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Abstract

Abstract

In this work, synthesis of compliant mechanisms for a variable-geometry forward section wing

concept based on geometric nonlinear FEM is presented. The path-generation objective func-

tion formulation for topology optimization of compliant mechanisms is implemented in a cus-

tom optimization code. Moreover, the code is extended with other existing topology optimiza-

tion methods, such as a multiresolution topology optimization scheme and partial differential

equation based filtering techniques. The implementation is tested with generic example prob-

lems. A new stacked compliant mechanism rib concept is introduced for the morphing wing

application. For this concept, compliant mechanisms are designed under consideration of

stress constraints.

Keywords: Topology optimization, Compliant mechanisms, Path generation, MMA, Geomet-

ric nonlinear FEM, Stress constraints, Morphing wing
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1 Motivation

1 Motivation

In aircraft design, rigid airfoils must meet a vast variety of different and often conflicting re-

quirements. Profiles for example need to provide high amounts of lift during takeoff, landing

and climb, whereas during cruise flight only relatively low lift levels are required. To adapt

airfoils to these different operational regimes, many existing forms of wings with moving de-

vices can be used. Most of them change the profiles camber by varying the airfoil’s front or

rear section geometry. As a result, the coefficients of lift and drag can be changed. In high-

performance sailplane design, trailing edge flaps are the state of the art solution. This design

is well developed and only marginal further improvement is possible.

Research by Wiessmeier (2011) at TUM shows high potential in a novel sailplane design

concept, combining trailing edge flaps with an adaptive droop nose. With this design around

20% higher coefficients of lift appear to be feasible, allowing a higher aspect ratio wing and

higher possible wing loading. As a result not only the glide ratios can be increased significantly,

but also the speed of best glide.

Figure 1.1: Laminar airfoil with droop nose and trailing edge flap (Wiessmeier 2011)

Figure 1.1 illustrates Wiessmeier’s concept, in which the dashed line represents the morphed

high lift slow-flight airfoil. The solid line represents the high-speed profile. Shape morphing

allows to choose between these two optimized airfoil geometries in flight.

Existing droop nose solutions are not suited for application on sailplane wings. Most of these

concepts open large gaps, which would disturb the laminar flow and lead to a substantial per-

formance decrease of the laminar profiles used. Achleitner & Baier (2016) built upon Wiess-

meier’s work and proposed the new droop nose wing concept shown in figure 1.2. Research

on this concept is carried out in the project MILAN at the Institute of Aircraft Design at TUM.

Institute of Aircraft Design | Technical University of Munich 1
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Sealed Gap

Reinforced
C-Web

Foamcore

HM˗Fiber Spar Flanges

CFRP Spar Web

New Conzept:

Primary Wing Structure

Flexible Shell

Compliant Mechanism

Figure 1.2: Adaptive droop nose concept of the project-MILAN (Achleitner & Baier 2016)

The adaptive droop nose concept in figure 1.2 consists of an anisotropic flexible shell (depicted

in yellow) in the wings nose section, which is supported by deformable ribs (shown in blue).

The primary structure is located in the rear part of the wing. The profile nose can be morphed

by actuation of the ribs, which consist of compliant mechanisms.

Figure 1.3: Compliant mechanism gripping tool (Kota et al. 2005)

Compliant mechanisms are kinematic mechanisms without conventional hinges. They gain

their mobility by elastic deformation of their members (Sigmund 1997). A typical example

for a compliant mechanism is the compliant gripping tool shown in figure 1.3. By pulling at

the handle, the gripper closes. After releasing, the mechanism returns to its undeformed

state. It is seen that the motion is allowed by deformation of thin elastic structures. Some

Institute of Aircraft Design | Technical University of Munich 2



1 Motivation

advantages of such compliant mechanisms are their small part count, no need of lubrication

or maintenance and their self-restoring force (Sigmund 1997). Compliant mechanisms can

be manufactured by additive manufacturing techniques. One method for the synthesis of

compliant mechanisms is topology optimization.

First compliant mechanism ribs for the droop nose concept in figure 1.2 have already been

designed by topology optimization in a prior work by Salehar (2015). Here, linear finite element

methods (FEM) within the commercial software Optistruct were used. Based on the results

obtained, first demonstrators for the MILAN project were built. One of them is illustrated

in figure 1.4, where in the upper picture its undeformed state and in the lower picture its

morphed state is shown. Looking at the deformed rib, kinks on the outer profile contour can

be observed, moreover cracks in the hinge regions of the demonstrator appeared after a

few actuations. These defects make clear, that further improvement of the mechanisms with

respect to shape adherence and fatigue is necessary for real-world application.

kinks

Figure 1.4: Laser sintered demonstrator of an integral compliant mechanism rib based on
results by Salehar (2015)

A subsequent work by Salehar (2017) investigated possible improvements by the application

of topology optimization with geometric nonlinear finite element modeling in Optistruct. The

outcome was, that due to limited access possibilities to the optimization parameters and the

highly sensitive behavior of nonlinear analysis in topology optimization, no satisfactory results
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could be reached.

Another groundwork by the author (Reinisch 2017) consisted in the development of a MATLAB

code for compliant mechanism topology optimization. The resulting mechtop code allows to

optimize simple compliant mechanisms in 2D with regular finite element (FE) meshes. Meth-

ods for linear and for geometric nonlinear finite element analysis (FEA) are implemented.

Moreover, a novel stress constraint formulation for nonlinear mechanism synthesis is intro-

duced. The code was tested on the widely used compliant inverter benchmark problem.

The goal of this thesis is the further development of the mechtop code and the synthesis of

compliant mechanism ribs for the project MILAN based on geometric nonlinear FEM. There-

fore, the FE solver has to be adapted for non-regular mesh modeling. Moreover, the objective

function formulation for exact output displacement presented by Pedersen et al. (2001), the

so-called path-generation formulation is implemented.

At the beginning of this thesis, a general introduction to topology optimization theory is given.

The newly implemented methods are described and an overview over the original state of the

mechtop code is provided. The implementation is then shortly discussed, with special focus

on the testing results obtained for a generic example problem. Furthermore, the new concept

of a stacked compliant mechanism rib is introduced, for which rib-shaped mechanisms are

designed using topology optimization with geometric nonlinear FEA. The related optimization

formulation and the results obtained are discussed.
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2 State of the Art

In this chapter the underlying theory of topology optimization is presented. A general introduc-

tion to topology optimization of compliant mechanisms is given based on a prior elaboration

by the author (Reinisch 2017). Subsequently, the methods implemented in this work are de-

scribed in detail and a short description of the used optimization algorithm is given. At the end

of this section information about the original state of the software implementation at hand is

provided.

2.1 Introduction to Topology Optimization

Topology optimization is a form of structural optimization, whereby the spatial material distri-

bution is modified in order to improve a part’s performance. The performance is measured by

means of an objective function, which is minimized in an optimization loop. For continuum type

topology optimization, considered in this thesis, a continuous design space Ω is discretized

by finite elements. Through modification of the element stiffness matrices, the material dis-

tribution can be simulated. As initial information for the optimization only design space and

boundary conditions have to be defined. In contrast to other structural optimization methods

in topology optimization, the topology of a given structure is created by the optimization pro-

cess and not just modified by it. Figure 2.1 shows an exemplary design space definition for an

arbitrary topology optimization problem.

Ω

Ωs
t

Γt

Γd

Ωv d

g
Γ

Figure 2.1: General topology optimization design space definition (Salehar 2015)

In figure 2.1 Ω is the design space, Ωs and Ωv are regions with prescribed solid or void ma-

terial, respectively. Γ represents the boundary of the design space. As for the standard FE

application, boundary conditions have to be defined. Displacement boundary conditions as
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for instance fixed supports act at Γd. At Γt traction boundary conditions are applied, modeling

external loads. g represents body loads which act on the domain Ω.

Initial Design

End

FE-Analysis

Sensitivity Analysis

Optimization
(Update Design Variables)

Converged?

Result
Output

yes

no

Start

Figure 2.2: Workflow in topology optimization following Bendsøe & Sigmund (2004)

In figure 2.2, a flowchart describes the workflow of gradient-based topology optimization. As

an example, the stiffness of a beam structure is maximized, applying the so-called minimum

compliance problem formulation. In the upper right of figure 2.2, the initial design with pre-

defined boundary conditions is shown, which consists of evenly distributed semi-dense ma-

terial. Starting from this design, the material distribution is sequentially updated. For each

design update a FE analysis is performed, followed by a sensitivity analysis. This provides the

necessary gradient information to the optimization algorithm to calculate a modified material

distribution in each iteration. Intermediate results are shown to the middle right. If no further

improvement of the objective function can be achieved, the loop is stopped and the results are

stored. To the lower right, the resulting truss-like optimal material distribution is illustrated.

Looking at figure 2.2, it becomes evident that in order to avoid trivial solutions a restriction

to the amount of material available has to be introduced. Otherwise, the stiffest resulting

topology would be a full material beam. This limitation is realised through volume constraints,

which are used in most topology optimization problem formulations.

Arbitrary topology optimization problems can be defined using the standard optimization prob-

lem formulation in equation (2.1).
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minimize
x

z(x1, x2, ..., xn) x ∈ S

subject to: g j(x1, x2, ..., xn) ≤ 0 j = 1, . . . , p.

hk(x1, x2, ..., xn) = 0 k = 1, . . . , q.

(2.1)

In this equation, z is a general objective function, it is minimized by variation of the n design

variables x within the range of allowable designs S. The inequality constraints g j and the

equality constraints hk have to be satisfied in order to obtain a feasible solution. The functions

listed are related to the so-called system equations, which describe the physical behavior

of the underlying problem. In topology optimization they are usually solved numerically by

the finite element method. In an FE model the behavior of the elements can be influenced

by changing their stiffness matrices. By this means, solid is modelled by using the base

materials property parameters for the element stiffness matrix calculation, whereas for void

modeling very low material property values are used. Therefore, in topology optimization a

mathematical connection between design variables and element stiffness matrices has to be

introduced.

Due to the discrete nature of the material distribution problem (only either solid or void exist),

the design variables x are also discrete. Hence, the problem at hand is a discrete optimiza-

tion problem, for which it takes high computational effort to solve. For this reason, the most

common approach is to relax the problem, replacing the discrete design variable values with

continuous ones (Bendsøe & Sigmund 2004). This also leads to a continuous functional

relationship between design variables and element stiffness matrices. Several so-called inter-

polation methods exist, defining this relationship.

One approach is to use the homogenization method, first implemented by Bendsøe & Kikuchi

(1988). It is based on homogenization of a porous medium by the rules of micromechanics

and not only results in the material distribution, but also gives information about the orthotropic

material properties in each element (Harzheim 2014). However, the most common interpo-

lation method is the so-called SIMP approach based on isotropic material properties. This

approach is also used in this work and discussed in the following section.
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2.1.1 SIMP Solid Isotropic Material With Penalization

In density-based topology optimization, the normalized densities ρe of each finite element are

the design variables. These are defined as follows:

ρe =
ρe,phys

ρ0
0 < ρe < 1 (2.2)

where ρe,phys is the physical density of the finite element and ρ0 the density of the base mate-

rial. The normalization, of the element densities ρe,phys with respect to ρ0 results in the design

variable values ρe. In consequence solid elements are defined by ρe = 1 and void elements

by ρe = 0. One approach to link the design variables ρe to the element stiffness matrices and

further to the physical element behavior is the SIMP method.

Due to the underlying isotropic material, FE properties can be modified by changing only one

parameter, namely the element’s Young’s modulus Ee. Therefore, this parameter is contin-

uously linked to the element densities ρe by the SIMP relation. For the modeling of solid

elements the Young’s modulus is set to the base materials value E0 and for the modeling of

void elements very low values Emin are chosen. A zero Young’s modulus for void elements

has to be avoided, because of arising singularities in the stiffness matrices. As a result, the

SIMP approach has to satisfy the following boundary conditions:

Ee = Emin for ρe = 0 , 0 < Emin ≤ E ≤ E0

Ee = E0 for ρe = 1
(2.3)

Whereas the SIMP approach can model the properties of any semi-dense material, in reality

nothing in between solid and void material exists. Therefore, a penalty term k is introduced in

order to circumvent solution topologies with semi-dense (grey) elements. The original formu-

lation of the SIMP relation can then be written as follows:

Ee(ρe) = E0 ρ
k
e ρe,min < ρe < 1 (2.4)

Herein a lower bound of the design variable ρe,min is introduced to make sure that the condition

E(ρe,min) = Emin > 0 is satisfied. A modified SIMP formulation is applied in this work, it is
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defined as:

Ee(ρe) = Emin + (E0 − Emin) ρk
e 0 < ρe < 1 (2.5)

where the design variables ρe have their original 0-1 boundary values. This formulation is

particularly suited for the application of special filtering techniques and has the advantage

that void properties are not affected by the penalty term (Sigmund 2007).

In the FE model, each element stiffness matrix is first evaluated for the Young’s modulus

E = 1, resulting in Ke0. In a second step, this stiffness matrices are linearly modified by the

corresponding SIMP terms, as shown in the following equation:

Ke =
(
Emin + (E0 − Emin) ρk

e
)
Ke0 (2.6)

By assembly of the element stiffness matrices Ke, the global stiffness matrix K is obtained.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρe

E
e/

E
0

k=1
k=2
k=3
k=4
k=5

Emin/E0

Figure 2.3: Modified SIMP-approach (Reinisch 2017)

Figure 2.3 illustrates the modified SIMP approach defined by equation (2.5). It becomes

apparent that increasing penalty terms k penalize intermediate density elements. Starting

from E0 at ρe = 1 the stiffness values E drop fast towards Emin if high values of k are selected.

In this way, semi-dense elements are made disadvantageous for the optimization algorithm

(Harzheim 2014) . Discrete black and white solutions are the result.
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2.1.2 Minimum Output Displacement Objective Function

For this work, the relevant application of topology optimization is the compliant mechanism

synthesis, first introduced by Ananthasuresh et al. (1994) and Sigmund (1997). The task at

hand consists in finding mechanism topologies, that satisfy a prescribed input-output motion

relationship in a preferably energy efficient way. Due to the fact that generally, large displace-

ments occur in compliant mechanisms, nonlinear effects cannot be neglected. Hence, the

problem formulations listed in this thesis are all based on geometric nonlinear FEA. A detailed

discussion of the linear objective function formulations can be found in (Bendsøe & Sigmund

2004) or (Reinisch 2017).

A simple objective function formulation for compliant mechanism synthesis is the minimization

of output displacement at an arbitrary output node. In this section the nonlinear version of this

problem formulation, first introduced by Pedersen et al. (2001), is discussed as an introductory

example.

𝑓𝑖𝑛𝑓𝑖𝑛

𝑘𝑜𝑢𝑡
𝑢𝑜𝑢𝑡

𝑘𝑖𝑛

Figure 2.4: Compliant inverter benchmark problem sketch

A sketch of the widely used compliant inverter benchmark problem is shown in figure 2.4. It

represents an exemplary application of the output displacement minimization objective func-

tion. To the left of figure 2.4 an input force fin is applied at the input node and fixed supports

are provided at the left corners of the rectangular design space. The stiffness values kin and

kout are externally applied to model the actuator and work-piece behavior. The goal of the

problem depicted in figure 2.4 is to find a mechanism, which translates the input force into an

output displacement uout, opposed to the input direction. This can be reached by the following
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optimization formulation:

minimize
ρρρ

uout(ρρρ) = LTU

subject to: R(U ) =K(U )U − λF = 0

gv =
V

v f racVΩ
− 1 ≤ 0

0 ≤ ρρρ ≤ 1

(2.7)

The output displacement uout in equation (2.7) is minimized with respect to the element den-

sities ρe, which are the entries of the design variable vector ρ. L is an all-zero vector, except

for the entry corresponding to the degree of freedom (DOF) of uout. This entry is set to 1 or

in case of maximization of the output displacement to -1. Also, a volume constraint is added,

limiting the mechanisms volume V to the fraction v f rac of the total design space volume VΩ,

with 0 < v f rac ≤ 1. The volume is defined as:

V =
∑

e

ρeve (2.8)

where ve are the element volumes in the undeformed state.

In equation (2.7) R(U ) = 0 is the nonlinear system equation describing the structural behav-

ior. This equation imposes that the residual between inner system force vector K(U )U and

external force vector λF has to be zero in the equilibrium state. With λ being the explicit load

incrementation factor, which equals to one for the fully converged solution. Moreover, U is the

displacement vector andK(U ) the nonlinear stiffness matrix depending on the deformations.

The representation of R in equation (2.7) is a special formulation of the geometric nonlinear

FEM, allowing a simple approach to sensitivity analysis. The nonlinear stiffness matrix is de-

fined in equation (A.11) in Appendix A.3.1. The nonlinear system equation is solved iteratively

by the Newton-Raphson algorithm, which requires high computational effort.

2.1.3 Sensitivity Analysis

In gradient-based topology optimization sensitivities of the objective functions and constraints

with respect to the design variables have to be calculated in each iteration. This gradient

information is needed by the optimization algorithm to sequentially improve the design until an

optimum is found. Due to the fact that, in topology optimization problems contain mostly only

a few constraint functions, adjoint calculation of the gradient information is prevalently used.
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If the functions only depend on ρ analytical gradients can easily be derived. In the case

of dependence of other variables, the chain rule has to be applied. In order to avoid the

calculation of difficult analytical sensitivities, as for example ∂U
∂ρ , the adjoint method is used.

The sensitivity analysis in topology optimization is outlined below, by the derivation of the

gradients for the output displacement minimization problem formulation stated in equation

(2.7).

The objective function derivatives for equation (2.7) are calculated by the adjoint method.

Therefore, the residuum multiplied by an arbitrary vector λad j, the so-called adjoint vector, is

added to the objective function resulting in:

uout(ρ) = LTU + λλλT
ad j (K(U )U − λF )︸               ︷︷               ︸

R

(2.9)

This does not affect the objective function value, becauseR = 0 in the equilibrium state. After

derivation with respect to the design variable ρe the equation writes as follows:

∂uout

∂ρe
= LT ∂U

∂ρe
+ λλλT

ad j

(∂R
∂U

∂U

∂ρe
+
∂R

∂ρe

)
(2.10)

where ∂R
∂U equals the tangent stiffness matrix KT defined in equation (A.12). Now λad j is

chosen such, that the unwanted term ∂U
∂ρ disappears from the equation. This is done by

solving the so-called adjoint problem:

KT λλλad j = −L (2.11)

where the symmetry of the tangent stiffness matrix is used. Computationally this equals to the

solution of an additional linear load case. The objective function derivatives in consequence

simplify to:
∂uout

∂ρe
= λλλT

ad j
∂R

∂ρe
(2.12)

where the term ∂R
∂ρe

is further derived analytically to:

∂R

∂ρe
=
∂K(U )
∂ρe

U = k (E0 − Emin) ρk−1
e KKK0e(ue)ue (2.13)

Equation (2.13) is only valid for the case of density independent external forces ∂F
∂ρe
= 0, which

applies for most compliant mechanism synthesis problems. In equation (2.13) k is the SIMP
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penalty term, K0e is the nonlinear element stiffness matrix calculated for E = 1 and ue is the

element nodal displacement vector.

For the volume constraint function in equation (2.7), which only depends on the design vari-

ables, the sensitivities can be directly calculated as follows:

∂gv

∂ρe
=

ve

v f racVΩ
(2.14)

2.1.4 Numerical Complications in Topology Optimization

This section briefly discusses some numerical issues occurring in topology optimization.

Namely the mesh dependency of the results, the appearance of so-called checkerboard pat-

terns, one node connected hinges and instabilities due to large deformations in nonlinear FE

analysis.

2.1.4.1 Mesh Dependency of the Results

The discrete 0-1 as well as the SIMP formulation of topology optimization problems in general

lack of solutions on a continuous design space Ω. By introducing smaller and smaller topology

elements into Ω, the solution could always be improved. This means that the set of admissible

designs S is not closed. The emerging micro-structures furthermore have orthotropic material

behavior and can therefore not be modelled correctly (Bendsøe & Sigmund 2004).

By an FE discretization, the continuous design space is divided into a discrete number of

elements, thus a minimum length scale is imposed and a solution for the problem can be

found. This means on the other hand, that the resulting topologies depend on the FE mesh

selected. As shown in figure 2.5, totally different topologies result for the same problem, if

the number of elements is changed. Ideally, this behavior should not occur. Finer FE meshes

should result in a more accurate modeling of the same topology and not in different solutions.
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(a) 3.200 elements (b) 7.200 elements

(c) 12.280 elements (d) 51.200 elements

Figure 2.5: Examples for mesh dependent solutions of the compliant inverter benchmark
problem (Reinisch 2017)

There are various methods in order to obtain the wanted mesh independent behavior of the

results. They all in some way restrict the space of admissible designs, by limiting the allowed

spatial variation of the densities (Bendsøe & Sigmund 2004). More precisely, three different

groups of methods exist. The first group consists in adding extra constraints to the optimization

problem, the second in directly reducing the parameter space for the designs. The most

adopted and easy to implement mesh independency approach is the application of so-called

filtering methods, where spatial filtering is applied to sensitivities or design variables in the

optimization formulation (Lumpe 2015). These filtering methods are also used in this work

and therefore further discussed in section 2.1.5.

2.1.4.2 Checkerboard Patterns

Often checkerboard-like regions appear within the solutions of topology optimization, espe-

cially models with bilinear quadrilateral finite elements are affected by this. The checkerboard

patterns are sections with a periodical distribution of solid and void elements. Figure 2.6

shows a solution for a beam stiffness maximization problem, containing such checkerboard
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patterns.

Figure 2.6: Beam stiffness maximization example result containing checkerboard patterns

The reason for the appearance of this phenomenon is bad numerical modeling by the finite

element method, due to which the stiffness of checkerboard patterns is overestimated (Bend-

søe & Sigmund 2004). One way to circumvent such bad modeling is to use higher-order

elements, which are not subjected by the effect (Bendsøe & Sigmund 2004). Also, the filter

methods mentioned in the previous section can be used to avoid checkerboarding. In this

work checkerboard free results are obtained by the application of filtering methods.

2.1.4.3 Instabilities in Highly Distorted FE Meshes

When using geometric nonlinear finite element analysis, high displacement values occur in

low density elements. These large distortions can lead to overlapping elements and in con-

sequence even to negative element volumes, which further cause singularities of the tangent

stiffness matrix. As a result, the analysis is unstable and the equilibrium iterations in the

Newton-Raphson method do not converge.

There are three different approaches to face these convergence problems. The first one is to

delete void elements from the FE mesh and to reintroduce them later if material is placed to

the element (Bruns & Tortorelli 2003). The second method is to neglect all nodes surrounded

by void elements in the convergence criterion of the FE analysis (Buhl et al. 2000). This

is applicable because void elements do not influence the structural behavior of the topology

and hence convergence of the residuum in this element is not necessary. The last approach

proposed by Wang et al. (2014) and also used in this work is based on an energy interpolation

scheme. The strain energy density terms φ, which underly to the finite element theory are

interpolated continuously between the linear φL and nonlinear φNL expressions. This is done in

order to obtain linear modeling in void elements and nonlinear modeling for the solid elements.

An interpolation function can be defined as (Wang et al. 2014):

φe(ue) = [φ(γeue) − φL(γeue) + φL(ue)]Ee (2.15)
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where Ee is the elements Young’s modulus and γe the energy interpolation factor. γe = 1 for

solid material and γe = 0 for void material. A detailed description of the method is given in

Wang et al. (2014). In this work a slightly modified approach is used according to Reinisch

(2017). For completeness, the functions defining the interpolation method and the resulting

sensitivity analysis scheme are listed in section A.4 in the Appendix. There also three different

energy interpolation parameters are introduced as further optimization parameters.

(a) Vast grey areas (b) Discrete solid/void design

Figure 2.7: Solutions of the compliant inverter benchmark problem with geometric nonlin-
ear FEA (Reinisch 2017)

Sometimes unwanted effects appear applying the energy interpolation method if parameters

are not set properly. By the application of the energy interpolation scheme it is allowed to the

optimizer to choose between linear and nonlinear analysis by changing the element densities.

In cases where linear analysis has a positive effect on the objective function, semi-dense ma-

terial is introduced even for high SIMP penalization terms k. This occurs because depending

on the interpolation parameters semi-dense elements can be modelled by linear FEM (see

fig. A.4). Figure 2.7 shows a solution of the compliant inverter problem, where this occurred

in (a). By choosing appropriate interpolation parameters the effect can be prevented as seen

in (b) for the same problem.

2.1.4.4 One-Node Connected Hinges

In compliant mechanism synthesis by topology optimization flexible hinge regions within the

solutions often reduce to a single point connection. The resulting one-node connected hinges

or point flexures are not physically feasible. Similar to conventional hinges almost no moment
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is transferred. However, in reality infinitely high stresses would occur in such sharp hinges.

An exemplary inverter mechanism with one-node connected hinges can be seen in figure 2.8.

Figure 2.8: Compliant inverter solution with one-node connected hinges

As for the appearance of checkerboard patterns, this effect is caused by bad numerical mod-

eling (Bendsøe & Sigmund 2004). Filtering methods can rarely alleviate the problem. The

monotonicity based minimum length scale (MOLE) constraint formulation and the checker-

board (NoHinge) constraint introduced by Poulsen (2002, 2003) successfully prevent one-

node connected hinges. Another approach applied in this work is the introduction of stress

constraints proposed by De Leon et al. (2015).

2.1.5 Filtering Techniques

Filtering methods are used to alleviate the numerical problems described in section 2.1.4.1

and 2.1.4.2, namely the mesh dependency of results and checkerboard patterns. They im-

pose a minimum length scale to the topology and thus are also often used to ensure manufac-

turability. The two main filtering techniques are the sensitivity filter (Sigmund 1997, 1994) and

the density filter (Bruns & Tortorelli 2001). Both filters can be used together with projection

methods (Guest et al. 2004), in order to eliminate grey transition areas from the results.

In this work, the results presented are obtained by the use of the density filtering scheme

in combination with a modified projection method. Additionally, a filtering technique based on

Helmholtz type partial differential equations (PDE) (Lazarov & Sigmund 2011) is implemented.

These methods are introduced in this section. For information about other filtering techniques

also implemented in this work, but not applied for the results presented, refer to Sigmund

(2007).
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2.1.5.1 Density Filter

The main concept of density filtering methods is to smooth the spatial density distribution, in

order to get continuous transition areas between solid and void. No sharp transitions between

black and white regions are allowed. This is done by weighted averaging of the element

densities ρ over a defined element neighbouring region Ne. Mathematically the density filter

can be defined as follows:

ρ̃e =

∑
i∈Ne

Heiviρi∑
i∈Ne

Heivi
(2.16)

In equation (2.16) ρ̃e is the filtered density. The weighting factor is composed of the element

volumes v, which account for different element sizes in non-regular FE meshes, and Hei, which

is the spatial weighting factor.

There are different definitions of spatial weighting factors. The most simple one is to weight

all the elements within Ne with Hei = 1. Also, a Gaussian distribution function was proposed

weighting function (Bruns & Tortorelli 2003). The most widely used weighting function is a

linear decaying (cone-shaped) function defined as follows (Sigmund 2007):

Hei = max(0, rmin − ||xi − xe||) (2.17)

where rmin is the filter radius and xi and xe are the location vectors of the element centroids.

0 2 4 6 8 10 12

x-Coordinate

0

2

4

6

8

10

12

y
-C

o
o

rd
in

a
te

  r
min

W
e

ig
h

ti
n

g
 F

u
n

c
ti
o

n
 V

a
lu

e

0
0

2

5

12
4 10

86
68

410 212 0
0

1

2

3

4

5

W
e
ig

h
ti
n
g
 F

u
n
c
ti
o
n
 V

a
lu

e

Figure 2.9: Visualization of the linear decaying filter weighting function Hei (e = 85,rmin =

5)(Reinisch 2017)

Graphically this function is illustrated in figure 2.9, where the cone shape becomes evident.
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The weighting function values Hei linearly increase from zero at rmin to a maximum value for

the central element e.

Applying the density filtering method, it is important to note, that the design variables ρ lose

their physical meaning (Sigmund 2007). They are replaced by the filtered design variables ρ̃e,

which now define the structural behavior. Hence, the element stiffness matrices are defined

as:

Ke(ρ̃e) =
(
Emin + (E0 − Emin) ρ̃e

k)Ke0 0 ≤ ρ̃e ≤ 1 (2.18)

where the SIMP approach according to equation (2.5) is used. The filtering process in the

optimization loop takes place before the FE analysis.

Also, the volume constraint function of equation (2.7) has to be replaced by the following

equation: ∑
e
ρ̃eve

VΩv f rac
− 1 ≤ 0 0 < v f rac ≤ 1 (2.19)

Moreover, the sensitivity analysis is also affected by the filtering procedure. The system equa-

tion is no longer directly dependent on the design variable ρ. For this reason the gradients

have to be found applying the chain rule. According to Andreassen et al. (2011) equation

(2.20) describes this approach, where Ψ is an arbitrary function.

∂ψ

∂ρe
=

∑
j∈Ne

∂ψ

∂ρ̃ j

∂ρ̃ j

∂ρe
(2.20)

2.1.5.2 Heaviside-Projection

The application of density filters effectively prevents checkerboard patterns and creates mesh

independent solutions. However, the resulting topologies often have grey transition areas from

solid to void elements, depending on the size of the filter radius. Projection methods aim to

achieve black and white solutions out of such topologies by eliminating the grey transition

areas. Therefore, the density filter according to equation (2.16) is extended by an additional

process, in which the filtered densities ρ̃e are projected to new physical densities ρ̃e by a

heaviside step. To ensure differentiability this discrete step has to be approximated by smooth
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functions. Therefore, the following two approximation functions can be used:

ρ̃e = 1 − e−βρ̃e + ρ̃ee−β (2.21)

or

ρ̃e =
tanh(βη) + tanh(β(ρ̃e − η))
tanh(βη) + tanh(β(1 − η))

(2.22)

In both equations β ≥ 0 is the function parameter determining the smoothness of the step.

Moreover, η in equation (2.22) defines the element density threshold value for the step. Both

Heaviside projection functions are depicted in figure 2.10. In fig. 2.10 (a) function (2.21) is

plotted for different values of β. It is seen that for increasing β-values the approximation of the

discrete step improves. The threshold for the approximation is in ρ̃e = 0.
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(a) Equation (2.21)
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(b) Equation (2.22), η = 0.5

Figure 2.10: Comparison of the two different Heaviside step approximations (Reinisch
2017)

In contrast to fig. 2.10 (a) the threshold value in fig. 2.10 (b) is shifted to ρ̃e = 0.5 by the

parameter η. Both steps are approximated equally well, fig. 2.10 (b) gives the advantage of

an additional control parameter. Therefore, in this thesis the Heaviside projection defined by

equation (2.22) is used.

The parameter β has also an important influence on the convergence behavior of the optimiza-

tion. In order to avoid instabilities, usually a continuation scheme is applied for the parameter.

At the beginning of the optimization mostly the initial value β0 = 1 is selected, the β-parameter

is then updated in each iteration until reaching a preset maximum value βmax. The continuation
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scheme applied in this thesis writes as:

β = min (βmax , β0 ∗ 2
iter−1
τ ) (2.23)

Equation (2.23) causes a doubling of β after a prescribed number of iterations. This number

of iterations is defined by the parameter τ.

Drawbacks of this β update scheme are that it is computationally expensive and that it causes

slight convergence perturbations. In this work, in addition to the continuation scheme external

move limits for the design variable changes of the optimizer are applied according to Reinisch

(2017). By this means, oscillations in convergence can be reduced. This external move limits

ρmin and ρmax are applied, starting from a β-threshold value of βstart. They are defined in

Appendix A.5. Moreover, Guest et al. (2011) proposed a method to leave β constant on a high

value. However, this method is not applied in this work.

As earlier mentioned for the density filters, also the application of the Heaviside projection

method results in changed physical densities. In this case ρ̃e becomes the governing param-

eter and hence in equations (2.18) and (2.19) ρ̃e has to be substituted by ρ̃e. Also, the chain

rule for sensitivity analysis has to be reformulated to:

∂ψ

∂ρe
=

∑
j∈Ne

∂ψ

∂ρ̃ j

∂ρ̃ j

∂ρ̃ j

∂ρ̃ j

∂ρe
(2.24)

2.1.5.3 Partial Differential Equation (PDE) Based Filters

The density filter formulation described in section 2.1.5.1 needs for each element information

about its neighborhood. This information is contained in the weighting factors Hei, whose

calculation is computationally and storage-wise very expensive. The reason for this is that

the distances to the neighborhood elements centroids have to be calculated and stored for

each element, which especially for large irregular FE meshes takes high computational effort.

PDE-based filters allow the use of existing FE mesh information and FE solvers for the fil-

tering operations and hence reduce computational cost. A density filtering method based on

Helmholtz-type PDE’s was first introduced by Lazarov & Sigmund (2011).

The filter equation in (2.16) equals to a discrete approximation of a convolution integral, which

also corresponds to the solution of the Helmholtz PDE for homogeneous Neumann boundary
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conditions (NBC) (Andreassen et al. 2011). This PDE is written as (Lazarov & Sigmund 2011):

−r2∇2Ψ̃ + Ψ̃ = Ψ NBC :
∂Ψ̃

∂n
= 0 (2.25)

where Ψ̃ and Ψ are the filtered and the unfiltered continuous representations of the design

field respectively. The vector n in the boundary condition defines the normal to the boundary

Γ of the domain Ω. r is the filter radius similar to rmin for the standard filter formulation. After

FEM discretization and further simplification for the case of an isotropic filter (r is equal in

each spatial direction) the equation writes as follows:

∑
e

∫
Ω

[r2 ∇,xN
T
e ∇,xNe +N

T
e Ne]dΩ︸                                             ︷︷                                             ︸

KF

ρ̃N =
∑

e

∫
Ω

NT
e dΩ︸          ︷︷          ︸

TF

ρ (2.26)

where Ne is the element shape function vector defined in (A.1) and
∑

e in this case is the FE

assembly operator. A shorter formulation of this equation is the following linear system:

KFρ̃N = TFρ (2.27)

which has to be solved in each filtering process. This can be done efficiently for example

by Cholesky decomposition of KF and subsequent forward and backward substitution or by

iterative solvers.

ρ̃N in equation (2.26) is the nodal representation of the filtered field. The element-wise rep-

resentation of the filtered design variables, needed in the optimization, is obtained with the

following equation:

ρ̃ =
T T

F ρ̃N

v
(2.28)

where TF represents the transformation matrix from element to nodal representation of the

design variables and v is the element volume vector, which as for the standard density filter

representation is a part of the weighting function. It is already included implicitly in the nu-

merator of equation (2.28). For complete filtering, each solution of the linear system (2.27) is

directly followed by the evaluation of equation (2.28).

The value for the PDE-based filter radius r, at which the same length scale is imposed as for

the standard density based filter with radius rmin, can be calculated by the following equation
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(Lazarov & Sigmund 2011):

r =
rmin

2
√

3
(2.29)

The introduced PDE-based density filter can also be used together with a subsequent projec-

tion method as defined earlier in equations (2.21) and (2.22). For the sensitivity analysis the

chain rule approaches according to equation (2.20) or (2.24) have to be applied.

2.2 Path-Generation Formulation

The path-generation formulation for compliant mechanism design was first introduced by Ped-

ersen et al. (2001) and is discussed in this section. The main goal is not only to prescribe

an extremal displacement of a single output node of the compliant mechanism, but to control

multiple output displacement values for the output node in between the undeformed and the fi-

nal deformed state. In contrast to the formulation in equation (2.7), that is only focusing on the

minimization of the absolute output displacement value, in the path generation approach the

deviation from the prescribed target displacement value is minimized. An objective function Φ

for this optimization problem can be formulated as:

Φ =

M∑
m=1

[uout,m − u
∗
out,m]2 (2.30)

which can be seen as a least square error approach. In equation (2.30) uout,m are the actual

and u∗out,m the prescribed output displacement vectors, corresponding to the prescribed input

displacement values uin,m. The index m denotes the precision point number along the output

deformation path for which the target output displacements u∗out,m are prescribed. Although

the results of this objective function are able to fulfil the prescribed input-output kinematic

motion, they often contain large regions of semi-dense material. The reason for this is that the

objective function above requires no ability of the mechanism to transfer loads. Grey areas

can be avoided by applying additional counter load cases, for which the target displacement

deviation must also be minimized and hence a stiff mechanism is required. Therefore, the

objective function is written as follows (Pedersen et al. 2001):

Φ =

2∑
i=0

αi

M∑
m=1

[uout,m,i − u
∗
out,m]2 (2.31)

In equation (2.31) the first sum includes three load cases, weighted by the factors αi. The first

load case (i = 0) can be interpreted as the mechanism generation load case, the other two
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load cases (i = 1, i = 2) are the counter load cases enforcing a stiff mechanism. The counter

loads are applied at the output nodes. Normally one counter load is chosen in opposite

direction to the output displacement path at each precision point, the second counter load is

selected perpendicular to the output path.

A general topology optimization problem including the path-generation objective function can

be defined according to equation (2.7) as:

minimize
ρρρ

Φ =

2∑
i=0

αi

M∑
m=1

[uout,m,i − u
∗
out,m]2

subject to: R(U ) =K(U )U − λF = 0

gv =
V

v f racVΩ
− 1 ≤ 0

0 ≤ ρρρ ≤ 1

(2.32)

Pedersen also included input force constraints in this formulation. Those are not regarded

here, because the input force sensitivities could not be calculated by the same procedure

as the objective functions sensitivities in section 2.2.2. And in the original publication, no

information regarding the input force sensitivity analysis is given.

A requirement for the implementation of the path generation objective function is the appli-

cation of nonlinear FEM. In order to prescribe the input displacement steps a displacement-

controlled Newton-Raphson approach is applied. This approach is shortly introduced in the

following section, followed by the derivation of the objective function sensitivities.

2.2.1 Displacement-Controlled Nonlinear FEM

Nonlinear FE problems are solved by sequential linearization in incremental iterative proce-

dures. A control parameter is incremented and for each increment the new equilibrium state

R = 0 is found by the Newton-Raphson method. In this manner, the systems equilibrium path

is followed. The basic approach is to select the force incrementation parameter 0 ≤ λ ≤ 1

as control parameter. Thus, external forces are sequentially increased by defining explicit λ

increments, starting from a small initial value.

Because the path generation objective function formulation contains input displacement steps

uin,m, it is advantageous to select the input displacement as control parameter. By this means,

the structural response for the given input displacement steps uin,m is directly calculated. Since

the mathematical formulation of the total residuum is decisive for sensitivity analysis, a short
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description of the displacement-controlled formulation of FEM is given here.

The displacement-controlled FE approach is implemented by adding an additional control

equation to the system. The control equation f can be formulated as:

f = ∆Uc − ∆Ûc = 0 (2.33)

where ∆Uc is the actual and ∆Ûc the prescribed displacement increment in the controlled

degree of freedom (DOF). By setting the condition f = 0, the displacement step size ∆Ûc is

imposed. Furthermore, the load incrementation parameter λ is here no longer given explicitly.

It must be added to the state variable vector. The resulting extended equilibrium equation

writes as follows:

Rext =

R(U , λ)

f (U , λ)

 =
K(U )U − λF

∆Uc − ∆Ûc

 = 0 (2.34)

where Rext is the total residuum. This equation is linearised and solved by the Newton-

Raphson method. The linearization and the overall FE solver procedure can be seen in Ap-

pendix (A.15) and A.3 respectively. Because displacement in only one degree of freedom can

be prescribed by this method, also in the path-generation approach the input uin can only be

prescribed in one DOF.

The outlined displacement control approach allows accounting results for multiple precision

points uin,m within one nonlinear analysis. This is done by setting the prescribed displacement

step values to the precision point values Ûc,m = uin,m.

In the general representation of the described method according to equation (2.34), the to-

tal load vector F is modified by the load incrementation parameter λ. In case of the path-

generation formulation, input force and counter loads would be modified in the same way, in

order to obtain the prescribed deformation. Hence, for different precision points uin,m different

counter loads would be applied. Because the same counter loads have to be applied for each

precision point, the displacement control formulation has to be modified. Instead of multiplying

the whole load vector F with λ, only the entry corresponding to the input force can be adapted.

This is done by the λ and R formulations in equation (A.16) and (A.17), used in this work for

path-generation topology optimization.

Institute of Aircraft Design | Technical University of Munich 25



2 State of the Art

2.2.2 Sensitivity Analysis

The derivative of the objective function for the path-generation problem formulation in (2.32)

can be written as:

∂Φ

∂ρe
=

n j∑
j=1

2∑
i=0

αi

M∑
m=1

2 ∗
∂uout,m,i, j

∂ρe
(uout,m,i, j − u∗out,m, j) (2.35)

where the index j denotes the j-th entry of the output displacement vector uout,m,i and n j the

number of controlled output DOFs and hence the length of the vector. In this term the sensitiv-

ities ∂uout,m,i, j
∂ρe

are unknown. They are obtained analogue to section 2.1.3 by the adjoint method.

The slight difference is that an approach for coupled systems is applied here (Michaleris et al.

1994). This is done because the residual function is extended by the control equation f for

displacement control and the load increment factor λ is a variable. Therefore, also the partial

derivatives with respect to λ have to be accounted for. The derivative including the added

residual terms R and f in equations (2.34) and (2.33) follows as:

∂uout,m,i, j

∂ρe
=

�
�
�
��

0
∂LTU

∂ρe
+
∂LTU

∂U

∂U

∂ρe
+
∂LTU

∂λ

∂λ

∂ρe
+

+ λT
ad j,1

[∂R
∂ρe
+
∂R

∂U

∂U

∂ρe
+
∂R

∂λ

∂λ

∂ρe

]
+ λad j,2

[
�
�
��7

0
∂ f
∂ρe
+
∂ f
∂U

∂U

∂ρe
+
�
�
��>

0
∂ f
∂λ

∂λ

∂ρe

]
(2.36)

where λad j,1 is the adjoint vector for the residual R and λad j,2 a constant adjoint factor for the

control equation f . This expression simplifies with residuum equation R(U ) =K(U )U − λF

and the relation ∂R
∂U =KT to:

∂uout,m,i, j

∂ρe
= LT ∂U

∂ρe
+ LT ∂U

∂λ

∂λ

∂ρe
+ λT

ad j,1

[∂R
∂ρe
+ KT

∂U

∂ρe
+ F

∂λ

∂ρe

]
+ λad j,2

∂ f
∂U

∂U

∂ρe
(2.37)

where as in section 2.1.3 a density independent external force vector ∂F
∂ρe
= 0 was assumed.

∂U

∂λ
=K−1

T F (2.38)

Further using the relation (2.38), which derives from ∆UF in figure A.3 applying the condition
∂
∂U =

∂
∂∆U (Pohl 2014), the first adjoint equation can be written as follows:

0 =
[
LTK−1

T F + λ
T
ad j,1F

] ∂λ
∂ρe

(2.39)
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This equation then results in the adjoint problem:

KTλad j,1 = −L (2.40)

which is equal to equation (2.11). By this choice, ∂λ
∂ρe

cancels out of equation (2.37). In order

to eliminate also the ∂U
∂ρe

terms, the second adjoint equation (2.41) must also be fulfilled.

0 =
[
���

���
��:0

LT + λT
ad j,1KT + λad j,2

∂ f
∂U

]∂U
∂ρe

(2.41)

This leads to the value of the second adjoint factor λad j,2 = 0. The sensitivities ∂uout,m,i, j
∂ρe

in con-

sequence are calculated in the same manner, as prior for the displacement objective function

under load control by equation (2.13). After insertion in equation (2.35) the objective function

sensitivities for the path generation approach are obtained.

The sensitivity analysis was outlined for the case of λ modification of the entire load vector F .

The derived sensitivities are also valid for the λ and R formulations according to equations

(A.16) and (A.17), introduced in the previous section.

2.3 Multiresolution Topology Optimization (MTOP)

The multiresolution topology optimization scheme (MTOP) was proposed by Nguyen et al.

(2010). The main concept is to employ different discretization levels for the FE analysis, for

the design variables and for the densities. This is done, in order to reduce the computational

cost of high-resolution topology results, especially for large problems. In this work, the method

is also implemented and therefore described in this section. Whereas in the above mentioned

publication different design variable and density discretizations are considered, here only the

special case of equal design variable and density meshes is regarded. For information about

other variants of the method the reader is referred to Nguyen et al. (2010).

The basic idea of the MTOP approach is to use already existing information from the FEA to

create higher resolution topologies. Element stiffness matrices are calculated by integration

over the element domain. This integration is usually done by Gauss integration, splitting the

integral into a weighted sum over discrete gauss integration points. By this means, each of

this integration points has its own contribution Ke0,gp to the element stiffness matrix Ke. Ke

is calculated as:

Ke =
(
Emin + (E0 − Emin) ρk

e
) ngp∑

gp=1

Ke0,gp (2.42)
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where ngp is the number of Gauss integration points. The SIMP method is applied here

according to equation (2.6).

FE mesh:

refinement

Design variable mesh:

Figure 2.11: Concept of multiresolution topology optimization (MTOP)

By introducing a finer design variable mesh to each of these contributions Ke,gp, a distinct

density ρe,gp can be assigned and hence the existing stiffness information is used to generate

higher resolution results. Graphically this is illustrated in figure 2.11.

The refined element to the right of figure 2.11 is divided into four subelements, each of which

has its own density value associated to the integration point. The basic FE discretization

by four node finite elements with four Gauss points does not change, and the computational

cost of the FE analysis is therefore almost the same. Only the number of design variables

increases by the factor four, leading to an increase of optimization cost. The SIMP approach

for the element stiffness matrix and its Gauss points contributions is defined as:

Ke =

ngp∑
gp=1

(
Emin + (E0 − Emin) ρk

e,gp
)
Ke0,gp (2.43)

Moreover, the equation for the volume V in the volume constraint formulation according to

equation (2.7) is changed to the following form:

V =
∑
gp

∑
e

ρe,gpve,gp (2.44)
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In equation (2.44) ve,gp is the volume of the subelement for the Gauss point gp of the element e.

Also the sensitivities in equations (2.13) and (2.14) are calculated using ρe,gp,ve,gp and Ke0,gp

instead of ρe andKe0, if the MTOP approach is applied. The subelements are assembled to a

new global design variable mesh. The results of the MTOP approach are discussed in section

3.5.

2.4 Stress Constraint Formulation

A constraint formulation for a global stress measure in compliant mechanism design based on

linear FEM was first introduced by De Leon et al. (2015). Stress constraints can be applied

to reduce stress peaks within the topologies. This is especially useful to eliminate one-node

connected hinges from the results (see section 2.1.4.4) and to obtain fatigue-resistant mech-

anisms. De Leon’s stress constraint formulation was adopted in a previous work to geometric

nonlinear topology optimization of compliant mechanisms (Reinisch 2017). The adopted im-

plementation is also used in this work and therefore briefly introduced in this section.

The stress constraint equation is written as:

gs(ρρρ) =
σ̃PN

σ∗
− 1 ≤ 0 (2.45)

where σ∗ is the stress limit value and σ̃PN the normalized global p-norm stress measure. It

approximates the maximum appearing stress value and is calculated by the normalization of

the p-norm stresses σPN ,

σ̃PN = cσPN (2.46)

where c is the normalization parameter calculated in each iteration n by equation (2.47).

cn = 0.5
σn−1

max

σn−1
PN

+ 0.5cn−1 (2.47)

With σn−1
max being the actual appearing maximum stress in the previous iteration. c0 = 1 is

selected as initial normalization value. The normalization improves the approximation of the

maximum stress (De Leon et al. 2015).

The p-norm stress σPN is defined in a modified version by Le et al. (2010) with the following

equation:

σPN =
( ∑

e∈Nσ

veσ
p
e︸    ︷︷    ︸

σsum

)1/p
= σ

1/p
sum (2.48)
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where Nσ is the set of stress constraint elements, p the p-norm parameter and σe is the

relaxed element von Mises stress. ve is the element volume. For p → ∞ the p-norm approx-

imation approaches the maximum stress value max(σe). In this work, the p-norm parameter

p = 12 is selected. The von Mises stresses σvm,e are relaxed by the following equation:

σe = ρ̃e
q
σvm,e (2.49)

This is done in order to smooth the design space and hence alleviate the so-called singularity

problem (Le et al. 2010). ρ̃e are the physical densities and q is the relaxation parameter. A

common value is q = 0.5. The von Mises stresses σvm,e are calculated from the second Piola-

Kirchhoff stresses and more in detail from the strain field, assuming solid material for each

element Ee = E0. The equations for the FE stress analysis are listed in Appendix A.3.

The sensitivities of the stress constraint function for geometric nonlinear FE are derived in

Reinisch (2017) resulting in:

∂gs

∂ρ̃e
=

1
σ∗

cσ
1
p−1
sum veσσσ

p−1
e qρ̃e

q−1
σvm,e + k(E0 − Emin)ρ̃e

k−1
λλλσTKKK0e(ue)ue (2.50)

The adjoint vector λσT is obtained from the solution of the adjoint problem:

KT
Tλλλ

σ = −
∂gs

∂U

T
(2.51)

and ∂gs
∂ue

is calculated element wise according to equation (2.52).

∂gs

∂ue

T
=

cσ
1
p−1
sum veσ

p−1
e ρ̃e

q

σ∗σvm,e
BT

LFCVKV σσσe (2.52)

The element terms ∂gs
∂ue

are then assembled to the global vector ∂gs
∂U needed in equation (2.51).

The bold terms to the right of equation (2.52) are defined in Appendix A.3.

2.5 Method of Moving Asymptotes (MMA)

Topology optimization problems generally have a high number of design variables and only

few constraint functions. For the solution of problems of this form so-called dual methods

are well suited. Applying these methods design variables are expressed as a function of

Lagrange multipliers. This allows a reduction of the optimization problems dimension, to the

number of unknown Lagrange multipliers. For topology optimization problems this means
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that the dimension of the underlying optimization problem can be reduced up to the number

of constraint functions and hence the optimizations computational cost can be reduced. A

precondition for the application of dual methods is that the optimization problem is separable

(Harzheim 2014).

To ensure separability for general optimization problems sequential approximate optimization

algorithms can be used. Those algorithms approximate the objective function and constraints

locally by separable functions. In this thesis, for this purpose the Method of Moving Asymp-

totes (MMA) introduced by Svanberg (1987) is applied.

The MMA is a gradient-based optimization algorithm. It locally approximates the optimization

problem to a convex separable subproblem and subsequently solves this subproblem by the

use of dual methods. The form of the approximation is exemplarily defined for the objective

function z in iteration j by the following equation:

z(x) ≈ z(x j) +
n∑

i=1

( ri

Ui − xi
+

si

xi − Li

)
(2.53)

where xi are the design variables. The parameters ri and si are defined in dependence of the

sensitivity information as:

if
∂z
∂xi

(x j) > 0 : ri = (Ui − x j
i )2 ∂z
∂xi

(x j) and si = 0

if
∂z
∂xi

(x j) < 0 : si = −(x j
i − Li)2 ∂z

∂xi
(x j) and ri = 0

(2.54)

The approximation (2.53) can be linear or reciprocal (limit cases) or a intermediate stage of

both depending on the values of Li and Ui. These parameters Li and Ui are the lower and

the upper asymptotes respectively. They limit the design variable range of the approximation

and are moved during the optimization in order to improve the convergence behavior. A con-

servative approach for the asymptotes modification is defined in equation (2.55) (Harzheim

2014).

for: (x j
i − x j−1

i )(x j−1
i − x j−2

i ) < 0

L j
i = x j

i −
1
s2 (x j−1

i − L j−1
i ) or U j

i = x j
i +

1
s2 (U j−1

i − x j−1
i )

for: (x j
i − x j−1

i )(x j−1
i − x j−2

i ) ≥ 0

L j
i = x j

i − s(x j−1
i − L j−1

i ) or U j
i = x j

i + s(U j−1
i − x j−1

i )

(2.55)
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By equation (2.55) the asymptotes can either widened or tightened. This depends on the di-

rections of the optimization steps x j
i − x j−1

i in iteration j and j− 1. If both steps have the same

direction the asymptotes are widened and if opposed step directions are detected a narrowing

of the asymptotes occurs. By this means, convergence is stabilized in case of oscillations and

in the contrary case the algorithm is accelerated. The asymptote control parameter s deter-

mines the movement of the asymptotes . Small s values lead to a conservative approximation.

A frequently used value is s = 1.07.

One advantage of the MMA is its compatibility to multiple constraint formulations. Moreover,

in contrast to the optimality criteria method, also often used in topology optimization, the

algorithm must not be changed to account for other objective function formulations. Also

special objective function formulations as min-max problems or minimization of sqare errors

are preimplemented and can therefore easily be optimized.

2.6 mechtop: Original Software Implementation

In a previous work, the author (Reinisch 2017) developed a MATLAB code for topology op-

timization of compliant mechanisms, based on the 99-line and the 88-line MATLAB codes

of the TopOpt group of the Technical University of Denmark (Sigmund 2001) (Andreassen

et al. 2011). This code builds the basis for further function implementations and mechanism

optimizations in this thesis, therefore the original state of the code and its limitations are sum-

marized in this section.

The original version of the code allows to generate compliant mechanisms for the minimization

of output displacement objective function formulation (see equation (2.7)). Therefore, either

topology optimization methods based on linear FEM, or on geometric nonlinear FEM can be

applied. Moreover, for both cases a stress constraint formulation is available in order to prevent

local hinges. Sensitivity and density filtering methods, as well as the two Heaviside projection

schemes introduced in section 2.1.5.2 are implemented, allowing the user to select the applied

filter type. The total Lagrangian implementation of the geometric nonlinear FE solver is based

on a MATLAB program for membrane analysis (Patil 2015). The formulation is defined by the

use of Green-Lagrange strains and second Piola-Kirchhoff stresses. Underlying equations

are listed in the Appendix A.3.1.

There are several limitations of the code. First, the designs space is restricted to two dimen-

sional problems and must be discretized by a regular FE mesh. Moreover, only rectangular

domain geometries are implemented and only bilinear quadrilateral elements under the con-
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dition of plane stress can be analysed.

𝑢𝑖𝑛 𝑢𝑜𝑢𝑡

Figure 2.12: Exemplary result obtained by the original optimization code (mechtop) for a
stress constraint compliant inverter problem (linear FEA)

The original implementation of the mechtop code was validated in (Reinisch 2017) by multiple

optimizations of the compliant inverter benchmark problem (see fig. 2.4) and comparison

to published results. A linear stress constraint example result is illustrated in figure 2.12,

demonstrating the basic capability of the original optimization software. The stress limit value

in figure 2.12 is set to σ∗ = 10 MPa.

Observing the result in figure 2.4 it is seen that long bending members are introduced in the

hinge regions. By this means, stresses are equally spread over the whole topology. It is also

noticed that the underlying plane stress assumption may not be valid in these thin members,

because the width of these members is in the same scale then the mechanisms thickness.

Possible errors introduced by this means have to be considered. This can be done for example

by a subsequent 3D analysis of the mechanisms and comparison of the results.

In this work the original mechtop code was drastically expanded upon. The improvements

and results obtained with the extended code will be outlined in the next chapter.
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3 Development of the Optimization Code

In order to synthesize compliant mechanism ribs for a droop nose application in the project

MILAN, the original mechtop code is extended by multiple functionalities. First, the FE solver

and various functions in the optimization process are modified, to allow also calculations on

non-regular mesh geometries. Furthermore, for mesh generation the commercial preproces-

sor of Abaqus shall be used, necessitating also of the generation of an interface between

the mechtop code and Abaqus. Then the path-generation formulation for compliant mech-

anism synthesis introduced in section 2.2 is implemented, in order to achieve exact output

displacements.

In addition, the MTOP method (see section 2.3) and PDE-based filtering techniques (see

section 2.1.5.3) are implemented. Throughout this work, the code structure is improved and

an optimization input file based on an Excel-sheet format is introduced. By the parallelization

of the inner FE stiffness matrix integration loops, the use of more efficient assembly methods

and various other measures the performance of the code is drastically increased.

The program, originally written on the 64-bit R2016a MATLAB version for Windows, is updated

to the newer 64-bit R2018a version. Modifications, in order to achieve also portability to Linux

systems are made. Data management of the software development project is based on Git

using the software SmartGit and the LRZ Gitlab.

For testing and validation of the implementations, generic example problems are introduced.

In this section, no detailed description of the software implementation is given, instead the

important implementation steps are outlined based on the results of these example problems.

3.1 Generic Example Problems

In order to test the codes functionalities and to validate analysis results, simple problems

are calculated during implementation. This generic example problems are introduced in this

section.

3.1.1 Planar Cantilever Example Problem

For FE solver validation a planar cantilever example is analysed. This example is defined

such, that high displacements and rotations occur and therefore nonlinear effects have an

important influence. The schematic solid cantilever example problem is illustrated in figure

3.1. To the left the cantilever is clamped by fixed supports, and to the lower right corner the

input load Fin is applied. For displacement-controlled FEA, the input displacement uin has to

be prescribed. A thickness of T = 2 mm and the material properties of steel are selected for
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the cantilever.

𝐸 = 210000 [N/mm^2]

𝜈 = 0.3 [-]

𝑇 = 2 [mm]

x

y

𝐹𝑖𝑛 (𝑢𝑖𝑛)

𝐻
=
1
0
[m

m
]

𝐿 = 1000 [mm]

Figure 3.1: Planar cantilever example scheme

3.1.2 Path-Generation Example Problem

For the implementation of the path-generation formulation according to equation (2.32), a

generic compliant mechanism synthesis problem is defined on a rectangular domain. This

problem is illustrated schematically in figure 3.2. Fixed supports are provided in the lower left

corner of the design space. At the input node, marked by the green dot, input displacements

uin,m are applied in x-direction, resulting in output displacements uout,m at the red output node

in the lower right corner.
𝐻

=
7
5
[m

m
]

𝐿 = 150 [mm]

𝑇 = 5 [mm]

𝑢𝑖𝑛,𝑚

𝑢𝑜𝑢𝑡,𝑦,𝑚

𝑢𝑜𝑢𝑡,𝑥,𝑚

75 [mm]

1
6
.2
5
[m

m
]

𝐸0 = 1250 [N/mm^2]

𝜈 = 0.31 [-]

x

y

𝑣𝑓𝑟𝑎𝑐 = 0.3 [-] 𝐹𝐶𝐿,𝑖,𝑥
𝐹𝐶𝐿,𝑖,𝑦

Figure 3.2: Sketch of the path-generation compliant mechanism example problem
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The target kinematic has to be further defined for each precision point m, indicating the target

output displacement values in x- and y-direction u∗out,x,m and u∗out,y,m, corresponding to the input

displacement uin,m. The loads FCL,i,x and FCL,i,y are the nodal counter loads, applied in the

load case i at the output node, in order to obtain stiff mechanisms. For i = 0 the counter loads

are set to zero. One counter load should be applied against, the other one perpendicular to

the output path. Material parameters of PA 11 are selected for this example, as indicated in

figure 3.2.

In the following sections, results of the above-described example problems are presented

for the new functionalities implemented to the mechtop code. The analysis is based on the

mm-t-s unit system and its derived quantities according to table A.1.

3.2 Non Regular Mesh Modeling

The FE solver included in the original code uses isoparametric quadrilateral plane stress el-

ements, as defined in figure A.1. By this means, all elements can be described equally in a

parametric space. The real element geometry is then mapped onto the parameter space by

shape functions (see equation (A.1)). In consequence, also the element stiffness matrices are

integrated in the parameter space. Applying the described approach, the basic formulation of

the FE solver is suited also for the analysis on non-regular meshes.

To generate complex non-regular FE meshes in 2D and 3D various software packages exist.

In this work the preprocessor of the commercial FE suite Abaqus is used for that purpose. The

main implementation effort lies in the creation of an interface between MATLAB and Abaqus.

Therefore, the existing Abaqus2Matlab function (Papazafeiropoulos et al. 2017) that imports

information contained in Abaqus-input-textfiles is modified. The resulting function allows not

only to load the basic mesh information from Abaqus, but also support DOF’s, loads and

element sets can be defined in the Abaqus GUI and then imported to MATLAB. Limitations

are that only quadrilateral elements in 2D can be imported and that only point loads and either

symmetry or fixed boundary conditions can be considered. By the definition of element sets in

Abaqus solid and void regions (eleNonDes_ active, eleNonDes_ passive), as well as regions

where no stress constraints shall be applied (eleNonSConstr) can be defined. Here the names

in brackets indicate the corresponding element set names.
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S, Mises

+4.5389e+00
+1.8814e+03
+3.7583e+03
+5.6351e+03
+7.5120e+03
+9.3888e+03
+1.1266e+04
+1.3143e+04
+1.5019e+04
+1.6896e+04
+1.8773e+04
+2.0650e+04
+2.2527e+04

Step: Step-1
Increment 4: Step Time = 1.000
Primary Var: S, Mises
Deformed Var: U Deformation Scale Factor: +1.0000e+00

ODB: Job-1.odb Abaqus/Standard 3DEXPERIENCE R2018x Tue Dec 11 08:37:36 GMT+01:00 201Y

(a) Abaqus solution: uy,min = −592.18 mm, σvm,max = 22527 N/mm2

(b) MATLAB solution: uy,min = −592.8 mm, σvm,max = 22497 N/mm2

Figure 3.3: Comparison of geometric nonlinear cantilever example solutions with non reg-
ular FE mesh (2100 elements)

To validate the FE solver results on a non-regular mesh, the cantilever example in figure 3.1

is meshed by an o-shaped mesh and imported to MATLAB. Then the problem is calculated in
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MATLAB and Abaqus for a force value of F = 100000 N. In Abaqus therefore the settings for

geometric nonlinear analysis with automatic load incrementation, plane stress bilinear quadri-

lateral elements, a direct integration and a direct solver are chosen. Results are shown in

figure 3.3. In (a) the deformation figure together with a von Mises stress contour plot for the

Abaqus-result is illustrated, (b) shows the results of the MATLAB analysis. The depicted von

Mises stresses are evaluated at the element centroids.

Both results deform similar in a smooth fashion although high deformations and rotations

occur. The deviation for the minimum output displacement in y-direction uy,min is 0.1%. Also,

the stress distributions match very well, with a deviation of the maximum von Mises stresses

σvm,max of 0.13%. The maximum stresses occur at the corners of the support area. The larger

deviation for the stresses occurs due to the selected displacement based theory. Overall both

results match well, which proves the validity of the MATLAB solver also for non-regular FE

meshes.
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Figure 3.4: Linear MATLAB solution for the cantilever example with non regular FE mesh
(2100 elements, uy,min = −950, 413 mm, σvm,max = 29967 N/mm2)

To show the need for non linear FE analysis methods, the linear MATLAB solution for the

same cantilever example is illustrated in figure 3.4. Therefore, also the linear FE solver was

modified for non regular mesh modeling. One sees that in the linear solution displacements

and stresses are overestimated. Furthermore, can rigid body rotations of the elements not be
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modelled by the linear theory. Hence, the element volume increases in elements that undergo

large rotations. By this means, high errors occur if linear analysis is used for problems with

large deformations.

For topology optimization on non-regular meshes, the matrix based design variable storage

used in the 88-line-code (Andreassen et al. 2011) has to be changed to a vector represen-

tation of the design variables. Furthermore, general filter expressions see section 2.1.5.1,

accounting for different elements via element volume weighting and a more general weighting

function Hei (2.17), have to be introduced.

One of the first results of an output displacement minimizing compliant mechanism calculated

on a non-regular mesh is shown in figure 3.5. The problem is calculated on an exemplary

leading edge geometry, with fixed supports at the right side. The problem formulation of

equation (2.7) is used. The input node is highlighted in green and the output node in red. The

topology optimization leads to a discrete solid-void design on this non-regular mesh.

𝑢𝑖𝑛

𝑢𝑜𝑢𝑡

Figure 3.5: Example of an early compliant mechanism topology result on an airfoil-shaped
designspace

For the further calculation of compliant mechanism ribs, the path-generation formulation is

implemented in the next section.

3.3 Implementation of the Path-Generation Formulation

The theoretical background of the path-generation formulation was introduced in section 2.2.

For implementation of the approach, the FE solver has to be modified first in order to use

displacement control. This, in consequence, allows to perform input displacement steps and

hence prescribe the mechanisms input displacement values uin,m, corresponding to the output

displacements uout,m. Therefore, an extended residual formulation (see equation (2.34)) is

introduced and solved by the implementation of the FE solver scheme illustrated in figure
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A.3. Then the path generation objective function (2.31) and its sensitivity formulation derived

in section 2.2.2 are implemented to the mechtop code. The formulation is applied to the

example problem of figure 3.2. In a last step also the stress constraints introduced in section

2.4 are added to the path-generation formulation.

In the following section, results of the cantilever example (see figure 3.1) under displacement

control are presented, in order to validate the implementation of the displacement-controlled

FE solver. Moreover, the path-generation formulation is applied to the generic example prob-

lem of figure 3.2 for various input uin,m and target output displacements u∗out,m and for different

counter load cases. At the end of this section stress constraint results of the path-generation

example problem are discussed.

3.3.1 Displacement-Controlled FE Solver Validation

The displacement-controlled nonlinear FE implementation according to figure A.3 allows to

choose the displacement of one DOF as control parameter. This displacement is defined by

Ûc in the control equation (2.33). Here the cantilever example defined in figure 3.1 is again

calculated by application of the displacement uin in y-direction at the lower right corner of the

cantilever as control parameter. The same irregular mesh as in figure 3.3 is used.
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Figure 3.6: Displacement-controlled solution of the cantilever example with non-regular FE
mesh (2100 elements, Ûc = uin = −556, 072 mm, F = 105 N)
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The target displacement step value is set to Uc = uin = −556, 072 mm, corresponding to

the lower right corners result of the previous load controlled example. For stability reasons a

large input force F = 108 N is applied. Due to the displacement-controlled approach, the load

incrementation parameter λ is then adjusted implicitly during the equilibrium iterations. This

is done in order to obtain an input force Fin = λF that leads to a deformation in the controlled

DOF, corresponding to the prescribed displacement step Ûc.

The results for the displacement-controlled FE approach are shown in figure 3.6, they match

the previous load controlled result (see figure 3.3) very well. Displacement and von Mises

stress fields are almost equal. The minimum output displacement is also uy,min = −592.8 mm

and the resulting load increment parameter λ = 0.998 10−4 leading again to an input force of

approximately F = 100000 N.

3.3.2 Results of the Path-Generation Example Problem

In this section results of the generic example problem, introduced in figure 3.2, are presented.

The problem is used during implementation for testing purposes and in order to gain ex-

perience about the practical behavior of the path-generation objective function formulation.

Starting from the simple case of one precision point together with a single counter load case,

results for different problem setups are discussed. Therefore, various input and output dis-

placement combinations uin,m and uout,m are prescribed and also different counter load cases

are applied. The results presented here, point out the capabilities of the newly implemented

path-generation objective function.

All the results in this section are obtained by the use of density filtering see eq. (2.1.5.1) and

the Heaviside projection method see eq. (2.22). The filter radius is selected to rmin = 8 mm and

the projection and update parameters are chosen to β0 = 1, βmax = 150, η = 0.3 and τ = 30.

Adaptive design variable move limits according to section A.5 are applied starting from the

value βstart = 1. Moreover, the SIMP parameter is set to k = 3 and the MMA asymptote control

parameter is selected to s = 1.07. The energy interpolation scheme, defined in section A.4, is

also used together with the parameters β1 = 500, ρ0 = 0.01 and o f f set = 0. For parameter

studies related to these fundamental topology optimization parameters, the reader is referred

to (Reinisch 2017).

As a first introductory problem, one single precision point is considered in the path-generation

objective function. Material and geometry parameters are selected according to figure 3.2.

The optimization target according to equation (2.32) is to find a mechanism topology, that
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translates a selected input displacement of uin = 1.5 mm into the displacements u∗out,x = 1 mm

and u∗out,y = −3 mm at the output node. Only volume constraints are applied.
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(a) Solution topology

(b) Displacement figure without counter load, uout,x =

1 mm , uout,y = −3.01 mm
(c) Displacement figure with counter load, uout,x =

0.91 mm, uout,y = −2.71 mm

Figure 3.7: Solution of the path-generation example problem (80x40 elements, uin =

1.5 mm , u∗out,x = 1 mm , u∗out,y = −3 mm )

In figure 3.7 the resulting topology and its displacement figures are illustrated. Due to the

stiffness imposing effect of the counter load case, the resulting topology is a discrete black and

white design. In fig. 3.7 (b) and (c) the displacement figures of the mechanism in comparison

to the undeformed state are shown. Whereas in fig. 3.7 (b) no counter load is applied in fig.

3.7 (c) a counter load of FCL,1,x = −5 N and FCL,1,y = 15 N is acting. This also becomes evident

in the displacement results. In fig. 3.7 (b) the target deformation is almost exactly reached

and in fig. 3.7 (c) a maximum deviation in y-direction from the target of 0.29 mm occurs. The

weighting factors α in equation (2.31) were selected to α0 = 1 for the case with no counter

load and α1 = 0.05 for the counter load case. Corresponding to the values used by Pedersen

et al. (2001). The objective function value at the end of the optimization is Φ = 4.9 10−3 mm2.

Overall the resulting mechanism in figure 3.7 satisfies the displacement requirements well.

The input forces needed are Fin,1 = 9.8 N and Fin,2 = 43.5 N for fig. 3.7 (b) and (c), respec-
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tively. By choosing a higher α weighting factor for the counter load case the target displace-

ment deviation could be further reduced at cost of actuation force.
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Figure 3.8: Convergence plots for the path generation example results in figure 3.7

In figure 3.8 the convergence plots for the objective function and constraints are shown. A

smooth and initially steep descending convergence behavior can be observed for the ob-

jective function. Also the volume constraint converges well over the number of iterations, a

feasible design with v f rac = 0.3 is obtained. The smooth convergence of the presented results

proves the validity of the sensitivity formulation for displacement-controlled analysis derived in

2.2.2. Also the validity of the basic implementation of the path-generation formulation into the

mechtop code is hereby proven.

Results of the generic example problem for different target output displacements u∗out of one

precision point are presented in figure 3.9. The same output displacement magnitude is ap-

plied in four different directions. In contrast to the prior example the results are obtained

under consideration of two distinct counter load cases. The applied counter load cases and

weighting factors are listed in table 3.1.
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Table 3.1: Counter load definition for the path-generation example results in figure 3.9

Loadcase Weight x-Counterload y-Counterload

i [−] α [−] FCL,x [N] FCL,y [N]

0 1 0 0

1 0.05 -5 15

2 0.05 15 -5

For the various output requirements four completely different solution topologies are obtained.

All of them approximate the prescribed output displacement very closely. The topologies and

their deformation figures for the case of no counter load are illustrated in figure 3.9. The result

in (d) is calculated with reduced counter load weighting factors α1 = α2 = 5 10−3, because for

the α parameter of table 3.1 no reasonable result was obtained. The problem in fig. 3.9 (d) can

be understood as a double displacement inverter, representing a kinematically very complex

task. This again results in high sensitivity to the optimization parameters. Although the same

counter loads are used for every individual problem, all the solutions are discrete solid-void

designs. In some results one node connected hinges can be observed. Their appearance

could probably be avoided with an additional consideration of stress constraints.

Viewing figure 3.9, it can also be observed, that the input nodes move very differently in the

various solutions. Whereas the x-displacement is equal for every solution uin,x = 4 mm, y-

displacements vary. This is because with the formulation used only one input DOF can be

prescribed and therefore the displacement in y-direction of the input node is free. In order to

prescribe linear input motion a support in the free input DOF could be defined. This has the

same effect as a prescribed input displacement of uin,y = 0 mm for multiple DOF input control.
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(a) u∗out,x = 4 mm, u∗out,y = −4 mm: uout,x = 4.02 mm,
uout,y = −4.04 mm, Φ = 0.03 mm2

(b) u∗out,x = −4 mm, u∗out,y = −4 mm: uout,x = 3.99 mm,
uout,y = −4.01 mm, Φ = 0.01 mm2

(c) u∗out,x = 4 mm, u∗out,y = 4 mm: uout,x = 3.97 mm,
uout,y = 3.96 mm, Φ = 0.03 mm2

(d) u∗out,x = −4 mm, u∗out,y = 4 mm: uout,x = −4.03 mm,
uout,y = 4.02 mm, Φ = 0.01 mm2

Figure 3.9: Solutions of the path-generation example problem for various target output
displacements (80x40 elements, uin = 4 mm)

As a next step multiple precision points can be considered in the path-generation formulation.

Therefore, the problem in figure 3.2 is used again. Counter loads are applied as previously

according to table 3.1 and four precision points are defined in table 3.2. The output path,

described by the precision points, is selected nonlinear, in order to generate a challenging

path-generation topology optimization task.

Table 3.2: Precision point definition for the path-generation example in figure 3.10

Precision Point Input Displacement x-Target Output y-Target Output

m [−] uin,x [mm] u∗out,x [mm] u∗out,y [mm]

1 2 2 -2

2 4 4 -4

3 6 6 -5

4 8 8 -5
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Figure 3.10 illustrates the deformation figures for the solution topology of the four precision

point problem. The final objective function value of Φ = 0.5 is notably higher than for the single

precision point solutions presented in figure 3.9. The mechanism has to find a compromise in

order to approximate the various precision points prescribed.

(a) m = 1: uout,x = 1.77 mm, uout,y = −2.01 mm (b) m = 2: uout,x = 3.86 mm, uout,y = −3.83 mm

(c) m = 3: uout,x = 6.13 mm, uout,y = −5.00 mm (d) m = 4: uout,x = 7.88 mm, uout,y = −5.17 mm

Figure 3.10: Solutions of the path-generation example problem with multiple precision
points (80x40 elements, Φ = 0.5 mm2 )

From (a) to (d) in figure 3.10 it can be observed, how the mechanism output node follows the

prescribed path. For the case shown with no counter load, the output displacements come

really close to their target values. Looking at the input node, it is seen that in fig. 3.10 (a) and

(b) a linear motion takes place. The mechanism forms a parallelogram-like structure, which

tilts to produce a linear output motion. In fig. 3.10 (c) and (d) then a form of locking of the

tilting motion is observed. A further increase of input load causes the member to the upper

left to bend. This bending again induces a rotation of the right mechanism section, leading to

an output node displacement along the second nonlinear part of the output path.

Further parameter studies for the path-generation objective function formulation with respect

to the weighting factor α and the input displacement magnitude uin are discussed in sections

4.3.3 and 4.3.2.
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The examples presented in this section outlined different applications of the path-generation

objective function. The formulation can be used for the design of single output node mecha-

nisms under consideration of various counter load cases. By this means, single precision point

mechanisms for maximum accuracy of one final output displacement, as well as path-following

mechanisms can be synthesized. The results presented in this section were obtained by im-

plementation of the path-generation objective function to the mechtop code, they prove the

functionality of the path-generation implementation.

3.3.3 Stress Constraint Path-Generation Problem Formulation

In this section, the path-generation formulation is further extended by stress constraints intro-

duced in section 2.4. The resulting complete optimization problem formulation is described in

equation (3.1).

minimize
ρρρ

Φ =

2∑
i=0

αi

M∑
m=1

[uout,m,i − u
∗
out,m]2

subject to: R(U ) =K(U )U − λF = 0

gs,i(ρρρ) =
σ̃PN

σ∗
− 1 ≤ 0

gv =
V

v f racVΩ
− 1 ≤ 0

0 ≤ ρρρ ≤ 1

(3.1)

where gs,i corresponds to a stress constraint for the load case i in the path-generation objective

function. This problem formulation is applied to the generic path-generation example problem

of figure 3.2. Only stress constraints for the first counter load case i = 1 are considered. The

same optimization parameters and filter methods as in the example of figure 3.7 are applied.

Displacement figures and von Mises stress distributions for the unconstrained and for two

stress constrained solutions are illustrated in figure 3.11. In (a) the stress distribution of the

unconstrained solution is shown. The maximum occurring von Mises stress is σvm,max =

7 N/mm2 in the localized hinge region to the lower left. In consequence, the maximum allow-

able stress constraint values σ∗ for the solutions in fig. 3.11 (b) and (c) are chosen lower than

this value.
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(a) Displacement figure and stress distribution for the unconstrained solution according to figure 3.7: Φ =

4.9 10−3 mm2, σmax = 7 N/mm2

(b) Displacement figure and stress distribution for σ∗ = 5 N/mm2: Φ = 1.88 10−2 mm2, σ̃PN,max = 4.96 N/mm2

(c) Displacement figure and stress distribution for σ∗ = 2 N/mm2: Φ = 3.71 mm2, σ̃PN,max = 2 N/mm2

Figure 3.11: Stress constraint solutions of the path-generation example problem (80x40
elements)

In figure 3.11 (b) and (c) it can be observed, that the stress constraint problem formulation of

equation (3.1) effectively limits the stress values. In both cases the constraint is not violated.

Local hinge regions are transferred to distributed compliant flexures and by this means the

stress distribution is smoothed. However, the objective function values Φ increase, with de-

creasing stress constraint values. This especially becomes evident in the result fig. 3.11 (c),
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where even for the depicted case of zero counter load, the target displacement is only badly

reached.

The results in figure 3.11 show, that also for the path-generation objective function the stress

constraint formulation can be successfully applied. Multiple stress constraints can be intro-

duced for the various load cases within path-generation problems.

3.4 Implementation of the Partial Differential Equation Based Filtering Tech-

niques

Partial differential equation (PDE) based filtering techniques were introduced in section

2.1.5.3. Especially for topology optimization on large FE meshes filtering processes consume

high amounts of storage and computational resources. PDE-based filters use the existing FE

mesh discretization to generate the spatial filtering information and can thereby notably re-

duce the computational cost. In this work, the standard density filter as well as its combination

with the Heaviside projection methods, discussed in sections 2.1.5.1 and 2.1.5.2, are modified

to a PDE-based variant. Therefore, the finite element equations explained in 2.1.5.3 are im-

plemented to the mechtop code, based on the regular mesh formulation used in an extension

of the 88-line MATLAB code (Andreassen et al. 2011).

(a) Standard filter: niter = 451, Φ = 5.8 10−3 mm2, t =
4790.5 s

(b) PDE-based filter: niter = 322, Φ = 5.6 10−3 mm2 ,
t = 3331.8 s

Figure 3.12: Comparison of solution topologies for standard and PDE-based density filter
(320x160 elements, rmin = 8 mm =̂ r = 2.31 mm)

In this section, the PDE-based filter is compared to the standard filter implementation. There-

fore, the single precision point example problem of figure 3.7 is calculated on a fine FE mesh

(320x160 elements). A density filter together with Heaviside-projection according to equation

(2.22) is used. The optimization parameters are selected according to section 3.3.2, with ex-

ception of the MMA asymptote control parameter, which in this case is set to s = 1.05. The

results are shown in figure 3.12.
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In figure 3.12 it is seen that the use of PDE-based filtering methods only slightly influences

the appearance of the solution topology. This is because the same filter radius is selected,

applying equation (2.29). The method only represents an alternative way to calculate the

weighting factors for the element densities in the element neighborhood Ne. It is also observed

that the solution using the PDE-based filter converges in fewer iterations niter. A reason for

the faster convergence could be the different weighting factor distribution in radial direction,

that results from the convolution integral. An exemplary weighting function distribution for the

PDE-based filter is illustrated in figure 3.13.

Figure 3.13: Visualization of the weighting function Hei for the PDE-based filter (51x51
elements, e = 1301)

Whereas the standard filter in figure 2.9 has a linear cone-shaped weighting function, the

weighting function of the PDE filter is bell shaped. In the presented example this steeper

descending distribution is beneficial to limit density oscillations in the solid-void transition areas

close to convergence. Furthermore, the thickness of this transition areas is reduced by the

new distribution of the weighting factors. The objective function valuesΦ are almost equivalent

for both results.

Looking at the time per iteration, the PDE filter with 10.35 seconds per iteration is slightly faster

than the standard formulation, which takes 10.62 seconds. The difference comes on one hand

from the filter initialization (generation of filtering information), which is 98% faster. And on the

other hand from the time of every single filtering operation, which reduces by approximately

50% for the PDE filter. For the reason that these operations only represent a small share of the

total computational cost, the absolute speed up is with a value of 2.5% relatively small. The FE
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analysis and the optimization process represent the largest share of computational cost, but

especially for topology optimization on larger meshes or with high filter radius values the PDE-

based filtering methods also provide significant acceleration potential. All the computation

times indicated are obtained on the machine configuration listed in Appendix A.2.

3.5 Implementation of the Multiresolution Topology Optimization Method

(MTOP)

The basic concept of the MTOP approach is described in section 2.3. By introduction of a sub

mesh for the design variables, existing FE information can be used to obtain higher resolution

topologies at comparable computational cost.

In this work the method is implemented to the mechtop code for the case of equal design

variable and density discretization. A remeshing method based on the isoparametric shape

functions is introduced. Thereby, the geometric design variable element information is gener-

ated from the original FE mesh coordinates. According to figure 2.11 the introduced design

variable mesh divides each FE element into subelements. The FE solvers are modified in

order to save the fractions of the element stiffness matrices Ke0,gp, related to the Gauss inte-

gration points and needed for SIMP interpolation see eq. (2.43). The FE analysis itself is still

conducted on the coarse FE mesh and hence remains unchanged. The sensitivity analysis

can be exemplarily defined by equation (2.1.3) with the finer design variables ρe,gp replacing ρe

and the stiffness matrices Ke0,gp replacing Ke,gp. Existing filter methods are applied together

with the MTOP formulation.

The benefit of the method is illustrated in figure 3.14, where three solutions of the generic path

generation problem are listed. Optimization parameters and problem definition are selected

according to the solution in figure 3.7 and the PDE-based variant of the density filter with

Heaviside projection (see eq. (2.22)) is used.

It is seen that the resulting topologies in figure 3.14 appear similar, only to the lower left of (b)

no localized hinge is introduced. In (a) a standard topology optimization on a coarse 80x40

element mesh is performed. This leads to a pixel like contour of the solution topology. In

fig. 3.14 (b) the MTOP method is applied using the same FE mesh as in fig. 3.14 (a) and

four subelements for the design variables. It can be observed, that the results shape appears

much smoother. The objective function value in fig. 3.14 (b) is slightly smaller than in fig.

3.14 (a). Furthermore, the computation of (b) takes 70% more time as for (a). It also needs

more iterations niter to converge. The difference in time per iteration is with 0.912 seconds for
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(a) and 1.164 seconds for the MTOP solution only at around 28%. Figure 3.14 (c) shows a

standard topology optimization result on a finer 160x80 FE mesh, in order to obtain the same

resolution as the MTOP result in fig. 3.14 (b). The computational cost for the result in fig.

3.14 (c) is with 3.271 seconds per iteration, corresponding to 359% of fig. 3.14 (a), by far the

highest. The indicated computational times refer to the machine configuration according to

Appendix A.2.

(a) Standard topology optimization (80x40 elements):
niter = 222, Φ = 4.7 10−3 mm2, t = 202.4 s

(b) MTOP (80x40 elements): niter = 296, Φ =

3.7 10−3 mm2 , t = 344.6 s

(c) Standard topology optimization (160x80 elements):
niter = 259, Φ = 5 10−3 mm2 , t = 847.1 s

Figure 3.14: Comparison of standard and multiresolution (MTOP) topology optimization
results

In figure 3.14 the deformed state of the result topologies is shown. Comparing the solution

times of (b) and (c), the big advantage of the MTOP scheme becomes evident. With only

minor computational overhead with respect to the standard solution a high resolution topology

can be synthesized, whereas the same output resolution is very expensive by means of a

standard topology optimization method. Using MTOP methods one has to consider that the

physics of the structure are still modelled on the underlying coarse FE mesh. Therefore, it

is important to choose this mesh fine enough, in order to model the real structural behavior

sufficiently accurate.
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Also for stress constraint formulations the MTOP method can be applied. Therefore, stresses

σe,gp are calculated corresponding to equation (A.14) at each Gauss integration point gp.

This is done, by evaluation of the element strain vector EGL at the respective Gauss point

coordinates. With the stresses σe,gp then for each subelement the von Mises stress σvm,e,gp

and its relaxation term σe,gp = ρ̃
q
e,gpσvm,e,gp are calculated. Further the p-norm stress σ̃PN and

the stress constraint function gs can be evaluated according to their definition in section 2.4,

with σsum defined by:

σsum =
∑

e

∑
gp

ve,gp ∗ σ
p
e,gp with e,gp ∈ Nσ (3.2)

The sensitivities of gs are also calculated similar to section 2.4. The equations for the MTOP

approach now write as follows:

∂gs

∂ρ̃e,gp

=
1
σ∗

cσ
1
p−1
sum ve,gpσ

p−1
e,gpqρ̃e,gp

q−1
σvm,e,gp + k(E0 −Emin)ρ̃e,gp

k−1
∗λλλσT ∗KKK0e,gp(ue) ∗ue (3.3)

The adjoint vector λσT is obtained as previous from the solution of the adjoint problem:

KT
T ∗ λλλ

σ = −
∂gs

∂U

T
(3.4)

which is solved after element wise calculation of ∂gs
∂ue

.

∂gs

∂ue

T
=

∑
gp

cσ
1
p−1
sum ve,gpσ

p−1
e,gpρ̃e,gp

q

σ∗σvm,e,gp
∗BT

L,gp ∗ F gp ∗CVK ∗ V ∗σσσe,gp (3.5)

In equation (3.5) the terms BL,gp and F gp are calculated for the corresponding Gauss point

(gp) coordinates.

A stress constraint result obtained by the use of the MTOP approach is illustrated in figure

3.15 (b). The previous example of figure 3.14 is therefore calculated under consideration of

stress constraints. Like in section 3.3.3 the stress constraints are applied to the counter load

case.
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(a) Unconstrained solution: σmax = 11.33 N/mm2 Φ =

3.7 10−3 mm2
(b) Stress constrained solution σ∗ = 5 N/mm2: Φ =
5.4 10−3 mm2, σ̃PN,max = 5 N/mm2

Figure 3.15: Stress constrained multiresolution topology optimization (MTOP) (80x40 ele-
ments, 4 subelements)

In figure 3.15, long thin hinge regions can again be observed, which successfully reduce the

maximum stress values. The stress constraint is active. Compared to the unconstrained

solution to the left, the mechanism in (b) is slightly less performing by means of objective

functionΦ. The result obtained shows that the MTOP method can also be successfully applied

for stress constraint topology optimization problem formulations.
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4 Topology Optimization of Compliant Mechanism Ribs

The topology optimization methods introduced and implemented in the previous sections are

applied in this thesis in order to generate compliant mechanism ribs for the project MILAN. The

projects adaptive leading edge wing concept is described in figure 1.2. It consists of a highly

anisotropic shell in the wings nose section, deformed by rib shaped compliant mechanisms.

In contrast to prior work, geometric nonlinear FE analysis methods and also stress constraint

formulations are applied for the synthesis of the mechanism ribs. The main focus of this

work is to assess the suitability of the earlier introduced methods for the practical compliant

mechanism rib problem. Therefore, simplified mechanisms for a new compound compliant

mechanism rib concept are designed.

At the beginning of this section, the concept of stacked single input and output ribs is intro-

duced. Then the modeling for the compliant mechanism design problem for this rib concept

is described. At the end mechanisms for an exemplary wing section are generated and the

results obtained are discussed.

4.1 Concept of Stacked Compliant Mechanism Ribs

𝑢𝑖𝑛

Connecting Belt

Specialized Mechanisms

Figure 4.1: Concept of stacked compliant mechanism ribs

First demonstrators of shape morphing compliant mechanism leading edge ribs were de-

signed in a prior work (Salehar 2015). As shown in figure 1.4, they consist of one integral

mechanism, which has to satisfy all the different target deformation requirements along its
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outer surface. The mechanisms were optimized by the use of linear finite element analysis.

Therefore multiple control points along their outer contour were introduced and an objective

function containing a least square error term was used. Apart from the error introduced by

the use of small displacement analysis, it is assumed that waviness is also a result of the ob-

jective function formulation. Due to the fact that one mechanism needs to satisfy many target

output displacements, only an approximative solution can be found. And with an increasing

number of control points commonly the quality of this approximation deteriorates. Salehar

(2015) therefore proposed another design approach using multiple specialized single input

and output mechanisms for a reduced number of discrete control points. Because for the shell

the shape morphing is close to its natural deformation, it is presumed that by this means the

total mechanisms shape adherence could be improved.

The new concept is illustrated schematically in figure 4.1, in which six specialized mechanisms

actuate six distinct control points highlighted in red. The individual mechanisms are stacked

together in span direction and share a common fixed support section. All the output nodes are

connected by a profile shaped belt structure, represented by the blue lines. By this means,

the individual mechanisms are assembled to one rib, which again could easily be bonded on

the flexible shell. Moreover it is also possible to manufacture these compound ribs within one

single manufacturing process by the use of additive manufacturing techniques as for example

selective laser sintering.

All the input nodes of the individual mechanisms in figure 4.1, marked by the green dots, are

arranged on one axis. Therefore the mechanisms can be actuated equally by one actuator with

the input displacement uin and hence from an operational perspective there is no difference

to the mechanisms integral counterpart. Due to the specialization less deviation of the control

nodes target displacements will occur, because each mechanism has only one task and no

compromise of objectives has to be found. Disturbance effects due to interaction between the

single mechanisms can be partly considered by counter load cases, which impose a general

robustness with respect to force disturbances. In section 4.3, various specialized mechanisms

results for a stacked mechanism rib are presented.

4.2 Problem Modeling

In this work first compliant mechanisms for the stacked mechanism rib concept introduced in

the previous section are optimized. These mechanisms are generated for an exemplary wing

section with 550 mm chord length. According to figure 4.2, six control points are distributed
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equally along the curve length of the profile nose section. The control points position is illus-

trated for the normal and the morphed airfoil state. For both cases the control points positions

in terms of curve length on the profiles are equal. This means that no in plane stretching of

the flexible shell structure occurs. Red arrows indicate the target output displacement vectors

u∗out. For each of the control points a specialized compliant mechanism can be designed by

the use of the path-generation objective function for a single precision point. The problem

formulation generally equals to the generic example problem in figure 3.7.

1

4

3

2

65

Morphing Section

Chord Length (chord=550[mm])

0.3 chord

Control Points 𝑗

Target Displacements 𝒖𝑜𝑢𝑡
∗

x
y

RA18-115-16-33

RA18-115-16

Figure 4.2: Mechanism control point distribution along the morphing profile section

In figure 4.2 the two optimized airfoil geometries for the wings high (RA18-115-16) and low

speed (RA18-115-16-33) configurations are shown. The target values for the mechanism

output displacements for the various control points are listed in table 4.1. By application of

these displacements, the leading edge section is deformed in order to change between the

two airfoil shapes.

Table 4.1: Target displacements u∗out for the control points j of a stacked compliant mech-
anism rib according to figure 4.2

Control Point j [−] 1 2 3 4 5 6

x-Target Output u∗out,x [mm] 0.37 1.67 4.34 5.53 5.28 4.96

y-Target Output u∗out,y [mm] -2.02 -7.31 -13.80 -14.18 -5.67 0.07
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The topology optimization problem is displayed schematically in figure 4.3, in which the case

for control point number 4 is described. The fundamental problem setup is also equivalent for

the calculation of mechanisms for other control points, therefore only the location of the output

node has to be changed.

𝑢𝑖𝑛
𝑇 = 5 𝑚𝑚x

y

𝑢𝑜𝑢𝑡

𝐹𝐶𝐿,𝑖,𝑦

𝐹𝐶𝐿,𝑖,𝑥
Solid-Elements

Void-Elements

Designspace

Figure 4.3: Compliant mechanism rib topology optimization problem scheme (control point
j = 4)

In figure 4.3 the morphing nose section domain is illustrated. At the mechanisms input node,

highlighted in green, an input displacement in positive x-direction is applied. At the output

node, marked in red, the target output displacement uout has to be reached according to table

4.1. Furthermore, counter loads FCL are applied at the output node for the counter load cases

of the path-generation objective function. A fixed support region for the mechanism is provided

to the upper right, modeling its attachment to the spar. The y-DOF in the input node is also

fixed, in order to ensure compatibility of the input node motions between the single stacked

mechanisms. If this DOF would be free, different y-deflections of the individual mechanisms

input nodes could result, causing a self locking effect of the assembled rib. It is assumed that

the actuation can be designed stiff enough in y-direction, so that the reaction forces can be

transferred without significant deformation of the actuator. A thickness of T = 5 mm is selected

for each individual mechanism based on prior experience gained by Salehar (2015).

The choice of the input node location and the input displacement direction is also based on

the experience gained in Salehars Salehar (2015) prior work. For the integral ribs, the best

results could be obtained by the application of input displacements in positive x-direction and
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the input node positioned to the lower right of the design space. In contrast to the model for

the integral compliant mechanism, here the fixed supports are provided only to the upper half

of the right boundary. This is done in order to avoid instabilities in compressed elements.

These instabilities arise, if fixed supports are positioned to close to the input node and hence

the input displacement leads to a strong compression of the void or semi-dense elements in

this area.

In figure 4.3 areas in three different colors can be observed. The grey section represents the

design space, where material can be freely distributed during the optimization process. The

black regions are regions of fixed solid material. They are located around the input node,

in order to avoid instabilities and to provide a defined input section geometry, and along the

outer profiles contour. The outer solid belt in this work is a first approximation of the collective

behavior of the flexible shell and the connecting belt, which is connecting the single stacked

mechanisms. The focus of this work is on the generation of early design phase topologies and

on the testing of the newly implemented methods, no detailed modeling of this components is

done.

The white areas next to the outer solid belt in figure 4.3 represent a prescribed void non design

space. First optimizations showed that this non design space is necessary in order to avoid

collisions between the developing topology and the outer belt. This collisions can not be con-

sidered by the model and must therefore be avoided. Furthermore without the introduction of

a non design region the mechanisms connect in multiple areas to the outer belt, inhibiting the

free deformation of the belt and causing kinks in the outer geometry. By this means, the single

mechanisms objective is fulfilled, but the other control points solutions are disturbed. It was

also observed that for too thin non design regions, single mechanism components can even

cross the target profile contour, making the assembled solution worthless. The prescribed

void region is interrupted close to the output node to allow the mechanism to connect to the

output node.

The mechanism rib results presented in this work are all defined by the basic problem setup

shown in figure 4.3. For optimization the path-generation objective function according to equa-

tion (2.31) is used. Aerodynamic loads act as counter loads. In the following subsections the

used material, the calculation of the aerodynamic loads as well as the mesh discretization of

the profile nose section are described.
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4.2.1 Material

For the compliant mechanisms the high performance semi crystalline thermoplastic mate-

rial polyether ether ketone (PEEK) is chosen. It has very good mechanical properties for a

large temperature range and can be processed by additive manufacturing techniques. Ma-

terial test results show a significant temperature dependency of PEEK’s material properties.

In this work material properties resulting from a in-house test conducted at the Institute for

Lightweight Structures at TUM are used (Mahl et al. 2016). The stress-strain curves for four

different temperatures are displayed in figure 4.4. A clearly nonlinear material behavior can

be observed.

Elastic-Plastic Material Behaviour

Linear-Elastic Material 
Behaviour at 4 K

St
re

ss
[M

p
a]

Strain [%]

Figure 4.4: Stress-strain curves for PEEK at different temperatures (Mahl et al. 2016)

Due to the fact that nonlinear material behavior can not yet be modelled by the implemented

FE solver, linear-elastic material is assumed. This simplification might be valid for very small

strains but in compliant mechanism design, where also high strains occur the error should not

be neglected. Hence, in future work the implementation of nonlinear material models must be

considered.
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Table 4.2: Material parameters for PEEK at 20 [◦C]

Young’s Modulus EPEEK [N/mm2] 4232

Poisson’s Ratio νPEEK [−] 0.36

Tensile Strength Rm,PEEK [N/mm2] 100

In this thesis the material parameters for a temperature of 20 ◦C are used together with the St.

Venant-Kirchhoff material model in equation (A.5). The material parameters are listed in table

4.2.

4.2.2 Aerodynamic Loads

The compliant mechanism ribs need to transfer aerodynamic loads from the flexible wings

nose section to the spar. They also need to be stiff, in order to avoid high deformations and

resulting deviations from the airfoils target shape. To ensure this, in topology optimization

the aerodynamic loads acting on the mechanisms are applied as counter loads for the path-

generation formulation.

It is planned to design the wing with a rib every half a meter of span and hence the load on

one compliant mechanism rib is estimated for this reduced wing section. Two load cases,

one for the morphed and one for the original airfoil, are considered. Therefore, load factors

according to the manoeuvring envelope prescribed by the certification standard (CS-22 2008),

are applied. The load factors are n = 5.3 at the maximum speed for extended flaps of vFE =

231 km/h in the morphed state and n = 4 at the design maximum speed of vA = 312 km/h for

the high speed profile. With an aircraft mass of m = 600 kg, the wing area of A = 8.6 m2 and

the air density of ρ = 1.225 kg/m3 given, the coefficients of lift CL can be calculated using the

following equation:

CL =
2 n m g
ρ v2 A

(4.1)

For the exemplary wing section with chord = 550 mm chord length, considered in this work,

the Reynolds numbers are derived as

Re =
v chord

ν
(4.2)

where ν = 1.53 10−5 m2/s is the assumed air viscosity. The resulting Reynolds numbers Re

and coefficients of lift are listed in table 4.3.
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Table 4.3: Parameters for the evaluation of the pressure distribution in XFOIL

Airfoil State Profile
Reynolds Number Coefficient of Lift

Re [−] CL [−]

morphed RA18-115-16-33 2.31 106 1.438

unmorphed RA18-115-16 3.12 106 0.595

This parameters are used together with the profile geometry data to calculate the pressure

distribution coefficient Cp along the profile. This is done by the use of the program XFOIL. In

the following the CP values can be integrated along the profiles contour in order to obtain the

total force acting on the airfoil.

For the stacked compliant mechanism concept each single mechanism carries a part of the

aerodynamic load. It is assumed that each mechanism is loaded mainly by the aerodynamic

loads acting close to its control point. Therefore, the profile nose is divided into sections,

whose resulting aerodynamic loads are assigned as concentrated forces to the corresponding

mechanisms.
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𝐹3,𝑦
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Figure 4.5: Division of the wings morphing nose section contour for aerodynamic load
calculation

The division of the nose section is illustrated in figure 4.5. The control points, corresponding

to the individual mechanisms output nodes, are signed by the red markers. For the load

calculation in the middle between each control points black markers are introduced. At these
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markers, the nose sections outer contour is divided, in order to obtain six differently colored

sub parts assigned to the six control points. The pressure distribution on each of this sub

parts is integrated by equation (4.3) and by this means the resulting force vectors, acting on

the single mechanisms output nodes, are obtained.

Fi =
ρ

2
v2b

∫ si

si−1

Cp(s)n(s)ds (4.3)

In equation (4.3) s is the curve length along the airfoil contour and n(s) the normal vector to

the curve. b = 0.5 m is the length of the wing section related to the compliant mechanism rib.

For simplicity, it is assumed that the chord length on each mechanisms wing section remains

constant.

The resulting load values are listed for both airfoil configurations in table 4.4. Although shear

forces are neglected, a conservative model is obtained by the sectioning approach according

to figure 4.5. This is because the shear forces are very small compared to the lift and act in the

oposite direction for most of the occurring x-component loads . Especially for the first control

point to the upper right the applied load is overestimated. At this position the flexible shell is

attached to the rest of the wing and therefore in reality loads are also transferred trough the

shell.

Table 4.4: Aerodynamic loads acting on the stacked mechanisms output nodes for the
standard and the morphed configuration

Control Point j [−] 1 2 3 4 5 6 Sum

Load

Standard Config.
FCL,x [N] -17.7 -20.7 -32.5 14.2 0.4 0 -56.2

FCL,y [N] 122.2 -88.3 66.1 32.7 19.2 23.7 352.1

Morphed Config.
FCL,x [N] -26.7 -28.5 -33 0.6 -3.7 -1.8 -93.1

FCL,y [N] 130.1 75.9 49.7 27.7 27.7 44.2 355.3

Observing the loads in table 4.4 it is seen, that forces for the morphed and the standard con-

dition load cases are very similar. Only their distribution between the single mechanisms

changes slightly. The magnitudes are slightly higher for the morphed condition, which is

primarily the case for the x-components. In both cases the resulting force acts in negative

x-direction and in positive y-direction.

Due to the very similar loads in both load cases, in the following only the load case for the
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morphed configuration is considered in topology optimization. The loads for this load case

are applied to the mechanisms output nodes in one single counter load case according to

equation (2.32).

4.2.3 FE Mesh Discretization

X

Y

Z

X

Y

Z Figure 4.6: FE mesh of the wings morphing section (13017 quadrilateral elements)

In this section the used FE mesh discretization is shortly introduced. The entire morphing

section of the profile is meshed by isoparametric bilinear quadrilateral finite elements (see

fig. A.1). In order to obtain a homogeneous global element size distribution, an unstructured

meshing approach, using various element orientations, is preferred over a structured mesh

approach. Whereas for structured meshes the leading edge region is disproportionately high

resolved, with unstructured meshes a similar resolution degree throughout the entire domain

can be reached with fewer elements. This not only has an advantage in terms of total FE

analysis cost, but also the size of the optimization problem is reduced. The drawback of the

unstructured mesh approach is that higher distorted elements occur, which can be subjected

to modeling errors. Figure 4.6 shows the FE mesh used for the mechanism corresponding to

control point 4 in figure 4.2.

The mesh shown in figure 4.6 is with 13017 elements relatively fine. Also the segmentation

of the geometry can be observed, with separate surfaces created for the distinct non design

space (solid/void) areas found in figure 4.3. At the mechanisms output node a blocking sep-

aration has to be introduced, in order to create an FE node at this location, where counter

loads can be applied and the nodal output displacement is defined. The mesh presented in

this section and similar meshes for the mechanism ribs corresponding to other control points

are used to obtain the results presented in section 4.3.
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4.3 Results

In this section the results obtained for the various mechanisms of the stacked rib concept

with six control points (see fig. 4.1) are presented. The results are obtained by the path-

generation objective function formulation according to equation (2.31). As counter loads, the

aerodynamic loads calculated in section 4.2.2 for the morphed configuration are applied. The

target displacement values for the single precision points are listed for each of the six mech-

anisms in table 4.1. A detailed description of the modeling of the optimization problem was

given in the previous section. The finite element analysis is based on the mm-t-s unit system

(see table A.1).

For optimization the PDE-based density filter and the Heaviside projection approach defined

in equation (2.22) are applied. The projection parameter β is updated according to equation

(2.23) with τ = 30, βmax = 150, β0 = 1 and η selected equal to the corresponding problems

volume fraction constraint value. Moreover, adaptive design variable move limits according to

section A.5 are applied starting from the value βstart = 1. Also, the MTOP method introduced

in section 2.3 is applied in order to obtain high resolution results. The filter radius is selected

to r = 1.3 mm and the asymptote control parameter of the MMA optimizer is set to s = 1.07.

Furthermore, the SIMP parameter is set to k = 3. The energy interpolation scheme, defined in

section A.4, is also used together with the parameters β1 = 500, ρ0 = 0.01 and o f f set = 0.1.

The input displacement value is initially set to uin = 5 mm, it approximately corresponds to the

total curve length difference between the standard and the morphed nose section geometry.

This difference equals also to the displacement that the free end of the flexible shell to the

lower right of the nose section undergoes and therefore appears to be a reasonable initial

guess for the input displacement.

In the following subsection only volume constraint compliant mechanism rib results are dis-

cussed. Then in a second step the influence of the weighting factor α and the input dis-

placement value uin on these results is investigated. At the end of this section also stress

constraints are considered and stress constraint compliant mechanism results are presented.

4.3.1 Only Volume Constraint Solutions

In this chapter, the path-generation topology optimization approach is applied without consid-

eration of stress constraints. Therefore, first the mechanism for the control point number four

is regarded. The optimization problem for this mechanism is illustrated schematically in figure

4.3. A volume fraction constraint of v = 0.4 is selected and the weighting factors α are set to
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α0 = 1 for the case of zero counter load and to α1 = 0.05 for the counter load case. This choice

of weighting factors α corresponds to the examples published by Pedersen et al. (2001). The

displacement figure of the resulting topology together with the undeformed reference for the

case of zero counter load is illustrated in figure 4.7. A stiff structure connected by thin flexible

hinge regions can be observed.

Figure 4.7: Compliant mechanism rib result for control point number four, Φ =

7.8 10−3 mm2, uout,x = 5.53 mm, uout,y = −14.19 mm, Fin = 304.6 N, t = 3844.2 s

In figure 4.7 it is also seen that the target displacement can be approximated very well, result-

ing also in low values for the objective function Φ. The output node represented by the red

marker is almost perfectly in the middle of the blue circle, which signs the target displacement

position. This is observed although the solution did not meet the convergence criteria and the

maximum number of 400 iterations was reached. At the end of the optimization, small oscilla-

tions of the densities occurred, without a further change of the objective function, inhibiting the

convergence. The volume constraint is active but not violated at the end of the optimization,

meaning that all the available material is used. For the deformation of the mechanism, very

high input forces of Fin = 304.6 N are needed, even with the zero counter load case. The

computational time t needed for this solution is a little more than one hour for 400 iterations

with 13017 elements. This corresponds to a time per iteration of 9.61 seconds on the ma-

chine configuration described in section A.2. By this means, compared to the original code an

acceptable time cost level for problems of this size is reached.

In figure 4.8 the relaxed von Mises stresses for the activated mechanism under the counter

load case are illustrated. Looking at the stress field, it is seen that in some regions stresses

well above the tensile strength of PEEK (Rm,PEEK = 100 N/mm2) appear. The very high max-

imum stress value σmax is caused artificially by large distortions of semi dense elements.
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These elements are marked by the red circle in figure 4.7, where the distorted white elements

overlay the black solid topology. By a further adjustment of the energy interpolation param-

eters this bad modeling of semi dense elements can be avoided. Especially the member

connecting the area surrounding the input node to the supports is highly stressed. In prac-

tice the occurring stresses would cause the failure of the mechanism even before reaching

the target output displacements. Similar results are also obtained for the other control points

mechanisms.

Figure 4.8: Stress distribution for the compliant mechanism rib result for control point num-
ber four σmax = 9688 N/mm2

The deformed solution topologies for all the six stacked mechanisms are listed in figure 4.9.

There the target airfoil contour is also shown as reference in blue color and the control points

are signed by red markers. Different volume constraint values v f rac are selected for the in-

dividual mechanisms. This is done because all the mechanisms are calculated in the same

design space and for mechanisms related to the control points close to the support area less

material is needed. Again the displacement figures are displayed for the case of zero counter

load, for which all the mechanisms come close to their target displacement values.

Comparing the results in figure 4.9, it becomes evident that results (a)-(c) have higher objec-

tive function values Φ than the other results. This is caused by the higher aerodynamic loads

at the suction side of the profile (see table 4.4), which lead to larger deviations from the target

displacements. Furthermore, it is observed that in most of the solutions a similar bending

member as previously described is introduced to the lower right. For none of the solutions

the maximum stress is lower than the strength of PEEK, which means that none of the result

would reach the target displacement in reality before failure. This underlines the importance

of stress constraint formulations for the compliant mechanism rib application. Looking at the

maximum stress values it is again seen that some of the values appear artificially high. This
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is the case in fig. 4.9 (a), (d) and (f), where the stresses in semi dense elements are overesti-

mated. But nevertheless the general stress level is still far above the strength of PEEK. In fig.

4.9 (b) this effect can not be observed, meaning that the stress are actually at this high level.

The required input force level is also comparably high for most of the results, only in fig. 4.9 (f)

a low value can be reached. In fig. 4.9 (a) and (f) the solutions contain still a few grey element

areas. To eliminate them the energy interpolation parameters could be further adjusted.

(a) Control point 1 (v f rac = 0.15): Φ = 3.99 10−2 mm2,
uout,x = 0.31 mm, uout,y = −2.05 mm, Fin = 292.6 N,
σmax = 7057 N/mm2

(b) Control point 2 (v f rac = 0.25): Φ = 1.49 10−2 mm2,
uout,x = 1.66 mm, uout,y = −7.34 mm, Fin = 463.5 N,
σmax = 1496 N/mm2

(c) Control point 3 (v f rac = 0.4): Φ = 2.43 10−2 mm2,
uout,x = 4.36 mm, uout,y = −13.84 mm, Fin = 344.6 N,
σmax = 686 N/mm2

(d) Control point 4 (v f rac = 0.4): Φ = 7.9 10−3 mm2,
uout,x = 5.53 mm, uout,y = −14.19 mm, Fin = 306.9 N,
σmax = 9688 N/mm2

(e) Control point 5 (v f rac = 0.25): Φ = 3.00 10−3 mm2,
uout,x = 5.28 mm, uout,y = −5.69 mm, Fin = 164.2 N,
σmax = 719 N/mm2

(f) Control point 6 (v f rac = 0.2): Φ = 5.1 10−3 mm2,
uout,x = 4.95 mm, uout,y = 0.01 mm, Fin = 6.2 N, σmax =

1215 N/mm2

Figure 4.9: Solutions for the six stacked compliant mechanism ribs (uin = 5 mm, α0 = 1,
α1 = 0.05)

Observing the free belt structures in figure 4.9, it is seen that very different deformations of
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the belt occur in the various results. Whereas in some solutions the belt almost deforms to

the target profile shape, in others large deviations occur. The main reason for this is that the

mechanisms not only apply the linear target deformations, but also transfer torque to the belt,

which causes unnatural curvatures. The different belt deformations would lead to higher in-

teraction forces between the individual solutions in the assembled rib. Furthermore, waviness

of the ribs surface in the morphed state is expected as a consequence of the incompatible

deformations.

There are two ways to avoid this behavior. The first one is to add the deviations of the solid

element rotations close to the output node to the objective function. By this means, the de-

viation from the target rotation values can be minimized. Moreover, the target rotation value

can easily be obtained by comparison of the normal vectors of both profile contours at the

control point position. The second approach is to use conventional moment free hinges as

connection between the compliant mechanisms and the belt structure. By doing so, no torque

can be transferred to the belt, which in consequence leads to a natural smooth deformation

of the shell. This deformation should be close to the target shape. For both approaches the

optimization problem formulation, as well as the modeling have to be modified.

The results presented in this section generally show that the path-generation formulation can

be used to generate also compliant mechanisms for the morphing leading edge application. In

theory all the results obtained reach the target displacement values very well, but the stresses

reached are far beyond the strength of PEEK. Also the input forces needed are far to high, for

a reasonable application. Furthermore, it is seen that rotations imposed to the belt structure

lead to compatibility problems in the stacked single output mechanism concept. Although

each single mechanism reaches its target deformation, waviness is expected to occur due to

wrong rotations imposed to the belt at the control points positions. Two solution concepts for

this problem were proposed.

In the following sections the influence of the input displacement parameter uin and the objec-

tive function weighting factor α on the volume constraint results is discussed. Then in section

4.3.4 stress constraints are added to the optimization problem formulation, in order to reduce

the stresses to an acceptable level.

4.3.2 Influence of the Input Displacement Value

To examine the influence of the input displacement magnitude to the solution topologies of the

optimization problem at hand, in this section results for different input displacement values uin
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are compared. Therefore, again solution topologies for the compliant mechanism rib number

four according to figure 4.3 are generated under consideration of only volume constraints.

The various result displacement figures and reference configurations obtained for the case

of no counter load are illustrated in figure 4.10, where the input displacement is varied from

uin = 3 mm in fig. 4.10 (a) to uin = 6 mm in fig. 4.10 (d). The resulting force and displacement

values listed in figure 4.10 have the indices zero or one related to the zero counter load case

and the counter load case respectively.

Observing the objective function values Φ in figure 4.10 it is seen that the solutions fig. 4.10

(a), (b) and (c) perform comparably well, with uin = 5 mm leading to the best objective function

value. The result in fig. 4.10 (d) performs one order of magnitude worse than the other results.

In terms of input force Fin solutions fig. 4.10 (a) and (b) are better than fig. 4.10 (c) and (d).

Overall the solutions fig. 4.10 (a) and (b) represent the best combination between low input

forces and good objective function values.

(a) uin = 3 mm: Φ = 9.1 10−3 mm2, uout,x,0 = 5.53 mm,
uout,y,0 = −14.19 mm, Fin,0 = 126.6 N, Fin,1 = 249.4 N,
σmax = 196.3 N/mm2

(b) uin = 4 mm: Φ = 9.0 10−3 mm2, uout,x,0 = 5.54 mm,
uout,y,0 = −14.19 mm, Fin,0 = 101.3 N, Fin,1 = 195.8 N,
σmax = 716.1 N/mm2

(c) uin = 5 mm: Φ = 7.8 10−3 mm2, uout,x,0 = 5.53 mm,
uout,y,0 = −14.19 mm, Fin,0 = 304.56 N, Fin,1 = 386.8 N,
σmax = 9688.0 N/mm2

(d) uin = 6 mm: Φ = 2.2 10−2 mm2, uout,x,0 = 5.53 mm,
uout,y,0 = −13.82 mm, Fin,0 = 209.1 N, Fin,1 = 283.5 N,
σmax = 724.2 N/mm2

Figure 4.10: Solutions of rib number four for different input displacement values uin (u∗out,x =

5.53 mm, u∗out,y = −14.18 mm, v f rac = 0.4, α0 = 1, α1 = 0.05)

The values for the maximum relaxed von Mises stresses σmax evaluated for the counter load

case are also listed in figure 4.10, where in (c) as previously mentioned in section 4.3.1 artifi-

cially high stresses occur due to high distortions in semi-dense elements. For the lowest input
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displacement in fig. 4.10 (a) also the lowest stresses appear.

In contrast to conventional rigid mechanisms, it is observed that increasing input displace-

ments do not necessarily lead to decreasing input forces. This is because for compliant

mechanisms the input work corresponds to the sum of output work and elastic work stored in

the mechanism. Depending on the topology and the input displacement value this amount of

elastic work is changing. Comparing the input forces Fin,0 for the zero counter load case and

Fin,1 for the counter load case for the various solutions in figure 4.10, it is seen that the dom-

inant share of the input force is needed for the elastic deformation of the mechanism. This is

especially the case for high input displacement values, which result in mechanisms that store

high amounts of elastic energy. It is also observed, that for higher input displacements the

input load share transformed in output work diminishes, which corresponds to the classical

rigid mechanism transmission behavior.

Figure 4.10 shows that the solutions are very sensitive to the prescribed input displacement

value uin, but no direct relation between this value and the quality of the solutions can be

observed. It is only seen that uin = 4 mm appears to be a good choice for the problem

formulation at hand, combining a low objective function value with low required input forces.

4.3.3 Influence of the Counter Load Weighting Factor

Apart from the input displacement magnitude uin, other important influencing parameters for

the path-generation problem formulation (see eq. (2.32)) are the weighting factors α. In this

section a parameter study with respect to these parameters is carried out. Therefore, for the

compliant mechanism rib problem the counter load case weighting factor α1 is varied. Figure

4.11 illustrates different results obtained for the rib number four. The displacement figures

and the result parameters with index one correspond to the counter load case, whereas the

indicated result values with index zero are related to the zero counter load case.

As in the previous section for the input displacements the resulting topologies act also very

sensitive to the counter load weighting parameter α1. In figure 4.11, it is seen that according

to the objective function definition (2.31) the values Φ increases with increasing α1 value. The

input forces are very similar for all the results except for the solution in fig. 4.11 (c), where

a notably higher input force is needed. Looking at the maximum relaxed von Mises stress

values σmax,1, no relation between the maximum occurring stress and the weighting factor α1

can be observed.
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(a) α0 = 1, α1 = 1: Φ = 6.58 10−2 mm2, uout,x,0 =

5.47 mm, uout,x,1 = 5.60 mm, uout,y,0 = −14.34 mm,
uout,y,1 = −14.01 mm, Fin,1 = 360.3 N, σmax,1 =

654.2 N/mm2

(b) α0 = 1, α1 = 0.5: Φ = 4.47 10−2 mm2, uout,x,0 =

5.49 mm, uout,x,1 = 5.63 mm, uout,y,0 = −14.29 mm,
uout,y,1 = −13.95 mm, Fin,1 = 348.3 N, σmax,1 =

850.7 N/mm2

(c) α0 = 1, α1 = 0.2: Φ = 2.73 10−2 mm2, uout,x,0 =

5.52 mm, uout,x,1 = 5.67 mm, uout,y,0 = −14.24 mm,
uout,y,1 = −13.86 mm, Fin,1 = 462.9 N, σmax,1 =

569.8 N/mm2

(d) α0 = 1, α1 = 0.05: Φ = 7.8 10−3 mm2, uout,x,0 =

5.53 mm, uout,x,1 = 5.67 mm, uout,y,0 = −14.19 mm,
uout,y,1 = −13.82 mm, Fin,1 = 386.8 N, σmax,1 =

9688 N/mm2

Figure 4.11: Solutions of rib number four for different counter load weighting factors α1
(u∗out,x = 5.53 mm, u∗out,y = −14.18 mm, uin = 5 mm , v f rac = 0.4)

The result in fig. 4.11 (d) with the lowest α1 value is very accurate for the zero counter load

case. In contrast to fig. 4.11 (d) the solution in fig. 4.11 (a) has equal weighting factors for

both load cases and therefore tries to find the best design compromise satisfying both require-

ments equally well. Comparing the absolute displacement values in fig. 4.11 (d) the largest

deviations to the target displacements are ∆uout,x,1 = +0.14 mm and ∆uout,y,1 = +0.36 mm. For

the solution in fig. 4.11 (a) these values are ∆uout,x,1 = +0.07 mm and ∆uout,y,1 = +0.16 mm,

meaning that the target for zero counter load is still better approximated. The other results in

fig. 4.11 (b) and fig. 4.11 (c) are somewhere in between this values.

Based on the results discussed in this section higher weighting parameters α1 appear rea-

sonable for further calculations of the compliant mechanism rib problem. This is because in

reality the zero counter load case only occurring at the ground is of low importance for the

mechanisms. In flight, where an accurate profile geometry is required aerodynamic loads

act. These loads are considered by the counter load case, which in consequence must be

weighted higher.

Institute of Aircraft Design | Technical University of Munich 74



4 Topology Optimization of Compliant Mechanism Ribs

4.3.4 Stress Constraint Solutions

In this section, the stress constraint path-generation problem formulation according to equa-

tion (3.1) is applied to the compliant mechanism rib problem. One single stress constraint for

the counter load case is considered. By application of this formulation to the problems in figure

4.9 with an input displacement of uin = 5mm only one feasible result could be obtained. For

most of the solution topologies the stresses were still to high and the topologies degenerated.

Solutions for the same problem setup with a reduced input displacement of uin = 4mm showed

more promising results in combination with stress constraints. Therefore, in the following the

results for the reduced input displacement value are discussed.

First for the rib number four the only volume constraint result is compared to the stress con-

strained result. For this reason, displacement figures and stress distributions for both cases

are illustrated in figure 4.12. The displacement figures and values as well as the input force

value are shown for the case of no counter load. The stress field refers to the actuated rib

state with counter loads applied. In all the figures the input and output nodes are signed by

green and red markers respectively.

(a) Only volume constraint: σmax = 716.1 N/mm2, Φ = 9 10−3 mm2, uout,x = 5.54 mm, uout,y = −14.19 mm, Fin =

101.3.2 N

(b) Stress constraint σ∗ = 50 N/mm2: σ̃PN,max = 29.8 N/mm2, Φ = 7.3 10−3 mm2, uout,x = 5.53 mm, uout,y =

−14.19 mm, Fin = 39.9 N

Figure 4.12: Comparison of only volume constrained and stress constrained solutions for
rib number four (uin = 4 mm, v f rac = 0.4, α0 = 1, α1 = 0.05)

In figure 4.12 (b), it is seen that for this example the stress constraints successfully reduce the
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maximum stress level. Both the only volume constraint solution in fig. 4.12 (a) as well as the

stress constraint solution in fig. 4.12 (b) come very close to the target displacement values.

In fig. 4.12 (b) the maximum stress is even below the constraint value of σ∗ = 50 N/mm2,

whereas in fig. 4.12 (a) the stresses are far above the material strength Rm,PEEK . Moreover,

in fig. 4.12 (b) longer hinge regions appear. The main difference between the results is that in

fig. 4.12 (b) there is no connecting member to the lower right. Hence, by the stress constraint

formulation the area of highest stresses in fig. 4.12 (a) is simply omitted from the topology in

fig. 4.12 (b). Surprisingly for this example even a better optimum is found applying the stress

constraint formulation. Also the input force needed can notably be reduced by the stress

constraint.

(a) Control point 1 (v f rac = 0.15, σ∗ = 50 N/mm2): σ̃PN,max = 51.9 N/mm2, Φ = 2.49 10−2 mm2, uout,x = 0.31 mm,
uout,y = −2.11 mm, Fin = 23.2 N

(b) Control point 2 (v f rac = 0.25, σ∗ = 50 N/mm2): σ̃PN,max = 49.7 N/mm2, Φ = 1.82 10−2 mm2, uout,x = 1.66 mm,
uout,y = −7.34 mm, Fin = 19.5 N

(c) Control point 3 (v f rac = 0.4, σ∗ = 50 N/mm2): σ̃PN,max = 50.0 N/mm2, Φ = 3.79 10−2 mm2, uout,x = 4.35 mm,
uout,y = −13.84 mm, Fin = 9.1 N

Figure 4.13: Stress constrained solutions for the stacked compliant mechanism ribs 1-3
(uin = 4 mm, α0 = 1, α1 = 0.05)
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(a) Control point 4 (v f rac = 0.4, σ∗ = 50 N/mm2): σ̃PN,max = 29.8 N/mm2, Φ = 7.3 10−3 mm2, uout,x = 5.53 mm,
uout,y = −14.19 mm, Fin = 39.9 N

(b) Control point 5 (v f rac = 0.25, σ∗ = 50 N/mm2): σ̃PN,max = 64.4 N/mm2, Φ = 4.70 10−3 mm2, uout,x = 5.28 mm,
uout,y = −5.69 mm, Fin = 60.6 N

(c) Control point 6 (v f rac = 0.2, σ∗ = 50 N/mm2): σ̃PN,max = 49.9 N/mm2, Φ = 8 10−4 mm2, uout,x = 4.96 mm,
uout,y = 0.03 mm, Fin = 16.1 N

Figure 4.14: Stress constrained solutions for the stacked compliant mechanism ribs 4-6
(uin = 4 mm, α0 = 1, α1 = 0.05)

The same stress constraint formulation is now applied to the other five mechanisms of the

stacked rib. The resulting topologies and relaxed von Mises stress fields for all the different

mechanisms are displayed for the counter loaded case in figures 4.13 and 4.14. For fig. 4.13

(b) and (c) and fig. 4.14 (a) and (c) feasible solutions could be obtained. In fig. 4.13 (a) the

stress constraint is only slightly violated, whereas in fig. 4.14 (b) higher stress peaks occur.

Observing the results in both figures, it is seen that in all the topologies except for fig. 4.14

(b) the highly stressed connecting member between the input section and the fixed supports

is omitted. The hinge areas are smeared out to larger areas in order to achieve distributed

compliance and hence reduce local stress peaks. Looking closer to the stress distributions

in fig. 4.14 (b) and (c) it is seen that stresses higher then the p-norm stress occur, meaning

that the p-norm approximation for this examples gives to low stress values. For the solution in
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fig. 4.13 (a) the opposite effect is observed. There the p-norm gives to high stress values. In

consequence in reality the solution in fig. 4.13 (a) is a feasible design, whereas the result in

fig. 4.14 (c) is infeasible. The p-norm formulation introduced in section 2.4 should therefore

be reviewed and eventually modified in future work in order to achieve better approximations

of the maximum stress.

The indicated displacement and force values in fig. 4.13 and fig. 4.14 are again referred to the

case of zero counter load. The input forces are still high but could be reduced approximately

by the factor of 10 compared to the results in figure 4.9. Furthermore, the objective function

values Φ are comparable to the only volume constraint results in figure 4.9, meaning that the

stress constrained solutions perform similarly good.

The results presented in this section show that by the introduction of stress constraints the

compliant mechanisms could be significantly improved. Whereas the prior results in figure

4.9 in reality could not even reach the target displacement without failure, all of the results in

figures 4.13 and 4.13 except for fig. 4.14 (b) are able to do so. Moreover, for several topologies

the stress level could be even reduced below σ∗ = 50 N/mm2, which results in a first form of

fatigue-resistant design. The mechanisms still reach good objective function values and the

required input force was also reduced. The fact that for an input displacement of uin = 5 mm

only one feasible stress constraint solution could be obtained underlines the importance of the

prescribed input displacement magnitude.
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5 Conclusion and Outlook

In this thesis, the compliant mechanism topology optimization code mechtop (Reinisch 2017),

developed in previous work, was extended by multiple functionalities. The new implemen-

tations were first tested on generic example problems. Then they were applied, in order to

optimize first compliant mechanism ribs for a wing concept with morphing forward section

under consideration of geometric nonlinear FEM.

5.1 Code Extension

At the beginning of this work, the FE solver and the entire optimization loop were adapted

in order to consider also non-regular FE meshes. An interface to the commercial Abaqus

preprocessor was provided, allowing the import of complex geometry meshes. Moreover, a

displacement-controlled FE solver was introduced. In the following the path-generation ob-

jective function formulation according to Pedersen et al. (2001) was implemented, allowing

the generation of exact output displacement or output path following mechanisms. The stress

constraint formulation for nonlinear compliant mechanism synthesis introduced in prior work

(Reinisch 2017) was then combined with this path-generation formulation. In addition other

methods, as the PDE-based filtering techniques (Lazarov & Sigmund 2011) and the mul-

tiresolution topology optimization scheme (MTOP) (Nguyen et al. 2010), were implemented.

Various other changes, as for example the parallelization of the inner FE loops, were intro-

duced in order to accelerate the code. Furthermore, the code was restructured to an input file

format, based on an Excel-sheet containing the entire parameter set defining the optimization

problem.

Two example problems were introduced to test the implementations. The different nonlinear

FE solver formulations were tested on a planar cantilever example and validated by compari-

son to the solution obtained in Abaqus. In the following the newly implemented topology opti-

mization methods were applied to a generic path-generation example problem. The obtained

results proved the validity of the implementations. A powerful tool for topology optimization of

2D compliant mechanisms is the result of this work.

5.2 Compliant Mechanism Rib Optimization

The expanded code was applied in order to generate compliant mechanism ribs for the mor-

phing wing application. A new concept of stacked single input and single output ribs has there-

fore been introduced and the optimization problem modeling for this concept was outlined. By

application of the path-generation formulation in combination with a PDE-based density filter
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and the MTOP approach first high resolution results based on geometric nonlinear FEM could

be obtained for the compliant mechanism ribs.

Most of the resulting topologies closely approximate the prescribed target output displacement

values. However, in the results obtained under consideration of only volume constraints very

high stresses appear, exceeding the strength of PEEK. Therefore, in reality these mechanisms

would break even before reaching the target output displacements. Furthermore, for most of

the solutions very high input forces are needed in order to deform the mechanisms. By the

addition of stress constraints to the problem formulation the results could be improved. The

maximum stress level as well as the required input forces could be significantly reduced for

most of the mechanisms.

Despite of the improvements the results obtained are still some steps away form a real world

application. Especially for the counter load case, the actuation forces are still high and observ-

ing the solution topologies also other drawbacks are noticed. One of these is that most of the

mechanisms also apply torque to the outer belt structure. The resulting twist of the belt struc-

ture is not taken in to account in the optimization problem formulation and can lead to wrong

curvatures along the profile contour in the assembled rib. Two possible solution approaches

for this problem were discussed in section 4.3.1.

5.3 Recommendations for Further Work

The results obtained in this work represent a drastic improvement in the development of the

compliant mechanism ribs in the project MILAN. Topology optimization methods based on

nonlinear analysis could be used for the first time to synthesize compliant mechanism ribs.

Nevertheless many further improvements have to be made towards a real world application of

the mechanisms. The extended mechtop code builds a good basis for the necessary further

development. Some simplifications made, as the modeling of the flexible shell by the mech-

anisms material and the neglection of the interaction between the single mechanisms for the

stacked concept need to be considered more in detail. In general a consideration of both the

integral and the stacked mechanism concept is recommended for the future development. In

the following multiple ideas for future work are shortly outlined:

Python Script for Mesh Generation Especially for the stacked mechanism concept, where

multiple different mechanisms for one rib have to be generated, mesh generation represents

a large share of work. By the creation of a Python script for mesh generation in Abaqus the

process could be automatized.
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Multiple Output Problem Formulation In order to use the path generation objective func-

tion formulation also for the synthesis of integral compliant mechanism ribs, the problem for-

mulation can be extended for multiple output nodes. This can be done either by a min-max

approach or by an extension of the path-generation objective function, which can be written

as follows:

Φ =

J∑
j=1

2∑
i=0

αi

M∑
m=1

[uout,m,i, j − u
∗
out,m, j]

2 (5.1)

where the index j describes the control point number and J the total number of control points

along the profile contour. For this formulation global counter load cases valid for all the control

points have to be applied. These could be for example some of the distributed aerodynamic

load cases acting along the profiles contour. Moreover, the number of FE analyses needed per

iteration does not change using this approach, only additional adjoint load cases for sensitivity

analysis have to be solved.

Target Element Rotations Wrong curvatures are applied to the outer belt structure in so-

lutions of the stacked compliant mechanism rib concept. In order to avoid this, also a squared

error approach regarding the elements rigid body rotations close to the output node could be

added to the path-generation objective function.

Nonlinear Material Law In future work a nonlinear material law should be added to the FE

solver. This allows an accurate modeling of the highly nonlinear material behavior of PEEK.

Compliance Constraint In order to further reduce the input loads a constraint to the com-

pliance could be added. The compliance in the linear case corresponds to the double of the

external work applied to the mechanism, which equals to the double of the strain energy. By

this means, the compliance is also a measure for the elastic energy stored in the mechanism.

As a result, because the input displacement is prescribed the input force can be constrained

by constraining the compliance to a maximum value. For this reason a compliance constraint

should be introduced for the zero counter load case.

Code Acceleration An integration of the parallel MMA implementation used in the Petsc

topology optimization code of the TopOpt research group at DTU (TopOpt 2018) via mex files

could lead to further speed improvements. Moreover, could the FE assembly cost be reduced

by the change to a classical residuum formulation and hence the omission of theK(U ) terms.

Therefore, the expressions K(U )U or Ke(ue)ue in the optimization formulations have to be

replaced with the global or local internal force vectors respectively. For the FE solver a version
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with this change was already added to the mechtop code.

Stress Constraint Update Scheme Similar to the β continuation scheme in equation (2.23)

an update scheme to the stress constraint value σ∗ could be introduced. The value σ∗ could

thereby be reduced from a large initial value to the target end value over the number of it-

erations. Another idea is to artificially reduce the element stresses at the beginning of the

optimization and to update the stress reduction parameter such that at the end of the opti-

mization the real stresses are obtained. By this means the stress constraint value σ∗ could

stay constant. The outlined approaches could improve the convergence behavior of stress

constrained optimizations.

Flexible Shell Modelling For a more accurate modeling of the flexible shell structure other

material properties and thickness values than the mechanisms base materials values could

be assigned to the solid belt elements.

Coupled Optimization of Multiple Ribs In order to account for interaction effects between

the individual mechanisms, the mechanisms optimization could be coupled. This could be

done by an exchange of stiffness information in each single iteration and a contemporary

optimization of all the ribs.

Parameter Variation Due to the fact that a highly sensitive behavior of the result topologies

with respect to most of the optimization and modeling parameters is observed, further pa-

rameter studies should be conducted. By this means, apart from the optimization parameters

modeling parameters as the input node location and the support area should also be varied.

Another idea is to investigate the impact of the relation between single optimization parame-

ters on the solutions. Therefore, in section A.6 related optimization terms and their influence

over the density are exemplarily shown. Furthermore, solutions on finer FE meshes should

be obtained.
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A Appendix

A.1 Units

Finite element analysis in this work is performed based on the mm-t-s unit system. The units

and their SI system conversion are listed in table A.1.

Table A.1: Unit system for FE analysis

Quantity Unit SI Conversions
B

as
e

U
ni

ts
Length mm 10−3 m

Mass t 103 kg

Time s 1 s

D
er

iv
ed

U
ni

ts

Force N 1 kgm/s2

Density t/mm3 1012 kg/m3

Stress N/mm2 106 kg/ms2

A.2 Computer Hardware Configuration

For the optimization of all the results presented in this work a virtual machine on a Linux

cluster with the hardware resources according to table A.2 was used. All computational times

indicated are referred to this system configuration.

Table A.2: Hardware resources of the virtual machine used for analysis

Processor 8xIntel(R) Xeon(R) Gold 6134 CPU @ 3.20GHz

Memory 19.1GB 2666MHz DDR4

Operating System Linux Mint 18.3 Sylvia 64 bit
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A.3 Finite Element Theory

1
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Figure A.1: Definition of the isoparametric bilinear quadrilateral finite elements used in this
work (Reinisch 2017)

Isoparametric shapefunctions:

N (ξ) =



N1(ξξξ)

N2(ξξξ)

N3(ξξξ)

N4(ξξξ)


=



1
4 (1 − ξ1)(1 − ξ2)
1
4 (1 + ξ1)(1 − ξ2)
1
4 (1 + ξ1)(1 + ξ2)
1
4 (1 − ξ1)(1 + ξ2)


(A.1)

Element stress vector:

σσσe = σσσPK,e = [σ11, σ22, σ12]T (A.2)

Von Mises stresses:

σσσvm,e =

√
σσσT

e V σσσe (A.3)

V operator matrix according to De Leon et al. (2015):

V =


1 − 1

2 0

−1
2 1 0

0 0 3

 (A.4)
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St. Venant-Kirchhoff constitutive matrix for plane stress:

CVK =
E

1 − ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 (A.5)

A.3.1 Geometric Nonlinear FEM

Green-Lagrange strain vector:

EGL =


E1

1

E2
2

2E1
2

 =


u1
,1 +

1
2
(
(u1
,1)2 + (u2

,1)2)
u2
,2 +

1
2
(
(u2
,2)2 + (u1

,2)2)
u1
,2 + u2

,1 + u1
,1u1

,2 + u2
,1u2

,2

 (A.6)

EGL =
(
1

T
+

1
2
H

T)
BLue (A.7)

BL matrix:

BL =



N1
,x 0 N2

,x · · · N4
,x 0

0 N1
,y 0 · · · 0 N4

,y

N1
,y 0 N2

,y · · · N4
,y 0

0 N1
,x 0 · · · 0 N4

,x


(A.8)

Alternative matrix notation for the deformation Gradient F according to Wall (2017):

F =



1 0 0

0 1 0

0 0 1

0 0 1


1

+



H1
1 0 H1

2

0 H2
2 H2

1

0 H1
2 H1

1

H2
1 0 H2

2


H

(A.9)

H̃ =



H1
1

H2
2

H1
2

H2
1


= BL ∗ ue (A.10)
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Definition of the nonlinear stiffness matrix K(U ) according to Patil (2015):

Ke(ue) =
∫
Ωe

BT
LFCVK

(
1

T
+

1
2
H

T)
BLdV (A.11)

Definition of the tangent stiffness matrix KT :

KTe(ue) =
∫
Ωe

BT
LFCVKF

T
BLdV (A.12)

Residuum:

R(U ) =K(U )U − λF (A.13)

Second Piola-Kirchhoff stresses:

σσσPK,e = CVKEGL (A.14)

Linearization of the extended residual Rext:

Rext,lin =

R(U , λ)

f (U , λ)


i

+

 ∂R∂U ∂R
∂λ

∂ f
∂U

∂ f
∂λ


i ∆U∆λ


i+1

(A.15)

Modified load incrementation formulation for path-generation:

λ =



1 0 . . . . . . . . . . . . 0

0
. . . 0 . . . . . . . . . 0

... 0 1 . . . . . . . . . 0

...
... 0 λc 0 . . . 0

...
...

... 0 1 0 0
...

...
...

... 0
. . . 0

0 0 0 0 0 0 1



(A.16)

R(U ) =K(U )U − λF (A.17)
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A.3.2 FE Solver Flowcharts

Predictor: !"#$
% =

&'()

&'
!"

Determine: * ! "#$
+ and ,- ! "#$

+

Solve: ,- ! "#$
+ . /!0#$

1#$ = 2* ! "#$
+

Deplacement update: ! "#$
+#$ =! "#$

+ 3 /! "#$
+#$

input

no

yes

4 = 4 3 56 = 6 3 5

Convergence check: 

* ! "#$
+#$ < 789:

Convergence and

(Max. loadsteps 6 or

; = 5>?

output

Maximum number of

equilibrium iterations 4?

yes

no

no

yes

Load factor: ;"#$ = ;" 3 /;

Define !% and ;%

Figure A.2: Flowchart of force controlled geometric nonlinear FE solver based on (Wall
2017)
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Convergence and
(Max. steps 𝑘)?

Predictor:     𝜆𝑘
𝑖=1 = 𝜆𝑘−1 + Δ𝜆𝑘−1

Solve: 𝑲𝑻 𝑼𝒌
𝑖 Δ𝑼𝑭

𝑖+1 = 𝑭

𝑲𝑻 𝑼𝒌
𝑖 Δ𝑼𝑹

𝑖+1 = −𝑹𝑖

Load increment: Δ𝜆𝑖+1 =
𝑓𝑖+𝑓,𝑼

𝑖𝑻 𝛥𝑼𝑹
𝒊+𝟏

𝑓,𝜆
𝑖 +𝑓,𝑼

𝑖𝑻𝛥𝑼𝑭
𝒊+𝟏

input

no

yes

𝑖 = 𝑖 + 1
𝑼𝑘+1
𝑖=1 = 𝑼𝑘 + Δ𝑼𝑘

𝑘 = 𝑘 + 1

Convergence check: 

𝑹 𝑼 𝑘+1
𝑖+1 < 𝑡𝑜𝑙𝑅

output

Maximum number of
equilibrium iterations 𝑖?

yes

no

no

yes

Load increment: Δ𝜆0
𝑖=1 =

𝚫𝑈𝐜

𝚫𝑈𝒄
∗

Solve: 𝑲𝑻 𝑼𝟎 Δ𝑼∗ = 𝑭

Δ𝑼𝑖+1 = 𝛥𝑼𝑹
𝑖+1 + Δ𝜆𝑖+1Δ𝑼𝑭

𝑖+1

Update: 𝜆𝑘+1
𝑖+1 = 𝜆𝒌+𝟏

𝑖 + Δ𝜆𝑖+1

𝑼𝑘+1
𝑖+1= 𝑼𝒌+𝟏

𝑖 + Δ𝑼𝑖+1

𝑓 = Δ𝑈𝑐,𝑘
𝑖 − Δ𝑈c,𝑘

Predictor:𝑼1
𝑖=1 = 𝑼𝟎 + Δ𝜆0 Δ𝑼∗

Define 𝑼0 and 𝜆0

Figure A.3: Flowchart of displacement-controlled geometric nonlinear FE solver based on
(Wall 2017)
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A.4 Energy Interpolation Scheme
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Figure A.4: Relation between the energy interpolation factor γe and the densities ρ̃e
(Reinisch 2017)

Element residuum for the energy interpolation scheme:

Re(ue) =Ke(γeue)ue − λf (A.18)

Energy interpolation factor γe:

γe =
tanh(β1ρ1) + tanh(β1((ρ̃e − o f f set)k − ρ1))

tanh(β1ρ1) + tanh(β1(1 − ρ1))
(A.19)

β1, ρ1 and o f f set are variable optimization parameters, which have to be defined in the opti-
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mization input file.

Chain rule for sensitivity analysis for the energy interpolation scheme:

∂R

∂ρe
=

∑
j∈Ne

(∂K(U )

∂ρ̃ j
u j +

∂K(U )
∂γ j

∂γ j

∂ρ̃ j
ue

)∂ρ̃ j

∂ρ̃ j

∂ρ̃ j

∂ρe
(A.20)

A.5 External Design Variable Move Limits

If projection methods are used projection-dependent external design variable move limits ρmin

and ρmax are applied for each iteration i. They are defined as follows (Reinisch 2017):

ρρρmin(ρ) ≤ ρρρi+1 ≤ ρρρmax(ρ) (A.21)

with ρmin and ρmax resulting for the projection method according to equation (2.1.5.2) in each

iteration as:

ρρρmin/max =


ρρρi ±

1
2β ln(1 − 0.999) β > βstart

0/1 β ≤ βstart

(A.22)

a nd for the method defined in equation (2.22) as:

ρρρmin/max =


ρρρi ±

1
4β atanh

[
0.999

(
tanh(βη) + tanh

(
β(1 − η)

))
− tanh(βη)

]
β > βstart

0/1 β ≤ βstart

(A.23)

Both move limits are applied starting form the value βstart.
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A.6 Density Behavior of Optimization Terms
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ρ̃
0.5
e

ρ̃
3
e
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Figure A.5: Distributions of γe, ρ̃
3
e and ρ̃

0.5
e over the densities ρ̃e

The SIMP term ρ̃
3
e , the step of the energy interpolation parameter γe and the term ρ̃

0.5
e repre-

senting the stress relaxation parameter all have different behaviors with respect to the element

densities. Figure A.5 illustrates this. Strong interaction effects between the relation among

these distributions and the optimization results are observed.
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