric version, then Algorithm 1
yields a PTAS.

Proof For the case of an exact algorithm, this follows immediately fromTheorem 1. In
the case of an (F)PTAS, when given an arbitrary small ε ≥ 0, define δ = √

1 + ε − 1.
Then 1 + ε = (1 + δ) · (1 + δ). Theorem 1 states that we can compute a (1 + ε)-
approximation in time

O
(
TLB/UB + Talg1+δ

·
(
1

δ
· log 1

δ
+ 1

δ
· log UB

LB

))


�
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Remark 2 In the case of discrete problems as in Remark 1, the choice of the initial
interval [λ∗, λ∗] proposed in Remark 1 leads to a running time of

O
(
TLB/UB + Talgβ

·
(
1

ε
· log UB

LB
+ 1

ε
· logβ

))
.

4 Small cardinality

In this section, we address the issue of computing approximations for parametric
optimization problems that are as small as possible in terms of cardinality. To this end,
we provide an algorithm that, given an α-approximation R and an exact algorithm
alg = alg1 for the non-parametric problem, returns an α-approximation S that has
minimum cardinality among the ones contained in R. If it is known that R consists of
solutions that are supported in R, we show how this information can be used in order
to reduce the running time of this algorithm significantly.

Moreover, if S∗ ⊆ X is an α-approximation of minimum cardinality for a given
instance of a parametric optimization problem, we show that this algorithm can be
used along with Algorithm 1 of the previous section in order to compute an α-
approximation S of cardinality |S| ≤ 2 · |S∗|.

Throughout this section, we assume that alg can not only find an optimal solution
for any λ ∈ I but can also compute a lexicographically optimal solution for the
(non-parametric) optimization problem

lexminx∈X (b(x), a(x)), (7)

where we assume that this optimum exists. For α ≥ 1, we say that a solution x ∈ X is
α-approximate for (7) if, for an optimal solution x∗ of (7), we have b(x) ≤ α · b(x∗)
and a(x) ≤ α · a(x∗).

Solving (7) corresponds tominimizing a+λ·b for “λ → ∞” in the following sense:
A solution x ∈ X is optimal for (7) if and only if, for any x ′ ∈ X , there exists some
λ∗ ∈ I such that fx (λ) ≤ fx ′(λ) for all λ ≥ λ∗. This also applies to approximation:
A solution x ∈ X is α-approximate for (7) if and only if, for any x ′ ∈ X , there exists
some λ∗ ∈ I such that fx (λ) ≤ α · fx ′(λ) for all λ ≥ λ∗.

For convenience,wedefine the followingnotation:Wewrite fx (∞) := (b(x), a(x))
for all x ∈ X and f (∞) := fx∗(∞) for an optimal solution x∗ ∈ X to (7). When
writing fx (∞) ≤ fx ′(∞) for two solutions x, x ′ ∈ X , we refer to the lexicograph-
ical order relation. We also write “alg(∞)” when indicating that alg is called for
solving (7).

The additional assumption that alg is able to solve (7) is a reasonable one since,
for most applications of linear parametric optimization, the functions a and b admit
values in a discrete set such that the values of any two different solutions x, x ′ ∈ X are
either equal or differ by at least LB. In this case, (7) is equivalent to the non-parametric
problem for λ > UB

LB . Thus, solving (7) is typically not more difficult than minimizing
the objective function a + λ · b for any other λ ∈ I .

We stress the fact that this assumption is necessary as the following theorem states.
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Theorem 2 For a given α > 1, no deterministic algorithm can compute a minimum
cardinality subset R∗ of an α-approximation R that maintains α as the approximation
guarantee for the general linear parametric problem (1) when given as the input only:

– the α-approximation R
– the interval I = [λmin,∞)

– a routine alg that computes an optimal solution for any λ ∈ I but not for (7)

Proof For the sake of a contradiction, assume that there exists such a deterministic
algorithm A that, for any instance of a linear parametric optimization problem, termi-
nates after finitely many calls to alg. Consider the following instance: I = [0,∞)

and X = {x1, x2, x3} with

fx1(λ) = α + λ · α

fx2(λ) = (α + 1) + λ

fx3(λ) = 1 + λ

When A is used to compute a minimum cardinality α-approximation that is a subset
of the α-approximation R = {x1, x2} it returns {x1} after finitely many calls to alg.
Since, for any λ ∈ I , x3 is the only optimal solution, all of these calls to alg return x3.
We denote by λ̄ the maximum value for which alg is called by A in this scenario. We
assume, without loss of generality, that λ̄ > 0. Otherwise set λ̄ = 1.

Now consider the instance with I = [0,∞) and X = {x1, x2, x3, x4}, where

fx4(λ) = (α + 1) + λ · max

{
1 − α

λ̄ + α
,
1

α

}
,

(see also Fig. 2) and again, use A to compute a minimum cardinality subset of R =
{x1, x2}. Note that R is, in fact, an α-approximation in this instance since, for all λ ∈ I ,

fx2(λ) = (α + 1) + λ < α ·
(

(α + 1) + λ · 1
α

)
≤ α · fx4(λ).

Also, note that the input for A is exactly the same in this scenario as in the previous
one. Moreover, for all 0 < λ ≤ λ̄, we have

fx3(λ) = 1 + λ

≤ 1 + λ + α − λ · α

λ̄

< 1 + λ + α − λ · α

λ̄ + α

= (α + 1) + λ ·
(
1 − α

λ̄ + α

)

≤ fx4(λ),
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Fig. 2 Illustration of the instance constructed in the proof of Theorem 2. The solution x3 is optimal for all
λ ≤ λ̄. The solution x1 is not α-approximate for λ > μ(x3, x4)

and we also have fx3(0) = 1 < 1 + α = fx4(0), so alg returns x3, i.e., the same
solution as in the other instance, for all λ ≤ λ̄. Thus, since A is a deterministic
algorithm, it behaves in exactly the same way in both of these scenarios. It returns
{x1} after doing the same calls to alg as before.

However, this is not a correct output since {x1} is not an α-approximation: For
λ > max{λ̄ + α, α2

α−1 }, we have

fx1(λ) = α · (1 + λ)

> α ·
(
1 + λ + α ·

(
1 − λ

λ̄ + α

))

= α ·
(

(α + 1) + λ ·
(
1 − α

λ̄ + α

))

and

fx1(λ) = α · (1 + λ)

= α ·
(
1 + λ

α
+ (α − 1) · λ

α

)

> α ·
(
1 + λ

α
+ α2

α

)

= α ·
(

(α + 1) + λ · 1
α

)

and, thus, fx1(λ) > α · fx4(λ) = α · f (λ). 
�
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Algorithm2describes the followinggreedyprocedure that, given aβ-approximation
R ⊆ X , extracts a minimum cardinality β-approximation S ⊆ R from R: We start by
choosing the solution among R that covers the largest set of parameter values contain-
ing λmin in terms of β-approximation, i.e., that is β-approximate for the maximum
value λ ∈ I while still being β-approximate for λmin. After that, we always choose
the solution that, together with all the previously chosen solutions, covers the largest
connected portion of I (starting at λmin) in terms of β-approximation.

The algorithm takes advantage of the following property of μ: If two solutions
x, x ′ ∈ X are β-approximate atμ(x, x ′), then the one of them having the smaller slope
covers a larger portion of [μ(x, x ′),∞). If x, x ′ are not β-approximate at μ(x, x ′),
then the one of them having the larger slope covers a larger portion of [λmin, μ(x, x ′))
(if one of them covers any value in this interval at all).

This property suffices to be able to compare two solutions x, x ′ ∈ R with respect
to the above criterion in all necessary cases using a single alg-call.

The following theorem formally states the correctness and running time of Algo-
rithm 2.

Algorithm 2: Algorithm minimizing the cardinality of an α-approximation
input : An α-approximation R = {x1, . . . , xk }, an exact algorithm alg for the non-parametric

version of Π

output: A smallest-cardinality subset of R that is an α-approximation

1 Sort x1, . . . , xk such that fx1 (λmin) ≤ fx2 (λmin) ≤ · · · ≤ fxk (λmin) and fxi (∞) ≤ fxi+1 (∞) if
fxi (λmin) = fxi+1 (λmin)

2 If fxi (∞) ≤ fxi+1 (∞) for some i , delete xi+1 until fx1 (λmin) < fx2 (λmin) < · · · < fxk (λmin)

and fx1 (∞) > fx2 (∞) > · · · > fxk (∞)

3 xmin ← alg(λmin); x∞ ← alg(∞)

4 S ← ∅ ; /* solution set */
5 i = 1; /* index of currently found best next solution */
6 j ← 2; /* index of current solution */
7 π ← 0; /* index of previously chosen solution */
8 while fx j (λmin) ≤ α · fxmin (λmin) and j ≤ k do
9 if fx j (μ(xi , x j )) ≤ α · f (μ(xi , x j )) then

10 i ← j

11 j ← j + 1

12 S ← {xi }
13 while fxi (∞) > α · fx∞ (∞) do
14 π ← i
15 foreach j = π + 1, . . . , k do
16 if fx j (μ(xπ , x j )) ≤ α f (μ(xπ , x j )) and fx j (μ(xi , x j )) ≤ α f (μ(xi , x j )) then
17 i ← j

18 S ← S ∪ {xi }
19 return S

Theorem 3 Algorithm 2 computes a minimum cardinality subset of R that is an α-
approximation using O(k2) calls to alg.

123



Journal of Combinatorial Optimization

Proof In this proof, we use the following notation: For ι = 1, . . . , k, we define λ̄xι to
be the maximum parameter value for which the solution xι ∈ R (after the sorting and
the deleting step) is α-approximate, i.e.,

λ̄xι := max{λ ∈ I : fxι (λ) ≤ α · f (λ)}. (8)

We use the convention that λ̄xι = −∞ if the set in this definition is empty or if ι = 0,
and that λ̄xι = ∞ if the set in this definition is unbounded. If λ̄xι ∈ I for some xι ∈ X ,
then fxι (λ) = α · f (λ) since f and fxι are continuous.

Moreover, for any two solutions xi , x j ∈ R with b(xi ) > b(x j ), if there exists
some λ ≤ μ(xi , x j ) for which both xi and x j are α-approximate, we have λ̄x j ≥ λ̄xi if
and only if x j is α-approximate for μ(xi , x j ) (and, thus, also xi is α-approximate for
μ(xi , x j )): If xi and x j are α-approximate for μ(xi , x j ), then λ̄xi , λ̄x j ≥ μ(xi , x j ).
Thus, by Lemma 1,

fx j (λ̄xi ) ≤ fxi (λ̄xi ) ≤ α · f (λ̄xi ),

which implies that λ̄x j ≥ λ̄xi . Similarly, if xi and x j are not α-approximate for
μ(xi , x j ), then λ̄xi , λ̄x j < μ(xi , x j ). In this case, we have λ̄x j < λ̄xi since, by
Lemma 1,

fx j (λ̄xi ) > fxi (λ̄xi ) = α · f (λ̄xi ).

We now prove that Algorithm 2 terminates after performing O(k2) calls to alg.
Apart from the initialization, alg is only called when evaluating the optimal cost
curve f at μ(xi , x j ) or μ(xπ , x j ) in lines 9 and 16. In the while loop starting in line 8,
at most k iterations are performed.

The stopping condition of the while loop starting in line 13 is also fulfilled after
at most k iterations: We know that R is an α-approximation, so, for any xi ∈ R,
we either have fxi (∞) ≤ α · f (∞) or there exists an x j ∈ R with j > i such
that fx j (μ(xi , x j )) ≤ α · f (μ(xi , x j )). Note that in the beginning of each iteration
of the while loop, π is set to be equal to i , so the condition in line 16 simplifies
to fx j (μ(xi , x j )) ≤ α · f (μ(xi , x j )). Thus, the value of i is strictly increased in
each iteration. When i = k (at the latest), the algorithm terminates since R is an
α-approximation, so we must have fxi (∞) ≤ α · f (∞) for some xi ∈ R.

In each iteration of the second while loop, 2 · (k − π) ∈ O(k) many calls to alg
are performed.

We now show that the set S returned by Algorithm 2 is indeed an α-approximation.
To this end,we showby induction that at any timeduring the execution of the algorithm,

(i) S is an α-approximation for all λ ∈ [λmin, λ̄xπ ] and
(ii) the set S ∪ {xi } is an α-approximation for all [λmin, λ̄xi ]
Statements (i) and (ii) obviously hold after the initialization, when S = ∅, i = 1 and

π = 0. Afterwards, whenever xi is added to S, π is set to be equal to i , so it suffices
to show (ii), since this immediately implies (i) at any given time during the execution
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of the algorithm. We assume now that statements (i) and (ii) hold immediately before
the value of i is changed during the execution of the algorithm and show that (ii) holds
after this step.

When i is assigned a new value in line 10, we know that (for this new value)

fxi (λmin) ≤ α · fxmin(λmin) = α · f (λmin)

by line 8, which, in particular, implies λ̄xi ≥ λmin. Since also

fxi (λ̄xi ) ≤ α · f (λ̄xi )

by (8), statement (ii) follows from Lemma 2.
When i is assigned a new value in line 17 and if statement (i) holds at this moment,

it suffices to show that xi is α-approximate for all λ ∈ [λ̄xπ , λ̄xi ]. We know that

fxπ (μ(xπ , xi )) = fxi (μ(xπ , xi )) ≤ α · f (μ(xπ , xi )),

so λ̄xπ ≥ μ(xπ , xi ) and also λ̄xi ≥ μ(xπ , xi ). Since we also have fxi (λ̄xi ) ≤ α ·
f (λ̄xi ) by (8), Lemma 2 implies that xi is α-approximate for all λ ∈ [λ̄xπ , λ̄xi ] ⊆
[μ(xπ , xi ), λ̄xi ].

When the algorithm terminates, we know that fxi (∞) ≤ α · fx∞(∞), so we have
λ̄xi = ∞. Since xi must have been added to S immediately before, this concludes the
proof that the returned set S is an α-approximation.

Finally, we show that S has minimum cardinality among all α-approximations
S′ ⊆ R. Note that we only have to consider the remaining set after the sorting and
deleting in the beginning of the algorithm, i.e., it suffices to show that S has minimum
cardinality among all α-approximations S′ ⊆ {x1, . . . , xk}, since if, for two solutions
x, x ′ ∈ R, we have fx (λmin) ≤ fx ′(λmin) and fx (∞) ≤ fx ′(∞), x ′ can be replaced by
x in any α-approximation. Thus, in the following, we assume that R = {x1, . . . , xk}.
We know that S = {x j1 , . . . , x j�} for some j1 < · · · < j� and l = |S|, and we denote
the cardinality of a smallest α-approximation S∗ ⊆ R by m := |S∗|.

It is easy to see that, for the ordering of x1, . . . , xk , it holds that b(x1) > · · · > b(xk).
Moreover, we note that the fact that the value of i is never decreased during the
execution of the algorithm implies that x j1 , . . . , x j� are added to S in exactly this
order.

We show the following statement via induction on ι = 1, . . . , �: There exists a
subset S∗

ι of R such that

– S∗
ι is an α-approximation,

– S∗
ι has cardinality m, and

– S∗
ι contains {x j1, . . . , x jι}.

For ι = �, this statement implies, that m ≤ |S| ≤ |S∗
� | = m, i.e., S also has cardinal-

ity m.
In order to show the statement for ι = 1, let S∗

0 = {x j∗1 , . . . , x j∗m } ⊆ R with
j∗1 < · · · < j∗m be an α-approximation. We show that x j1 is α-approximate for any
λ ∈ [λmin, μ(x j∗1 , x j∗2 )] and we can therefore replace x j∗1 by x j1 in S∗

0 : Note that
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whenever the condition in line 9 is checked during the execution of the algorithm, we
know that i < j , i.e., b(xi ) > b(x j ). Moreover, both xi and x j are α-approximate for
λmin, which implies that the condition that fx j (μ(xi , x j )) ≤ α · f (μ(xi , x j )), which
is checked in line 9, is equivalent to the condition that λ̄x j ≥ λ̄xi . Thus, after the while
loop starting in line 8, xi satisfies λ̄xi ≥ λ̄x j for all x j ∈ Rwith fx j (λmin) ≤ α· f (λmin),
so, in particular, we have

λ̄x j1
= λ̄xi ≥ λ̄x j∗1

≥ μ(x j∗1 , x j∗2 ),

where the equality holds since xi = x j1 is the first solution added to S and the last
inequality holds since x j∗1 is α-approximate for μ(x j∗1 , x j∗2 ) in S∗

0 .
Next, we do the induction step ι → ι+1 for ι = 1, . . . , �−1. To this end, let the set

S∗
ι = {x j∗1 , . . . , x j∗m } ⊆ R with j∗1 < · · · < j∗m be an α-approximation of cardinalitym

that contains {x j1 , . . . , x jι}. Note that we must have x j∗1 = x j1 , . . . , x j∗ι = x jι since S
is an α-approximation and S∗

ι has minimum cardinality.
Consider the iteration of the while loop starting in line 13 in which x jι+1 is added to

S. In this iteration, we have π = jι = j∗ι . Note that the condition checked in line 16
is equivalent to

fx j (μ(xπ , x j )) ≤ α · f (μ(xπ , x j )) and λ̄x j ≥ λ̄xi ,

so, at the end of the inner loop starting in line 15, xi satisfies λ̄xi ≥ λ̄x j for all j ≥ π

with fx j (μ(xπ , x j )) ≤ α · f (μ(xπ , x j )). Moreover, xi is added to S at the end of this
iteration, so we have i = jι+1. Thus, we can conclude λ̄x jι+1

= λ̄xi ≥ λ̄x j∗
ι+1

. Again,

we argue that we can replace x j∗ι+1
by x jι+1 in S∗

ι :
If ι = 1, since S is an α-approximation, x jι = x j∗ι ∈ S∗

ι is α-approximate for any

λ ∈ [λmin, μ(x jι , x jι+1)] = [λmin, μ(x j∗ι , x jι+1)].

Similarly, if ι ∈ {2, . . . , � − 1}, x jι is α-approximate for any

λ ∈ [μ(x jι−1 , x jι ), μ(x jι , x jι+1)] = [μ(x j∗ι−1
, x j∗ι ), μ(x j∗ι , x jι+1)].

Moreover, x jι+1 is α-approximate for any

λ ∈ [μ(x jι , x jι+1), λ̄x jι+1
] ⊇ [μ(x j∗ι , x jι+1), λ̄x j∗

ι+1
].

This concludes the proof that |S| = m. 
�
Remark 3 For β > α ≥ 1, any α-approximation is also a β-approximation. Thus,
letting Algorithm 2 interpret a given α-approximation Sα as a β-approximation yields
a β-approximation Sβ ⊆ Sα that has minimum cardinality among all subsets of Sα

that are a β-approximation.
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In Algorithm 2, if we know that all solutions x1, . . . , xk ∈ R are supported, we
can reduce the running time by modifying the second while loop using the following
property:

Lemma 4 Let α ≥ 1, let R ⊆ X be an α-approximation, and let x, x ′, x ′′ ∈ X be
solutions that are supported in R such that b(x) > b(x ′) > b(x ′′). If

fx ′(μ(x, x ′)) > α · f (μ(x, x ′))

then also

fx ′′(μ(x, x ′′)) > α · f (μ(x, x ′′)).

Proof Since x is supported in R, there exists λx ∈ R such that fx (λx ) is minimum
within R, i.e., where, in particular, fx (λx ) ≤ fx ′(λx ) and fx (λx ) ≤ α · f (λx ). There-
fore, by Lemma 2, it suffices to show that λx ≤ μ(x, x ′) ≤ μ(x, x ′′). The first
inequality follows immediately fromLemma 1. In order to prove the second inequality,
assume, for the sake of a contradiction, that μ(x, x ′) > μ(x, x ′′). Then, by Lemma 1,

fx ′(μ(x, x ′′)) > fx (μ(x, x ′′)) = fx ′′(μ(x, x ′′))

and, therefore, for all λ ≤ μ(x, x ′′),

fx ′(λ) = fx ′(μ(x, x ′′)) + (λ − μ(x, x ′′)) · b(x ′)
> fx ′′(μ(x, x ′′)) + (λ − μ(x, x ′′)) · b(x ′′)
= fx ′′(λ),

and, for λ ≥ μ(x, x ′′),

fx ′(λ) = fx ′(μ(x, x ′′)) + (λ − μ(x, x ′′)) · b(x ′)
> fx (μ(x, x ′′)) + (λ − μ(x, x ′′)) · b(x)
= fx (λ),

which contradicts the fact that x ′ is supported in R. 
�
Due to this property, we know that, during the execution of Algorithm 2, when-

ever fx j (μ(xπ , x j )) > α · f (μ(xπ , x j )) for some j in line 16, this also holds for
j + 1, . . . , k. Therefore, we do not have to check the first condition of line 16 for all
j > π in each iteration of the while loop starting in line 13. The second condition can
be removed completely in the case that all solutions in R are supported in R, since in
this case, for j = 1, . . . , k − 1, we have that x j is α-approximate for (μ(x j , x j + 1)).

In Algorithm 2, if all solutions x ∈ R are supported in R, we can, thus, replace
lines 15 through 17 by the following without changing the output of the algorithm:

Moreover, for the same reason that the second condition of line 16 in the original
version of Algorithm 2 is always fulfilled, the condition in line 9 is also always fulfilled
and can therefore be removed. We obtain the following result:
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15 while fx j (μ(xπ , x j )) ≤ α · f (μ(xπ , x j )) do
16 i ← j
17 j ← j + 1

Theorem 4 If R is an α-approximation consisting of solutions that are supported in R,
the modified version of Algorithm 2 computes a minimum cardinality subset of R that
is an α-approximation using O(k) calls to alg.

Proof As argued above, the output of Algorithm 2 is not changed by the modifications
if R consists of solutions that are supported in R.

Moreover, since, in themodified algorithm, f is evaluated only for valuesμ(xπ , x j ),
where, after each evaluation, either π or j is strictly increased, the number of evalua-
tions is in O(k). 
�

Given an instance of a parametric optimization problem and α, one might be inter-
ested in computing α-approximations containing the minimum number of solutions
needed for an α-approximation. When having access to an algorithm alg solving the
non-parametric problem exactly, we are able to compute approximations consisting of
solutions that are supported not only in the approximation itself but in X . The following
results state that any α-approximation consisting of supported solutions contains an α-
approximation whose cardinality is at most twice as large as the minimum cardinality
of any α-approximation for the given instance.

Lemma 5 Let α ≥ 1 and let S = {x1, . . . xk} be an α-approximation consisting of
supported solutions xi ∈ X, where b(x1) > b(x2) > ... > b(xk). Let [λ, λ̄] ⊆ I be
an interval and let x∗ ∈ X be some solution that is α-approximate for all λ ∈ [λ, λ̄].
Then there exist two (or fewer) solutions x, x ′ ∈ S such that, for each λ ∈ [λ, λ̄],
either x is α-approximate or x ′ is α-approximate.

Proof Since S consists of supported solutions, we know that, for each xi ∈ S, there
exists a value λi ∈ I such that f xi (λi ) = f (λi ). For these values, Lemma 1 implies
that

λ1 ≤ μ(x1, x2) ≤ λ2 ≤ · · · ≤ λk−1 ≤ μ(xk−1, xk) ≤ λk .

First, consider the case that b(x∗) > b(x1). By Lemma 1, we know that fx∗(λ) <

fx1(λ) for all λ < μ(x∗, x1), so we must have λ1 ≥ μ(x∗, x1).
We know that x1 isα-approximate for allλ ∈ I withλ ≤ μ(x1, x2), so, in particular,

x1 is α-approximate for all λ ∈ [λ,μ(x1, x∗)]. For λ ∈ [μ(x1, x∗), λ̄], we have
fx1(λ) ≤ fx∗(λ) by Lemma 1, so, since x∗ is α-approximate for λ, also x1 is α-
approximate for λ. Similarly, we can show that, in the case that b(x∗) < b(xk), xk is
α-approximate for all λ ∈ [λ, λ̄].

Otherwise,we can choose i maximal such thatb(xi ) ≥ b(x∗) andb(xi+1) < b(x∗)).
Then xi is α-approximate for all λ ∈ [λi , μ(xi , xi+1)] and xi+1 is α-approximate
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for all λ ∈ [μ(xi , xi+1), λi+1]. Moreover, if λ < λi , then xi is α-approximate for
all λ ∈ [λ, λi ]: Let λ ∈ [λ, λi ]. Then

fxi (λ) = fxi (λi )︸ ︷︷ ︸
= f (λi )

+ (λ − λi )︸ ︷︷ ︸
≤0

· b(xi )︸ ︷︷ ︸
≥b(x∗)

≤ fx∗(λi ) + (λ − λi ) · b(x∗)
= fx∗(λ)

≤ α · f (λ).

Analogously, if λ̄ > λi+1, then xi+1 is α-approximate for all λ ∈ [λi+1, λ̄]. 
�
Note that Lemma 5 also holds for intervals [λ,∞) ⊆ I . Thus, we have the following

corollary:

Corollary 2 Let S ⊆ X be an α-approximation consisting of supported solutions
and let S∗ ⊆ X be an α-approximation having minimum cardinality among all α-
approximations for the given instance. Then there exists an α-approximation S′ ⊆ S
with |S′| ≤ 2 · |S∗|.
Proof By Lemma 5, for each solution x∗ ∈ S∗, there exist two or fewer solutions
in S such that, for all λ ∈ I for which x∗ is α-approximate, at least one of the two is
α-approximate. Thus, for an α-approximation, at most 2 · |S∗| solutions from S are
necessary. 
�

Since, when using an exact algorithm alg for the non-parametric problem, Algo-
rithm 1 computes a (1+ε)-approximation consisting of supported solutions, we obtain
the following:

Corollary 3 For ε > 0, let S∗ be a (1 + ε)-approximation of minimum cardinality.
We can compute a (1 + ε)-approximation S of cardinality |S| ≤ 2 · |S∗| using O( 1

ε
·

log( 1
ε
) + 1

ε
· log(UB)) evaluations of alg.

Proof Apply Algorithm 1 and the modified version of Algorithm 2 consecutively. The
claim follows from Theorem 1, Corollary 2, and Theorem 4. 
�
Remark 4 In Algorithm 1, when using a stack instead of a queue in order to handle the
remaining intervals, the solutions x of the returned set are computed in decreasing order
of b(x). This means that, when applying Algorithm 1 and Algorithm 2 consecutively,
the sorting step of Algorithm 2 can be skipped if this ordering is preserved.

The following example shows that there exist instances of linear parametric opti-
mization problems where the unique minimum cardinality α-approximation does not
contain any supported solutions. This means that no algorithm that can only access the
instance via analg routine is able to compute aminimum cardinalityα-approximation
and the factor of two achieved by Corollary 3 is, in this sense, best possible. Moreover,
the example can be used to demonstrate that, in the modified version of Algorithm 2,
the condition that the input set R consists of solutions that are supported in R is, in
fact, necessary.
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Example 1 For α > 1, consider an instance with X = {x1, x2, x3}, I = [0,∞), and

a(x1) = 2 b(x1) = 3α − 1
a(x2) = 2α b(x2) = 2α
a(x3) = 3α − 1 b(x3) = 2

Then, for λ ≤ 1, we have fx2(λ) > fx1(λ) and for λ ≥ 1, we have fx2(λ) > fx3(λ),
so x2 is not supported. Moreover, we have

fx3(0) = 3α − 1 > 2α = α · fx1(0),

and

fx1(3α + 3) = 2 + (3α + 3) · (3α − 1)

= 9α2 + 6α − 1

> 9α2 + 5α

= α · (3α − 1 + (3α + 3) · 2)
= α · fx3(3α + 3).

Thus, neither {x1} nor {x3} is an α-approximation and {x1, x3} is the only α-
approximation that consists only of supported solutions. However, {x2} is an
α-approximation: For any λ ∈ [0,∞), we have

fx2(λ) = 2α + λ · 2α = α · (2 + 2λ) ≤ α · (2 + (3α − 1) · λ) = α · fx1(λ)

and

fx2(λ) = 2α + λ · 2α = α · (2 + 2λ) ≤ α · (3α − 1 + 2λ) = α · fx3(λ).

We, thus, have the following Corollary:

Corollary 4 There exist instances of linear parametric optimization problems in which
no α-approximation S consisting only of supported solutions has cardinality |S| <

2 · |S∗|, where S∗ is a minimum-cardinality α-approximation.

5 Applications

In this section, we show that our general results apply to the parametric versions of
many well-known, classical optimization problems including the parametric shortest
path problem, the parametric assignment problem, a general class of parametric mixed
integer linear programs that includes the parametric minimum cost flow problem, and
the parametric metric traveling salesman problem. As will be discussed below, for
each of these parametric problems, either the number of breakpoints in the optimal
value function can be super-polynomial, which implies that solving the parametric
problem exactly requires the generation of a super-polynomial number of solutions,
or the corresponding non-parametric version is already NP-hard.
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Parametric shortest path problem In the single-pair version of the parametric shortest
path problem, we are given a directed graphG = (V , R), where |V | = n and |R| = m,
together with a source node s ∈ V and a destination node t ∈ V , where s 
= t . Each
arc r ∈ R has a parametric length of the form ar + λ · br , where ar , br ∈ N0
are non-negative integers. The goal is to compute an s-t-path Pλ of minimum total
length

∑
r∈Pλ

(ar + λ · br ) for each λ ≥ 0.
Since the arc lengths ar + λ · br are non-negative for each λ ≥ 0, one can restrict

to simple s-t-paths as feasible solutions, and an upper bound UB as required in Algo-
rithm 1 is given by summing up the n − 1 largest values ar and summing up the
n − 1 largest values br and taking the maximum of these two sums, which can easily
be computed in polynomial time. The non-parametric problem can be solved in poly-
nomial timeO(m+n log n) for any fixedλ ≥ 0 byDijkstra’s algorithm,where n = |V |
and m = |R| (see, e.g., Schrijver 2003). Hence, Corollary 1 and Remark 2 yield an
FPTAS with running time O ( 1

ε
· (m + n log n) · log nC)

, where C denotes the maxi-
mum among all values ar , br . Moreover, by Corollary 3, we obtain an approximation
of cardinality at most twice the minimum possible.

On the other hand, the number of breakpoints in the optimal value function is at
least nΩ(log n) in the worst case even under our assumptions of non-negative, integer
values ar , br and for λ ∈ R≥0 (Carstensen 1983b; Nikolova et al. 2006).

Parametric assignment problem In the parametric assignment problem, we are given
a bipartite, undirected graph G = (U , V , E) with |U | = |V | = n and |E | = m. Each
edge e ∈ E has a parametric weight of the form ae + λ · be, where ae, be ∈ N0 are
non-negative integers. The goal is to compute an assignment Aλ of minimum total
weight

∑
e∈Aλ

(ae + λ · be) for each λ ≥ 0.
Similar to the parametric shortest path problem, an upper bound UB as required

in Algorithm 1 is given by summing up the n largest values ar and summing up the
n largest values br and taking the maximum of these two sums. The non-parametric
problem can be solved in polynomial time O(n3) for any fixed value λ ≥ 0 (see,
e.g., Schrijver 2003). Hence, Corollary 1 and Remark 2 yield an FPTAS with running
time O ( 1

ε
· n3 · log nC)

, where C denotes the maximum among all values ae, be.
Moreover, Corollary 3 yields an additional bound on the cardinality of the computed
approximation.

On the other hand, applying the well-known transformation from the shortest s-t-
path problem to the assignment problem (see, e.g., Lawler 2001) to the instances of
the shortest s-t-path problem with super-polynomially many breakpoints presented in
Carstensen (1983b), Nikolova et al. (2006) shows that the number of breakpoints in
the parametric assignment problem can be super-polynomial as well (see also Gassner
and Klinz 2010).

Parametric MIPs over integral polytopesA very general class of problems our results
can be applied to are parametric mixed integer linear programs (parametricMIPs) with
non-negative, integer objective function coefficients whose feasible set is of the form
P ∩ (Zp × R

n−p), where P ⊆ R
n≥0 is an integral polytope. More formally, consider

a parametric MIP of the form
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min /max (a + λb)�x
s.t. Ax = d

Bx ≤ e

x ≥ 0

x ∈ Z
p × R

n−p

where A, B are rational matrices with n rows, d, e are rational vectors of the appro-
priate length, and a, b ∈ N

n
0 are non-negative, rational vectors. We assume that the

polyhedron P := {x ∈ R
n : Ax = d, Bx ≤ e, x ≥ 0} ⊆ R

n is an integral polytope,
i.e., it is bounded and each of its (finitely many) extreme points is an integral point.

Since, for each λ ≥ 0, there exists an extreme point of P that is optimal for the
non-parametric problem Πλ, one can restrict to the extreme points when solving the
problem. Since x̄ ∈ N

n
0 for each extreme point x̄ of P and since a, b ∈ N

n
0, the

values a(x̄) = a� x̄ and b(x̄) = b� x̄ are non-negative integers. In order to solve the
non-parametric problem for any fixed value λ ≥ 0, we can simply solve the linear
programming relaxation min /max{(a + λb)�x : x ∈ P} in polynomial time. This
yields an optimal extreme point of P , which is integral by our assumptions. Similarly,
an upper bound UB as required in Algorithm 1 can be computed in polynomial time
by solving the two linear programs max{a�x : x ∈ P} and max{b�x : x ∈ P}, and
taking the maximum of the two resulting (integral) optimal objective values.

While Corollary 1 yields an FPTAS for any parametric MIP as above, it is well
known that the number of breakpoints in the optimal value function can be exponential
in the number n of variables (Carstensen 1983a; Murty 1980).

An important parametric optimization problem that can be viewed as a special case
of a parametric MIP as above is the parametric minimum cost flow problem, in which
we are given a directed graph G = (V , R) together with a source node s ∈ V and a
destination node t ∈ V , where s 
= t , and an integral desired flow value F ∈ N0. Each
arc r ∈ R has an integral capacity ur ∈ N0 and a parametric cost of the form ar +λ·br ,
where ar , br ∈ N0 are non-negative integers. The goal is to compute a feasible s-t-
flow x with flow value F of minimum total cost

∑
r∈R(ar +λ ·br ) · xr for each λ ≥ 0.

Here, a large variety of (strongly) polynomial algorithms exist for the non-parametric
problem, see, e.g., Ahuja et al. (1993). An upper bound UB can either be obtained by
solving two linear programs as above, or by taking the maximum of

∑
r∈R ar · ur and∑

r∈R br ·ur . Using the latter and applying the enhanced capacity scaling algorithm to
solve the non-parametric problem, which runs inO((m · log n)(m+n · log n)) time on
a graph with n nodes and m arcs (Ahuja et al. 1993), Corollary 1 and Remark 2 yield
an FPTAS with running time O ( 1

ε
· (m · log n)(m + n · log n) · logmCU

)
, where C

denotes the maximum among all values ar , br , and U := maxr∈R ur . Corollary 3,
again, lets us bound the cardinality of the approximation.

On the other hand, the optimal value function can have Ω(2n) breakpoints even
under our assumptions of non-negative, integer values ar , br and for λ ∈ R≥0 (Ruhe
1988).

Parametric metric traveling salesman problem In the parametric version of the (sym-
metric) metric traveling salesman problem (TSP), we are given a complete undirected
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graph G = (V , E), where |V | = n. Each edge e ∈ E = V × V has a paramet-
ric length of the form ae + λ · be, where ae, be ∈ N0 are non-negative integers
that satisfy the triangle inequality: For any three vertices u, v, w ∈ V , we have
a(u, w) ≤ a(u, v)+a(v,w) and b(u, w) ≤ b(u, v)+b(v,w). The goal is to compute
a Hamiltonian cycle Hλ of minimum total length

∑
e∈Hλ

(ae + λ · be) for each λ ≥ 0.
Similar to, e.g., the shortest path problem, an upper bound UB can be obtained by

taking the maximum of the sum of the n largest values ae and the sum of the n largest
values be. The non-parametric metric TSP can be 3

2 -approximated in O(n3) time
using Christofides’ algorithm (Christofides 1976). Hence, Remark 2 yields a ( 32 + ε)-
approximation algorithm whose running time is in O ( 1

ε
· n3 · (log nC)

)
, where C

denotes the maximum among all values ae, be.
On the other hand, it is well-known that even the non-parametric metric TSP is

APX-complete (see, e.g., Papadimitriou and Yannakakis 1993).
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