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Abstract

Petri nets are a common model to analyze properties of distributed systems. In this
thesis, we analyze the following properties of Petri nets and related models:

• safety and liveness properties of Petri nets, which can be used to analyze concur-
rent programs;

• well-specification and correctness of population protocols, a model of distributed
computing based on interactions of simple mobile agents;

• quantitative properties concerning required resources and execution time of
workflow nets, a model for analysis of business processes.

For Petri nets and population protocols, verification of these properties has a very high
complexity, where in the worst case any complete procedure needs a non-elementary
amount of memory. To address this problem, we develop incomplete procedures,
i.e. procedures that may not always yield a result, but which have a much lower
complexity and succeed on many examples from the literature. These procedures are
based on constraints that allow implementation on top of efficient solvers and which
can further be understood as certificates for the given property.

Our procedures for Petri nets are in many cases orders of magnitude faster than other
tools and can verify safety and liveness properties for a larger number of instances.
Our procedures for population protocols are the first to fully and automatically verify
correctness of many protocols from the literature.

For workflow nets, which correspond to a simple subclass of Petri nets, polynomial-time
algorithms exist for many problems, e.g. for computation of the expected cost. We
analyze the problem of computing the minimal amount of resources needed to execute
a workflow net as fast as possible. Further, we consider the problem of computing
the expected execution time of a workflow net. For both problems, we show that no
polynomial-time algorithm computing the respective quantity exists unless P = NP,
even on restrictive subclasses of workflow nets.

We also develop constraint-based algorithms that compute these resource measures
exactly for a large subclass of workflow nets and approximate them for general nets,
and the first algorithm to compute the expected execution time. We evaluate our
algorithms on a large set of workflow nets and show that they can compute or suitably
approximate these quantities within milliseconds on these nets.
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Zusammenfassung

Petrinetze sind ein weitverbreitetes Modell, um Eigenschaften von verteilten System
zu analysieren. In dieser Dissertation untersuchen wir folgende Eigenschaften von
Petrinetzen und verwandten Modellen:

• Sicherheits- und Lebendigkeitseigenschaften von Petrinetzen, was zur Analyse
von nebenläufigen Programmen verwendet werden kann;

• Wohlspezifiziertheit und Korrektheit von Populationsprotokollen, ein Modell des
verteilten Rechnens basierend auf Interaktionen von einfachen mobilen Agenten;

• quantitative Eigenschaften bezüglich benötigten Ressourcen und Ausführungszeit
von Workflownetzen, einem Modell zur Analyse von Geschäftsprozessen.

Für Petrinetze und Populationsprotokolle hat Verifikation von diesen Eigenschaften
eine sehr hohe Komplexität, wobei im schlimmsten Fall jede vollständige Prozedur
eine nicht-elementare Menge an Speicher benötigt. Um dieses Problem anzugehen ent-
wickeln wir unvollständige Prozeduren, welche nicht immer ein Ergebnis liefern, aber
eine deutlich niedrigere Komplexität haben und auf vielen Beispielen aus der Literatur
erfolgreich sind. Diese Prozeduren basieren auf Constraints, was eine Implementierung
auf existierenden effizienten Lösern ermöglicht und welche als ein Zertifikat für die
gegebene Eigenschaft aufgefasst werden können.

Unsere Prozeduren für Petrinetze sind in vielen Fällen um Größenordnungen schneller
als andere Tools und können Sicherheits- und Lebendigkeitseigenschaften für mehr
Instanzen verifizieren. Unsere Prozeduren für Petrinetze sind die ersten, die vollauto-
matisch Korrektheit von vielen Protokollen aus der Literatur verifizieren können.

Für Workflownetze, welche einer einfachen Teilklasse von Petrinetzen entsprechen,
existieren Polynomialzeitalgorithmen für viele Probleme, z.B. für die Berechnung der
erwarteten Kosten. Wir untersuchen das Problem der Berechnung der minimalen An-
zahl an Ressourcen, um ein Workflownetz so schnell wie möglich auszuführen. Weiter-
hin betrachten wir das Problem der Berechnung der erwarteten Ausführungszeit eines
Workflownetzes. Für beide Probleme zeigen wir, dass kein Polynomialzeitalgorithmus
existiert außer P = NP, selbst auf eingeschränkten Teilklassen von Workflownetzen.

Wir entwickeln weiterhin Constraint-basierte Algorithmen, die diese Ressourcenwerte
für eine große Teilklasse von Workflownetzen exakt berechnen und für allgemeine
Netze approximieren, und den ersten Algorithmus zur Berechnung der erwarteten
Ausführungszeit. Wir evaluieren unsere Algorithmen auf einer großen Menge von
Workflownetzen und zeigen, dass sie diese Werte auf den Netzen innerhalb von
Millisekunden berechnen oder geeignet approximieren.
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1Introduction

„The need for correctness proofs is especially great with multi-
process programs. The asynchronous execution of several
processes leads to an enormous number of possible execution
sequences, and makes exhaustive testing impossible. A multi-
process program which has not been proved to be correct will
probably have subtle errors, resulting in occasional mysteri-
ous program failures.

— Leslie Lamport
Proving the Correctness of Multiprocess Programs [Lam77]

© 1977 IEEE

At least since the rise of distributed and parallel computing, the theoretical study of
distributed systems, which are systems with multiple components distributed over
different locations, has become highly relevant. The components in distributed systems
may be agents, machines, processes, threads or other entities that have a local state
and follow some procedure or protocol. All components may communicate with each
other synchronously or asynchronously, e.g. through pairwise interactions, message
passing or shared variables, and are executed concurrently, which defines the joint dis-
tributed executions. Examples of distributed systems are mutual exclusion algorithms
controlling access to shared resources, computer networks for distributed computing,
or multi-agent environments working towards a common goal.

Distributed systems are becoming increasingly larger and more complex due to higher
demand, more sophisticated algorithms and cheaper access to computational resources.
Because of this, ensuring their correctness is also becoming increasingly important
at the same time. For example, a fault in a safety-critical wireless sensor network
for monitoring industrial plants could endanger lives, or unforeseen delays in a
distributed business process of a bank could incur high costs. While single components
of a distributed system are usually easy to understand, the behavior of the whole
system can become very hard to grasp due to the large number of possible different
interleavings of executions, also known as the state explosion problem [Val96]. This
makes distributed systems hard to design and reason about. Therefore, to ensure
correctness of such systems and verify its desired properties, automatic analysis is a
vital tool. With appropriate formalisms for these systems, techniques from computer-
aided verification such as model-checkers can be used.
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A well-established and popular model for the analysis of distributed systems are Petri
nets. They are used for verification of concurrent programs [ABQ11; DKO13; DRB02;
GM12; KKW10; KKW14], analysis of biological or chemical processes as well as sensor
networks in the form of population protocols [Ang+06; Che+17; Esp+17; NB15],
or analysis of business processes in the form of workflow nets [Aal03; Aal97; Aal98;
EHS17]. Petri nets can express systems with an infinite state-space and unbounded
counters — under certain restrictions on the distinguishability of agents or processes
and operations allowed on unbounded counters. This lends them considerable ex-
pressive power, but not too much. Many decision problems for Petri nets are still
decidable, unlike for other Turing-complete formalisms of distributed systems. For
certain extensions of Petri nets some problems also remain decidable, but others then
become undecidable or still have an unknown decidability status [Aks+17; LT17].

However, decidability comes at an astronomically high cost in terms of complexity: for
a Petri net model of a concurrent program, deciding thread-state reachability, known
as coverability, is EXPSPACE-complete [Lip76; Rac78], and deciding reachability of
a global configuration is TOWER-hard [Cze+19]. This means that any complete
algorithm for these problems needs an exponential or even non-elementary amount
of memory in the worst case. Similar lower bounds hold for other problems, e.g.
verification of liveness properties.

To overcome these crippling complexities, one can usually choose two approaches.
The first approach is using incomplete decision procedures. Those correctly decide
whether a given property holds when returning a positive or negative result, but may
also return an inconclusive result, in which case one does not know whether the
property holds or not. Such procedures may have a much lower worst-case complexity,
but often still work on a large number of systems encountered in practice. The
second approach is restricting the analysis to certain subclasses of Petri nets. Those
subclasses should be easy to recognize, e.g. a syntactic restriction, and have a decision
problem with a lower complexity than in the general case, without sacrificing too much
expressive power to allow modeling of many systems from the application domain. For
example, the reachability problem, while being TOWER-hard for general Petri nets,
is PSPACE-complete for 1-safe nets [CEP95], NP-complete for live 1-safe free-choice
nets [Esp98], and in P for cyclic live 1-safe free-choice-nets [DE95]. The last subclass
corresponds to a very common class of workflow nets, called sound free-choice workflow
nets [Aal97].

In this thesis, we follow both approaches. In Chapter 3, we develop incomplete decision
procedures for the verification of safety and liveness properties of general Petri nets,
two essential classes of properties for program verification [Lam77] where the decision
problems are EXPSPACE-hard. In Chapter 4, we adapt our methods for verification
of population protocols, a model closely related to Petri nets which has gained a lot
interest from the research community since their introduction in 2004 [Ang+04].
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Here, we focus on verifying correctness, which is TOWER-hard [Cze+19; Esp+17],
and also develop an incomplete decision procedure for this problem.

All our procedures are based on constructing a set of constraints for a Petri net, which
are formulas in a logic with a simple satisfiability check in P or NP. From one of
the results for satisfiability, we can then infer whether the property holds. One ad-
vantage of the constraint-based approach is that one can employ an independent
and highly optimized solver for these constraints, e.g. an SMT solver, which directly
leads to a practical implementation. Another advantage is that the constraints can
be used as a certificate to show that the property holds, and the certificate can often
even be transformed into an intuitive form explaining why the property holds. Such
constraint-based procedures for safety and liveness properties have been employed
successfully in the past [EM00; EM97; WW12]. We extend these procedures with
novel refinement methods that allow them to verify more systems and give an exten-
sive experimental evaluation. We also give the first procedure to practically verify
correctness of population protocols, a problem which has only recently been shown to
be decidable [Esp+17].

Further, we analyze workflow nets, a form of Petri nets commonly used to analyze
business processes, and specifically consider the subclass of sound free-choice workflow
nets. Reachability is polynomial for this class, and recent results give polynomial algo-
rithms for some quantitative properties [EHS17]. We analyze quantitative properties
concerning the necessary amount of resources and execution time in workflow nets,
for which complexity or decidability questions were still open [BVT16]. Verification
of quantitative properties is often harder than the corresponding qualitative decision
problems. For example, in a probabilistic system, one could ask if the system will never
reach the final state (safety), if it will always reach the final state (liveness), or what
the expected number of steps is until reaching the final state (quantitative). If the
quantitative problem has a finite value, then the answer to the liveness problem is yes,
but the answer does not give any information about the value itself.

In Chapter 5, we show that for workflow nets, several quantitative properties cannot be
computed in polynomial time unless P = NP, in contrast to related decision problems
or similar quantitative properties with polynomial-time algorithms. We also give
efficient constraint-based procedures for these quantitative properties, which can
either compute the exact value or, with a lower complexity, an approximation that we
show to be good enough in practice.

1.1 Related Work

We give an overview on the related work that introduces the models we consider in
this thesis. A discussion of work related to our methods and contributions is given

1.1 Related Work 3



in Section 3.4 of Chapter 3 for Petri nets, Section 4.3 of Chapter 4 for population
protocols, and Section 5.3 of Chapter 5 for workflow nets.

Petri nets are a well-established model for distributed systems, originally introduced
by Carl Adam Petri [Pet62]. Since then, the concepts and theory of Petri nets have de-
veloped considerably. We refer to [Rei13] for a modern introduction. A related model
often used instead of Petri nets are Vector Addition Systems with States (VASS) [HP79],
which is equivalent to Petri nets [Reu90] for all purposes considered in this thesis.

Population protocols were introduced by Angluin et al. [Ang+04; Ang+06] as a model
of computations in networks of passively mobile finite-state sensors. An analysis of
their computational power followed in [AAE06; Ang+07]. We refer to [AR09] for an
introduction to the basic model of population protocols as well as information on the
computational power of related models. In [Esp+15; Esp+17] population protocols
are associated with Petri nets by giving reductions between both models for the central
problems of reachability and well-specification, yielding new decidability results.

Workflow nets were introduced by Wil van der Aalst [Aal97; Aal98] as a subclass
of Petri nets to model and analyze business processes. We refer to [AH02] for a
comprehensive overview. There has been a large amount of work on application of
techniques from Petri nets to workflow nets, e.g. to analyze the central correctness
notion of soundness, although the specific class of workflow nets as well the notion
of soundness considered often differs. We refer to [Aal+11] for a large list of ex-
isting work and a discussion on different models and soundness properties. More
recent work [DE16; EHS17] associates a specific class of workflow nets to Petri nets
through the model of negotiations, which produces techniques for the analysis of some
quantitative properties.

1.2 Main Contributions
We briefly summarize the main contributions of this thesis. A more detailed and
technical presentation is given in Chapters 3 to 5.

Constraint-based analysis methods for Petri nets

In [EM15; Esp+14], we consider safety and liveness properties of distributed systems
that reduce to the reachability and the fair termination problem for Petri nets. We
develop incomplete decision procedures for these problems, based on constraints
derived from structural invariants of the net. These procedures have a low complexity,
being either polynomial, in NP or co-NP, in contrast to the EXPSPACE-hardness of
the general problems, and can be implemented efficiently by using an SMT solver. We
also show how to construct certificates from the constraints that can be used to easily
verify the given property indepently.
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In an extensive experimental evaluation we show that our procedures can be used to
verify safety and liveness properties for a large set of distributed systems from practical
applications. Further, our procedures are often several orders of magnitude faster than
other existing methods, and are able to produce smaller invariants in many cases.

Verification of population protocols

In [Blo+17], we consider the well-specification and correctness problems for pop-
ulation protocols. Both problems are as hard as the reachability problem for Petri
nets. We develop incomplete decision procedures for these problems with a lower
complexity, based on constraints solvable by an SMT solver. We also provide the first
implementation for fully verifying population protocols using these procedures.

We show that our procedures are complete for an expressive subclass of population
protocols, and show in an experimental evaluation that they can be used to verify
many protocols from the literature.

Quantitative analysis of workflow nets

In [MEO19a; MEV18a], we analyze workflow nets extended with quantitative informa-
tion about time and probabilities. We consider the problems of computing the resource
or concurrency threshold, two measures that quantify the number of resources needed
to execute the net as fast as possible, and the problem of computing the expected
execution time of a workflow net.

We show that the problems of deciding if the resource or concurrency threshold exceeds
a given bound are both NP-hard, and give results on which amount of resources allows
online schedules. We give an NP algorithm based on linear constraints to approximate
the concurrency threshold that is exact for a large subclass of workflow nets. Further,
we show that computing the expected execution time is #P-hard and give the first
decidability result by an exponential-time algorithm. All hardness results hold for
rather restrictive classes of workflow nets and imply that no polynomial-time algorithm
exists unless P = NP. In contrast, polynomial-time algorithms exist for many other
common problems on these classes, e.g. reachability or computing the expected cost.

In an experimental evaluation on a large standard suite of workflow nets, we show
that our algorithm to approximate the concurrency threshold always gives the exact
result within milliseconds and is faster than using state-space exploration. We further
show that we can compute the expected execution time within milliseconds for this
suite of nets and suitably approximate it within minutes for a more complex net.

1.2 Main Contributions 5



1.3 Publication Summary

We list the publications by the thesis author which we discuss in this publication-based
thesis. All papers are included included in the Appendix. In Part I of the Appendix, we
present the following papers where the thesis author is first author of the paper:

A Javier Esparza and Philipp J. Meyer. An SMT-based Approach to Fair Termination
Analysis. FMCAD, 2015. [EM15]

B Philipp J. Meyer, Javier Esparza and Hagen Völzer. Computing the Concurrency
Threshold of Sound Free-Choice Workflow Nets. TACAS, 2018. [MEV18a]

C Philipp J. Meyer, Javier Esparza and Philip Offtermatt. Computing the Expected
Execution Time of Probabilistic Workflow Nets. TACAS, 2019. [MEO19a]

In Part II of the Appendix, we present the following papers where the thesis author is
not first author of the papers:

D Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp Meyer and Filip
Niksic. An SMT-based Approach to Coverability Analysis. CAV, 2014. [Esp+14]

E Michael Blondin, Javier Esparza, Stefan Jaax and Philipp J. Meyer. Towards
Efficient Verification of Population Protocols. PODC, 2017. [Blo+17]

All papers are preceded by a page listing the full citation, a short summary and the
contributions of the thesis author. In Part III of the Appendix, we give a note on the
copyrights for the included papers. Content-wise, the papers relate to the chapters of
this thesis as follows: Papers D and A are discussed in Chapter 3, Paper E in Chapter 4,
and Papers B and C in Chapter 5.

Besides the included papers, while working on this thesis the author has also co-
authored the following papers that appeared in peer-reviewed conference proceedings
or journals. These are not part of this thesis, but given for completeness.

Papers on population protocols

• Michael Blondin, Javier Esparza, Martin Helfrich, Antonín Kučera and Philipp
J. Meyer. Checking Qualitative Liveness Properties of Replicated Systems with
Stochastic Scheduling. CAV, 2020. [Blo+20b]

• Javier Esparza, Martin Helfrich, Stefan Jaax and Philipp J. Meyer. Peregrine 2.0:
Explaining Correctness of Population Protocols Through Stage Graphs. ATVA,
2020. [Esp+20]
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Papers on games and synthesis

• Philipp J. Meyer and Michael Luttenberger. Solving Mean-Payoff Games on the
GPU. ATVA, 2016. [ML16]

• Philipp J. Meyer, Salomon Sickert and Michael Luttenberger. Strix: Explicit
Reactive Synthesis Strikes Back! CAV, 2018. [MSL18]

• Michael Luttenberger, Philipp J. Meyer and Salomon Sickert. Practical synthesis
of reactive systems from LTL specifications via parity games. Acta Informatica,
2020. [LMS20]

1.4 Outline of the Thesis
In Chapter 2, we introduce mathematical notation, the notion of constraints and the
fundamental model of Petri nets, while giving existing complexity results for classical
problems.

In Chapter 3, we present the results of [EM15; Esp+14] for constraint-based analysis
of safety and liveness properties of Petri nets. In Chapter 4, we present the results
of [Blo+17] for verification of the correctness and well-specification problems for
population protocols. In Chapter 5, we present the results of [MEO19a; MEV18a]
for the quantitative analysis of the resource threshold, concurrency threshold and
expected execution time of workflow nets.

Besides presenting the main results of the included papers, Chapters 3 to 5 each
contain a short introduction for the respective formal model, a section on related work
and a section on open problems.
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2Preliminaries

2.1 Basic Notation

Numbers, sets and functions

We denote by B the set {0, 1} of Boolean values, by N the set {0, 1, 2, . . .} of non-
negative integers, by Z the set {. . . ,−2,−1, 0, 1, 2, . . .} of integers and by Q the set
of rational numbers. As usual, ·,+,− denote the canonical operations and ≤,≥ the
linear order on Q. For n ∈ N, we denote by [n] the set {1, 2, . . . , n}, and by [ω] the set
{1, 2, . . .} of positive integers.

For a set A, we denote by 2A the set of all subsets of A. For two sets A,B, we denote by
BA the set of all (total) functions f : A→ B. We often implicitly change the codomain
of functions, e.g. consider a function f : A→ N also as a function f : A→ Q. For two
functions f : A → B and g : B → C, we denote by g ◦ f the function g ◦ f : A → C

with (g ◦ f)(a) def= g(f(a)) for all a ∈ A. For a function f : A → B, we denote by f−1

the function f−1 : B → 2A with f−1(b) def= {a ∈ A | f(a) = b}.

Vectors and matrices

Let K ∈ {B,N,Z,Q}. A vector is a function x : A → K for a finite set A. If K is
B, Z or Q, we also talk about Boolean, integer or rational vectors, respectively. Let
x,y ∈ KA be vectors. We use the vector space QA to define scalar multiples, addition
and inverses of vectors, i.e. have (c · x)(a) def= c · x(a), (x + y)(a) def= x(a) + y(a) and
(−x)(a) def= −(x(a)) for c ∈ Q and a ∈ A. The partial orders ≤, ≥ on vectors are defined
by component-wise lifting of the respective linear orders, i.e. x ≤ y if x(a) ≤ y(a) for
all a ∈ A and x ≥ y if x(a) ≥ y(a) for all a ∈ A. The (scalar) product x · y is defined
as
∑
a∈A x(a) · y(a). The size of x is the number |x| def=

∑
a∈A |x(a)| and the support of

x is the set JxK def= {a ∈ A | x(a) 6= 0}. For a subset A′ ⊆ A, we lift the application of
x to A′ by x(A′) def=

∑
a∈A′ x(a). For two vectors x,y ∈ NA, we also define the vector

x	 y ∈ NA by (x	 y)(a) def= max(x(a)− y(a), 0) for a ∈ A.

A matrix is a function Z : A × B → K for finite sets A,B. Let Z ∈ KA×B be a
matrix and x ∈ KA,y ∈ KB be vectors. The matrix-vector products Z · y ∈ QA and
x ·Z ∈ QB are defined as the vectors with (Z ·y)(a) def=

∑
b∈B Z(a, b) ·y(b) for a ∈ A and

(x ·Z)(b) def=
∑
a∈A x(a) ·Z(a, b) for b ∈ B. We generally use boldface lower-case roman

letters for vectors and boldface upper-case roman letters for matrices to distinguish
them.
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If we have a fixed enumeration a1, a2, . . . , an of a set A, we use the tuple notation
(k1, k2, . . . , kn) to denote the vector x ∈ KA with x(ai) = ki for i ∈ [n]. We also use the
multiset notation Ha1, a2, . . . , akI with ai ∈ A for i ∈ [k] to denote the vector x ∈ NA

with x(a) = |{i ∈ [k] | ai = a}| for a ∈ A. For example, with the enumeration a, b, c of
A, both (1, 2, 0) and Ha, b, bI denote the vector x with x(a) = 1, x(b) = 2 and x(c) = 0.
We denote by 0 and 1 vectors with 0(a) = 0 and 1(a) = 1 for every element a in their
domain.

Sequences

A sequence of a set A is a function σ : [n]→ A with n ∈ N ∪ {ω}, where the length of σ
is |σ| def= n. A sequence σ is empty if |σ| = 0, finite if |σ| ∈ N and infinite if |σ| = ω. We
denote by ε the empty sequence of length 0, and by a1 · a2 · . . . · an the finite sequence
σ of length n with σ(i) = ai for i ∈ [n]. For a set A, we denote by A∗ the set of finite
sequences of A and by Aω the set of infinite sequences of A. For a non-empty finite
sequence σ, we denote by σω the infinite sequence with σω(i) def= σ(((i−1) mod |σ|)+1)
for i ∈ [ω]. Concatenation of finite sequences or a finite and an infinite sequence by
the operator · is defined as usual.

The support of a sequence σ of A is the set JσK def= {a ∈ A | ∃i ∈ [|σ|] : σ(i) = a}. The
Parikh vector of a finite sequence σ of a finite set A is the vector Ψ(σ) ∈ NA with
Ψ(σ)(a) def= |{i ∈ [|σ|] | σ(i) = a}|. For an infinite sequence σ, the set of elements
occurring infinitely often is given by Inf(σ) def= {a ∈ A | ∀i ∈ [ω] : ∃j ≥ i : σ(j) = a}.

2.2 Constraints and Complexity

Predicates and constraints

A predicate over a set X is a function ϕ : X → B. For x ∈ X, ϕ(x) holds if ϕ(x) = 1.
A constraint over a set X is a predicate over X given by a concrete formula over X.
Below we define the specific constraints used in this thesis. Let K ∈ {B,N,Z,Q}
and A1, . . . , Ak be finite sets. Then a k-ary constraint ϕ(x1, . . . ,xk) given k vectors
x1 ∈ KA1 , . . . ,xk ∈ KAk is

• a linear constraint if ϕ(x1, . . . ,xk) =
(∑k

i=1 Ai · xi ≥ b
)

for some matrices
A1 ∈ ZB×A1 , . . . ,Ak ∈ ZB×Ak and a vector b ∈ ZB for some finite set B; and

• an (existential) Presburger constraint if it is of the form

ϕ(x1, . . . ,xk) =
(
∃y1, . . . ,yl : ψ(x1, . . . ,xk,y1, . . . ,yl)

)
where ψ is a Boolean formula with linear constraints as atoms, evaluated on the
vectors x1, . . . ,xk and existentially quantified vectors y1 ∈ KC1 , . . . ,yl ∈ KCl

for some finite sets C1, . . . , Cl.
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Further we consider Boolean constraints over 2A for some set A, which are simply given
by a Boolean formula with elements of A as atoms, evaluated by set membership.

A predicate is a Presburger predicate if it can be given by a Presburger constraint. In
the literature, Presburger predicates are often also specified using formulas in the
first-order theory of the natural numbers with addition. As this theory admits quantifier
elimination [Coo72; Pre29], every such formula is equivalent to an existential Pres-
burger constraint in our definition. However note that the complexity for quantifier
elimination is between double and triple exponential time [FR98; Opp78].

A set S ⊆ NA is semi-linear if it is definable by a Presburger predicate, i.e. there is a
Presburger predicate ϕ : NA → B such that S = {x ∈ NA | ϕ(x) = 1}. We omit the
usual definition of semi-linear sets in the literature by basis and period vectors and
use this equivalent characterization [GS66], which may however change the size of a
minimal representation.

Complexity of problems for constraints

For the complexity results below, we assume that constraints are given by an appropri-
ate encoding of the structure of the Boolean formula, matrices and vectors, and all
numbers are encoded in binary.

The satisfiability problem for a class of constraints is, given a constraint ϕ of that class
over a setX, to decide whether there exists some x ∈ X such that ϕ(x) holds. For linear
constraints where K = Q, the satisfiability problem can be solved in polynomial time
using linear programming [Kar84]. For linear constraints with K ∈ {B,N,Z}, Boolean
constraints and Presburger constraints, the satisfiability problem is NP-complete, which
follows from NP-hardness for Boolean constraints [Coo71] and membership in NP for
existential Presburger constraints [Pap81].

The linear optimization problem is, given a linear constraint ϕ over KA and an objective
vector c ∈ QA, either (i) decide that there is no x such that ϕ(x) holds, (ii) compute a
vector x such that ϕ(x) holds and the value c ·x is maximized among all x where ϕ(x)
holds, or (iii) decide that this value is unbounded. If K = Q, the linear optimization
problem is solvable in polynomial time [Kar84]. Otherwise for K ∈ {B,N,Z}, NP-
hardness already follows for the decision part from the satisfiability problem, and a
solution can be computed in exponential time [Len83].
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2.3 Petri Nets
A Petri net is a tuple N = (P, T, F ), where P is a finite set of places, T is a finite set of
transitions, and F : (P × T ) ∪ (T × P )→ N is the flow function assigning a weight to
every pair of a place and a transition. We generally assume P ∩ T = ∅. The elements
a ∈ (P ×T )∪ (T ×P ) where F (a) 6= 0 are the arcs of N . For x ∈ P ∪T , we define the
preset •x and postset x• as the vectors given by •x(y) def= F (y, x) and x•(y) def= F (x, y)
for y ∈ T if x ∈ P or y ∈ P if x ∈ T . We extend the notion of pre- and postset to sets
X ⊆ P or X ⊆ T by •X

def=
∑
x∈X

•x and X• def=
∑
x∈X x

•. Further, for a transition t,
we denote the effect of t by the vector ∆(t) def= t• − •t.

Let N = (P, T, F ) be a Petri net. A marking of N is a vector m ∈ NP , and marks the
places JmK. A transition t ∈ T is enabled at a marking m if m ≥ •t, and t leads to
a marking m′ from m if t is enabled at m and m′ = m + ∆(t). A (finite or infinite)
transition sequence of N is a sequence σ ∈ T ∗ ∪ Tω. A transition sequence σ is enabled
at a marking m0 if there are markings mi for each i ∈ [|σ|] such that σ(i) leads to mi

from mi−1 for all i ∈ [|σ|], in which case σ leads to m|σ| from m0 if σ is finite. We use
the following notations for markings m and m′:

• m t−→m′ with t ∈ T if t leads to m′ from m.

• m −→m′ if m t−→m′ for some t ∈ T .

• m σ−→m′ with σ ∈ T ∗ if σ leads to m′ from m.

• m ∗−→U m′ with U ⊆ T if m σ−→m′ for some σ ∈ U∗.

• m ∗−→m′ if m ∗−→T m′.

If m ∗−→ m′, then m′ is reachable from m. For a Petri net N and a marking m, we
denote by RN (m) def= {m′ | m ∗−→ m′} the set of markings reachable from m in N . A
system is a tuple S = (N,m0), where N is a Petri net and m0 is a marking of N . Let
S = (N,m0) be a system. The set of reachable markings of S is the setRS

def= RN (m0).
A transition sequence of S is a transition sequence of N enabled at m0.

We depict Petri nets using circles for places, rectangles for transitions, and show arcs
using directed arrows between places and transitions, where only weights greater than
1 are shown. Arcs in both directions are also shown as double-ended arrows. Markings
are shown using tokens inscribed into places. See Figure 2.1b for an example.

Subnets

A subnet of a Petri net (P, T, F ) is a tuple (P ′, T ′, F ′) such that P ′ ⊆ P , T ′ ⊆ T and F ′ :
(P ′×T ′)∪(T ′×P ′)→ N is a function with F ′(a) = F (a) for all a ∈ (P ′×T ′)∪(T ′×P ′).
Since F ′ is completely defined by P ′ and T ′, we specify subnets by simply giving the
tuple (P ′, T ′).
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procedure PROCESS 1
bit1 ← false
while true do

p1 : bit1 ← true
p2 : while bit2 do

skip
end while

p3 : (∗ critical section ∗)
bit1 ← false

end while
end procedure

procedure PROCESS 2
bit2 ← false
while true do

q1 : bit2 ← true
q2 : if bit1 then
q3 : bit2 ← false
q4 : while bit1 do

skip
end while

end if
q5 : (∗ critical section ∗)

bit2 ← false
end while

end procedure

(a) Pseudo-code with partially annotated process locations.

First Process Second Process

p3

s4

p1

s1

p2

s2

s3

t2

q3

t3

q4

t4

q2

t6

q5

t7

q1

t1

t5

bit1

bit2

nbit1

nbit2

(b) Petri net model with initial marking.

Fig. 2.1 Lamport’s 1-bit algorithm for mutual exclusion [Lam86].

Example

Figure 2.1b shows a Petri net model of Lamport’s 1-bit mutual exclusion algorithm in
Figure 2.1a, together with an initial marking for the initial state of the algorithm to
obtain a system. The places p1, p2, p3 represent the location of the first process, the
places q1, q2, q3, q4, q5 the location of the second process, and the remaining places the
value of the shared variables bit1 and bit2. The algorithm should ensure that the two
processes are never in their respective critical sections at p3 and q5 simultaneously.
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Decision Problems

We consider the following decision problems for Petri nets, where we always assume
that we are also given a system (N,m0) as part of the input:

• Reachability: given a marking m, is m reachable from m0?

• Coverability: given a marking m, is there a marking m′ reachable from m0 such
that m′ ≥m?

• General reachability: given a Presburger constraint ϕ over the set of markings of
N , is there a marking m reachable from m0 such that ϕ(m) holds?

• Termination: is there no infinite transition sequence enabled at m0?

• Fair termination: given a Boolean constraint ϕ over sets of transitions, does
ϕ(Inf(σ)) hold for every infinite transition sequence σ enabled at m0?

Note that coverability and reachability are specific instances of general reachability,
and termination is a specific instance of fair termination. Moreover, termination
implies fair termination and reachability of a marking m implies coverability of m.

We restrict ourselves here to fairness constraints that only constrain the set of transi-
tions that occur infinitely often. Often also other fairness constraints are considered,
which are usually specified in the problem but not part of the problem input. Examples
are transition-based strong fairness or weak fairness [AFK88], which not only consider
if transitions occur infinitely often in a sequence, but also if they are enabled infinitely
often or eventually always enabled along the corresponding sequence of markings. In
Chapter 4, we will consider yet another type of fairness constraint.

Complexity of the decision problems

The complexity of the previously introduced classical decision problems for Petri nets
has been studied extensively, and we give the best known results below. Note that the
exact complexity for reachability is still open.

• Reachability: TOWER-hard [Cze+19] and in ACKERMANN [LS19].

• Coverability: EXPSPACE-complete [Lip76; Rac78].

• General reachability: TOWER-hard and in ACKERMANN, as it can be reduced
to the reachability problem [Hac76] using elementary space by constructing a
semi-linear set representation of the solutions of ϕ [CH16; CH17].

• Termination: EXPSPACE-complete [AH11; Lip76; Yen92].

• Fair termination: EXPSPACE-complete [AH11; Yen92].

We refer to [Sch16] for a description of the complexity classes TOWER and ACKER-
MANN. The TOWER-hardness result for reachability shows that it is a non-elementary
problem, and thus harder than the EXPSPACE-complete problems.
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3Constraint-based Petri Net Analysis

Safety and liveness properties of distributed systems can often be modeled as corre-
sponding reachability and termination problems for Petri nets. This makes Petri nets
a suitable choice for the analysis of distributed systems and to verify their correct
behavior. However, due to the high complexity of the reachability and termination
problems (TOWER- and EXPSPACE-hard, respectively), complete decision procedures
are often impractical. Therefore one would like to derive procedures that have a
lower complexity and an efficient implementation, but which may only be a decision
procedure for a subset of the problem. This is also known as an incomplete (but
sound) procedure: A positive answer to an instance of the problem then means that
the property holds, while a negative answer yields no information if the property holds
or not. However, such a procedure may give a positive result for a sufficiently large
set of systems and properties encountered in practice and thus make the procedure
feasible for practical problems. Furthermore, an incomplete procedure can be used
as a preprocessing step of another complete method to make it more efficient on
average.

Safety properties

A safety property of a system (N,m0) is a predicate over the set of markings of N .
A system satisfies a safety property ϕ if ϕ holds for all markings reachable from m0.
Dually, the system does not satisfy ϕ if there is a reachable marking where ¬ϕ holds.
Therefore verification of safety properties is reducible to the general reachability
problem. For the common class of downward-closed safety properties it also relates to
the coverability problem, as in the following example.

Consider the mutual exclusion algorithm in Figure 2.1a and the corresponding system
with a Petri net model in Figure 2.1b. The safety property here is the the mutual
exclusion property, i.e. that the two processes are never in the critical section simul-
taneously. We can specify this using ϕ(m) = (m(p3) = 0 ∨m(q5) = 0). For the dual
general reachability problem we have ¬ϕ(m) = (m(p3) ≥ 1 ∧m(q5) ≥ 1), which also
translates to a coverability problem with the marking m = Hp3, q5I.

Liveness properties

We restrict us to liveness properties that can be given as a fair termination problem.
Then, a liveness property of a system (N,m0) is a Boolean constraint over sets of
transitions of N . A system satisfies a liveness property ϕ if ϕ(Inf(σ)) holds for every
infinite transition sequence σ enabled at m0. By taking the product of the Petri net
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with a suitable Büchi automaton, this approach can be extended to verify transition-
based LTL properties of systems [EM97]. Note that the simple termination problem
can also be reduced to the liveness property ϕ = false.

As an example, for Lamport’s mutual exclusion algorithm, we consider the liveness
property that the first process enters its respective critical section infinitely often under
a fair scheduler where both processes are executed infinitely often. On the Petri net
model in Figure 2.1b, this can be expressed by the fair termination property ϕ with
the following Boolean constraint:

ϕ =
(( 4∨

i=1
si

)
∧
( 7∨
i=1

ti

))
→ s2 (3.1)

The left side of the implication is the fairness assumption that states that both processes
are executed infinitely often, and the right side is the liveness property that the first
process enters its critical section infinitely often. Note that the Petri net model is
designed so that in every reachable marking, a transition of each process is enabled, so
every finite execution can be extended to an infinite execution satisfying the fairness
assumption.

3.1 Problem Statement
We want to verify safety and liveness properties of distributed system which translate
to the coverability, general reachability or fair termination problems of Petri nets. For
this, we first investigate how structural invariants known from Petri net theory can
be used to derive incomplete decision procedures for these properties with a lower
complexity.

Second, we investigate how a constraint-based representation can be used to imple-
ment the procedure by utilizing existing solvers for these constraints. We also ask if
and how such a representation can be used to give certificates that show that the given
property holds.

Third, we want to evaluate the performance and the degree of completeness of our
methods, i.e. the number of instances on which they succeed, on a large set of Petri nets
stemming from the literature and distributed systems from practical applications.

3.2 New Contributions for Safety Properties
In [Esp+14] we present an incomplete decision procedure for verifying safety proper-
ties, based on the construction of a set of constraints solvable by an SMT solver. Here,
we present a slightly generalized version of this procedure which lays the foundation
for the methods used in [Blo+17], presented in Chapter 4. We note how the original
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procedure in [Esp+14] can be recovered. Further, if we consider the coverability
problem, we show in [Esp+14] how inductive invariants can be derived as a certificate
to show that a given safety property is satisfied.

3.2.1 Marking Equation

We start by defining a simple overapproximation of the reachability relation in form of
a linear equation. This equation counts the total effect of a transition sequence, but
does not consider order or enabledness of transitions.

Definition 3.2 (Incidence matrix). Let N = (P, T, F ) be a Petri net. The incidence
matrix of N is the matrix C ∈ ZP×T with C(p, t) def= F (t, p)− F (p, t).

Definition 3.3 (Marking equation). Let N = (P, T, F ) be a Petri net and m0,m be
markings of N . The marking equation for N,m0,m and a vector x ∈ NT (or x ∈ QT )
is the equation m = m0 + C · x, where C is the incidence matrix of N .

The Parikh vector Ψ(σ) counts how often each transition occurs in a transition sequence
σ. The marking equation is an overapproximation of the reachability relation, as shown
by the following lemma.

Lemma 3.4. Let N be a Petri net, m0,m two markings of N and σ a transition sequence
with m0

σ−→m. Then m = m0 + C ·Ψ(σ).

Proof. As m0
σ−→ m, we have m = m0 +

∑|σ|
i=1 ∆(σ(i)). By the definition of the

incidence matrix, we have C · HtI = t• − •t = ∆(t) for any transition t and therefore
C ·Ψ(σ) =

∑|σ|
i=1 C · Hσ(i)I =

∑|σ|
i=1 ∆(σ(i)).

It follows from Lemma 3.4 that if a marking m is reachable from a marking m0, then
the marking equation of Definition 3.3 interpreted as a constraint is satisfiable. We
use this to give a first incomplete decision procedure for verifying safety properties.
Given a system (N,m0) and a safety property ϕ, we construct the following constraint
over x ∈ KT (K ∈ {Q,Z}) and a marking m, where we can fix m0 as given by the
system:

MarkingEquationϕ(m0,m,x) def= m ≥ 0 ∧ x ≥ 0 ∧ ¬ϕ(m) ∧m = m0 + C · x (3.5)

If the marking constraint is not satisfiable, then no marking m satisfying ¬ϕ is reach-
able from m0, and therefore the system satisfies ϕ.

If K = Z, the marking constraint is a Presburger constraint for which the satisfiability
problem is in NP and where we employ an SMT solver to solve the constraint. This
method is called SAFETY/Z. If K = Q and ¬ϕ is a linear constraint, e.g. from a
coverability problem, then we can express the whole constraint as a linear constraint
and decide satisfiability over the rationals in polynomial time. This method is called
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SAFETY/Q. In general, SAFETY/Q is weaker than SAFETY/Z, as the marking equation
may be satisfiable over the rationals but not over the integers.

Both procedures so far are incomplete. Consider again the Petri net for Lamport’s
algorithm in Figure 2.1b with m0 = Hp1, q1, nbit1, nbit2I and the safety property
ϕ(m) = (m(p3) = 0 ∨m(q5) = 0). The marking constraint (3.5) is satisfiable over
the integers with x = Hs1, s2, t1, t6I and m = Hp3, q5, bit1, bit2I. However, this m is
actually not reachable, as we will show in the following sections.

3.2.2 Refinement with Traps and Siphons

To strengthen the marking equation, we introduce traps and siphons, two other
structural invariants well known from Petri net theory, which characterize sets of
places that “trap” tokens or which can be drained of tokens.

Definition 3.6 (Traps and Siphons). Let N = (P, T, F ) be a Petri net and U ⊆ T . A
subset of places Q ⊆ P is a U-trap of N if JQ•K ∩ U ⊆ J•QK and a U-siphon of N if
J•QK ∩ U ⊆ JQ•K. If U = T then Q is a trap or siphon of N , respectively. A U-trap or
U-siphon Q is proper if Q 6= ∅.

Note that a U-trap (resp. U-siphon) of N is also a U′-trap (resp. U′-siphon) of N for
any U ′ ⊆ U , therefore traps and siphons are the most general kind. U-traps have
the property that they cannot be become unmarked by transitions in U , since every
transition of U that removes a token of a U -trap also puts one token back into it. Dually,
unmarked U-siphons cannot become marked by transitions in U . This is captured by
the following lemma.

Lemma 3.7. Let N = (P, T, F ) be a Petri net, U ⊆ T and m0,m two markings of N
with m0

∗−→U m. Then for every U-trap Q of N , if m(Q) = 0, then J•QK ∩ U = ∅, and
for every U-siphon Q of N , if m0(Q) = 0, then JQ•K ∩ U = ∅.

Using Lemma 3.7, we can refine the marking constraint (3.5). First, for a given U-trap
Q or U-siphon R, we define the following constraints over two markings m0,m and a
vector x as in the marking equation:

UTrapQ(m0,m,x) def= (x(JQ•K \ J•QK) = 0 ∧m(Q) = 0)→ x(J•QK) = 0 (3.8)

USiphonR(m0,m,x) def= (x(J•RK \ JR•K) = 0 ∧m0(R) = 0)→ x(JR•K) = 0 (3.9)

The first equation of each constraint essentially checks Definition 3.6 for U = JxK,
and the second and third equation are the properties of Lemma 3.7. This full set
of constraints is only employed in [Blo+17] and not yet used in [Esp+14]. There,
only T -traps Q with m0(Q) ≥ 1 are used, i.e. initially marked traps. In this case, the
constraint (3.8) simplifies to m(Q) ≥ 1, since JQ•K \ J•QK = ∅ and m(Q) = 0 for some
m,x with m = m0 + C ·x would imply removal of a token in Q and thus x(J•QK) ≥ 1.
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Similarly, for a T -siphon R with m0(R) = 0, i.e. an initially unmarked siphon, the
constraint (3.9) simplifies to m(R) = 0.

Now assume we are given a system (N,m0), a safety property ϕ, and further a set Q
of U-traps and a set R of U-siphons. We then construct the following constraint:

MarkingEquationϕ(m0,m,x) ∧
∧
Q∈Q

UTrapQ(m0,m,x) ∧
∧
R∈R

USiphonR(m0,m,x)

(3.10)

If the constraint (3.10) is unsatisfiable for some set of U-trapsQ and U-siphonsR, then
no marking m where ¬ϕ holds is reachable, and therefore the safety property holds.
Again, we can check satisfiability of the constraint over the integers as a Presburger
constraint in NP using an SMT solver. Assuming that Q is a set of initially marked
traps and R a set of initially unmarked siphons, we can use the simplified constraints
for UTrapQ and USiphonQ and rewrite the constraint (3.10) as a linear constraint, and
check satisfiability over the rationals in polynomial time.

3.2.3 Iterative Refinement for Safety

Constructing the constraint (3.10) with the sets of all of traps and siphons is generally
infeasible: a Petri net may have an exponential number of both, even if only minimal
ones (by set inclusion) are considered. However often only a small number of traps or
siphons are necessary to prove that a given safety property holds. We therefore give an
iterative approach, inspired by counter-example guided abstraction refinement (CEGAR)
methods.

We initially set Q = ∅ and R = ∅. The procedure then iteratively checks satisfiability
of the constraint (3.10) with the current sets Q and R. If it is unsatisfiable, then the
safety property holds, and we are done. Otherwise, we extract a solution m0,m,x
that satisfies the marking equation and all current trap and siphon constraints. We
then look for a U-trap Q or U-siphon R such that the conditions of Lemma 3.7 are
violated, i.e. one that shows that there is no sequence σ with Ψ(σ) = x such that
m0

σ−→ m. If we can find such a Q or R, we add it to the respective set Q or R, and
repeat the process. Otherwise, the procedure fails and reports that the checks have
been inconclusive.

It remains to give procedures to find appropriate U-traps and U-siphons for the given
m0,m,x. We can find a JxK-trap Q unmarked at m with x(J•QK) ≥ 1 or a JxK-siphon
R unmarked at m0 with x(JR•K) ≥ 1 by computing the largest proper trap or siphon in
the subnet (S, JxK) in polynomial time [DE95], where S = JJxK•K \ JmK for a trap and
S = J•JxKK \ Jm0K for a siphon. However, larger traps and siphons are in general of
poor quality for refinement, since they exclude fewer markings than minimal ones.
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We therefore also use constraints to find traps and siphons. We construct constraints
over the Boolean vectors q, r ∈ BP , encoding the trap Q = JqK or siphon R = JrK. We
first define the following auxiliary constraints for a U-trap or U-siphon marked at m
and unmarked at m′.

Trapm,m′,U (q) def=
∧
t∈U

(•t · q ≥ 1→ t• · q ≥ 1) ∧m · q ≥ 1 ∧m′ · q = 0 (3.11)

Siphonm,m′,U (r) def=
∧
t∈U

(•t · r ≥ 1→ t• · r ≥ 1) ∧m · q ≥ 1 ∧m′ · q = 0 (3.12)

Now for a given m0,m,x, we can check satisfiability of one of the following constraints
to find an initially marked trap (3.13), an initially unmarked siphon (3.14), a U-trap
(3.15) or a U-siphon (3.16) violating the properties of Lemma 3.7.

FindTrapm0,m(q) def= Trapm0,m,T (q) (3.13)

FindSiphonm0,m(r) def= Siphonm,m0,T (r) (3.14)

FindUTrapm0,m,x(q) def= TrapJxK•,m,JxK(q) (3.15)

FindUSiphonm0,m,x(r) def= Siphon•JxK,m0,JxK(r) (3.16)

As noted before, T -traps and T -siphons are of higher quality, since they exclude a set
of markings independent of the vector x used to reach them. We therefore look for
traps and siphons in the following order, stopping as soon as the first constraint is
satisfiable, in which case we add the found element to Q or R.

(1) Look for a trap Q with m(Q) = 0 and m0(Q) ≥ 1 using constraint (3.13).

(2) Look for a siphon R with m0(R) = 0 and m(R) ≥ 1 using constraint (3.14).

(3) Look for a JxK-trap Q with m(Q) = 0 and x(J•QK) ≥ 1 using constraint (3.15).

(4) Look for a JxK-siphonRwith m0(R) = 0 and x(JR•K) ≥ 1 using constraint (3.16).

The constraints (3.13)–(3.16) are all Presburger constraints, and thus we can always
use an SMT solver. The advantage over using the polynomial algorithm from [DE95]
for the maximal trap or siphon is that we can instruct the SMT solver to find a minimal
trap or siphon by iterative solving of the constraint. In practice, we experienced that
the solver already tends to directly compute minimal or close-to-minimal solutions.

Overall, the main constraint (3.10) can be solved over the integers or the rationals.
Depending on this, we obtain two versions of our iterative refinement procedure, called
SAFETYBYREFINEMENT/Z and SAFETYBYREFINEMENT/Q, respectively. In [Esp+14],
these procedures only use the first refinement step (1) for initially marked traps with
the constraint (3.13).

We return to our running example of Lamport’s algorithm in Figure 2.1b for an
illustration of the refinement method. As we saw before, for the safety property
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ϕ(m) = (m(p3) = 0 ∨ m(q5) = 0) the marking constraint is satisfiable with the
markings m0 = Hp1, q1, nbit1, nbit2I and m = Hp3, q5, bit1, bit2I (we will not use x).
Constructing the constraint (3.13) for this m0 and m, one obtains that it is satisfiable
with the trap Q = {p2, q2, q3, nbit1, nbit2}. We have m0(Q) ≥ 1 and m(Q) = 0, so the
marking m is not reachable. After adding the corresponding refinement constraint
m(Q) ≥ 1 to the marking constraint, it becomes unsatisfiable, so the mutual exclusion
property holds for Lamport’s algorithm.

Overall our methods are still incomplete, as there are systems with an unreachable
marking where the marking equation is satisfiable and all four refinement methods may
fail. We want to note that whenever the procedure fails, a marking m satisfying the
constraint system is obtained. This marking is a potentially spurious counterexample,
which can be checked using e.g. a model checker. If the marking is then actually
reachable, it is a counterexample showing that the safety property does not hold.

3.2.4 Inductive Invariants for Safety

In [Esp+14], we present a method to derive inductive invariants after the procedure
SAFETYBYREFINEMENT succeeds to prove safety. This method is applicable if the
following assumptions are met:

• The constraint (3.10) is unsatisfiable over the rationals for our sets Q and R.

• We have only used the first refinement step using constraint (3.13), i.e. Q is a
set of initially marked traps and R = ∅.

• ϕ is a co-linear constraint, i.e. ¬ϕ is a linear constraint with ¬ϕ(m) = A ·m ≥ b
for a matrix A ∈ ZB×P , a vector b ∈ ZB and some set B.

Now assume that we have computed a set Q such that the above properties hold.
Define the matrix D ∈ BQ×P with D(Q, p) = 1 if p ∈ Q and D(Q, p) = 0 otherwise.
Recall that for a trap Q with m0(Q) ≥ 1, UTrapQ(m0,m,x) is equivalent to m(Q) ≥ 1.
This then holds for all traps in Q if D ·m ≥ 1. Then the constraints (3.10) can be
rewritten as follows:

m ≥ 0 ∧ x ≥ 0 ∧m = m0 + C · x ∧ A ·m ≥ b ∧ D ·m ≥ 1 (3.17)

Using Farkas’ lemma [Sch86], we prove the following in [Esp+14]:

Theorem 3.18 ([Esp+14]). The constraint (3.17) is unsatisfiable over the rational
numbers if and only if the following constraint is satisfiable over the rational numbers.

λ ·m0 ≤ y1 · b + y2 · 1 ∧ λ ≥ y1 ·A + y2 ·D ∧ y1 ≥ 0 ∧ y2 ≥ 0 (3.19)

This is a constraint over the vectors λ ∈ QP , y1 ∈ QB and y2 ∈ QQ.
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If the constraint (3.17) is unsatisfiable, then we can construct the following invariant
I : NP → B by using the λ from a solution to the constraint (3.19):

I(m) def= D ·m ≥ 1 ∧ λ ·m ≤ λ ·m0 (3.20)

We show in [Esp+14] that the invariant I has the following properties:

• I holds initially: I(m0) holds.

• I is inductive: for any markings m,m′ of N (reachable from m0 or not), if I(m)
holds and m −→m′, then I(m′) holds.

• I proves safety: for any marking m of N , if I(m) holds, then ϕ(m) holds.

Therefore I is an inductive invariant that proves safety of the system (N,m0) with
the property ϕ. As I is a linear constraint, and the properties above also hold for
rational-valued m ∈ QP , they can be verified in polynomial time given I, (N,m0) and
ϕ. While this also holds for unsatisfiability of the original constraint (3.10) from which
we derived the primal system, the invariant I may be much smaller than that constraint
and also gives a more intuitive explanation of safety by its inductive nature.

This method to derive invariants is called INVARIANTBYSAFETY when we do not use
refinement and INVARIANTBYREFINEMENT when we use refinement to prove safety
before. Both necessarily always use constraints over the rationals. In [Esp+14] we
also present a method to compute a minimal invariant. For this, we add a constraint
|JλK| ≤ k as an appropriate Presburger constraint to (3.19), and solve it with an SMT
solver for decreasing k until the system becomes unsatisfiable. By this, we obtain
a solution where |JλK| is minimal and therefore an invariant I where the part for
λ ·m ≤ λ ·m0 has a minimal number of atoms when written as a linear expression.

For our example with Lamport’s algorithm in Figure 2.1b, we found that after adding
the initially marked trap Q = {p2, q2, q3, nbit1, nbit2} the constraint (3.10) becomes
unsatisfiable. This also holds over the rationals. After solving the constraint (3.19)
and computing a minimal invariant, we obtain:

I(m) = ( m(p2) + m(q2) + m(q3) + m(nbit1) + m(nbit2) ≥ 1 )

∧ ( m(p2) + m(p3) + m(q2) + m(q3) + m(q5) + m(nbit1) + m(nbit2) ≤ 2 )

Clearly I(m0) holds, and inductivity can be verified by inspecting every transition of
the net. Subtracting the first inequation from the second then shows m(p3)+m(q5) ≤ 1
for all reachable markings m and therefore proves safety of the system.

3.2.5 Experimental Evaluation
We implemented the methods presented in this section in a tool called PETRINIZER, built
on top of the Z3 SMT solver [MB08]. The tool takes a system (N,m0) and a safety prop-
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PETRINIZER

Suite SAF/Q SAF/Z REF/Q REF/Z IIC BFC MIST Total

MIST 14 14 20 20 23 21 19 23

BFC 2 2 2 2 2 2 2 2

Medical 4 4 4 4 9 12 10 12

Bug-tracking 32 32 32 32 0 0 0 40

Erlang 32 32 36 38 17 26 2 38

Total 84 84 94 96 51 61 33 115

Tab. 3.1 Safe instances that were successfully proved safe by PETRINIZER and other tools.

erty ϕ as input and invokes one of the methods SAFETY/K, SAFETYBYREFINEMENT/K,
INVARIANTBYSAFETY or INVARIANTBYREFINEMENT, the first two with K ∈ {Z,Q} and
the last two with optional minimization. For refinement, only the first refinement step
with initially marked traps is enabled.

For the experimental evaluation, we have the following goals:

(1) Evaluate the degree of completeness of the methods.

(2) Evaluate the usefulness and necessity of traps.

(3) Evaluate the benefit of using integer arithmetic over rational numbers.

(4) Evaluate the quality of the produced invariants and the benefit of minimization.

(5) Compare the performance of PETRINIZER with other state-of-the-art tools.

For the last goal, we included the tools MIST1, BFC2 [KKW12] in version 1.0 and
IIC [Klo+13] in the evaluation. All three tools implement complete methods for
deciding coverability problems, and IIC can also construct inductive invariants.

We evaluate our tool on benchmarks from five different sources. Each benchmark
instance is a combination of a system and a safety property, where the negation of
the safety property is always a coverability problem. We have 29 instances from Petri
net examples for the MIST toolkit, 46 instances from the analysis of concurrent C
programs used in the evaluation of BFC [KKW12], 12 instances from the analysis of a
medical system, 41 instances from the analysis of a bug-tracking system, and finally
50 instances from the analysis of Erlang programs. In total, there are 178 instances, of
which 115 are safe.

All experiments were performed on a cluster of identical machines equipped with Intel
Xeon 2.66 GHz CPUs and 48 GB of memory. Execution time was limited to 100,000

1https://github.com/pierreganty/mist
2https://www.cprover.org/bfc/
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Method/tool SAF/Q SAF/Z REF/Q REF/Z INVSAF INVSAFMIN

Mean (safe) 69.26 70.20 69.36 72.20 168.46 203.05

Median (safe) 2.45 2.23 2.35 3.81 3.70 4.03

Mean (all) 45.17 46.04 45.52 47.70 109.23 131.58

Median (all) 0.44 0.43 0.90 0.93 0.66 1.00

Method/tool INVREF INVREFMIN IIC BFC MIST

Mean (safe) 228.88 275.12 56954.09 47126.12 69196.77

Median (safe) 5.96 6.30 100000.00 1642.43 100000.00

Mean (all) 148.57 178.45 44089.93 31017.80 61586.56

Median (all) 1.37 1.94 138.00 0.77 100000.00

Tab. 3.2 Mean and medium execution times in seconds for all configurations of PETRINIZER, IIC, BFC
and MIST. Memory-out cases were set to the timeout value of 100,000 s.

seconds (approx. 28 hours) and memory to 2 GB. Sequentially, each configuration of
PETRINIZER and each other tool was run once on each instance of the benchmarks.
The results of the experimental evaluation, originally conducted in [Esp+14], are
given in Tables 3.1 and 3.2 and Figures 3.3 and 3.4. We abbreviate the different
configurations of PETRINIZER, using SAF for SAFETY, REF for SAFETYBYREFINEMENT,
INVSAF for INVARIANTBYSAFETY and INVREF for INVARIANTBYREFINEMENT, appending
MIN for the configuration with invariant minimization. For the invariant size, we count
the number of atoms in the linear expressions of the formula for the invariant.

We succinctly give the results of the evaluation, a more detailed presentation is given
in [Esp+14]. For goal (1) and (5), we see in Table 3.1 that PETRINIZER can prove
safety for 96 of the 115 safe instances in its best configuration, a rate of 83%. This is
higher than any other tool which, even though they implement complete methods, are
limited by time and memory. Across the different suites, IIC performs better on the
MIST suite and BFC performs better on the medical suite. However, PETRINIZER can
prove safety for all safe Erlang instances and for 80% of the bug-tracking suite, where it
clearly beats the other tools. From Table 3.2 and Figure 3.4, we see that other tools are
often faster for instances they solve quickly, which happens mainly on small instances
due to the time overhead of the not fully optimized implementation of PETRINIZER.
Nevertheless, PETRINIZER terminates within 100 seconds on all but two instances, and
beats the other tools often by orders on magnitude on larger instances.

For goal (2) and (3), we see in Table 3.1 that using integer constraints instead of
rational constraints does help in two cases when we also use refinement. In Table 3.2
and Figure 3.3 we also see that integer constraints do not take significantly longer
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to solve. The refinement with traps is even more helpful: we can solve 96 instances
when using refinement and only 84 without. Using refinement does take more time,
which is mainly due to repeatedly needing to solve the main constraint again for each
newly found trap. In our experiments, PETRINIZER added at most 9 traps until it could
prove the property or gave up.

For goal (4), we see in Figure 3.3 that the invariants produced by PETRINIZER are
usually very succinct in comparison to the number of places of the Petri net. They are
often several orders of magnitude smaller than those produced by IIC and never larger.
Minimization of the invariants is only useful on four instances, and only resulted in
a reduction in size of 2-3%. Meanwhile minimization can have a large impact on
performance, leading to a slowdown of 30× on one instance. An explanation for
this behavior could be the fact that instead of only needing to solve only a satisfiable
linear constraint over the rationals to derive the invariant, we have to also solve an
unsatisfiable Presburger constraint to show minimality.

3.3 New Contributions for Liveness Properties
In [EM15], we present an incomplete decision procedure for verifying liveness proper-
ties or equivalently for determining fair termination. Similarly to the procedure for
safety in the preceding section, this procedure is based on the construction of linear
and Presburger constraints.

3.3.1 T-surinvariants

The first component of our procedure again employs the incidence matrix (Defini-
tion 3.2). Instead of the marking equation, which only characterizes finite transition
sequences, we now introduce T-surinvariants, which characterize certain infinite
sequences of the Petri net.

Definition 3.21 (T-surinvariant). Let N = (P, T, F ) be a Petri net. A T-surinvariant of
N is a vector x ∈ QT such that C · x ≥ 0, where C is the incidence matrix of N . A
T-surinvariant x is semi-positive if x ≥ 0 and x 6= 0.

We have the following property of T-surinvariants, a slightly generalized version of the
theorem given in [EM15].

Theorem 3.22 ([DE95; EM15; Rei13]). Let N be a Petri net and U ⊆ T be a set of
transitions. There is an infinite transition sequence σ enabled at some marking m0 of N
with Inf(σ) = U if and only if there is a semi-positive T-surinvariant x with JxK = U .

Proof. (⇒) Let m0 be a marking of N such that σ is enabled at m0. By Dickson’s
lemma [Dic13] there are markings m1,m2 and sequences σ1, σ2 ∈ T ∗ such that
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Jσ2K = Inf(σ), m0
σ1−→ m1

σ2−→ m2 and m2 ≥ m1. The vector x = Ψ(σ2) is then a
semi-positive T-surinvariant with JxK = Jσ2K = Inf(σ) = U .

(⇐) Let σ be any finite sequence with Ψ(σ) = x and take m0 =
∑
t∈T x(t) · •t. Then

σ is non-empty, enabled at m0 and leads to a marking m1 with m1 ≥ m0, as x is a
semi-positive T-surinvariant. Thus σω is an infinite transition sequence enabled at m0

with Inf(σω) = JσK = JxK = U .

As the proof suggests, T-surinvariants characterize subsequences that lead to the
same or a larger marking, and can thus be repeated infinitely often. Such a subse-
quence might however never be enabled at any reachable marking. We say that a
T-surinvariant x is realizable for a system (N,m0) if there is an infinite transition
sequence σ of N enabled at m0 such that JxK = Inf(σ).

Given a system (N,m0) and a liveness property ϕ, we define the following constraint
over a vector x ∈ QT for finding certain semi-positive T-surinvariants.

TInvariantϕ(x) def= C · x ≥ 0 ∧ x ≥ 0 ∧ x 6= 0 ∧ ¬ϕ(JxK) (3.23)

We can express ϕ(JxK) as a Presburger constraint by substituting each atom t in ϕ with
x(t) ≥ 1. The whole constraint (3.23) is then a Presburger constraint. If it is unsat-
isfiable, then no semi-positive T-surinvariant satisfies ¬ϕ(JxK), so by Theorem 3.22
we have that ϕ(Inf(σ)) holds for every infinite sequence σ, showing that the system
satisfies the liveness property ϕ. This gives us our first incomplete decision procedure
for fair termination problems and related liveness problems. Given a system (N,m0)
and a liveness property ϕ, we check satisfiability of (3.23) using an SMT solver. We
denote this procedure by LIVENESS.

The procedure so far is efficient, but fails to prove liveness properties of more complex
systems. This is because it is completely independent of the initial marking m0 of
the system, and only checks if there is an infinite sequence enabled at some marking,
reachable or not. Consider for example Lamport’s algorithm in Figure 2.1b with the
previous liveness property ϕ in constraint (3.1). We have that ϕ(JxK) does not hold
for the semi-positive T-surinvariant x = Hs3, t5I, so the constraint (3.23) is satisfiable.
While x would be realizable from the marking m = Hp2, q4, bit1, bit2I, this m is not
reachable from m0, as we will see later.

3.3.2 Refinement with P-components
We give two give refinement structures to show that certain T-surinvariants are not
realizable, based on P-components and traps.

Definition 3.24 (P-component). Let N = (P, T, F ) be a Petri net. A P-component of
N is a subnet N ′ = (P ′, T ′) of N such that P ′ 6= ∅, T ′ = J•P ′K ∪ JP ′•K and for every
t ∈ T ′, we have •t(P ′) = t•(P ′) = 1.
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An essentially property of P-components is that the number of tokens within never
changes: for a P-component (P ′, T ′) of a Petri net N and two markings m,m′ of N
with m ∗−→m′, we have m(P ′) = m′(P ′).

If a P-component only contains one token initially, then in any reachable marking only
one place of the P-component will be marked, so transitions requiring tokens in other
places of the component are not enabled at that point. If we know that the token will
not be transported to another place, then those transitions will never be enabled.

To illustrate our procedure, let us for a moment return to our example for Lamport’s
algorithm in Figure 2.1b. We saw that the net has the semi-positive T-surinvariant
x = Hs3, t5I. A P-component (P ′, T ′) = ({q1, q4, bit2}, {s3, t1, t3, t4, t5, t7}) of the net is
shown in Figure 3.5a, from which we can infer that bit2 is set to false if the second
process is in state q1 or q4. Figure 3.5b shows the subnet (P ′, T ′ ∩ JxK). This subnet is
not strongly connected, which means along any infinite sequence σ with Inf(σ) = JxK
the token will eventually remain in one the three places q1, q4 or bit2. However s3

needs a token from bit2 and t5 a token from q4. Therefore we can conclude that there is
no transition sequence containing only s3 and t5 infinitely often, so x is not realizable.
Based on this reasoning we show the following in [EM15] to refine T-surinvariants.

Lemma 3.25 ([EM15]). Let (N,m0) be a system and x a T-surinvariant of N . If N
has a P-component (P ′, T ′) such that m0(P ′) = 1, and the subnet (P ′, T ′ ∩ JxK) is not
strongly connected, then x is not realizable.

To find P-components that show that a given T-surinvariant x is not realizable, we
first construct a constraint over two vectors p ∈ BP , t ∈ BT to find a P-component
(P ′, T ′) = (JpK, JtK) with m0(P ′) = 1.

FindPComponentm0(p, t) def= m0 · p = 1

∧
∧
p∈P

(p(p) = 1→ t ≥ •p+ p•)

∧
∧
t∈T

(t(t) = 1→ (•t · p = 1 ∧ t• · p = 1))

(3.26)

The second line here encodes the part T ′ = JP ′•K ∪ J•P ′K. Next, we construct a
constraint that is satisfiable iff the subnet (P ′, T ′ ∩ JxK) is not strongly connected.
For this, we add additional variables t1, t2 ∈ BJxK representing a partition (T1, T2) =
(Jt1K, Jt2K) of T ′ ∩ JxK such that there are no arcs (t1, p), (p, t2) in (P ′, T ′) for some
t1 ∈ T1, p ∈ P ′, t2 ∈ T2.

NSCx(p, t, t1, t2) def= t1 6= 0 ∧ t2 6= 0 ∧
∧
t∈JxK

t(t) = t1(t) + t2(t)

∧
∧

t1∈JxK
p∈Jt•1K

t2∈Jp•K∩JxK

(t1(t1) = 0 ∨ p(p) = 0 ∨ t2(t2) = 0) (3.27)

28 Chapter 3 Constraint-based Petri Net Analysis



s3

t3

q4

t4

t7

q1

t1

t5

bit2

(a) P-component (P ′, T ′)

s3 q4

q1

t5

bit2

(b) Subnet (P ′, T ′ ∩ JxK)

Fig. 3.5 P-component and subnet of the Petri net for Lamport’s algorithm.

We then use the combined constraint

FindPComponentm0(p, t) ∧ NSCx(p, t, t1, t2) (3.28)

to find a P-component showing that a T-surinvariant x obtained from a solution of
the constraint (3.23) is not realizable. If that constraint is satisfiable, we extract a
P-component (P ′, T ′) and the partition (T1, T2) from the solution, and construct the
following refinement constraint, excluding x and any other T-invariant where the
intersection T ′ ∩ JxK yields the same partition of (P ′, T ′).

PComponentP ′,T ′,T1,T2(x) def=

∑
t∈T1

x(t) ≥ 1 ∧
∑
t∈T2

x(t) ≥ 1

→ ∑
t∈T ′\(T1∪T2)

x(t) ≥ 1 (3.29)

Assuming we have already found a set P of P-components and their respective parti-
tions, we construct the following constraint by adding the refinement constraints to
the T-surinvariant constraint (3.23).

TInvariantϕ(x) ∧
∧

(P ′,T ′,T1,T2)∈P
PComponentP ′,T ′,T1,T2(x) (3.30)

As long as the constraint is satisfiable with a vector x, we try to find a new P-component
and partition using constraint (3.28). If we succeed, we add it to the set P, and
repeat the process. If we do not find a P-component, we give up. Once the main
constraint (3.30) is unsatisfiable, we have proven that the liveness property ϕ holds,
since we have shown that there is no realizable T-surinvariant x where ¬ϕ(JxK) holds.
We call this method REFPCOMP.

In our example, with the P-component in Figure 3.5a and the partition (T1, T2) =
({s3}, {t5}), we then construct the following refinement constraint (3.29):

(x(s3) ≥ 1 ∧ x(t5) ≥ 1)→ x(t1) + x(t3) + x(t4) + x(t7) ≥ 1
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Fig. 3.6 Terminating systems for which refinement is insufficient.

After adding this constraint and solving (3.30), we find another semi-positive T-
surinvariant x′ = Hs3, t1, t1, t2, t3, t4, t5, t6, t7I of the net in Figure 2.1b. In a second
refinement step, we can show that this T-surinvariant is also not realizable by the
P-component with P ′ = {p2, p3, nbit1} and the partition (T1, T2) = ({s3}, {t4, t6}). We
add the refinement constraint

(x(s3) ≥ 1 ∧ x(t4) + x(t6) ≥ 1)→ x(s1) + x(s2) + x(s4) ≥ 1

after which the constraint (3.30) becomes unsatisfiable, so we have proven that the
fairness property for the first process of Lamport’s algorithm holds.

3.3.3 Refinement with Traps

The method for liveness with refinement by P-components can prove more properties
than before, but is still fails for simple examples as the net in Figure 3.6a, which
is derived from a subnet of a leader election algorithm. This net has no infinite
transition sequences enabled at the given marking, but the net has the semi-positive
T-invariant x = Ht2, t3I and no P-components, so our method fails. We address this
with a refinement using traps. We use the following property shown in [EM15]:

Lemma 3.31 ([EM15]). Let (N,m0) be a system and let x be a realizable T-surinvariant.
Then some marking m reachable from m0 in N marks every trap of the subnet (P ′, T ′) =
(JJxK•K, JxK).

The idea is that if x is realizable by a sequence σ with Inf(σ) = JxK, then eventually
all transitions in this subnet and only those will occur, thus marking every trap. Now if
we can show that no marking m that marks every trap of (P ′, T ′) is reachable, then we
have shown that x is not realizable. This is therefore a safety property, so we can reuse
the method SAFETY from Section 3.2 with the marking equation to overapproximate
reachability. Since (P ′, T ′) may have exponentially many traps, we use an iterative
approach as follows.
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Let (P ′, T ′) = (JJxK•K, JxK). We maintain a set Q of traps of (P ′, T ′) where initially
Q = ∅. We first check if all reachable markings already leave some trap of Q unmarked
by checking satisfiability of the constraint MarkingEquationψ(m0,m,x), with ψ(m) =∨
Q∈Q m(Q) = 0, i.e. the marking constraint (3.5) from the method SAFETY. If it is

unsatisfiable, then no reachable marking marks all traps of Q and thus also not all
traps of (P ′, T ′), so x is not realizable. Otherwise, we extract a marking m from the
solution. Next, we look for a proper trap of (P ′, T ′) unmarked at m and not already in
Q with the constraint TrapJxK•,m,JxK(q), reusing our generic trap constraint (3.11). If
the constraint is unsatisfiable, then we give up. If the constraint is satisfiable, extract
a trap Q = JqK ∩ P ′ from a solution, add Q to Q and repeat the process. Note that
JqK∩ P ′ is a trap in (P ′, T ′) since JqK is an JxK-trap and P ′ = JJxK•K. Moreover Q 6∈ Q
since it is unmarked at m and m marks all traps of Q.

Once we have found a set Q that shows that x is not realizable, we add the following
refinement constraint. It not only excludes T-surinvariants with the same support as
x, but instead specifies that if JxK• marks all traps in Q, then JxK must also contain a
transition emptying a trap in Q, which of course cannot belong to T ′.

TrapRefinementQ(x) def=

 ∧
Q∈Q

x(J•QK) ≥ 1

→
 ∨
Q∈Q

x(JQ•K \ J•QK) ≥ 1

 (3.32)

We can combine both refinement with P-components and with traps. After we have
found a set P of P-components and a set of sets of traps S, we use the following
extension of the previous constraint (3.30).

TInvariantϕ(x) ∧
∧

(P ′,T ′,T1,T2)∈P
PComponentP ′,T ′,T1,T2(x) ∧

∧
Q∈S

TrapRefinementQ(x)

(3.33)

We call this method REFPCOMPTRAPS. Similarly to minimization of the invariant in
Section 3.2, we also offer an option to minimize the intermediate refinement objects
by always choosing a P-component (P ′, T ′) satisfying constraint (3.28) such that |P ′|
is minimized and intermediate traps Q such that |Q| is minimized. This method is
denoted by REFPCOMPTRAPSMIN.

We note that refinement by traps is more generic than refinement by P-components:
for any T-surinvariant x, P-component (P ′, T ′) with m0(P ′) = 1 and partition T1, T2

of T ′ ∩ JxK, both P ′ ∩ JT •
1 K and P ′ ∩ JT •

2 K are traps in (JJxK•K, JxK), and we can show
with the marking equation that both are never marked simultaneously. However P-
components generally exclude more T-surinvariants, so we first look for a P-component
to exclude a given x and, if that fails, then look for a set of traps to exclude it.

For the net in Figure 3.6a where refinement with P-components fails, we have the
T-surinvariant x = Ht2, t3I. In the subnet (JJxK•K, JxK) = ({p1, p2, p3, p4}, {t2, t3}), the
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sets Q1 = {p1}, Q2 = {p4} and Q3 = {p2, p3} are traps, which we find using our
iterative method. Using the marking equation, we can show that they can never all be
marked simultaneously. With Q = {Q1, Q2, Q3}, we then add the following refinement
constraint (3.32):(

x(t1) + x(t2) ≥ 1 ∧ x(t3) + x(t4) ≥ 1 ∧ x(t2) + x(t3) ≥ 1
)
→ x(t1) + x(t4) ≥ 1

The net has no semi-positive T-surinvariant also satisfying this constraint, which shows
that the system is terminating. Our method with trap refinement is however still
incomplete: the Petri net in Figure 3.6b has the T-surinvariant x = Ht1, t1, t2, t3I where
(JJxK•K, JxK) is the whole net, but all traps of the net are already marked initially.

3.3.4 Certificates for Termination
For our liveness method, we can consider the final set of unsatisfiable constraints (3.33)
as a certificate for the given liveness property. One can verify that the refinement
objects are valid P-components and traps individually in polynomial time, however
checking unsatisfiability of the whole Presburger constraint is in NP. We briefly present
a method to derive a different, easier to check certificate in special cases, similar to
the inductive invariant for SAFETY in Section 3.2.4. This was not presented in [EM15],
but explored by the authors and later used in [Blo+17].

We show that we can derive a certificate for termination, i.e. the liveness property with
ϕ = false, in the case where we do not use any refinement, i.e. the constraint (3.23)
is unsatisfiable. The certificate takes the form of a ranking function. Using Farkas’
lemma [Sch86], we can show that the constraint (3.23) is unsatisfiable if and only if
the following constraint is satisfiable with a vector y ∈ ZP :

y ≥ 0 ∧ y ·C ≤ −1 (3.34)

Now if (3.23) is unsatisfiable, then we can extract a vector y from a solution to the
constraint (3.34) and construct the ranking function R : ZP 7→ N with R(m) def= y ·m.
The ranking function R satisfies the property that for any markings m,m′ of N , if
m −→m′, then R(m) > R(m′), which easily follows as y satisfies the constraint (3.34).
Thus for any initial marking m0, the length of a sequence σ with m0

σ−→m for some
m is bounded by R(m0), so there is no infinite transition sequence enabled at m0.
This proves that the system is terminating, even for any initial marking. The property
of R can be verified in polynomial time by inspecting it for the single steps m t−→m′ of
each transition t of the Petri net.

3.3.5 Experimental Evaluation
We implemented the methods presented in this section in the tool PETRINIZER, which
takes as input a system and a liveness properties and executes the method LIVENESS,
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with optional refinement by P-components or additionally traps, both with optional
minimization of the refinement structures.

We have the following goals for the experimental evaluation:

(1) Evaluate the degree of completeness of the methods.

(2) Evaluate the usefulness and necessity of refinement with P-component and traps
and their minimization.

(3) Compare the performance of PETRINIZER with other state-of-the-art tools.

For the last goal, we found no tools that directly support potentially infinite-state
systems modeled by Petri nets and liveness properties of our form. For some finite-state
systems and liveness properties with a fairness assumption, we compare PETRINIZER

with the model checker SPIN [Hol97].

We evaluate our tool on benchmarks from five different sources. Each instance is
a system combined with a liveness property. We have two suites from workflow
nets for business processes [Aal03], the first one containing 1386 instances from
IBM business process models [Fah+09] and the second containing 590 instances
from SAP reference models [Don+07]. The third suite are 50 instances from the
analysis of Erlang programs. For these first three suites, we consider termination as
the liveness property. The fourth suite are classic asynchronous programs, including a
leader election algorithm [DKR82], a snapshot algorithm [Bou87] and three mutual
exclusion algorithms [Lam86; Pet81; Szy88]. All algorithms are scalable in the number
of processes. We scale each of the five algorithms from n = 2 to 6 processes, resulting
in 25 instances. For the first two algorithms we consider repeated liveness as the
property, i.e. that electing a leader or taking a snapshot happens infinitely often, and
for the mutual exclusion algorithms the property that the first process enters the
critical section infinitely often. All properties include a fairness assumption on the
scheduler. As the fifth suite, we collected five instances with the termination property
from the literature.

All experiments were performed on the same machine, equipped with an Intel Core
i7-4810MQ CPU at 2.8 GHz and 16 GB of memory. Execution time was limited to 2
hours and memory to 16 GB. The results of the experimental evaluation, originally
conducted in [EM15], are given in Figure 3.7 and Tables 3.8 and 3.93.

For goal (1) and (2), we see in Table 3.8 that without refinement we can already
show termination for all but two instances of the IBM and SAP suite and 27 of the
33 terminating instances of the Erlang suite, but we cannot show liveness for any
instance of the asynchronous and literature suite. Using P-components allows us to
prove liveness for 14 instances of the asynchronous and 3 of the literature suite, and

3A minor error in Table 3.8 of [EM15], mistakenly swapping the labels of IBM and SAP, has been
corrected here.
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Fig. 3.7 Execution time of PETRINIZER in dependence on the number of place for the benchmark
suites IBM, SAP, Erlang and Literature. Each dot represents an execution of the configuration
REFPCOMPTRAPS for one instance.

Benchmark LIVENESS REFPCOMP REFPCOMPTRAPS Terminating

IBM 1263 1263 1264 1264

SAP 571 571 572 572

Erlang 27 27 27 33

Asynchronous 0 14 20 25

Literature 0 3 5 5

Total 1861 1878 1888 1899

Tab. 3.8 Fairly terminating instances with rate of success by PETRINIZER.

additionally using traps proves termination for the remaining IBM, SAP and literature
instances, and shows the liveness property for 6 more instances of the asynchronous
suite. Overall we can show the property for 1888 of the 1899 instances, and for at
least 80% of each individual suite.

For further evaluation of goal (2), we see in Table 3.9 the results for the asynchronous
suite. Both P-components and traps are used and necessary for some instances. A large
number of refinement steps can cause a large overhead in the execution time. Here,
minimization of the refinement components reduces the number of refinement steps
and the execution time for the leader election, Lamport’s and Peterson’s algorithm. For
the snapshot and Szymanski’s algorithm, there is no reduction and a slight increase in
execution time.

To evaluate the performance for goal (3), we first see in Figure 3.7 the individual
performance of PETRINIZER on all instances of the IBM, SAP, Erlang and literature
suites, divided by whether it succeeded in proving the property. In the positive cases,
it always terminates in under 3 seconds except for one case, where we need 320
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PETRINIZER

REFPCOMPTRAPS REFPCOMPTRAPSMIN SPIN

Benchmark n |P| |S| Time |P| |S| Time Time

Leader election by
Dolev, Klawe and
Rodeh [DKR82]

2 0 4 2.53 0 4 2.30 0.69

3 0 6 8.45 0 6 9.03 0.74

4 0 8 35.5 0 8 38.4 15.7

5 0 13 206 0 10 154 MO

6 0 17 1104 0 12 728 MO

Snapshot algorithm
by Bougé [Bou87]

2 2 0 0.35 2 0 0.30 0.31

3 3 0 0.50 3 0 0.81 0.72

4 4 0 0.60 4 0 0.91 10.3

5 5 0 0.73 5 0 1.41 218

6 6 0 1.82 6 0 1.63 MO

Lamport’s 1-bit
algorithm for
mutual
exclusion [Lam86]

2 2 0 0.50 3 0 0.43 0.69

3 6 0 1.26 6 0 1.63 0.69

4 12 0 2.83 13 0 5.50 0.92

5 27 0 9.34 18 0 11.3 10.4

6 26 0 13.4 23 0 20.6 MO

Peterson’s mutual
exclusion
algorithm [Pet81]

2 1 0 0.37 1 0 0.41 0.69

3 13 0 6.57 7 0 8.55 0.71

4 21 0 65.9 18 0 92.5 1.16

5 285 0 2289 36 0 911 43.5

6 - - TO - - TO MO

Szymanski’s mutual
exclusion
algorithm [Szy88]

2 21 6 10.9 26 6 17.6 0.70

3

Property cannot be proven by
REFPCOMPTRAPS for n ≥ 3.

0.80

4 5.83

5 347

6 MO

Tab. 3.9 Comparison of refinement for liveness with and without minimization and comparison of
execution time with SPIN on the asynchronous suite. The execution times are given in seconds,
where further TO denotes exceeding the time limit and MO exceeding the memory limit.
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refinement steps and 8 minutes. In the negative cases, it is slower and reaches the
time limit in one case, but still terminates within 3 seconds for all nets with up to 1000
places. For the asynchronous suite and in comparison with SPIN, we see in Table 3.9
that SPIN is faster on smaller systems and for Peterson’s algorithm, but reaches the
memory limit for the instances with 5 or 6 processes, where we outperform it for the
leader election, snapshot and Lamport’s algorithm.

Our procedure LIVENESS is therefore quite effective in proving liveness and fair termi-
nation properties. As we avoid building an explicit model of the system, we can often
outperform SPIN from the point on where an explicit model of the system becomes
too large to analyze. With our different refinement methods, the procedure also has a
high degree of completeness on the benchmark suites we analyzed.

3.4 Related Work
The marking equation (also known as state equation or flow equation), as well as
traps, siphons (also known as cotraps), T-invariants and P-components are all classical
techniques for the analysis of Petri nets [DE95; Mur89; Rei13].

Our method for verification of safety properties is based on the work in [EM00],
which introduces the combination of the marking equation with trap constraints. It
gives a way to test the constraint for all traps by a reduction to a mixed-integer
linear programming problem, which however suffers from precision problems, as
the encoding in [EM00] introduces a minimization constraint with an optimal value
very close to zero. This work also introduces the iterative approach for adding traps
presented in [Esp+14]. However, while [EM00] uses integer linear programming
tools to solve the constraints, we employ an SMT solver, for which there have many
advances regarding the efficiency for solving large problems in practice. Further,
precision problems vanish by using constraints with a discrete domain.

In [WW12], the marking equation is used in combination with state-space exploration
for solving the reachability problem. It also employs an iterative approach, but
solutions to the current set of constraints are then used to guide the exploration of
the state-space, generating new constraints when the search fails. In contrast, we
use solutions to directly derive new constraints to exclude unreachable markings.
More recently, [Thi20] uses a large collection of constraint-based rules, including the
marking equation, traps and siphons, in combination with an SMT solver to either
directly verify safety properties of Petri nets or reduce the net while preserving the
property. They also combine this with a partial state-space exploration which can be
guided by the Parikh vector of a solution.

In [Esp+14] only the refinements with initially marked traps is used and later in
[Blo+17] the refinement with U-traps and U-siphons. In between, other work employs
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similar refinements. [BKP15] uses a constraint-based approach with the marking equa-
tion to analyze workflow nets and a refinement with traps and siphons in the subnets
induced by solution to the marking equation, similar to our U-traps and U-siphons.
[ALW16] also uses the marking equation for program analysis and extends it with a
connectivity constraint on the subnet for the solution. [Blo+16] uses a constraint-
based approach based on continuous reachability, and shows that it subsumes the
basic trap and siphon constraints of [Esp+14]. The continuous reachability approach
can also be extended to Petri nets with control states [BH17], more commonly known
as vector addition systems with states (VASS).

Our method for verification of liveness properties is based on the work in [EM97],
which uses T-invariants to show liveness properties, together with a refinement by
P-components. It focuses on the class of 1-safe systems and therefore finite-state
systems, while our approach also works on infinite-state systems. As in [EM00], the
work in [EM97] relies on a solver for integer programming, and the experimental
evaluation includes only two examples.

In [CA95], constraint-based methods are used for the analysis of safety and liveness
properties of concurrent systems, where the constraints are solved using integer
programming. For safety properties they employ the marking equation. For liveness
properties, an execution is decomposed into a finite prefix and a perpetual interval
for the remaining infinite part, where the marking equation is used for each part
together with inequalities for the infinite part, together resembling T-surinvariants.
They also use a decomposition into strongly connected components of each system
component, which are essentially P-components. However there the components have
to be manually given, while we discover them automatically.

In [LSW06], constraints resembling T-surinvariants are used to show livelock-freedom
of asynchronous reactive systems, a liveness property. They employ a refinement
procedure based on the analysis of possible cycles in a process. This also eliminates
disconnected cycles similarly to P-components, but their method requires enumeration
of all cycles, of which there may be exponentially many.

Finally, we want to mention the work by Leroux [Ler10; Ler11], who presents a
semi-decision procedure for the complement of the reachability problem based on
inductive Presburger invariants. The central result states that if a marking m is
not reachable from m0, then there exists an inductive invariant I expressible by a
Presburger constraint such that I(m0) holds, but I(m) does not hold. Therefore
inductive Presburger invariants are in a sense a complete class of certificates for
safety properties. However, there is no known upper bound on the size of constraints
describing these invariants, and the proofs for their existence also do not yield a
procedure to construct them other than using exhaustive enumeration.

3.4 Related Work 37



3.5 Open Problems
For fair termination problems, there is a straightforward polynomial-time reduction to
the (general) reachability problem [AH11]. Therefore a procedure for verifying safety
properties can also be used to verify liveness properties. Moreover, this is possible not
only for fair termination but also for a larger class of liveness properties [GM12]. If
would therefore be interesting to compare our method SAFETY on the system obtained
by this reduction with our method LIVENESS on the original system, and explore
whether there are other interesting liveness properties not handled by LIVENESS.
Further, one could investigate if the trap refinement for LIVENESS would be subsumed
by the trap refinement for SAFETY in the transformed system, since both use similar
constraints.

Another direction to explore would be how our method LIVENESS can be adapted to
directly handle more complex liveness properties with different fairness assumptions,
such as the variant of the fair termination problem in [GM12], which is equivalent
to a reachability problem. With other fairness assumptions, the marking equation or
T-invariants cannot directly be used, since they only capture information about what
transitions are used in an infinite sequence, but not which markings are visited or which
transitions are enabled along the sequence. In Chapter 4 we will see one adaption
of LIVENESS to a specific different fairness constraint in the context of population
protocols.
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4Verification of Population Protocols

Population protocols [Ang+06] are a model of distributed computing where anony-
mous agents interact via rendezvous transitions, changing only their local state during
the pairwise interactions, with the goal of deciding a property of their initial configura-
tion. The series of interactions is guided by a scheduler and defines the executions
of the protocol. A scheduler selects pairs of agents arbitrarily, but must do so in a
fair manner, where it may not avoid certain interactions forever. This is similar to a
stochastic scheduler as in that any configuration that is always reachable will even-
tually be reached. This strong fairness assumption is one key property of population
protocols in comparison to other distributed systems. Another property is that, while
there may be an arbitrary number of agents initially, no agents may be created or
destroyed by interactions, and thus the size of a configuration along an execution
remains constant.

An important problem for population protocols is deciding whether a protocol correctly
computes some given predicate. Using the close relation of population protocols to
Petri nets, Esparza et al. [Esp+17] have shown that this problem is decidable, but also
as hard as the reachability problem. This means that any complete decision procedure
is bound to need a non-elementary amount of memory on some protocols. Therefore
as in Chapter 3, we investigate incomplete decision procedures for these problems. We
also give properties of the class of protocols where our procedures are complete.

Example

Before formally introducing population protocols, we give a majority protocol as an
example, shown in Figure 4.1 in form of a Petri net. Each agent of the protocol can be
in one of the four states A,B, a, b, shown as places. The possible pairwise interactions

xA y B

a b

tA,B

tA,b tB,a

ta,b

2

Fig. 4.1 Majority protocol shown in form of a Petri net.
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are given by the transitions of the net, which move agents in the states of their preset
to the states in their postset. Agents in states A and a have output “yes” (indicated in
blue) and agents in states B and b have output “no” (indicated in red). Further, we
consider agents in states A and B as active and agents in states a and b as passive.

The goal of the agents in the protocol is to compute whether x ≥ y holds for an
input x, y ∈ N by reaching a common consensus on the answer given by their output.
Initially, x agents are placed in state A and y agents are placed in state B. In a fair
execution of the protocol, eventually all active agents of opposing opinions will interact
via transition tA,B and become passive. If an active agent remains, then we had a
majority of x or y, and this agent will convert all passive agents to the correct output
via transitions tA,b or tB,a. If no active agent is remaining, then x = y held initially,
and transition ta,b will move all passive agents to a. In all cases, we will reach a
configuration where all agents have the same output and no transition will change
the output again. By our reasoning, we can show that for any fair execution and any
numbers x and y, all agents will eventually agree on the correct output for whether
x ≥ y holds. Therefore the protocol correctly computes x ≥ y.

Formal definition

For a set A, denote by A〈2〉 def= {x ∈ NA | |x| = 2} the set of vectors in NA of size 2.
A population protocol is a tuple P = (Q,T,X, I,O), where Q is a finite set of states,
T ⊆ Q〈2〉 ×Q〈2〉 is a set of transitions with (x,x) ∈ T for all x ∈ Q〈2〉, X is the finite
input alphabet, I : X → Q is the input mapping, and O : Q→ B is the output function.
A configuration of a population protocol is a vector c ∈ NQ with |c| ≥ 2, interpreted
as a multiset of agents with c(q) agents in a state q. A transition (x,y) ∈ T is silent if
x = y.

We associate each population protocol P = (Q,T,X, I,O) with the Petri net NP =
(Q,T, F ) where F (q, (x,y)) = x(q) and F ((x,y), q) = y(q) for each q ∈ Q and
(x,y) ∈ T . As configurations are markings of NP , we lift all reachability relations on
markings of NP to configurations, as well as the notions for presets and postsets to
states and transitions of P.

Let P = (Q,T,X, I,O) be a population protocol. We associate to every input x ∈ NX

the vector I(x) ∈ NQ with I(x) def=
∑
x∈X x(x) · HI(x)I. A configuration c of P

• is initial if c = I(x) for some input x ∈ NX ;

• has consensus b ∈ B if O(q) = b for all q ∈ JcK;

• is bottom if for all c′ with c ∗−→ c′, we have c′ ∗−→ c; and

• is terminal if for all c′ with c −→ c′, we have c′ = c.

We define the output of a configuration c by the function O : NQ → B ∪ {⊥} where
O(c) = b if c has consensus b and otherwise O(c) = ⊥.
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An execution of a population protocol is an infinite sequence π of configurations where
π(i) −→ π(i+ 1) for all i ∈ [ω]. An execution π stabilizes to an output b ∈ B if O(c) = b

for all c ∈ Inf(π). An execution π is fair if Inf(π) = {C ′ | ∃C ∈ Inf(π) : C −→ C ′}, i.e.
every configuration which could be reached by a single step infinitely often is also
reached infinitely often.

A protocol computes a predicate ϕ : NX → B if for every input x ∈ NX , every fair
execution π with π(1) = I(x) stabilizes to ϕ(x). A protocol is well-specified if it
computes some predicate.

Population protocols compute exactly the Presburger predicates [Ang+06], i.e. for
every Presburger predicate ϕ, there is a population protocol that computes ϕ, and
every predicate computed by some population protocol is a Presburger predicate. We
use this to restrict ourselves to Presburger constraints in the following definition of
our two central decision problems:

Definition 4.1 (Well-specification problem).

Given: A population protocol P.
Decide: Is P well-specified?

Definition 4.2 (Correctness problem).

Given: A population protocol P and a Presburger constraint ϕ.
Decide: Does P compute ϕ?

Existing results for verification of population protocols

The line of research for automatic verification of population protocols was started by
Esparza et al. [Esp+15], presented in more detail in [Esp+17]. The authors show
that the well-specification and correctness problems are decidable, but as hard as the
reachability problem for Petri nets. For the complements of both problems, they give
a reduction to and a polynomial reduction from the reachability problem. We give a
short excerpt of the results for the reduction to reachability in [Esp+17], on which we
base our results.

Denote by B the set of bottom configurations of a population protocol. A population
protocol is not well-specified if and only if there is an initial configuration c0 and two
bottom configurations c1, c2 ∈ B such that:

c0
∗−→ c1 ∧ c0

∗−→ c2 ∧ (O(c1) = ⊥ ∨O(c2) = ⊥ ∨O(c1) 6= O(c2)) (4.3)

A population protocol is not correct with respect to a predicate ϕ if and only if there is
an input x ∈ NX , an initial configuration c0 with I(x) = c0 and a bottom configuration
c1 ∈ B such that:

c0
∗−→ c1 ∧O(c1) 6= ϕ(x) (4.4)
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The intuition behind these properties is that if we visit a bottom configuration along
a fair execution, then by fairness we will also infinitely often visit that configuration
again. Further every fair execution will eventually visit some bottom configuration.
Therefore whether a fair execution will stabilize to some output is completely defined
by the outputs of bottom configurations reachable from its initial configuration.

4.1 Problem Statement
We investigate incomplete decision procedures for the well-specification problem
(Definition 4.1) and correctness problem (Definition 4.2) for population protocols,
based on the results in [Esp+17]. We want to evaluate the degree of completeness of
the procedure, both practically on existing protocols and theoretically, i.e. investigate
the properties of the class of protocols for which the procedure is successful.

Since before starting the work in [Blo+17] presented in this chapter, there was no
existing implementation of either a complete or incomplete decision procedure for
these problems, another goal was to develop a first tool implementing such a procedure.
Such a tool can then provide the basis for development of further techniques for the
analysis of population protocols.

4.2 New Contributions
In [Blo+17], we present incomplete decision procedures for the well-specification and
correctness problems, based on the characterizations stated in the properties (4.3)
and (4.4). A direct translation of these properties faces two difficulties. First, to
check c0

∗−→ c1, we have that the reachability relation for population protocols, as for
Petri nets, is in general not semi-linear [Ang+07; HP79], and relying on solving the
reachability problem for Petri nets has an inhibiting complexity. Second, we would
need a representation of the set B of bottom configurations. While [Esp+17] shows
that B is semi-linear and effectively constructible, a Presburger constraint describing
this set might be very large: [BF97; Ler13] show that B is definable by a constraint of
size k-exponential in the size of the protocol for some constant k, i.e. we only have
an elementary upper bound. No lower bound is known for population protocols, but
we conjecture an exponential lower bound due to EXPSPACE-hardness results for the
related problems of reversible reachability [Ler13] and cyclicity of markings [DL15] in
Petri nets.

For solving the first problem for reachability, we revisit the constraint-based methods
for our procedure SAFETY from Section 3.2. This gives us a semi-linear overapproxi-
mation of the reachability relation. We then use this to show that only configurations
having the correct consensus are reachable. These methods are called STRONGCON-
SENSUS for well-specification and STRONG-ϕ-CONSENSUS for correctness.
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For solving the second problem of a representation of the bottom configurations B,
we restrict ourselves to silent protocols. These are protocols where all fair executions
eventually only visit terminal configurations, and where thus all bottom configura-
tions are already terminal. We then need to show the liveness property that the
protocol is actually silent. Here we also use an overapproximation, and revisit the
procedure LIVENESS from Section 3.3. We further introduce a notion called layers to
incorporate the fairness assumptions for population protocols. This method is called
LAYEREDTERMINATION.

Both methods translate to checking satisfiability of Presburger constraints, for which we
employ an SMT solver. From positive results, we can then infer that well-specification
or correctness holds.

4.2.1 Layered Termination
We start by presenting the procedure LAYEREDTERMINATION for showing that a protocol
is silent. Silent protocols were first introduced in [DGS99], and many protocols from
the literature are already silent. Formally, an execution π of a population protocol is
silent if there exists an i ∈ [ω] such that π(i) is terminal, and a population protocol P
is silent if every fair execution of P is silent.

Only restricting ourselves to silent protocols does not make the well-specification or
correctness problem easier. As shown in [Blo+17], the well-specification problem
for silent protocols is still as hard as the reachability problem for Petri nets, and this
can also be adapted to the correctness problem. However, it is easy to see that every
bottom configuration of a silent protocol is terminal, which we later use to give a
simple constraint describing the set B of bottom configurations.

To check that a protocol is silent, we also introduce an incomplete decision procedure.
A first sufficient approximation would be to check that a protocol has no non-silent
execution, fair or not. This is expressible as a fair termination property for our
procedure LIVENESS from Section 3.3. Moreover, since there would need to be no
non-silent execution from any configuration, initial or not, this would hold if and only
if the Petri net for the protocol without silent transitions has no infinite transition
sequence enabled at any marking. Recalling Theorem 3.22 and its characterization by
a ranking function in Section 3.3.4, this can be checked in polynomial time.

However, this procedure completely ignores the fairness assumption and is usually too
weak to show that a protocol is silent. For the majority protocol with the Petri net in
Figure 4.1, we have HA,A,B,BI

tA,B−−−→ HA,B, a, bI
tA,b−−→ HA,B, a, aI

tB,a−−→ HA,B, a, bI,
so the infinite sequence tA,B · (tA,b · tB,a)ω produces a non-silent execution, which

is however not fair as the step HA,B, a, bI
tA,B−−−→ Ha, a, b, bI is never executed. We

therefore introduce a refinement of this method, where we partition the fair executions
of a protocol into layers, inspired by the typical design of protocols in the literature.
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Definition 4.5. For a population protocol P = (Q,T,X, I,O) and a set of transitions
U ⊆ T , denote by P[U ] def= (Q,U ∪ S,X, I,O) the subprotocol with transitions U ,
where S is the set of silent transitions of P. A population protocol P satisfies layered
termination if there is an ordered partition T1, T2, . . . , Tn of its transitions such that
the following two properties hold for every i ∈ [n]:

(a) Every (fair or unfair) execution of P[Ti] is silent.

(b) For any configurations c, c′, if c ∗−→Ti c′ and c is terminal in P[T1∪T2∪ . . .∪Ti−1],
then c′ is also terminal in P[T1 ∪ T2 ∪ . . . ∪ Ti−1].

In other words, the first property denotes that there is no non-silent execution only con-
taining transitions from a single layer, and the second property states that transitions
of a layer may not re-enable transitions of an earlier layer. Now if a protocol satisfies
layered termination, then every fair execution will eventually disable all transitions
of the first layer, since by property (a) we can and by fairness we will always reach
a terminal configuration of that layer. By property (b) then the transitions of that
layer will stay disabled. Iterating this process, eventually all non-silent transitions are
disabled. Therefore the protocol is silent.

Our example protocol for majority in Figure 4.1 satisfies layered termination with the
two layers T1 = {tA,B, tB,a} and T2 = {tA,b, ta,b}. Every transition of T1 reduces the
total number of agents in A, B and a, and every transition of T2 reduces the number of
agents in b. Thus every execution of P[T1] or P[T2] is silent. The set of configurations
terminal in P[T1] are those where there is no agent in B or no agent in A and a. In
both cases, transitions of T1 remain disabled by transitions of T2.

Theorem 4.6 ([Blo+17]). Deciding if a population protocol satisfies layered termination
is in NP.

The NP procedure for layered termination first guesses the numbers of layers n ∈ [|T |]
and then the ordered partition T1, T2, . . . , Tn. It then verifies properties (a) and (b)
of Definition 4.5 in polynomial time. For property (a), we use the characterization
of the method LIVENESS for non-existence of an infinite transition sequence through
satisfiability of the constraint (3.34), instantiated for the appropriate Petri net of
the subprotocol for this layer without silent transitions. For property (b), we show
in [Blo+17] that it holds for a given layer Ti if and only if for all t ∈ Ti and non-silent
u ∈ T1 ∪ T2 ∪ . . . ∪ Ti−1, there exists u′ ∈ T1 ∪ T2 ∪ . . . ∪ Ti−1 such that we have:

•u′ ≤ •t+ (•u	 t•) (4.7)

Above constraint is derived from the characterization that a configuration c enables
t · u iff c ≥ •t+ (•u	 t•), and c is not terminal in P[T1 ∪ T2 ∪ . . .∪ Ti−1] iff c ≥ •u′ for
some u′ ∈ T1 ∪ . . . ∪ Ti−1. By elimination of c, constraint (4.7) then shows that in any
terminal configuration no t ∈ Ti can re-enable a transition u from a previous layer.
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Overall, we construct a constraint as follows to check if a population protocol satisfies
layered termination with a given number n ∈ [|T |] of layers. We introduce a vector
b ∈ NT representing the partition such that Ti = {t ∈ T | b(t) = i} for each i ∈ [n],
and for each i ∈ [n] introduce a vector yi ∈ NP for the constraint (3.34) of the
ranking function for the layer Ti. Denote by NS the set of non-silent transitions of the
protocol. We then obtain the constraint below, where the second line corresponds to
property (b) by the characterization through (4.7) and the third line to property (a)
by the characterization through (3.34):∧

t∈T
(1 ≤ b(t) ≤ n)

∧
∧
t∈T
u∈NS

b(t) > b(u)→
∨
u′∈T

(
b(t) > b(u′) ∧ •u′ ≤ •t+ (•u	 t•)

)

∧
n∧
i=1

yi ≥ 0 ∧
∧
t∈NS

(b(t) = i→ yi ·∆(t) ≤ −1)


(4.8)

The constraint is satisfiable if and only if the protocol satisfies layered termination
with n layers. Since most protocols that satisfy layered termination do so with
at most two layers, we check the constraint for increasing n = 1, 2, . . . , |T | until
we can conclude whether layered termination holds. This is then the procedure
LAYEREDTERMINATION.

4.2.2 Strong Consensus
We now return to checking well-specification or correctness by the characterization
through (4.3) and (4.4), but under the assumption that the given population protocol
is silent. As noted in the preceding section, in this case the set of bottom configurations
equals the set of terminal configurations. A configuration is terminal if and only if only
silent transitions are enabled. We apply this to first define some utility constraints over
a configuration c ∈ NQ and an input x ∈ NX , which we will use later:

Init(x, c) def= |c| ≥ 2 ∧ I(x) = c (c is initial and corresponds to the input x)

Term(c) def=
∧
t∈NS
¬ (c ≥ •t) (c is terminal)

Out0(c) def=
∑

q∈O−1(1)
c(q) = 0

Out1(c) def=
∑

q∈O−1(0)
c(q) = 0

Out⊥(c) def= ¬Out0(c) ∧ ¬Out1(c)


(c has output b ∈ {0, 1,⊥})

Further assume that we have a Presburger constraint PotReach(c, c′) describing an
overapproximation of the reachability relation, i.e. PotReach(c, c′) implies c ∗−→ c′ for
all configurations c, c′ ∈ NQ. We will later define this constraint.
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Now, for a given silent population protocol, we construct the following constraint
as a weaker version of (4.3), which, if unsatisfiable, implies that the protocol is
well-specified:

Init(x, c0) ∧ Term(c1) ∧ Term(c2) ∧ PotReach(c0, c1) ∧ PotReach(c0, c2)

∧

Out⊥(c1) ∨ Out⊥(c2) ∨
∨
b∈B

(Outb(c1) ∧ ¬Outb(c2))

 (4.9)

If we are further given a predicate ϕ over the possible inputs, then we construct the
following constraint as a weaker version of (4.4), which, if unsatisfiable, implies that
the protocol is correct with respect to ϕ:

Init(x, c0) ∧ Term(c1) ∧ PotReach(c0, c1) ∧
∨
b∈B

(ϕ(x) = b ∧ ¬Outb(c1)) (4.10)

We require that the predicate ϕ is given as a constraint such that both ϕ(x) = 0 and
ϕ(x) = 1 can be translated to existential Presburger constraints of polynomial size. In
this case, above constraints are also existential Presburger constraints. In [Blo+17],
we use predicates given as Boolean combinations of threshold constraints, which are
our linear constraints, and remainder constraints, which are constraints of the form
a · x ≡ c (mod m) for some vector a ∈ NA and numbers c,m ∈ N with m ≥ 2. This is
sufficient to express all Presburger predicates.

It remains to define the constraint PotReach(c, c′). For this we revisit the method
SAFETY from Section 3.2, using the marking equation with refinement by U-traps
and U-siphons. Ignoring the safety property, e.g. by setting it to false, the constraint
PotReach(c, c′) should hold if and only if the constraint (3.10) is satisfiable with
m0 = c, m = c′, the set Q of all U-traps and the set R of all U-siphons of the Petri net
associated to the protocol.

Using this definition, we say that a protocol where constraint (4.9) is unsatisfiable
satisfies strong consensus, and a protocol where (4.10) is unsatisfiable for a predicate
ϕ satisfies strong-ϕ-consensus.

Theorem 4.11 ([Blo+17]). Checking whether a protocol satisfies strong consensus or
strong-ϕ-consensus is in co-NP.

For this result, we cannot use a direct representation of the constraint for PotReach,
since the Petri net of the protocol may have an exponential number of U-traps or
U-siphons. We prove it instead by giving an NP procedure for the complement that
starts by guessing JcK, Jc′K, JxK and first checks the U-trap and U-siphon property with
U = JxK using the polynomial algorithm from [DE95] briefly described in Section 3.2.3,
and then proceeds to check satisfiability of the marking equation together with the
remaining constraints of (4.9) or (4.10) for vectors with these supports.
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Above result gives a reduction to a polynomially sized Presburger constraint. However
a direct translation of the algorithm in [DE95] would produce a quadratically sized
constraint, and since we expect to need few U-traps or U-siphons in practice, explicitly
adding them could produce a smaller constraint and be more efficient. Therefore
we use an iterative approach to find U-traps and U-siphons and construct PotReach
as described for the method SAFETYBYREFINEMENT in Section 3.2.3. We use all four
refinement steps with U-traps and U-siphons, adding them iteratively to show that
PotReach(c, c′) does not hold for previous solutions to our constraints (4.9) or (4.10),
or giving up if no refinement is found. If the constraint is unsatisfiable, then we know
that well-specification or correctness, respectively, holds. These incomplete decision
procedures are called STRONGCONSENSUS and STRONG-ϕ-CONSENSUS, respectively.

As an example, consider the majority protocol as shown in Figure 4.1. Assume we
want to prove correctness in the case where the predicate x ≥ y holds. We then have
c0(A) ≥ c0(B) and c0(a) = c0(b) = 0 for any initial configuration c0 = I(x, y). With
the marking equation, we can show that in any terminal configuration c1 reachable
from c0 we have c1(B) = 0 and c1(a) = 0 ∨ c1(b) = 0. For a possible satisfying
assignment c0 = HA,BI and c1 = Hb, bI our procedure finds the trap {B, a}. Together
we then have that either initially c0(B) = 0 and so c0 is already terminal with the
correct consensus, or c0(B) ≥ 1, but then by the trap c1(a) ≥ 1 for any terminal
configuration c1 reachable from c0, which further implies c1(b) = 0, so we also have
the correct consensus. The case where the predicate does not hold is similar, and our
procedure succeeds in proving correctness for the majority protocol.

4.2.3 The Class of WS3-protocols

We introduce the class WS3 of population protocols, where a protocol belongs to
WS3 if it satisfies both layered termination and strong consensus. Therefore every
WS3-protocol is well-specified. We use the complexity class DP [PY84] defined as
DP = {L1 ∩ L2 | L1 ∈ NP ∧ L2 ∈ co-NP}. From Theorems 4.6 and 4.11 we have:

Theorem 4.12 ([Blo+17]). The membership and correctness problems forWS3-protocols
are in DP.

By giving WS3-protocols for threshold and remainder predicates and constructions
for negation and conjunction preserving membership in WS3, we show the following
in [Blo+17]:

Theorem 4.13. Every Presburger predicate is computed by some WS3-protocol.

Therefore the class WS3 of population protocols has a membership and correctness
problem with a reasonable complexity (DP) and is as expressive as the the class of all
well-specified protocols, where the membership problem is at least TOWER-hard.
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4.2.4 Experimental Evaluation
We implemented the procedures LAYEREDTERMINATION, STRONGCONSENSUS and
STRONG-ϕ-CONSENSUS in a tool called PEREGRINE. It takes as input a population
protocol and an optional Presburger constraint ϕ, and sequentially invokes LAY-
EREDTERMINATION and either STRONGCONSENSUS or STRONG-ϕ-CONSENSUS to check
well-specification or correctness of the protocol.

We evaluate PEREGRINE on a set of benchmarks from protocols in the literature, most
of them parameterized by values of constants in their predicates and thus defining a
family of protocols. The first two families are the threshold and remainder protocols
of [Ang+06] for the predicates a · x ≥ c and a · x = c (mod m), respectively, where
we denote by `max

def= (|a(a1)|, . . . , |a(ak)|, |c|+ 1) the maximal value in the constraint.
We further have two families for flock of birds protocols from [CMS10] and [Clé+11]
with the predicate x ≥ c. Finally we analyze the majority protocol in our example
from [AAE06] and the broadcast protocol from [Clé+11], both not parameterized.

All experiments were performed on the same machine, equipped with an Intel Core
i7-4810MQ CPU at 2.8 GHz and 16 GB of memory. Execution time was limited to 1
hour and memory to 16 GB. Table 4.2 shows the results of the experimental evaluation,
originally conducted in [Blo+17], for showing well-specification by LAYEREDTER-
MINATION and STRONGCONSENSUS. Generally, STRONGCONSENSUS is faster than
LAYEREDTERMINATION, except for the flock of birds protocol from [Clé+11] where we
need a linear number of refinement steps with U-traps. We also evaluated showing cor-
rectness by LAYEREDTERMINATION and STRONG-ϕ-CONSENSUS. This is successful for
all our examples and faster than showing well-specification except for the remainder
protocol, where we exceed the time limit for m = 70. The evaluation shows that many
standard protocols from the literature belong to the class WS3, where we can show
well-specification and correctness for protocols with hundreds of states and thousands
of transitions within an hour.

4.3 Related Work
Previous work on verification of population protocols usually falls into one of two
categories: verification only for a finite number of inputs [Clé+11; CMS10; PLD08;
Sun+09], or verification using an interactive theorem prover [DM09]. For a fixed finite
number of inputs, a protocol can be verified by a model checker or by construction
of the finite graph of reachable configurations. Such an approach can show partial
correctness or find a counterexample, but fails to completely verify a protocol for all
possible inputs. Using an interactive theorem prover, in [DM09] some leader election
protocols are verified completely. This approach is only semi-automatic and requires
human interaction for every new protocol. In contrast, PEREGRINE is the first tool that
is able to automatically verify a large class of protocols for all possible inputs.
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Threshold [Ang+06]

`max |Q| |T | Time

3 28 288 8.0

4 36 478 26.5

5 44 716 97.6

6 52 1002 243.4

7 60 1336 565.0

8 68 1718 1019.7

9 76 2148 2375.9

10 84 2626 TO

Flock of birds [CMS10]

c |Q| |T | Time

20 21 210 1.5

25 26 325 3.3

30 31 465 7.7

35 36 630 20.8

40 41 820 106.9

45 46 1035 295.6

50 51 1275 181.6

55 56 1540 TO

Majority [AAE06]

|Q| |T | Time

4 4 0.1

Remainder [Ang+06]

m |Q| |T | Time

10 12 65 0.4

20 22 230 2.8

30 32 495 15.9

40 42 860 79.3

50 52 1325 440.3

60 62 1890 3055.4

70 72 2555 3176.5

80 82 3320 TO

Flock of birds [Clé+11]

c |Q| |T | Time

50 51 99 11.8

100 101 199 44.8

150 151 299 369.1

200 201 399 778.8

250 251 499 1554.2

300 301 599 2782.5

325 326 649 3470.8

350 351 699 TO

Broadcast [Clé+11]

|Q| |T | Time

2 1 0.1

Tab. 4.2 Results of the experimental evaluation for PEREGRINE. |Q| denotes the number of states, |T |
denotes the number of non-silent transitions, and the time is the execution time to prove
membership for WS3 in seconds, where further TO denotes exceeding the time limit.
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After publication of [Blo+17], Blondin et al. [BEK18] present a method to analyze the
expected termination time of population protocols. This can be used to show that a
protocol is silent. The work introduces stage graphs, which are directed acyclic graphs
where the nodes, called stages, describe sets of configurations closed under reachability,
and which are further equipped with a certificate showing that a successor stage will be
reached along all fair executions starting in that stage. While layered termination can
be regarded as a specific instance of a linear stage graph, in general stage graphs also
allow splitting into different successors and description of stages using more general
constraints than only disabled transitions. They also allow derivation of asymptotic
bounds on the expected number of interactions until termination from the certificates
of the stages. However the procedure to construct stage graphs used in [BEK18] can
be slower than directly testing layered termination.

In [Blo+20b] the authors, including the thesis author, extend the approach using
stage graphs from [BEK18] to show correctness of population protocols. By making
use of the results from [Esp+17], they derive a sound and complete procedure to
show correctness of population protocols through stage graphs where all stages and
certificates are described with Presburger constraints. Essentially, such stage graphs
are certificates for correctness. The authors also give a procedure to effectively
construct a Presburger stage graph which incorporates and generalizes the methods
LAYEREDTERMINATION and STRONG-ϕ-CONSENSUS from [Blo+17]. The procedure
remains incomplete, but can verify a larger class of protocols, including non-silent
protocols.

The tool PEREGRINE has also been extended after the initial release in [Blo+17], result-
ing in two tool papers [BEJ18b; Esp+20]. In the first paper [BEJ18b], PEREGRINE is
equipped with a graphical interface for specifying and analyzing population protocols.
The verification method using STRONG-ϕ-CONSENSUS is extended with diagnosis in
case of failure due the protocol not being correct. In this case, reachability of config-
urations returned from a solution of the constraint (4.10) is verified using a model
checker and displayed to the user as a counterexample. The second paper [Esp+20]
incorporates the stage graph approach from [Blo+20b], giving users a way to visualize
the stage graphs and their constraints, which can be used to further ensure correctness
of a protocol.

In [Esp+18], the authors analyze immediate observation population protocols (IO
protocols), a class introduced in [Ang+07]. They show that the well-specification
problem for IO protocols is PSPACE-hard and in EXPSPACE. They further show
in [ERW19] that the correctness problem for IO protocols is PSPACE-complete. This
class is therefore another class of population protocols where the well-specification
and correctness problems are easier than in the general case. IO protocols can however
not compute all Presburger predicates, but only those given by certain counting
constraints [Ang+07].
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4.4 Open Problems
The class WS3, while being very expressive and having a relatively efficient correctness
check, is not that natural, as it is essentially defined by satisfaction of the constraints for
LAYEREDTERMINATION and STRONGCONSENSUS. The membership test is also already
as hard as the correctness check. Here one could try to find other classes with a more
natural characterization and easier membership test, e.g. by structural properties along
the lines of [ERW19; Esp+18], which would still be expressive enough and have an
easier correctness check.

Besides expressive power, there are also other desirable properties for a class of popu-
lation protocols. One would often like to have succinct protocols [BEJ18a; Blo+20a],
i.e. protocols having few states, or fast protocols [AAE08; KU18], i.e. protocols with a
low expected number of interactions until a stable consensus is reached. Note that
generally only certain trade-offs between space and time are possible [AAG18; Ali+17].
For example, for some predicates the only known fast protocols are non-silent [AGV15]
and therefore not in WS3. This is already partly resolved by the lifting of the tech-
niques presented here to stage graphs in [Blo+20b], which however remains without a
good characterization of the class for which it succeeds besides the constraints. While
a search for a natural and expressive class that allows for fast and succinct protocols
as well as an efficient correctness check is certainly daunting, some combinations of
these properties could be a good starting point for future research.

For another research direction, we would like to highlight well-specification. While
well-specification of a protocol is a necessary precondition for correctness, knowing
that a protocol is well-specified does not directly help in further analysis. A problem
to consider is the promise correctness problem, which is the problem of deciding
correctness for a given well-specified population protocol, without needing to validate
well-specification (which is the promise). The complexity of the promise correctness
problem is open, especially it is unknown if it is easier or just as hard as the general
correctness problem. Another related problem is the tailor problem in [Esp+17],
which is the problem of obtaining the predicate that a given well-specified population
protocol computes. Esparza et al. [Esp+17] give an algorithm for the tailor problem
by constructing a certificate for well-specification. We believe that the constraints
for STRONGCONSENSUS can be used as such a certificate and thus transformed to
a Presburger predicate that the protocol computes. Here a further analysis and
evaluation of this technique would be interesting. Algorithms for the well-specification
and tailor problems would also give another algorithm for the correctness problem by
checking equivalence of the computed and given Presburger predicates.
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5Quantitative Analysis of Workflow Nets

Workflow nets are a class of Petri nets used for representing and analyzing business
processes [Aal98; AH02; DE00], specified e.g. as BPMN (Business Process Model and
Notation), EPC (Event-driven Process Chain) or UML Activity Diagrams. We adapt
our techniques and theory for analyzing Petri nets to obtain more efficient analysis
techniques for workflow nets, which can then be used to obtain information about the
underlying business process.

There is interest in extending business process models such as BPMN with quantita-
tive information [SZS10] which can be used to specify costs or execution times of
tasks, and further in analysis of resource requirements for workflow management
systems [KAV02]. Recent work [BVT15; BVT16] uses workflow graphs, a class of
workflow nets, for analysis of the number of required resources and the execution time
of a workflow. In this chapter, we will further look at the complexity of computing
some quantitative properties of resources and time in workflow nets.

Example

Figure 5.1 shows a simple workflow net for processing an order by a store. Essentially,
a workflow net represents a procedure that starts with a token in a designated input
place i and ends with a token in a designated output place o, where transitions are
either associated with tasks or specify the control flow for these tasks.

The procedure for processing an order contains 5 tasks, given as transitions with
execution times inscribed. After initial processing, taking 1 hour, in parallel the tasks
for receiving the payment and packaging the order can be executed. In 20% of the
cases, and possibly for multiple units, components of the order may be missing from
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1 h

Process
order
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Package order
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Fig. 5.1 A workflow net for processing an order with quantitative information.
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the central inventory and need to be acquired from an external warehouse before
packaging, incurring a delay of 4 hours. Only when the tasks for payment and packing
have finished the order can be shipped.

Given such a procedure, the store owner may be interested in several questions. First,
they might want to know how many employees the store needs to fulfill every order
as fast as possible. Second, they might want to know what the expected duration
between placement and shipping of an order is, e.g. to optimize logistics or to display
this information to customers. In this case, assuming one task is fulfilled by exactly one
employee over its full duration, for the first question one can see that two employees
suffice, as this is the maximal amount of parallelism. The answer to the second
question is already not that obvious, due to the mixing of parallel tasks and choice.
We will show that both questions can be answered, but are hard for certain classes of
workflow nets.

Formal definition

Definition 5.1. A workflow net is a tupleW = (N, i, o) where N = (P, T, F ) is a Petri
net, i ∈ P is the input place with •i = HI and o ∈ P is the output place with o• = HI,
and for every x ∈ P ∪ T , there is a path from i to o along arcs of N passing through x.

We identify any workflow netW = (N, i, o) with the the Petri net N and the system
(N, HiI). A run of a workflow net is a transition sequence σ with HiI σ−→ HoI. A well-
designed workflow net should ensure that the system is terminating by having no
livelocks or deadlocks, and terminates by putting a single token in o. This is captured
by the notion of soundness.

Definition 5.2. A workflowW = (N, i, o) net is sound if

• for every m ∈ RN (HiI) we have HoI ∈ RN (m) (option to complete);

• for every m ∈ RN (HiI), if m ≥ HoI, then m = HoI (proper completion); and

• for every transition t, there is a run ofW containing t (no dead transitions).

Ordinary and 1-safe workflow nets

A marking m is 1-safe if m(p) ≤ 1 for all p ∈ JmK. A system is 1-safe if all its reachable
markings are 1-safe. A Petri net is ordinary if the weight of every arc is 1.

In this chapter we will only consider 1-safe workflow nets. Workflow nets that are not
1-safe can have a rather complex timed execution semantics and notion for schedules,
which assign transitions along a run starting times respecting their causal dependencies.
In a non-1-safe net, an enabled transition might need to distinguish tokens in its preset
based on their age, which would require identity of tokens, and we would further need
semantics to resolve multi-enabled transitions [BLR13].
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Under the assumption that the system is 1-safe, it also suffices to consider only ordinary
nets, as every sound 1-safe workflow net must be ordinary.

Free-choice workflow nets

A Petri net N = (P, T, F ) is free-choice if it is ordinary and J•t1K ∩ J•t2K 6= ∅ implies
•t1 = •t2 for all t1, t2 ∈ T . In a free-choice Petri net N , we have the essential property
that in any marking m of N , if m enables a transition t ∈ Jp•K of a place p, then m
enables all transitions in Jp•K. Therefore we are free to choose the successor transition
locally for the token at p.

In this chapter we will often restrict ourselves to free-choice workflow nets. These are
especially interesting as many related models for business processes are essentially
equivalent to free-choice workflow nets, e.g. workflow graphs [FFV15]. Further, using
the theory for free-choice Petri nets, one can derive efficient decision procedures for
many problems [Aal97; DE95]. In particular, soundness of free-choice workflow nets
and reachability in sound free-choice workflow nets are decidable in polynomial time,
and every sound free-choice workflow net is 1-safe.

We note that if one lifts the restriction on a free-choice net to be ordinary and only
requires J•t1K ∩ J•t2K 6= ∅ to imply •t1 = •t2 for all t1, t2 ∈ T , then one obtains
equal-conflict nets with partly similar properties [HDK16; TS93; TS96].

Other classes of Petri nets

In this chapter we will also consider other structural subclasses of Petri nets and
workflow nets. A Petri net N = (P, T, F ) is a marked graph if |•p| ≤ 1 and |p•| ≤ 1 for
all places p ∈ P , and is acyclic if there is no directed cycle along arcs of N . A Petri net
that is not acyclic is cyclic. Marked graph Petri nets may be cyclic, but every sound
marked graph workflow net is acyclic.

Timed and probabilistic workflow nets

We introduce workflow nets extended with quantitative information about time and
probabilities. The formal semantics will be given later as part of our contribution,
since they require introduction of some basic models to define concurrency, conflict
and probabilities, and also a careful consideration of assumptions is necessary for a
sensible semantics.

Definition 5.3. A timed workflow net (TWN) is a tuple (W, τ) where W is a 1-safe
workflow net and τ : T → N associates an execution time to each transition ofW.

We will call transitions t ∈ T with τ(t) > 0 also tasks of the workflow. Typically, tasks
of a workflow are associated with resources (e.g. CPU cores, machines, persons or
departments) which are responsible for executing that task. The number of tasks
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Fig. 5.2 A timed probabilistic workflow net (TPWN)

that can be executed in parallel is then limited by the number of available resources.
Therefore, the execution time of a run depends not only depends on the execution
times given for the transitions of the run, but also on the number of resources and
possible schedules assigning tasks to resources.

Definition 5.4. A timed probabilistic workflow net (TPWN) is a tuple (W, τ, w) where
(W, τ) is a TWN and w : T → Q associates a weight w(t) > 0 to each transition t ∈ T .

Probabilities in a TPWN are given by weights, and used to resolve choices between
conflicting transitions along a run. Workflow nets are often derived by abstracting
over many concrete cases of a process. These cases correspond to runs of the net, from
which probabilities can be derived and then used to predict behavior of future cases.
In combination with time, this leads to the analysis of the expected execution time.

Figure 5.2 shows a TPWN obtained from the workflow net in Figure 5.1 with renamed
transitions, an abstract time unit and probabilities translated to weights. Transitions
t are inscribed with their execution time τ(t) in blue and annotated with the weight
w(t) in red. Transitions without annotations have weight 1. For example, the sequence
t1 · t2 · t4 · t3 · t5 is a run of the workflow net. If we can schedule the sequential parts
for t2, t3 and t4 in parallel using two resources, the run can be executed with time
τ(t1) + max(τ(t2) + τ(t3), τ(t4)) + τ(t5) = 10. We will later define the probability for
this run to be w(t2)

w(t2)+w(t3) ·
w(t3)

w(t2)+w(t3) = 4
25 due to the choice between t2 and t3 for the

token at p1 twice along the sequence.

Remark on presentation of papers

We note that in [MEV18a], we present timed workflow nets with execution times
associated to places instead of transitions. For uniformity of our presentation of
both [MEV18a] and [MEO19a], we present all results here only for the model with
execution times associated to transitions. Both models can easily be transformed into
another with only a linear blowup by introducing intermediate places or transitions.
Therefore all complexity results presented here hold for both models.
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5.1 Problem Statement
For timed workflow nets, we want to give semantics to execution times of runs in
relation with the number of resources. We then analyze the problem of computing the
minimal number of resources needed to achieve the minimal execution time. We also
examine under which conditions a schedule can achieve this execution time with this
number of resources. Since a higher number of resources might relax the assumptions
on the schedule, we also examine related measures to the number of resources.

For timed probabilistic workflow nets, we start with the assumption that we have a
sufficient amount of resources to execute every run in minimal time. We then want to
give suitable semantics to the probability distribution of runs. With this, we analyze
the problem of computing the expected execution time of a TPWN.

For all the considered quantitative measures of TWNs or TPWNs, we want to derive
results on the complexity to compute them and give algorithms that compute them. We
then evaluate these algorithms on a set of workflow nets from practical applications.

5.2 New Contributions

5.2.1 Timed Sequences

In [MEV18a] we use non-sequential processes to define causal dependencies between
transitions and execution times of sequences, for which give a condensed definition
from [BF88].

Definition 5.5. A process of a 1-safe system ((P, T, F ),m0) is a tuple (N ′, λ) where
N ′ = (P ′, T ′, F ′) is an acyclic marked graph Petri net labeled by λ : P ′ ∪ T ′ → P ∪ T .

For a process π = (N ′, λ) = ((P ′, T ′, F ′), λ) and two elements x, y ∈ P ′ ∪ T ′, denote
by x ≺ y that x 6= y and there is a path from x to y along arcs of N ′. An element x is
maximal if there is no y with x ≺ y, and we denote the set of maximal elements of π
by max(π).

Definition 5.6. A process π = (N ′, λ) of a 1-safe system S = (N,m0) is associated to
a transition sequence σ of S if it can be constructed inductively a follows.

• If σ = ε, then the process containing a place p′ with λ(p′) = p for each p ∈ Jm0K
and no other places or transitions is associated to σ.

• If σ = σ′ · t for a transition t and a sequence σ′ associated to a process π, then
the extension πt of π by t obtained by adding a new transition t′ with λ(t′) = t

and a new place p′ with λ(p′) = p for each p ∈ Jt•K, where J•t′K = J•t ◦ λK,
Jt′•K = Jt• ◦ λK and all p′ ∈ J•t′K are maximal in π, is a process associated to σ.

5.1 Problem Statement 57



0
i

1
p1

5
p1

7
p2

1
p3

6
p4

10
o

0
t1

1
t2

5
t3

1
t4

7
t5

(a) Process with values by fσ.

0 1 2 3 4 5 6 7 8 9 10
resource 1 t1 t2 t3 t5

resource 2 t4

(b) Schedule given by fσ.

Fig. 5.3 Process and schedule for a run of the timed workflow net in Figure 5.2.

Intuitively, the process associated to a sequence can be obtained by unfolding its
transitions, using the existing maximal places for the presets and creating new places
for the postsets. As usual, we identify processes only differing in the names of their
places and transitions as isomorphic. From [BF88, Theorem 3.4.9] we have that every
transition sequence σ of a 1-safe system has exactly one associated process, modulo
isomorphism, which we denote by Π(σ). We further have that if σ leads to a marking
m, then JmK = {λ(p′) | p′ ∈ max(Π(σ))}, i.e. the 1-safe marking m is identified by the
labels of maximal places of Π(σ).

As an example, Figure 5.3a (ignoring the numbers for now) shows the process Π(σ)
for the run σ = t1 · t2 · t4 · t3 · t5 of the timed workflow net in Figure 5.2. Places and
transitions are annotated with their labels and not their names, so p1 is present twice,
as it becomes marked by t1 and t2. As t1 ≺ t2, the occurrence of t2 causally depends
on t1, while the occurrences of e.g. t2 and t4 are independent.

We use processes to define if a sequence of a timed workflow net can be executed
within a given time and a number of resources.

Definition 5.7. A transition sequence σ of a timed workflow net W = (N, τ) can
be executed within time t ∈ N and a number of resources k ∈ N if, for the process
Π(σ) = ((P ′, T ′, F ′), λ), there is a function f : T ′ → N such that

(a) for every t′1, t
′
2 ∈ T ′: if t′1 ≺ t′2 then f(t′1) + τ(λ(t′1)) ≤ f(t′2);

(b) for every t′ ∈ T ′: f(t′) + τ(λ(t′)) ≤ t; and

(c) for every 0 ≤ u < t there are at most k transitions t′ ∈ T ′ such that f(t′) ≤ u <
f(t′) + τ(λ(t′)).

A function f satisfying (a) is a schedule, and a function satisfying (a),(b),(c) is a
(k, t)-schedule of σ.
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A schedule describes the starting time of each transition of a run, respecting the
execution times and the causal order given by the process. The numbers inscribed
in the transitions in Figure 5.3a give the values of some schedule fσ of the run σ.
Figure 5.3b gives an alternative view of the schedule fσ extended with execution times,
which shows that it is a (2, 10)-schedule.

As the process Π(σ) = ((P ′, T ′, F ′), λ) associated to a sequence σ is ayclic, using the
well known Bellman’s equation we can easily compute the longest path to an element
with the execution times as lengths, defined by fσ : P ′ ∪ T ′ → N as follows:

fσ(x) def=


0 if x ∈ P ′ and •x = HI

fσ(t′) + τ(λ(t′)) if x ∈ P ′ and •x = Ht′I

max{fσ(p′) | p′ ∈ J•xK} if x ∈ T ′

We can use fσ as a schedule by its restriction to T ′, but it additionally records the
arrival time of tokens in places. Further, we define a function µ : T ∗ → NP⊥ with
N⊥

def= N ∪ {⊥} such that, for a sequence σ ofW leading to the marking m, we have
µ(σ)(p) def= fσ(p′) for all p ∈ JmK and the unique p′ ∈ max(Π(σ)) with λ(p′) = p, and
µ(σ)(p) def= ⊥ for all p 6∈ JmK. The function µ(σ) records the arrival time of the current
token in marked places, using the value ⊥ to indicate unmarked places. Denote by
Jµ(σ)K def= {p ∈ P | µ(σ) 6= ⊥} the set JmK. Finally, we define the minimal execution
time of σ by tm(σ) def= max{µ(σ)(p) | p ∈ Jµ(σ)K}, i.e. the last arrival time of a token.

The picture in Figure 5.3a is now complete, showing all values of fσ inscribed into
places and transitions. As the token in o arrives at time 10, we have tm(σ) = 10. The
minimality of tm(σ) follows easily from the definition of fσ, and we have:

Lemma 5.8 ([MEV18a]). A transition sequence σ of a timed workflow net can be
executed within time tm(σ) with |σ| resources, and cannot be executed faster with any
number of resources.

5.2.2 Resource Threshold
We define the resource threshold of a run and of a timed workflow net itself. The
resource threshold of a run gives the minimal number of resources needed to execute
this run as fast as possible, and the resource threshold of a workflow net gives the
minimal number of resources needed to execute every run as fast as possible.

Definition 5.9. The resource threshold of a TWN W and a run σ of W, denoted by
RT (σ), is the smallest number k such that σ can be executed within time tm(σ) with
k resources. A schedule of σ realizes the resource threshold if it is a (RT (σ), tm(σ))-
schedule.

The resource threshold of a TWN W, denoted by RT (W), is defined by RT (W) =
max{RT (σ) | σ is a run ofW}. A schedule of W is a function that assigns to every
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transition sequence σ of W a schedule of σ. A schedule of W is optimal with k

resources if it assigns to every run σ of W a (k, tm(σ))-schedule. A schedule of W
realizes the resource threshold if it is optimal with RT (W) resources.

For the run in Figure 5.3 of the TWN in Figure 5.2 it is easy to see that the resource
threshold is 2, since t4 and t2, t3 need to be executed in parallel to achieve the execution
time 10. The net itself has infinitely many runs, only differing in the number of times
t2 is executed. However one can also see that every run can be executed as fast as
possible with 2 resources, so the resource threshold of the net itself is also 2.

Computing the resource threshold is NP-hard

We show in [MEV18a] that computing the resource threshold RT (W) of a TWNW
is NP-hard, even if the workflow net is a sound marked graph, and therefore acyclic
with only a single process associated to its runs. This means that computing RT (σ)
for a single run σ is also NP-hard. We obtain the result by a reduction from a classic
job shop scheduling problem [Ull75], which is the problem of deciding if a number of
jobs with causality constraints given by a partial order can be executed within time t
on k machines. This mirrors existence of a (k, t)-schedule in Definition 5.7, and can be
easily translated into a suitable timed workflow net.

Theorem 5.10 ([MEV18a]). The following problem is NP-complete:

Given: An sound marked graph TWNW, and a number k.
Decide: Does RT (W) ≤ k hold?

No online scheduler may realize the resource threshold

Having RT (W) resources guarantees that every run of the TWNW can be executed
with RT (W) resources. However, a schedule ofW might need to know the complete
run to assign an optimal schedule to it, and behave arbitrarily for any of its prefixes.
In many cases, one wants to directly schedule tasks as soon as they are ready, without
knowing how future choices are resolved and thus not knowing how a sequence will
be extended to a run. We formalize this notion by an online schedule of a TWN.

Definition 5.11. For a transition sequence σ = t1 · . . . · tn, denote by σΠ = t′1 · . . . · t′n
the sequence of transitions of Π(σ) = (N ′, λ) corresponding to its construction by
Definition 5.6, i.e. especially t′i ≺ t′j implies i < j and λ(t′i) = ti for all i, j ∈ [n].

A schedule f of a TWN W is an online schedule if for any two transition sequences
τ, σ of W such that τ is a prefix of σ, i.e. τ(i) = σ(i) for all i ∈ [|τ |], we have
f(τ)(τΠ(i)) = f(σ)(σΠ(i)) for all i ∈ [|τ |].

Intuitively, an online schedule may not reassign the starting times of earlier transitions
when a process is extended with a new transition. We have that online schedules may
not always realize the resource threshold:
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Fig. 5.4 A TWN without an online (3, 5)-schedule and (3, 5)-schedules for two of its runs.

Proposition 5.12 ([MEV18a]). There is an acyclic, sound free-choice TWN for which no
online schedule realizes the resource threshold.

We give the example to show Proposition 5.12 presented in [MEV18a], adapted
to execution times on transitions. Figure 5.4a shows an acyclic, sound and free-
choice TWN, and Figures 5.4b and 5.4c show two schedules fg and fr for the runs
σg = u1 · t1 · t2 · t3 · t4 · t5 ·u4 · t8 ·u5 and σr = u1 · t1 · t2 · t3 · t4 · u2 · t6 · t7 · u3 ·u4 · t8 ·u5.
We omit the schedules for the transitions with execution time 0, since they can always
be scheduled directly without requiring more resources. Since every transition occurs
at most once in a run, we identify the transitions in the processes Π(σr) and Π(σg) by
their labels. All runs of the net are associated with either the process Π(σr) or Π(σg),
and as both can be executed within time 5 and 3 resources, and not faster with more
resources, the workflow net has the resource threshold 3.

The runs have the common prefix σ = u1 · t1 · t2 · t3 · t4. However, we have fg(t3) =
0 6= 1 = fr(t3). We show in [MEV18a] that any (3, 5)-schedule fg of σg needs to satisfy
fg(t3) = 0, and any (3, 5)-schedule fr of σr needs to satisfy fr(t3) ≥ 1. Therefore
there can be no online (3, 5)-schedule f of the net, which would need to satisfy both
f(σ)(t3) = 0 and f(σ)(t3) ≥ 1, since σ can be extended to either σg or σr.
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5.2.3 Concurrency Threshold

Due to the negative results for the resource threshold, we consider another measure,
the concurrency threshold, introduced in [BVT16]. The concurrency threshold is derived
from the maximum number of tasks, i.e. timed transitions, that could potentially be
executed in parallel. We use a definition using marked places which avoids the
necessity of defining when transitions are concurrent and which gives a relation to the
standard Petri net reachability problem.

Definition 5.13. Let W = (N, τ) be a TWN. We define the set DW of places in the
presets of timed transitions and the concurrency threshold CT (W) ofW as follows:

DW
def= {p ∈ J•tK | t ∈ T : τ(t) > 0} CT (W) def= max{m(DW) |m ∈ RW}

Any TWN can be easily transformed into an equivalent TWNW where |•t| = 1 for each
transition t with τ(t) > 0. In this case, CT (W) exactly corresponds to the number of
transitions which can be executed in parallel.

If we do not know in advance how choices in a run will be resolved and also do not
know the exact execution times before a task is scheduled, only whether τ(t) = 0
or τ(t) > 0, then any optimal online schedule needs at least CT (W) resources. To
show this, consider a sequence σ leading to a marking m with m(DW) = CT (W)
concurrently enabling CT (W) task transitions. If less than CT (W) resources are
available, then any online schedule of Π(σ) would introduce a delay if we extend
Π(σ) with every transition concurrently enabled at m and give them a sufficiently
large execution time. On the other hand, the very simple schedule given by fσ, which
schedules each task as soon as it becomes enabled, is an optimal online schedule using
at most CT (W) resources.

So under the assumptions that execution times are not completely known, which is
common for business processes where often only a range of times or a random distri-
bution is known, the concurrency threshold gives the minimal number of resources
needed for an optimal online schedule. We also have:

Lemma 5.14 ([MEV18a]). For any TWNW, we have RT (W) ≤ CT (W).

In the TWN in Figure 5.4a, the concurrency threshold is 5, as we can reach the marking
m = Hp1, p2, p3, p8, p9I. With the given times, actually 4 resources would suffice for
an optimal online schedule. However, if we change the execution times such that
τ(t1) = τ(t2) = τ(t6) = τ(t7) = 3, any optimal online schedule needs 5 resources, as
then t1, t2, t4, t6, t7 all need to be executed in parallel to achieve the minimal time 5.
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Complexity of the concurrency threshold for classes of workflow nets

The complexity of computing the concurrency threshold mainly depends on the com-
plexity of computing the reachability relation for the underlying Petri net. Using
existing results for Petri nets [DE95; Mur89] and workflow nets [Aal97], we can
characterize the reachability relation for many classes of workflow nets. Here, we use
the incidence matrix (Definition 3.2), marking equation (Definition 3.3) and traps (Def-
inition 3.6) introduced in Chapter 3. Further, to apply the theory of free-choice Petri
nets [DE95] to free-choice workflow nets [Aal97], for a workflow netW = (N, i, o)
we also define the short-circuited net N obtained from N by adding a new transition t
with •t = HoI and t• = HiI.

Proposition 5.15. LetW = (N, i, o) be a workflow net with N = (P, T, F ) and m be a
marking of N .

• If m is reachable from HiI, then there is a vector x ∈ NT with m = HiI + C · x.

• IfW is a marked graph, then m is reachable from HiI if and only if there is a vector
x ∈ QT with x ≥ 0 and m = HiI + C · x.

• IfW is acyclic, then m is reachable from HiI if and only if there is a vector x ∈ NT

with m = HiI + C · x,

• IfW is sound and free-choice, then m is reachable from HiI if and only if m marks
every proper trap of N and there is a vector x ∈ QT with x ≥ 0 and m = HiI+C ·x.

We use these characterizations to derive a constraint approximating the concurrency
threshold. For a TWNW = (((P, T, F ), i, o), τ) and K ∈ {Q,Z}, define the following
linear optimization constraint:

`WK
def= max{m(DW) |m ∈ KP ,x ∈ KT : m ≥ 0 ∧ x ≥ 0 ∧m = HiI + C · x} (5.16)

We identify the constraint `WQ or `WZ with the unique solution to the linear optimization
problem defined by it. From the characterizations in Proposition 5.15 we have:

Theorem 5.17 ([MEV18a]). LetW be a TWN. We have:

• `WQ ≥ `WZ ≥ CT (W);

• ifW is a marked graph, then `WZ = `WQ = CT (W);

• ifW is acyclic, then `WQ ≥ `WZ = CT (W).

All the inequalities above can be strict, as shown by the following theorem:

Theorem 5.18 ([MEV18a]).

(a) There is a sound, acyclic and free-choice TWNW such that `WQ > CT (W).

(b) There is a sound and free-choice TWNW such that `WZ > CT (W).
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Fig. 5.5 Sound and free-choice TWNs where the constraints for the concurrency threshold are inexact.

Proof. For (a), consider the sound, acyclic and free-choice TWN Wa in Figure 5.5a.
With m = (0, 1/2, 1/2, 0, 0, 1/2, 0) and x = (1/2, 1/2, 0, 0, 1/2, 0), we have `Wa

Q = 3/2, but
CT (Wa) = 1.

For (b), consider the sound and free-choice TWNWb in Figure 5.5b. With m = Hp1, p2I
and x = Ht0, t1, t2, t5I. we have `Wb

Z = 2, but CT (Wb) = 1. Note that m does not mark
the trap Hi, p0, p3, p4, oI in N .

Theorem 5.17 shows that CT (W) can be computed in polynomial time for marked
graph workflow nets W, as it reduces to a linear optimization problem over the
rationals. However, unless P = NP, there is no polynomial-time algorithm computing
the concurrency threshold of general acyclic workflow nets. This holds even if the
net is sound and free-choice, where in contrast the reachability problem for a given
marking is decidable in polynomial time.

Theorem 5.19 ([MEV18a]). The following problem is NP-complete:

Given: A sound, acyclic and free-choice TWNW, and a number k.
Decide: Does CT (W) ≥ k hold?

Proof. Membership in NP follows from the characterization of reachability for sound
free-choice workflow nets in Proposition 5.15, and holds even if the net is not acyclic.
We refer to [MEV18a] and its full version [MEV18b] for a detailed description of
the reduction to show NP-hardness, but briefly give an overview how choices and
constraints are encoded. The reduction is from the maximum independent set problem,
i.e. the problem of deciding if an undirected graph G = (V,E) has an independent
set of vertices of size k. It employs several gadgets which are copies of the net in
Figure 5.5a, only that the connections between p3, p4 and t5 are changed. For each
edge, copies of t1 and t2 give a choice between one of the vertices of the edge, and may
“store” one token in p1 or p2 to increase the concurrency threshold by 1 for each edge,
while putting another token in p3 or p4, which are associated to the vertices of the
edge. For each vertex, a copy of t5 is connected to its associated places p3 or p4 of the
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gadgets for its adjacent edges, encoding the independence constraint. If the vertex is
independent, then by choosing it in the gadget for each of its edges, t5 can be used to
put a token in the respective copy of p5, further increasing the concurrency threshold
by 1 for each independent vertex. The workflow net then satisfies CT (W) ≥ |E|+ k if
and only if G has an independent set of vertices of size k.

Approximating the concurrency threshold

By solving the linear optimization problem for the constraint given by (5.16) over
the rationals or over the integers, we obtain two algorithms that compute an upper
bound on the concurrency threshold. We identify `WQ or `WZ with their algorithms. By
Theorem 5.17, `WQ is exact for marked graphs and `WZ is exact for acyclic workflow nets.
For sound free-choice workflow nets that are cyclic, also `WZ may be inexact. However,
by the characterization in Proposition 5.15, we could extend the constraint-based
method to an exact algorithm by an iterative refinement with traps as in Section 3.2.2
to discard markings m in the solution that do not mark any proper trap of N . This
was not considered in [MEV18a], but would be a straightforward extension.

We implemented the algorithms `WQ or `WZ in a tool called MACAW built on top of the
mixed-integer linear programming solver CBC from the COIN-OR project [Lou03]. We
compare our tool with the Petri net model checker LOLA [Wol18]. Fixing a number k,
we check the lower bound CT (W) ≥ k by querying LOLA if some reachable marking
m satisfies m(DW) ≥ k, and check the upper bound CT (W) ≤ k by querying LOLA if
all reachable markings m satisfy m(DW) ≤ k.

We evaluate the tools on the 642 sound workflow nets of the IBM benchmark suite,
which contains 1386 nets for industrial business processes extracted from the IBM
WebSphere Business Modeler [Fah+09]. All 642 nets are free-choice, and 409 of those
are marked graphs. Of the remaining 233 nets, 193 are acyclic and 40 cyclic. The
workflow nets have no timing information, and we extend them to timed workflow
nets by setting τ(t) = 1 for all transitions t. In preliminary experiments, we computed
the exact concurrency threshold of all workflow nets and set k = CT (W) for the
evaluation of LOLA.

All experiments were performed on the same machine, equipped with an Intel Core
i7-6700K CPU at 4.0 GHz and 32 GB of memory. Execution time was unlimited and
memory limited to 32 GB. Table 5.6 shows the results of the experimental evaluation,
originally conducted in [MEV18a]. For MACAW, both `WQ or `WZ always terminate
within milliseconds, with only a negligible difference in execution time between both.
For LOLA, the computation of the lower bound for all nets only takes a few seconds,
however the computation of the upper bound exceeds the memory limit for 3 nets,
and takes about 5 minutes for one net, which has a few million reachable states.
Comparing the values obtained by `WQ or `WZ , surprisingly both give the exact value for
the concurrency threshold of all nets, even the cyclic ones.
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Analysis time (sec)

Net size MACAW LOLA

|P | |T | |RW | CT (W) `W
Q `W

Z CT (W)≥ k CT (W)≤ k

Median 21 14 16 3 0.01 0.01 0.01 0.01

Mean 28.4 18.6 3 · 1014 3.7 0.01 0.01 0.01 0.58*

Max 262 284 2 · 1017 66 0.03 0.03 1.18 307.76*

Tab. 5.6 Statistics on the size of nets and analysis time of the concurrency threshold. The results are
aggregated over all 642 sound nets of the IBM suite. The times marked with * exclude the 3
nets where LoLA exceeds the memory limit.

Our constraint-based algorithms are therefore often orders of magnitude faster than
methods using state-space exploration. While being potentially inexact, they produce
the exact value for all instances of a standard suite of free-choice workflow nets.

5.2.4 Probabilistic Sequences

We now turn to the analysis of timed probabilistic workflow nets (TPWNs) and define
probabilistic semantics for them. We would like to have that the probability for
extending a sequence with an enabled transition t only depends on the weights of
transitions that are in conflict with t, i.e. those which are also enabled and share an
input place with t. In this case, the occurrence of an independent transition u, i.e one
not in conflict with t, should not change the probability for t to occur. In [MEO19a],
following the work of [EHS17], we turn to confusion-free TPWNs, and give them
semantics based on Markov decision processes (MDPs).

Definition 5.20. LetW be a 1-safe workflow net and m a 1-safe marking ofW.

For a transition t enabled at m, the set of transitions in conflict with t at m, denoted
by C(t,m), are the transitions u also enabled at m with J•tK ∩ J•uK 6= ∅.

A set U of transitions is a conflict set of m if U = C(t,m) for some transition t enabled
at m. The conflict sets of m are given by C(m) def= {C(t,m) | t ∈ T : •t ≥m}.

W is confusion-free if for every reachable marking m ofW and every pair of transitions
t, u enabled at m with u 6∈ C(t,m) we have C(t,m) = C(t,m− •u) = C(t,m + ∆(u)).

It follows easily that any 1-safe free-choice workflow net is confusion-free and satisfies
C(t,m) = JJ•tK•K for a transition t enabled at a marking m. We further have:

Lemma 5.21 ([EHS17]). Let W be a 1-safe confusion-free workflow net and m a
reachable marking ofW. The conflict sets C(m) are a partition of the set of transitions
enabled at m.
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Markov decision process semantics

We refer to [MEO19a] and its full version [MEO19b] for the full definition for the
semantics of TPWNs and give only a brief overview here. A Markov decision process
(MDP) is a tupleM = (Q, q0,Steps), where Q is a finite set of states, q0 is the initial
state, and Steps : Q→ 2dist(Q) is the probability transition function. For a TPWNW,
we define an MDP MDPW , where the states are either markings m or pairs (m, t) for
a transition t enabled at a marking m. Initially we have q0 = HiI.

Intuitively, the scheduler of MDPW (different from the schedule in Definition 5.7)
non-deterministically chooses at each marking m a conflict set C ∈ C(m), after which
a transition t ∈ C is chosen at random, moving to the state (m, t). Afterwards, we
deterministically with probability 1 move to the state m + ∆(t). The probability to
move from a marking m with a chosen conflict set C ∈ C(m) to a state (m, t) with
t ∈ C is given by is given by Pm,C(t) def= w(t)

w(C) , where w(C) def=
∑
t∈C w(t). From a

marking m which enables no transitions, we deterministically with probability 1 move
back to m.

A path of an MDP is an infinite sequence of states starting in the initial state. For a
scheduler S of MDPW , denote by PathsS the set of paths of MDPW compatible with
S. For a path π ∈ PathsS , denote by ProbS(π) the probability of π, using the usual
probability measure for MDPs. We associate to each sequence of states π a transition
sequence Σ(π) obtained by projection on the components t of pairs (m, t) in π and
removal of all states m in π. For a fixed scheduler S, the transition sequence Σ(π) for a
path π ∈ PathsS again uniquely defines π. We therefore give an alternative definition
of a scheduler using transition sequences.

Definition 5.22. A scheduler of MDPW for a TPWN W is a function γ : T ∗ → 2T

assigning to each transition sequence σ ofW leading to a marking m with C(m) 6= ∅ a
conflict set γ(σ) ∈ C(m). A transition sequence σ ofW is compatible with a scheduler
γ if for all partitions σ = σ1 · t · σ2 for some transition t, we have t ∈ γ(σ1).

Figure 5.7 shows the MDP for the TPWN in Figure 5.2. We show states by black
nodes, abbreviating (m, t) by t, and show possible choices of the scheduler by white
nodes. This MDP has infinitely many schedulers, each differing in how many times
they choose {t2, t3} at Hp1, p3I before eventually (or never) choosing {t4}.

5.2.5 Expected Execution Time

We are now ready to combine probabilistic sequences with timed sequences to define
the expected execution time of a TPWN. From now on we assume that we have a
sufficient number of resources to execute any sequence in minimal time using the
online schedule fσ.
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Fig. 5.7 MDPW for the TPWNW in Figure 5.2.

Definition 5.23. Let W be a TPWN, m a reachable marking of W and π a path of
MDPW . The time needed to reach m along π, denoted tm(m, π), is defined as follows:
If π does not visit m, then tm(m, π) =∞, otherwise, tm(m, π) = tm(Σ(π′)) where π′

is the shortest prefix of π ending at m. Given a scheduler S of m, the expected time
until reaching m is defined as

ETS
m(W) def=

∑
π∈PathsS

tm(m, π) · ProbS(π).

The expected execution time ofW under S is defined as ETS(W) def= ETS
HoI(W), i.e. the

time to reach the final marking.

By adapting the results in [EHS17] for probabilistic workflow nets with costs to
TPWNs, we show the following in [MEO19a], which allows us to speak of the expected
execution time of confusion-free TPWNs.

Theorem 5.24 ([MEO19a]). LetW be a confusion-free TPWN.

(a) There exists a value ET (W) such that ET (W) = ETS(W) for every scheduler S
of MDPW .

(b) ET (W) is finite if and only ifW is sound.

Intuitively, this result holds because a scheduler only determines the logical order in
which transitions occur in a sequence, and in a confusion-free net the scheduler can
neither change which transitions could actually occur nor change their probabilities.
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Earliest-first scheduler

Theorem 5.24 shows that for confusion-free TPWNs, if we can compute ETS(W) for
some scheduler, then we can compute ET (W). For acyclic workflow nets, we could
do this by enumeration of the finite set of runs. However, for cyclic nets, this does
not work. Even though we have a finite set of reachable markings, there may be
infinitely many runs with arbitrarily large execution times. In the following, we give a
scheduler that can be used to derive a finite abstraction of its Markov chain, allowing
computation of the expected execution time of confusion-free TPWNs.

Recall the definition of µ : T ∗ → NP⊥ in Section 5.2.1, which associates to any transition
sequence the last time a token arrived in a place marked by a sequence, and where
further we have Jµ(σ)K = JmK if σ leads to m. For a TPWN, the earliest first scheduler
is the scheduler γ : T ∗ → 2T defined as follows:

γ(σ) def= arg min
C∈C(Jµ(σ)K)

max
p∈J•CK

µ(σ)(p) (5.25)

The scheduler γ is therefore defined by µ, and could be implemented with a memory
for the current value µ(σ) ∈ NP⊥, updated on occurrence of a transition. Then MDPW

can be unfolded under the scheduler γ into a Markov chain (MC). On such a Markov
chain, we can compute the probability of reaching a marking. As we have tm(σ) =
maxp∈Jµ(σ)K µ(σ)(p), the execution time to reach a marking is also given by the state
of the scheduler.

Unfortunately, for cyclic workflow nets, this may result in an infinite-state Markov
chain. Figure 5.8a shows a part of this chain for the MDP of Figure 5.7. In [MEO19a],
we derive a finite abstraction ν of µ, which results in a finite-state Markov chain
sufficient to compute the expected execution time.

Theorem 5.26 ([MEO19a]). Let W = (N, τ, w) be a confusion-free TPWN, H def=
maxt∈T τ(t) be the maximal execution time of a transition, and let [H]⊥

def= {⊥, 0}∪[H] ⊆
N⊥. There are functions ν : T ∗ → [H]P⊥, f : [H]P⊥ × T → [H]P⊥ and r : [H]P⊥ → N such
that for every transition sequence σ compatible with γ and for every t ∈ T enabled by σ:

γ(σ) = arg min
C∈C(Jν(σ)K)

max
p∈J•CK

ν(σ)(p) (5.27)

ν(σ · t) = f(ν(σ), t) (5.28)

tm(σ) = max
p∈Jν(σ)K

ν(σ)(p) +
|σ|∑
k=1

r(ν(σ(1) · σ(2) · . . . · σ(k))) (5.29)

Unlike µ, the range of ν is finite. Equation (5.27) allows us to use ν as a scheduler,
Equation (5.28) allows us to update the values of ν locally, and Equation (5.29) allows
us to compute the execution time of a sequence by a series of local rewards.
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Fig. 5.8 Two Markov chains for the “earliest-first” scheduler.

We give the definitions of ν, f and r, together with auxiliary functions st : T ∗ → N,
upd : NP⊥ × T → NP⊥ and an operator 	 : NP⊥ × N→ NP⊥.

ν(σ) def= µ(σ)	 st(σ) st(σ) def=


0 if σ = ε

max
p∈J•tK

µ(σ′)(p) if σ = σ′ · t

f(x, t) def= upd(x, t)	max
p∈•t

x(p) upd(x, t)(p) def=


max
q∈J•tK

x(q) + τ(t) if p ∈ Jt•K

⊥ if p ∈ J•tK \ Jt•K

x(p) if p 6∈ J•tK ∪ Jt•K

r(x) def= min
C∈C(JxK)

max
p∈J•CK

x(p) (x	 n)(p) def=

max(x(p)− n, 0) if x(p) 6= ⊥

⊥ if x(p) = ⊥

Intuitively, ν(σ) reduces the values of µ(σ) by the starting time of the last transition,
and only keeps the remaining arrival times of token according to a local reference
frame, truncating negative values at 0. For our example TPWN in Figure 5.2, we
compare in Figure 5.8 the Markov chain for µ (a) with the Markov chain obtained using
ν (b). For the sequence σ = t1 ·t2 ·t4 ·t3 ·t5 also recall the times of fσ shown in Figure 5.3.
After the prefix τ = t1 · t2 · t4, we reach the marking Hp1, p4I. We have µ(τ) = {p1

5 ,
p4
6 }

and ν(τ) = µ(τ)	 1 = {p1
4 ,

p4
5 }, since the starting time of t4 is 1. Now γ(τ) = {t2, t3},
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and if t3 occurs, we have τ(t3) = 2, the starting time fσ(t3) = 5 and local starting time
ν(τ)(p1) = 4, leading to the state ν(τ · t3) = upd(ν(τ), t3)	4 = {p2

6 ,
p4
5 }	4 = {p2

2 ,
p4
1 }.

The reference frame is now at time point 5, at which the token in p2 will arrive in 2
time units by t3 and the token in p6 in 1 time unit by t4. For σ, the time tm(σ) can be
recovered by the sum of rewards 0 + 1 + 0 + 4 + 2 + 3 = 10 along its associated path
in the Markov chain in Figure 5.8b.

The proof of Theorem 5.26 crucially depends on the TPWN being confusion-free,
which guarantees that if the earliest-first scheduler chooses a conflict set with a certain
starting time, then all transitions in the conflict set have the same starting time, and
further that no future transition of the run will have a smaller starting time. Therefore
it is sound to “forget” the past before that time point, and advance the local reference
frame, leaving the duration that passed as a reward in the Markov chain.

Computing the expected execution time

Using the earliest-first scheduler and its finite abstraction ν, we can now give an
algorithm to compute the expected execution time. Given a confusion-free TPWN
W = (N, τ, w), we construct the Markov chain ofMDPW under ν, which is guaranteed
to be finite. If W is sound, then we know that we will reach a state x with x = HoI
with probability one from the initial state.

From the theory of Markov chains with rewards, we know that the expected reward
until reaching such a state is the unique solution to a system of linear equations,
defined as follows. Let X be the set of states x = ν(σ) ∈ [H]P⊥ reached in the Markov
chain for some sequence σ ofW . For x ∈ X, let C(x) def= arg minC∈C(JxK) maxp∈J•CK x(p)
be the conflict set scheduled by ν at x. We then construct a constraint over a vector
e : X→ Q by a conjunction of the following linear constraints for each x ∈ X:

e(x) = r(x) +
∑

t∈C(x)

w(t)
w(C(x)) · e(f(x, t)) if JxK 6= HoI

e(x) = max
p∈JxK

x(p) if JxK = HoI
(5.30)

The number of states X ⊆ [H]P⊥ and therefore the constraint is at most exponentially
larger thanW , even with times given in binary, and we can compute a solution in time
polynomial in the size of the constraint. We can also test ifW is sound in exponential
time by exploration of the reachable markings. If it is unsound, we have ET (W) =∞.
If it is sound, we compute the unique solution e of the constraint (5.30), where we
have ET (W) = e(ν(ε)).

Theorem 5.31 ([MEO19a]). LetW be a confusion-free TPWN. Then ET (W) is either
∞ or a rational number and can be computed in single exponential time.
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Fig. 5.9 A PERT network and its corresponding timed probabilistic workflow net.

Complexity of computing the expected execution time

In [MEO19a] we show that computing an approximation of the expected execution
time of a free-choice TPWN is #P-hard, even in the restricted setting where the net
is sound and acyclic, all times are 0 or 1 and all probabilities in the associated MDP
are 1/2 or 1. As e.g. computing the number of satisfying assignments of a Boolean
formula (#SAT) is a #P-complete problem, a polynomial-time algorithm to compute
the expected execution time would imply P = NP.

Theorem 5.32 ([MEO19a]). The following problem is #P-hard:

Given: A sound, acyclic and free-choice TPWNW = (N, τ, w) where all transitions
t satisfy w(t) = 1, τ(t) ∈ {0, 1} and |J•tK•| ≤ 2, and an ε > 0.
Compute: A rational r such that r − ε < ET (W) < r + ε.

We give a short overview of the reduction to show #P-hardness, illustrated on a
small example in Figure 5.9. The reduction takes an instance of a PERT network
PN, which is a directed acyclic graph with a single source vertex s and single sink
vertex t. A small PERT network is shown in Figure 5.9a. The PERT network is

72 Chapter 5 Quantitative Analysis of Workflow Nets



Net info & size Analysis time (ms) |X|

Net cyclic |P | |T | |RW | [1] [103] [106] [1] [103] [106]

m1.s30_s703 no 264 286 6117 40.3 44.6 43.8 304 347 347

m1.s30_s596 yes 214 230 623 21.6 24.4 23.6 208 232 234

b3.s371_s1986 no 235 101 2 · 1017 16.8 16.4 16.5 101 102 102

b2.s275_s2417 no 103 68 2 · 105 14.2 17.8 15.9 355 460 431

Tab. 5.10 Results for computing the expected execution time of the IBM suite. We give the analysis times
and size of the state space |X| for the 4 nets with the highest analysis times, for each copy for
the three intervals [1], [103], [106] of possible weights and execution times.

further a two-state stochastic network where each edge e is given a probability pe,
encoded in binary, defining a Bernoulli random variable Xe with P (Xe = 1) = pe and
P (Xe = 0) = pe

def= 1− pe. These independent random variables induce a distribution
over annotations of PN with edge lengths 0 or 1, where for one annotation the project
duration is the length of the longest path from s to t, and the expected value over
all annotations is the expected project duration. From [Hag88; PB83], we have that
computing an approximation to the expected project duration is a #P-hard problem.

The reduction then produces a TPWN WPN as follows. First, for each edge e, we
create a gadget as shown in Figure 5.9b to simulate the random experiment by Xe

for the edge length, with the probabilities pe and pe as rational weights. Then, these
gadgets are combined into a single TPWN as shown in Figure 5.9d, which mirrors the
graph structure by adding transitions connecting edges through their common vertices.
A run ofWPN corresponds to a random valuation of all Xe, and the execution time
of the run to the length of the longest path in the PERT network. Finally, to only use
weights 1, we replace the gadgets of Figure 5.9b by a sequence of coin flips producing
the same distribution, illustrated in Figure 5.9c for pe = 5/8.

Evaluation of computing the expected execution time

We implemented the algorithm for computing the expected execution time of a
TPWN as a package named WORKFLOWNETANALYZER in the process mining toolkit
PROM [Ver+10]. We evaluate it on two sets of benchmarks. The first are the 642 sound
and free-choice workflow nets of the IBM benchmark suite [Fah+09]. As these do not
have timing or probabilistic information, we create three copies of each net in the suite,
and annotate each copy with times and weights chosen uniformly at random from
different intervals: (i) w(t) = τ(t) = 1, (ii) w(t), τ(t) ∈ [103] and (iii) w(t), τ(t) ∈ [106].
The second suite is a workflow net obtained from the academic winner of the BPI
Challenge 2017 [Rod+17] for analyzing a financial process, which we will identify
as the BPI net. For this net we use real-word data from the challenge [Don17] to
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Analysis time

Distribution |T | ET (W) |X| Total Construction Solving

Deterministic Mean 19 24 d 1 h 33 40 ms 18 ms 22 ms

Histogram/12 h 141 24 d 18 h 4054 244 ms 232 ms 12 ms

Histogram/6 h 261 24 d 21 h 15522 2.1 s 1.8 s 0.3 s

Histogram/4 h 375 24 d 22 h 34063 10 s 6 s 4 s

Histogram/2 h 666 24 d 23 h 122785 346 s 52 s 294 s

Histogram/1 h 1117 — 422614 — 12.7 min MO

Tab. 5.11 Results for computing the expected execution time of the BPI net. We give the expected
execution time, analysis time with time for constructing and solving the constraint, and size of
the state space |X| for various distributions of transition times. MO denotes denotes exceeding
the memory limit.

annotate it with quantitative information. For each transition, this gives us a proba-
bility which we use as the weight and a discrete distribution of execution times. As
the range of the distributions is too large to analyze completely, in the evaluation we
either simply use its mean or a coarser histogram distribution with differently sized
buckets. Our implementation and benchmarks have been published as a peer-reviewed
artifact [MEO19c] which can be used to reproduce the experimental results.

All experiments were performed on the same machine, equipped with an Intel Core
i7-6700K CPU at 4.0 GHz and 32 GB of memory. Execution time was unlimited and
memory limited to 32 GB. The results of the experimental evaluation, originally
conducted in [MEO19a], are shown in Table 5.10 for 4 of the IBM workflow nets and
in Table 5.11 for the BPI net. The expected execution time of all the 642 IBM workflow
nets can be computed in milliseconds, and does not seem strongly correlated with the
number of reachable markings or the intervals of the execution times. For the BPI net,
we can analyze it within minutes for an already rather precise approximation of the
execution times, however after exceeding 1000 transitions the size of the constraint
becomes too large to solve exactly.

The performance of our algorithm mainly depends on the number and range of choices
along runs of the workflow net, i.e. the sizes of the conflict sets, and the corresponding
range of possible execution times. However, due to our results of only needing to
consider the earliest-first scheduler, the algorithm does not need to explore all possible
reachable markings and can also handle workflow nets with a large state space.
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5.3 Related Work

Our starting point for the analysis of the resource and concurrency threshold was the
work by Botezatu et al. [BVT15; BVT16]. They introduce the notion of the concur-
rency threshold and give an algorithm to compute it by a decomposition algorithm,
which also uses the linear optimization constraint for marked graphs, but resorts to
computation of the reachability graph for complex fragments. In contrast, we give
a simpler NP algorithm for all sound free-choice workflow nets, and experimentally
show that the polynomial approximation algorithm is already exact in practice. They
also show NP-hardness for deciding existence of an optimal schedule with a fixed
number of resources, which is however slightly different to our problem of computing
the resource threshold.

Botezatu et al. [BVT16] also consider the computation of the expected execution time.
They show that the threshold decision problem is NP-hard. However, their reduction
requires execution times to be given in binary, while we prove #P-hardness where all
times are 0 or 1. They also do not give any decidability result.

Our starting point for the analysis of the expected execution time was the work
by Esparza et al. [EHS16; EHS17]. They introduce probabilistic workflow nets (PWNs)
and analyze the problem of computing the expected cost for PWNs where transitions
t are annotated with a cost c(t). Similarly to expected time, the expected cost for
confusion-free PWNs is independent of the scheduler. In contrast to the expected
time, the expected cost can be computed in polynomial time, as shown in [EHS17]
by a set of reduction rules. The algorithm does not transfer to the expected time,
as time and cost behave differently in the presence of concurrency: the cost of two
concurrent transitions t1, t2 is c(t1)+c(t2), while the execution time is max(τ(t1), τ(t2)).
In the probabilistic case, for two independent random variables X1, X2, we have
E(X1 +X2) = E(X1) + E(X2), however E(max(X1, X2)) ≥ max(E(X1),E(X2)) with
inequality in general.

Probabilistic workflow nets where time is continuous and execution times are exponen-
tially distributed can be translated to Generalized Stochastic Petri Nets (GSPNs) [Fer95;
MCB84]. These are popular due to their nice computational properties, as the memo-
ryless property of the exponential distribution allows a reduction to a continuous-time
Markov chain for further analysis. This also allows for exact computation of the
expected execution time. However, the construction of the Markov chain might require
exploration of all reachable markings of the net. Further, exponential distributions are
not always desired or insufficient for a precise model of the execution times. While
other distributions can be approximated by phase-type distributions [Mar+85], this
does not lead to an exact algorithm and increases the analysis time exponentially.
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Aalst et al. [AHR00] consider discrete time stochastic workflow nets where transitions
have a probability distribution over discrete execution times. They present an approach
to compute the probability distribution for the total execution time by a hierarchical
decomposition into sequence, iteration, choice and parallel blocks. However the
computation for iteration only gives an approximation, and the decomposition does
not capture all free-choice nets. They sketch an algorithm for acyclic free-choice nets
based on computation of the probability distributions of arrival times of tokens, which
resembles our approach. They mention this could be combined with their decomposi-
tion, but it is unclear if this results in a complete algorithm for free-choice nets. Similar
work [EP02; Ha+06] also computes distributions using a block decomposition, but
these are also incomplete for all free-choice nets and approximative for cyclic nets.

5.4 Open Problems
Proposition 5.12 states that there may be no online schedule realizing the resource
threshold. There we require that tasks are executed without interruption after starting.
One could also consider preemptive online schedules, where tasks may be interrupted
and resumed later. This corresponds to timed workflow nets where all execution times
of transitions are 0 or 1, unlike our example in Figure 5.4. The scheduling problem for
an optimal finish time with a preemptive schedule remains NP-hard [GS78], which
should also transfer to computing the resource threshold or deriving an optimal
schedule. Still, one could explore whether online schedules are always possible in this
case or a counterexample exists.

We show that computing the expected execution time is #P-hard and in EXPTIME
(for the threshold decision problem). One could further research the exact complexity
of this problem. We have NP-hardness with arbitrary times [BVT16], but no known
reduction for NP-hardness with times 0 or 1. In the acyclic case, a PSPACE algorithm
should be possible by enumeration of all runs. In the cyclic case, it is unclear if the
expected execution time (in binary) even has a size polynomial in the size of the
workflow net. For the related problem of computing the expected duration of a PERT
network, it is not known whether it is in #P [Hag88]. For non-free-choice workflow
nets, the problem of deciding if the expected cost of a confusion-free PWN with only
a single run is 0 is PSPACE-hard [EHS17], which directly transfers to the expected
execution time. However [EHS17] gives no PSPACE upper bound.

For computing the expected execution time, we restricted ourselves to confusion-free
workflow-nets. Workflow nets are not always confusion-free, and confusion allows
expressing more complex control flow structures. One could also explore the notion of
expected time for general workflow nets. Our definition using MDPs already gives an
expected execution time for each scheduler, and one could analyze the maximum or
minimum over all schedulers. However, a problem is that the probabilistic semantics
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for nets with confusion are not always intuitive or matching the original system.
Esparza et al. [EHS17] briefly consider this for the expected cost, where examples of
PWNs with confusion are shown where the MDP semantics is still appropriate. Bruni
et al. [BMM19] give a reduction of a Petri net with confusion to a confusion-free Petri
net model extended with certain persistent places, on which a suitable semantics for
causality and probabilities is derived using non-sequential processes with persistence.
One could investigate if this model could also be suitably extended with time for the
analysis of the expected execution time of workflow nets with confusion.
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Abstract—Algorithms for the coverability problem have been
successfully applied to safety checking for concurrent programs.
In a former paper (An SMT-based Approach to Coverability
Analysis, CAV14) we have revisited a constraint approach to
coverability based on classical Petri net analysis techniques
and implemented it on top of state-of-the-art SMT solvers. In
this paper we extend the approach to fair termination; many
other liveness properties can be reduced to fair termination
using the automata-theoretic approach to verification. We use
T-invariants to identify potential infinite computations of the
system, and design a novel technique to discard false positives,
that is, potential computations that are not actually executable.
We validate our technique on a large number of case studies.

I. INTRODUCTION

In recent years, verification problems for concurrent shared-
memory or asynchronous message-passing software have been
attacked by means of Petri net techniques. In particular, it has
been shown that safety properties or fair termination can be
solved by constructing and analyzing the coverability graph
of a Petri net, or some related object [1]–[5]. This renewed
interest on the coverability problem has led to numerous al-
gorithmic advances for the construction of coverability graphs
[4], [6]–[9].

Despite this success, the coverability problem remains com-
putationally expensive [10], since it involves exhaustive state-
space exploration. This motivates the study of cheaper incom-
plete procedures: algorithms much faster than the construction
of the coverability graph, which may prove the property
true, but also answer “don’t know”. In a recent paper, the
authors, together with other colleagues, have revisited and
further developed tests based on the marking equation and
traps, two classical Petri net analysis techniques [11]. These
techniques allow one to efficiently compute program invariants
expressed as constraints of linear arithmetic [12]–[14]. If the
states violating the property also correspond to those satisfying
a linear constraint, unsatisfiability of the complete constraint
system proves the property true. In the test suite analyzed
in [11], 83% of the positive problem instances (that is, the
instances for which the property holds) could be proved in this
way. Moreover, due to advances in SMT-solving, the constraint
systems could be solved at a fraction of the cost of state-
exploration techniques. So the technique makes sense as a
preprocessing that allows to prove many easy cases at low cost;

if the technique fails, then we can always resort to complete
state-space exploration methods.

In this paper we extend the approach to liveness properties.
As in [11], which revisited and expanded previous work,
we revisit an idea initially presented in [15], based on the
use of transition invariants. Since liveness is typically harder
than safety, and the constraint technology of 1997 was very
primitive compared to state-of-the-art SMT-solvers, the work
of [15] only explored a rather straightforward test, and only
considered one case study. In this paper we improve the
test of [15], design different implementations, compare their
performance, and validate them on numerous case studies
coming from different areas: distributed algorithms, workflow
processes, Erlang programs, and asynchronous programs.

We conclude this introduction with a brief outline of our
technique. Given an infinite execution σ of a Petri net model,
let inf (σ) be the set of transitions that occur infinitely often in
σ. We consider liveness properties such that whether σ satisfies
the property or not depends only on inf (σ). (This is not an
important restriction because, by taking the product of the
Petri net model with a suitable Büchi automaton, every LTL
property can be reduced to a property of this kind.) We say
that a set T of transitions is feasible if T = inf (σ) for some σ.
We use T-invariants (more precisely, T-surinvariants) to extract
Boolean constraints that must be satisfied by every feasible set
of transitions. However, these constraints are typically quite
weak, and have spurious solutions, that is, they are satisfied by
unfeasible sets of transitions. So we design a refinement loop
that, given a solution, tries to construct an additional constraint
that excludes it. If the refinement procedure terminates, then
the model satisfies the property.

The paper is structured as follows. Section II contains
basic definitions. Section III introduces the main technique. In
Section IV and V, we describe two methods to refine the main
technique. Section VI contains the experimental evaluation.
Finally, Section VII presents conclusions.

II. PRELIMINARIES

A net is a triple (P, T, F ), where P is a set of places, T is a
(disjoint) set of transitions, and F : (P×T )∪(T×P )→ {0, 1}
is the flow function. For x ∈ P ∪ T , the pre-set is •x = {y ∈
P ∪ T | F (y, x) = 1} and the post-set is x• = {y ∈ P ∪ T |
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p1:
p2:
p3:

procedure PROCESS 1
begin
bit1 := false
while true do
bit1 := true
while bit2 do skip od
(∗ critical section ∗)
bit1 := false

od
end

q1:
q2:
q3:
q4:

q5:

procedure PROCESS 2
begin
bit2 := false
while true do
bit2 := true
if bit1 then
bit2 := false
while bit1 do skip od
goto q1

fi
(∗ critical section ∗)
bit2 := false

od
end

Fig. 1. Lamport’s 1-bit algorithm for mutual exclusion [16].

F (x, y) = 1}. We extend the pre- and post-set to a subset of
P ∪ T as the union of the pre- and post-sets of its elements.
A subnet of a Petri net (P, T, F ) is a triple (P ′, T ′, F ′) such
that P ′ ⊆ P , T ′ ⊆ T , and F ′ : (P ′×T ′)∪(T ′×P ′)→ {0, 1}
with F ′(x, y) = F (x, y). Since F ′ is completely determined
by F ,P ′, and T ′, we often speak of the subnet (P ′, T ′).

A marking of a net (P, T, F ) is a function m : P → N.
Assuming an enumeration p1, . . . , pn of P , we often identify
m and the vector (m(p1), . . . ,m(pn)). For a subset P ′ ⊆ P
of places, we write m(P ′) =

∑
p∈P ′ m(p). A Petri net is a

tuple N = (P, T, F,m0), where (P, T, F ) is a net and m0 is a
marking called the initial marking. Petri nets are represented
graphically as follows: places and transitions are represented
as circles and boxes, respectively. For x, y ∈ P ∪T , there is an
arc leading from x to y iff F (x, y) = 1. The initial marking
is represented by putting m0(p) black tokens in each place p.

A transition t ∈ T is enabled at m iff m(p) ≥ 1 for every
p ∈ •t. A transition t enabled at m may fire, yielding a new
marking m′ (denoted m

t−→ m′), where m′(p) = m(p) +
F (t, p)− F (p, t).

A sequence of transitions, σ = t1t2 . . . tr is an occurrence
sequence of N iff there exist markings m1, . . . ,mr such that
m0

t1−→ m1
t2−→ m2 . . .

tr−→ mr. The marking mr is said
to be reachable from m0 by the occurrence of σ (denoted
m0

σ−→ mr).
An infinite sequence of transitions, σ = t1t2 . . . is an infinite

occurrence sequence of N iff every finite prefix of σ is an
occurrence sequence of N (denoted m0

σ−→). The set inf (σ)
contains the transitions occurring infinitely often in σ.

A. Liveness properties

We consider a restricted notion of liveness property. Section
II-C briefly sketches how to handle general LTL properties.

A liveness property ϕ of a net N = (P, T, F,m0) is a
Boolean constraint over the free variables T . The property ϕ
holds for an infinite occurrence sequence σ (denoted σ |= ϕ)
iff Iσ |= ϕ, where Iσ(t) = 1 if t ∈ inf (σ) else 0. A
Petri net N satisfies a property ϕ (denoted N |= ϕ) iff

First Process Second Process

p3

s4

p1

s1

p2

s2

s3

t2

q3

t3

q4

t4

q2

t6

q5

t7

q1

t1

t5

bit1

bit2

nbit1

nbit2

Fig. 2. Petri net for Lamport’s 1-bit algorithm.

σ |= ϕ for every infinite occurrence sequence m0
σ−→. Note

that a liveness property is always satisfied if the Petri net
has no infinite occurrence sequences. Therefore the property
ϕ = false is equivalent to termination of the Petri net. Fair
termination properties can be expressed by means of more
complex formulas ϕ.

B. Two examples

As a first example, consider Lamport’s 1-bit algorithm for
mutual exclusion [16], shown in Fig. 1. Fig. 2 shows a Petri
net model for the code. The two grey blocks model the control
flow of the two processes. For instance, the token in place p1
models the current position of process 1 at program location
p1. The four places in the middle of the diagram model the
current values of the variables. For instance, a token in place
nbit1 indicates that the variable bit1 is currently set to false.

The main liveness property for the processes states that,
assuming a fair scheduler that allows both processes to execute
actions infinitely often, each process enters the critical section
infinitely often. For the first process, this corresponds to the
property that every infinite occurrence sequence in which at
least one of s1, . . . , s4 and one of t1, . . . , t7 occur infinitely
often, contains infinitely many occurrences of s2. As a Boolean
formula, we get (

4∨
i=1

si

)
∧

 7∨
j=1

tj

⇒ s2

For the second process we obtain a similar property.
As a second example, consider the fairly terminating asyn-

chronous program [17] given in Fig. 3. Here, the post com-
mand is a non-blocking operation for launching a process in
parallel. Initially, the process INIT is executed, which sets x
to true and launches H. Process H launches new instances of
H and G until G sets x to false. Assuming a fair scheduler,
i.e., one that will execute each process eventually, the program
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h:

procedure H
begin

if x then
post H
post G

fi
end

g:

procedure G
begin
x := false

end

procedure INIT
begin
x := true
post H

end

Fig. 3. Asynchronous program [17].

Process H Process G

s

x

notx

ph

h

pg

g

s1

s2

s3

t1

t2

t3

Fig. 4. Petri net for the asynchronous program.

should terminate. This fair termination is the liveness property
we want to prove.

Transforming the program into a Petri net gives us the
net in Fig. 4. The place s models the scheduler, ph and pg
are pending instances of H and G, respectively, and h and
g are program locations. The transitions t1 and s1 dispatch
the processes, while the other transitions exit the processes
depending on the value of x. Note that the net is unbounded,
as repeatedly firing s1s2 puts arbitrarily many tokens in pg.

If the scheduler is fair and continues dispatching instances
of H and G infinitely often, the program should terminate,
giving us the liveness property s1 ∧ t1 =⇒ false, equivalent
to ¬(s1 ∧ t1).

C. LTL properties

To check general LTL properties we can use the automata-
theoretic approach. Given a property ϕ, we construct the
product of the Petri net model of the system and a Büchi
automaton for ¬ϕ. The product yields a new Petri net with
a set of accepting places. The initial net violates the property
iff the product net has an infinite sequence σ such that inf (σ)
contains at least one of the input transitions of the accepting
places. A detailed construction can be found in [15].

III. T-SURINVARIANTS

We present a procedure, called LIVENESS, which checks a
sufficient condition for a given Petri net to satisfy a liveness
property. The condition is unsatisfiability of an appropriate
linear arithmetic formula.

Definition 1 (Incidence matrix). The incidence matrix C of a
Petri net N is a |P | × |T | matrix given by

C(p, t) = F (t, p)− F (p, t)

Definition 2 (T-surinvariant). A vector X : T → Z is a T-
surinvariant of a Petri net N iff C · X ≥ 0. If moreover
C ·X = 0, then X is a T-invariant.

A T-surinvariant X is semi-positive iff X ≥ 0 and X 6= 0.
The support of a T-surinvariant X is given by ‖X‖ = {t ∈
T | X(t) > 0}.

Loosely speaking, X is a surinvariant if for every place p
and for every occurrence sequence m σ−→ m′, if σ fires each
transition t exactly X(t) times, then m(p) ≤ m′(p), that is,
the number of tokens in p can only increase. The following
theorem, where we identify X with the multiset of transitions
containing each t ∈ T exactly X(t) times, shows that the
T-surinvariants of a Petri net provide information about its
infinite runs.

Theorem 1. [13], [14] Let σ be an infinite sequence of
transitions and N a Petri net. If σ is an infinite occurrence
sequence of N , then there is a semi-positive T-surinvariant X
satisfying ‖X‖ = inf (σ).

Proof. Let σ′ be a suffix of σ containing only transitions of
inf (σ), and let σ′ = σ′1σ

′
2σ
′
3 . . . such that each σ′i contains ev-

ery transition of inf (σ) at least once. Since σ is an infinite oc-
currence sequence of N , there exist markings m1,m2,m3, . . .

such that m1
σ′1−→ m2

σ′2−→ m3
σ′3−→ . . .. By Dickson’s lemma,

there exist indices i < j such that mi ≤ mj . Let X be the
Parikh vector of σ′i . . . σ

′
j−1, i.e., the vector assigning to each

transition its number of occurrences in the sequence. By the
definition of the firing rule and the incidence matrix C, for
every place p we have mj(p) −mi(p) =

∑
t∈T C(p, t)X(t)

or, in matrix form, mj −mi = C · X . Since mj ≥ mi, we
have mj−mi ≥ 0, and so X is a semi-positive T-surinvariant.
Since σ′i . . . σ

′
j−1 contains all transitions of inf (σ), we have

‖X‖ = inf (σ).

However, a T-surinvariant does not guarantee the existence
of a corresponding occurrence sequence. Consider the net in
Fig. 4. The multiset X = {s1, s2, t1, t3} is a semi-positive
T-invariant, but, as we will see later, no infinite occurrence
sequence σ satisfies inf (σ) = {s1, s2, t1, t3}. We say that a
T-surinvariant X is realizable if there is an infinite occurrence
sequence σ with ‖X‖ = inf (σ).

For a T-surinvariant X and a liveness property ϕ, we
denote by ϕ(X) the constraint of linear arithmetic obtained by
substituting X(t) > 0 for every occurrence of t in ϕ. So, for
instance, if ϕ = t1∨t2, then ϕ(X) = X(t1) > 0∨X(t2) > 0.
By Theorem 1, if there is an infinite sequence σ such that
σ |= ϕ, then there is also a semi-positive T-surinvariant X
such that ϕ(X) holds. Taking the contrapositive, we have: if
no semi-positive T-surinvariant X satisfies ¬ϕ(X), then no
sequence σ satisfies ¬ϕ, and so N |= ϕ. This directly leads to
a semi-decision procedure for checking if a liveness property
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Fig. 5. Subnet of the net of Fig. 4.

ϕ is a property of a Petri net N : If the following constraints
are unsatisfiable, then N |= ϕ.

C(N,ϕ) ::


C ·X ≥ 0 T-surinvariant condition
X ≥ 0 non-negativity condition
X 6= 0 non-zero condition
¬ϕ(X) property condition

(1)

In practice, the procedure is very efficient, but often fails
to prove the property. As an example, consider Lamport’s
algorithm. The negation of the fairness property for the first
process yields

(s1 ∨ s2 ∨ s3 ∨ s4) ∧ (t1 ∨ t2 ∨ t3 ∨ t4 ∨ t5 ∨ t6 ∨ t7) ∧ ¬s2
which corresponds to runs of the system where both processes
are executed infinitely often, but where the first process never
enters the critical section. However, X = {s3, t5} is a
solution to the constraints (1). The solution corresponds to
the processes being stuck in the locations p2 and q4 while
executing the skip commands. For this reason, in the next
section we revisit an idea of [15] which leads to a more precise
set of constraints.

IV. REFINING T-SURINVARIANTS WITH P-COMPONENTS

The method LIVENESS can be strengthened by discarding
T-surinvariants which are not realizable.

Consider again the net of Fig. 4. Recall that X =
{s1, s2, t1, t3} is a semi-positive T-invariant. We prove that
it is not realizable. Consider the subnet N ′ = (P ′, T ′), where
P ′ = {x, notx} and T ′ = {s2, t2, s3, t3}, shown in Fig. 5.

Inspection of the subnet shows that firing a transition does
not change the total number of tokens in P ′. For example,
firing t2 takes a token from x, but adds a token to notx. So this
number is always equal to 1, and so it makes sense to speak
of “the” token of N ′. Assume now that X is realized by some
infinite sequence σ, i.e., inf (σ) = ‖X‖. Since both s2 and t3
occur infinitely often in σ, there are sequences σ1, σ2, σ3 such
that σ = σ1 s2 σ2 t3σ3, and σ2 ∈ ‖X‖∗. After the occurrence
of s2 the token of N ′ is on x, and before the occurrence of
t3 it is on notx. But σ2 cannot “move” the token from x to
notx, as it does not contain any occurrence of t2 (because
t2 /∈ ‖X‖). So we reach a contradiction, and σ does not exist.

In the rest of the section we show how to automatically
search for proofs of non-realizability like this. We need the
notion of a P-component of a net.

Definition 3 (P-component). A P-component of a net N =
(P, T, F ) is a subnet N ′ = (P ′, T ′) such that P ′ 6= ∅ and

|t• ∩ P ′| = |•t ∩ P ′| = 1 for all t ∈ T ′ and T ′ = P ′• ∪ •P ′
(where pre- and post-sets are taken with respect to N ).

The subnet of Fig. 5 is a P-component. Note that the number
of tokens in a P-component never changes, i.e., m0(P ) =
m(P ) for all m0

σ−→ m. Therefore, if initially a P-component
only contains one token, then we know that the token will stay
in the P-component.

Lemma 2. Let X be a T-surinvariant of a Petri net N . If N
has a P-component (P ′, T ′) such that m0(P

′) = 1, and the
subnet (P ′, T ′ ∩ ‖X‖) is not strongly connected, then X is
not realizable.

Proof. (Sketch.) If (P ′, T ′ ∩ ‖X‖) is not strongly connected,
then by the definition of P-component there are two transitions
t1, t2 ∈ T ′ ∩ ‖X‖ such that no path of (P ′, T ′ ∩ ‖X‖) leads
from t1 to t2. So the token of (P ′, T ′) cannot be transported
from the output place of t1 in (P ′, T ′∩‖X‖) to the input place
of t2 in (P ′, T ′ ∩ ‖X‖) by firing transitions of X only. Since
every sequence realizing X must fire both t1 and t2 infinitely
often, no such sequence exists.

Lemma 2 provides a refinement condition. To find such a
refinement, we encode the condition as a conjunction of linear
arithmetic constraints. A pair (P ′, T ′) is the set of places
and transitions of a P-component such that m0(P

′) = 1 iff
it satisfies these constraints:

∀t ∈ T ′ : |t• ∩ P ′| = 1 P ′• ∪ •P ′ = T ′

∀t ∈ T ′ : |•t ∩ P ′| = 1 m0(P
′) = 1

For the strong connectedness condition, we use that a graph
(V,E) is not strongly connected iff there is a partition
V = V1 ] V2 such that no edge (v, v′) ∈ E satisfies
v ∈ V1, v

′ ∈ V2. In our case, V is the set T ′ ∩ ‖X‖, and
E is the set of pairs (t1, t2) such that some place p ∈ P ′

satisfies (t1, p), (p, t2) ∈ F ′. So (P ′, T ′∩‖X‖) is not strongly
connected iff the following constraints are satisfiable:

T ′ ∩ ‖X‖ = T1 ] T2 T1 6= ∅
(T •1 ∩ P ′)• ∩ ‖X‖ ⊆ T1 T2 6= ∅

These constraints can be encoded by introducing an array of
variables with range {0, 1} for each set of places or transitions.
For example, the constraint ∀t ∈ T ′ : |t• ∩ P ′| = 1 translates
to the linear arithmetic constraint∧

t∈T

[
T ′(t) = 1 =⇒

∑
p∈t•

P ′(p) = 1

]

where (T ′(t1), . . . , T ′(tn)) is the array of Boolean variables
for the set T ′.

If the constraints above are satisfiable for a given T-
surinvariant X , then X is not realizable. We can exclude X
(and any other T-surinvariant whose support has the same
intersection with the P-component as ‖X‖) by adding the
constraint:
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Fig. 6. P-component and subnet of the Petri net for Lamport’s algorithm.

δ ::=

[ ∨
t∈T1

t

]
∧

[ ∨
t∈T2

t

]
=⇒

∨
t∈T ′\‖X‖

t (2)

to the set of constraints (1). We can iterate the process,
until either the constraints are unsatisfiable, which means
successfully proving the property, or no further P-components
can be found to discard a T-surinvariant, which means failure.

For example, for Lamport’s algorithm and the fairness
property for the first process, the constraints (1) have
the solution X = {s3, t5}. However, since (P ′, T ′) =
({bit2, q1, q4}, {s3, t1, t3, t4, t5, t7}) is a P-component and
T1 = {s3}, T2 = {t5} satisfy the constraints above, we get
that X is not realizable. The P-component (P ′, T ′) and the
subnet (P ′, T ′∩‖X‖) are shown in Fig. 6. We can immediately
see that the token cannot be transported from the output place
of s3 to the input place of t5.

We add the refinement constraint

s3 ∧ t5 =⇒ t1 ∨ t3 ∨ t4 ∨ t7

to the set (1) and check again for satisfiability. The
new set is still satisfiable with the solution X =
{s3, t1, t1, t2, t3, t4, t5, t6, t7}. In a second refinement step we
find a P-component with {nbit1, p2, p3} as set of places, and
add the refinement constraint

s3 ∧ (t4 ∨ t6) =⇒ s1 ∨ s2 ∨ s4,

after which the constraints (1) are unsatisfiable, and we
conclude that the fairness property for the first process holds.

For the second example (Fig. 3 and 4), we considered
the fair termination property ϕ = ¬(s1 ∧ t1). After adding
¬ϕ = s1 ∧ t1 to the constraints (1), we obtain a solution
X = {s1, s2, t1, t3}. With the P-component (P ′, T ′) =
({x, notx}, {s2, s3, t2, t3}) and the partition T1 = {s2} and
T2 = {t3}, we can discard this T-invariant as unrealizable and
obtain the refinement constraint

s2 ∧ t3 =⇒ s3 ∨ t2,

after which the constraints (1) are unsatisfiable and we can
prove fair termination.

p1

p2

p3

p4

t1

t2

t3

t4

(a) Net without P-components

p1

p2

p3 p4t1

t2

t3

(b) Net without unmarked traps

Fig. 7. Terminating Petri nets for which refinement is insufficient.

V. REFINING T-SURINVARIANTS WITH TRAPS

For some Petri nets, refinement with P-components is not
sufficient for discarding unrealizable T-surinvariants. For ex-
ample, we cannot prove the properties for the leader election
algorithm by Dolev, Klawe and Rodeh [18] or the mutual
exclusion algorithm by Szymanski [19]. These nets are too big
to give as an example, but consider instead the net in Fig. 7a,
which is similar to a subnet of the net for the leader election
algorithm. The net has no infinite occurrence sequences and
we would like to prove termination. The multiset X = {t2, t3}
is a T-surinvariant, but the net has no P-components, so we
cannot refine the constraints. To solve this problem we develop
a refinement technique based on traps.

Definition 4 (Trap). A trap is a set of places S ⊆ P such that
S• ⊆ •S.

It follows immediately from the definition that marked traps
stay marked: if a trap S is marked at some marking m, i.e.
m(S) > 0, then it is also marked at all markings m′ reachable
from m, because every transition taking tokens from S also
adds at least one token to S.

Given a T-surinvariant X , we consider the subnet (P ′, T ′) =
(‖X‖•, ‖X‖). In the example of Fig. 7a, (P ′, T ′) is obtained
by removing transitions t1 and t4, together with their input and
output arcs. Assume ‖X‖ is realized by an infinite occurrence
sequence σ. Then there are sequences σ′, σ′′ such that σ =
σ′σ′′ and σ′′ ∈ ‖X‖ω . Since every place P ′ has an input
transition in ‖X‖, every place of P ′ gets marked during the
execution of σ′′, and therefore every trap of (P ′, T ′) becomes
eventually marked. So we have the following lemma:

Lemma 3. Let N = (P, T, F,m0) be a net and let ‖X‖ be
a realizable T-surinvariant. Then some marking m reachable
from m0 in N marks every trap of the subnet (P ′, T ′) =
(‖X‖•, ‖X‖).

By this lemma, if we show that no reachable marking marks
every trap of (P ′, T ′), then X is unrealizable. We use an
iterative approach. Given a set of traps Q, using the technique
of [11] we can construct a set of constraints satisfied by
every reachable marking that marks every trap of Q.1 If the
constraints are satisfiable, then we extract from the solution a

1The constraints express that a solution m satisfies the marking equation
and that m(S) > 0 for every trap S ∈ Q.
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marking m that marks all traps in Q. Since m may not mark
all traps, we search for a new trap S /∈ Q not marked at m. If
we find such S, we set Q = Q∪{S} and iterate, otherwise we
give up. If the constraints are unsatisfiable, then no reachable
marking marks all traps in Q, which implies that X is not
realizable. We can then add a new constraint excluding any
solution with the same support as X . However, we can do
better, and add a stronger constraint. Since we have shown
that no infinite occurrence sequence σ can reach a marking that
simultaneously marks all traps of Q, we choose a constraint
expressing that if inf (σ) contains transitions marking all traps
of (P ′, T ′), then it must also contain at least one transition that
empties a trap of (P ′, T ′). (Of course, such a transition cannot
belong to T ′, it must be a transition of T \ T ′.)

δ ::=
∧
S∈Q

[ ∨
t∈•S

t

]
=⇒

∨
S∈Q

 ∨
t∈S•\•S

t

 (3)

For example, for the Petri net in Fig. 7a, the method
LIVENESS returns X = {t2, t3} as a T-surinvariant. The
corresponding subnet is (P ′, T ′) = ({p1, p2, p3, p4}, {t2, t3}).
Initially, for Q = ∅, we can take the initial marking m0. In m0,
the trap S1 = {p1} of (P ′, T ′) is unmarked. We search for a
marking m satisfying the marking equation and m(p1) ≥ 1,
and obtain as solution m1 = (1, 0, 1, 0). At this marking the
trap S2 = {p4} is unmarked. So we search for a marking m
satisfying the marking equation, m(p1) ≥ 1 and m(p4) ≥ 1,
and obtain as solution m2 = (1, 0, 0, 1). At this marking the
trap S3 = {p2, p3} is unmarked. We search for a marking
m satisfying the marking equation, m(p1) ≥ 1, m(p4) ≥ 1,
and m(p2) +m(p3) ≥ 1, and obtain that the constraints are
unsatisfiable. So we generate the refinement constraint

(t1 ∨ t2) ∧ (t3 ∨ t4) ∧ (t2 ∨ t3) =⇒ t1 ∨ t4,

which excludes {t2, t3}. In fact, the additional constraint turns
out to exclude not only {t2, t3}, but all T-surinvariants, which
proves termination of the Petri net.

The refinement with traps is a generalization of the refine-
ment with P-components. For a T-surinvariant X , assume there
is refinement with a P-component (P ′, T ′) and a partition
T1]T2 = T ′∩‖X‖. In the subnet (‖X‖•, ‖X‖), S1 = P ′∩T •1
and S2 = P ′ ∩ T •2 are two different traps, and as the P-
component has only one token, we can show with the marking
equation that S1 and S2 cannot be marked at the same time.

Generally, refinement with P-components requires fewer
calls to the SMT solver, and is therefore more efficient. In
our experiments it is also sufficient for most cases, and if it
fails, refinement with traps can be applied afterwards. So we
always start with a refinement with P-components, and apply
then a refinement with traps if necessary.

Even with both refinements, the method is still incomplete.
Consider the Petri net in Fig. 7b, which appears in a Petri
net model of the drinking philosopher’s problem [20]. The
net is terminating, but X = {t1, t1, t2, t3} is a surinvariant
(observe that X is a genuine multiset with two copies of t1).

The subnet corresponding to X is the complete net, and every
trap is initially marked, so no refinement can be found.

If the property does not hold, our method fails and returns
a surinvariant that cannot be excluded by our refinements. For
example, for Lamport’s algorithm, the fairness property for the
second process is not satisfied, where the negation ¬ϕ is:

(s1 ∨ s2 ∨ s3 ∨ s4) ∧ (t1 ∨ t2 ∨ t3 ∨ t4 ∨ t5 ∨ t6 ∨ t7) ∧ ¬t6.

After two refinement steps, our method returns the T-
surinvariant X = {s1, s2, s3, s4, t1, t2, t3, t4, t5}, which satis-
fies ¬ϕ and cannot be further refined. In this case we can use
guided state-space exploration [21] to try to identify permu-
tations of X that are actual repeatable occurrence sequences.
In this case, σ = s1t1s3t2t3s2t5s4t4 is indeed a matching
occurrence sequence which can be repeated infinitely and
violates the property.

VI. EXPERIMENTAL EVALUATION

We extended our tool Petrinizer [11], implemented on top
of the SMT solver Z3 [22], with the method LIVENESS.
The method can be used without refinement, with only P-
component or trap refinement, or with P-component refine-
ment followed by trap refinement. In addition, the refinement
structures can be minimized.

For our evaluation, we had three goals. First, we wanted
to measure the success rates on a large number of case
studies. The second goal was to investigate the usefulness and
necessity of P-components, traps and minimization of them.
As a third goal, we wanted to measure the performance of the
method and compare it with the model checker SPIN2 [23].

A. Benchmarks

For the evaluation, we used five different benchmark suites
from various sources. The first two suites are workflow nets
coming from business processes [24]. One is a collection of
SAP reference models [25] and the other consists of IBM
business process models [26]. We examined the nets for
termination. In total, these suites contain 1976 models, out
of which 1836 are terminating.

The third suite contains 50 examples that come from the
analysis of Erlang programs [5], found on the website of the
Soter tool3. Out of these, 33 are terminating.

For the fourth suite, we used classic asynchronous programs
that can be scaled in the number of processes. These include a
leader election algorithm [18], a snapshot algorithm [27] and
three mutual exclusion algorithms [16], [19], [28]. Each of the
5 algorithms is scaled from n = 2 to 6 processes, resulting in
25 examples. For the former two distributed algorithms, the
property is repeated liveness, i.e., infinitely often electing a
leader or taking a snapshot infinitely often, while for the latter
three mutual exclusion algorithms it is non-starvation for the
first process. These properties all contain a fairness assumption
for the scheduler, and they hold for all examples.

2http://spinroot.com/
3http://mjolnir.cs.ox.ac.uk/soter/
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TABLE I
FAIRLY TERMINATING EXAMPLES WITH RATE OF SUCCESS BY DIFFERENT

REFINEMENT METHODS.

Benchmark No ref. Ref. w/P-co. Ref. w/traps Terminating

SAP 1263 1263 1264 1264
IBM 571 571 572 572
Erlang 27 27 27 33
Asynchronous 0 14 20 25
Literature 0 3 5 5

Total 1861 1878 1888 1899

Finally, as the fifth suite, we collected 5 examples from the
literature on termination and liveness analysis and modeled
them as Petri nets. These are the programs from Fig. 2
in [29], Fig. 3 in [30], Fig. 1(b) in [17] and two variants
of the Windows NT Bluetooth driver from [31]. These are all
terminating programs.

The Petri nets for these benchmarks vary largely in size.
The number of places ranges from 4 to 66950, with a mean
of 116 and a median of 38. The number of transitions ranges
from 3 to 213626, with a mean of 163 and a median of 30.

We try to prove the fairness property of the asynchronous
programs and termination for the examples from the other
benchmark suites. In total, we have 1899 examples where the
property holds.

B. Rate of success on terminating examples

In Table I, the rate of success with different refinement
methods is shown. Even without refinement, we can prove
termination of all but 2 of the SAP and IBM examples, and of
27 of the 33 Erlang examples. However, without refinement
we can prove none of the 30 examples from the other two
suites. Refinement with P-components allows us to prove 14 of
the asynchronous and 3 of the literature examples. Additional
refinement with traps allows us to prove the 2 remaining SAP
and IBM examples, 6 more asynchronous examples, and the
remaining examples from the literature suite. In total, we can
prove termination for 1888 of the 1899 terminating examples,
and at least 80% of the terminating examples of each suite.

C. Usefulness of refinement methods and minimization

Table II presents results on the asynchronous benchmark
suite and refinement with and without minimization. Mini-
mization of the refinement components can result in better
refinement constraints that exclude more T-surinvariants, at
the price of a time overhead, since repeated calls to the
SMT solver are needed until a minimal component is found.
The default method, R1, is refinement with P-components
and traps without any minimization. Refinement method R2

minimizes P-components (P ′, T ′) by |P ′| and traps S by |S|.
Other criteria were also tested, but there was no optimal one
working for all benchmarks. For each method, the number of
P-components |R|, number of trap refinements |Q| and total
execution time in seconds for proving the property are given.

We observe cases where we need refinement only with P-
components (Snapshot), only with traps (Leader election) or

TABLE II
COMPARISON OF REFINEMENT WITH AND WITHOUT MINIMIZATION AND
RUNTIME COMPARISON WITH SPIN. FOR AN EXECUTION, TO DENOTES
EXCEEDING THE TIME LIMIT AND MO EXCEEDING THE MEMORY LIMIT.

Refinement R1 Ref. w/ min. R2 SPIN
Benchmark n |R| |Q| T (s) |R| |Q| T (s) T (s)

Leader election
by Dolev,
Klawe and
Rodeh [18]

2 0 4 2.53 0 4 2.30 0.69
3 0 6 8.45 0 6 9.03 0.74
4 0 8 35.5 0 8 38.4 15.7
5 0 13 206 0 10 154 MO
6 0 17 1104 0 12 728 MO

Snapshot
algorithm by
Bougé [27]

2 2 0 0.35 2 0 0.30 0.31
3 3 0 0.50 3 0 0.81 0.72
4 4 0 0.60 4 0 0.91 10.3
5 5 0 0.73 5 0 1.41 218
6 6 0 1.82 6 0 1.63 MO

Lamport’s 1-bit
algorithm for
mutual
exclusion [16]

2 2 0 0.50 3 0 0.43 0.69
3 6 0 1.26 6 0 1.63 0.69
4 12 0 2.83 13 0 5.50 0.92
5 27 0 9.34 18 0 11.3 10.4
6 26 0 13.4 23 0 20.6 MO

Peterson’s
mutual
exclusion
algorithm [28]

2 1 0 0.37 1 0 0.41 0.69
3 13 0 6.57 7 0 8.55 0.71
4 21 0 65.9 18 0 92.5 1.16
5 285 0 2289 36 0 911 43.5
6 - - TO - - TO MO

Szymanski’s
mutual
exclusion
algorithm [19]

2 21 6 10.9 26 6 17.6 0.70
3

Property cannot be proven with
refinement for n ≥ 3.

0.80
4 5.83
5 347
6 MO

with both (Szymanski at n = 2). For Szymanski at n ≥ 3 we
cannot prove the property even with both refinement methods.

Minimization with method R2 saves many refinement steps
for Peterson and a few for Lamport and Leader election,
while for Szymanski the number of steps increases. The time
overhead when no steps are saved is not very large (up to 2×).

Our method produces a certificate for fair termination
consisting of the P-components R and traps Q. One can
use independent methods to check that R and Q are indeed
P-components and traps, and that the constraints (1) are
unsatisfiable. The size of each P-component and trap is limited
by the size of the net. The size of the whole certificate depends
on the number of refinement steps, however it is usually much
more compact than the whole state space.

D. Performance

All experiments were performed on the same machine,
equipped with a Intel Core i7-4810MQ CPU at 2.8 GHz and
16 GB of memory, running Linux 3.18.6 in 64-bit mode.
Execution time was limited to 2 hours and memory to 16 GB.

Table II shows the execution times of Petrinizer for the
asynchronous benchmark suite and a comparison with SPIN.
SPIN was used with a fairness strategy enforced and partial
order reduction. Only for the snapshot algorithm, partial order
reduction was turned off, as it is not supported together with
fairness and the rendezvous operations used in the algorithm.
For small examples, SPIN is usually faster. However, as n
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Fig. 8. Execution time in dependence on the number of places for the
examples from the benchmark suites SAP, IBM, Erlang and Literature,
depending on whether Petrinizer succeeds in proving termination.

grows to 5 or 6, SPIN quickly reaches the memory limit. Here,
Petrinizer outperforms SPIN significantly on the examples
Leader election, Snapshot and Lamport.

For the other four benchmark suites, Fig. 8 shows the
performance of Petrinizer. For the positive examples (i.e.,
those where we can prove the property), we can prove all but
one of the 1868 examples in under 3 seconds. The outlier is
from the SAP suite, for which we need 320 refinement steps
and 8 minutes. Even the largest positive example from the
Erlang suite with 4014 places only needs 1.86 seconds. For the
negative examples, Petrinizer performs worse, usually because
it performs more refinement steps. However, it terminates in
under 3 seconds for all nets with up to 1000 places. Only
in one case we reach the time limit of 2 hours (our largest
example with 66950 places).

We only need more than 3 refinement steps in one case (an
outlier with 320 steps). The number of steps is not correlated
to the net size.

VII. CONCLUSION

Transition invariants and P-components are classical anal-
ysis techniques for Petri nets. We have demonstrated that,
combined with a state-of-the-art SMT solver, these techniques
are very effective in proving fair termination for a large
number of common benchmark examples. We have further
developed a novel technique based on traps, which allows us
to reach a high degree of completeness on these benchmarks.
The constraint systems produced by our tool can be used as a
certificate of fair termination.
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net as fast as possible. We show that computing this number is NP-hard even for a
very restricted form of free-choice workflow nets, and the fastest execution with this
number of resources may not be realizable by an an online scheduler, i.e. requires
knowledge on how future choices will be resolved. We then analyze the notion of the
concurrency threshold, which is the minimum number of resources required to execute
the workflow net as fast as possible by any scheduler and with a priori unknown task
durations. We show that computing the concurrency threshold is NP-complete, and
give two linear programming algorithms to approximate it. We evaluate our algorithms
on a set of 642 free-choice workflow nets. They always compute the exact concurrency
threshold within milliseconds, while an approach using state-space exploration takes
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Abstract. Workflow graphs extend classical flow charts with concur-
rent fork and join nodes. They constitute the core of business processing
languages such as BPMN or UML Activity Diagrams. The activities of a
workflow graph are executed by humans or machines, generically called
resources. If concurrent activities cannot be executed in parallel by lack
of resources, the time needed to execute the workflow increases. We study
the problem of computing the minimal number of resources necessary to
fully exploit the concurrency of a given workflow, and execute it as fast
as possible (i.e., as fast as with unlimited resources).

We model this problem using free-choice Petri nets, which are known
to be equivalent to workflow graphs. We analyze the computational com-
plexity of two versions of the problem: computing the resource and con-
currency thresholds. We use the results to design an algorithm to approx-
imate the concurrency threshold, and evaluate it on a benchmark suite of
642 industrial examples. We show that it performs very well in practice:
It always provides the exact value, and never takes more than 30 ms for
any workflow, even for those with a huge number of reachable markings.

1 Introduction

A workflow graph is a classical control-flow graph (or flow chart) extended with
concurrent fork and join. Workflow graphs represent the core of workflow lan-
guages such as BPMN (Business Process Model and Notation), EPC (Event-
driven Process Chain), or UML Activity Diagrams.

In many applications, the activities of an execution workflow graph have to
be carried out by a fixed number of resources (for example, a fixed number of
computer cores). Increasing the number of cores can reduce the minimal runtime
of the workflow. For example, consider a simple deterministic workflow (a work-
flow without choice or merge nodes), which forks into k parallel activities, all of
duration 1, and terminates after a join. With an optimal assignment of resources
to activities, the workflow takes time k when executed with one resource, time
�k/2� with two resources, and time 1 with k resources; additional resources

c© The Author(s) 2018
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bring no further reduction. We call k the resource threshold. In a deterministic
workflow that forks into two parallel chains of k sequential activities each, one
resource leads to runtime 2k, and two resources to runtime k. More resources do
not improve the runtime, and so the resource threshold is 2. Clearly, the resource
threshold of a deterministic workflow with k activities is a number between 1
and k. Determining this number can be seen as a scheduling problem. However,
most scheduling problems assume a fixed number of resources and study how to
optimize the makespan [11,17], while we study how to minimize the number of
resources. Other works on resource/machine minimization [5,6] consider interval
constraints instead of the partial-order constraints given by a workflow graph.
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Fig. 1. A sound free-choice workflow net and one of its runs (Color figure online)

Following previous work, we do not directly work with workflow graphs, but
with their equivalent representation as free-choice workflow Petri nets, which has
been shown to be essentially the same model [10] and allows us to directly use
a wealth of results of free-choice Petri nets [7]. Figure 1(a) shows a free-choice
workflow net. The actual workflow activities, also called tasks, which need a
resource to execute and which consume time are modeled as the places of the
net: Each place p of the net is assigned a time τ(p), depicted in blue. Intuitively,
when a token arrives in p, it must execute a task that takes τ(p) time units before
it can be used to fire a transition. A free choice exists between transitions t4 and
t6, which is a representation of a choice node (if-then-else or loop condition) in
the workflow.

If no choice is present or all choices are resolved, we have a deterministic
workflow such as the one in Fig. 1(b). In Petri net terminology, deterministic
workflows correspond to the class of marked graphs. Deterministic workflows are
common in practice: in the standard suite of 642 industrial workflows that we use
for experiments, 63.7% are deterministic. We show that already for this restricted
class, deciding if the threshold exceeds a given bound is NP-hard. Therefore, we
investigate an over-approximation of the resource threshold, already introduced
in [4]: the concurrency threshold. This is the maximal number of task places that
can be simultaneously marked at a reachable marking. Clearly, if a workflow with
concurrency threshold k is executed with k resources, then we can always start
the task of a place immediately after a token arrives, and this schedule already
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achieves the fastest runtime achievable with unlimited resources. We show that
the concurrency threshold can be computed in polynomial time for deterministic
workflows.

For workflows with nondeterministic choice, corresponding to free-choice
nets, we show that computing the concurrency threshold of free-choice workflow
nets is NP-hard, solving a problem left open in [4]. We even prove that the prob-
lem remains NP-hard for sound free-choice workflows. Soundness is the dominant
behavioral correctness notion for workflows, which rules out basic control-flow
errors such as deadlocks. NP-hardness in the sound case is remarkable, because
many analysis problems that have high complexity in the unsound case can be
solved in polynomial time in the sound case (see e.g. [1,7,8]).

After our complexity analysis, we design an algorithm to compute bounds
on the concurrency threshold using a combination of linear optimization and
state-space exploration. We evaluate it on a benchmark suite of 642 sound free-
choice workflow nets from an industrial source (IBM) [9]. The bounds can be
computed in a total of 7 s (over all 642 nets). On the contrary, the computation
of the exact value by state-space exploration techniques times out for the three
largest nets, and takes 7 min for the rest. (Observe that partial-order reduction
techniques cannot be used, because one may then miss the interleaving realizing
the concurrency threshold.)

The paper is structured as follows. Section 2 contains preliminaries. Sections 3
and 4 study the resource and concurrency thresholds, respectively. Section 5
presents our algorithms for computing the concurrency bound, and experimental
results. Finally, Sect. 6 contains conclusions.

2 Preliminaries

Petri Nets. A Petri net N is a tuple (P, T, F ) where P is a finite set of places,
T is a finite set of transitions (P ∩ T = ∅), and F ⊆ (P × T ) ∪ (T × P ) is a
set of arcs. The preset of x ∈ P ∪ T is •x def= {y | (y, x) ∈ F} and its postset is
x• def= {y | (x, y) ∈ F}. We extend the definition of presets and postsets to sets of
places and transitions X ⊆ P ∪ T by •X def=

⋃
x∈X

•x and X• def=
⋃

x∈X x•. A net
is acyclic if the relation F ∗ is a partial order, denoted by 	 and called the causal
order. A node x of an acyclic net is causally maximal if no node y satisfies x ≺ y.

A marking of a Petri net is a function M : P → N, representing the number of
tokens in each place. For a set of places S ⊆ P , we define M(S) def=

∑
p∈S M(p).

Further, for a set of places S ⊆ P , we define by MS the marking with MS(p) = 1
for p ∈ S and MS(p) = 0 for p /∈ S.

A transition t is enabled at a marking M if for all p ∈ •t, we have M(p) ≥ 1.
If t is enabled at M , it may occur, leading to a marking M ′ obtained by removing
one token from each place of •t and then adding one token to each place of t•.
We denote this by M

t−→ M ′. Let σ = t1t2 . . . tn be a sequence of transitions.
For a marking M0, σ is an occurrence sequence if M0

t1−→ M1
t2−→ . . .

tn−→ Mn

for some markings M1, . . . , Mn. We say that Mn is reachable from M0 by σ and
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denote this by M0
σ−→ Mn. The set of all markings reachable from M in N by some

occurrence sequence σ is denoted by RN (M). A system is a pair (N,M) of a Petri
net N and a marking M . A system (N,M) is live if for every M ′ ∈ RN (M) and
every transition t some marking M ′′ ∈ RN (M ′) enables t. The system is 1-safe
if M ′(p) ≤ 1 for every M ′ ∈ RN (M) and every place p ∈ P .

Convention: Throughout this paper we assume that systems are 1-safe, i.e., we
identify “system” and “1-safe system”.

Net Classes. A net N = (P, T, F ) is a marked graph if |•p| ≤ 1 and |p•| ≤ 1 for
every place p ∈ P , and a free-choice net if for any two places p1, p2 ∈ P either
p•
1 ∩ p•

2 = ∅ or p•
1 = p•

2.

Non-sequential Processes of Petri Nets. An (A,B)-labeled Petri net is a
tuple N = (P, T, F, λ, μ), where λ : P → A and μ : T → B are labeling functions
over alphabets A,B. The nonsequential processes of a 1-safe system (N,M) are
acyclic, (P, T )-labeled marked graphs. Say that a set P ′′ of places of a (P, T )-
labeled acyclic net enables t ∈ T if all the places of P ′′ are causally maximal,
carry pairwise distinct labels, and λ(P ′′) = •t.

Definition 1. Let N = (P, T, F ) be a Petri net and let M be a marking of N .
The set NP(N,M) of nonsequential processes of (N,M) (processes for short)
is the set of (P, T )-labeled Petri nets defined inductively as follows:

– The (P, T )-labeled Petri net containing for each place p ∈ P marked at M one
place p̂ labeled by p, no other places, and no transitions, belongs to NP(N,M).

– If Π = (P ′, T ′, F ′, λ, μ) ∈ NP(N,M) and P ′′ ⊆ P ′ enables some transition t

of N , then the (P, T )-labeled net Πt = (P ′ � P̂ , T ′ �{ t̂ }, F ′ � F̂ , λ� λ̂, μ� μ̂),
where

• P̂ = { p̂ | p ∈ t•}, with λ̂( p̂ ) = p, and μ̂( t̂ ) = t;
• F̂ = {( p′′, t̂ ) | p′′ ∈ P ′′} ∪ {( t̂, p̂ ) | p̂ ∈ P̂};

also belongs to NP(N,M). We say that Πt extends Π.

We denote the minimal and maximal places of a process Π w.r.t. the causal
order by min(Π) and max(Π), respectively.

As usual, we say that two processes are isomorphic if they are the same up to
renaming of the places and transitions (notice that we rename only the names
of the places and transitions, not their labels).

Figure 2 shows two processes of the workflow net in Fig. 1(a). (The figure
does not show the names of places and transitions, only their labels.) The net
containing the white and grey nodes only is already a process, and the grey
places are causally maximal places that enable t6. Therefore, according to the
definition we can extend the process with the green nodes to produce another
process. On the right we extend the same process in a different way, with the
transition t4.
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Fig. 2. Nonsequential processes of the net of Fig. 1(a) (Color figure online)

The following is well known. Let (P ′, T ′, F ′, λ, μ) be a process of (N,M):

– For every linearization σ = t′1 . . . t′n of T ′ respecting the causal order 	, the
sequence μ(σ) = μ(t′1) . . . μ(t′n) is a firing sequence of (N,M). Further, all
these firing sequences lead to the same marking. We call it the final marking
of Π, and say that Π leads from M to its final marking.

For example, in Fig. 2 the sequences of the right process labeled by t1t2t3t4
and t1t3t2t4 are firing sequences leading to the marking M = {p2, p5, p7}.

– For every firing sequence t1 · · · tn of (N,M) there is a process (P ′, T ′, F ′, λ, μ)
such that T ′ = {t′1, . . . , t

′
n}, μ(t′i) = ti for every 1 ≤ i ≤ n, and μ(t′i) 	 μ(t′j)

implies i ≤ j.

Workflow Nets. We slightly generalize the definition of workflow net as pre-
sented in e.g. [1] by allowing multiple initial and final places. A workflow net is
a Petri net with two distinguished sets I and O of input places and output places
such that (a) •I = ∅ = O• and (b) for all x ∈ P ∪ T , there exists a path from
some i ∈ I to some o ∈ O passing through x. The markings MI and MO are
called initial and final markings of N . A workflow net N is sound if

– ∀M ∈ RN (MI) : MO ∈ RN (M),
– ∀M ∈ RN (MI) : (M(O) ≥ |O|) ⇒ (M = MO), and
– ∀t ∈ T : ∃M ∈ RN (MI) : t is enabled at M .

It is well-known that every sound free-choice workflow net is a 1-safe system with
the initial marking MI [2,7]. Given a workflow net according to this definition
one can construct another one with one single input place i and output place o
and two transitions ti, to with •ti = {i}, t•i = I and •to = O, t•o = {o}. For all
purposes of this paper these two workflow nets are equivalent.

Given a workflow net N , we say that a process Π of (N,MI) is a run if it
leads to MO. For example, the net in Fig. 1(b) is a run of the net in Fig. 1(a).

Petri Nets with Task Durations. We consider Petri nets in which, intuitively,
when a token arrives in a place p it has to execute a task taking τ(p) time units
before the token can be used to fire any transition. Formally, we consider tuples
N = (P, T, F, τ) where (P, T, F ) is a net and τ : P → N.
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Definition 2. Given a nonsequential process Π = (P ′, T ′, F ′, λ, μ) of (N,M),
a time bound t, and a number of resources k, we say that Π is executable within
time t with k resources if there is a function f : P ′ → N such that

(1) for every p′
1, p

′
2 ∈ P ′: if p′

1 ≺ p′
2 then f(p′

1) + τ(λ(p′
1)) ≤ f(p′

2);
(2) for every p′ ∈ P ′: f(p′) + τ(λ(p′)) ≤ t; and
(3) for every 0 ≤ u < t there are at most k places p′ ∈ P ′ such that f(p′) ≤ u <

f(p′) + τ(p′).

We call a function f satisfying (1) a schedule, a function satisfying (1) and (2)
a t -schedule, and a function satsifying (1)–(3) a (k, t)-schedule of Π.

Intuitively, f(p′) describes the starting time of the task executed at p′. Condition
(1) states that if p′

1 	 p′
2, then the task associated to p′

2 can only start after the
task for p′

1 has ended; condition (2) states that all tasks are done by time t, and
condition (3) that at any moment in time at most k tasks are being executed.
As an example, the process in Fig. 1(b) can be executed with two resources in
time 6 with the schedule i, p1, p2 �→ 0; p3, p4 �→ 1; p7, p6 �→ 3, and p8, p9 �→ 4.

Given a process Π = (P ′, T ′, F ′, λ, μ) of (N,M) we define the schedule
fmin as follows: if p′ ∈ min(Π) then fmin(p′) = 0, otherwise define fmin(p′) =
max{fmin(p′′) + τ(λ(p′′)) | p′′ 	 p′}. Further, we define the minimal execution
time tmin(Π) = max{f(p′)+τ(λ(p′′)) | p′ ∈ max(Π)}. In the process in Fig. 1(b),
the schedule fmin is the function that assigns i, p1, p2, p7 �→ 0, p3, p4 �→ 1,
p6, p8 �→ 3, p9 �→ 4, and o �→ 6, and so tmin(Π) = 6. We have:

Lemma 1. A process Π = (P ′, T ′, F ′, λ, μ) of (N,M) can be executed within
time tmin(Π) with |P ′| resources, and cannot be executed faster with any number
of resources.

Proof. For k ≥ |P ′| resources condition (3) of Definition 2 holds vacuously. Π
is executable within time t iff conditions (1) and (2) hold. Since fmin satisfies
(1) and (2) for t = tmin(Π), Π can be executed within time tmin(Π). Further,
tmin(Π) is the smallest time for which (1) and (2) can hold, and so Π cannot be
executed faster with any number of resources.

3 Resource Threshold

We define the resource threshold of a run of a workflow net, and of the net itself.
Intuitively, the resource threshold of a run is the minimal number of resources
that allows one to execute it as fast as with unlimited resources, and the resource
threshold of a workflow net is the minimal number of resources that allows one
to execute every run as fast as with unlimited resources.

Definition 3. Let N be a workflow net, and let Π be a run of N . The resource
threshold of Π, denoted by RT (Π) is the smallest number k such that Π can be
executed in time tmin(Π) with k resources. A schedule of Π realizes the resource
threshold if it is a (RT (Π), tmin(Π))-schedule.
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The resource threshold of N , denoted by RT (N), is defined by RT (N) =
max{RT (Π) | Π is a run of (N,MI)}. A schedule ofN is a function that assigns
to every process Π ∈ NP(N,M) a schedule of Π. A schedule of N is a (k, t)-
schedule if it assigns to every run Π a (k, t)-schedule of Π. A schedule of N
realizes the resource threshold if it assigns to every run Π a (RT (N), tmin(Π))-
schedule.

Example 1. We have seen in the previous section that for the process in Fig. 1(b)
we have tmin(Π) = 6, and a schedule with two resources already achieves this
time. So the resource bound is 2. The workflow net of Fig. 1 has infinitely many
runs, in which loosely speaking, the net executes t4 arbitrarily many times, until
it “exits the loop” by choosing t6, followed by t7 and t8. It can be shown that all
processes have resource threshold 2, and so that is also the resource threshold
of the net.

In the rest of the section we obtain two negative results about the result
threshold. First, it is difficult to compute: Determining if the resource threshold
exceeds a given threshold is NP-complete even for acyclic marked graphs, a
very simple class of workflows. Second, we show that even for acyclic free-choice
workflow nets the resource threshold may not be realized by any online scheduler.

3.1 Resource Threshold Is NP-complete for Acyclic Marked Graphs

We prove that deciding if the resource threshold exceeds a given bound is NP-
complete even for acyclic sound marked graphs. The proof proceeds by reduction
from the following classical scheduling problem, proved NP-complete in [18]:

Given: a finite, partially ordered set of jobs with non-negative integer
durations, and non-negative integers t and k.
Decide: Can all jobs can be executed with k machines within t time units
in a way that respects the given partial order, i.e., a job is started only
after all its predecessors have been finished?

More formally, the problem is defined as follows: Given jobs J = {J1, . . . , Jn},
where Ji has duration τ(Ji) for every 1 ≤ i ≤ n, and a partial order 	 on J ,
does there exist a function f : J → N such that

(1) for every 1 ≤ i, j ≤ n: if Ji ≺ Jj then f(Ji) + τ(Ji) ≤ f(Jj);
(2) for every 1 ≤ i ≤ n: f(Ji) + τ(Ji) ≤ t; and
(3) for every 0 ≤ u < t there are at most k indices i such that f(Ji) ≤ u <

f(Ji) + τ(Ji).

These conditions are almost identical to the ones we used to define if a nonse-
quential process can be executed within time t with k resources. We exploit this
to construct an acyclic workflow marked graph that “simulates” the scheduling
problem. For the detailed proof, we refer to the full version of this paper [15].

Theorem 1. The following problem is NP-complete:

Given: An acyclic, sound workflow marked graph N , and a number k.
Decide: Does RT (N) ≤ k hold?
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3.2 Acyclic Free-Choice Workflow Nets May Have no Optimal
Online Schedulers

A resource threshold of k guarantees that every run can be executed without
penalty with k resources. In other words, there exists a schedule that achieves
optimal runtime. However, in many applications the schedule must be deter-
mined at runtime, that is, the resources must be allocated without knowing how
choices will be resolved in the future. In order to formalize this idea we define
the notion of an online schedule of a workflow net N .

Definition 4. Let N be a Petri net, and let Π and Π ′ be two processes of
(N,M). We say that Π is a prefix of Π ′, denoted by Π � Π ′, if there is a
sequence Π1, . . . , Πn of processes such that Π1 = Π, Πn = Π ′, and Πi+1 extends
Πi by one transition for every 1 ≤ i ≤ n − 1.

Let f be a schedule of (N,M), i.e., a function assigning a schedule to each
process. We say that f is an online schedule if for every two runs Π1,Π2, and
for every two prefixes Π ′

1 �Π1 and Π ′
2 �Π2: If Π ′

1 and Π ′
2 are isomorphic, then

f(Π ′
1) = f(Π ′

2).

Intuitively, if Π ′
1 and Π ′

2 are isomorphic then they are the same process Π,
which in the future can be extended to either Π1 or Π2, depending on which
transitions occur. In an online schedule, Π is scheduled in the same way, inde-
pendently of whether it will become Π1 or Π2 in the future. We show that even
for acyclic free-choice workflow nets there may be no online schedule that realizes
the resource threshold. That is, even though for every run it is possible to sched-
ule the tasks with RT (N) resources to achieve optimal runtime, this requires
knowing how it will evolve before the execution of the workflow.

Proposition 1. There is an acyclic, sound free-choice workflow net for which
no online schedule realizes the resource threshold.

0

i

1 p1

1 p2

2p3

5
p4

3
p5

2p6

2p7

2 p8

0 p9

0

ot1

t2

t3

t4

t5

t6

t7

Fig. 3. A workflow net with two runs. No online scheduler for three resources achieves
the minimal runtime in both runs. (Color figure online)
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Proof. Consider the sound free-choice workflow net (N,MI) of Fig. 3. It has two
runs: Πg, which executes the grey and green transitions, and Πr, which executes
the grey and red transitions. Their resource thresholds are RT (Πg) = RT (Πr) =
3, realized by the schedules fg and fr in Fig. 4:

0 1 2 3 4 5

resource 1 p4

resource 2 p3 p5

resource 3 p1 p2 p8

0 1 2 3 4 5

p4

p1 p3 p6

p2 p8 p7

Fig. 4. Schedules fg and fr for the two runs Πg and Πr of the net of Fig. 3.

Indeed, observe that fg and fr execute Πg and Πr within time 5, and even
with unlimited resources no schedule can be faster because of the task p4, while
two or fewer resources are insufficient to execute either run within time 5.

The schedule of (N,MI) that assigns fg and fr to Πg and Πr is not an online
schedule. Indeed, the process containing one single transition labeled by t1 and
places labeled by i, p1, p2, p3 is isomorphic to prefixes of Πg and Πr. However,
we have fg(p3) = 0 �= 1 = fr(p3). We now claim:

(a) Every schedule fg of Πg that realizes the resource threshold (time 5 with 3
resources) satisfies fg(p3) = 0.

Indeed, if fg(p3) ≥ 1, then fg(p5) ≥ 3, fg(p9) ≥ 6, and finally fg(o) ≥ 6,
so fg does not meet the time bound.

(b) Every schedule fr of Πr that realizes the resource threshold (time 5 with 3
resources) satisfies fr(p3) > 0.

Observe first that we necessarily have fr(p4) = 0, and so a resource, say
R1, is bound to p4 during the complete execution of the workflow, leaving
two resources left. Assume fr(p3) = 0, i.e., a second resource, say R2, is
bound to p3 at time 0, leaving one resource left, say R3. Since both p1 and
p2 must be executed before p8, and only R3 is free until time 2, we get
fr(p8) ≥ 2. So at time 2 we still have to execute p6, p7, p8 with resources
R2, R3. Therefore, two out of p6, p7, p8 must be executed sequentially by
the same resource. Since p6, p7, p8 take 2 time units each, one of the two
resources needs time 4, and we get fr(o) ≥ 6.

By this claim, at time 0, an online schedule has to decide whether to allocate a
resource to p3 or not, without knowing which of t3 or t4 will be executed in the
future. If it schedules f(p3) = 0 and later t4 occurs, then Πr is executed and the
deadline of 5 time units is not met. The same occurs if it schedules f(p3) > 0,
and later t3 occurs.
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4 Concurrency Threshold

Due to the two negative results presented in the previous section, we study a
different parameter, introduced in [4], called the concurrency threshold. During
execution of a business process, information on the resolution of future choices
is often not available, and further no information on the possible duration of a
task (or only weak bounds) are known. Therefore, the scheduling is performed in
practice by assigning a resource to a task at the moment some resource becomes
available. The question is: What is the minimal number of resources needed to
guarantee the optimal execution time achievable with an unlimited number of
resources?

The answer is simple: since there is no information about the duration of
tasks, every reachable marking of the workflow net without durations may be
also reached for some assignment of durations. Let M be a reachable marking
with a maximal number of tokens, say k, in places with positive duration, and
let d1 ≤ d2 ≤ · · · ≤ dk be the durations of their associated tasks. If less than k
resources are available, and we do not assign a resource to the task with duration
dk, we introduce a delay with respect to the case of an unlimited number of
resources. On the contrary, if the number of available resources is k, then the
scheduler for k resources can always simulate the behaviour of the scheduler for
an unlimited number of resources.

Definition 5. Let N = (P, T, F, I,O, τ) be a workflow Petri net. For every
marking M of N , define the concurrency of M as conc(M) def=

∑
p∈D M(p),

where D ⊆ P is the set of places p ∈ P such that τ(p) > 0. The concurrency
threshold ofN is defined by

CT (N) def= max
{
conc(M) | M ∈ RN (M)

}
.

The following lemma follows easily from the definitions.

Lemma 2. For every workflow net N : RT (N) ≤ CT (N).

Proof. Follows immediately from the fact that for every schedule f of a run of
N , there is a schedule g with CT (N) machines such that g(p) ≤ f(p) for every
place p.

In the rest of the paper we study the complexity of computing the concur-
rency threshold. In [4], it was shown that the threshold can be computed in
polynomial time for regular workflows, a class with a very specific structure, and
the problem for the general free-choice case was left open. In Sect. 4.1 we prove
that the concurrency threshold of marked graphs can be computed in polynomial
time by reduction to a linear programming problem over the rational numbers.
In Sect. 4.2 we study the free-choice case. We show that deciding if the thresh-
old exceeds a given value is NP-complete for acyclic, sound free-choice workflow
nets. Further, it can be computed by solving the same linear programming prob-
lem as in the case of marked graphs, but over the integers. Finally, we show
that in the cyclic case the problem remains NP-complete, but the integer linear
programming problem does not necessarily yield the correct solution.
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4.1 Concurrency Threshold of Marked Graphs

The concurrency threshold of marked graphs can be computed using a standard
technique based on the marking equation [16]. Given a net N = (P, T, F ), define
the incidence matrix of N as the |P | × |T | matrix N given by:

N (p, t) =

⎧
⎨

⎩

1 if p ∈ t• \ •t
−1 if p ∈ •t \ t•

0 otherwise

In the following, we denote by M the representation of a marking M as a
vector of dimension |P |. Let N be a Petri net, and let M1,M2 be markings of
N . The following results are well known from the literature (see e.g. [16]):

– If M2 is reachable from M1 in N , then M 2 = M 1 + N · X for some integer
vector X ≥ 0.

– If N is a marked graph and M 2 = M 1 + N · X for some rational vector
X ≥ 0, then M2 is reachable from M1 in N .

– If N is acyclic and M 2 = M 1 + N · X for some integer vector X ≥ 0, then
M2 is reachable from M1 in N .

Given a workflow net N = (P, T, F, I,O, τ), let D : P �→ N be the vector defined
by D(p) = 1 if p ∈ D and D(p) = 0 if p /∈ D, where D is the set of places with
positive duration. We define the linear optimization problem

�N = max {D · M | M = M I + N · X ,M ≥ 0,X ≥ 0} (1)

Since the solutions of M = MI + N · X contain all the reachable markings of
(N,MI), we have �N ≥ CT (N). Further, using these results above, we obtain:

Theorem 2. Let N be a workflow net, and let �N
Q and �N

Z be the solution of
the linear optimization problem (1) over the rationals and over the integers,
respectively. We have:

– �N
Q ≥ �N

Z ≥ CT (N);
– If N is a marked graph, then �Q = �Z = CT (N).
– If N is acyclic, then �Q ≥ �Z = CT (N).

In particular, it follows that CT (N) can be computed in polynomial time for
marked graphs, acyclic or not. (The result about acyclic nets is used in the next
section.)

4.2 Concurrency Threshold of Free-Choice Nets

We study the complexity of computing the concurrency threshold of free-choice
workflow nets. We first show that, contrary to numerous other properties for
which there are polynomial algorithms, deciding if the concurrency threshold
exceeds a given value is NP-complete.
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Theorem 3. The following problem is NP-complete:

Given: A sound, free-choice workflow net N = (P, T, F, I,O), and a num-
ber k ≤ |T |.
Decide: Is the concurrency threshold of N at least k?

Proof. A detailed proof can be found in the full version of this paper [15], here
we only sketch the argument. Membership in NP is nontrivial, and follows from
results of [1,7]. We prove NP-hardness by means of a reduction from Maximum
Independent Set (MIS):

Given: An undirected graph G = (V,E), and a number k ≤ |V |.
Decide: Is there a set In ⊆ V such that |In| ≥ k and {v, u} /∈ E for every
u, v ∈ In?

Given a graph G = (V,E), we construct a sound free-choice workflow net NG

in polynomial time as follows:

– For each e = {v, u} ∈ E we add to NG the “gadget net” Ne shown in Fig. 5(a),
and for every node v we add the gadget net Nv shown in Fig. 5(b).

– For every e = {v, u} ∈ E, we add an arc from the place [e, v]4 of Ne to the
transition v1 of Nv, and from [e, u]4 to the transition u1 of Nu.

– The set I of initial places contains the place e0 of Ne for every edge e; the set
O of output places contains the places v2 of the nets Nv.

0e0

2

[e, v]2

2

[e, u]2

0

[e, v]4

0

[e, u]4

[e, v]1

[e, u]1

[e, v]3

[e, u]3

(a) Net Ne

1

v2v1

(b) Net Nv

Fig. 5. Gadgets for the proof of Theorem 3.

It is easy to see that NG is free-choice and sound, and in [15] we show the
result of applying the reduction to a small graph and prove that G has an
independent set of size at least k iff the concurrency threshold of (NG,MI) is at
least 2|E| + k. The intuition is that for each edge e ∈ E, we fire the transition
[e, u]1 where u /∈ In, and for each v ∈ In, we fire the transition v1, thus marking
one of [e, u]2 or [e, v]2 for each edge e ∈ E and the place v2 for each v ∈ In.
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4.3 Approximating the Concurrency Threshold

Recall that the solution of problem (1) over the rationals or the integers is always
an upper bound on the concurrency threshold for any Petri net (Theorem 2).
The question is whether any stronger result holds when the workflows are sound
and free-choice. Since computing the concurrency threshold is NP-complete, we
cannot expect the solution over the rationals, which is computable in polynomial
time, to provide the exact value. However, it could still be the case that the
solution over the integers is always exact. Unfortunately, this is not true, and
we can prove the following results:

Theorem 4. Given a Petri net N , let �N
Q and �N

Z be as in Theorem 2.

(a) There is an acyclic sound free-choice workflow net N such that CT (N) < �N
Q .

(b) There is a sound free-choice workflow net N such that and let CT (N) < �N
Z .

Proof. For (a), we can take the net obtained by adding to the gadget in Fig. 5(a)
a new transition with input places [e, v]4 and [e, u]4, and an output place o with
weight 2. We take e0 as input place. The concurrency threshold is clearly 2,
reached, for example, after firing [e, v]1. However, we have �N

Q = 3, reached by
the rational solution X = (1/2, 1/2, . . . , 1/2). Indeed, the marking equation then
yields the marking M satisfying M([e, v]2) = M([e, u]2) = M(o) = 1/2.

For (b), we can take the workflow net of Fig. 6. It is easy to see that the
concurrency threshold is equal to 1. The marking M that puts one token in each
of the two places with weight 1, and no token in the rest of the places, is not
reachable from MI . However, it is a solution of the marking equation, even when
solved over the integers. Indeed, we have M = MI +N ·X for X=(1,0,1,1,0,0,1).
Therefore, the upper bound derived from the marking equation is 2.

0

i

0

1

1

0

0

0o

t1

t2

t3

t4

t5

t6

t7

Fig. 6. A sound free-choice workflow net for which the linear programming problem
derived from the marking equation does not yield the exact value of the concurrency
bound, even when solved over the integers.
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5 Concurrency Threshold: A Practical Approach

We have implemented a tool1 to compute an upper bound on the concurrency
threshold by constructing a linear program and solving it by calling the mixed-
integer linear programming solver Cbc from the COIN-OR project [14]. Addi-
tionally, fixing a number k, we used the state-of-the art Petri net model checker
LoLA [19] to both establish a lower bound, by querying LoLA for existence of a
reachable marking M with conc(M) ≥ k; and to establish an upper bound, by
querying LoLA if all reachable markings M ′ satisfy conc(M ′) ≤ k.

We evaluated the tool on a set of 1386 workflow nets extracted from a collec-
tion of five libraries of industrial business processes modeled in the IBM Web-
Sphere Business Modeler [9]. For the concurrency threshold, we set D = P \ O.
These nets also have multiple output places, however with a slightly different
semantics for soundness allowing unmarked output places in the final marking.
We applied the transformation described in [12] to ensure all output places will
be marked in the final marking. This transformation preserves soundness and
the concurrency threshold.

All of the 1386 nets in the benchmark libraries are free-choice nets. We
selected the sound nets among them, which are 642. Out of those 642 nets, 409
are marked graphs. Out of the remaining 233 nets, 193 are acyclic and 40 cyclic.
We determined the exact concurrency threshold of all sound nets with LoLA
using state-space exploration. Figure 7 shows the distribution of the threshold.
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Fig. 7. Distribution of the concurrency threshold of the 642 nets analyzed.

On all 642 sound nets, we computed an upper bound on the concurrency
threshold using our tool, both using rational and integer variables. We com-
puted lower and upper bounds using LoLA with the value k = CT (N) of the
concurrency threshold. We report the results for computing the lower and upper
bound separately.

All experiments were performed on the same machine equipped with an Intel
Core i7-6700K CPU and 32 GB of RAM. The results are shown in Table 1.

1 The tool is available from https://gitlab.lrz.de/i7/macaw.

https://gitlab.lrz.de/i7/macaw
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Using the linear program, we were able to compute an upper bound for all
nets in total in less than 7 s, taking at most 30 ms for any single net. LoLA
could compute the lower bound for all nets in 6 s LoLA fails to compute the
upper bound in three cases due to reaching the memory limit of 32 GB. For the
remaining 639 nets, LoLA could compute the upper bound within 7 min in total.

We give a detailed analysis for the 9 nets with a state space of over one
million. For three nets with state space of sizes 109, 1010 and 1017, LoLa reaches
the memory limit. For four nets with state spaces between 106 and 108 and
concurrency threshold above 25, LoLA takes 2, 10, 48 and 308 s each. For two
nets with a state space of 108 and a concurrency threshold of just 11, LoLA can
establish the upper bound in at most 20 ms. The solution of the linear program
can be computed in all 9 cases in less than 30 ms.

Table 1. Statistics on the size and analyis time for the 642 nets analyzed. The times
marked with ∗ exclude the 3 nets where LoLA reaches the memory limit.

Net size Analysis time (sec)

|P | |T | ∣
∣RN

∣
∣ CT (N) �NQ �NZ CT (N) ≥ k CT (N) ≤ k

Median 21 14 16 3 0.01 0.01 0.01 0.01

Mean 28.4 18.6 3 · 1014 3.7 0.01 0.01 0.01 0.58∗

Max 262 284 2 · 1017 66 0.03 0.03 1.18 307.76∗

Comparing the values of the upper bound, first we observed that we obtained
the same value using either rational or integer variables. The time difference
between both was however negligible. Second, quite surprisingly, we noticed that
the upper bound obtained from the linear program is exact in all of our cases,
even for the cyclic ones. Further, it can be computed much faster in several
cases than the upper bound obtained by LoLA and it gives a bound in all cases,
even when the state-space exploration reaches its limit. By combining linear
programming for the upper bound and state-space exploration for the lower
bound, an exact bound can always be computed within a few seconds.

6 Conclusion

Planning sufficient execution resources for a business or production process is
a crucial part of process engineering [3,13,20]. We considered a simple version
of this problem in which resources are uniform and tasks are not interrupt-
ible. We studied the complexity of computing the resource threshold, i.e., the
minimal number of resources allowing an optimal makespan. We showed that
deciding if the resource threshold exceeds a given bound is NP-hard even for
acyclic marked graphs. For this reason, we investigated the complexity of com-
puting the concurrency threshold, an upper bound of the resource threshold
introduced in [4]. Solving a problem left open in [4], we showed that deciding if
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the concurrency threshold exceeds a given bound is NP-hard for general sound
free-choice workflow nets. We then presented a polynomial-time approximation
algorithm, and showed experimentally that it computes the exact value of the
concurrency threshold for all benchmarks of a standard suite of free-choice work-
flow nets.
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Summary

We consider workflow nets annotated with task durations and probabilities to resolve
choices and give them semantics based on Markov decision processes. We then analyze
the problem of computing the expected execution time of a given net. We show that
for confusion-free workflow nets, the expected execution time is independent of the
scheduler, and use a certain earliest-first scheduler to give an algorithm to compute
the expected execution time of a confusion-free workflow net in exponential time.
The algorithm constructs a special Markov chain for this scheduler from the net and
computes the expected time by solving a system of linear equations. We further show
that computing the expected execution time is #P-hard, even if all task durations are
0 or 1 and all probabilities are 0.5 or 1. We evaluate our algorithm on 642 free-choice
workflow nets and a scalable case study. We can compute the expected execution time
of the 642 nets within milliseconds, and within minutes for the case study up until
reaching more than thousand transitions.
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In this paper we introduce Timed Probabilistic Workflow Nets
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the times, and not their sum, the expected time cannot be directly com-
puted using the theory of MDPs with rewards. In our first contribution,
we overcome this obstacle with the help of “earliest-first” schedulers,
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There is recent interest in extending these notations with quantitative infor-
mation, like probabilities, costs, and time. The final goal is the development of
tool support for computing performance metrics, like the average cost or the
average runtime of a business process.

In a former paper we introduced Probabilistic Workflow Nets (PWN), a foun-
dation for the extension of Petri nets with probabilities and rewards [11]. We
presented a polynomial time algorithm for the computation of the expected cost
of free-choice workflow nets, a subclass of PWN of particular interest for the
workflow process community (see e.g. [1,10,13,14]). For example, 1386 of the
1958 nets in the most popular benchmark suite in the literature are free-choice
Workflow Nets [12].

In this paper we introduce Timed PWNs (TPWNs), an extension of PWNs
with time. Following [11], we define a semantics in terms of Markov Decision Pro-
cesses (MDPs), where, loosely speaking, the nondeterminism of the MDP models
absence of information about the order in which concurrent transitions are exe-
cuted. For every scheduler, the semantics assigns to the TPWN an expected
time to termination. Using results of [11], we prove that this expected time is
actually independent of the scheduler, and so that the notion “expected time of
a TPWN” is well defined.

We then proceed to study the problem of computing the expected time of a
sound TPWN (loosely speaking, of a TPWN that terminates successfully with
probability 1). The expected cost and the expected time have a different interplay
with concurrency. The cost of executing two tasks in parallel is the sum of the
costs (cost models e.g. salaries of power consumption), while the execution time
of two parallel tasks is the maximum of their individual execution times. For this
reason, standard reward-based algorithms for MDPs, which assume additivity
of the reward along a path, cannot be applied.

Our solution to this problem uses the fact that the expected time of a TPWN
is independent of the scheduler. We define an “earliest-first” scheduler which,
loosely speaking, resolves the nondeterminism of the MDP by picking transi-
tions with earliest possible firing time. Since at first sight the scheduler needs
infinite memory, its corresponding Markov chain is infinite-state, and so of no
help. However, we show how to construct another finite-state Markov chain with
additive rewards, whose expected reward is equal to the expected time of the
infinite-state chain. This finite-state Markov chain can be exponentially larger
than the TPWN, and so our algorithm has exponential complexity. We prove
that computing the expected time is #P-hard, even for free-choice TPWNs in
which all transitions times are either 1 or 0, and all probabilities are 1 or 1/2. So,
in particular, the existence of a polynomial algorithm implies P = NP.

In the rest of the paper we show that, despite these negative results, our
algorithm behaves well in practice. For all 642 sound free-choice nets of the
benchmark suite of [12], computing the expected time never takes longer than
a few milliseconds. Looking for a more complicated set of examples, we study
a TPWN computed from a set of logs by process mining. We observe that the
computation of the expected time is sensitive to the distribution of the execution
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time of a task. Still, our experiments show that even for complicated distributions
leading to TPWNs with hundreds of transitions and times spanning two orders
of magnitude the expected time can be computed in minutes.

All missing proofs can be found in the Appendix of the full version [19].

2 Preliminaries

We introduce some preliminary definitions. The full version [19] gives more
details.

Workflow Nets. A workflow net is a tuple N = (P, T, F, i, o) where P and T
are disjoint finite sets of places and transitions; F ⊆ (P × T ) ∪ (T × P ) is a
set of arcs; i, o ∈ P are distinguished initial and final places such that i has
no incoming arcs, o has no outgoing arcs, and the graph (P ∪ T, F ∪ {(o, i)}) is
strongly connected. For x ∈ P ∪ T , we write •x for the set {y | (y, x) ∈ F} and
x• for {y | (x, y) ∈ F}. We call •x (resp. x•) the preset (resp. postset) of x. We
extend this notion to sets X ⊆ P ∪ T by •X def= ∪x∈X

•x resp. X• def= ∪x∈Xx•.
The notions of marking, enabled transitions, transition firing, firing sequence,
and reachable marking are defined as usual. The initial marking (resp. final
marking) of a workflow net, denoted by i (resp. o), has one token on place i

(resp. o), and no tokens elsewhere. A firing sequence σ is a run if i σ−→ o, i.e. if
it leads to the final marking. RunN denotes the set of all runs of N.

Soundness and 1-safeness. Well designed workflows should be free of dead-
locks and livelocks. This idea is captured by the notion of soundness [1,2]: A
workflow net is sound if the final marking is reachable from any reachable mark-
ing.1 Further, in this paper we restrict ourselves to 1-safe workflows: A marking
M of a workflow net W is 1-safe if M(p) ≤ 1 for every place p, and W itself is
1-safe if every reachable marking is 1-safe. We identify 1-safe markings M with
the set {p ∈ P | M(p) = 1}.

Independence, concurrency, conflict [22]. Two transitions t1, t2 of a work-
flow net are independent if •t1 ∩ •t2 = ∅, and dependent otherwise. Given a 1-safe
marking M , two transitions are concurrent at M if M enables both of them, and
they are independent, and in conflict at M if M enables both of them, and they
are dependent. Finally, we recall the definition of Mazurkiewicz equivalence.
Let N = (P, T, F, i, o) be a 1-safe workflow net. The relation ≡1⊆ T ∗ × T ∗ is
defined as follows: σ ≡1 τ if there are independent transitions t1, t2 and sequences
σ′, σ′′ ∈ T ∗ such that σ = σ′ t1 t2σ

′′ and τ = σ′ t2 t1σ
′′. Two sequences σ, τ ∈ T ∗

are Mazurkiewicz equivalent if σ ≡ τ , where ≡ is the reflexive and transitive
closure of ≡1. Observe that σ ∈ T ∗ is a firing sequence iff every sequence τ ≡ σ
is a firing sequence.

Confusion-freeness, free-choice workflows. Let t be a transition of a work-
flow net, and let M be a 1-safe marking that enables t. The conflict set of t

1 In [2], which examines many different notions of soundness, this is called easy
soundness.
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at M , denoted C(t,M), is the set of transitions in conflict with t at M . A
set U of transitions is a conflict set of M if there is a transition t such that
U = C(t,M). The conflict sets of M are given by C(M) def= ∪t∈T C(t,M). A
1-safe workflow net is confusion-free if for every reachable marking M and every
transition t enabled at M , every transition u concurrent with t at M satisfies
C(u,M) = C(u,M \ •t) = C(u, (M \ •t) ∪ t•). The following result follows eas-
ily from the definitions (see also [11]):

Lemma 1 [11]. Let N be a 1-safe workflow net. If N is confusion-free then for
every reachable marking M the conflict sets C(M) are a partition of the set of
transitions enabled at M .

A workflow net is free-choice if for every two places p1, p2, if p•
1∩p•

2 
= ∅, then
p•
1 = p•

2. Any free-choice net is confusion-free, and the conflict set of a transition
t enabled at a marking M is given by C(t,M) = (•t)• (see e.g. [11]).

3 Timed Probabilistic Workflow Nets

In [11] we introduced a probabilistic semantics for confusion-free workflow nets.
Intuitively, at every reachable marking a choice between two concurrent tran-
sitions is resolved nondeterministically by a scheduler, while a choice between
two transitions in conflict is resolved probabilistically; the probability of choosing
each transition is proportional to its weight. For example, in the net in Fig. 1a, at
the marking {p1, p3}, the scheduler can choose between the conflict sets {t2, t3}
and {t4}, and if {t2, t3} is chosen, then t2 is chosen with probability 1/5 and t3
with probability 4/5. We extend Probabilistic Workflow Nets by assigning to each
transition t a natural number τ(t) modeling the time it takes for the transition
to fire, once it has been selected.2

Definition 1 (Timed Probabilistic Workflow Nets). A Timed Probabilis-
tic Workflow Net (TPWN) is a tuple W = (N, w, τ) where N = (P, T, F, i, o)
is a 1-safe confusion-free workflow net, w : T → Q>0 is a weight function, and
τ : T → N is a time function that assigns to every transition a duration.

Timed sequences. We assign to each transition sequence σ of W and each place
p a timestamp μ(σ)p through a timestamp function μ : T ∗ → NP

⊥. The set N⊥ is
defined by N⊥

def= {⊥}∪N with ⊥ ≤ x and ⊥+x = ⊥ for all x ∈ N⊥. Intuitively,
if a place p is marked after σ, then μ(σ)p records the “arrival time” of the token
in p, and if p is unmarked, then μ(σ)p = ⊥. When a transition occurs, it removes
all tokens in its preset, and τ(t) time units later, puts tokens into its postset.

2 The semantics of the model can be defined in the same way for both discrete and
continuous time, but, since our results only concern discrete time, we only consider
this case.



158 P. J. Meyer et al.

Formally, we define μ(ε)i
def= 0, μ(ε)p

def= ⊥ for p 
= i, and μ(σt) def= upd(μ(σ), t),
where the update function upd : NP

⊥ × T → NP
⊥ is given by:

upd(x, t)p
def=

⎧
⎪⎨

⎪⎩

maxq∈•t xq + τ(t) if p ∈ t•

⊥ if p ∈ •t \ t•

xp if p 
∈ •t ∪ t•

We then define tm(σ) def= maxp∈P μ(σ)p as the time needed to fire σ. Further
�x�

def= {p ∈ P | xp 
= ⊥} is the marking represented by a timestamp x ∈ NP
⊥.

Example 1. The net in Fig. 1a is a TPWN. Weights are shown in red next to
transitions, and times are written in blue into the transitions. For the sequence
σ1 = t1t3t4t5, we have tm(σ1) = 9, and for σ2 = t1t2t3t4t5, we have tm(σ2) = 10.
Observe that the time taken by the sequences is not equal to the sum of the
durations of the transitions.

Markov Decision Process semantics. A Markov Decision Process (MDP) is
a tuple M = (Q, q0,Steps) where Q is a finite set of states, q0 ∈ Q is the initial
state, and Steps : Q → 2dist(Q) is the probability transition function. Paths of
an MDP, schedulers, and the probability measure of paths compatible with a
scheduler are defined as usual (see the Appendix of the full version [19]).

The semantics of a TPWN W is a Markov Decision Process MDPW . The
states of MDPW are either markings M or pairs (M, t), where t is a transition
enabled at M . The intended meanings of M and (M, t) are “the current marking
is M”, and “the current marking is M , and t has been selected to fire next.”
Intuitively, t is chosen in two steps: first, a conflict set enabled at M is chosen
nondeterministically, and then a transition of this set is chosen at random, with
probability proportional to its weight.

Formally, let W = (N, w, τ) be a TPWN where N = (P, T, F, i, o), let M
be a reachable marking of W enabling at least one transition, and let C be a
conflict set of M . Let w(C) be the sum of the weights of the transitions in C.
The probability distribution PM,C over T is given by PM,C(t) = w(t)

w(C) if t ∈ C

and PM,C(t) = 0 otherwise. Now, let M be the set of 1-safe markings of W, and
let E be the set of pairs (M, t) such that M ∈ M and M enables t. We define
the Markov decision process MDPW = (Q, q0,Steps), where Q = M ∪ E , q0 = i,
the initial marking of W, and Steps(M) is defined for markings of M and E as
follows. For every M ∈ M,

– if M enables no transitions, then Steps(M) contains exactly one distribution,
which assigns probability 1 to M , and 0 to all other states.

– if M enables at least one transition, then Steps(M) contains a distribution λ
for each conflict set C of M . The distribution is defined by: λ(M, t) = PM,C(t)
for every t ∈ C, and λ(s) = 0 for every other state s.

For every (M, t) ∈ E , Steps(M, t) contains one single distribution that assigns
probability 1 to the marking M ′ such that M

t−→ M ′, and probability 0 to every
other state.
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Fig. 1. A TPWN and its associated MDP. (Color figure online)

Example 2. Figure 1b shows a graphical representation of the MDP of the
TPWN in Fig. 1a. Black nodes represent states, white nodes probability distri-
butions. A black node q has a white successor for each probability distribution
in Steps(q). A white node λ has a black successor for each node q such that
λ(q) > 0; the arrow leading to this black successor is labeled with λ(q), unless
λ(q) = 1, in which case there is no label. States (M, t) are abbreviated to t.

Schedulers. Given a TPWN W, a scheduler of MDPW is a function γ : T ∗ →
2T assigning to each firing sequence i

σ−→ M with C(M) 
= ∅ a conflict set
γ(σ) ∈ C(M). A firing sequence i

σ−→ M is compatible with a scheduler γ if for
all partitions σ = σ1tσ2 for some transition t, we have t ∈ γ(σ1).

Example 3. In the TPWN of Fig. 1a, after firing t1 two conflict sets become
concurrently enabled: {t2, t3} and {t4}. A scheduler picks one of the two. If the
scheduler picks {t2, t3} then t2 may occur, and in this case, since firing t2 does
not change the marking, the scheduler chooses again one of {t2, t3} and {t4}. So
there are infinitely many possible schedulers, differing only in how many times
they pick {t2, t3} before picking t4.

Definition 2 ((Expected) Time until a state is reached). Let π be an
infinite path of MDPW , and let M be a reachable marking of W. Observe that M
is a state of MDPW . The time needed to reach M along π, denoted tm(M,π),
is defined as follows: If π does not visit M , then tm(M,π) def= ∞; otherwise,
tm(M,π) def= tm(Σ(π′)), where Σ(π′) is the transition sequence corresponding to
the shortest prefix π′ of π ending at M . Given a scheduler S, the expected time
until reaching M is defined as



160 P. J. Meyer et al.

ETS
W(M) def=

∑

π∈PathsS

tm(M,π) · ProbS(π).

and the expected time ETS
W is defined as ETS

W
def= ETS

W(o), i.e. the expected
time until reaching the final marking.

In [11] we proved a result for Probabilistic Workflow Nets (PWNs) with
rewards, showing that the expected reward of a PWN is independent of the
scheduler (intuitively, this is the case because in a confusion-free Petri net
the scheduler only determines the logical order in which transitions occur, but
not which transitions occur). Despite the fact that, contrary to rewards, the
execution time of a firing sequence is not the sum of the execution times of
its transitions, the proof carries over to the expected time with only minor
modifications.

Theorem 1. Let W be a TPWN.

(1) There exists a value ETW such that for every scheduler S of W, the expected
time ETS

W of W under S is equal to ETW .
(2) ETW is finite iff W is sound.

By this theorem, the expected time ETW can be computed by choosing a
suitable scheduler S, and computing ETS

W .

4 Computation of the Expected Time

We show how to compute the expected time of a TPWN. We fix an appropriate
scheduler, show that it induces a finite-state Markov chain, define an appropriate
reward function for the chain, and prove that the expected time is equal to the
expected reward.

4.1 Earliest-First Scheduler

Consider a firing sequence i
σ−→ M . We define the starting time of a conflict set

C ∈ C(M) as the earliest time at which the transitions of C become enabled.
This occurs after all tokens of •C arrive3, and so the starting time of C is the
maximum of μ(σ)p for p ∈ •C (recall that μ(σ)p is the latest time at which a
token arrives at p while firing σ).

Intuitively, the “earliest-first” scheduler always chooses the conflict set with
the earliest starting time (if there are multiple such conflict sets, the scheduler
chooses any one of them). Formally, recall that a scheduler is a mapping γ : T ∗ →
2T such that for every firing sequence i

σ−→ M , the set γ(σ) is a conflict set of
M . We define the earliest-first scheduler γ by:

γ(σ) def= arg min
C∈C(M)

max
p∈•C

μ(σ)p where M is given by i
σ−→ M.

3 This is proved in Lemma 7 in the Appendix of the full version [19].
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Example 4. Figure 2a shows the Markov chain induced by the “earliest-first”
scheduler defined above in the MDP of Fig. 1b. Initially we have a token at i
with arrival time 0. After firing t1, which takes time 1, we obtain tokens in p1 and
p3 with arrival time 1. In particular, the conflict sets {t2, t3} and {t4} become
enabled at time 1. The scheduler can choose any of them, because they have the
same starting time. Assume it chooses {t2, t3}. The Markov chain now branches
into two transitions, corresponding to firing t2 and t3 with probabilities 1/5 and
4/5, respectively. Consider the branch in which t2 fires. Since t2 starts at time
1 and takes 4 time units, it removes the token from p1 at time 1, and adds a
new token to p1 with arrival time 5; the token at p3 is not affected, and it keeps
its arrival time of 1. So we have μ(t1t2) =

{
p1
5 , p3

1

}
(meaning μ(t1t2)p1 = 5,

μ(t1t2)p3 = 1, and μ(t1t2)p = ⊥ otherwise). Now the conflict sets {t2, t3} and
{t4} are enabled again, but with a difference: while {t4} has been enabled since
time 1, the set {t2, t3} is now enabled since time μ(t1t2)p1 = 5. The scheduler
must now choose {t4}, leading to the marking that puts tokens on p1 and p4
with arrival times μ(t1t2t4)p1 = 5 and μ(t1t2t4)p4 = 6. In the next steps the
scheduler always chooses {t2, t3} until t5 becomes enabled. The final marking o
can be reached after time 9, through t1t3t4t5 with probability 4/5, or with times
10 + 4k for k ∈ N, through t1t2t4t

k
2t3t5 with probability (1/5)k+1 · 4/5 (the times

at which the final marking can be reached are written in blue inside the final
states).

Theorem 2 below shows that the earliest-first scheduler only needs finite mem-
ory, which is not clear from the definition. The construction is similar to those
of [6,15,16]. However, our proof crucially depends on TPWNs being confusion-
free.

Theorem 2. Let H
def= maxt∈T τ(t) be the maximum duration of the transitions

of T , and let [H]⊥
def= {⊥, 0, 1, . . . ,H} ⊆ N⊥. There are functions ν : T ∗ → [H]P⊥

(compare with μ : T ∗ → NP
⊥), f : [H]P⊥ × T → [H]P⊥ and r : [H]P⊥ → N such that

for every σ = t1 . . . tn ∈ T ∗ compatible with γ and for every t ∈ T enabled by σ:

γ(σ) = arg min
C∈C(�ν(σ)�)

max
p∈•C

ν(σ)p (1)

ν(σt) = f(ν(σ), t) (2)

tm(σ) = max
p∈P

ν(σ)p +
n−1∑

k=0

r(ν(t1 . . . tk)) (3)

Observe that, unlike μ, the range of ν is finite. We call it the finite abstraction
of μ. Equation 1 states that γ can be computed directly from the finite abstrac-
tion ν. Equation 2 shows that ν(σt) can be computed from ν(σ) and t. So γ only
needs to remember an element of [H]P⊥, which implies that it only requires finite
memory. Finally, observe that the function r of Eq. 3 has a finite domain, and
so it allows us to use ν to compute the time needed by σ.
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Fig. 2. Two Markov chains for the “earliest-first” scheduler. (Color figure online)

The formal definition of the functions ν, f , and r is given below, together
with the definition of the auxiliary operator 
 : NP

⊥ × N → NP
⊥:

(x � n)p
def
=

{
max(xp − n, 0) if xp �= ⊥
⊥ if xp = ⊥ f(x, t)

def
= upd(x, t) � max

p∈•t
xp

ν(ε)
def
= μ(ε) and ν(σt)

def
= μ(σt) � max

p∈•t
μ(σ)p r(x)

def
= min

C∈C(�x�)
max
p∈•C

xp

Example 5. Figure 2b shows the finite-state Markov chain induced by the
“earliest-first” scheduler computed using the abstraction ν. Consider the fir-
ing sequence t1t3. We have μ(t1t3) =

{
p2
3 , p3

1

}
, i.e. the tokens in p2 and p3 arrive

at times 3 and 1, respectively. Now we compute ν(t1t3), which corresponds to
the local arrival times of the tokens, i.e. the time elapsed since the last transi-
tion starts to fire until the token arrives. Transition t3 starts to fire at time 1,
and so the local arrival times of the tokens in p2 and p3 are 2 and 0, respec-
tively, i.e. we have ν(t1t3) =

{
p2
2 , p3

0

}
. Using these local times we compute the

local starting time of the conflict sets enabled at {p2, p3}. The scheduler always
chooses the conflict set with earliest local starting time. In Fig. 2b the earliest
local starting time of the state reached by firing σ, which is denoted r(ν(σ)), is
written in blue inside the state. The theorem above shows that this scheduler
always chooses the same conflict sets as the one which uses the function μ, and
that the time of a sequence can be obtained by adding the local starting times.
This allows us to consider the earliest local starting time of a state as a reward
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associated to the state; then, the time taken by a sequence is equal to the sum
of the rewards along the corresponding path of the chain. For example, we have
tm(t1t2t4t3t5) = 0 + 1 + 0 + 4 + 2 + 3 = 10.

Finally, let us see how ν(σt) is computed from ν(σ) for σ = t1t2t4 and t = t2.
We have ν(σ) =

{
p1
4 , p4

5

}
, i.e. the local arrival times for the tokens in p1 and p4

are 4 and 5, respectively. Now {t2, t3} is scheduled next, with local starting time
r(ν(σ)) = ν(σ)p1 = 4. If t2 fires, then, since τ(t2) = 4, we first add 4 to the time
of p1, obtaining

{
p1
8 , p4

5

}
. Second, we subtract 4 from all times, to obtain the

time elapsed since t2 started to fire (for local times the origin of time changes
every time a transition fires), yielding the final result ν(σt2) =

{
p1
4 , p4

1

}
.

4.2 Computation in the Probabilistic Case

Given a TPWN and its corresponding MDP, in the previous section we have
defined a finite-state earliest-first scheduler and a reward function of its induced
Markov chain. The reward function has the following property: the execution
time of a firing sequence compatible with the scheduler is equal to the sum of
the rewards of the states visited along it. From the theory of Markov chains with
rewards, it follows that the expected accumulated reward until reaching a certain
state, provided that this state is reached with probability 1, can be computed
by solving a linear equation system. We use this result to compute the expected
time ETW .

Let W be a sound TPWN. For every firing sequence σ compatible with the
earliest-first scheduler γ, the finite-state Markov chain induced by γ contains a
state x = ν(σ) ∈ [H]P⊥. Let Cx be the conflict set scheduled by γ at x. We define
a system of linear equations with variables Xx , one for each state x:

Xx = r(x) +
∑

t∈Cx

w(t)
w(Cx)

· Xf(x,t) if �x� 
= o

Xx = max
p∈P

xp if �x� = o

(4)

The solution of the system is the expected reward of a path leading from i to o.
By the theory of Markov chains with rewards/costs ([4], Chap. 10.5), we have:

Lemma 2. Let W be a sound TPWN. Then the system of linear equations (4)
has a unique solution X, and ETW = Xν(ε).

Theorem 3. Let W be a TPWN. Then ETW is either ∞ or a rational number
and can be computed in single exponential time.

Proof. We assume that the input has size n and all times and weights are given
in binary notation. Testing whether W is sound can be done by exploration of
the state space of reachable markings in time O(2n). If W is unsound, we have
ETW = ∞.

Now assume that W is sound. By Lemma 2, ETW is the solution to the
linear equation system (4), which is finite and has rational coefficients, so it is a
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rational number. The number of variables |X| of (4) is bounded by the size of
[H]P⊥, and as H = maxt∈T τ(t) we have |X| ≤ (1 + H)|P | ≤ (1 + 2n)n ≤ 2n2+n.

The linear equation system can be solved in time O
(
n2 · |X|3

)
and therefore in

time O(2p(n)) for some polynomial p.

5 Lower Bounds for the Expected Time

We analyze the complexity of computing the expected time of a TPWN.
Botezano et al. show in [5] that deciding if the expected time exceeds a given
bound is NP-hard. However, their reduction produces TPWNs with weights and
times of arbitrary size. An open question is if the expected time can be com-
puted in polynomial time when the times (and weights) must be taken from a
finite set. We prove that this is not the case unless P = NP, even if all times
are 0 or 1, all weights are 1, the workflow net is sound, acyclic and free-choice,
and the size of each conflict set is at most 2 (resulting only in probabilities 1 or
1/2). Further, we show that even computing an ε-approximation is equally hard.
These two results above are a consequence of the main theorem of this section:
computing the expected time is #P-hard [23]. For example, counting the num-
ber of satisfying assignments for a boolean formula (#SAT) is a #P-complete
problem. Therefore a polynomial-time algorithm for a #P-hard problem would
imply P = NP.

The problem used for the reduction is defined on PERT networks [9], in the
specialized form of two-state stochastic PERT networks [17], described below.

Definition 3. A two-state stochastic PERT network is a tuple PN =
(G, s, t,p), where G = (V,E) is a directed acyclic graph with vertices V , rep-
resenting events, and edges E, representing tasks, with a single source vertex s
and sink vertex t, and where the vector p ∈ QE assigns to each edge e ∈ E a
rational probability pe ∈ [0, 1]. We assume that all pe are written in binary.

Each edge e ∈ E of PN defines a random variable Xe with distribution
Pr(Xe = 1) = pe and Pr(Xe = 0) = 1−pe. All Xe are assumed to be independent.
The project duration PD of PN is the length of the longest path in the network

PD(PN) def= max
π∈Π

∑

e∈π

Xe

where Π is the set of paths from vertex s to vertex t. As this defines a random
variable, the expected project duration of PN is then given by E(PD(PN)).

Example 6. Figure 3a shows a small PERT network (without p), where the
project duration depends on the paths Π = {e1e3e6, e1e4e7, e2e5e7}.

The following problem is #P-hard (from [17], using the results from [20]):

Given: A two-state stochastic PERT network PN.
Compute: The expected project duration E(PD(PN)).
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First reduction: 0/1 times, arbitrary weights. We reduce the problem
above to computing the expected time of an acyclic TPWN with 0/1 times but
arbitrary weights. Given a two-state stochastic PERT network PN, we construct
a timed probabilistic workflow net WPN as follows:

– For each edge e = (u, v) ∈ E, add the “gadget net” shown in Fig. 3b. Assign
w(te,0) = 1 − pe, w(te,1) = pe, τ(te,0) = 0, and τ(te,1) = 1.

– For each vertex v ∈ V , add a transition tv with arcs from each [e, v] such that
e = (u, v) ∈ E for some u and arcs to each [v, e] such that e = (v, w) ∈ E for
some w. Assign w(tv) = 1 and τ(tv) = 0.

– Add the place i with an arc to ts and the place o with an arc from tt.

s

v1

v2

v3

v4

t

e1

e2

e3

e4

e5

e6

e7

(a) PERT network PN.

[u, e] [e, v]
0

te,0
pe

1
te,1

pe

(b) Gadget for e = (u, v)
with rational weights pe, pe.

[u, e]

q1 q2 q3

[e, v]

0ae,0

0

be,1

1
ae,1

0

be,2

0

ae,2

0
be,3

1

ae,3

(c) Equivalent gadget for e with
weights 1 for pe = 5/8 = (0.101)2.

i

[s, e1]

[e1, v1]0

te1,0
pe1

1
te1,1

pe1

[s, e2]

[e2, v2]0

te2,0
pe2

1
te2,1

pe2

[v1, e3]

[e3, v3]0

te3,0
pe3

1
te3,1

pe3

[v1, e4]

[e4, v4]0

te4,0
pe4

1
te4,1

pe4

[v1, e5]
[e5, v4]

0

te5,0
pe5

1
te5,1

pe5

[v3, e6]

[e6, t]0

te6,0
pe6

1
te6,1

pe6

[v4, e7] [e7, t]

0

te7,0
pe7

1
te7,1

pe6

o

0
ts

0

tv1

0

tv2

0

tv3

0

tv4

0
tt

(d) Timed probabilistic workflow net WPN.

Fig. 3. A PERT network and its corresponding timed probabilistic workflow net. The
weight p is short for 1 − p. Transitions without annotations have weight 1.

The result of applying this construction to the PERT network from Fig. 3a
is shown in Fig. 3d. It is easy to see that this workflow net is sound, as from
any reachable marking, we can fire enabled transitions corresponding to the
edges and vertices of the PERT network in the topological order of the graph,
eventually firing tt and reaching o. The net is also acyclic and free-choice.

Lemma 3. Let PN be a two-state stochastic PERT network and let WPN be its
corresponding TPWN by the construction above. Then ETWPN

= E(PD(PN)).
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Second reduction: 0/1 times, 0/1 weights. The network constructed this
way already uses times 0 and 1, however the weights still use arbitrary rational
numbers. We now replace the gadget nets from Fig. 3b by equivalent nets where
all transitions have weight 1. The idea is to use the binary encoding of the
probabilities pe, deciding if the time is 0 or 1 by a sequence of coin flips. We
assume that pe =

∑k
i=0 2−ipi for some k ∈ N and pi ∈ {0, 1} for 0 ≤ i ≤ k. The

replacement is shown in Fig. 3c for pe = 5/8 = (0.101)2.

Approximating the expected time is #P-hard. We show that computing
an ε-approximation for ETW is #P-hard [17,20].

Theorem 4. The following problem is #P-hard:

Given: A sound, acyclic and free-choice TPWN W where all transitions
t satisfy w(t) = 1, τ(t) ∈ {0, 1} and |(•t)•| ≤ 2, and an ε > 0.
Compute: A rational r such that r − ε < ETW < r + ε.

6 Experimental Evaluation

We have implemented our algorithm to compute the expected time of a TPWN
as a package of the tool ProM4. It is available via the package manager of the
latest nightly build under the package name WorkflowNetAnalyzer.

We evaluated the algorithm on two different benchmarks. All experiments in
this section were run on the same machine equipped with an Intel Core i7-6700K
CPU and 32 GB of RAM. We measure the actual runtime of the algorithm, split
into construction of the Markov chain and solving the linear equation system,
and exclude the time overhead due to starting ProM and loading the plugin.

6.1 IBM Benchmark

We evaluated the tool on a set of 1386 workflow nets extracted from a collection
of five libraries of industrial business processes modeled in the IBM WebSphere
Business Modeler [12]. All of the 1386 nets in the benchmark libraries are free-
choice and therefore confusion-free. We selected the sound and 1-safe nets among
them, which are 642 nets. Out of these, 409 are marked graphs, i.e. the size of
any conflict set is 1. Out of the remaining 233 nets, 193 are acyclic and 40 cyclic.

As these nets do not come with probabilistic or time information, we anno-
tated transitions with integer weights and times chosen uniformly from different
intervals: (1) w(t) = τ(t) = 1, (2) w(t), τ(t) ∈ [1, 103] and (3) w(t), τ(t) ∈ [1, 106].
For each interval, we annotated the transitions of each net with random weights
and times, and computed the expected time of all 642 nets.

For all intervals, we computed the expected time for any net in less than
50 ms. The analysis time did not differ much for different intervals. The solving
time for the linear equation system is on average 5% of the total analysis time,
4 http://www.promtools.org/.

http://www.promtools.org/
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and at most 68%. The results for the nets with the longest analysis times are
given in Table 1. They show that even for nets with a huge state space, thanks
to the earliest-first scheduler, only a small number of reachable markings is
explored.

Table 1. Analysis times and size of the state space |X | for the 4 nets with the highest
analysis times, given for each of the three intervals [1], [103], [106] of possible times.
Here,

∣∣RN
∣∣ denotes the number of reachable markings of the net.

Net Net info & size Analysis time (ms) |X |
cyclic |P | |T | ∣∣RN

∣∣ [1] [103] [106] [1] [103] [106]

m1.s30 s703 no 264 286 6117 40.3 44.6 43.8 304 347 347

m1.s30 s596 yes 214 230 623 21.6 24.4 23.6 208 232 234

b3.s371 s1986 no 235 101 2 · 1017 16.8 16.4 16.5 101 102 102

b2.s275 s2417 no 103 68 237626 14.2 17.8 15.9 355 460 431

6.2 Process Mining Case Study

As a second benchmark, we evaluated the algorithm on a model of a loan appli-
cation process. We used the data from the BPI Challenge 2017 [8], an event log
containing 31509 cases provided by a financial institute, and took as a model
of the process the final net from the report of the winner of the academic cate-
gory [21], a simple model with high fitness and precision w.r.t. the event log.

i

o

0 h

A Create
Application

1.1 h
W Handle leads

64.8%

35.2%

20.1ms

A Concept
1.4 d

O Create Offer

13%

87%

1.6 d
W Complete application

19.4ms

A Complete

4.3 d
1.5%

O Create Offer

54.6%

40.9%

1.3 d

W Validate
application

9.5 h
W Call incomplete files

93.8%

2 d

A Pending
5.1%

1.3 d
A Denied

1.1%

25.2 d
A Cancelled

3%

Fig. 4. Net from [21] of process for personal loan applications in a financial institute,
annotated with mean waiting times and local trace weights. Black transitions are invis-
ible transitions not appearing in the event log with time 0.
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Table 2. Expected time, analysis time and state space size for the net in Fig. 4 for
various distributions, where memout denotes reaching the memory limit.

Distribution |T | ETW |X | Analysis time

Total Construction Solving

Deterministic 19 24 d 1 h 33 40 ms 18 ms 22 ms

Histogram/12 h 141 24 d 18 h 4054 244 ms 232 ms 12 ms

Histogram/6 h 261 24 d 21 h 15522 2.1 s 1.8 s 0.3 s

Histogram/4 h 375 24 d 22 h 34063 10 s 6 s 4 s

Histogram/2 h 666 24 d 23 h 122785 346 s 52 s 294 s

Histogram/1 h 1117 — 422614 — 12.7 min memout

Using the ProM plugin “Multi-perspective Process Explorer” [18] we anno-
tated each transition with waiting times and each transition in a conflict set
with a local percentage of traces choosing this transition when this conflict set
is enabled. The net with mean times and weights as percentages is displayed in
Fig. 4.

For a first analysis, we simply set the execution time of each transition deter-
ministically to its mean waiting time. However, note that the two transitions
“O Create Offer” and “W Complete application” are executed in parallel, and
therefore the distribution of their execution times influences the total expected
time. Therefore we also annotated these two transitions with a histogram of
possible execution times from each case. Then we split them up into multiple
transitions by grouping the times into buckets of a given interval size, where
each bucket creates a transition with an execution time equal to the beginning
of the interval, and a weight equal to the number of cases with a waiting time
contained in the interval. The times for these transitions range from 6 ms to 31
days. As bucket sizes we chose 12, 6, 4, 2 and 1 hour(s). The net always has 14
places and 15 reachable markings, but a varying number of transitions depend-
ing on the chosen bucket size. For the net with the mean as the deterministic
time and for the nets with histograms for each bucket size, we then analyzed the
expected execution time using our algorithm.

The results are given in Table 2. They show that using the complete distri-
bution of times instead of only the mean can lead to much more precise results.
When the linear equation system becomes very large, the solver time dominates
the construction time of the system. This may be because we chose to use an
exact solver for sparse linear equation systems. In the future, this could possibly
be improved by using an approximative iterative solver.

7 Conclusion

We have shown that computing the expected time to termination of a proba-
bilistic workflow net in which transition firings have deterministic durations is
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#P-hard. This is the case even if the net is free-choice, and both probabilities
and times can be written down with a constant number of bits. So, surprisingly,
computing the expected time is much harder than computing the expected cost,
for which there is a polynomial algorithm [11].

We have also presented an exponential algorithm for computing the expected
time based on earliest-first schedulers. Its performance depends crucially on the
maximal size of conflict sets that can be concurrently enabled. In the most
popular suite of industrial benchmarks this number turns out to be small. So,
very satisfactorily, the expected time of any of these benchmarks, some of which
have hundreds of transitions, can still be computed in milliseconds.

Acknowledgements. We thank Hagen Völzer for input on the implementation and
choice of benchmarks.
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large Petri nets we are faster than other tools, and the invariants generated by our tool
are often orders of magnitude smaller than those constructed by other tools.
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Abstract. Model checkers based on Petri net coverability have been
used successfully in recent years to verify safety properties of concurrent
shared-memory or asynchronous message-passing software. We revisit a
constraint approach to coverability based on classical Petri net analysis
techniques. We show how to utilize an SMT solver to implement the
constraint approach, and additionally, to generate an inductive invari-
ant from a safety proof. We empirically evaluate our procedure on a
large set of existing Petri net benchmarks. Even though our technique is
incomplete, it can quickly discharge most of the safe instances. Addition-
ally, the inductive invariants computed are usually orders of magnitude
smaller than those produced by existing solvers.

1 Introduction

In recent years many papers have proposed and developed techniques for the
verification of concurrent software [10,6,1,11,4]. In particular, model checkers
based on Petri net coverability have been successfully applied. Petri nets are a
simple and natural automata-like model for concurrent systems, and can model
certain programs with an unbounded number of threads or thread creation. In a
nutshell, the places of the net correspond to program locations, and the number
of tokens in a place models the number of threads that are currently at that
location. This point was first observed in [9], and later revisited in [3] and, more
implicitly, in [10,6].

The problem whether at least one thread can reach a given program location
(modelling some kind of error), naturally reduces to the coverability problem for
Petri nets: given a net N and a marking M , decide whether some reachable
marking of N covers M , i.e., puts at least as many tokens as M on each place.
While the decidability and EXPSPACE-completeness of the coverability problem
were settled long ago [12,17], new algorithmic ideas have been developed in recent
years [8,7,21,11,13]. The techniques are based on forward or backward state-space
exploration, which is accelerated in a number of ways in order to cope with the
possibly infinite number of states.

In this paper we revisit an approach to the coverability problem based on
classical Petri net analysis techniques: the marking equation and traps [16,18].
The marking equation is a system of linear constraints that can be easily derived
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from the net, and whose set of solutions overapproximates the set of reachable
markings. This system can be supplemented with linear constraints specifying a
set of unsafe markings, and solved using standard linear or integer programming.
If the constraints are infeasible, then all reachable markings are safe. If not,
then one can try different aproaches. In [5] a solution of the constraints is used
to derive an additional constraint in the shape of a trap: a set of places that,
loosely speaking, once marked cannot be “emptied”; the process can be iterated.
More recently, in [22], Wimmel and Wolf propose to use the solution to guide a
state space exploration searching for an unsafe marking; if the search fails, then
information gathered during it is used to construct an additional constraint.

Constraint-based techniques, while known for a while, have always suffered
from the absence of efficient decision procedures for linear arithmetic together
with Boolean satisfiability. Profiting from recent advances in SMT-solving tech-
nology, we reimplement the technique of [5] on top of the Z3 SMT solver [2], and
apply it to a large collection of benchmarks.

The technique is theoretically incomplete, i.e., the set of linear constraints
derived from the marking equation and traps may be feasible even if all reach-
able markings are safe. Our first and surprising finding is that, despite this fact,
the technique is powerful enough to prove safety of 96 out of a total of 115 safe
benchmarks gathered from current research papers in concurrent software veri-
fication. In contrast, three different state-of-the-art tools for coverability proved
only 61, 51, or 33 of these 115 cases! Moreover, and possibly due to the char-
acteristics of the application domain, even the simplest version of the technique
—based on the marking equation— is successful in 84 cases.

As a second contribution, and inspired by work on interpolation, we show that
a dual version of the classical set of constraints, equivalent in expressive power,
can be used not only to check safety, but to produce an inductive invariant. While
some existing solvers based on state-space exploration can also produce such
invariants, we show that inductive invariants obtained through our technique
are usually orders of magnitude smaller. Additionally, while we can use the SMT
solver iteratively to minimize the invariant, the tool almost always provides a
minimal one at the first attempt.

Related Work. Our starting point was the work of Esparza and Melzer on ex-
tending the marking equation with trap conditions to gain a stronger method for
proving safety of Petri nets [5]. We combined the constraint-based approach there
with modern SMT solvers. Their focus on (integer) linear programming tools of
the time enforced some limitations. First, while traps are naturally encoded us-
ing Boolean variables, [5] encoded traps and the marking equation together into
a set of linear constraints. This encoding came at a practical cost: the encoding
required (roughly) n × m constraints for a Petri net with n places and m transi-
tions, whereas the natural Boolean encoding requires m constraints. Moreover,
(I)LP solvers were not effective in searching large Boolean state spaces; our use
of modern SAT techniques alleviates this problem. Second, (I)LP solvers used by
[5] did not handle strict inequalities. Hence, the authors used additional tricks,
such as posing the problem that includes a strict inequality as a minimization
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p1:
p2:
p3:

procedure Process 1
begin

bit1 := false
while true do

bit1 := true
while bit2 do skip od
(∗ critical section ∗)
bit1 := false

od
end

q1:
q2:
q3:
q4:

q5:

procedure Process 2
begin

bit2 := false
while true do

bit2 := true
if bit1 then

bit2 := false
while bit1 do skip od
goto q1

fi
(∗ critical section ∗)
bit2 := false

od
end

Fig. 1. Lamport’s 1-bit algorithm for mutual exclusion [14]

problem, with the goal of minimizing the involved expression, and testing if the
minimal value equaled zero. Unfortunately, this trick led to numerical instabili-
ties. All of these concerns vanish by using an SMT solver.

The marking equation is also the starting point of [22], but the strategies
of this approach and ours are orthogonal: while we use the solutions of the
marking equation to derive new constraints, [22] uses them to guide state space
explorations that search for unsafe markings; new constraints are generated only
if the searches fail.

In contrast to other recent techniques for coverability [7,11,13], our technique
and the one of [22] are incomplete. However, in [22] Wimmel and Wolf obtain
very good results for business process benchmarks, and in this paper we empir-
ically demonstrate that our technique is effective for safe software verification
benchmarks, often beating well-optimized state exploration approaches.

Our technique theoretically applies not only to coverability but also to reach-
ability. It will be interesting to see whether the techniques can effectively verify
reachability questions, e.g., arising from liveness verification [6].

2 Preliminaries

A Petri net is a tuple (P, T, F, m0), where P is a set of places, T is a (disjoint) set
of transitions, F : (P ×T )∪(T ×P ) → {0, 1} is the flow function, and m0 : P → N

is the initial marking. For x ∈ P ∪T , the pre-set is •x = {y ∈ P ∪T | F (y, x) = 1}
and the post-set is x• = {y ∈ P ∪ T | F (x, y) = 1}. We extend the pre- and
post-set to a subset of P ∪T as the union of the pre- and post-sets of its elements.

A marking of a Petri net is a function m : P → N, which describes the number
of tokens m(p) in each place p ∈ P . Assuming an enumeration p1, . . . , pn of P ,
we often identify m and the vector (m(p1), . . . , m(pn)). For a subset P ′ ⊆ P of
places, we write m(P ′) =

∑
p∈P ′ m(p).
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First Process Second Process

p3

s3

p1

s1

p2

s2

t2

q3

t3

q4

t4

q2

t5

q5

t6

q1

t1

bit1

notbit1

notbit2

Fig. 2. Petri net for Lamport’s 1-bit algorithm

A transition t ∈ T is enabled at m iff for all p ∈ •t, we have m(p) ≥ F (p, t). A
transition t enabled at m may fire, yielding a new marking m′ (denoted m

t−→ m′),
where m′(p) = m(p) + F (t, p) − F (p, t). A sequence of transitions, σ = t1t2 . . . tr

is an occurrence sequence of N iff there exist markings m1, . . . , mr such that
m0

t1−→ m1
t2−→ m2 . . .

tr−→ mr. The marking mr is said to be reachable from m0
by the occurrence of σ (denoted m0

σ−→ mr).
A property ϕ is a linear arithmetic constraint over the free variables P . The

property ϕ holds on a marking m iff m |= ϕ. A Petri net N satisfies a property
ϕ (denoted by N |= ϕ) iff for all reachable markings m0

σ−→ m, we have m |= ϕ.
A property ϕ is an invariant of N if it holds for every reachable marking. A
property is inductive if whenever m |= ϕ and m

t−→ m′ for some t ∈ T and
marking m′, we have m′ |= ϕ.

Petri nets are represented graphically as follows: places and transitions are
represented as circles and boxes, respectively. For x, y ∈ P ∪ T , there is an
arc leading from x to y iff F (x, y) = 1. As an example, consider Lamport’s 1-
bit algorithm for mutual exclusion [14], shown in Fig. 1. Fig. 2 shows a Petri
net model for the code. The two grey blocks model the control flow of the two
processes. For instance, the token in place p1 models the current position of
process 1 at program location p1. The three places in the middle of the diagram
model the current values of the variables. For instance, a token in place notbit1
indicates that the variable bit1 is currently set to false. The mutual exclusion
property, which states that the two processes cannot be in the critical section at
the same time, corresponds to the property that places p3 and q5 cannot both
have a token at the same time.

3 Marking Equation

We now recall a well-known method, which we call Safety, that provides a
sufficient condition for a given Petri net N to satisfy a property ϕ by reducing
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the problem to checking satisfiability of a linear arithmetic formula. We illustrate
the method on Lamport’s 1-bit algorithm for mutual exclusion.

Before going into details, we state several conventions. For a Petri net N =
(P, T, F, m0), we introduce a vector of |P | variables M , and a vector of |T |
variables X . The vectors M and X will be used to represent the current marking
and the number of occurrences of transitions in the occurrence sequence leading
to the current marking, respectively. If a place or a transition is given a specific
name, we use the same name for its associated variable. Given a place p, the
intended meaning of a constraint like p ≥ 3 is “at the current marking place
p must have at least 3 tokens.” Given a transition t, the intended meaning of
a constraint like t ≤ 2 is “in the occurrence sequence leading to the current
marking, transition t must fire at most twice.”

The key idea of the Safety method lies in the marking equation:

M = m0 + CX ,

where the incidence matrix C is a |P | × |T | matrix given by

C(p, t) = F (t, p) − F (p, t) .

For each place p, the marking equation contains a constraint that formulates a
simple token conservation law: the number of tokens in p at the current marking
is equal to the initial number of tokens m0(p), plus the number of tokens added by
the input transitions of p, minus the number of tokens removed by the output
transitions. So, for instance, in Lamport’s algorithm the constraint for place
notbit1 is:

notbit1 = 1 + s3 + t5 + t4 − s1 − t4 − t5 = 1 + s3 − s1 .

We equip the marking equation with the non-negativity conditions, modeling
that the number of tokens in a place, or the number of occurrences of a transition
in an occurrence sequence cannot become negative. All together, we get the
following set of marking constraints:

C(P, T, F, m0) ::

⎧
⎪⎨

⎪⎩

M = m0 + CX marking equation
M ≥ 0 non-negativity conditions for places
X ≥ 0 non-negativity conditions for transitions

Method Safety for checking that a property ϕ is invariant for a Petri net
N = (P, T, F, m0) consists of checking for satisfiability of the constraints

C(P, T, F, m0) ∧ ¬ϕ(M) . (1)

If the constraints are unsatisfiable, then no reachable marking violates ϕ. To see
that this is true, consider the converse: If there exists an occurrence sequence
m0

σ−→ m leading to a marking m that violates the property, then we can con-
struct a valuation of the variables that assigns m(p) to M(p) for each place
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p, and the number of occurrences of t in σ to X(t) for each transition t. This
valuation then satisfies the constraints.

The method does not work in the other direction: If the constraints (1) are
satisfiable, we cannot conclude that the property ϕ is violated.

As an example, consider the Lamport’s algorithm. Safety successfully proves
the property “if process 1 is at location p3, then bit1 = true” by showing that
C(P, T, F, m0) ∧ p3 ≥ 1 ∧ bit1 	= 1 is unsatisfiable. However, if we apply it to the
mutual exclusion property, i.e., check for satisfiability of C(P, T, F, m0) ∧ p3 ≥
1∧q5 ≥ 1, we obtain a solution, but we cannot conclude that the mutual exclusion
property does not hold.

Note that the marking constraints (1) are interpreted over integer variables.
As usual in program analysis, one can solve the constraints over rationals to
get an approximation of the method. Solving the constraints over rationals will
become useful in Section 5.

4 Refining Marking Equations with Traps

Esparza and Melzer [5] strengthened Safety with additional trap constraints.
A trap of a Petri net N = (P, T, F, m0) is a subset of places Q ⊆ P satisfying
the following condition for every transition t ∈ T : if t is an output transition of
at least one place of Q, then it is also an input transition of at least one place
of Q. Equivalently, Q is a trap if its set of output transitions is included in its
set of input transitions, i.e., if Q• ⊆ •Q. Here we present a variant of Esparza’s
and Melzer’s method that encodes traps using Boolean constraints. We call the
new method SafetyByRefinement.

The method SafetyByRefinement is based on the following observation
about traps. If Q is a trap and a marking m marks Q, i.e., m(p) > 0 for some
p ∈ Q, then for each occurrence sequence σ and marking m′ such that m

σ−→ m′,
we also have m′(p′) > 0 for some p′ ∈ Q. Indeed, by the trap property any
transition removing tokens from places of Q also adds at least one token to some
place of Q. So, while m′(Q) can be smaller than m(Q), it can never become 0.
In particular, if a trap Q satisfies m0(Q) > 0, then every reachable marking m
satisfies m(Q) > 0 as well.

Since the above property must hold for any trap, we can restrict the con-
straints from method Safety as follows. First, we add an additional vector B
of |P | Boolean variables. These variables are used to encode traps: for p ∈ P ,
B(p) is true if and only if place p is part of the trap. The following constraint
specifies that B encodes a trap:

trap(B) ::=
∧

t∈T

⎡

⎣
∨

p∈•t

B(p) =⇒
∨

p∈t•
B(p)

⎤

⎦ .

Next, we define a predicate mark(m, B) that specifies marking m marks a trap:

mark(m, B) ::=
∨

p∈P

B(p) ∧ (m(p) > 0) .
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Finally, we conjoin the following constraint to the constraints (1):

∀B : trap(B) ∧ mark(m0, B) =⇒ mark(M, B) . (2)

This constraint conceptually enumerates over all subsets of places, and ensures
that if the subset forms a trap, and this trap is marked by the initial marking,
then it is also marked by the current marking. Thus, markings violating the trap
constraint are eliminated.

While the above constraint provides a refinement of the Safety method, it
requires the SMT solver to reason with universally quantified variables. Instead
of directly using universal quantifiers, we use a counterexample-guided heuristic
[5,20] of adding trap constraints one-at-a-time in the following way.

If the set of constraints constructed so far (for instance, the set given by the
method Safety) is feasible, the SMT solver delivers a model that assigns values
to each place, corresponding to a potentially reachable marking m. We search
for a trap Pm that violates the trap condition (2) for this specific model m. If
we find such a trap, then we know that m is unreachable, and we can add the
constraint

∑
p∈Pm

M(p) ≥ 1 to exclude all markings that violate this specific
trap condition.

The search for Pm is a pure Boolean satisfiability question. We ask for an
assignment to

trap(B) ∧ mark(m0, B) ∧ ¬mark(m, B) (3)

Notice that for a fixed marking m, the predicate mark(m, B) simplifies to a
Boolean predicate. Given a satisfying assignment b for this formula, we add the
constraint

∑

p∈P
b(p)=true

M(p) ≥ 1 (4)

to the current set of constraints to rule out solutions that do not satisfy this
trap constraint. We iteratively add such constraints until either the constraints
are unsatisfiable or the Boolean constraints (3) are unsatisfiable (i.e., no traps
are found to invalidate the current solution).

This yields the method SafetyByRefinement. It is still not complete [5]:
one can find nets and unreachable markings that mark all traps of the net.

Let us apply the algorithm SafetyByRefinement to Lamport’s algorithm
and the mutual exclusion property. Recall that the markings violating the prop-
erty are those satisfying p3 ≥ 1 and q5 ≥ 1. Safety yields a satisfying assign-
ment with p3 = bit1 = q5 = 1, and p = 0 for all other places p, which corresponds
to a potentially reachable marking m. We search for a trap marked at m0 but
not at m. To simplify the notation, we simply write p instead of B(p). The
constraints derived from the trap property are:
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p1 ∨ notbit1 =⇒ p2 ∨ bit1
p2 ∨ notbit2 =⇒ p3 ∨ notbit2
p3 ∨ bit1 =⇒ p1 ∨ notbit1

q1 ∨ notbit2 =⇒ q2
q2 ∨ bit1 =⇒ q3 ∨ bit1
q3 =⇒ q4 ∨ notbit2
q4 ∨ notbit1 =⇒ q1 ∨ notbit1
q2 ∨ notbit1 =⇒ q5 ∨ notbit1
q5 =⇒ q1 ∨ notbit2

and the following constraints model that at least one of the places initially
marked belongs to the trap, but none of the places marked at the satisfying
assigment do:

p1 ∨ q1 ∨ notbit1 ∨ notbit2 ¬p3 ∧ ¬q5 ∧ ¬bit1

For this set of constraints we find the satisfying assignment that sets p2, notbit1,
notbit2, q2, q3 to true and all other variables to false. So this set of places is an ini-
tially marked trap, and so every reachable marking should put at least one token
in it. Hence we can add the refinement constraint to marking constraints (1):

p2 + q2 + q3 + notbit1 + notbit2 ≥ 1 .

On running the SMT solver again, we find the constraints are unsatisfiable,
proving that the mutual exclusion property holds.

5 Constructing Invariants from Constraints

We now show that one can compute inductive invariants from the method Safe-
tyByRefinement. That is, given a Petri net N = (P, T, F, m0) and a property
ϕ, if SafetyByRefinement (over the rationals) can prove N satisfies ϕ, then
in fact we can construct a linear inductive invariant that contains m0 and does
not intersect ¬ϕ. We call the new method InvariantByRefinement.

The key observation is to use a constraint system dual to the constraint sys-
tem for SafetyByRefinement. We assume ϕ is a co-linear property, i.e., the
negation ¬ϕ is represented as the constraints:

¬ϕ :: AM ≥ b

where A is a k ×|P | matrix, and b is a k ×1 vector, for some k ≥ 1. Furthermore,
we assume that there are l ≥ 0 trap constraints (4), which are collected in matrix
form DM ≥ 1, for an l × |P | matrix D, and an l × 1 vector of ones, denoted
simply by 1. Consider the following primal system S:

C(P, T, F, m0) marking constraints
AM ≥ b negation of property ϕ

DM ≥ 1 trap constraints

By transforming S into a suitable form and applying Farkas’ Lemma [19], we
get the following theorem.
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Theorem 1. The primal system S is unsatisfiable over the rational numbers if
and only if the following dual system S′ is satisfiable over the rational numbers.

λC ≤ 0 inductivity constraint
λm0 < Y1b + Y21 safety constraint

λ ≥ Y1A + Y2D property constraint
Y1, Y2 ≥ 0 non-negativity constraint

Here λ, Y1 and Y2 are vectors of variables of size 1 × |P |, 1 × k and 1 × l,
respectively.

If the primal system S is unsatisfiable, we can take λ from a solution to S′

and construct an inductive invariant:

I(M) ::= DM ≥ 1 ∧ λM ≤ λm0 .

In order to show that I(M) is an invariant, recall that for every reachable
marking m there is a solution to m = m0 + CX , with X ≥ 0. Multiplying by λ
and taking into account that λ is a solution to S′, we get

λm = λm0 + λCX ≤ λm0 .

Furthermore, every reachable marking satisfies the trap constraints DM ≥ 1.
On the other hand, a marking m that violates the property ϕ does not satisfy
I(M), for it either does not satisfy DM ≥ 1, or both Am ≥ b and Dm ≥ 1 hold.
But in the latter case we have

λm ≥ (Y1A + Y2D)m = Y1Am + Y2Dm ≥ Y1b + Y21 > λm0 .

In order to show that I(M) is inductive, we have to show that if I(m) holds
for some marking m (reachable or not), and m

t−→ m′ for some transition t, then
I(m′) holds as well. Indeed, in this case we have m′ = m + Cet, where et is the
unit vector with 1 in the t-th component and 0 elsewhere. Hence

λm′ = λ(m + Cet) = λm + λCet ≤ λm ≤ λm0 ,

and furthermore, as m satisfies the trap constraints, m′ also satisfies them.
So far, we have assumed that property ϕ is a co-linear property. However, it is

easy to extend the method to the case when ϕ = ϕ1∧. . .∧ϕr , and each ϕi is a co-
linear property. In that case, for each ϕi we invoke InvariantByRefinement
to obtain an inductive invariant Ii. One can easily verify that I1 ∧ . . . ∧ Ir is an
inductive invariant with respect to ϕ.

Minimizing invariants. Note that the system S′ from Theorem 1 may in general
have many solutions, and each solution yields an inductive invariant. Solutions
where λ has fewer non-zero components yield shorter inductive invariants I(M),
assuming terms in I(M) with coefficient zero are left out. We can force the



612 J. Esparza et al.

Inductivity constraints

− p1 + p2 + bit1 − notbit1 ≤ 0
− p2 + p3 ≤ 0

p1 − p3 − bit1 + notbit1 ≤ 0

− q1 + q2 − notbit2 ≤ 0
− q2 + q3 ≤ 0

− q3 + q4 + notbit2 ≤ 0
q1 − q4 ≤ 0

− q2 + q5 ≤ 0
q1 − q5 + notbit2 ≤ 0

Safety constraint

p1 + q1 + notbit1 + notbit2 < target1 + target2 + trap1

Property constraints

p1 ≥ 0 q1 ≥ 0 q4 ≥ 0 bit1 ≥ 0
p2 ≥ trap1 q2 ≥ trap1 q5 ≥ target2 notbit1 ≥ trap1

p3 ≥ target1 q3 ≥ trap1 notbit2 ≥ trap1

Non-negativity constraints

target1, target2, trap1 ≥ 0

Fig. 3. System of constraints S ′ for Lamport’s algorithm and the mutual exclusion
property. Here, λ = (p1 p2 p3 q1 q2 q3 q4 q5 bit1 notbit1 notbit2), Y1 = (target1 target2)
and Y2 = (trap1).

number of non-zero components to be at most K by introducing a vector of |P |
variables Z, adding for each p ∈ P constraints

λ(p) > 0 =⇒ Z(p) = 1
λ(p) = 0 =⇒ Z(p) = 0

and adding a constraint
∑

p∈P Z(p) ≤ K. By varying K, we can find a solution
with the smallest number of non-zero components in λ.

Example. Consider again Lamport’s algorithm and the mutual exclusion prop-
erty. Recall that the negation of the property for this example is p3 ≥ 1∧q5 ≥ 1,
and the trap constraint is p2 + q2 + q3 + notbit1 + notbit2 ≥ 1. Fig. 3 shows the
system of constraints S′ for this example. A possible satisfying assignment sets
q1, q4, and bit1 to 0, p2, p3, and target1 to 2, and all other variables to 1. The
corresponding inductive invariant is:

I(M) ::= (p2 + q2 + q3 + notbit1 + notbit2 ≥ 1) ∧
(p1 + 2p2 + 2p3 + notbit1 + notbit2 + q2 + q3 + q5 ≤ 3) .

If we add constraints that bound the number of non-zero components in λ to
7, the SMT solver finds a new solution, setting p2, p3, notbit1, notbit2, q2, q3,
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target1, target2, and trap1 to 1, and all other variables to 0. The corresponding
inductive invariant for this solution is

I ′(M) ::= (p2 + q2 + notbit1 + notbit2 + q3 ≥ 1) ∧
(p2 + p3 + notbit1 + notbit2 + q2 + q3 + q5 ≤ 2) .

6 Experimental Evaluation
We implemented our algorithms in a tool called Petrinizer. Petrinizer is imple-
mented as a script on top of the Z3 SMT solver [2]. It takes as input coverability
problem instances encoded in the MIST input format1, and it runs one of the se-
lected methods. We implemented all possible combinations of methods: with and
without trap refinement, with rational and integer arithmetic, with and without
invariant construction, with and without invariant minimization.

Our evaluation had two main goals. First, as the underlying methods are
incomplete, we wanted to measure their success rate on standard benchmark
sets. As a subgoal, we wanted to investigate the usefulness and necessity of
traps, the benefit of using integer arithmetic over rational arithmetic, and the
sizes of the constructed invariants. The second goal was to measure Petrinizer’s
performance and to compare it with state-of-the-art tools: IIC [13], BFC2 [11],
and MIST3.

Benchmarks. For the inputs used in the experiments, we collected coverability
problem instances originating from various sources. The collection contains 178
examples, out of which 115 are safe, and is organized into five example suites. The
first suite is a collection of Petri net examples from the MIST toolkit. This suite
contains a mixture of 29 examples, both safe and unsafe. It contains both real-
world and artificially created examples. The second suite consists of 46 Petri nets
that were used in the evaluation of BFC [11]. They originate from the analysis
of concurrent C programs, and they are mostly unsafe. The third and the fourth
suites come from the provenance analysis of messages in a medical system and a
bug-tracking system [15]. The medical suite contains 12 safe examples, and the
bug-tracking suite contains 41 examples, all safe except for one. The fifth suite
contains 50 examples that come from the analysis of Erlang programs [4]. We
generated them ourselves using an Erlang verification tool called Soter [4], from
the example programs found on Soter’s website4. Out of 50 examples in this
suite, 38 are safe. This suite also contains the largest example in the collection,
with 66,950 places and 213,635 transitions. For our evaluation, only the 115 safe
instances are interesting.
1 https://github.com/pierreganty/mist
2 The most recent version of BFC at the time of writing the paper was 2.0. However,

we noticed it sometimes reports inconsistent results, so we used version 1.0 instead.
The tool can be obtained at http://www.cprover.org/bfc/ .

3 MIST consists of several methods, most of them based on EEC [8]. We used the
abstraction refinement method that tries to minimize the number of places in the
Petri net [7].

4 http://mjolnir.cs.ox.ac.uk/soter/
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Table 1. Safe examples that were successfully proved safe. Symbols Q and Z denote
rational and integer numbers.

Suite Safety/Q Safety/Z Ref./Q Ref./Z IIC BFC MIST Total
MIST 14 14 20 20 23 21 19 23
BFC 2 2 2 2 2 2 2 2
Medical 4 4 4 4 9 12 10 12
Bug-tracking 32 32 32 32 0 0 0 40
Erlang 32 32 36 38 17 26 2 38
Total 84 84 94 96 51 61 33 115

Rate of success on safe examples. As shown in Table 1, even with the weakest of
the methods —safety based on marking equation over rationals— Petrinizer is
able to prove safety for 84 out of 115 examples. Switching to integer arithmetic
does not help: the number of examples proved safe remains 84. Using refinement
via traps, Petrinizer proves safety for 94 examples. Switching to integer arith-
metic in this case helps: Another two examples are proved safe, totaling 96 out
of 115 examples. In contrast to these numbers, the most successful existing tool
turned out to be BFC, proving safety for only 61 examples. Even though the
methods these tools implement are theoretically complete, the tools themselves
are limited by the time and space they can use.

Looking at the results accross different suites, we see that Petrinizer performed
poorest on the medical suite, proving safety for only 4 out of 12 examples. On
the other hand, on the bug-tracking suite, which was completely intractable for
other tools, it proved safety for 32 out of 40 examples. Furthermore, using traps
and integer arithmetic, Petrinizer successfuly proved safety for all safe Erlang
examples. We find this result particularly surprising, as the original verification
problems for these examples seem non-trivial.

Invariant sizes. We measure the size of inductive invariants produced by Pe-
trinizer without minimization. We took the number of atomic (non-zero) terms
appearing in an invariant’s linear expressions as a measure of its size. When
we relate sizes of invariants to number of places in the corresponding Petri net
(top left graph in Fig. 4), we see that invariants are usually very succinct. As
an example, the largest invariant had 814 atomic terms, and the corresponding
Petri net, coming from the Erlang suite, had 4,763 places. For the largest Petri
net, with 66,950 places, the constructed invariant had 339 atomic terms.

The added benefit of minimization is negligible: there are only four examples
where the invariant was reduced, and the reduction was about 2-3%. Thus,
invariant minimization does not pay off for these examples.

We also compared sizes of constructed invariants with sizes of invariants pro-
duced by IIC [13]. IIC’s invariants are expressed as CNF formulas over atoms of
the form x < a, for a variable x and a constant a. As a measure of size for these
formulas, we took the number of atoms they contain. As the bottom left graph
in Fig. 4 shows, when compared to IIC’s invariants, Petrinizer’s invariants are
never larger, and are often orders of magnitude smaller.
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Fig. 4. Graph on the top left shows a relation of sizes of constructed invariants to
the number of places in the corresponding Petri nets. Graph on the bottom left shows
comparison in size of invariants produced by Petrinizer and IIC. Axes represent size
on a logarithmic scale. Each dot represents one example. The four graphs in the center
and on the right show time overhead of integer arithmetic, trap refinement, invariant
construction and invariant minimization. Axes represent time in seconds on a loga-
rithmic scale. Each dot represents execution time on one example. The graph on the
top right only shows examples for which at least one trap appeared in the refinement.
Similarly, the bottom center and bottom right graphs only show safe examples.

Performance. To ensure accuracy and fairness, all experiments were performed
on identical machines, equipped with Intel Xeon 2.66 GHz CPUs and 48 GB of
memory, running Linux 3.2.48.1 in 64-bit mode. Execution time was limited to
100,000 seconds (27 hours, 46 minutes and 40 seconds), and memory to 2 GB.

Due to dissimilarities between the compared tools, selecting a fair measure of
time was non-trivial. On the one hand, as Petrinizer communicates with Z3 via
temporary files, it spends a considerable amount of time doing I/O operations.
On the other hand, as BFC performs both a forward and a backward search,
it naturally splits the work into two threads, and runs them in parallel on two
CPU cores. In both cases, the actual elapsed time does not quite correspond to
the amount of computational effort we wanted to measure. Therefore, for the
measure of time we selected the user time, as reported by the time utility on
Linux. User time measures the total CPU time spent executing the process and
its children. In the case of Petrinizer, it excludes the I/O overhead, and in the
case of BFC, it includes total CPU time spent on both CPU cores.

We report mean and median times measured for each tool in Table 2.
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Table 2. Mean and median times in seconds for each tool. We report times for safe
examples, as well as for all examples. Memory-out cases were set to the timeout value
of 100,000 s. Symbols Q and Z denote rational and integer numbers.

Method/tool Safety/Q Safety/Z Ref./Q Ref./Z Safety+inv. Safety+inv.min.
Mean (safe) 69.26 70.20 69.36 72.20 168.46 203.05
Median (safe) 2.45 2.23 2.35 3.81 3.70 4.03
Mean (all) 45.17 46.04 45.52 47.70 109.23 131.58
Median (all) 0.44 0.43 0.90 0.93 0.66 1.00

Method/tool Ref.+inv. Ref.+inv.min. IIC BFC MIST
Mean (safe) 228.88 275.12 56954.09 47126.12 69196.77
Median (safe) 5.96 6.30 100000.00 1642.43 100000.00
Mean (all) 148.57 178.45 44089.93 31017.80 61586.56
Median (all) 1.37 1.94 138.00 0.77 100000.00

Time overhead of Petrinizer’s methods. Before comparing Petrinizer with other
tools, we analyze time overhead of integer arithmetic, trap refinement, invariant
construction, and invariant minimization. The four graphs in the center and on
the right in Fig. 4 summarize the results. The top central graph shows that the
difference in performance between integer and rational arithmetic is negligible.

The top right graph in Fig. 4 shows that traps incur a significant overhead.
This is not too surprising as, each time a trap is found, the main system has
to be updated with a new trap constraint and solved again. Thus the actual
overhead depends on the number of traps that appear during the refinement. In
the experiments, there were 32 examples for refinement with integer arithmetic
where traps appeared at least once. The maximal number of traps in a single
example was 9. In the examples where traps appear once, we see a slowdown of
2-3×. In the extreme cases with 9 traps we see slowdowns of 10-16×.

In the case of invariant construction, as shown on the bottom central graph
in Fig. 4, the overhead is more uniform and predictable. The reason is that
constructing the invariant involves solving the dual form of the main system as
many times as there are disjuncts in the property violation constraint. In most
cases, the property violation constraint has one disjunct. A single example with
many disjuncts, having 8989 of them, appears on the graph as an outlier.

In the case of invariant minimization, as the bottom right graph in Fig. 4
shows, time overhead is quite severe. The underlying data contains examples of
slowdowns of up to 30×.

Comparison with other tools. The six graphs in Fig. 5 show the comparison of
execution times for Petrinizer vs. IIC, BFC, and MIST. In the comparison, we
used the refinement methods, both with and without invariant construction. In
general, we observe that other tools outperform Petrinizer on small examples, an
effect that can be explained by the overhead of starting script interpreters and
Z3. However, on large examples Petrinizer consistently outperforms other tools.
Not only does it finish in all cases within the given time and memory constraints,
it even finishes in under 100 seconds in all but two cases. The two cases are the
large example from the Erlang suite, with 66,950 places and 213,635 transitions
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Fig. 5. Comparison of execution time for Petrinizer vs. IIC, BFC and MIST. Graphs
in the top row show comparison in the case without invariant construction, and graphs
in the bottom row show comparison in the case with invariant construction. Axes
represent time in seconds on a logarithmic scale. Each dot represents execution time
on one example.

and, in the case of invariant construction, the example from the MIST suite,
with 8989 disjuncts in the property violation constraint.

Conclusions. Marking equations and traps are classical techniques in Petri net
theory, but have fallen out of favor in recent times in comparison with state-
space traversal techniques in combination with abstractions or symbolic repre-
sentations. Our experiments demonstrate that, when combined with the power
of a modern SMT solver, these techniques can be surprisingly effective in find-
ing proofs of correctness (inductive invariants) of common benchmark examples
arising out of software verification.

Our results also suggest incorporating these techniques into existing tools as
a cheap preprocessing step. A finer integration with these tools is conceivable,
where a satisfying assignment to a system of constraints is used to guide the
more sophisticated search, similar to [22].
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ABSTRACT
Population protocols are a well establishedmodel of computation by

anonymous, identical finite state agents. A protocol is well-specified

if from every initial configuration, all fair executions of the protocol

reach a common consensus. The central verification question for

population protocols is the well-specification problem: deciding if a

given protocol is well-specified. Esparza et al. have recently shown

that this problem is decidable, but with very high complexity: it

is at least as hard as the Petri net reachability problem, which is

EXPSPACE-hard, and for which only algorithms of non-primitive

recursive complexity are currently known.

In this paper we introduce the class WS
3
of well-specified

strongly-silent protocols and we prove that it is suitable for au-

tomatic verification. More precisely, we show that WS
3
has the

same computational power as general well-specified protocols, and

captures standard protocols from the literature. Moreover, we show

that the membership problem forWS
3
reduces to solving boolean

combinations of linear constraints over N. This allowed us to de-

velop the first software able to automatically prove well-specifica-

tion for all of the infinitely many possible inputs.

CCS CONCEPTS
• Networks → Protocol testing and verification; • Theory of
computation → Logic and verification;

KEYWORDS
population protocols; automated verification; termination

1 INTRODUCTION
Population protocols [1, 2] are a model of distributed computation

by many anonymous finite-state agents. They were initially intro-

duced to model networks of passively mobile sensors [1, 2], but

are now also used to describe chemical reaction networks (see e.g.

[7, 19]).
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In each computation step of a population protocol, a fixed num-

ber of agents are chosen nondeterministically, and their states are

updated according to a joint transition function. Since agents are

anonymous and identical, the global state of a protocol is com-

pletely determined by the number of agents at each local state,

called a configuration. A protocol computes a boolean value b for

a given initial configuration C0 if in all fair executions starting at

C0, all agents eventually agree to b — so, intuitively, population

protocols compute by reaching consensus under a certain fairness

condition. A protocol is well-specified if it computes a value for

each of its infinitely many initial configurations (also called inputs).

The predicate computed by a protocol is the function that assigns

to each input the corresponding consensus value. In a famous se-

ries of papers, Angluin et al. [1, 2] have shown that well-specified

protocols compute exactly the predicates definable in Presburger

arithmetic [1–4].

In this paper we search for efficient algorithms for the well-

specification problem: Given a population protocol, is it well-spe-

cified? This is a question about an infinite family of finite-state

systems. Indeed, for every input the semantics of a protocol is a

finite graph with the reachable configurations as nodes. Deciding

if the protocol reaches consensus for a fixed input only requires to

inspect one of these graphs, and can be done automatically using

a model checker. This approach has been followed in a number of

papers [6, 8, 20, 24], but it only shows well-specification for some

inputs. There has also been work in formalizing well-specification

proofs in interactive theorem provers [10], but this approach is not

automatic: a human prover must first come up with a proof for each

particular protocol.

Recently, the second author, together with other co-authors, has

shown that the well-specification problem is decidable [13]. That

is, there is an algorithm that decides if for all inputs the protocol

stabilizes to a boolean value. The proof uses deep results of the

theory of Petri nets, a model very close to population protocols.

However, the same paper shows that the well-specification problem

is at least as hard as the reachability problem for Petri nets, a

famously difficult problem. More precisely, the problem is known

to be EXPSPACE-hard, and all known algorithms for it have non-

primitive recursive complexity [22]. In particular, there are no stable

implementations of any of these algorithms, and they are considered

impractical for nearly all applications.

For this reason, in this paper we search for a class of well-spe-

cified protocols satisfying three properties:

(a) No loss of expressive power : the class should compute all

Presburger-definable predicates.
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(b) Natural: the class should contain most protocols discussed

in the literature.

(c) Feasible membership problem: membership for the class

should have reasonable complexity.

The classWS of all well-specified protocols obviously satisfies

(a) and (b), but not (c). So we introduce a new class WS
3
, standing

for Well-Specified Strongly Silent protocols. We show that WS
3
still

satisfies (a) and (b), and then prove that the membership problem

forWS
3
is in the complexity class DP; the class of languages L such

that L = L1 ∩ L2 for some languages L1 ∈ NP and L2 ∈ coNP. This
is a dramatic improvement with respect to the EXPSPACE-hardness
of the membership problem for WS.

Our proof that the problem is in DP reduces membership for

WS
3
to checking (un)satisfiability of two systems of boolean combi-

nations of linear constraints over the natural numbers. This allowed

us to implement our decision procedure on top of the constraint

solver Z3 [9], yielding the first software able to automatically prove

well-specification for all inputs. We tested our implementation on

the families of protocols studied in [6, 8, 20, 24]. These papers prove

well-specification for some inputs of protocols with up to 9 states

and 28 transitions. Our approach proves well-specification for all

inputs of protocols with up to 20 states in less than one second, and

protocols with 70 states and 2500 transitions in less than one hour.

In particular, we can automatically prove well-specification for all

inputs in less time than previous tools needed to check one single

large input.

The verification problem for population protocols naturally di-

vides into two parts: checking that a given protocol is well speci-

fied, and checking that a given well-specified protocol computes

the desired predicate. While in this paper we are concerned with

well-specification, our implementation is already able to solve the

second problem for all the families of protocols described above.

This is achieved by adding to the second system of constraints used

to check well-specification further linear constraints describing the

sets of input configurations for which the protocol should return

true or false. An extension of the software that, given a protocol

and an arbitrary Presburger predicate, checks whether the protocol

computes the predicate, requires to solve implementation problems

related to Presburger arithmetic, and is left for future research.

The paper is organized as follows. Section 2 contains basic def-

initions. Section 3 introduces an intermediate classWS
2
of silent

well-specified protocols, and shows that its membership problem is

still as hard as for WS. In Section 4, we characterize WS
2
in terms

of two properties which are then strengthened to define our new

class WS
3
. We then show that the properties defining WS

3
can be

tested in NP and coNP, and so that membership forWS
3
is in DP.

Section 5 proves that WS
3
-protocols compute all Presburger predi-

cates. Section 6 reports on our experimental results, and Section 7

presents conclusions.

2 PRELIMINARIES
Multisets. A multiset over a finite set E is a mappingM : E → N.

The set of all multisets over E is denoted NE . For every e ∈ E,M (e )
denotes the number of occurrences of e inM . We sometimes denote

multisets using a set-like notation, e.g. Hf ,д,дI is the multiset M
such thatM ( f ) = 1,M (д) = 2 andM (e ) = 0 for every e ∈ E \ { f ,д}.

The support of M ∈ NE is JMK def

= {e ∈ E : M (e ) > 0}. The size

of M ∈ NE is |M |
def

=
∑
e ∈E M (e ). Addition and comparison are

extended to multisets componentwise, i.e. (M +M ′) (e )
def

= M (e ) +

M ′(e ) for every e ∈ E, and M ≤ M ′
def

⇐⇒ M (e ) ≤ M (e ) for

every e ∈ E. We define multiset difference as (M � M ′) (e )
def

=

max(M (e )−M ′(e ), 0) for every e ∈ E. The emptymultiset is denoted

0, and for every e ∈ E we write e
def

= HeI.

Population protocols. A population P over a finite set E is a multi-

set P ∈ NE such that |P | ≥ 2. The set of all populations over E is de-

noted by Pop(E). A population protocol is a tuple P = (Q,T , Σ, I ,O )
where

• Q is a non-empty finite set of states,

• T ⊆ Q2 × Q2
is a set of transitions such that for every

(p,q) ∈ Q2
there exists at least a pair (p′,q′) ∈ Q2

such

that (p,q,p′,q′) ∈ T ,
• Σ is a non-empty finite input alphabet,

• I : Σ → Q is the input function mapping input symbols to

states,

• O : Q → {0, 1} is the output function mapping states to

boolean values.

Following the convention of previous papers, we call the pop-

ulations of Pop(Q ) configurations. Intuitively, a configuration C
describes a collection of identical finite-state agents with Q as set

of states, containing C (q) agents in state q for every q ∈ Q , and at

least two agents in total.

Pairs of agents
1
interact using transitions. For every t = (p,q,

p′,q′) ∈ T , we write (p,q) 7→ (p′,q′) to denote t , and we define

pre(t )
def

= Hp,qI and post(t )
def

= Hp′,q′I. For every configuration C
and transition t ∈ T , we say that t is enabled at C if C ≥ pre(t ).
Note that by definition of T , every configuration enables at least

one transition. A transition t ∈ T enabled atC can occur, leading to

the configuration C � pre(t ) + post(t ). Intuitively, a pair of agents

in states pre(t ) move to states post(t ). We write C
t
−→ C ′ to denote

that t is enabled atC and that its occurrence leads toC ′. A transition

t ∈ T is silent if pre(t ) = post(t ), i.e., if it cannot change the current
configuration.

For every sequence of transitionsw = t1t2 · · · tk , we write C
w
−−→

C ′ if there exists a sequence of configurations C0,C1, . . . ,Ck such

that C = C0

t1
−−→ C1 · · ·

tk
−−→ Ck = C ′. We also write C −→ C ′ if

C
t
−→ C ′ for some transition t ∈ T , and call C −→ C ′ a step. We

write C
∗
−→ C ′ if C

w
−−→ C ′ for some w ∈ T ∗. We say that C ′ is

reachable from C if C
∗
−→ C ′. An execution is an infinite sequence

of configurations C0C1 · · · such that Ci −→ Ci+1 for every i ∈ N.
An execution C0C1 · · · is fair if for every step C −→ C ′, if Ci = C
for infinitely many indices i ∈ N, then Cj = C and Cj+1 = C ′ for
infinitely many indices j ∈ N. We say that a configuration C is

• terminal if C
∗
−→ C ′ implies C = C ′, i.e., if every transition

enabled at C is silent;

• a consensus configuration ifO (p) = O (q) for every p,q ∈ JCK.

1
While protocols only model interactions between two agents, k -way interactions for

a fixed k > 2 can be simulated by adding additional states.
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For every consensus configuration C , let O (C ) denote the unique
output of the states in JCK. An execution C0C1 · · · stabilizes to b ∈
{0, 1} if there exists n ∈ N such thatCi is a consensus configuration
and O (Ci ) = b for every i ≥ n.

Predicates computable by population protocols. Every input X ∈
Pop(Σ) is mapped to the configuration I (X ) ∈ Pop(Q ) defined by

I (X ) (q)
def

=
∑
σ ∈Σ

I (σ )=q

X (σ ) for every q ∈ Q .

A configuration C is said to be initial if C = I (X ) for some input X .

A population protocol is well-specified if for every input X , there
exists b ∈ {0, 1} such that every fair execution of P starting at I (X )
stabilizes to b. We say that P computes a predicate φ if for every

inputX , every fair execution of P starting at I (X ) stabilizes toφ (X ).
It is readily seen that P computes a predicate if and only if it is

well-specified.

Example 2.1. We consider the majority protocol of [3] as a run-

ning example. Initially, agents of the protocol can be in either state

A or B. The protocol computes whether there are at least as many

agents in state B as there are in state A. The states and the input

alphabet are Q = {A,B,a,b} and Σ = {A,B} respectively. The input
function is the identity function, and the output function is given

by O (B) = O (b) = 1 and O (A) = O (a) = 0. The set of transitions T
consists of:

tAB = (A,B) 7→ (a,b)

tAb = (A,b) 7→ (A,a)

tBa = (B,a) 7→ (B,b)

tba = (b,a) 7→ (b,b)

and of silent transitions for the remaining pairs of states. Transition

tAB ensures that every fair execution eventually reaches a configu-

ration C such that C (A) = 0 or C (B) = 0. If C (A) = 0 = C (B), then
there were initially equally many agents in A and B. Transition
tba then acts as tie breaker, resulting in a terminal configuration

populated only by b. If, say,C (A) > 0 andC (B) = 0, then there were

initially more As than Bs, and tAb ensures that every fair execution

eventually reaches a terminal configuration populated only by A
and a.

3 WELL-SPECIFIED SILENT PROTOCOLS
Silent protocols

2
were introduced in [12]. Loosely speaking, a pro-

tocol is silent if communication between agents eventually ceases,

i.e. if every fair execution eventually stays in the same configura-

tion forever. Observe that a well-specified protocol need not be

silent: fair executions may keep alternating from a configuration

to another as long as they are consensus configurations with the

same output.

More formally, we say that an executionC0C1 · · · is silent if there

exists n ∈ N and a configurationC such thatCi = C for every i ≥ n.
A population protocol P is silent if every fair execution of P is

silent, regardless of the starting configuration. We call a protocol

that is well-specified and silent aWS
2
-protocol, and denote byWS

2

the set of all WS
2
-protocols.

2
Silent protocols are also referred to as protocols with stabilizing states and silent

transitions are called ineffective in [17, 18].

Example 3.1. As explained in Example 2.1, every fair execution

of the majority protocol is silent. This implies that the protocol is

silent. If, for example, we add a new state b ′ where O (b ′) = 1, and

transitions (b,b) 7→ (b ′,b ′), (b ′,b ′) 7→ (b,b), then the protocol is

no longer silent since the execution where two agents alternate

between states b and b ′ is fair but not silent.

Being silent is a desirable property. While in arbitrary protocols

it is difficult to determine if an execution has already stabilized, in

silent protocols it is simple: one just checks if the current config-

uration only enables silent transitions. Even though it is was not

observed explicitely, the protocols introduced in [1] to characterize

the expressive power of population protocols belong toWS
2
. There-

fore, WS
2
-protocols can compute the same predicates as general

ones.

Unfortunately, a slight adaptation of [14, Theorem 10] shows

that the complexity of the membership problem for WS
2
-protocols

is still as high as for the general case:

Proposition 3.2. The reachability problem for Petri nets is re-

ducible in polynomial time to the membership problem for WS
2
. In

particular, membership for WS
2
is EXPSPACE-complete.

To circumvent this high complexity, we will show in the next

section how WS
2
can be refined into a smaller class of well-speci-

fied protocols with the same expressive power, and a membership

problem of much lower complexity.

4 A FINER CLASS OF SILENT
WELL-SPECIFIED PROTOCOLS: WS

3

It can be shown that WS
2
-protocols are exactly the protocols satis-

fying the two following properties:

• Termination: for every configuration C , there exists a ter-

minal configuration C ′ such that C
∗
−→ C ′.

• Consensus: for every initial configurationC , there exists b ∈
{0, 1} such that every terminal configuration C ′ reachable

from C is a consensus configuration with output b, i.e. C
∗
−→

C ′ implies O (C ′) = b.

We will introduce the new class WS
3
as a refinement of WS

2

obtained by strengthening Termination and Consensus into two

new properties called LayeredTermination and StrongConsen-

sus. We introduce these properties in Section 4.1 and Section 4.2,

and show that their decision problems belong to NP and coNP
respectively.

Before doing so, let us introduce some useful notions. Let P =

(Q,T , Σ, I ,O ) be a population protocol. For every S ⊆ T , P[S]

denotes the protocol induced by S , i.e. P[S]
def

= (Q, S ∪ T ′, Σ, I ,O )

where T ′
def

=
{
(p,q,p,q) : p,q ∈ Q

}
is added to ensure that any two

states can interact. Let−→S denote the transition relation ofP[S]. An
ordered partition ofT is a tuple (T1,T2, . . . ,Tn ) of nonempty subsets

of T such that T =
⋃n
i=1Ti and Ti ∩Tj = ∅ for every 1 ≤ i < j ≤ n.

4.1 Layered termination
We replace Termination by a stronger property called Layered-

Termination, and show that deciding LayeredTermination be-

longs to NP. The definition of LayeredTermination is inspired

by the typical structure of protocols found in the literature. Such

Session 9 PODC’17, July 25-27, 2017, Washington, DC, USA

425



protocols are organized in layers such that transitions of higher

layers cannot be enabled by executing transitions of lower layers.

In particular, if the protocol reaches a configuration of the highest

layer that does not enable any transition, then this configuration

is terminal. For such protocols, Termination can be proven by

showing that every (fair or unfair) execution of a layer is silent.

Definition 4.1. A population protocol P = (Q,T , Σ, I ,O ) satisfies
LayeredTermination if there is an ordered partition

(T1,T2, . . . ,Tn )

of T such that the following properties hold for every i ∈ [n]:

(a) For every configuration C , every (fair or unfair) execution

of P[Ti ] starting at C is silent.

(b) For every configurations C and C ′, if C
∗
−→Ti C ′ and C is

terminal in P[T1 ∪T2 ∪ · · · ∪Ti−1], then C
′
is also terminal

in P[T1 ∪T2 ∪ · · · ∪Ti−1].

Example 4.2. The majority protocol satisfies LayeredTermina-

tion. Indeed, consider the ordered partition (T1,T2), where

T1 = {(A,B) 7→ (a,b), (A,b) 7→ (A,a)}

T2 = {(B,a) 7→ (B,b), (b,a) 7→ (b,b)}.

All executions of P[T1] and P[T2] are silent. For every terminal

configuration C of P[T1], we have JCK ⊆ {A,a} or JCK ⊆ {B,a,b}.
In the former case, no transition of T2 is enabled; in the latter case,

taking transitons of T2 cannot enable T1.

As briefly sketched above, LayeredTermination implies Termi-

nation. In the rest of this section, we prove that checking Layered-

Termination is in NP. We do this by showing that conditions (a)

and (b) of Definition 4.1 can be tested in polynomial time.

We recall a basic notion of Petri net theory recast in the terminol-

ogy of population protocols. For every stepC
t
−→ C ′ and every state

q of a population protocol, we have C ′(q) = C (q) + post(t ) (q) −
pre(t ) (q). This observation can be extended to sequences of tran-

sitions. Let |w |t denote the number of occurrences of transition t
in a sequencew . We haveC ′(q) = C (q) +

∑
t ∈T |w |t · (post(t ) (q) −

pre(t ) (q)). Thus, a necessary condition forC
w
−−→ C ′ is the existence

of some x : T → N such that

C ′(q) = C (q) +
∑
t ∈T

x (t ) · (post(t ) (q) − pre(t ) (q)). (1)

We call (1) the flow equation for state q.

Proposition 4.3. Let P = (Q,T , Σ, I ,O ) be a population protocol.
Deciding whether an ordered partition (T1,T2, . . . ,Tn ) of T satisfies

condition (a) of Definition 4.1 can be done in polynomial time.

Proof. Let i ∈ [n] and letUi be the set of non silent transitions

of Ti . It can be shown that P[Ti ] is non silent if and only if there

exists x : Ui → Q such that

∑
t ∈Ui x (t ) · (post(t ) (q)−pre(t ) (q)) = 0

and x (q) ≥ 0 for every q ∈ Q , and x (q) > 0 for some q ∈ Q .
Therefore, since linear programming is in P, we can check for the

(non) existence of an appropriate rational solution x i for every
i ∈ [n]. □

We show how to check condition (b) of Definition 4.1 in poly-

nomial time. Let U ⊆ T be a set of transitions. A configuration

C ∈ Pop(Q ) is U -dead if for every t ∈ U , C
t
−→ C ′ implies C ′ = C .

We say that P isU -dead from C0 ∈ Pop(Q ) if every configuration

reachable from C0 is U -dead, i.e. C0

∗
−→ C implies that C is U -dead.

Finally, we say that P isU -dead if it isU -dead from everyU -dead

configuration C0 ∈ Pop(Q ).

Proposition 4.4. Let P = (Q,T , Σ, I ,O ) be a population proto-

col. Deciding whether an ordered partition (T1, . . . ,Tn ) of T satisfies

condition (b) of Definition 4.1 can be done in polynomial time.

Proof. Let i ∈ [n] and letU
def

= T1∪T2∪· · ·∪Ti−1. P[Ti ] satisfies
condition (b) if and only if P[Ti ] isU -dead. The latter can be tested

in polynomial time through the following characterization: P[Ti ]
is not U -dead if and only if there exist t ∈ Ti and non silent u ∈ U
such that for every non silent u ′ ∈ U :

pre(u ′) ≰ pre(t ) + (pre(u) � post(t )). □

Propositions 4.3 and 4.4 yield an NP procedure to decide Lay-

eredTermination. Indeed, it suffices to guess an ordered partition

and to check whether it satisfies conditions (a) and (b) of Defini-

tion 4.1 in polynomial time.

Corollary 4.5. Deciding if a protocol satisfies LayeredTermina-

tion is in NP.

4.2 Strong consensus
To overcome the high complexity of reachability in population

protocols, we strengthen Consensus by replacing the reachability

relation in its definition by an over-approximation, i.e., a relation

99K over configurations such that C
∗
−→ C ′ implies C 99K C ′. Ob-

serve that the flow equations provide an over-approximation of the

reachability relation. Indeed, as mentioned earlier, if C
∗
−→ C ′, then

there exists x : T → N such that (C,C ′,x ) satisfies all of the flow
equations. However, this over-approximation alone is too crude for

the verification of protocols.

Example 4.6. For example, let us consider the configurationsC =
HA,BI andC ′ = Ha,aI of the majority protocol. The flow equations

are satisfied by the mapping x such that x (tAB ) = x (tAb ) = 1 and

x (tBa ) = x (tba ) = 0. Yet, C
∗
−→ C ′ does not hold.

To obtain a finer reachability over-approximation, we introduce

so-called traps and siphons constraints borrowed from the theory

of Petri nets [11, 15, 16] and successfully applied to a number of

analysis problems (see e.g. [5, 15, 16]). Intuitively, for some subset

of transitions U ⊆ T , a U -trap is a set of states P ⊆ Q such that

every transition ofU that removes an agent from P also moves an

agent into P . Conversely, aU -siphon is a set P ⊆ Q such that every

transition of U that moves an agent into P also removes an agent

from P . More formally, let
•R

def

= {t ∈ T : Jpost(t )K ∩ R , ∅} and

R•
def

= {t ∈ T : Jpre(t )K∩R , ∅}.U -siphons andU -traps are defined

as follows:

Definition 4.7. A subset of states P ⊆ Q is aU -trap if P•∩U ⊆ •P ,
and aU -siphon if

•P ∩U ⊆ P•.

For every configuration C ∈ Pop(Q ) and P ⊆ Q , let C (P )
def

=∑
q∈P C (q). Consider a sequence of steps C0

t1
−−→ C1

t2
−−→ · · ·

tn
−−→ Cn
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where t1, . . . , tn ∈ U . It follows from Definition 4.7 that if some

transition ti moves an agent to a U -trap P , then Cj (P ) > 0 for

every j ≥ i . Similarly, if some transition ti removes an agent from

aU -siphon, then Cj (P ) > 0 for every j < i . In particular:

Observation 4.8. LetU ⊆ T , and let C and C ′ be configurations

such thatC
∗
−→U C ′. For everyU -trap P , ifC ′(P ) = 0, then

•P∩U = ∅.
For everyU -siphon P , if C (S) = 0, then P• ∩U = ∅.

We obtain a necessary condition for C
∗
−→U C ′ to hold, which

we call potential reachability:

Definition 4.9. Let C,C ′ be two configurations, let x : T → N,
and let U = JxK. We say that C ′ is potentially reachable from C

through x , denoted C
x
99KC ′, if

(a) the flow equation (1) holds for every q ∈ Q ,
(b) C ′(P ) = 0 implies

•P ∩U = ∅ for everyU -trap P , and
(c) C (P ) = 0 implies P• ∩U = ∅ for everyU -siphon P .

Example 4.10. Let us reconsider Example 4.6. Let U = JxK =
{tAB , tAb } and P = {A,b}. Recall that tAB = (A,B) 7→ (a,b) and
tAb = (A,b) 7→ (A,a). We have P• ∩U = U which implies that P is

aU -trap. This means that Definition 4.9(b) is violated as C ′(P ) = 0

and
•P ∩U = U , ∅. Therefore, HA,BI x

99K Ha,aI does not hold.

We writeC 99KC ′ ifC
x
99KC ′ for some x : T → N. As an imme-

diate consequence of Observation 4.8, for every configurations C

andC ′, ifC
∗
−→ C ′, thenC 99KC ′. This allows us to strengthen Con-

sensus by redefining it in terms of potential reachability instead of

reachability:

Definition 4.11. A protocol satisfies StrongConsensus if for

every initial configuration C , there exists b ∈ {0, 1} such that every

terminal configuration C ′ potentially reachable from C is a consen-

sus configuration with output b, i.e. C 99KC ′ implies O (C ′) = b.

Since the number of U -traps and U -siphons of a protocol can

be exponential in the number of states, checking trap and siphon

constraints by enumerating them may take exponential time. Fortu-

nately, this can be avoided. By definition, it follows that the union of

two U -traps is again a U -trap, and similarly for siphons. Therefore,

given a configuration C , there exists a unique maximal U -siphon

Pmax such that C (Pmax) = 0, and a unique maximal U -trap P ′
max

such that C (P ′
max

) = 0. Moreover, Pmax and P
′
max

can be computed

in linear time by means of a simple greedy algorithm (see e.g. [11,

Ex. 4.5]). This simplifies the task of checking traps and siphons

constraints, and yields a coNP procedure for testing StrongCon-

sensus:

Proposition 4.12. Deciding if a protocol satisfies StrongCon-

sensus is in coNP.

Proof. Testing whether a protocol does not satisfy StrongCon-

sensus can be done by guessing C0,C,C
′ ∈ Pop(Q ), b ∈ {0, 1},

q,q′ ∈ Q and x ,x ′ : T → N, and testing whether

(a) C0 is initial, C is terminal, C ′ is terminal, q ∈ JCK, q′ ∈ JC ′K,
O (q) , O (q′), and

(b) C0

x
99KC and C0

x ′
99KC ′.

Since there is no a priori bound on the size ofC0,C,C
′
and x ,x ′,

we guess them carefully. First, we guess whetherD (p) = 0,D (p) = 1

or D (p) ≥ 2 for every D ∈ {C0,C,C
′} and p ∈ Q . This gives enough

information to test (a). Then, we guess JxK and Jx ′K. This allows
to test traps/siphons constraints as follows. Let U

def

= JxK, let Pmax

be the maximalU -trap such that C (Pmax) = 0, and let P ′
max

be the

maximalU -siphon such thatC0 (P
′
max

) = 0. Conditions (b) and (c) of

Definition 4.9 hold if and only if
• (Pmax)∩U = ∅ and (P

′
max

)•∩U =
∅, which can be tested in polynomial time. The same is done for

x ′. If (a) and siphons/traps constraints hold, we build the system S

of linear equations/inequalities obtained from the conjunction of

the flow equations together with the constraints already guessed.

By standard results on integer linear programming (see e.g. [23,

Sect. 17]), if S has a solution, then it has one of polynomial size,

and hence we may guess it. □

4.3 WS
3-protocols

We say that a protocol belongs toWS
3
if it satisfies LayeredTer-

mination and StrongConsensus. SinceWS
3 ⊆WS

2 ⊆WS holds,

everyWS
3
-protocol is well-specified. Recall that a language L be-

longs to the class DP [21] if there exist languages L1 ∈ NP and

L2 ∈ coNP such that L = L1 ∩ L2. By taking L1 and L2 respectively
as the languages of population protocols satisfying LayeredTermi-

nation and StrongConsensus, Corollary 4.5 and Proposition 4.12

yield:

Theorem 4.13. The membership problem for WS
3
-protocols is in

DP.

5 WS
3 IS AS EXPRESSIVE AS WS

In a famous result, Angluin et al. [3] have shown that a predicate is

computable by a population protocol if and only if it is definable in

Presburger arithmetic, the first-order theory of addition [1, 3]. In

particular, [1] constructs protocols for Presburger-definable predi-

cates by means of a well-known result: Presburger-definable pred-

icates are the smallest set of predicates containing all threshold

and remainder predicates, and closed under boolean operations. A

threshold predicate is a predicate of the form

P (x1, . . . ,xk ) =
*.
,

k∑
i=1

aixi < c+/
-
,

where k ≥ 1 and a1, . . . ,ak , c ∈ Z. A remainder predicate is a

predicate of the form

P (x1, . . . ,xk ) =
*.
,

k∑
i=1

aixi ≡ c (modm)+/
-
,

where k ≥ 1,m ≥ 2 and a1, . . . ,ak , c,m ∈ Z. Here, we show that

these predicates can be computed by WS
3
-protocols, and that WS

3

is closed under negation and conjunction. As a consequence, we

obtain that WS
3
-protocols are as expressive as WS, the class of all

well-specified protocols.

Threshold. We describe the protocol given in [1] to compute the

threshold predicate

∑k
i=1 aixi < c . Let

vmax

def

= max( |a1 |, |a2 |, . . . , |ak |, |c | + 1)
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and define

f (m,n)
def

= max(−vmax,min(vmax,m + n))

д(m,n)
def

= (m + n) − f (m,n)

b (m,n)
def

= ( f (m,n) < c )

The protocol is P
thr

def

= (Q,T , Σ, I ,O ), where

Q
def

= {0, 1} × [−vmax,vmax] × {0, 1}

Σ
def

= {x1,x2, . . . ,xk }

I (xi )
def

= (1,ai ,ai < c ) for every i ∈ [k]

O (ℓ,n,o)
def

= o for every state (ℓ,n,o),

and T contains

(1,n,o), (l ,n′,o′) 7→ (1, f (n,n′),b (n,n′)), (0,д(n,n′),b (n,n′))

for every n,n′ ∈ [−vmax,vmax], ℓ,o,o
′ ∈ {0, 1}. Intuitively, a state

(ℓ,n,o) indicates that the agent has value n, opinion o, and that it is
a leader if and only if ℓ = 1. When a leader q and a state r interact, r
becomes a non leader, and q increases its value as much as possible

by substracting from the value of r . Moreover, a leader can change

the opinion of any non leader.

Proposition 5.1. P
thr

satisfies StrongConsensus.

Proof. Let val(q)
def

= n for every state q = (ℓ,n,o) ∈ Q , and let

val(C )
def

=
∑
q∈Q C (q) · val(q) for every configuration C ∈ Pop(Q ).

The following holds for every C,C ′ ∈ Pop(Q ):

(a) If (C,C ′,x ) is a solution to the flow equations for some x :

T → N, then val(C ) = val(C ′).
(b) IfC,C ′ are terminal,C andC ′ contain a leader, and val(C ) =

val(C ′), then O (C ) = O (C ′).

Suppose for the sake of contradiction that P does not satisfy

StrongConsensus. There exist C0,C,C
′ ∈ Pop(Q ), q,q′ ∈ Q and

x ,x ′ : T → N such that C0

x
99K C , C0

x ′
99K C ′, C0 is initial, C and

C ′ are terminal consensus configurations, q ∈ JCK, q′ ∈ JC ′K and
O (q) , O (q′). Note that (C0,C,x ) and (C0,C

′,x ′) both satisfy the

flow equations. Thus, by (a), val(C ) = val(C0) = val(C ′). Since C0

is initial, it contains a leader. Since the set of leaders forms aU -trap

for every U ⊆ T , and (C0,C,x ) and (C0,C
′,x ) satisfy trap con-

straints, C and C ′ contain a leader. By (b), C and C ′ are consensus
configurations with O (C ) = O (C ′), which is a contradiction. □

Proposition 5.2. P
thr

satisfies LayeredTermination.

Proof. Let L0
def

= {(1,x , 0) : c ≤ x ≤ vmax}, L1
def

= {(1,x , 1) :

−vmax ≤ x < c}, N0

def

= {(0, 0, 0)} and N1

def

= {(0, 0, 1)}. It can be

shown that the following ordered partitions satisfy layered termi-

nation for c > 0 and c ≤ 0 respectively:

T1
def

= {t ∈ T : pre(t ) , Hq, rI for all q ∈ L0, r ∈ N1},

T2
def

= T \T1, and

S1
def

= {t ∈ T : pre(t ) , Hq, rI for all q ∈ L1, r ∈ N0},

S2
def

= T \ S1. □

Remainder. We give a protocol for the remainder predicate

k∑
i=1

aixi ≡ c (modm).

The protocol is P
rmd
= (Q,T , Σ, I ,O ), where

Q
def

= [0,m) ∪ {true, false}

Σ
def

= {x1,x2, . . . ,xk }

I (xi )
def

= ai modm for every i ∈ [k]

O (q)
def

=



1 if q ∈ {c, true}

0 otherwise

and where T contains the following transitions for every n,n′ ∈
[0,m) and b ∈ {false, true}:

(n,n′) 7→ (n + n′ modm,n + n′ modm = c ) and

(n,b) 7→ (n,n = c ).

In the the full version of this paper
3
we show that P

rmd
belongs to

WS
3
by adapting the proof for P

thr
.

Negation and conjunction. Let P1 = (Q1,T1, Σ, I1,O1) and P2 =
(Q2,T2, Σ, I2,O2) be WS

3
-protocols computing predicates φ1 and

φ2 respectively. We may assume that P1 and P2 are defined over

identical Σ, for we can always extend the input domain of thresh-

old/remainder predicates by variables with coefficients of value

zero. The predicate ¬φi can be computed by replacing Oi by the

new output functionO ′i such thatO ′i (q)
def

= ¬Oi (q) for every q ∈ Qi .

To compute φ1∧φ2, we build an asynchronous product where steps

of P1 and P2 can be executed independently.

More formally, the conjunction of P1 and P2 is defined as the

population protocol P
def

= (Q, S, I , Σ,O ) such that Q
def

= Q1 × Q2,

S
def

= S1 ∪ S2, I (σ )
def

= (I1 (σ ), I2 (σ )) and O (p,q)
def

= O1 (p) ∧ O2 (q)
where

S1
def

= {(p, r ), (p′, r ′) 7→ (q, r ), (q′, r ′) : (p,p′,q,q′) ∈ T1, r , r
′ ∈ Q2},

S2
def

= {(r ,p), (r ′,p′) 7→ (r ,q), (r ′,q′) : (p,p′,q,q′) ∈ T2, r , r
′ ∈ Q1}.

In the full version of this paper. we show that P is in WS
3
since

terminal/consensus configurations, flow equations, and traps and

siphons constraints are preserved by projections from P onto P1

and P2.

3
https://arxiv.org/abs/1703.04367
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Threshold

vmax |Q | |T | Time

3 28 288 8.0

4 36 478 26.5

5 44 716 97.6

6 52 1002 243.4

7 60 1336 565.0

8 68 1718 1019.7

9 76 2148 2375.9

10 84 2626 timeout

Remainder

m |Q | |T | Time

10 12 65 0.4

20 22 230 2.8

30 32 495 15.9

40 42 860 79.3

50 52 1325 440.3

60 62 1890 3055.4

70 72 2555 3176.5

80 82 3320 timeout

Majority

|Q | |T | Time

4 4 0.1

Flock of birds [6]

c |Q | |T | Time

20 21 210 1.5

25 26 325 3.3

30 31 465 7.7

35 36 630 20.8

40 41 820 106.9

45 46 1035 295.6

50 51 1275 181.6

55 56 1540 timeout

Broadcast

|Q | |T | Time

2 1 0.1

Flock of birds [8]

c |Q | |T | Time

50 51 99 11.8

100 101 199 44.8

150 151 299 369.1

200 201 399 778.8

250 251 499 1554.2

300 301 599 2782.5

325 326 649 3470.8

350 351 699 timeout

Table 1: Results of the experimental evaluation where |Q | denotes the number of states, |T | denotes the number of non silent
transitions, and the time to prove membership for WS

3 is given in seconds.

6 EXPERIMENTAL RESULTS
We have developed a tool called Peregrine4 to check membership

in WS
3
. Peregrine is implemented on top of the SMT solver Z3 [9].

Peregrine reads in a population protocolP = (Q,T , Σ, I ,O ) and
constructs two sets of constraints. The first set is satisfiable if and

only if LayeredTermination holds, and the second is unsatisfiable

if and only if StrongConsensus holds.

For LayeredTermination, our tool Peregrine iteratively con-

structs constraints checking the existence of an ordered partition

of size 1,2, . . . , |T | and decides if they are satisfiable. To check that

the execution of a layer is silent, the constraints mentioned in the

proof of Proposition 4.3 are transformed using Farkas’ lemma (see

e.g. [23]) into a version that is satisfiable if and only if all the execu-

tions of the layer are silent. Also, the constraints for condition (b)

of Definition 4.1 are added.

For StrongConsensus, Peregrine initially constructs the con-

straints for the flow equation for three configurations C0,C1,C2

and vectors x1 and x2, with additional constraints to guarantee that
C0 is initial,C1 andC2 are terminal, andC1 andC2 are consensus of

different values. If these constraints are unsatisfiable, the protocol

satisfies StrongConsensus. Otherwise, Peregrine searches for

a U -trap or U -siphon to show that either C0

x 1

99KC1 or C0

x 2

99KC2

does not hold. If, say, a U -siphon S is found, then Peregrine adds

the constraint C0 (S) > 0 to the set of initial constraints. This pro-

cess is repeated until either the constraints are unsatisfiable and

StrongConsensus is shown, or all possibleU -traps andU -siphons

are added, in which case StrongConsensus does not hold. We

use this refinement-based approach instead of the coNP approach

described in Proposition 4.12, as that could require a quadratic num-

ber of variables and constraints, and we generally expect to need a

small number of refinement steps.

We evaluated Peregrine on a set of benchmarks: the threshold

and remainder protocols of [2], the majority protocol of [3], the

4Peregrine and benchmarks are available from https://gitlab.lrz.de/i7/peregrine/.

broadcast protocol of [8] and two versions of the flock of birds
5

protocol from [6, 8]. We checked the parametrized protocols for

increasing values of their primary parameter until we reached a

timeout. For the threshold and remainder protocols, we set the

secondary parameter c to 1 since it has no incidence on the size of

the protocol, and since the variation in execution time for different

values of c was negligible. Moreover, we assumed that all possible

values for ai were present in the inputs, which represents the worst

case.

All experiments were performed on the same machine equipped

with an Intel Core i7-4810MQ CPU and 16GB of RAM. The time

limit was set to 1 hour. The results are shown in Table 1. In all cases

where we terminated within the time limit, we were able to show

membership for WS
3
. Generally, showing StrongConsensus took

much less time than showing LayeredTermination, except for the

flock of birds protocols, where we needed linearly many U -traps.

As an extension, we also tried proving correctness after proving

membership in WS
3
. For this, we constructed constraints for the

existence of an input X and configuration C with I (X )
x
99KC and

φ (X ) , O (C ).Wewere able to prove correctness for all the protocols

in our set of benchmarks. The correctness check was faster than

the well-specification check for broadcast, majority, threshold and

both flock of birds protocols, and slower for the remainder protocol,

where we reached a timeout form = 70.

7 CONCLUSION AND FURTHERWORK
We have presented WS

3
, the first class of well-specified population

protocols with a membership problem of reasonable complexity

(i.e. in DP) and with the full expressiveness of well-specified pro-

tocols. Previous work had shown that the membership problem

for the general class of well-specified protocols is decidable, but at

least EXPSPACE-hard with algorithms of non primitive recursive

complexity.

5
The variant from [8] is referred to as threshold-n by its authors.
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We have shown thatWS
3
is a natural class that contains many

standard protocols from the literature, like flock-of-birds, majority,

threshold and remainder protocols. We implemented the member-

ship procedure for WS
3
on top of the SMT solver Z3, yielding the

first software able to automatically prove well-specification of pop-

ulation protocols for all (of the infinitely many) inputs. Previous

work could only prove partial correctness of protocols with at most

9 states and 28 transitions, by trying exhaustively a finite number

of inputs [6, 8, 20, 24]. Our algorithm deals with all inputs and

can handle larger protocols with up to 70 states and over 2500

transitions.

Future work will concentrate on three problems: improving the

performance of our tool; automatically deciding if a WS
3
-protocol

computes the predicate described by a given Presburger formula;

and the diagnosis problem: when a protocol does not belong toWS
3
,

delivering an explanation, e.g. a non-terminating fair execution.

We think that our constraint-based approach provides an excellent

basis for attacking these questions.
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