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Using 980 fb−1 of data collected with the Belle detector operating at the KEKB asymmetric-energy
eþe− collider, we report a study of the electromagnetic decays of excited charmed baryons Ξcð2790Þ and
Ξcð2815Þ. A clear signal (8.6 standard deviations) is observed for Ξcð2815Þ0 → Ξ0

cγ, and we measure:
B½Ξcð2815Þ0 →Ξ0

cγ�
B½Ξcð2815Þ0 →Ξcð2645Þþπ− →Ξ0

cπ
þπ−� ¼ 0.41� 0.05� 0.03. We also present evidence (3.8 standard deviations)

for the similar decay of the Ξcð2790Þ0 and measure: B½Ξcð2790Þ0 →Ξ0
cγ�

B½Ξcð2790Þ0 →Ξ0þ
c π− →Ξþ

c γπ
−� ¼ 0.13� 0.03� 0.02. The

first quoted uncertainties are statistical and the second systematic. We find no hint of the analogous decays
of the Ξcð2815Þþ and Ξcð2790Þþ baryons and set upper limits at the 90% confidence level of:

B½Ξcð2815Þþ →Ξþ
c γ�

B½Ξcð2815Þþ →Ξcð2645Þ0πþ →Ξþ
c π

−πþ� < 0.09, and B½Ξcð2790Þþ →Ξþ
c γ�

B½Ξcð2790Þþ →Ξ00
c π

þ →Ξ0
cγπ

þ� < 0.06. Approximate values of the

partial widths of the decays are extracted, which can be used to discriminate between models of the
underlying quark structure of these excited states.

DOI: 10.1103/PhysRevD.102.071103

The Ξc baryons comprise csu or csd quark combina-
tions [1]. Many excited states of these baryons have been
observed and studied [2]. In particular, a recent study [3]
reported measurements of the masses and widths of the
Ξcð2790Þþ=0 and Ξcð2815Þþ=0 states. In the picture of a
charmed baryon comprising a heavy (c) quark and a light
(su or sd) diquark, these states are typically interpreted
as L ¼ 1 orbital excitations of the ground states where
the unit of angular momentum is between the charm
quark and a spin-0 light diquark system [4–8]. Such
excitations are denoted λ excitations. In this model, the
Ξcð2790Þ is the JP ¼ 1

2
− state and the Ξcð2815Þ the JP ¼

3
2
− state, and the particles recently observed at higher
masses by LHCb [9] are part of the expected family of
corresponding states with a spin-1 diquark. These iden-
tifications are not made by direct measurement of the
spin and parity of the states, rather by inspection of their

mass spectra and observed decay modes; clearly other
interpretations are possible [10].
In general, the decays of excited charmed baryons

proceed via strong interactions, with the only electromag-
netic decays observed so far being Ξ0

c → Ξcγ [3,11] and
Ωcð2770Þ → Ωcγ [12,13], since for these transitions the
mass difference is not sufficient for a strong decay.
However, some predictions for the partial widths of photon
transitions indicate that they could be observable. In
particular, one theoretical treatment by Wang, Yao,
Zhong, and Zhao (WYZZ) [14] predicts a partial width
of 263 keV=c2 for the decay Ξcð2790Þ0 → Ξ0

cγ and
292 keV=c2 for Ξcð2815Þ0 → Ξ0

cγ, assuming that they
are λ excitations. On the other hand, the analogous decays
for the Ξþ

c baryons are predicted to have very small partial
widths. The same model predicts widths of <10 keV=c2 if
the unit of orbital excitation is between the two light quarks
(a “ρ excitation”). Other models make different predictions
[15]; in particular, a treatment of the Ξcð2790Þ isodoublet
as dynamically generated baryons predicts large partial
widths for both charge states [16]. These predictions are
summarized in Table I.
In this paper, we present a search for the electromagnetic

decays Ξcð2790; 2815Þþ=0 → Ξþ=0
c γ. The results are con-

verted to branching ratios and, with certain assumptions,
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to estimates of the partial widths for these decays. These
estimates can then be compared to the theoretical models
and thus probe the inner structure of these heavy
baryons.
The Belle detector [17] was a large-solid-angle spec-

trometer operating at the KEKB asymmetric-energy eþe−

collider [18], comprising six subdetectors: the tracking
system composed of the silicon vertex detector and the
50-layer central drift chamber, the aerogel Cherenkov
counter, the time-of-flight scintillation counter, the electro-
magnetic calorimeter, and the K0

L and muon detector. A
superconducting solenoid produced a 1.5 T magnetic field
throughout the first five of these subdetectors. Two inner
detector configurations were used. The first consisted of a
3-layer silicon vertex detector and a 2.0 cm radius beam-
pipe, and the second of a 4-layer silicon detector and a
small-cell inner drift chamber around a 1.5 cm radius
beampipe.
In order to study Ξc baryons, we first reconstruct a large

sample of ground-state Ξ0
c and Ξþ

c baryons with good
signal-to-noise ratio. To obtain large statistics, we use ten
decay modes of the Ξ0

c, and seven of the Ξþ
c ground states,

as used in Ref. [3]. The decays are reconstructed from
combinations of charged particles measured using the
tracking system, and neutral particles measured in the
electromagnetic calorimeter. The decays of long-lived
mesons and hyperons are measured using secondary and
tertiary vertex reconstruction. Each mode has specific
requirements on its decay products designed to suppress
combinatorial backgrounds, and we follow the selection
criteria described in detail in our previous publication [3],
except for the requirement on the momentum of the Ξc
in the center-of-mass frame, p�, which is set as
p� > 2.25 GeV=c, a choice which is described below.
To show the yield of the reconstructed Ξ0

c and Ξþ
c baryons,

we present in Fig. 1 the distributions of “pull mass” i.e., the
difference between the measured and nominal mass
(2470.91 MeV=c2 and 2467.93 MeV=c2 for the Ξ0

c and
Ξþ
c , respectively [2]), divided by the resolution (σ), which is

found mode-by-mode and is ∼5 MeV=c2. Ξc candidates
are selected if they are within�2σ of the nominal mass. For
Ξþ
c , the number of selected candidates is 79 k above a

background of 61 k, and for Ξ0
c 142 k signal candidates

with a background of 154 k.
To optimize the requirements specific to this analysis,

a simulated data set is constructed using the combination
of the decays under study and generic eþe− hadronic
events. In addition to the p� > 2.25 GeV=c requirement
on the Ξc momentum, the following three selection
criteria are determined by maximizing the signal signifi-
cance in the sample. First, the photon energy is required
to be greater than 550 MeV. Second, the sum of the
energy deposited in the central nine cells of a 5 × 5 cell
photon cluster is required to be at least 94% of the total
energy of the cluster. Third, to discriminate against
photons that are π0 daughters, each photon is combined
with each other photon candidate in the event and the
pair is rejected if the likelihood of it being part of a π0 is
larger than 0.5. These likelihoods are determined from
Monte Carlo (MC) studies [19] and are a function of the
energy of the other photon, its polar angle, and the mass
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FIG. 1. Pull mass distribution for the Ξ0
c (upper data points),

and Ξþ
c (lower data points) candidates.

TABLE I. Theoretical predictions of the partial widths in keV=c2 for the Ξcð2790Þ and Ξcð2815Þ. There are three predictions from
WYZZ [14] as they model one λ and two ρ excitation states for each overall JP. The experimental measurements of the total widths are
also listed.

WYZZ [14] IKLR [15] GJR [16]

Mode
λ

excitation
ρ

excitation
ρ

excitation
λ

excitation
dynamically

generated states
Actual total
width [3]

Ξcð2790Þþ → Ξþ
c γ 4.65 1.39 0.79 … 246 8900� 600� 800

Ξcð2790Þ0 → Ξ0
cγ 263 5.57 3.00 … 117 10000� 700� 800

Ξcð2815Þþ → Ξþ
c γ 2.8 1.88 2.81 190� 5 … 2430� 200� 170

Ξcð2815Þ0 → Ξ0
cγ 292 7.50 11.2 497� 14 … 2540� 180� 170
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of the two-photon system. This last requirement retains
87% of the signal according to Monte Carlo studies,
while eliminating 42% of the background.
Figure 2 shows the Ξcγ invariant-mass distributions for

the charged and neutral Ξc baryons. We fit a sum of a
polynomial and two signal functions to the distributions
using a binned maximum-likelihood fit with fine mass bins.
In each case, the signal is a Breit-Wigner function con-
volved with a “Crystal Ball” function [20] to represent the
detector resolution. The parameters of the latter function
are found with a GEANT-basedMC simulation [21] to model
the response of the detector. The photon energies in the
simulation are corrected to take into account the data-MC
difference of resolution based on studies of mass resolution
in the decays π0 → γγ, η → γγ, and D�0 → D0γ [22,23].
The masses and widths of the four particles under consid-
eration have been precisely measured in our previous

analysis [3] and are thus fixed to the values reported.
The width of the resolution functions are ∼6.5 MeV=c2

with an estimated systematic uncertainty of 3%, so in each
distribution the two signal functions overlap. In each case a
third-order polynomial is used to describe the combinato-
rial background. There is a clear signal for the decay
Ξcð2815Þ0 → Ξ0

cγ with 401� 45 events and evidence for
the decay Ξcð2790Þ0 → Ξ0

cγ with 222� 55 events. The
statistical significance of each signal is calculated by
excluding the respective peak from the fit and finding
the change in the log-likelihood (Δ½lnL�). The signifi-
cance is expressed in terms of standard deviations, nσ ,
using the formula nσ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Δ½lnL�p

. For the decays
Ξcð2815Þ0 → Ξ0

cγ and Ξcð2790Þ0 → Ξ0
cγ we find nσ ¼

9.7 and 4.0, respectively. No signals are present in the
Ξþ
c γ mass distribution, and the fit yields are 0� 25 and

−32� 31 decays of Ξcð2815Þþ and Ξcð2790Þþ baryons,
respectively. In order to find upper-limit signal yields from
these decays, we use a second-order polynomial as the
background function, as its reduced χ2 is satisfactory, and
this produces a more conservative limit. We calculate the
upper limits by integrating the likelihood functions
obtained from the fits, and then finding the yield values
for which the integrals contain 90% of the total integral of
positive yields. (That is, we set a Bayesian upper limit using
a uniform prior on the yield). We find 90% confidence level
limits of 56 and 64 events for the decays of the Ξþ

c ð2815Þ
and Ξþ

c ð2790Þ, respectively.
The masses and widths of the excited Ξc states are very

well known and their uncertainties have negligible effect on
these yields. For the two significant signals, the largest
systematic uncertainty is due to uncertainties in the back-
ground shape, evaluated by noting the change in the yield
found when increasing the order of the Chebychev poly-
nomial used for the background function (5%); decreasing
the order of the polynomial produces an unsatisfactory fit
result and so is not used. Taking into account this
systematic uncertainty, we find the significances of the
signals for Ξcð2815Þ0 → Ξ0

cγ and Ξ0
cð2790Þ → Ξ0γ to be

nσ ¼ 8.6 and 3.8, respectively.
To measure branching ratios

R2815 ¼
B½Ξcð2815Þþ=0 → Ξþ=0

c γ�
B½Ξcð2815Þþ=0 → Ξcð2645Þ0=þπþ=− → Ξþ=0

c πþπ−�
and R2790 ¼

B½Ξcð2790Þþ=0 → Ξþ=0
c γ�

B½Ξcð2790Þþ=0 → Ξ00=þ
c πþ=− → Ξ0=þ

c γπþ=−�
;

we reconstruct the normalization modes following the
technique presented in the previous Belle paper [3], but
using the momentum requirement on the daughter Ξc
baryons of p� > 2.25 GeV=c. The invariant-mass distri-
butions for the normalization modes are shown in Fig. 3,
and the yields for the signals listed in Table II. For the

measurement of R2815, the largest systematic uncertainty is
due to the signal-yield extraction of the electromagnetic
decays as detailed above. In addition, there are small
contributions due to the efficiency estimation of the photon
(3%) [22], uncertainties due to the modeling of the relative
contributions of the different submodes (3%), the resolution
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FIG. 2. The Ξcγ mass distributions for (upper) Ξ0
c and (lower)

Ξþ
c . The fits are described in the text. In addition to the total fitted

yields, the fittedΞcð2815Þ signal components (dotted lines, green)
and Ξcð2790Þ components (dashed lines, red) are shown stacked
above the combinatorial background (dot-dashed lines, blue).
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of the Ξcγ mass distribution (2%), the uncertainty in the
tracking efficiency (2%), the fitting of the normalization
mode (1%), and uncertainties due to the Monte Carlo
statistics used to evaluate efficiencies (1%). For the neutral
mode, we find a value of R2815 ¼ 0.41� 0.05� 0.03. For
the charged mode, where no signal is observed, we set a
limit at 90% confidence level of R2815 < 0.09.
The calculation of the R2790 branching ratios has the

complication that the signal and normalization modes
involve decays into different ground-state charmed bary-
ons. Our determination of the relative reconstruction
efficiency of the Ξ0

c with respect to the Ξþ
c depends on

the relative production rate of the two states in the Belle
dataset, which is not well known. We make the assumption
that the production of Ξ0

c and Ξþ
c with p� > 2.25 GeV=c is

equal, which would be the case with exact isospin sym-
metry between the u and d quarks. Deviations from this
equality can occur if the probability of creating an su or an
sd diquark in the fragmentation process is different. In
addition, the decays from excited particles will not exactly
preserve isospin symmetry because of the isospin mass
splitting of several MeV=c2 that has been measured in Ξc
ground states and some excited states [2], and also is
present in π mesons. We estimate the systematic uncer-
tainty associated with the equality assumption to be�15%;
this is larger than the asymmetry observed in the Σþþ

c =Σ0
c

system [24].

We find R2790 ¼ 0.13� 0.03� 0.02 for the decay of the
Ξcð2790Þ0. For the decay of the Ξþ

c we set a limit at
90% confidence level of R2790 < 0.06.
We cannot directly measure the partial widths of the

decay modes under consideration. However, we can use our
branching ratio measurements, together with the already
measured total widths [3], to make estimates of the partial
widths which can then be compared with theory. For the
case of Ξcð2815Þ → Ξcð2645Þπ → Ξcππ we calculate,
using Clebsch-Gordan coefficients and phase space, that
the charged-pion decays account for ð38� 4Þ% of the total
rate of this decay chain, where the rest of the decays include
π0 transitions. The uncertainty in this number takes into
account the mass and width uncertainties of the excited
states, and is an estimate as none of the π0 transitions have
been observed and isospin is not an exact symmetry. Taking
into account the decays Ξcð2815Þ → Ξ0

cπ measured pre-
viously [3], the width of the electromagnetic decay is
observed to be ð13.6� 1.5� 1.7Þ% of the total width,
where the first uncertainty is statistical, and the second is
systematic. There is an additional possibility that other
decays exist that we do not detect. These include possible
single-pion decays from the orbitally excited states to the
ground state, double-pion decays that do not go through an
intermediate resonance, and transitions that involve electro-
magnetic decays to or from intermediate states. None of
these are expected to be large, and we can estimate that
they will produce a reduction of the calculated partial width
of no more than 20%. Based on these considerations,
we estimate a partial width of Γ½Ξcð2815Þ0 → Ξ0

cγ� ¼
320� 45þ45

−80 keV=c2. For the decays of the Ξcð2815Þþ
we use similar arguments to find Γ½Ξcð2815Þþ → Ξþ

c γ� <
80 keV=c2.
For the Ξcð2790Þ0 we find that a similar calculation

leads to ð7.9� 2.0þ1.7
−2.3Þ% of the total width being due to

the electromagnetic decay, implying a partial width of
Γ½Ξcð2790Þ0 → Ξ0

cγ� ∼ 800 keV=c2 with an uncertainty of
around 40%. Similarly, for the decay Ξcð2790Þþ →
Ξþ
c γ, for which no signal is found, the upper limit on

the partial width is set at 350 keV=c2.
The difference between the decays of the neutral and

charged Ξcð2815Þ states is clear, and these results are in
good agreement with the prediction that was based on an
identification of the Ξcð2815Þ as λ orbital excitations of the
ground-state baryons [14]. For the Ξcð2790Þ decays, the
data are much less precise. Still, the evidence for the decay
of the neutral Ξcð2790Þ and the absence of evidence for its
isospin partner is consistent with these predictions.
To conclude, we report the first observation of an

electromagnetic decay of an orbitally excited charmed
baryon, and measure the branching ratio

B½Ξcð2815Þ0→Ξ0
cγ�

B½Ξcð2815Þ0→Ξcð2645Þþπ−→Ξ0
cπ

þπ−�¼0.41� 0.05� 0.03. We also

present evidence for the similar decay of the Ξ0
cð2790Þ and

measure B½Ξcð2790Þ0 →Ξ0
cγ�

B½Ξcð2790Þ0 →Ξ0þ
c π− →Ξþ

c γπ
−� ¼ 0.13 � 0.03 � 0.02.
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FIG. 3. The signals used as normalization modes in the
analysis.

TABLE II. Yields of the normalization modes found from fits to
the distributions shown in Fig. 3. In all cases, there is a
requirement on the momentum of the ground-state charmed
baryon of p� > 2.25 GeV=c.

Decay Yield

Ξcð2790Þþ → Ξ00
c π

þ → Ξ0
cγπ

þ 2591� 140

Ξcð2790Þ0 → Ξ0þ
c π− → Ξþ

c γπ
− 1231� 87

Ξcð2815Þ0 → Ξcð2645Þþπ− → Ξ0
cπ

þπ− 1646� 50

Ξcð2815Þþ → Ξcð2645Þ0πþ → Ξþ
c π

−πþ 1121� 40
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We find no evidence of the analogous decays of the
Ξcð2815Þþ and Ξcð2790Þþ baryons. Using reasonable esti-
mates of the unseen decays, we conclude that the partial
widths of the electromagnetic decays of the Ξcð2815Þ0 and
Ξcð2790Þ0 into the ground states are 320� 45þ45

−80 keV=c2

and ∼800 keV=c2, respectively. The partial widths for the
similar decays of theΞcð2815Þþ andΞcð2790Þþ are less than
80 keV=c2 and less than 350 keV=c2, respectively. These
results are consistent with predictions based on the identi-
fication of the Ξcð2815Þ and Ξcð2790Þ baryons as orbital
excitations of the Ξc baryons, where the unit of orbital
excitation is between the heavy quark and the spin-0 light
diquark system.
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