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Abstract
The linear consensus protocol and Laplacian system paradigm form a pillar in theories that

emerged with the rise of today’s era of networks and massive data sets. The fragmented
nature of the studies and communities working on consensus problems demonstrates its
complexity and richness, despite the simple model structure. As a result, today, we face
various abstract technical frameworks for the analysis and design of consensus systems,

which often are hardly accessible or applicable in applications in natural sciences,
technology, and other practice-oriented fields. We propose a simple, comprehensive, and

integrative framework for the stability and convergence analysis and the protocol design for
exponentially converging consensus networks irrespective of a linear or nonlinear

appearance. Core to this framework is the transformation of a system of coupled nonlinear
differential equations to an equivalent linear Laplacian form. We technically build on

axiomatic properties of metrics and mean functions, combined with a general and abstract
convergence result in linear consensus theory. This framework is simple, as it builds on a

classical network synthesis result for general passive electric circuits, which involves a
dissipative-lossless and memory-memoryless decomposition of system equations that
completely defines the dissipation and energy storage behavior. This framework is
integrative as the common thread of passive circuit synthesis directly yields system

formulations resulting in the recent study of gradient flows and optimal transport on
discrete (probability) and metric spaces. It is compatible with majorization theory and
provides a majorization-passivity equivalence in a differential form; further, we show
equivalence to the recent cut-balance convergence result for general linear consensus

networks. This framework also includes the most known and general consensus protocol
design rules and stability results, and as such, we understand it as comprehensive. We

derive three main classes of consensus protocols from our framework: the comprehensive
metric action consensus protocol, a novel mean-control consensus protocol class with

optimality properties of the differential dynamics, rather than the known optimality of the
asymptotic behavior, and an embedding protocol, which can also be obtained as a result of

the existing geometric generalization of linear consensus theory to nonlinear space.
Application of the mean-control protocol class to obtain geometric mean-driven consensus

systems results in a consensus condition reminiscent of the Wegscheider relation and
detailed balance in chemistry. Application to the analysis of the dynamics of mass-action

chemical reaction networks yields a novel conductance formulation for these. This is
significant as it provides for the first time a circuit formulation in which chemical potentials
are directly connected through a resistor element. The new methods and analysis views we
present here provide a novel direction in the study of convergence and stability in nonlinear
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dynamical systems by using the equivalence to an equivalent linear Laplacian form, which
shows differentially dissipative behavior.

Zusammenfassung
Das lineare Konsensusprotokoll, einhergehend mit Laplace’schen Systemformulierungen,

bildet eine Grundlage für Theorien und Methoden, die im Zuge des Aufkommens der
heutigen Ära von Netzwerken und Big Data entwickelt wurden. Die Komplexität und

Reichhaltigkeit des Konsensusproblems wird anhand der Fragmentiertheit und Vielzahl
wissenschaftlicher Arbeiten und Communities in diesem und verbundenen Themengebieten
deutlich; trotz der Einfachheit der Modellstruktur. In Konsequenz verfügen wir heute über

eine Vielzahl abstrakter und anwendungsorientierter Frameworks zum Entwurf
konvergierender Konsensussysteme, oder zu deren Untersuchung hinsichtlich Stabilität und
Konvergenzeigenschaften. Eine Einordnung solcher Frameworks zueinander wurde bislang

wenig betrachtet, und gleichzeitig sind abstrakte Entwurfs- oder Analysemethoden für
Anwender in realen Problemstellungen schwer zugänglich oder kaum brauchbar. Wir
führen hier ein einfaches, umfassendes und anschlussfähiges Framework ein, dass die

Stabilitäts- und Konvergenzuntersuchung, sowie den Entwurf exponentiell konvergierender
Konsensussysteme erlaubt, unabhängig von der linearen oder nichtlinearen Gestalt des

Systems. Kern unseres Frameworks ist die Transformation nichtlinearer Systeme
gekoppelter Differentialgleichungen in eine äquivalente lineare Laplace-Form, wobei wir
uns technischerseits axiomatische Eigenschaften von Distanz- und Mittelfunktionen zu
Nutze machen, sowie ein grundlegendes abstraktes Konvergenzergebnis der linearen

Konsensustheorie. Mit der Eigenschaft der Einfachheit nehmen wir Bezug auf die
konzeptuelle Basis dieses Frameworks: ein klassisches Ergebnis der Netzwerksynthese für
passive Schaltungen, das die Dekomposition eines Systems in dissipative und verlustfreie,

bzw. zustandslose und Zustands-behaftete Systemteile vorsieht, welches das
Dissipationsverhalten und energetische Eigenschaften vollständig bestimmt.

Anschlussfähigkeit bedeutet hier, dass die passive Netzwerksynthese ein roter Faden ist, der
zu Systembeschreibungen führt, wie sie aktuell auch im Bereich der Analyse von
Gradientenflüssen auf diskreten (Wahrscheinlichkeits-) und metrischen Räumen

resultieren. Er erlaubt auch eine Äquivalenz zwischen dem Konzept der Majorisierung und
Passivität jedoch in einem neuen, differentiellen Zusammenhang; darüberhinaus zeigen wir
eine Äquivalenz zum kürzlich eingeführten cut-balance Kriterium für konvergente lineare

Konsensusnetzwerke. Unser Framework erlaubt es zudem die bekannten Ergebnisse für den
Entwurf von Konsensusprotokollen und deren Stabilitätsanalyse abzuleiten, bzw. beinhaltet

diese. In diesem Sinne verstehen wir unser Framework als umfassend. Aus unserem
Framework leiten wir drei fundamentale Klassen an Konsensusprotokollen ab: das

umfassende Protokoll gemäß metrischen Wirkprinzip, ein neuartiges Protokoll gemäß
Steuerung durch Mitteln, welches zu Optimalitätseigenschaften der Dynamik - im

Gegensatz zu bekannten Asymptotischen - besitzt, sowie das Einbettungsprotokoll, welches
auch als Ergebnis der bekannten geometrischen Verallgemeinerung von Konsensus auf
linearen zu nichtlinearen Zustandsräumen erhalten werden kann. Anwendung unseres
Frameworks zum Entwurf von Konsensusprotokollen mit dem geometrischen Mittel als

treibende Kraft führt zu einer Stabilitätsbedingungen, die dem Wegscheider detailliertem
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Gleichgewicht in der Chemie ähnelt. Anwendung zur Analyse von chemischen
Reaktionsnetzen mit Dynamik gemäß dem Massenwirkungsgesetz führt zu einer neuen

elektrischen Schaltungs- und Leitwertdarstellung, in der chemische Potenziale zum ersten
Mal direkt über ein Widerstandselement verkoppelt sind und wirken. Die hier präsentierten

Methoden können zu neuen Ansätzen für die Konvergenz- und Stabilitätsanalyse
nichtlinearer dynamischer Systeme führen, indem die Äquivalenz zu einer linearen

Laplaceform genutzt wird, die differentiell dissipatives Verhalten bewirkt.
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Notations

Abbreviations

LTI linear time-invariant
w.r.t. with respect to
cf. compare
e.g. for example
i.e. in other words

Conventions

Scalars, Vectors, and Matrices

Scalars are denoted by upper and lower case letters in italic type. Vectors are denoted by
lower case letters in bold type, as the vector x is composed of elements x i. Matrices are
denoted by upper case letters in bold type; a matrix M is composed of elements [M]i j, or mi j

(ith row, jth column). For a scalar function f : R→ R, and x ∈ Rn, the element-wise notation
x 7→ f (x) is defined as the mapping whose i-th component is given as ( f (x ))i = f (x i).

Subscripts and Superscripts

(·)⊤ Transposed
(·)−1 Inverse
(·)† Pseudoinverse
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Introduction

1.1 The emerging Laplacian paradigm

Linear consensus systems form a pillar in the emerging field of systems and control theory for
networks. It is arguably the simplest setup to model nontrivial network systems dynamics;
arguably, it is the simplest linear system that depicts non-trivial asymptotic behavior, with
equilibrium states being generally different from the origin as in classical linear systems.
Convergence and stability studies even support an argument in favor of a "perhaps not so
linear nature of the underlying state space of linear consensus algorithms" [Sep11]. Lin-
ear consensus models, being governed by Laplacian matrices, are diffusion systems. And as
such, they provide a connection to a variety of other fields in mathematics, physics, and ap-
plications that build on linear or nonlinear diffusion models or the heat equation. Examples
range from problems in electric power grids [HC06; DB10; DB14; DH14], chemical reac-
tion networks [EG07; vRJ13b; vRJ13a; WMv18], multi-robot stabilization and coordination
problems [SPL08; BCM09], neuro-science and other synchronization phenomena [BHD10;
Ace+05; SSS07; Str00], to peer-to-peer sensing and gossiping [Boy+06], image process-
ing and data filtering [Tau95; TZG96], to opinion and social evolution systems [Jia+15],
and even quantum stochastic systems [SSR10]. Noteworthy is the emergence of the term
"Laplacian paradigm" [Ten10] with the rise of the era of networks and massive data sets.
The significance of this paradigm is routed in the spectacular success of nearly-linear time
(Laplacian) solvers for linear equation systems [ST04]; the underlying ideas originate in
graph problems that connect passive electric resistor networks with random walks on graphs
[DS84], i.e., Markov chains on discrete probability space.

Not only are the many different application fields largely disconnected, in which a Lapla-
cian equation system is or might be at the core of system dynamics. Also, the systems and
control literature on consensus networks itself is highly fragmented. In the young history
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1 Introduction

of consensus systems research, remarks on a relationship to electric networks and Markov
chains can be found in early work such as [Wil76]. Passivity and convexity, rather than the
linearity of the problem, are noted to be driving the averaging behavior [Mor04], extend-
ing exponential convergence results also to nonlinear consensus dynamics [Mor05]. General
frameworks that go beyond quadratic stability, which is necessary and sufficient for linear
systems stability properties, include a geometric generalization [Sep11], utterly novel system
properties [HT13], or abstract consensus protocol design rules as studied in [HH08; Wei+17;
BGP06]. A comprehensive study and consolidating framework in which all of these different
properties driving the exponentially convergent averaging behavior come together so far is
lacking. This thesis aims at providing such a framework.

1.2 A brief history of consensus theory and its many facets

Origins and span-norm Lyapunov function: The study of linear consensus systems origi-
nates in decentralized decision making in networks of economic exchange [Nor67; DeG74]
and distributed computation [Tsi84; TBA86]. Tools for early convergence proofs based on
Markov chain theory, i.e., properties of products of stochastic matrices and invariance of a
stationary distribution. A novel twist has been introduced with the span-norm Lyapunov
function maxi x i(t) − mini x i(t) by John N. Tsitsiklis [Tsi84], where x i(t) is the i-th state
component at time t , with i ∈ {1, . . . , n}. This extremal function represents the diameter
of the convex hull spanned by state components. It is a very robust contraction measure;
for instance, it allows to prove convergence also for distributed consensus networks with
asynchronous information exchange and additional local computational updates on the local
states. Tsitsiklis span-norm Lyapunov function proves especially useful in situations where
quadratic Lyapunov functions fail, see, e.g., [Ols08] for that context. This span-norm con-
traction measure has been applied by Luc Moreau in [Mor04][Mor05], to prove the most
general convergence results for linear time-varying consensus systems: dynamics converge
with exponential speed to a consensus state where all state components equal if for any time
instant there is a finite time interval across which all state updates are such that the effective
update law has matrix structure that exhibits a directed spanning tree. This complicated,
time-dependent connectivity property is dubbed uniform connectedness. Moreau uses the
span-norm function in a blend of graph and systems theoretic tools introducing a set-valued
Lyapunov framework for the convergence study that applies to linear and nonlinear network
problems. Aiming at applications in quantum stochastic dynamics, this Lyapunov function
has been re-discovered in a study of consensus in non-commutative space by Sepulchre, Sar-
lette, and Rouchon [SSR10], however in logarithmic coordinates. Then, the Lyapunov func-
tion becomes invariant to scaling and is particularly suited for the structure of a projective
space. This logarithmic contraction measure has been initially proposed by Garrett Birkhoff
[Bir57] in the study of homogeneous monotone maps on cones. It is indeed a contraction
measure, as it represents the so-called Hilbert metric, which measures the projective distance
between the state of a consensus system and the set of consensus states. This discovery has
led to the remark of the "not so linear nature" of linear consensus systems in [Sep11].
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1.2 A brief history of consensus theory and its many facets

Physics, coordination problems and dissipation metaphors: Interest in the study of con-
sensus algorithms has significantly spurred with the work [Vic+95], where the authors pro-
pose a simple discrete-time model involving averaging interactions on velocities, which leads
to the emergence of self-ordered motion. This model has first been analyzed by the sys-
tems and control community in great detail by Ali Jadbabaie, Jie Lin, and Stephen Morse
in [JLM03], where the authors provide a theoretical foundation for the observed dynamic
behavior. Their work is based on products of stochastic matrices, algebraic properties such
as null-spaces leading to invariance properties, and, in the continuous-time context, on flow
maps generated by Laplacian matrices, which are contractions to spectral properties of the
Laplacian. The authors also consider the case of time-varying dynamics, which they trace
back to the analysis of sequenced time-invariant systems. Most importantly, the authors
have put their analysis into the context of coordination problems in multi-agent systems,
which lead to an explosion of practically motivated studies, see, e.g., [RBA05; OSFM07a]
and references therein for early survey articles. By that, the work [JLM03] connects dif-
ferent approaches in interactive physical and behavioral natural systems, see also [Rey87;
LF01], and multi-agent coordination problems [OSM02] with consensus schemes.

At about the same time, Alexander Fax and Richard Murray pioneer the study of coordi-
nation problems arising in vehicle formations and propose a Nyquist-like stability criterion
using spectral properties of graph Laplacian matrices [FM02]. Building on that work, Reza
Olfati-Saber and Murray in [SM03a; OSM04] propose convergence proofs for general linear
consensus protocols, also on time-varying communication graphs. They introduced so-called
(Laplacian) group disagreement and collective disagreement functions. The collective dis-
agreement measures the disagreement in terms of sums of squared Euclidean distances of
each state component to the consensus state. It serves as a Lyapunov function for strongly
connected and balanced graphs. The Laplacian group disagreement is also a sum-of-squares
function measuring, however, squared Euclidean distances among pairwise state components
associated with nodes in a connected communication graph. Hence, the Laplacian potential is
an instantaneous disagreement measure, while the collective disagreement uses asymptotic
state information. The Laplacian disagreement, for symmetric and time-constant graphs,
also serves as a potential in which the consensus dynamics evolve as gradient flow [OSM04;
OSFM07a].

A second gradient system property has been proposed by Arjan van der Schaft in [van11]
for symmetric time-constant graphs and linear consensus protocols. He argues that not the
Laplacian group but the sum-of-squares collective disagreement is the appropriate potential
in which consensus systems evolve as gradient flow. His argument is motivated by an electric
circuit and port-Hamiltonian systems consideration: A linear consensus network with sym-
metric graph is a negative feedback interconnection of two open systems, one with lossless
capacitor system having Hamiltonian given by the collective disagreement and one being rep-
resented by the Laplacian matrix, which models a resistor network. M. Egerstedt in [ME10]
also proposes a unit-capacitor LTI electric circuit structure for LTI symmetric consensus dy-
namics, similar to van der Schaft. Moreau, in [Mor04], also remarked that linear Laplacian
systems have close connections to passivity theory and, in particular, to electric circuits. He
also referred to the work [Wil76] where it has been observed that any additive convex func-
tion may serve as a collective disagreement measure for LTI consensus systems.

3



1 Introduction

Generalizing frameworks: Generalizations from linear to nonlinear consensus results usu-
ally follow the path of finding protocol design rules that cover maximally large interaction
function classes that lead to the construction of convergent consensus systems or general-
izing inherent mathematical structures of the linear consensus system extending them to
nonlinear space.

Regarding the latter generalization approach, Scardovi, Sarlette, and Sepulchre in [SSS07]
study consensus on the circle, respectively, on the n-torus, which is the first work to con-
sider a non-Euclidean underlying state space instead of the typical Euclidean one in abstract
consensus studies. This particular case, where the usual consensus protocol evolves on the
n-torus, leads to a phase-averaging scheme, as it is known, e.g., in Kuramoto-like models.
This approach is further generalized in the work of Sarlette and Sepulchre [SS09a; SS09b],
see [Sep11] for a conceptual overview article: Given a state-space that is represented by
a compact, homogeneous (Riemannian) manifold, a consensus system on nonlinear space
evolves according to the conceptual update rule "move towards the average of your neigh-
bors." The assumption on the underlying state space structure helps compute the necessary
average of neighboring states on the nonlinear state space. The authors use the fact that an
average can be defined as the solution of a sum of squared distances minimization problem.
The appropriate distance is associated with the structure of the nonlinear space, as it is the
natural (Riemannian), or intrinsic distance, which is given by a geodesic. To circumvent the
complicated computation of geodesics, the authors apply an embedding trick: Any compact,
homogeneous n-dimensional space can be embedded into at least 2n-dimensional ambient
Euclidean space. Then, the average is computed in this external linear space as the arithmetic
mean of state values in "embedding" coordinates and then projected back onto the nonlinear
space. This additional introduction of an extrinsic geometry allows formulating an abstract
protocol for averaging dynamics reaching consensus on nonlinear spaces.

While this geometric generalization requires a priori knowledge of an underlying nonlin-
ear state-space structure with specific mathematical properties, the protocol design approach
does not. The motivation here instead is the use in applications. And for that, authors fol-
lowing this approach usually are concerned with finding function classes for (pairwise) state
interactions across a graph, such that the resulting network system dynamics still converge
asymptotically to a consensus state.

Murray and Olfati-Saber introduce the essential tool for nonlinear consensus protocol de-
sign in [SM03a] in the context of so-called action graphs. In addition to a linear edge
weighting, action graphs specify pairwise interactions across edges characterized by some
action function. Such action functions, in most cases, take a linear state difference as input
and map it to a single output value. Anti-symmetry of functions has soon been identified
and used as elementary property for nonlinear consensus systems [SM03a; OSM04; BGP06;
Cor08]. Additional nonlinear but positive gain functions on local interactions have been
introduced and studied [BGP06; OSM04; ADJ12]. In [Wei+17] the sign-preservingness of
the interaction function relative to the sign of linear state differences has been identified
and rigorously analyzed for continuous and discontinuous protocol dynamics. That work
also allows sign-preserving input nonlinearity, which is a generalization of typical positive
gain functions. Hui and Haddad introduce another extension in [HH08], where the authors
allow two independent inputs and map it to a single output for pairwise interactions. The re-
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1.2 A brief history of consensus theory and its many facets

quired function property again is a function inequality, which is reminiscent of the property of
anti-symmetry. Using a classical Lyapunov approach, the authors derive this inequality from
network thermodynamic reasoning and prove the asymptotic stability of consensus states.

Other nonlinear consensus contexts include the study of consensus on convex metric
space [MB10], on the space of probability measures [BD14], finite-time consensus problems
[WX10], or mechanism design in networks of interacting agents [BGP06] with consensus on
general functions being closely related [Cor08].

Concepts for convergence analysis beyond the classical Lyapunov method: Tracing
consensus problems to the study of Markov chains and properties such as ergodicity, the
behavior of products of stochastic matrices, or spectral theory for stochastic, or Laplacian
matrices has been foundational in the study of consensus networks. The relationship be-
tween consensus networks and Markov chains has regained interest only recently, see, e.g.,
[Bol14; Bol+14; TN11], and their follow-on works. Touri and Nedic in [TN11] introduce
the so-called "infinite-flow" property and relate it to ergodicity in classical Markov theory.
Their framework considers consensus over random graphs. Ergodicity and the infinite-flow
property of random models are equivalent when all transition matrices have a common
steady state in expectation. In [Bol+14; Bol14] the authors study the so-called Sonin’s
decomposition-separation theorem for inhomogeneous Markov chains in the context of linear
time-varying consensus systems. Sonin’s result is concerned with nonhomogeneous Markov
chains where no assumptions are made on the sequence of stochastic matrices [Son08]. A
geometric interpretation for convergent consensus dynamics is proposed: Consider points
defined by the column vectors of the transition matrix of a consensus system. These vectors
are stochastic vectors with a constant 1-norm. The convex hull spanned by these points is
a polygon. While consensus dynamics unfold, polygons map into each other forming se-
quences of nested sets until a consensus or an equilibrium is reached [Bol+14]. Geometri-
cally familiar is the joint work of Chevalier, Hendrickx, and Jungers [CHJ14; CHJ17]. The
authors study the decidability of matrix sets’ stability; in particular, they consider products
of stochastic matrices and ask whether or not they convergence to zero or a common set
asymptotically. Convergence is measured by a polyhedral semi-norm, which for stochastic
matrices is nonincreasing and forms the basis for a consensus convergence proof.

Hendrickx and Tsitsiklis introduce another matrix property that leads to convergence of
time-varying linear consensus networks in [HT13]. The property is concerned with the matrix
weights of differential update laws, and it is called cut-balance. Intuitively it means that
dynamics are such that if any sub-group of agents affects the dynamics of the complementary
subgroup, then there must also be an action back. In this sense, this matrix property bears the
physical interpretation of Newton’s actio-reactio law, however, not in an exact but arbitrarily
scaled balance. Cut-balance is an innovation as it also allows to prove convergence for cases
when consensus is not reached but some other equilibrium due to connectivity constraints. A
convergence mechanism is also provided, and it is based on sums of weighted ordered state
components which are non-decreasing.

The cut-balance analysis has motivated the introduction of the novel differential stability
concept called consensus dichotomy by Proskurnikov and Cao in [PC17], which builds on
boundedness and the contraction behavior of Laplacian flows. Similarly, consensus studies

5



1 Introduction

have been influential in the recent introduction of differential Lyapunov analysis [FS14] that
is adapted to systems that have non-trivial invariance properties along dynamics.

Passivity at the core? Despite the simple model structure, the many facets and approaches
to the study of consensus systems demonstrate the complexity and richness of consensus
studies. However, it also indicates the fragmented nature of the studies and communities
working on consensus theory and network system applications.

The early and short work of Jan C. Willems [Wil76] on Lyapunov inequalities for diag-
onally dominant systems is one of only a few, if not the only work, which touches almost
all approaches presented so far in the study of consensus systems. In that sense, it has an
integrative character that we shall explore in detail in the course of this thesis.

In particular, Willems notes that the span norm Lyapunov function of Tsitsiklis is character-
istic for diffusive systems, as both maxi x i and −mini x i are non-increasing along dynamics if
and only if a Laplacian generator matrix governs the dynamics. Further, based on convexity
and properties of matrix weights of a Laplacian, he demonstrates that the class of additive
convex functions is a class of Lyapunov functions for consensus dynamics. He connects this
result to Markov chains and relative entropy, or general information divergences being non-
increasing along dynamics. He remarks that Laplacian systems governed by Metzler matrices
are used in modeling RC or RL electric networks and hence are elementary in passivity the-
ory motivated by physical application. And last but not least, Willems remarks that the class
of linear time-varying consensus systems may serve helpful in studying nonlinear dynamics:
Transformations from a nonlinear ODE to the linear time-varying consensus system model al-
lows to apply the available stability and convergence results of consensus theory in nonlinear
contexts.

This thesis puts Willems’s simple ideas on a rigorous footing. It derives a simple but fun-
damental passivity framework that aligns Markov chain analysis with properties such as
cut-balance and nonlinear protocol or geometric generalizations. We motivate the frame-
work with an application to chemical and polynomial network dynamics, as first described
in [MXH16; Man20].

1.3 Summary and outline

This thesis introduces novel design tools for the synthesis and analysis of nonlinear network
dynamics using linear time-varying consensus results. We demonstrate that the basis for
convergence behavior is the passivity of virtual resistors across which energy stored in vir-
tual capacitors is dissipated. We show equivalence between cut-balance, Markov chains, and
passive RC networks. In that context, we introduce the novel concept called differential ma-
jorization, which is derived from the classical majorization theory put into a dynamic, differ-
ential context. Passivity and the design tool results are based on the link between convexity of
stored energy with basic mathematical structures of metric and mean functions. Means can
be defined via a Kolmogorov functional form or equivalently in a metric minimization prob-
lem. A metric basis for the design of consensus protocols as averaging dynamics yields a very
general functional design rule class that comprises existing ones. Particular instances yield
the embedding protocol as equivalent to the geometric protocol design scheme of Sepulchre
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and Sarlette. Applying the presented methods to polynomial network protocols as consensus
driven by the geometric mean yields novel results in chemical reaction networks.

Chapter 2: Consensus driven by the geometric mean and chemical reaction networks

In this chapter, we consider three types of nonlinear network dynamics derived from lever-
aging averaging and metric structures that drive the behavior of linear consensus networks.
The network protocols have polynomial, scaling-invariant, and entropic right-hand sides and
are driven from geometric mean averaging considerations. The method and design principles
we introduce here in a concrete example are later introduced and proven more abstractly.
Hence, with its results, this chapter also serves as a motivational case study for the general
framework we develop in the subsequent chapters.

We show that the introduced polynomial network and consensus protocols are closely re-
lated to mass-action chemical reaction network systems. Convergence and stability results
are proven using a transformation of the nonlinear time-invariant ODE systems to one in
linear time-varying consensus form. The consensus conditions we obtain are reminiscent of
the Wegscheider relation and detailed balance in chemistry. We show that geometric mean-
driven network dynamics are particular instances of free energy gradient flows. We further
provide a novel characterization of the geometric mean of n real numbers using the solution
of a constrained nonlinear minimization problem, which is solved asymptotically and with
exponential speed by the evolving dynamics of a geometric-mean induced consensus system.
The polynomial consensus protocol asymptotically achieves a consensus value that appears
to be lower bounded by the solution of an elliptic integral. Applying the results to chemical
reaction networks yields a novel conductance formulation. Its significance is motivated as
it directly connects to chemical potentials driving the dynamics. This conductance has the
functional form of a heat exchange system in which stored Gibbs free energy of connected
chemical species is dissipated.

Chapter 3: Metrics and means in the design of dissipative consensus systems The re-
sults of the preceding chapter are generalized, and the relationship between metrics and
mean functions in the design of general consensus protocols is highlighted. In particular, we
prove a connection between general averages that satisfy Kolmogorov’s axioms of means and
solutions of metric optimization problems that specify general means. Both metric and Kol-
mogorov means are used to propose design rules for consensus protocols. We summarize the
main nonlinear consensus protocol design results. We show that all of these are particular
instances of a more general metric consensus protocol class, for which we prove exponen-
tial convergence. Properties of metric functions are used to propose composition rules, from
which more complicated consensus protocols result that are exponentially convergent by de-
sign. Consensus protocols driven by Kolmogorov means are particular instances of metric
consensus protocols; they generate trajectories with an optimality characteristic across each
finite time step. This optimality property is novel and differs from the known asymptotic opti-
mality of achieved consensus states. A particular metric consensus protocol is the embedding
protocol that we introduce. It combines geometric, passivity, and optimization aspects in a
general gradient formulation. Its connection with the geometric consensus generalization of
Sepulchre and Sarlette and links to Newton algorithms are discussed.
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Chapter 4: Dissipation mechanisms and passive circuit structure of consensus networks

While the preceding chapters focus on general design principles and applications of nonlinear
consensus networks, in this chapter, we ask what mechanisms essentially drive the exponen-
tial contraction behavior of linear or nonlinear consensus networks. We show that a passivity
property is at the core by uncovering a nonlinear passive RC circuit structure in the class of
nonlinear consensus protocols discussed in the preceding chapters. This passive circuit for-
mulation is derived from structure results of dissipative systems, due to D. Hill, P. Moylan, and
B.D.O. Anderson, together with a interconnected (open) passive systems approach to study-
ing convergence and Lyapunov stability of autonomous (closed) systems. The passive circuit
formulation is equivalent to a gradient system structure in which the convexity of stored
energy in capacitors is equivalent to the strict passivity of nonlinear resistor elements. We
prove the gradient system property not based on typical gradient representations but using
a duality structure and a necessary and sufficient energy dissipation equality. We generalize
the passive circuit result to a port-Hamiltonian representation, which is used in defining an
equivalence between a property we call differential majorization and the existence of a pas-
sive RC circuit structure in dynamic systems. Using differential majorization, we also prove
an equivalence between passivity and the cut-balance property introduced recently by Hen-
drickx and Tsitsiklis. The obtained results are applied to Markov chains and phase-coupled
oscillator networks. We conclude with remarks on the study of interconnected stochastic
systems, optimal transport and machine learning problems using the circuit formulation of
Markov chains, and on recent advances in contraction studies using novel differential anal-
ysis tools.
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2

Consensus driven by the geometric mean

and chemical reaction networks

2.1 Introduction

Under the umbrella of linear consensus theory, results are collected that describe the con-
vergence and stability of a very general class of linear time-varying, arithmetic mean driven
network dynamics, see, e.g., [OSFM07b; BT89; Mor04]. What suffers from this generality is
the specificity needed to make immediate use of those results in applied network problems
- problems that often appear as nonlinear and time-invariant dynamics that are inherently
driven by non-arithmetic means. A prime example is the class of Kuramoto-type network
models [Ace+05] that can be found in a wide range of important applications, e.g., in power
grid studies [DB14; DH14], or in neuroscience [BHD10]. The collective averaging motion is
driven by the so-called chordal mean, which is an average adapted to the circular geometry
of phase angles [Sep11; SS09b; SSS07]. Significant stability results can indeed be based on
linear consensus theory, see, e.g., the work [JMB04], where the authors prove stability by
reverse engineering for this particular case a linear time-varying consensus structure from
the nonlinear time-invariant original system model. In this chapter, the starting point is not
an existing nonlinear network model, but a significant type of average, namely the geomet-
ric mean, that shall serve as the driving element in a nonlinear dynamic averaging network.
In particular, we are interested in designing and studying network protocols that generate
geometric mean averaging processes in the same way the arithmetic mean does in linear
consensus protocols. For the novel types of geometric mean-driven network dynamics, we
propose touching points to nonlinear problems in chemistry, optimization, and analog com-
putation using networked dynamical systems.
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The geometric mean plays an important role in various applications. It is the appropriate
tool to evaluate averages on data that exhibits power-law relationships, as they arise in de-
scribing relative, resp., compound, or geometric growth relations [Lue98; Van10]. Examples
of such relations can be found in financial and economic studies [Zen+08; Mit04; SW08],
they are abundant in biology [Shi10] and chemistry [Con90; HKH11; EG07]. For instance,
in gene expression networks, the geometric mean of degradation and production rates has
been found to act as feedback control gain in linearized dynamics [HKH11]. Geometric mean
averaging also appears in the context of algorithm design, in distributed Bayesian consensus
filtering and detection schemes, see, e.g., [BC14] and [QJX15]. There, the geometric mean
arises from the combination of a given network structure and a Bayesian update rule, leading
to a so-called logarithmic opinion pooling as natural scheme of combining local probabilities,
see [GZ86], and also [NOU15; SJ13; RJ15] for further reference.

Despite the central role of mean functions and averaging structures for stability studies
in network problems, yet, there are few works on how specific means, particularly the geo-
metric mean, drive such systems’ (nonlinear) behavior. Consensus-like protocols driven by
non-arithmetic means with geometric mean as particular case are for instance studied in
[HK05] in the specific context of opinion dynamics in discrete time. In [BGP06], the authors
introduce a nonlinear protocol design rule that leads to convergence to a consensus state
given by a generalized mean that also includes the geometric mean. They also show that
their protocol is the solution of individual optimizations performed locally at each network
node, given local information. Works on consensus on nonlinear space [SS09b; Sep11] ex-
tend the usual arithmetic averaging in linear consensus to a nonlinear configuration space;
the associated non-arithmetic mean results as a by-product of that choice of geometry. Ex-
tensions to other mathematical structures include the work on consensus on convex metric
spaces [MB15], or on the Wasserstein metric space of probability measures [BD14]. None
of these works puts in the center of consideration a particular type of average, from where
continuous-time network dynamics shall arise by design.

In this chapter, we propose and study three novel nonlinear consensus protocols based
on elementary considerations on how the arithmetic mean appears in the structure of linear
consensus protocols and replacing it with the geometric mean functional relationship. The
contribution is as follows:

a) We introduce novel geometric mean-driven network protocols that we call polynomial,
entropic, and scaling-invariant protocol. A fourth protocol called reaction network
protocol is proposed as a slight extension of the polynomial consensus protocol. This
fourth protocol serves as a bridge in leveraging consensus results in the chemical reac-
tion network application.

b) We prove convergence to consensus under appropriate connectedness conditions build-
ing on Moreau’s basic stability result [Mor04; Mor05] for linear, time-varying consensus
networks.

c) We show that along continuous-time dynamics of the entropic consensus network, the
solution of a free energy nonlinear constrained optimization problem is computed with
the (weighted) geometric mean as consensus solution.
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d) We put the distinct protocols on a common footing by showing that all three protocols
describe a particular type of free energy gradient descent flow.

e) Leveraging the polynomial consensus and reaction network protocol results, we in-
troduce a novel conductance formulation for chemical reaction networks. This novel
conductance is motivated by the fact that it characterizes a heat exchanger-like process
the dissipation of stored Gibbs free energy in chemical species.

f) In a numerical study, we demonstrate that the solution of an elliptic integral lower
bounds the consensus value obtained under the polynomial protocol on certain graph
types.

The remainder of this chapter is organized as follows: In section 2.2 we give an overview
of mean functions and linear consensus theory. In section 2.3 we propose the novel proto-
cols and discuss relationships to arithmetic-mean averaging structures in linear consensus
networks. In section 2.4 we prove exponential convergence and consensus value results.
Next, in section 2.5.2 we provide illustrative numerical examples and conduct a numerical
study on the consensus value for the polynomial consensus system. In section 2.6, we put
the three novel consensus protocols in a single free energy gradient flow framework and
provide a novel optimization characterization of the geometric mean on a constrained space.
In section 2.7 we apply the result to chemical reaction network systems of mass-action type
and derive a novel dissipation conductance formulation. We complete this chapter with a
conclusion and possible further directions of research.

2.2 Linear consensus protocol, arithmetic and geometric

mean

In this section, we present characterizations of the arithmetic and geometric mean and rep-
resentation and the basic stability result of linear consensus theory.

2.2.1 Characterization of the arithmetic and geometric mean

Consider data points x1, x2, . . . , xn taking values on the positive real line R>0, and let these
elements be collected in the vector x . An average or mean computed from x can be obtained
as the solution of an unconstrained minimization,

mean(x ) = arg min
x∈R>0

n∑

i=1

d(x i, x)2, (2.1)

where d(a, b) denotes a metric in R>0.
If the Euclidean distance dE(a, b) := |a− b| is chosen in (2.1), the resulting average is the

arithmetic mean,

am(x) :=
1

n

n∑

i=1

x i = arg min
x∈R

n∑

i=1

|x i − x |2. (2.2)
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2 Consensus driven by the geometric mean and chemical reaction networks

Another important metric in R>0 is the hyperbolic distance dH(a, b) := | ln a− ln b|, which
coincides with the Euclidean metric assessed in logarithmic coordinates. It is a geodesic dis-
tance, and measures the hyperbolic length of the straight line segment joining two points
in Cartesian coordinates (x , a), (x , b), x ∈ R>0, see e.g., [Sta93] Proposition 4.3. Its sig-
nificance arises from the fact that the solution of the minimization problem (2.1) using the
hyperbolic metric dH yields the geometric mean

gm(x) := n
p

x1x2 · · · xn.

To see this, observe that

n∑

i=1

| ln x i − lngm(x )|2 =
n∑

i=1

| ln x i − am(ln x )|2, (2.3)

which is the least-squares characterization of the arithmetic mean in logarithmic coordinates.
To complete this section, we introduce the weighted versions of the arithmetic and geo-

metric means,

amw(x) :=
n∑

i=1

ωi x i, and gmw(x) :=
n∏

i=1

x
ωi

i
,

where for i = 1, 2, . . . , n, ωi > 0 and
∑n

i=1ωi = 1.

2.2.2 Graphs, linear consensus protocols and the arithmetic mean

Let G= (N , B, w) be a weighted digraph (directed graph) with set of nodes N := {1, 2, . . . , n},
set of branches B := {1, 2, . . . , b} ⊆ N × N having elements ordered pairs ( j, i) that indicate
that there is a branch from node j to i, and w : B→ R>0 is a weighting function for which we
write w(( j, i)) = wi j. Define the in-neighborhood of a node i as the set of connected nodes
N+

i
:= { j ∈ N : ( j, i) ∈ B} and the out-neighborhood N−

i
:= { j ∈ N , (i, j) ∈ B}. The (in-)

degree of a node i is the value di :=
∑

j∈N+
i

wi j. Set D := diag{d1, d2, . . . , dn}. The weighted
adjacency matrix W is such that [W]i j = wi j for all ( j, i) ∈ B; if ( j, i) 6∈ B, then [W]i j = 0, and
[W]ii = 0, for all i ∈ N . A graph is called balanced if

∑n

j=1 wi j =
∑n

j=1 w ji and it is symmetric
if wi j = w ji , ∀( j, i) ∈ B. The Laplacian matrix of a weighted digraph is defined as L := D−W,
and the normalized Laplacian is L̂ := I− Ŵ, where Ŵ = D−1W is the matrix of normalized
branch weights.

A linear consensus system evolving in continuous time is a dynamics on a family of graphs
{G(t)}t≥0 governed by

ẋ i =
∑

j∈N+
i

wi j(t)
�

x j − x i

�

⇔ ẋ = −L(t)x , (2.4)

where each dynamic branch weight wi j(·) is a measurable non-negative function [HT13].
The following relationships between the arithmetic mean and consensus system represen-

tations and properties are well known in consensus theory: Using (2.2), a component-wise
LTI consensus dynamics (2.4) on a normalized weighted digraph can locally be brought to
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the open-loop control system form

ẋ i = −x i+ui({x j} j∈N+
i
), (2.5)

ui =
∑

j∈N+
i

ŵi j(t)x j ¬ amw({x j} j∈N+
i
).

Without the requirement of a normalized weighting, a variable time discretization can be
chosen such that a local algorithmic update law (e.g., in an explicit Euler scheme) has the
arithmetic mean driven form

x i(t + dt) = α(dt)x i(t) + [1−α(dt)]amw({x j(t)} j∈N+
i
(t),

where 0≤ α < 1, cf., e.g., [SSS07].

Besides its appearance in the local dynamics at a particular instant in time, the arithmetic
average also unfolds as asymptotic global system property: in the class of consensus net-
works being governed by Laplacians L(t) that are irreducible and balanced for all t ≥ 0, the
asymptotically reached uniform agreement value is given by the arithmetic mean of the ini-
tial condition [OSM04]. The problem in which the equilibrium state to be reached is uniform
with consensus value x̄ = am(x 0) is commonly known as the average consensus problem.

The goal of this work is to study the interplay between consensus protocols and the geo-
metric mean. In that, we first seek to understand the various interaction points between the
design of LTI consensus protocols and the arithmetic mean, and then leverage these obser-
vations to derive and study novel geometric mean-driven consensus protocols.

For the sake of focus and ease of understanding, we assume the underlying graph to have
a constant, i.e., time-invariant weighting. In our analysis, it shall turn out elementary to
transform the nonlinear time-invariant network protocols to linear time-varying consensus
form so that the following convergence result becomes applicable.

Proposition 1. [Adopted from [Sep11] Prop. 1 with Def. 2] A linear time-varying system

evolving according to (2.4) in Rn converges globally and exponentially to a consensus point x̄1,

x̄ ∈ R, if the underlying digraph is uniformly connected, i.e., if for all t > 0, there exists a time

horizon T > 0, such that the graph (N , B̃(t), w̃(t)) defined by

w̃i j(t) :=

¨ ∫ t+T

t
wi j(τ)dτ if

∫ t+T

t
wi j(τ)dτ≥ δ > 0

0 if
∫ t+T

t
wi j(τ)dτ < δ

wi j(τ) a branch weight at time τ, ( j, i) ∈ B if and only if w̃i j(t) 6= 0, contains a node from

which there is a path to every other node.

Uniform connectivity certainly holds if at each time instant the graph G(t) is strongly
connected and wi j(t)≥ δ > 0, i.e., if the graph contains a directed path from every node to
every other node and the finite branch weights are positively bounded away from zero for
all time.
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2 Consensus driven by the geometric mean and chemical reaction networks

2.3 Geometric mean driven network protocols

This section proposes and motivates three novel consensus protocols driven by the geometric
mean in ways as the arithmetic mean does for the linear consensus protocol. Based on their
functional structure, they are called the polynomial, entropic, and scaling-invariant proto-
col. A fourth protocol is proposed that generalizes the polynomial consensus protocol to a
consensus-seeking reaction network protocol having the form of chemical equation systems.

2.3.1 Polynomial consensus and reaction network protocol

The polynomial protocol we consider is a dynamic on a graph where at each node i ∈ N , the
differential update rule has the form

ẋ i = −
∏

j∈N−
i

x
w j i

i
+
∏

j∈N+
i

x
wi j

j
. (2.6)

For the polynomial protocol we assume a balanced graph weighting, i.e.,
∑

j∈N−
i

w ji = di.
With that, the protocol (2.6) can be written as

ẋ i = −x
di

i
+
∏

j∈N+
i

x
wi j

j
.

Comparing this form with a linear consensus protocol, which can be stated as

ẋ i = −di x i +
∑

j∈N+
i

wi j x j, i ∈ N

we observe an equivalence resulting upon replacing the operation of summation and multi-
plication with the similar1 operations multiplication and exponentiation.

Alternatively, referring to the open-loop control representation (2.5), where weightings are
normalized, replacement of the weighted arithmetic mean by the geometric average leads to
the protocol

ẋ i = −x i + gmw({x j} j∈N+
i
) = −x i +

∏

j∈N+
i

x
ŵi j

j
,

from where (2.6) results again under the assumption of having a balanced weighting, that
is,
∑

j∈N−
i

ŵ ji = 1.
In its general form (2.6), the polynomial protocol has the structure of a rate equation as it

occurs, for instance, in reaction networks and chemical kinetics [Con90]. We define

r+
i

:=
∏

j∈N+
i

x
wi j

j
, (2.7)

the nonlinear rate at which some quantity “x” flows from in-connected nodes j to node i,
and

r−
i

:=
∏

j∈N−
i

x
w j i

i
, (2.8)

1These operations are similar in the sense that the addition of logarithmic variables turns the variables into
products, and products result into exponentiation.
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the rate at which x flows along links (i, j) ∈ B from node i to the out-directed nodes j. The
local rate of change ẋ i balances in- and out-flows on a graph such that

ẋ i = r+
i
(x)− r−

i
(x). (2.9)

The relation to the (weighted) geometric mean and the similarity to chemical kinetics in
reaction networks is further described in the following example.

Example 1 (Chemical kinetics). In mass action chemical reaction networks, the net rate
equation for a concentration of one component i in one reaction involving n substances
indexed in N is split into a difference of a forward and a backward reaction rate, each having
the form

r±
i
= γ±

n∏

j=1

x
s±

j

j
= e

∑

j s±
j

ln x j+lnγ± (2.10)

where ± stands either for the forward or backward rate, and γ± > 0 is the associated for-
ward/backward reaction constant. The weights s±

j
> 0 are stoichiometric coefficients. The

representation (2.10) has been instrumental in the studies [vRJ13a],[vRJ13b],[Yon12] that
shed light on a systems theoretic structure of chemical reaction networks: Introducing the
density vector ρ, with ρi =

xi

x̄i
, i ∈ N , under a detailed balance assumption on the equilibrium

concentrations x̄ , it can be shown that
∑

j

s±
j

ln x j + lnγ± =
∑

j

s±
j

lnρ j.

Observe that

e
∑

j s±
j

lnρ j = e
ln
∏

j ρ
s±
j

j = gmw(ρ),

i.e., the (forward or backward) reaction rate has the functional structure of a (non-
normalized) weighted geometric mean.

Motivated by the application Example 1 we extend the polynomial consensus protocol
(2.9) by the forward backward rate constants γ+ > 0 and γ− > 0, cf Example 1 to obtain the
reaction rate network protocol ODE

ẋ i = γ
+
i

r+(x)− γ−
i
r−

i
(x ), i ∈ N . (2.11)

Clearly (2.11) reduces to (2.9) when γ+
i
= γ−

i
= 1 for all i ∈ N .

2.3.2 Entropic consensus protocol

The entropic protocol is governed by a vector field that is represented by a set of negative
(weighted) divergences between local states x i and connected nodes’ states x j, such that

ẋ i = −
∑

j∈N+
i

wi j x i ln
x i

x j

. (2.12)
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2 Consensus driven by the geometric mean and chemical reaction networks

The term “entropic” refers to the fact that a local vector field (2.12) is an entropic quantity.
More precisely, it has the structure of negative relative entropy or information divergence
between the local state x i and the adjacent states x j, j ∈ N+

i
. Relative entropy as divergence

from a positive vector x to another positive vector y , both such that their 1-norms equal one,
(i.e., these are probability mass vectors), is defined as

Dent(x ||y) :=
∑

i

fR(x i|yi), where fR(a|b) := a ln
a

b
,

see for instance [CT91].
The entropic protocol can be formulated as the geometric mean version of the linear con-

sensus protocol using a coordinate transformation, with coordinate transform taken as the
scalar function that leads to the least-squares optimization characterization of the consid-
ered mean; for the geometric mean, this is the logarithm, while for the arithmetic mean no
coordinate transformation is required, see (2.2) with (2.3).

Writing the consensus protocol in logarithmic coordinates leads for each i ∈ N to the ODE

d

dt
ln x i =

1

x i

ẋ i =
∑

j∈N+
i

wi j(ln x j − ln x i)

⇔ ẋ i = x i

∑

j∈N+
i

wi j(ln x j − ln x i),

which is the entropic protocol (2.12), as

x i

∑

j∈N+
i

wi j(ln x j − ln x i) = −
∑

j∈N+
i

wi j fR(x i, x j).

As we shall show, the significance of the entropic protocol arises from the situation that
the asymptotically reached consensus value is given by the geometric mean of the initial
condition. Hence, this protocol provides an analog distributed computation routine to solve
the minimization (2.1) associated with the geometric mean.

2.3.3 Scaling-invariant consensus protocol

The scaling-invariant protocol has the form of a LTI consensus system however following
log-linear updates; it is given by the component ODE

ẋ i =
∑

j∈N+
i

wi j(ln x j − ln x i), i ∈ N . (2.13)

The scaling invariant protocol (2.13) is an instance of the more general type of mean-driven
network protocols given by the class

ẋ i =
∑

j∈N+
i

wi jsgn(x j − x i)d(x j, x i), (2.14)

where the metric to be chosen is the hyperbolic metric dH associated to the optimization
characterization of the geometric mean, see Section 2.2.
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The general metric driven equation (2.14) can be motivated from a system thermodynamic
viewpoint; in [HH08] a network protocol is proposed with pairwise interactions of the form
f (x i, x j), where f is locally Lipschitz continuous and assumed to satisfy the negativity condi-
tion (x i − x j) f (x i, x j) ≤ 0, f (x i, x j) = 0 if x i = x j. According to the authors this assumption
implies that some sort of energy or information flows from higher to lower levels thus this
condition is reminiscent of a “second law”-like inequality in thermodynamics.
We observe that this negativity hypothesis is naturally fulfilled by a metric interaction form
as in (2.14): for any two states the sign of the terms (x i − x j) and f (x i, x j) must differ.
Hence, for two arguments x i, x j, f has the sign sign(x j− x i). Therefore, we get the structure
f = sign(x j − x i) fres with residual part required to be positive definite. The choice fres = d,
i.e., the residual part is a metric function, follows naturally. However, a metric structure is
not necessary, only sufficient for this condition to hold.

Example 2. When the metric chosen in the local ODEs is the Euclidean distance, we re-
cover the linear consensus protocol. Olfati-Saber and Murray’s nonlinear consensus protocol
[SM03a],

ẋ i =
∑

j∈N+
i

wi jφ(x j − x i),

whereφ is a continuous, increasing function that satisfiesφ(0) = 0, is a subclass of a network
dynamics (2.14). The nonlinear interaction in phase averaging, φ(·) = sin(·) on the open
interval ]−π/2,π/2[ is a famous example.

We adopt the term "scaling-invariant" as the right-hand-side of (2.13) is invariant under
scaling, i.e., for any c > 0,

ẋ i =
∑

j∈N+
i

wi j(ln cx j − ln cx i) =
∑

j∈N+
i

wi j

�

ln
cx j

cx i

�

=
∑

j∈N+
i

wi j(ln x j − ln x i).

Scaling is a fundamental transitive group action besides rotation and linear translation,
important in constructing homogeneous spaces. With the property of being scaling-invariant,
(2.13) is a third fundamental consensus protocol added to the consensus on the circle with
interactions defined by sinusoidal coupling and consensus on linear space, defined by the
basic linear consensus protocol. The linear consensus algorithm is invariant to translation
by a constant, i.e. x j − x i = (x j + c)− (x i + c). For states being configuration on the circle,
where each x i hence represents a phase angle, constant translation by an amount c of each x i

amounts to rotation by this angle given by c. Sinusoidal coupling, as interaction nonlinearity
for consensus on the circle, therefore results in rotation invariance, as the coupling sin(x j −
x i) = sin((x j+c)−(x i+c)). The natural configruation space for the scaling invariant dynamics
under (2.13) is the set of positive rays, where a positive ray is the line [x] := {cx , c > 0, x ∈
Rn
>0}. Scaling-invariance is a natural property for quantities described by the components

x i that are intensities, i.e., relative or specific measures, such as "power per unit area", or a
concentration, such as "mol per liter".
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2 Consensus driven by the geometric mean and chemical reaction networks

2.4 Dynamic behavior of novel network protocols

In this section we show global exponential convergence to a consensus configuration of the
network protocols on graphs G driven by the geometric mean, which in summary are given
by

ẋ i = −
∏

j∈N−
i

x
w j i

i
+
∏

j∈N+
i

x
wi j

i
, (2.15)

ẋ i = −
∑

j∈N+
i

wi j x i ln
x i

x j

, and (2.16)

ẋ i =
∑

j∈N+
i

wi j(ln x j − ln x i). (2.17)

For protocols (2.16) and (2.17) we characterize the reached consensus value analytically. We
further give a convergence proof and derive fixed point conditions for the general reaction
network protocol

ẋ i = −γ−i
∏

j∈N−
i

x
w j i

i
+ γ+

i

∏

j∈N+
i

x
wi j

i
, i ∈ N . (2.18)

The conditions we derive are reminiscent of the Wegscheider relation in chemical reaction
networks.

2.4.1 Agreement and convergence under consensus protocols

To study stability of fixed-points we shall make use of the logarithmic mean, its properties
and the mean value theorem: The logarithmic mean of two positive real numbers a, b is
defined as

lgm(a, b) :=
a− b

ln a− ln b
.

The logarithmic mean is symmetric in both arguments, i.e., lgm(a, b) = lgm(b, a), and it
is positive. The mean value theorem states that for a continuously differentiable function
f : [a, b] ⊆ R→ R, there exists a ξ ∈ [a, b] such that

∇ f (ξ) =
f (b)− f (a)

b− a
.

With f = ln, we get the particular identity lgm(a, b) = ξ, where 0< a ≤ ξ≤ b.
The logarithmic mean and its inverse take positive and finite values for positive and finite

arguments. For approaching positive real arguments, we further have

lim
b→a

ln b− ln a

b− a
= lim
ε→0+

ln(a+ ε)− ln a

ε
¬ ∇ lnξ|ξ=a =

1

a
,

so that limb→a lgm(a, b) = a > 0.

Theorem 1 (Convergence to consensus). Consider network protocols (2.15)-(2.17) with ini-

tial conditions restricted to Rn
>0. If the underlying digraph is strongly connected, then protocols

(2.16) and (2.17) converge exponentially fast to a consensus configuration. If in addition the

weighting is balanced, then protocol (2.15) converges exponentially fast to a consensus state. In

all three cases the equilibrium x̄1 has agreement value mini∈N x i(0) < x̄ <maxi∈N x i(0).
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2.4 Dynamic behavior of novel network protocols

Proof. We start with (2.15) from where the two other cases shall follow. As r+
i

and r−
i

, as
defined in (2.7) and (2.8), are positive, we can expand the protocol (2.15) with the logarithm
of these rates, so that,

ẋ i = r+
i
− r−

i
=

r+
i
− r−

i

ln r+i − ln r−i

�

ln r+
i
− ln r−

i

�

= lgm(r+
i

, r−
i
)





∑

j∈N+
i

wi j ln x j −
∑

j∈N−
i

w ji ln x i



 (2.19)

= lgm(r+
i

, r−
i
)
∑

j∈N+
i

wi j

�

ln x j − ln x i

�

. (2.20)

In going from (2.19) to (2.20) we made use of balancedness of the weighting, so that
∑

j∈N−
i

w ji =
∑

j∈N+
i

wi j . Expanding the pairwise interactions by local pairwise state differ-
ences yields

ẋ i = lgm(r+
i

, r−
i
)
∑

j∈N+
i

wi j

ln x j − ln x i

x j − x i

�

x j − x i

�

, i ∈ N .

Define the matrix LX (x (t)),

[LX ]i j :=

�
−wi j lgm

−1(x j, x i), if j 6= i,
∑

j∈N+
i

wi j lgm
−1(x j, x i), j = i, i ∈ N ,

and R := diag{lgm(r+1 , r−1 ), lgm(r
+
2 , r−2 ), . . . , lgm(r+

n
, r−

n
)}.

Then, we get the vector-matrix representation for the polynomial ODE system,

ẋ = −R(x)LX (x)x . (2.21)

Next, we show that for positive initial conditions, the flow generated by the ODE system
(2.21) is well defined for all times: For x (0) ∈ Rn

>0, the matrix −LX (x(0)) by definition is
a Laplacian matrix with finite, non-negative and real off-diagonal elements, as the branch
weights are non-negative and the logarithmic mean of positive, real and finite arguments
is positive, real and finite. This follows from the mean value theorem: For x i, x j ∈ R>0,
lgm−1

(x i, x j) =
1
ξ > 0, as ξ is a value within the interval spanned by the positive real numbers

x i and x j. Hence for positive initial condition one can always find a threshold δX , such
that lgm−1(x i(0), x j(0)) ≥ δX > 0. The diagonal matrix R(x(0)) is positive definite, as for
positive initial conditions r+

i
and r−

i
are positive, so that lgm(r+

i
, r−

i
) > 0 as well, with value

in between the two rates, again by the mean value theorem. Hence, with positive initial
condition, one can always find a lower bound δR > 0, such that lgm(r+

i
, r−

i
)|t=0 ≥ δR > 0.

Therefore, the matrix R(x(0))LX (x (0)) is a Laplacian matrix characterizing a “virtual” graph
with non-negative finite entries, and non-trivial “virtual” branch weights that are bounded
away from zero by a threshold value δ such that δ ≥ min( j,i)∈B{wi j} · δR · δX > 0. Hence,
at t = 0 the polynomial ODE system defines a consensus network. By definition, the flow
map of a consensus system is a stochastic matrix, which is a positive monotone map that
leaves Rn

>0 invariant, cf., e.g., [SSR10] for this monotonicity fact in consensus theory. Thus,
trajectories starting in Rn

>0 will remain in this set, so that [RLX ](x(t)) is well-defined for all
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2 Consensus driven by the geometric mean and chemical reaction networks

t ≥ 0, and it characterizes a linear time-varying consensus network, where the variability
of “‘virtual” branch weights is endogenously determined as a function of state trajectories,
which are parameterized by time as a free parameter.

As the graphG on which the protocols run is strongly connected by hypothesis, the “virtual”
graph associated to the dynamic Laplacian [RLX ](·) is uniformly connected at each time
instant for all x ∈ Rn

>0. Therefore, the polynomial network protocol converges globally and
exponentially to a consensus configuration x̄ ∈ span{1}, according to Proposition 1.

Now we consider protocol (2.16) and relax the constraint of balanced to arbitrary weight-
ing of the strongly connected graph. Define the matrix X(x) := diag{x1, x2, . . . , xn}. Protocol
(2.16) can be written as

ẋ i = x i

∑

j∈N+
i

wi j lgm
−1(x i, x j)(x j − x i)

⇔ ẋ = −X(x )LX (x)x . (2.22)

The matrix XLX is a Laplacian matrix for all parameterizations, by the same arguments as
before, so that also the entropic protocol (2.16) converges to a consensus configuration with
exponential speed on the positive orthant.

The last protocol (2.17) can be written as

ẋ = −LX (x (t))x ,

which again is a linear time-varying consensus system with endogenously determined vari-
ability of the weighting. Hence, the system converges to consensus with exponential speed
on the positive orthant, as well.

Let us turn to the last statement regarding the exponentially fast reached consensus value.
All three nonlinear protocols can be brought to a linear consensus form on a dynamically
weighted but strongly connected “virtual” graph. By standard linear consensus theory, the
function maxi∈N x i −mini∈N x i is a (strict) Lyapunov function [Mor05]. Hence, the maximal
state value is decreasing, and the minimal state value is increasing, so that the consensus
value must lie in between the initial maximum and minimum state values.

This proof technique is of interest in its own right: we make use of the Laplacian struc-
ture arising from (algebraic) interconnections on a graph in shifting nonlinearity associated
with nodes to a nonlinearity in pairwise interactions across branches, leading to a “virtual”
dynamic graph on which the nonlinear time-invariant network dynamics appear as linear
time-varying consensus systems.

Remark 1 (Time-varying graphs and uniform connectedness). We note that the transforma-
tions in the proof of convergence do not rely on time-invariant weightings. This suggests that
convergence to consensus should take place also under the weaker assumption of uniform
graph connectivity.

In the following result, we analytically characterize the consensus value for the entropic
consensus network.
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2.4 Dynamic behavior of novel network protocols

Theorem 2 (Weighted geometric mean consensus). Consider a weighted digraph that is

strongly connected, with left eigenvector of the associated Laplacian L, π ∈ Rn
>0, such that

π⊤L = 0. Then, the consensus dynamics (2.16) starting at any x (0) ∈ Rn
>0 asymptotically

reaches a fixed point x̄1, with

x̄ = gmw(x(0)) =
n∏

i=1

x
π̂i

i
(0),

where π̂ := π/|π|1, is the Perron vector of L.

Proof. The proof concerning convergence to consensus is analogous to the previous proof
of Theorem 1, where the nonlinear time-invariant system of equations is transformed to a
linear time-varying consensus form, with endogenously determined variability of the branch
weights. In particular, let us start from the linear representation of the protocol in vector
matrix form (2.22), which can be re-written as

X−1(x )ẋ = LX (x )x ⇔
d

dt
ln x = L ln x ,

as d
dt

ln x(t) = 1
x
ẋ and the Laplacian structure allows to shift the nonlinearity from inverted

logarithmic mean components in the weightings to logarithmic coordinates at nodes such
that

LX x = L ln x .

Note that the inverse X−1 exists, as it is a diagonal matrix having positive real diagonal ele-
ments.

Next, we prove that the weighted geometric mean is the consensus value. By hypothesis,
π is in the left kernel of L, so that π⊤L ln x = 0. Equivalently,

d

dt
[π⊤ ln x(t)] = 0⇒ π⊤ ln x(0) =

n∑

i=1

πi ln x i(t) = const. (2.23)

Using the fact that for t →∞ a uniform state is reached, together with basic arithmetics for
the logarithm, the invariance property (2.23) implies that

n∑

i=1

πi ln x̄ =

n∑

i=1

πi ln x i(0)

⇔ ln x̄ =
1

∑n

i=1πi

n∑

i=1

πi ln x i(0) = ln
n∏

i=1

x i(0)
π̂i .

Solving for the consensus value yields,

x̄ = exp

�

ln
n∏

i=1

x i(0)
π̂i

�

¬ gmw(x(0)),

which completes the proof.

Corollary 1. Consider the scaling invariant protocol (2.17) in the setting described in Theorem

2. The asymptotically reached consensus value is the weighted arithmetic mean of the initial

condition with weights given by the components of the Perron vector, i.e., x̄ =
∑n

i=1 π̂i x i(0).
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2 Consensus driven by the geometric mean and chemical reaction networks

Proof. The proof follows from noting that
∑n

i=1 π̂i x i(t) remains invariant along the dynamics.

Remark 2. Regarding the asymptotically reached agreement value of the polynomial con-
sensus protocol, the maximum and minimum initial state values provide upper and lower
bounds by standard linear consensus theory. However, a numerical study presented in Sec-
tion 2.5.2 implies tighter results for the consensus value, with interesting application to the
solution of elliptic integrals.

2.4.2 Convergence under reaction network protocol

Define the vector q = (q1, q2, . . . , qn), qi =
γ+

i

γ−
i

. The pseudo-inverse of L is denoted L†.

Theorem 3 (Fixed points and asymptotic behavior of reaction network protocol). Let G be a

strongly connected and balanced graph. Consider the reaction network protocol (2.18) written

with forward and backward rates R+ and R− such that as

ẋ i = γ
+
i

∏

j∈N+
i

x
wi j

i
− γ−

i

∏

j∈N−
i

x
w j i

i
= R+

i
(x)− R−

i
(x). (2.24)

We assume that states are positive, i.e., x ∈ Rn
>0. The following holds:

(i) Given an initial condition, the system converges to a unique x ∗ if and only if
∏

i qi = 1.

Under this condition, dynamics converge exponentially towards x ∗.

(ii) A fixed point x ∗ is a consensus point, i.e., x ∗ = x̄1, with x̄ > 0, if and only if q = 1.

(iii) If
∏

i qi < 1, then limt→∞ x (t) → 0, i.e., trajectories move and decelerate towards the

zero state, which is never reached.

(iv) If
∏

i qi > 1, then x (t) moves towards infinity.

Proof. As R+
i

and R−
i

are positive, for balanced weightings, we can express the rate equation
(2.24) using the expansion approach, as in the proof of Theorem 1, equivalently as

ẋ i = lgm(R+
i
, R−

i
)





∑

j∈N +
i

wi j

�

ln x j − ln x i

�

+ lnqi



 , (2.25)

where we recall that lgm(R+
i
, R−

i
) =

R+
i
−R−

i

lnR+
i
−lnR−

i

.

Define the matrix Rγ(x) := diag({lgm(R+
i
, R−

i
)}i∈N). Then, (2.25) has the vector matrix form

ẋ = Rγ(x) (−L ln x + ln q) . (2.26)

Next, let us split the external input ln q into the component orthogonal to the vector 1,
denoted ξ⊥, and the component parallel to the one-vector, denoted ξ‖, such that we obtain
the orthogonal vector decomposition ln q = ξ⊥ + ξ‖. With that, the rejection from the one-
vector is in the image of the Laplacian matrix and therefore it can be expressed as

ξ⊥ = L ln x̄ , x̄ ∈ Rn
>0. (2.27)
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2.4 Dynamic behavior of novel network protocols

Conversely, the projection onto 1 satisfies ξ‖ ∈ ker(L), i.e., it is proportional to the one-vector,
and element of the set of consensus states {c1, c ∈ R>0}.

Using this decomposition together with (2.27) we can further write (2.26) as

ẋ = Rγ
�

−L ln x + ξ⊥ + ξ‖
�

= Rγ
�

−L (ln x − ln x̄ ) + ξ‖
�

=

⇔ ẋ i =
x̄ i

x̄ i

[Rγ]ii



ξ
‖
i +

∑

j∈N+
i

wi j

�

ln
x j

x̄ j

− ln
x i

x̄ i

�


 , i ∈ N .

Introducing the density notation ρ, with ρi =
xi

x̄i
for all i ∈ N , expanding by ρ j − ρi and

division by x̄ i results in the component and vector matrix consensus equation

ρ̇i =
1

x̄ i

[Rγ]ii



ξ
‖
i
+
∑

j∈N+
i

wi j lgm(ρ j,ρi)
�

ρ j −ρi

�





⇔ ρ̇ = −LR(x ,q)ρ + X̄
−1

Rγ(x)ξ
‖, (2.28)

where X̄= diag{ x̄1, . . . , x̄n} and LR(x ,q) is the irreducible Laplacian matrix function

[LR(q , x )]i j :=

(

− lgm(R+
i

,R−
i
)wi j

x̄i lgm(ρ j ,ρi)
, if j 6= i and ( j, i) ∈ B,

∑

j∈N+
i

lgm(R+
i

,R−
i
)wi j

x̄i lgm(ρ j ,ρi)
, if i = j.

Any equilibrium point x ∗ must satisfy ρ̇ = 0. This is the case if ξ‖ = 0, because then,
(2.28) reduces to the linear consensus system on a dynamics graph with weighting Lγ, which
by Proposition 1 converges with exponential speed to a consensus density vector, such that
limt→∞ρ(t) = ρ̄1, i.e., for all i ∈ N , x∗

i
= ρ̄ x̄ i. By standard consensus theory, this consensus

density value satisfies maxi∈N ρi(t = 0) ≤ ρ̄ ≤maxi∈N ρi(t = 0) [Mor04].
The projection of lnq onto 1 vanishes, i.e., ξ‖ = 0, if and only if ln q ⊥ 1, i.e.,

1⊤ ln q =

n∑

i=1

ln qi = ln

�
n∏

i=1

qi

�

= 0⇔
n∏

i=1

qi = e0 = 1.

This proves sufficiency of part (i). To see that it is also necessary, using (2.28), we observe
that stationarity in an equilibrium implies

0= −X̄
−1

RγL lnρ + X̄
−1

Rγξ
‖ ⇔ ξ‖ = L lnρ. (2.29)

This equivalence follows from multiplication with the inverse of X̄
−1

Rγ, which is well-defined,
as it is a positive definite diagonal matrix. The vector ξ‖ is a constant multiple of the one
vector, i.e., ξ‖ = ξ̄1, so that multiplication of (2.29) with the one-vector from the left yields
the contradiction

1⊤ξ‖1= nξ̄ = 1⊤L lnρ = 0, (2.30)

because n > 0 and x̄ i > 0, if ξ is not orthogonal to 1. Hence, ξ must be orthogonal to the
one-vector, in order to recover validity of the stationarity condition(2.30), i.e., ξ̄ = 0. Let us
find the explicit expression for ξ̄. The vector projection of ξ = ln q onto 1 is given by

ξ‖ = ξ̄1=
ξ⊤1

1⊤1
1 ⇔ ξ̄=

∑n

i=1 lnqi

n
= lngm(q). (2.31)
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2 Consensus driven by the geometric mean and chemical reaction networks

In order for lngm(q) = 0 to be true the geometric mean of the forward-backwared reaction
rate ratios must be one, i.e.,

gm(q) =

�
n∏

i=1

qi

� 1
n

= 1 ⇔
n∏

i=1

qi = 1.

This completes the proof of part (i).
Regarding part (ii), a consensus equilibrium is a fixed point so that

∏

i qi = 1 must holds.
Note that this is the case if q = 1. As shown in the proof of part (i), fixed points are consensus

densities ρ̄1, i.e.,
x∗

i

x̄i
= ρ̄ > 0, for all i ∈ N . For the state x ∗ to be a consensus state also x̄

must be a constant multiple of the one vector, i.e.,

x̄ = x̄1= exp(L† ln q). (2.32)

This requires L† lnq = c1 with c ≥ 0. That equality is true if and only be true if c = 0,
because ker(L†) = ker(L⊤) = {c1, c ∈ R}, i.e., no constant multiple of the one-vector, with
positive constant, can be obtained from the image of the pseudo-inverse of the balanced
Laplacian matrix L. Hence, (2.33) x̄ = 1, as exp(0) = 1, which is necessary and sufficient
for a consensus equilibrium.

If q = 1, ln q = 0 and (2.32) is true with. This completes the sufficiency part of the
consensus condition proof (ii).

To proof necessity of q = 1 for consensus, let us compute the value of lnq .
For arbitrary q > 0 we have

lnq = ξ‖ + ξ⊥
(2.31)
⇔ lnq − lngm(q)1= ξ⊥

ξ⊥=lnq

⇔ ξ⊥
i
= lnqi = ln

qi

gm(q)
, ∀i ∈ N . (2.33)

The component condition (2.33) is true if and only if gm(q) = 1, however, also
∏

i qi = 1,
that is,

�
n∏

i=1

qi

� 1
n

=

n∏

i=1

qi ⇔ qi = 1, ∀i ∈ N .

This completes the necessity part of the consensus condition proof (ii).
Regarding part (iii) and (iv), we note that if

∏

i qi 6= 1 no equilibrium point exists, as
shown in the argument based on (2.29): Then, recall that ξ‖ = ξ‖1, with ξ‖ = lngm(q) 6= 0,
cf. (2.31).

Regarding part (iii), note that gm(q) < 0 is equivalent to
∏n

i=1 qi < 0. Then, lngm(q) ≤ 0,
i.e., there is a constant negative velocity input to the network system. With the Laplacian
network dynamics part LRρ being contractive, the constant negative velocity input drives the
system state towards ever decreasing state values.
When ρ(t) ≤ 1, and also x (t) ≤ 1, the gains collected in Rγ become very small: The gains

are the logarithmic means of rates,
R+

i
−R−

i

lnR+
i
−lnR−

i

=: R′
i
, with R′

i
> 0 a value in the interval spanned

by R+
i

and R−
i
. For a component 0 < x i(t) << 1, R−

i
→ 0, and therefore, lnR−

i
→ −∞ and

R′
i
→ 0. The closer the system is to the origin, the smaller become gains in Rγ, and they
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decrease faster than linearly (rates are powers). Hence, the constant negative velocity input
ξ‖ therefore becomes ever smaller as it acts on ρ̇ via the rates Rγ, see (2.28), which become
vanishingly small. Eventually, trajectories are therefore directed towards the origin 0, which,
however, will never be reached: The logarithm of values nearing 0 from the positive real line
becomes infinite in magnitude.

The proof of (iv) follows analogous to (iii): If gm(q) > 0, or equivalently
∏n

i=1 qi > 0,
Then, lngm(q) ≥ 0. Therefore, a constant positive gain acts on the contractive network
dynamics for all times, so that trajectories grow towards infinity.

The results and proof of this Theorem lead to the following observations: The necessary
and sufficient equilibrium condition in Theorem 3 (i) has a remarkable correspondence in
physical chemistry: Chemical reaction networks that converge to equilibrium concentrations
are characterized by the condition on forward and backward reaction constants γ+

i
,γ−

i
, i =

1, 2, . . . , n indexing the reaction,

γ+1γ
+
2 · · ·γ+n

γ−1γ
−
2 · · ·γ−n

=

n∏

i=1

qi = 1. (2.34)

In chemistry, this equilibrium condition is known under the term detailed balance or
Wegscheider relation corresponding to systems that have stationary states with zero flux
[Qia06]. In contrast, for chemical reaction networks with

∏

i qi 6= 1 non-equilibrium sta-
tionary states may occur, indicating non-zero stationary flux, which is equivalent to the non-
stationarity condition of Theorem 3 (iii) and (iv).

As the proof of this Theorem shows, Wegscheider’s equilibrium condition (2.34) essentially
is an orthogonality condition for the vector collecting logarithmic ratios of forward/backward
reaction rates to the consensus ray [1]. Only if there is a trivial solution to this orthogonality
constraint 1⊤ ln q = 0, which is the consensus condition, when q = 1, i.e., it has no or-
thogonal component to the consensus ray, the system has a flat solution with all equilibria
components equal.

The part of non-identity ratios qi =
γ+

i

γ−
i

that drives the equilibrium solution away from a

consensus solution is the component ξ⊥ = ln qi

gm(q) = ln qi− lngm(q). That is the logarithmic
deviation of the reaction constant ratio from the geometric mean of all reaction constants.

Remark 3. We conjecture that in cases (iii) and (iv), the asymptotic behavior is characterized
by a motion towards a constant line. The internal Laplacian network dynamics contract the
diameter of a cone that moves along trajectories with diameter maxi lnρi−mini lnρi. Hence,
the maximal change of direction of the solution decreases with time so that solutions tend
towards constant lines. This argument is along with the recent idea of differential Lyapunov
analysis as presented by Forni and Sepulchre in [FS14]. We illustrate this behavior using
numerical simulation examples in Section 2.5.3.

2.5 Numercial examples and agreement value study

In this section, we illustrate the derived convergence results using numerical simulations. We
further demonstrate in a simulation study a relationship between the solution of an elliptic
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2 Consensus driven by the geometric mean and chemical reaction networks

integral and the asymptotic behavior of the polynomial network dynamics. For polynomial
reaction dynamics, simulation results indicate stability properties of certain rays along which
solutions converge under non-equilibrium conditions.

2.5.1 Consensus driven by the geometric mean

First, we compare the protocols of polynomial type (2.15), of entropic type (2.16) and the
scaling-invariant one (2.17) for a digraph given in Fig. 2.1. This digraph is strongly connected
and has balanced branch weights.

3

21 4 5
2

2
1

1

3

1

2

3

4

3

1 1

Figure 2.1: Strongly connected, balanced digraph as it is used in the numerical case study

For each of these protocols we compute trajectories starting at x (0) = [6.5, 0.2, 3.2, 1, 4.4].
In accordance to Theorem 1, the novel network protocols are indeed consensus protocols
that converge to a uniform equilibrium state x̄1. As the left-Perron vector for the balanced
weighting is a uniform vector, the LTI consensus system must solve the average consensus
problem with x̄ = am(x (0)) = 3.06, the scaling-invariant protocol, according to Corollary 1,
as well, and solution curves of the entropic protocol must converge to the geometric mean
of the initial state, gm(x(0)) = 1.7886 = x̄ , as shown in Theorem 2. Our observations are
confirmed by Fig. 2.2.

Next, let us illustrate the results in Theorem 2 and Corollary 1 on a digraph which is
strongly connected but not balanced. We consider a weighted digraph described in Fig. 2.3,
which has Perron vector π̂ = [0.26, 0.14, 0.37, 0.09, 0.14].

The weighted arithmetic mean of the same initial condition using the Perron vector com-
ponents as weights is amw(x(0)) = 3.5884, and the weighted geometric mean becomes
gmw(x (0)) = 2.4444. Again, the simulation results for trajectories generated by the linear,
scaling invariant and entropic protocol as depicted in Fig. 2.4 confirm our observations.

Remark 4. Trajectories of the polynomial consensus system are not depicted in Figure 2.4,
as the underlying graph is not balanced, which, however, is a condition for convergence to a
consensus equilibrium point in Theorem 1.

2.5.2 Agreement values of the polynomial consensus protocol

In the following, we study the consensus value of the polynomial protocol on a normalized
balanced digraph using numerical simulations. We observe that the consensus value can
be upper bounded by the arithmetic mean of the initial state and lower bounded by the
arithmetic-geometric mean of the arithmetic mean and the geometric mean of the initial
condition.
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Figure 2.2: Component trajectories for polynomial (blue), entropic (red), scale invariant
(black), and standard linear consensus protocol (green) on a graph as depicted
in Fig. 2.1 with x(0) = [6.5, 0.2, 3.2, 1, 4.4]
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Figure 2.3: Strongly connected digraph with non-balanced weighting

The arithmetic-geometric mean agm(a, b) of two positive numbers a, b, can be defined as
the limiting point of a discrete time dynamical system, {ak, bk}k≥0, k ∈ N that satisfies the
algorithmic update rule

�

ak+1

bk+1

�

=

�

am({ak, bk})
gm({ak, bk})

�

. (2.35)

It is obtained as the limit

agm(a, b) := lim
k→∞

ak = lim
k→∞

bk, a0 = a, b0 = b;

The fixed-point iteration (2.35) is due to Carl Friedrich Gauss, who was concerned with
computing the perimeter of ellipses, which up until today is a topic of scientific discourse
[Adl12][BB87]. The arithmetic-geometric mean is related to the solution of a complete el-
liptic integral, as

agm(a, b) =
π

2

1

I(a, b)
, I(a, b) :=

∫ π
2

0

dϕ
Æ

a2 cos2ϕ + b2 sin2ϕ
,

see, e.g., [Car71].
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Figure 2.4: Component trajectories for the entropic (red), scaling-invariant (black), and stan-
dard linear consensus protocol (green) on a graph as depicted in Fig. 2.3 with
x (0) = [6.5, 0.2, 3.2, 1, 4.4]

We first consider completely connected normalized balanced graphs that differ only in
the number of nodes, such that N ∈ {2, 3, . . . , 50}. For each of these graphs we run the
polynomial protocol for 50 random initial conditions sampled from the interval ]0, 10[, such
that am(x (0)) = c1, and gm(x(0)) = c2, where c1 > c2 > 0. In Fig. 2.5 the reached agreement
values for this experiment are plotted as black circles. The red squares show the arithmetic
mean value of the initial condition, sampled such that c1 = 4 and the blue squares represent
the geometric mean of the initial states, sampled such that c2 = 3. We observe that for each
graph, every of the reached consensus values lies above the green line, which appears to be
a tight and strict lower bound. We find that the value of the green marks computes as the
arithmetic-geometric mean of the arithmetic and the geometric mean of the initial state, i.e.,
its value corresponds to the number agm(c1, c2).

To verify that this observation is independent of the set mean value constraints c1, c2,
we next consider the polynomial protocol on a completely connected, balanced, normalized
graph with number of nodes being fixed at N = 5. We are interested in the values of the ratio
ref
x̄

, where ref ∈ {am(x(0)),gm(x(0)),agm(am(x (0)),gm(x(0)))}. The closer this fraction
is to one, the better is “ref” suited as an estimate for the asymptotically reached consensus
value, given on the basis of the initial data.

In Fig. 2.6 we plotted this ratio ref
x̄

for 500 random initializations sampled from the interval
]0, 10[. The red dots mark this ratio for ref = am(x(0)), the blue ones for ref = gm(x(0)),
and the green ones mark the ratio for reference taken as arithmetic-geometric mean of the
arithmetic mean and the geometric mean of the initial state. We can confirm the previous
observation that for each trajectory, the arithmetic mean of the initial condition is an upper
bound for the consensus value (red dots mark above one), the geometric mean a lower bound
(blue dots mark below one), and so is the arithmetic-geometric mean (green dots mark below
one), whereas this value is a tighter lower bound than the geometric mean. In particular, the
arithmetic-geometric mean bound appears to be, in many cases, a reasonable estimate of the
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Figure 2.5: Consensus values (black) for all-to-all normalized balanced graphs for 50 ran-
dom initial conditions such that the arithmetic mean of the initial condition (red
square) takes value 4 and the geometric mean (blue square) has value 3. The
green marks represent agm(3, 4).

achieved consensus value as the green dots cluster very near to the black line.
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Figure 2.6: Consensus ratios ref/x̄ , ref = am(x(0)) (red), ref = gm(x(0)) (blue), ref =
agm{am(x(0)),gm(x(0)} (green), and ref = x̄ (black) for 500 simulations of a
normalized complete balanced graph on 5 nodes with initial conditions randomly
sampled from the interval ]0, 10[.

Eventually, we test if the agm as lower bound is independent of the normalization of the
weighting and independent of the number of connected nodes that is if it is a lower bound
for the consensus value for every (N , d)-regular graph, i.e., balanced graphs on N nodes
with d ∈ N nodes being connected to each node i ∈ N . In Fig. 2.7 the ratio agm(c1, c2)/x̄ ,
c1 = am(x 0), c2 = gm(x 0) is plotted for N = 30, d ∈ {2, 3, . . . , 22}, where the red dots
mark the defined ratio for non-normalized unweighted balanced graphs and the blue dots
mark this ratio for normalized ones. For each graph we computed 30 trajectories for random
initial conditions sampled as before. We see that the agm lower bound holds only for the
normalized case; it is independent of the degree d.
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2 Consensus driven by the geometric mean and chemical reaction networks
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Figure 2.7: Ratio agm(c1, c2)/x̄ , c1 = am(x 0), c2 = gm(x 0) for (N , d)-regular graphs, N = 30,
d ∈ {2, 3, . . . , 22}; non-normalized weighting (red) and normalized weighting
(blue).

2.5.3 Behavior of the reaction network protocol

In the following, we illustrate the behavior of the reaction network protocol, where forward
and backward reaction rates differ from one. The exponential convergence behavior to a
fixed point as characterized in Theorem 3 (i) and (ii) essentially is based on the proof of
convergence of a linear(time-varying) consensus system either in direct (part (ii)) or in den-
sity coordinates (part (i)). This consensus convergence behavior of polynomial interactions
across a balanced digraph is covered in the discussion in section 2.5.1. Therefore, next,
we consider the cases in Theorem 3 (iii) and (iv), where the asymptotic behavior is non-
stationary, and we demonstrate the validity of the "contraction towards a ray" conjecture in
Remark 3.

First let us consider the case where the forward and backward reactions are given as el-
ements of the ordered sets γ+ ∈ {111} and γ− ∈ {234}. Hence, q⊤ = (1

2 , 1
3 , 1

4), so that
∏

i qi =
1

12 < 1. According to Theorem 3 (iii), trajectories asymptotically should tend to-
wards the origin.

In Fig.2.8 we consider a complete 3-graph with unit weighting, i.e., an all-to-all connected
graph with three nodes having edge weights equal one.

We can confirm that solutions tend towards the origin, and every trajectory contracts to-
wards a single constant line, given by the green ray in Fig. 2.8. This supports the conjecture
in Remark 3.

Next, we show the effect of the constant graph weighting on the line along which trajec-
tories converge towards the origin. In Fig. 2.9 the reaction rate constants are equivalent
to those used in Fig. 2.8. The all-to-all connected 3-graph has weighting w12 = w21 = 3,
w23 = w32 = 4, and w13 = w31 = 2. Again we sample ten different initial conditions, and
confirm the result in Theorem 3 (iii), as solutions tend towards zero. Comparing the enve-
lope of 10 solutions in Fig. 2.8 with those in Fig. 2.9 we can observe that in both cases it
contracts. However, the envelope over time in the latter figure forms a strongly bent cone
that shrinks towards the origin. Furthermore, the angle of the constant line along which tra-
jectories tend towards zero differs from that the case in Fig. 2.8. Despite the minor change
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Figure 2.8: Ten trajectories generated by a reaction network protocol (2.24) on a complete
3-graph with unit weighting, γ+

i
∈ {1, 1, 1}, γ−

i
∈ {2, 3, 4}. The blue dots mark

the initial conditions. The red dashed line is the ray [1] and the green dashed ray
marks the constant line along which all solutions converge towards the origin.
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Figure 2.9: Ten trajectories generated by a reaction network protocol (2.24) on a complete
3-graph with non-unit weighting, γ+

i
∈ {1, 1, 1}, γ−

i
∈ {2, 3, 4}. The blue dots

mark the initial conditions. The red dashed line is the ray [1].

in constant graph weighting, this effect is firm, which results from the constant edge weights
acting on the state in the exponent as the power.

Now, let us again consider the case of unit weighting on a complete 3-graph, but change
the forward and backward reaction constants. For the 10 solutions plotted in Fig. 2.10, we
used the constants γ+

i
= 1, γ−

i
= 2, for all i ∈ N . Hence,

∏

i qi =
1
23 < 1. According to

Theorem 3 (iii) solutions should tend towards zero, which is confirmed in Fig. 2.10.
Interestingly, in this scenario, where for each component equation the reaction constant

ratio is equal, so that q ∈ [1], the ray along which trajectories move towards the origin is
also the consensus ray.

Let us turn the case covered in Theorem 3 (iv), where
∏

i qi > 0. In that scenario, trajec-
tories should move towards infinity. The behavior of ten solutions generated by the reaction
rate protocol on complete 3-graphs with unit weights confirms this observation in Fig. 2.11
and Fig. 2.12.
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Figure 2.10: Ten trajectories generated by a reaction network protocol (2.24) on a complete
3-graph with unit weighting, γ+

i
∈ {1, 1, 1}, γ−

i
∈ {2, 2, 2}. The blue dots mark

the initial conditions. The red dashed line is the ray [1].

While in the case of Fig. 2.11, the reaction constants are γ+
i
= 1, and γ−

i
∈ { 2

10 , 3
10 , 4

10},
such that

∏

i qi =
1000
24 > 1, in Fig. 2.12 γ+

i
= 1 but γ−

i
= 1

2 for all i ∈ N , and
∏

i qi = 8 > 0.
In the latter case, again the vector q ∈ [1] and we see that solutions grow the constant line
represented by the consensus ray. In the former example q 6∈ [1] and we observe a motion
towards a ray different from the consensus set.

In all cases of non-stationary behaviors, we can observe a constant line that attracts so-
lutions generated by the reaction rate protocol on balanced graphs. We also observe that
in both cases of Theorem 3 (iii) and (iv), solutions are attracted by the consensus set if the
vector q is an element of the consensus set (but not equal to the unit vector).

2.6 Gradient and optimization viewpoint

This section demonstrates that all three geometric mean-driven consensus networks can be
embraced in a common setting of a projected gradient flow of free energy. On that basis, we
provide a novel characterization of the geometric mean in terms of a constrained optimization
problem.

2.6.1 Free energy gradient flow

Free energy stored in a state x w.r.t. another positive vector y can be defined as the sum-
separable function [vRJ13a]

F(x ||y) :=
n∑

i=1

x i

�

ln
x i

yi

− 1
�

+ const .

For elements that are member of the set of vectors having total mass m ∈ R>0,

Dm :=

¨

x ∈ Rn
>0 :

n∑

i=1

x i = m

«

,
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Figure 2.11: Ten trajectories generated by a reaction network protocol (2.24) on a complete
3-graph with unit weighting, γ+

i
∈ {1, 1, 1}, γ−

i
∈ {0.2, 0.3, 0.4}. The blue dots

mark the initial conditions. The red dashed line is the ray [1] and the green
dashed ray marks the constant line along which all solutions converge towards
the origin.

free energy is, up to an additive constant, a relative entropy; it coincides with the usual
relative entropy known in information theory for vectors that are elements of the set of
probability distribution vectors, Dm=1, by setting const = 1, so that F(x ||y) =

∑n

i=1 x i ln xi

yi
.

Remark 5. Within the literature on network systems, relative entropy appears in the context
of distributed estimation and detection algorithms, where the states represent discrete prob-
abilities, see, e.g., [BC14; QJX15; GZ86; NOU15; SJ13; RJ15]. Free energy is used in the
study on mass-action chemical reaction networks [vRJ13a].

In what follows, we show that the polynomial, entropic, and scaling-invariant consensus
dynamics are all instances of a particular type of free energy gradient flow.

To start with, an ODE governing a Riemannian gradient (descent) flow in Rn has the
generic form G(x)ẋ = −∇E(x ) where E : Rn → R is the potential and G : Rn → Rn×n is
a positive definite matrix function smoothly varying in x . It defines the infinitesimal metric
dx ·G(x)dx in which a system is a gradient descent flow of E, so that G−1 defines the inverse
metric, cf., e.g., [SPB14].

Let L be the symmetric Laplacian of an undirected connected graph. Using the eigen-
decomposition L = VΛV⊤, where Λ := diag{λ1,λ2, . . . ,λn} is the diagonal matrix collecting
eigenvalues of L, and V collects orthogonal eigenvectors each having 2-norm one, we have

Lx = VΛV⊤x =

n∑

i=1

v i λi v i · x , (2.36)

which is a projection of a vector x onto the set of distributions Dm, m = |x |1. To see this,
recall that a projection onto this set has the form

ProjDx =

n−1∑

i=1

x · ṽ i

ṽ i · ṽ i

ṽ i,
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Figure 2.12: Ten trajectories generated by a reaction network protocol (2.24) on a complete
3-graph with unit weighting, γ+

i
∈ {1, 1, 1}, γ−

i
∈ {0.5, 0.5, 0.5}. The blue dots

mark the initial conditions.

where {ṽ1, ṽ2, . . . , ṽ n−1} are linearly independent vectors that span the hyperplane Dm. This
setting is given in (2.36), as λ1 = 0, while λi > 0, i = 2, 3, . . . , n, and v1 is orthogonal to any
set Dm.

Given a sum-separable convex functionφ : Rn
>0→ Rwe introduce for the gradient∇φ pro-

jected onto Dm, m = |∇φ|1, the notation ∇Dφ = L∇φ. Observe that the gradient ∇F(x ||1)
is given by the vector ln x . Using the projected gradient notation, we can write the protocols
(2.15)-(2.17) in same order in vector matrix form as

ẋ = −R(x)L ln x = −R(x)∇DF(x ||1)
ẋ = −X(x)L ln x = −X(x)∇DF(x ||1)
ẋ = −L ln x = −∇DF(x ||1),

with L the constant coefficient Laplacian, and R(x ),X(x) as in the proof of Theorem 1. As
R(x) and X(x) are positive definite symmetric matrix functions for x ∈ Rn

>0, they define
Riemannian metrics via their inverses.

The scaling-invariant protocol on an undirected graph generates a projected gradient flow
in the usual Euclidean metric setting. Therefore, according to the preceding discussion, on a
completely normalized graph trajectories must evolve along the steepest descent directions
of free energy on the appropriate simplex of constant mass distributions.

In Fig. 2.13 this free energy gradient property is illustrated for the scaling-invariant pro-
tocol running on such a graph over three nodes. The gray outlined triangle marks the set of
mass-3 distribution vectors. Color-coded are iso-level curves of F(x ||1) =

∑

i x i(ln x i−1)+3.
This illustration also highlights the appropriateness of the n−1-dimensional set of mass distri-
bution vectors within positive n-space in considering the free energy functional: Free energy
is convex and permutation invariant on this set with minimum obtained at the consensus
state. Three trajectories are plotted in black with initial conditions marked by a cross. We
see that solution curves indeed follow the steepest gradient descent directions of free en-
ergy on Dm=3 being directed towards the minimum of this function, which is obtained at the
consensus point.
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Figure 2.13: Three trajectories generated by scaling-invariant protocol converging to consen-
sus in a free energy potential on the simplex Dm=3

2.6.2 Constrained nonlinear optimization view

Motivated by the preceding results for the entropic protocol, we provide a novel optimization
characterization of the geometric mean linking dynamic problems in consensus theory with
static problems in nonlinear constrained optimization.

Theorem 4 (Novel characterization of the geometric mean). The geometric mean of a vector

x ∈ Rn
>0 is characterized as the value am(x ∗), where

x optimal = arg min
y∈Rn

>0

F(y ||1), subject to
n∏

i=1

yi =

n∏

i=1

x i. (2.37)

That is, x ∗ minimizes free energy on the manifold of states having a constant product of com-

ponent values. In particular, this vector has the form of a consensus state with agreement value

precisely the geometric mean of x .

Proof. Define the Lagrangian

L (y ,λ) = F(y ||1)−λ
�
∏

i

yi −
∏

i

x i

�

.

The solution of the constrained free energy minimization problem satisfies the first order
optimality conditions

∇λL =
n∏

j=1

x j −
n∏

j=1

y j = 0⇔
∏

j 6=i

y j =

∏n

k=1 xk

yi

, (2.38)

∇yi
L = ln yi −λ

∏

j 6=i

y j = 0, i ∈ N

which consequently leads to the solution characteristic

yi ln yi = λ

n∏

k=1

xk = constant , ∀i ∈ N . (2.39)
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The right-hand side in (2.39) is positive (the multiplier λ is positive and the values x i > 0
by assumption), and the function y ln y is increasing on the domain where it takes positive
values. Therefore, (2.39) has a unique solution and this solution is the same for all i ∈ N ,
i.e., a consensus state.

Next, we show that the agreement value of the consensus state is the geometric mean of
the input data x . Writing y = y1 and substituting into (2.38) yields

n∏

k=1

yk = yn =

n∏

k=1

xk⇔ y = gm(x ).

That is, if x ∈ Rn
>0, then the solution of (2.37) is x ∗ = gm(x)1, so that am(x ∗) = gm(x ).

Sum-separable energy functions play an axiomatic role in interconnected dissipative sys-
tems [Wil72] where they represent energy stored in local subsystems. In contrast, energy
functions of the interaction type usually represent power dissipated “across”, e.g., resistor
elements, see for instance [MDM16] for a further discussion. Hence, the free energy mini-
mization property seems to be the natural gradient setting for the time-continuous entropic
consensus network when seen as an analog circuit device solving a minimization problem.

2.7 Chemical reaction networks

We apply the proposed methods and results from the study of geometric mean-driven network
protocols to the application field of chemical reaction networks under mass-action kinetics
and propose a novel conductance element. This element is an alternative to the existing
chemical conductance formulation and motivated by the property of specifying dissipation
of Gibbs free energy across resistor elements in a mechanic that has functional equivalence
to heat exchange processes in classical thermodynamics.

2.7.1 Governing equation system and gradient form

Following [Yon12], a chemical reaction network of nr reactions and ns chemical substances,
is described by a set of reaction equations

s′
i1S1 + s′

i2S2 + . . .+ s′
ins

Sns

γ+
i

⇌
γ−

i

s′′
i1S1 + s′′

i2S2 + . . .+ s′′
ins

Sns
, (2.40)

where i = 1, 2, . . . , nr , Sk is the chemical symbol of the kth species, s′
ik
/s′′

ik
are the non-

negative stoichiometric coefficients of the kth species in reaction i, and γ+
i
/γ−

i
is the positive

forward/backward rate in reaction i.
The set of ODEs governing the concentration dynamics of a reaction system (2.40) accord-

ing to the law of mass action kinetics is as follows: Let xk denote the (positive) concentration
of species k, then,

ẋk =

nr∑

i=1

�

s′′
ik
− s′

ik

�
�

γ+
i

ns∏

j=1

x
s′
i j

j − γ−i
ns∏

j=1

x
s′′
i j

j

�

. (2.41)
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Remark 6. Observe that for a single reaction in (2.41), the state-dependent part of the vector
field governing the dynamics has the same form as the reaction network protocol (2.11)
derived from the geometric mean driven consensus consideration.

Let us define the following thermodynamic quantities for the chemical network: Gibbs free
energy is given by

G(x) := RT

ns∑

k=1

�

xk ln
xk

x̄k

+ ( x̄k − xk)

�

,

where x̄k is a thermodynamic equilibrium concentration, R is the universal gas constant and
T the average system temperature. Let ρi =

xi

x̄i
, so that∇G(x) = RT lnρ = µ(ρ), where µk is

the k-th chemical potential. For the sake of simplicity, in the following, we set the constants
R= 1 and T = 1.

It is well-known that Gibbs free energy serves as Lyapunov function for chemical reaction
dynamics achieving its minimum at the configuration x = x̄ [vRJ13a]. With this termi-
nology the authors of [Yon12] show that there exists a gradient flow representation for the
networked ODEs (2.41) such that

ẋ = −K(ρ)∇G(x), (2.42)

where K(·) is a positive semi-definite, symmetric, ns × ns matrix function composed as sum,
such that

K(ρ) = −
nr∑

i=1

Ki(ρ). (2.43)

Next, we describe the construction of matrices Ki, for which we shall propose an equivalent,
however, explicit description using the expansion method used throughout the proofs in this
chapter.

As in the polynomial network protocol, we assign

R+
i
= γ+

i

ns∏

j=1

x
s′
i j

j
and R−

i
= γ−

i

ns∏

j=1

x
s′′
i j

j
.

Defining stoichiometric differences ∆sik := s′′
ik
− s′

i j
, we can compactly write the component

ODE as ẋk =
∑nr

i=1∆sik(R
+
i
− R−

i
). Using the equilibrium condition for each i ∈ {1, 2, . . . , nr},

0= R+
i
(x̄)− R−

i
(x̄ ) ⇔

γ+
i

γ−
i

=

∏ns

j=1 x̄
s′′
i j

j

∏ns

j=1 x̄
s′
i j

j

,

we get by taking the logarithm on both sides

ln
γ+

i

γ−i
= lnγ+

i
− lnγ−

i
=

ns∑

j=1

s′′
i j

ln x̄ j −
ns∑

j=1

s′
i j

ln x̄ j =

ns∑

j=1

∆si j ln x̄ j, (2.44)

where s′′
i j
− s′

i j
=∆si j.
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2 Consensus driven by the geometric mean and chemical reaction networks

With that, following [Yon12] or [vRJ13a], (2.41) can be written such that

ẋk =

nr∑

i=1

∆sik

�

exp

�

lnγ+
i
+

ns∑

j=1

s′
i j

ln x j

�

− exp

�

lnγ−
i
+

ns∑

j=1

s′′
i j

ln x j

��

(2.45)

=

nr∑

i=1

∆sikeσi(x )

�

lnγ+
i
+

ns∑

j=1

s′
i j

ln x j − lnγ−
i
−

ns∑

j=1

s′′
i j

ln x j

�

(2.46)

(2.44)
= −

nr∑

i=1

ns∑

i=1

eσi(x)∆sik∆si j lnρ j. (2.47)

In going from (2.45) to (2.46) it is assumed that σi is appropriately chosen. Using the
definitions

α+
i

:= lnγ+
i
+

ns∑

j=1

s′
i j

ln x j =

ns∑

j=1

s′
i j
µ j, and α−

i
:= lnγ−

i
+

ns∑

j=1

s′′
i j

ln x j =

ns∑

j=1

s′′
i j
µ j, (2.48)

by the mean value theorem such a value exists and σi ∈ [α+i ,α−
i
], cf. [vRJ13a].

Remark 7. Observe that α±
i
= lnR±

i
, as used in the expansion approach in the reaction net-

work protocol’s convergence proofs.

Eventually, regarding (2.43), the matrices Ki are defined components-wise as

[Ki(ρ)]k j = eσi(ρ)∆sik∆si j,

see [Yon12].
The quantities αi in (2.48) are so-called complex thermodynamic affinities. They play

an important role in the thermodynamics of reaction networks and are related to passive
resistance interpretations, see [vRJ13a], and [EG07]. Next, we apply the proposed consen-
sus results and propose a novel resistance interpretation that also finds application in the
definition of the dissipation metric tensor (2.43).

2.7.2 Gradient metric defined by heat exchange conductance

Going from (2.45) to (2.46) the logarithmic mean of reaction rates provides an alternative
and explicit formulation for implicitly defined values σi.

Using the expansion method with the logarithm of forward and backward rates in each
component ODE ẋk =

∑nr

i=1∆sik(R
+
i
−R−

i
) leads to the equivalent explicit form of (2.46) and

the result (2.47) given by

ẋk =

nr∑

i=1

∆siklgm(R
+
i
, R−

i
)
�

lnR+
i
− ln R−

i

� Rem.7
=

nr∑

i=1

∆siklgm(R
+
i
, R−

i
)
�

α+
i
−α−

i

�

=−
nr∑

i=1

ns∑

j=1

lgm(R+
i
, R−

i
)∆sik∆si j lnρ j. (2.49)

That is, by comparing (2.49) with (2.47) we get an explicit formulation for the exponential
of the "mean" complex thermodynamic affinity σi. Using lgm(R+

i
, R−

i
) =: R′

i
, we have

lgm(R+
i
(x), R−

i
(x)) = eσi(x ) ⇔ σi(x) = lnR′

i
(x ).
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2.7 Chemical reaction networks

The relationship of the exponential of the quantities σi, respectively of the logarithmic
mean of forward and backward reaction rates, to convergence properties becomes apparent
from the gradient flow formulation of Gibbs free energy. Substituting the energy gradients
lnρ j = [∇G(x)] j into (2.47) yields

ẋk = −
nr∑

i=1

ns∑

j=1

lgm(R+
i
, R−

i
)∆sik∆si j[∇G(x)] j.

While Gibbs free energy is a Lyapunov function for the chemical network dynamics, it is not
a potential for the dynamics in Euclidean space. However, the unique non-Euclidean metric
in which the dynamics do evolve as gradient descent flow of G is defined by the nonlinear
component functions lgm(R+

i
, R−

i
). Hence, this unique relationship renders the logarithmic

mean expression an important quantity within the context of studying chemical network
dynamics using Gibbs free energy, and with that, more broadly within the study of network
thermodynamics.

Let us turn to the resistance interpretation of the complex thermodynamic affinities, resp.
the logarithmic mean of reaction rates. The constitutive relation for resistance, or its inverse
a conductance κ, is I = κ∆U , where ∆U is a driving force given by a potential difference
across the resistor, and I is the resulting current through the resistor.
Instead of considering chemical potential differences as driving force, the authors of [EG07]
take the chemical potential differences in exponential coordinates as driving force resulting
in

∆U(ρ) := exp

�
ns∑

j=1

s′
i j
µ j

�

− exp

�
ns∑

j=1

s′′
i j
µ j

�

= ea+
i
(ρ) − ea−

i
(ρ).

With that, the authors define the i-th reaction conductance κE
i
, that we call Ederer conduc-

tance (according to the author’s name), such that

Ii := R+
i
(x)− R−

i
(x) = κE

i
∆U(ρ), ⇔ κE

i
(x̄) := γ+

i
e
∑ns

j=1 s′
i j

ln x̄ j = γ−
i
e
∑ns

j=1 s′′
i j

ln x̄ j . (2.50)

The Ederer conductance is a constant and essentially represents a re-formulation of the equi-
librium condition (2.44). As the driving force ∆U is not the potential difference, the con-
ductance κE

i
is not a classical conductance, e.g., in the Brayton-Moser gradient system sense,

cf. comments in [vRJ13a] in this regard.
The logarithmic mean formulation we proposed resolves this problem by providing an

alternative conductance formulation, as (2.49) shows.
To make this more explicit, observe that the complex thermodynamic affinities (2.48), as
a weighted sum of chemical potentials, do indeed describe a chemical potential. Denote
the complex potential difference by ∆Uα

i
:= α+

i
− α−

i
. Define the alternative conductance

κα
i

:= lgm(R+
i
, R−

i
), so that with (2.49) we can re-write the constitutive current relation (2.50)

as
Ii = κ

α
i
(x)(α+

i
−α−

i
).

Here, the nonlinear conductance κα
i
(x ) serves indeed as a conductance, mapping a potential

difference to a current. Other than the Ederer conductance, the alpha-conductance κα
i
(x) is

not constant but a dynamic, positive definite, and symmetric function.
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2 Consensus driven by the geometric mean and chemical reaction networks

Only the combination of Gibbs free energy G with this new type of conductance κα
i

spec-
ifying the appropriate dissipation metric tensor defines the gradient flow structure (2.42).
The alpha-conductance has an appealing interpretation as the heat exchanger, across which
heat dissipates driven by a potential difference at two terminals.

Following [KN74] Chapter 9, a heat exchanger is a device of length ℓ,where on one terminal
side a hot stream enters and it exits on the other terminal side at lower temperature, compare
to Figure 2.14. We denote by z the coordinate along the length of the heat exchanger, and

T (0)

xT(0)
xT(ℓ)

T (0)

T̄ T̄

T (ℓ)

T (ℓ)

z
Heat Exchanger

Figure 2.14: Schematic of a heat transfer process across a heat exchanger: Variables T (·)
denote temperatures in a heat exchanger of length ℓ, and T̄ is a constantly held
wall temperature of the heat exchange surface

we assume that the temperature of the exchange surface inside the heat exchanger is kept
at a constant operating temperature T̄(z) = T̄ = const . Let us introduce the variable xT (z)

denoting the temperature difference at location z between the stream carrying heat and the
cooler operation temperature of the heat exchanger, i.e., xT (z) := T (z)− T̄ .

Across the heat exchanger, the stationary rate of heat transfer from the stream is the quan-
tity

Qheat = h ·Area ·
xT (0)

T̄
− xT (ℓ)

T̄

ln xT (0)
T̄
− ln xT (ℓ)

T̄

= h ·Area · lgm
�

xT (0)

T̄
,

xT(ℓ)

T̄

�

,

with h the heat transfer factor in units [ Watt
m2Kelvin], and "Area" denoting the surface area where

heat exchange takes place within the heat exchanger.
Regarding (2.43), the components of the metric tensors,

[Ki]k j =∆sik∆si j lgm(R
+
i
, R−

i
).

have the interpretation of heat rates that describe the power release driven by the current Ii

flowing to balance the difference in in-flux and out-flux R+
i

to R−
i
.

2.8 Conclusion and outlook

In this chapter we propose, and study novel nonlinear continuous-time consensus protocols
driven in three distinct ways by the geometric mean: the polynomial, the entropic, and
the scaling-invariant consensus protocols. We introduce the reaction network protocol as a
slight generalization of the polynomial consensus protocol, motivated by mass action kinetic
chemical reaction network dynamics. The protocols are aligned in a free energy gradient
property on the simplex of constant mass distribution vectors.
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2.8 Conclusion and outlook

The entropic consensus dynamics represent a generalization of the well-known average
consensus problem as the asymptotically reached agreement value corresponds to the
(weighted) geometric mean of the initial state. Based on the free energy gradient property
for the entropic dynamics, we provide a novel variational characterization of the geometric
mean using a nonlinear constrained optimization problem that is solved with exponential
speed by the continuous-time entropic consensus network dynamics.
We numerically demonstrate a relationship between the asymptotic polynomial consensus
behavior and the solution of an elliptic integral. We propose a necessary and sufficient
fixed-point condition for the polynomial reaction network protocol, which is equivalent to
the Wegscheider characteristic of equilibrium states in chemical reactions.
We further apply the expansion techniques used in the consensus convergence proofs to
chemical reaction networks and derive a novel "conductance" element for the reaction
dynamics. In its original sense as resistor characteristic, this conductance also specifies
the metric in which the network dynamics evolve as a gradient flow of Gibbs free energy.
This dissipation metric has components that bear the interpretation of heat exchangers that
connect pairwise chemical species potentials across which Gibbs free energy is released as
power along the convergent dynamics.

The results of the numerical study of the polynomial protocol motivate the examination of
the asymptotic characteristics. The resulting network provides a dynamical system approach
to the computation of elliptic integrals, which to date still is a topic of scientific discourse.
As the case of deriving a novel chemical conductance model shows, further study of the
polynomial reaction network model class may serve fruitful. In particular, the simulation
examples for the reaction network protocol dynamics that violate Wegscheider’s detailed
balance condition show interesting non-equilibrium behavior: they converge towards a line
along which dynamics seem to evolve at a constant speed. Potential directions for the analysis
of non-equilibrium stationary behaviors can be along with differential dissipation concepts,
as proposed, e.g., in [FS14].
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3

Metrics and means in the design of dissi-

pative consensus systems

3.1 Introduction

Consensus protocols evolving on graphs have gained popularity only recently, with seminal
work of Murray and Olfati-Saber [SM03b; OSM04; OSFM07a], and Moreau [Mor04;
Mor05], see also [RBA05] for an early survey contribution on coordination and consensus
problems. The study of consensus protocols on graphs in its original version leads to the
treatment of finite-dimensional, linear time-varying diffusion processes. For this case, the
contraction mechanics that drive the linear averaging behavior are well understood: linear
consensus protocols can, in words, be described by the simple local update rule of "move
towards the arithmetic mean of your neighbors". Such a simple idea for a generalization
to nonlinear consensus protocols is lacking, with few geometry-oriented exceptions. In
the large body of the nonlinear consensus networks literature, instead, a zoo of protocol
types has so far been proposed, which makes it hard to keep track of novel, innovative
work and relate them to another. In this chapter, we generalize the linear consensus
protocol idea towards the nonlinear protocol design concept of moving towards a (possibly)
nonlinear average of neighboring states and derive a novel stable-by-design framework for
nonlinear consensus protocols. We formulate explicit design rules based on a fundamental
relationship between averages defined as Kolmogorov means and metric functions used in
defining averages in appropriate minimization problems. We propose the metric consensus
framework closely related to dissipation properties that drive the exponential convergence
towards consensus.
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3 Metrics and means in the design of dissipative consensus systems

In the literature on the design of general nonlinear consensus protocol classes, authors are
typically motivated by finding the maximally admissible nonlinearity in an interaction func-
tion that defines the protocol. The resulting network dynamics still converge to consensus.
To give an impression of the diversity of admissible interaction function characterizations let
us list only a few of them: Admissible nonlinear interaction functions may be characterized
as sign-preserving [Wei+17], anti-symmetric [SM03a; BGP06; Cor08], satisfying a thermo-
dynamically motivated inequality [HH08], be of single argument type and have non-trivial
gain functions [ADJ12], accept two independent function arguments [HH08], or consider
additional nodal input nonlinearity [Wei+17]. While these abstract protocol design results
may be general, they often do not provide useful in nonlinear network systems applications.
The specific ODE system describing a particular problem at hand is usually taken as starting
point. In that sense, these nonlinear consensus protocol classes are not constructive. They do
not ease understanding of a problem by helping the deconstruction or reverse-engineering
of dissipation mechanisms or synthesis rules or by helping to synthesize concrete algorithms
for solving specific network problems. One noteworthy exception is the work on consensus
on general functions, see [Cor08], and [BGP06], with relations to mechanism design as
distributed optimal control. Helpful in applications is the consideration of general (possibly
nonlinear) means as driving functions of network dynamics, as shown in [MXH16] for the
case of geometric mean-driven consensus with relations to chemical reaction networks,
see also [vRJ13a; vRJ13b; WMv18]. The usefulness of non-arithmetic considerations for
network protocol designs is also indicated in [OS+06] in the context of distributed sensing
applications, where local believes are exchanged to find consensus on one believe. Here the
geometric mean is relevant in the probabilistic setting.
Useful for algorithm design and profound as geometric generalization of linear consensus
(on Euclidean, linear space) to consensus on nonlinear space is the framework developed by
Sepulchre and co-workers in [SSS07] [SS09b] [Sar09], see [Sep11] for an overview article.
Here, the starting point is the idea of a consensus update rule as locally moving towards the
average of neighbors. The central idea is that averages on nonlinear spaces can be computed
from minimizing a quadratic cost function defined via the intrinsic (Riemannian) metric
on the underlying nonlinear space. To turn this concept into a practical algorithm, the
authors assume an additional extrinsic geometry. This requires admissible nonlinear spaces
of being compact and homogeneous (e.g., Riemannian manifolds) to be embeddable into
ambient Euclidean linear space. Consensus on the circle (phase synchronization problems)
and matrix problems (via consensus on the orthogonal group and Grassmannian manifolds)
are treated. While the framework is general and profound, it requires a priori knowledge of
nonlinear configuration spaces and their mathematical properties, which is usually difficult
or a research task in itself in nonlinear network systems applications.
The relevance and potential use of passivity ideas in the study of consensus networks is
highlighted in [Mor04]; Moreau notes that as early as 1976, Willems in [Wil76] studied
consensus models as a particular sub-class of diagonally dominant systems. Willems showed
that additive convex functions, known as information divergences, serve as Lyapunov func-
tions. A sum-of-squares Lyapunov function is instrumental in the study of linear consensus
systems: it defines the so-called collective disagreement [OSFM07a]. This sum-of-squared
Euclidean distances function is the appropriate cost function in determining the arithmetic

44



3.1 Introduction

mean as a unique minimizer in an optimization problem.

The importance of metrics in generalizing to nonlinear consensus design has become ap-
parent in the geometric framework developed by Sepulchre and co-workers. The idea of
using means explicitly in defining nonlinear consensus protocols is relatively new but lies at
the heart of the concept of consensus protocols as averaging dynamics on graphs. Means and
metrics seem to be associated via an optimization problem. The question arises on the joint
context of Lyapunov functions, metrics, and means in defining linear or nonlinear consen-
sus protocols alike, and how such a novel protocol design framework is related to existing
nonlinear protocol frameworks. In this chapter, answers to these questions are derived. In
particular, the contribution is as follows:

a) We work out the context of metrics and means via Lyapunov functions in linear con-
sensus theory and prove an equivalence in the definition of a general mean via the
Kolmogorov mean functional structure and a solution of a sum-of-squared-distances
minimization problem.

b) We provide an overview of existing nonlinear consensus protocol classes and compare
them by showing equivalences in the diverse definitions and differences.

c) A metric action consensus protocol class is introduced, for which we show that it com-
prises existing nonlinear consensus protocol classes as special cases. This protocol class
has the advantage of not relying on difficult to define admissible nonlinearity in inter-
actions but is purely based on the elementary structure of metric functions. We prove
exponential convergence to consensus on time-varying graphs.

d) Necessary and sufficient conditions are provided to characterize functions of simple
type, e.g., convex or concave functions, to define metrics. For simple functions as
elementary building blocks, we propose protocol composition rules that again result in
metric action protocol.

e) We introduce a mean-control consensus protocol from the direct generalization of a
linear consensus contraction mechanism. This protocol generates trajectories that are
optimal in an infinitesimal context. Usual consensus optimality considers the asymp-
totic equilibrium state given by a mean as the minimizer of an optimization problem.

f) We introduce a novel so-called embedding protocol as an instance of a metric action
protocol. This protocol combines geometric, passivity, and optimization aspects in a
general gradient descent formulation. It allows us to prove a novel minimization spec-
ification of Kolmogorov means in a constrained optimization problem that uses the
gradient formulation potential as a cost function and associated distances in defining
the constraint.

In Section 3.2 we provide the necessary background on linear consensus theory with an
emphasis on the relation between the arithmetic mean, invariance, and optimality properties,
Lyapunov, and potential functions in the design of the linear contraction dynamics. In Section
3.3 introduce (particular) metrics and the Kolmogorov mean, prove their equivalence and
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3 Metrics and means in the design of dissipative consensus systems

relationship in defining general averages. In Section 3.4 major nonlinear protocol classes are
surveyed and put into relation, where we also show that they are all metric action protocols.
Convergence and stability results for newly introduced metric and mean-driven protocols are
provided in Section 3.5. In Section 3.6 we present and discuss the embedding protocol as an
instance of a metric action type before we conclude with a summary and remarks indicating
possible research directions.

3.2 Linear consensus theory

In the following, we present the basic background of linear consensus theory. First, we intro-
duce the general class of linear consensus protocols defined on graphs and present Moreau’s
most general stability and convergence result. We then show how the arithmetic mean drives
the dynamic behavior for short and asymptotic times. It determines the contraction behavior
at infinitesimal time steps. It is a global system invariant and appears as an optimal solution
to a minimization problem involving the sum of squared distances function as a measure
of collective disagreement. We comment on the context of dissipative systems and passive
electric circuits.

3.2.1 Graphs, linear consensus protocol and general stability result

Let G= (N , B, w) be a weighted digraph (directed graph) with set of nodes N := {1, 2, . . . , n},
set of branches B := {1, 2, . . . , b} ⊆ N × N having elements ordered pairs ( j, i) that indicate
that there is a branch from node j to i, and w : B ×R≥0 → R≥0 is a weighting function for
which we write w(( j, i), t) = wi j(t). We shall consider time-varying weighted digraphs G(t)
on a set of nodes N , which are characterized by time-dependent sets of branches B(t), where
an edge ( j, i) ∈ B(t) if and only if wi j(t)> 0.

Define the in-neighborhood of a node i, and the out-neighborhood, respectively, as the set
of connected nodes

N+
i

:= { j ∈ N : ( j, i) ∈ B} and N−
i

:= { j ∈ N , (i, j) ∈ B}.

The (in-)degree of a node i is the value di :=
∑

j∈N+
i

wi j. Set D := diag{d1, d2, . . . , dn}. The
weighted adjacency matrix W is such that [W]i j = wi j for all ( j, i) ∈ B; if ( j, i) 6∈ B, then
[W]i j = 0, and [W]ii = 0, for all i ∈ N . A graph is called balanced if

∑n

j=1 wi j =
∑n

j=1 w ji

and it is symmetric if wi j = w ji, ∀( j, i) ∈ B. The Laplacian matrix of a weighted digraph is
defined as L := D−W, and the normalized Laplacian is L̂ := I− Ŵ, where Ŵ = D−1W is the
matrix of normalized branch weights. We say a graph, respectively its Laplacian matrix, is
irreducible if the underlying graph is strongly connected, and then, the matrix L has precisely
one zero eigenvalue.

A linear consensus system evolving in continuous time is a dynamic on a family of time-
dependent graphs {G(t)}t≥0 governed by

ẋ i =
∑

j∈N+
i

wi j(t)
�

x j − x i

�

⇔ ẋ = −L(t)x , (3.1)
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where each dynamic branch weight wi j(·) is a measurable non-negative function [HT13].

The following proposition summarizes Moreau’s basic stability results for general linear,
time-varying consensus systems, which are pillars of linear consensus theory.

Proposition 2. [Adopted from [Sep11] Prop. 1 with Def. 2] A linear time-varying system

evolving according to (3.1) in Rn converges globally and exponentially to a consensus point x̄1,

x̄ ∈ R, if the underlying digraph is uniformly connected, i.e., if for all t > 0, there exists a time

horizon T > 0, such that the graph (N , B̃(t), w̃(t)) defined by

w̃i j(t) :=

¨ ∫ t+T

t
wi j(τ)dτ if

∫ t+T

t
wi j(τ)dτ≥ δ > 0

0 if
∫ t+T

t
wi j(τ)dτ < δ

wi j(τ) a branch weight at time τ, ( j, i) ∈ B if and only if w̃i j(t) 6= 0, contains a node from

which there is a path to every other node.

Uniform connectivity certainly holds if at each time instant the graph G(t) is strongly
connected and wi j(t)≥ δ > 0, i.e., if the graph contains a directed path from every node to
every other node and the finite branch weights are positively bounded away from zero for
all time.

3.2.2 Local contraction mechanics

Moreau shows in his work [Mor05] that consensus-seeking systems define mappings that
move states forward in time along nested sets described by the convex hull of neighboring
states. Under uniform connectivity, the convex hull of the individual states then uniformly
shrinks to a point – the global consensus state of the network.

For linear consensus protocols, this contraction property has its foundation in the principal
mechanism of

(i) arithmetic mean averaging of states across a neighborhood N+
i

, and

(ii) moving a convex combination of this local, linear average and a local state x i forward
time.

More concrete, consider the weighted arithmetic mean of a set of n real-valued numerical
values x1, x2, . . . , xn, defined as

amw(x1, x2, . . . , xn) :=
n∑

i=1

ωi x i, (3.2)

where for i = 1, 2, . . . , n, ωi > 0 and
∑n

i=1ωi = 1.
Using (3.2), a continuous-time consensus protocol (3.1) on a normalized weighted digraph

can be written as
ẋ i = −x i + amw({x j} j∈N+

i
) (3.3)

Discretization of this arithmetic mean driven protocol dynamics in time leads to the algo-
rithmic update rule

x+
i
= (1− ε)x i + εamw({x j} j∈N+

i
) (3.4)
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3 Metrics and means in the design of dissipative consensus systems

with 0< ε < d−1
i
≤ 1, see, e.g., [SSS07].

Convex combinations define a map into the convex hull of the input data, and mean func-
tions, in general, satisfy a boundedness relation, such that

min(x1, x2, . . . , xn) ≤mean(x1, x2, . . . , xn) ≤max(x1, x2, . . . , xn). (3.5)

Therefore, the computation of an average (not necessarily an arithmetic one) and a con-
vex combination of numerical values lead to an output result that can never be smaller or
greater than the numerical value of any input. Intuitively, consensus protocols on uniformly
connected graphs, hence, contract towards a single consensus value.

Remark 8. The boundedness relationship (3.5) is derived in Proposition 3.

Remark 9. Note that (3.4) does not depend on the particular choice of having a normal-
ized weighting, as assumed in the definition of the arithmetic mean; a discretization step ε
can always be chosen appropriately such that it normalizes the weighting in the algorithmic
consensus update rule.

3.2.3 Invariance and global arithmetic mean averaging

Besides its appearance in the local dynamics at a certain instant in time, the (weighted)
arithmetic mean also unfolds as asymptotic global system property: For the sake of simplicity,
consider the time-invariant class of consensus networks being governed by a Laplacian matrix
L that is irreducible. The asymptotically reached uniform agreement value x̄ is given by
the (weighted) arithmetic mean of the initial condition [OSM04]. This invariance of the
arithmetic mean is a consequence of algebraic system properties:

(i) ker(L) = span{1} ⇔ L1 = 0, i.e., the Laplacian matrix has zero row sums, and an
eigenvalue at zero.

(ii) ker(L⊤) = span{π} ⇔ π⊤L = 0, so that every constant multiple of π is a left-
eigenvector associated to the trivial eigenvalue.

Property (i) defines stationary points of a consensus network being vectors where the in-
dividual state components are all equal. The problem in which the equilibrium state to be
reached is uniform with consensus value x̄ = amw(x 0) is commonly known as the average
consensus problem.

Property (ii) implies that the quantity π⊤x remains invariant along trajectories of a con-
sensus system, as d

dt
π⊤x (t) = π⊤Lx = 0. Hence, if a weighting for an arithmetic mean

computation is chosen such that ω = π, i.e., it corresponds to the principal left-eigenvector
of a consensus network’s Laplacian matrix, then the consensus network solves asymptotically
with exponential speed the associated average consensus problem.

For a given initial condition x 0 the time invariance of the quantity π⊤x(t) leads to a n−1-
dimensional configuration space of weighted integral preserving states

MI :=

¨

x ∈ Rn,
∑

i∈N

πi x i = m

«

, for some m ∈ R. (3.6)
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The two-dimensional simplex of weighted integral preserving state configurations is illus-
trated in Fig. 3.1, for a fixed value of m > 0 and a three-dimensional irreducible consensus
system: The simplex illustrated by the dashed triangle in Fig. 3.1b and Fig. 3.1 represents
possible configurations of a balance consensus dynamics, where π∝ 1, i.e., the vector of
all ones is the left kernel of the Laplacian system matrix. The gray shaded area in Fig. 3.1b
depicts the configuration space of a consensus network where π 6∝ 1, i.e., the system matrix
L is irreducible, but not balanced. In blue illustrated is the kernel of L representing the ray
of consensus states.

x1
x2

x3

(a) Configuration simplex for bal-
anced graph with π = (1,1,1)⊤.

x1

x2

x3

(b) Configuration simplex for non-balanced
graph (grey) withπ = (1,0.5,2)⊤, and for
balanced graph (dashed) as reference.

Figure 3.1: Simplex of (weighted) integral preserving configurations for 3-state irreducible
consensus dynamics.The blue ray illustrates the consensus set ker(L).

Remark 10. Note that a set of integral preserving states can still be a time-invariant configu-
ration space for time-varying weighted digraphs. This is the case when the left eigenvector π
is the same for all Laplacians L(t), t ≥ 0, or if for all times the Laplacians are balanced, i.e.,
the principal left-eigenvector remains a constant multiple of the vector of ones [OSM04].

3.2.4 Optimality, Lyapunov and potential functions

A consensus system that solves the average consensus problem is a dynamical system that
computes the solution of a static optimization along its evolution in time. The trajectories
converge exponentially fast to the weighted arithmetic mean of the respective initial condi-
tion; this value of the consensus equilibrium can also be characterized via a sum-of-squares
minimization,

amw(x1, x2, . . . , xn) = arg min
x∈R

n∑

i=1

ωi|x i − x |2, (3.7)

where ωi = πi, i ∈ N , i.e., the normalized weights correspond to the numerical values of
the components of the normalized left-eigenvector of the Laplacian associated to the zero
eigenvalue.
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3 Metrics and means in the design of dissipative consensus systems

The sum-of-squares cost function in (3.7) serves as a Lyapunov function for irreducible
consensus networks, as well. In fact, for that class any weighted sum-of-squares function
measuring an Euclidean squared distance to an arbitrary consensus state const1,

ESoS(x) =
1

2

∑

i∈N

πi|x i − const)|2 (3.8)

is a Lyapunov function [Mor04]. This function is also referred to as collective disagreement
[OSFM07a].

Following [Mor04] and [van11], this sum-of-squares Lyapunov function can also be inter-
preted as the stored energy in a lossless integrator system, which is dissipated across a static
passive network - the two open systems (lossless and dissipative) being feedback intercon-
nected.

In particular, considering the case of undirected, connected graphs, where L is symmetric
and irreducible, we have ∇ESoS(x) = x − const1, and with L1 = 0, the consensus dynam-
ics written as feedback interconnection of the two open systems yields the closed system
consensus dynamics

ẋ = −L∇ESoS(x) =

�

ẋ = u1 , y2 = Lu2

y1 =∇ESoS(x)

�
�
�
�

�

u1

y1

�

=

�

0 −1
1 0

��

u2

y2

�

.

This passivity view naturally leads to a gradient system formulation, which establishes
global exponential stability of the consensus state via the gradient dissipation equality

ĖSoS(x) = −x⊤Lx = −||∇ESoS(x)||2L. (3.9)

Here, the Laplacian matrix has the function of a dissipation metric, which establishes the
characteristic gradient dissipation equality (3.9) showing exponential convergence to an
agreement state as equilibrium.

For undirected, connected graphs a linear consensus system can also be written as gradient
flow of the dissipation potential Ψ(x) := 1

2 x⊤Lx , as

ẋ = −Lx = −∇Ψ(x), Ψ̇(x) = −||∇Ψ(x)||2. (3.10)

Note that, up to a constant, the dissipation potential Ψ is exactly the dissipation rate of
the collective disagreement, i.e., ĖSoS = 2Ψ. The dissipation potential is also referred to
as group disagreement [OSM04]. The two potentials in which linear symmetric consensus
systems may be formulated as gradient flow are illustrated in Fig. 3.2.

The gradient formulation (3.10) is most popular in the linear consensus literature, see,
e.g., [OSFM07b], [Mor04], [SM03a]. However, the less apparent gradient formulation bears
a direct link to passivity theory and a direct physical network representation, cf. to the
following remark (11).

Remark 11. In the language of electric circuits, ESoS is an energy stored in capacitor elements,
and the dissipation rate

ĖSoS(x) = −||∇ESoS(x)||2L =
1

2

∑

(i, j)∈B

wi j(x j − x i)
2,
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3.2 Linear consensus theory
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(a) 2Ψ(x ) = x · Lx
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(b) ESoS(x ) =
1
2 ||x − 1.5 · 1||

Figure 3.2: Trajectories of a consensus system (black) and iso-level curves of a collective and
a group disagreement. The consensus dynamics is given by ẋ = −Lx , where
L=

�
1 −1
−1 1

�

and the equilibrium set is indicated by the dashed dark blue line.

corresponds to the power dissipated across the resistor network, that connects capacitors
i ∈ N , with resistor branches (i, j) ∈ B and corresponding resistances 1

wi j
, cf., e.g., [MDM16],

[van11]. This link to a physical network system highlights the importance of considering ESoS

as energy in which the system evolves as network gradient flow, together with the sum-of-
squares minimization in defining the consensus value as minimizer of the same energy (up
to a constant multiple), see (3.7).

In 1976, when linear consensus theory has not yet been invented, Willems in [Wil76]
shows that any function

E f (x) =
∑

i∈N

πi f (x i), f stricly convex, (3.11)

serves as a Lyapunov function for the linear systems class he studies, which has a linear con-
sensus system as special case. The sum-of-squares function (3.8) hence is just a particular
case with f (·) = || · ||2 (without loss of generality setting const = 0). The following ex-
ample illustrates free energy as a convex function that serves as Lyapunov function and its
dissipation potential, analogous to the case depicted for sum-of-squares energy in Fig. 3.2b

Example 3 (Free energy Lyapunov dissipation in linear consensus system). Consider the
function EF =

∑

i∈N x i log x i− x i+1, which is convex and defined on the positive real line. It
is an instance of the class (3.11), and it coincides with free energy studied, e.g., in network
thermodynamics. According to Willems [Wil76] the function EF is a Lyapunov function for
consensus states under the dynamics governed by a consensus protocol. Consider the two-
state consensus system, as in Fig. 3.2. In Fig. 3.3 trajectories of this consensus system are
plotted in black together with iso-level curves of free energy, see Fig. 3.3b. The dissipation
potential Ė = − log x · Lx =: 2ΨF is plotted in Fig. 3.3a. Clearly, EF is a Lyapunov function
for the consensus system. However, the dissipation potential ΨF is not a potential in which
trajectories evolve as steepest descent gradient curves.
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(b) EF (x ) =
∑

j x j log x j − x j + 1

Figure 3.3: Trajectories of a consensus system and iso-level curves of collective and group
disagreements associated with free energy, as specified in Example 3. The dashed
dark blue line indicates the consensus equilibrium set.

This raises the question of what type of (possibly nonlinear) average drives (possibly)
nonlinear consensus dynamics for which a function of the class (3.11) is a natural collective
disagreement measured, as the function ESoS is for the arithmetic mean via the minimization
formulation (3.7).

3.3 The mean-metric relationship

The concept of metrics as distance functions with quasi- and semi-metrics as special cases
is introduced, together with metrics in defining general mean functions as the solution of
a sum-of-squared distances minimization problem. Means have a second characterization
due to Kolmogorov. We introduce Kolmogorov’s axioms of means and derive on that basis a
boundedness relation for Kolmogorov averages. We further show that the Kolmogorov func-
tional structure corresponds to a mean’s metric minimization characterization by choosing
the same local nonlinear coordinate transformation in both the definition of the distance and
the Kolmogorov characteristic.

3.3.1 Distance functions and metric characterization of means

Metric functions are essential elements in the mathematical toolkit. Metrics measure dis-
tances between two elements and allows the study of convergence, contraction, and stability
of systems. While the definition of metric functions is well-known, the concept of semi-
metric and quasi-metric functions is not. Following [Rol87] these (special) metric functions
are defined as follows.

Definition 1 ((Special) Metric functions). Let X be a set. The function d : X × X → R is a
metric if and only if for each x , y, z ∈ X

(M1) d(x , y) ≥ 0 and d(x , y) = 0 ⇔ x = y (positive definiteness),
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3.3 The mean-metric relationship

(M2) d(x , y) = d(y, x) (symmetry),

(M3) d(x , z)≤ d(x , y) + d(y, z) (triangle inequality or sub-additivity)

hold. The number d(x , y) is called distance between x and y w.r.t. the metric d. A semi-
distance denoted by ds is a function for which only (M1) and (M2) hold. A quasi-distance
denoted as dq satisfies only (M1) and (M3), and for a sequence {xn},

(M2’) limn→∞dq(xn, x) = 0 if and only if limn→∞dq(x , xn) = 0.

A function for which only property (M1) holds is a pre-metric dp.

Remark 12 (Note on terminology). The terminology of generalized metrics is not unique, and
sometimes quasi-metric refers to semi-metric and vice versa. We adopt the definition quasi-
metrics, in particular (M2’), from [Rol87] (the author, however, refers to it as semi-metric).

The significance of quasi-metrics originates from the fact that for each quasi-metric, there
exists an equivalent metric (e.g., the symmetric part of the quasi-metric), as shown, for in-
stance by Rolewicz in [Rol87] Theorem 1.4.1. Hence, mathematical properties (convergence,
continuity, etc.) of quasi-metric and metric spaces are equivalent.
The consideration of quasi-metrics is rather motivated from a modeling and design point of
view regarding applications, where symmetry (M2) may be violated.
A semi-metric, where the triangle inequality is weakened or does not hold, is also said to be
a non-Archimedean metric, i.e., intuitively, distances do not add up or accumulate.
A pre-metric has its significance because every pre-metric space (i.e., a set with a pre-metric
defined on it) is a topological space. Therefore, elementary aspects of dynamical systems
such as asymptotic properties or convergence can be studied.

Example 4 (Transport distances: quasi- and pre-metrics). Suppose a, b are points in a river
transport system. The cost of transport d(a, b) of a cargo unit from a to b satisfies (M1) and
(M2) in Definition 1 but not symmetry (M2), as upstream transport is more expensive than
downstream transport. Hence, d(a, b) is a quasi-metric.
Consider two probability distributions p, q on a discrete probability space X . The Kullback-
Leibler divergence (or relative entropy) DK L(p1||p2) := −

∑

x∈X p(x) ln p(x)

q(x)
is often referred to

as "information distance" on the space of probability distributions; it also serves as Lyapunov
function in the study of stochastic processes, where it can be seen as a distance between
probability distribution at two points in time. However, DK L neither satisfies (M2) nor (M3).
Hence, it is a pre-metric function.

In property (M3), the validity of the triangle inequality is equivalent to sub-additivity of d.
It shall later be helpful in consensus protocol design. Hence we define (sub)-additivity here.

Definition 2 ((Sub-)additive function). A function f : Rn → R is called sub-additive if the
inequality

f (x + y) ≤ f (x) + f (y)

holds for all x , y ∈ Rn. If the inequality holds with equality, then the function is called
additive.
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3 Metrics and means in the design of dissipative consensus systems

Consider data points x1, x2, . . . , xn taking values on the real line R, and let these elements
be collected in the vector x . An average or mean computed from x can be obtained as the
solution of an unconstrained minimization [MMO10] [Moa05],

M(x) = argmin
x∈R

n∑

i=1

d(x i, x)2, (3.12)

Averages also carry the notion of a "centroid", "center of mass", or "(central) tendency"
describing in a single numeric value a global data set property.

Example 5 (Arithmetic and geometric mean). Using the Euclidean distance

dE(a, b) := |a− b|

the arithmetic mean results via (3.12) as the sum-of-squares minimizer

am(x) :=
1

n

n∑

i=1

x i = argmin
x∈R

n∑

i=1

|x i − x |2.

An important nonlinear average is the geometric mean. It often appears in data that origi-
nates from rate equations describing growth or decay processes over time, e.g., in economics,
finance, or chemistry. The geometric mean is the solution of a minimization problem (3.12),
and such that

gm(x) := n
p

x1x2 · · · xn = argmin
x∈R

n∑

i=1

| ln x i − ln x |2.

The squared Euclidean distance of logarithmic data points represents the squared hyperbolic
distance of pairwise data points. On R>0 the hyperbolic distance is defined as

dH(a, b) := | ln a− ln b|.

It is a geodesic distance measuring the hyperbolic length of the straight-line segment joining
two points in Cartesian coordinates (x , a), (x , b), x ∈ R>0, see, e.g., [Sta93] Proposition 4.3.

3.3.2 Kolmogorov means and sum-of-squared-distances

Besides constructing means from data sets via an optimization problem, a second charac-
terization of mean functions via a functional structure is due to Kolmogorov. In his work
[Tik91], Kolmogorov studies the structure of general mean functions, which are understood
as all functions that satisfy certain natural conditions – the axioms of the mean.

Definition 3 (Axioms of a the mean [Tik91]). A function M : Rn → R is said to be a mean
function if it satisfies the following conditions:

i) M(x1, x2, · · · , xn) is monotone (increasing) in each variable.

ii) M(x1, x2, · · · , xn) is a symmetric function.

iii) M(x , x , · · · , x) = x , i.e., the mean of identical numbers is equal to their common value.
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3.3 The mean-metric relationship

iv) M(x1, x2, · · · , xn, xn+1, xn+2, xn+m) = M(x1, x2, · · · , xn, y, y, · · · , y), where
y = M(xn+1, xn+2, xn+m), i.e., a subset of values can be replaced with their means with
no effect on the total mean.

From this definition, it also follows the boundedness property (3.5) that we now can prove.

Proposition 3 (Boundedness of Kolmogorov means). Let M be a mean function as in Defini-

tion 3. Then,

min{x1, x2, ..., xn}< M{x1, x2, ..., xn}<max{x1, x2, ..., xn},

that is, the mean is bounded from below and from above by the minimal and maximal element

from the set of real numbers to be averaged.

Proof. To see this, note that the first inequality follows from property i) (monotonic increas-
ing function). The second inequality can be shown by contradiction. Assume M(x , y) > y,
for x < y. Then M(y, y) > M(x , y) by property i). But M(y, y) = y by property iii) so that
M(y, y) = y > M(x , y) > y is a false statement. Hence the mean cannot be greater than
the maximum element. To extend this for n variables one can use property iv) and replace
n− 1 variables that are not equal to the maximum element by their mean.

Kolmogorov shows that any mean function satisfying the condition in Definition 3 is nec-
essarily of the form

M(x) = g

�
f (x1) + f (x2) + · · ·+ f (xn)

n

�

, (3.13)

where f is a continuous, strictly monotone function, and g is its inverse, i.e., f ◦ g = id.

Thinking of the procedure to compute a mean using a formula (3.13) shows that at the
center of any such (nonlinear) average, there is the linear averaging scheme that is applied to
calculate the arithmetic mean, so that we can write M(x) = g (am{ f (x1), f (x2), · · · , f (xn)}).

The following example demonstrates the Kolmogorov and minimization way of character-
izing metrics.

Example 6. Consider the arithmetic and the geometric mean as defined in the previous
Example 5. From the definition of the hyperbolic distance dH(a, b) = | ln(a)− ln(b)| we get
f = ln. The inverse of the logarithm is the exponential function exp, as exp(ln(x)) = x . Via
Kolmogorov’s characterization we obtain the geometric mean as

gm(x) = exp

�∑n

i=1 ln x i

n

�

= exp

�

1

n
ln

n∏

i=1

x i

�

= exp



ln

�
n∏

i=1

x i

� 1
n



= n
p

x1x2 · · · xn.

The geometric mean is also the solution of the minimization problem (3.12) using the hy-
perbolic metric dH. Inserting the geometric mean into the objective function we can write

n∑

i=1

| ln x i − lngm(x)|2 =
n∑

i=1

| ln x i −
1

n

n∑

j=1

ln x j|2 =
n∑

i=1

| ln x i − am(ln x )|2,

which is the least-squares characterization of the arithmetic mean in logarithmic coordinates.
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3 Metrics and means in the design of dissipative consensus systems

As this example shows, the function f can be seen as a nonlinear point-wise coordinate
transformation acting on the original data points such that averaging in transformed coordi-
nates appears as a linear sum-of-squares problem.

Remark 13 (Special local transform: f = ln). The increasing functions ln and sin as local
coordinate transformations are of particular interest. The logarithm transforms addition or
subtraction of two transformed numbers into the transform of the product or quotient, e.g.,
ln(a)− ln(b) = ln a

b
. Hence, transformed differences are also scaling-invariant, as for some

positive scalar c we get ln(c · a)− ln(c · b) = ln a
b
.

The two alternatives to characterize a mean – the sum of squared distances optimization
problem (3.12) and the structural form (3.13) – are intertwined in a manner we show next.
First, we characterize metrics defined by strictly increasing scalar functions f .

Lemma 1. Let f : R→ R be a strictly increasing function. The function

d f (a, b) := | f (a)− f (b)|

defines a metric on the real line.

Proof. Observe that | f (a) − f (b)| is positive definite, i.e., for a 6= b it is positive, and it
vanishes if and only if a = b. Further, | f (a) − f (b)| = | f (b) − f (a)|, i.e., it is symmetric.
To be a metric it is by definition required to satisfy the triangle inequality. To see that this is
true, let a, b, c be real numbers and observe that

| f (a)− f (c)|= | f (a)− f (b) + f (b)− f (c)| ≤ | f (a)− f (b)|+ | f (b)− f (c)|,

where inequality follows from properties of a norm | · |.

Theorem 5 (Mean - metric relationship for Kolmogorov averages). Consider a mean that has

Kolmogorov structure (3.13) and let f be differentiable. Then,

g

�
f (x1) + f (x2) + · · ·+ f (xn)

n

�

= argmin
x

1

2

n∑

i=1

d f (x i, x)2, (3.14)

with d f (a, b) = | f (a)− f (b)|, i.e., the coordinate transformation f defines the metric appearing

in the minimization characterization of a mean via the normed difference d f .

Proof. The function d f is indeed a metric, cf. Lemma 1.
As minimizer of the sum of squared distances the mean taken as variable satisfies the first

order extremum condition,

0= −2 · 1
2

n∑

i=1

| f (x i)− f (M(x))| f ′(M(x)).

As f is a monotone (increasing) function its derivative f ′ is other than zero, so that

0=
n∑

i=1

| f (x i)− f (M(x))|.
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3.4 Nonlinear consensus protocols and metric equivalents

If f (x i) > f (M(x)) the norm brackets can be left away, and if f (x i)− f (M(x) < 0 we have
| f (x i)− f (M(x))| = f (M(x)− f (x i). Assume that m times, 0 ≤ m ≤ n, the first inequality
is the case, so that (after appropriate re-indexing),

0=
m∑

i=1

f (x i)− f (M(x)) +

n∑

i=m+1

f (M(x))− f (x i).

As each difference is positive or zero, we can write the two sets of conditions

m∑

i=1

f (x i)− f (M(x)) = 0⇔
m∑

i=1

f (x i) = mf (M(x))

n∑

i=m+1

f (x i)− f (M(x)) = 0⇔
n∑

i=m+1

f (x i) = (n−m) f (M(x)),

and equivalently, we obtain after addition of both sides

nf (M(x)) =

n∑

i=1

f (x i)⇔ M(x ) = g

�∑n

i=1 f (x i)

n

�

.

This completes the proof.

This result is significant for understanding consensus systems. It generalizes optimality
properties of arithmetic mean-driven consensus dynamics from linear to nonlinear consensus
protocols, where nonlinearity originates from local coordinate transforms f .

Remark 14. In Theorem 5 we assume f to be differentiable. This condition can be relaxed,
e.g., by assuming Lipschitz continuity and using a construction for the derivative f ′ as for
instance described in [Gol77].

Remark 15. Without loss of generality, the factor 1
2 in (3.14) can be removed or replaced by

any other positive real number. It plays, however, an important role in defining appropriate
convex conjugates of dissipation potentials of the Kolmogorov form (3.14), which have a
constitutive character in defining gradient flows. This is a topic we discuss in Chapter 4.

3.4 Nonlinear consensus protocols and metric equivalents

We summarize existing classes of non-linear consensus protocols and exhibit common and
different properties of the admissible nonlinearity in the respective protocol design. It turns
out that the isolated consideration of admissible nonlinearity and the sign of state differences
is key in characterizing a maximally large and simple class of admissible nonlinearity in
consensus protocols. On that basis, we introduce the novel class of metric action protocols
that subsumes the summarized existing classes. We further provide necessary and sufficient
conditions for functions of simple type, such as convex or concave functions, to define a
metric or its specialization.
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3 Metrics and means in the design of dissipative consensus systems

3.4.1 Admissible interaction nonlinearity

Extensions from linear to nonlinear consensus protocols often focus on time-invariant net-
works. They are concerned with finding the largest possible class of admissible interaction
nonlinearity under which consensus dynamics still converge to a uniform agreement state.

Murray and Olfati-Saber introduce the basic setup and tool in the design of nonlinear
consensus protocols in [SM03a] in the context of so-called action graphs. An action graph
is a weighted digraph, where in addition to a linear weighting factor, pairwise interactions
across edges are characterized by an action function φ.
Main elementary action function types with their associated protocol dynamics are due to
Murray, and Olfati-Saber [SM03a], here referred to as class MO, due to Hui and Haddad,
further referred to as class HH, and due to Wei and van der Schaft, in short, denoted class
WS. Table 3.1 presents in summary the main properties and protocol dynamics of these
nonlinear consensus protocols.

φ Murray/Olfati-Saber:MO [SM03a] Hui/Haddad: HH [HH08] Wei/v.d.Schaft:WS [Wei+17]

(i) loc. Lipschitz cont. loc. Lipschitz cont. Leb. meas., loc. ess. bounded

(ii) φ(x) = 0⇔ x = 0 φ(x , y) = 0⇔ x = y φ(x) = 0⇔ x = 0

(iii) (x − y)(φ(x)−φ(y)) > 0,∀x 6= y (x − y)φ(x , y) < 0,∀x 6= y xφ(x) > 0, x 6= 0

(iv) φ(x) = −φ(−x) φ(x , y) = −φ(y , x) -
(v) φi j(x) = −φ ji(−x) φi j(x , y) = −φ ji(y , x) -
ui

∑

i∈N+
i
φi j(x j − x i)

∑

i∈N+
i
φi j(x i , x j) φi

�∑

i∈N+
i

wi jφi j(x j − x i)
�

Tabular 3.1: Elementary action function classes, their properties and associated consensus
protocols of the form ẋ i = ui, i ∈ N ; it is assumed that x , y ∈ R, ( j, i) ∈ B.

Let us discuss the nonlinear protocols summarized in Table 3.1 and in particular the un-
derlying assumptions:

a) While in protocols MO and HH nonlinearity acts on states across edges only, WS φi

additionally introduces an input nonlinearity at nodes i ∈ N .

b) In contrast to local Lipschitz continuity protocols of type WS can have a discontinu-
ous right-hand side. The condition of functions φ being Lebesgue measurable and
locally essentially bounded means that for almost every x taken from any subset of R,
||φ(x)||2 < const .<∞. Technically, solutions of WS are studied within the framework
of Filippov.

c) Condition (iv) defines action functions as being odd or anti-symmetric.

d) Condition (iii) for protocols MO imply that action functions φ are increasing. To see
this, note that for x 6= y,(x − y)(φ(x)−φ(y))> 0⇔ φ(x)−φ(y)

x−y
> 0. Taking x = y + ε

and ε→ 0 shows that the slope ofφ is positive; hence,φ increases at each point y ∈ R.

e) Functions that satisfy WS (iii) are called "sign-preserving" as defined in [Wei+17].
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3.4 Nonlinear consensus protocols and metric equivalents

f) While action functions of type MO or WS take a single scalar as an argument and map
it onto another real scalar, action functions of type HH take two independent scalar
variables as input and map it onto a real scalar output.

Murray and Olfati-Saber show in [SM03a] Theorem 3, and Hui with Haddad in [HH08]
Theorem 3.2 with [HCN05] Theorem 3.9 that solutions of the respective protocol converge
asymptotically to consensus for all initial conditions if the underlying graph is undirected
and connected. Wei and van der Schaft show in [Wei+17] Theorem 19 asymptotic stability
of the consensus state if the underlying graph contains a directed spanning tree.

The following result shows a hierarchy among the three leading nonlinear consensus pro-
tocols considered in the literature.

Lemma 2 (Action function hierarchy). Consider locally Lipschitz continuous action functions

φ : R×R→ R, with arguments of the form given in protocol formulation ui in Table 3.1. For

x , y ∈ R, x 6= y,

{φ : MO is true} ⊂ {φ : WS is true}
{φ : WS (iii) is true} ⊂ {φ : HH (iii) is true}

That is, any protocol of the type MO is contained in the protocol class HH. Action functions satis-

fying property HH (i)-(iii) necessarily are also sign-preserving. Sign-preservingness is necessary

for an action function to satisfy MO (iii), i.e., increasingness.

Proof. Any action function of type MO can be obtained from the class HH by settingφ(a, b) =

f (b)− f (a) with f such that it satisfies properties MO (i)-(v) and with the particular choice
b = y − x and a = 0.

Next, we show that MO (iii)⇒ WS(iii), i.e., sign-preservingness is necessary for increas-
ingness of the action function. With φ(y = 0) = 0 we have for all x 6= 0

(x − y)(φ(x)−φ(y)) = xφ(x)> 0,

which is the definition for sign-preservingness. Hence, condition MO (iii) is sufficient for
condition WS (iii) to be true. Or, put differently, any action function satisfying MO (iii) must
also be sign-preserving.

Next we show that sign-preservingness implies Hui / Haddad’s inequality, i.e., WS(iii)⇒
HH (iii): For any z 6= 0, set z = x − y. Then,

zφ(z) = (x − y)φ(x − y) > 0 ⇔ (y − x)φ(x − y) < 0.

For HH type action functions, we may choose φ(x , y) = φ(x − y), so that indeed sign-
preservingness implies HH (iii) restricted to the particular type of the dependency among
the arguments.

The sign-preserving action functions must not be antisymmetric or satisfy the edge symme-
try condition, as for HH-type consensus protocols. These edge requirements on the nonlinear-
ity in Hui / Haddad’s approach originate in their proof technique using a quadratic Lyapunov
function approach. Under the additional (mild) assumption of locally Lipschitz continuous
edge actions (thus disregarding discontinuous action functions), HH’s action function is most
general and subsumes the other classes WS and MO.
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This discussion shows that the sign of state differences and characterization of admissible
action nonlinearity should be considered separate issues in designing a general and maxi-
mally large class of nonlinear consensus protocols, as we do next.

3.4.2 Metric action equivalents

In the following, we show that the presented classes of nonlinear action protocols can be
subsumed under the metric protocol type

ẋ i =
∑

j∈Ni

wi jsgn(x j − x i)d(x j, x i)

where d is a type of a metric function, as specified in Definition 1. Here, isolating the sign
of state differences from the nonlinearity is key in characterizing a large and simple class of
nonlinear consensus protocols.

Sub-homogeneity turns out as a necessary and sufficient condition in the characterization
of certain action functions as metrics.

Definition 4 ((Sub-)homogeneous function). A function f : Rn → R is called subhomo-
geneous, if f (λx) ≤ λ f (x) for all λ > 0. It is said to be homogeneous of degree p, if
f (λx) = λp f (x), for λ > 0. We say f is homogeneous if it is homogeneous of degree 1.

For scalar functions f on the positive real line subhomogeneity can be tested by making
use of the equivalence

f subhomogeneous ⇔ f (x)

x
is decreasing ⇔ x f ′(x)− f (x)≤ 0, x ∈ (0,∞),

see, e.g., [Lar16]. These equivalent characteristics are instrumental in proving necessary and
sufficient conditions for action functions of simple type (such as convex or concave) to be
metric function.

Theorem 6 (Metric action equivalences for nonlinear consensus protocols). Consider con-

sensus protocols MO, HH, WS as given in Table 3.1. Assume φi = id. Let ϕ : R×R→ R be a

positive definite function. Each of the protocols is a pre-metric action protocol of the form

ẋ i =
∑

j∈N+
i

wi jsgn(x j − x i)ϕ(x i, x j), (3.15)

with ϕ = dp. In particular, dp = ||φ|| is a suitable choice, with φ as in Table 3.1.

Moreover, ϕ = ds, i.e., (3.15) is a semi-metric action protocol for protocols (MO) and (HH),

and for protocol (WS) under the odd extension that for all z ∈ R+, ϕ(−z) = −ϕ(z).
For HH, MO, and WS under the odd extension of the action nonlinearity, consider the cases:

(i) ϕ convex: ϕ is a metric if and only if it is sub-homogeneous.

Suppose ϕ(x , y) = ϕ(r(x , y)) with r : R×R→ R+. In case

(ii)
ϕ(r)

r
is decreasing, then ϕ is a metric.
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(iii) ϕ is concave and limε→0+ ϕ(ε) 6= −∞, then ϕ is a metric if and only if limε→0+ ϕ(ε)≥ 0.

If action functions of class WS are not odd, then ϕ = dq, i.e., (3.15) is a quasi-metric protocol,

for the cases (i)-(iii).

Note that (ii) neither requires convexity nor concavity.

Proof. Pre-and semi-metric characterization: To show the pre-metric property of all action
functions, we need to show that the respective action function can be brought into the form
sgn(y − x)dp(x , y) with dp = |φ|.
From property (ii) in Table 3.1, all action functions satisfy the identity of indiscernibles,
so that positive definiteness reduces to showing positivity of the action for non-identical
arguments.

(WS protocol action): set z = y − x ; as zφ(z) > 0, φ(z) > 0 ⇔ z > 0, so that in this
case φ(z) = |φ(z)| and φ(z) < 0 ⇔ z < 0 so that φ(z) = sgn(z)|φ(z)|. Hence, we have
dp(y, x) = |φ(z)|> 0.

(HH and MO protocols are semi-metric protocols): Note that ds ⇒ dp, i.e, every semi-
metric is also a pre-metric. We need to show φ(x , y) = sgn(y − x)ϕ(x , y) for HH protocols
and ϕ being positive and symmetric, then also MO protocols have this property as implied
by Lemma 2.
The sign of the action function φ(x , y) depends on the sign of the difference x − y. Hence,
making additionally use of property HH(iv) in Table 3.1 (the action function is odd), we can
express inequality HH (iii) in table 3.1 equivalently as

sgn(x − y)φ(x , y)< 0 ⇔ sgn(x − y)φ(y, x)> 0

Therefore, for x − y > 0 ⇔ φ(y, x) = |φ(y, x)| > 0 and additionally for x − y < 0 ⇔
φ(y, x) = sgn(x − y)|φ(y, x)|< 0. Hence, setting ϕ(x , y) = |φ(y, x)|= sgn(x − y)φ(y, x)

we have positivity of ϕ, and clearly ϕ is also symmetric, as |φ(y, x)| = | − φ(x , y)| =
|φ(x , y)|, Therefore, ϕ = ds so that HH and hence also MO protocols are semi-metric and
by that also pre-metric protocols. By Lemma 2 WS type edge action under the additional
assumption of anti-symmetry is subsumed by edge actions of HH type.

Metric property of ϕ for the three protocols (and WS under odd extension): As already
shown, the action functionϕ = ds, i.e., positive definite and symmetric, so that the remaining
property to prove for ϕ to be a metric is sub-additivity of ϕ.

(i) Necessity (ϕ sub-additive⇒ ϕ sub-homogeneous), following [Ros50] Theorem 1.4.6:
Let λ > 1 and for n ∈ N choose λ such that n ≤ λ ≤ n+ 1. For some t ∈ [0, 1] we can write
λ= (1− t)n+ t(n+ 1). Convexity implies

ϕ(λx) = ϕ((1− t)nx + t(n+ 1)x )≤ (1− t)ϕ(nx) + tϕ((n+ 1)x ).

As ϕ is sub-additive, we obtain the inequality

(1− t)ϕ (nx ) + tϕ ((n+ 1)x) ≤ (1− t)nϕ(x)+≤ t(n+ 1)ϕ(x) = λϕ(x).

That is, ϕ(λx) ≤ λϕ(x), which by Definition 4 is equivalent to ϕ being a sub-homogeneous
function.
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3 Metrics and means in the design of dissipative consensus systems

(i) Sufficiency (ϕ sub-additive⇐ ϕ sub-homogeneous), following [Ros50] Theorem 1.4.6:
If ϕ is sub-homogeneous, then

ϕ(x + y) = ϕ

�

2 · 1
2
(x + y)

�

≤ 2ϕ
�

1

2
x +

1

2
y

�
convexity
≤ 2 · 1

2
(ϕ(x) +ϕ(y)) = ϕ(x) +ϕ(y).

By Definition 2, ϕ(x + y) ≤ ϕ(x) +ϕ(y) means that ϕ is sub-additive. This also completes
the proof of part (i).

(ii) Following Theorem 7.2.4. in [HP57]: If ϕ(r)/r is decreasing in r, then, for t > 0 we
have

ϕ(r)

r
≥ ϕ(r + t)

r + t
, (3.16)

as r + t > r. Using this inequality we can write

ϕ(r + t) =
r

r + t
ϕ(r + t)

t

r + t
ϕ(r + t) = r

ϕ(r + t)

r + t
+ t
ϕ(r + t)

r + t

(3.16)
≤ r

ϕ(r)

r
+ t
ϕ(t)

t

= ϕ(r) +ϕ(t).

This, by definition implies sub-additivity of ϕ : R+ → R and hence ϕ = d, i.e., the action
nonlinearity defines a metric.

(iii) Necessity (ϕ is a metric⇒ limε→0+ ϕ(ε)≥ 0), following Theorem 7.4.3. in [HP57]:
Set limε→0+ ϕ(ε) = c. Note that by assumption c is finite. Be {zn} a sequence such that
zn → 0 and limn→∞ϕ(zn) = c. There is an index n > 0 and ε > 0 such that ϕ(zn) is in
a neighborhood characterized by c − ε ≤ ϕ(2zn) ≤ 2ϕ(zn) ≤ 2(c + ε), where the second
inequality is implied by sub-additivity. As n→∞, or ε→ 0, λ ≤ 2λ or equivalently λ ≥ 0.

(iii) Sufficiency (ϕ is a metric ⇐ limε→0+ ϕ(ε) ≥ 0): As ϕ is concave, by definition , for
t ∈ [0, 1], ϕ(t x + (1− t)y) ≥ tϕ(x) + (1− t)ϕ(y). Set x = 0, and using limε→0+ ϕ(ε) ≥ 0,
Jensen’s inequality becomes

ϕ((1− t)y)≥ tϕ(0) + (1− t)ϕ(y)≥ (1− t)ϕ(y).

Setting (1− t)y = a and y = b, so that a ≤ b, we can rewrite this inequality and obtain the
equivalence

ϕ(a) ≥ a

b
ϕ(b) ⇔ ϕ(a)

a
≥ ϕ(b)

b
.

Hence, ϕ(y)/y is decreasing in y. As shown in part (ii) of this proof, this property implies
sub-additivity of the function ϕ, which completes the sufficiency part of (iii).

If WS-type protocols do not have an odd action function, then ϕ is not symmetric but
positive definite and still satisfies sub-additivity under given conditions. In those cases ϕ =
dq, i.e., the WS protocol is a quasi-metric action protocol by definition.

The existing consensus literature on admissible nonlinear action function classes, as sum-
marized in Table 3.1, makes use of specific definitions of action function types, which are
adapted and motivated by the author’s chosen stability proof methods. In contrast, we pro-
posed a single comprehensive and simple class of action functions, characterized as a specific
type of metric function, that subsumes all previously discussed nonlinear action types. More-
over, we can characterize those metric action functions, which ease its construction from sim-
ple type functions, using necessary and sufficient conditions. The use of basic and generic
mathematical functions and the completeness of the result highlight its significance.
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3.5 Protocol design and convergence results

In the following, we prove stability and exponential convergence to consensus for two ele-
mentary consensus protocol classes: the previously introduced class of signed metric actions
and a novel, second protocol that generalizes the linear mean-driven consensus approach
using the Kolmogorov-mean-metric relationship. We propose composition rules for design-
ing (more complex) metric consensus protocols based on functions of simple type as ele-
mentary metric building blocks. For that, we use the necessity and sufficiency relationship
between metric actions and sub-homogeneous functions. We discuss optimality properties
of infinitesimal solution updates generated by the second (Kolmogorov) mean-driven con-
sensus protocol, which differs from optimality of the average consensus state, an asymptotic
property.

3.5.1 Metric action class and protocol composition

The following result proves exponential convergence to a consensus state for the class of
(signed) metric action protocols on graphs, which subsumes most of the existing nonlinear
consensus protocol design and stability results and is specific enough to use it as a tool for
the design of stable-by-design consensus dynamics.

Theorem 7 (Stability for pre-metric action protocols). Let the pre-metric function dp be locally

Lipschitz continuous and consider a time-varying digraph G. The protocol

ẋ i =
∑

j∈N+
i

wi j(t)sgn(x j − x i)dp(x j, x i), i ∈ N , (3.17)

generates solutions that converge for all admissible initial conditions x 0 ∈ Rn exponentially

fast to an agreement state x̄1, x̄ ∈ [min(x 0),max(x 0)], if the underlying digraph is uniformly

connected.

Proof. The basic idea is to transform the generic class to a linear time and state-dependent,
but linear type, whereas the state-controlled part of the resulting "virtual" (action) graphs is
such that Moreau’s general stability result remains applicable.

Expand the protocol (3.17) by state differences, so that for i ∈ N we obtain

ẋ i =
∑

j∈N+
i

wi j(t)sgn(x j − x i)dp(x j, x i) =
∑

j∈N+
i

wi j(t)sgn(x j − x i)
dp(x j, x i)

x j − x i
︸ ︷︷ ︸

:=w̃i j(t;x )

(x j − x i)

=
∑

j∈N+
i

w̃i j(t; x)(x j − x i),

where the new state and time-dependent weigths w̃i j(t; x), ( j, i) ∈ B(t) define a time and
state-dependent "virtual" graph. The task is to show that this new weight function is well-
defined and satisfies Moreau’s boundedness condition, cf. Proposition 2.
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3 Metrics and means in the design of dissipative consensus systems

By hypothesis, the function wi j(·) is such that the time-dependent graph is uniform con-
nected. Further, for x j 6= x i, i, j ∈ N ,

sgn(x j − x i)
dp(x j, x i)

x j − x i

=
sgn(x j − x i)dp(x j, x i)

sgn(x j − x i)|x j − x i|
> 0,

By assumption, the action function dp is locally Lipschitz continuous, so that for two real
numbers b, a, b > a,

lim
b→a

dp(b, a)

|b− a| ≤ const <∞.

Hence, the elements w̃i j(t; x), ( j, i) ∈ B(t) are finite and positively bounded away from zero
for all possible parametrizations. That is, functions w̃i j satisfy uniform connectedness as
defined in Proposition 2 if time dependent functions wi j(·) satisfy uniform connectedness,
which is the case by hypothesis.

Let us turn to the statement regarding the exponentially fast reached consensus value.
The metric protocol on a graph can be brought to linear consensus form on a dynamically
weighted but uniformly connected “virtual” graph. By standard linear consensus theory, the
function maxi∈N x i −mini∈N x i is a (strict) Lyapunov function [Mor05]. Hence, the maximal
state value is decreasing, and the minimal state value is increasing, so that the consensus
value must lie in between the initial maximum and minimum state values. Exponential
convergence follows from Proposition 2.

The following proposition is helpful for the composition of consensus protocols that are
stable by design using simple nonlinear and locally Lipschitz continuous functions as building
blocks.

Proposition 4. Let dp be a pre-metric on a set S ⊂ R × R, i.e., for any pair (x , y) ∈ S of

non-identical components x , y the function dp(x , y)> 0. Then,

(a) for any θ : R→ R, such that (θ (x),θ (y)) ∈ S the function dp(θ (x),θ (y)) = d ′
p
(x , y) is

a pre-metric.

(b) for any α : R→ R+, the function α(y)dp(x , y) = d ′
p
(x , y) is a pre-metric.

(c) Compositions of functions that satisfy property (a) and (b) result in a pre-metric function

d ′
p
(x , y) = α(y)dp(θ (x),θ (y)).

(d) Let f be a sign-preserving function. Then d ′
p
= f (dp) is a pre-metric.

Next, assuming dp = dq, i.e., the pre-metric is also sub-additive and hence a quasi-metric, then,

the following composition rules can be used to compose more complex action functions:

(e) for f1, f2 : Rn → R, if f1 and f2 are sub-additive and c1, c2 > 0, then c1 f1 + c2 f2 is sub-

additive.

(f) if f : S ⊂ Rn→ R is sub-additive and g : R+→ R increasing and sub-additive, then g( f )

is sub-additive in S.
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Proof. The proof of items (a)-(d) is immediate and follows from the construction of the
functions. For properties (e) and (f) see [Ros50] Theorem 1.3.1.

Using these composition rules, we can derive further special but prominent nonlinear con-
sensus classes from the literature, as demonstrated in the three examples.

Example 7 (Two rate-controlled consensus protocols). In the paper [ADJ12] the authors
study the rate-controlled consensus protocol

ẋ i = −γi(x i)
∑

j∈N+
i

ϕi j(x i − x j), i ∈ N , (3.18)

assuming that γi(·) is continuous and positive, ϕi j(·) Lipschitz continuous and sign-
preserving, i.e., xϕi j(x)≥ 0 and zero if and only if x = 0. Following the arguments of Lemma
2 or Theorem 6 we can see that ϕi j(x i − x j) = sgn(x j − x i)dp(x j, x i) with dp(·, ·) = |ϕi j(·)|,
and using Proposition 4 (b) leads to the pre-metric form

ẋ i = −γi(x i)
∑

j∈N+
i

ϕi j(x i − x j) =
∑

j∈N+
i

sgn(x j − x i)d
′
p
(x j, x i), (3.19)

where d ′
p
(x j, x i) = γ(x i)dp(x j, x i).

Another prominent rate-controlled consensus protocol has been introduced in [BGP06]. It
is of the form

ẋ i = −c
1

dg/dx i

∑

j∈N+
i

ϕ(θ (x j)− θ (x i)), i ∈ N , (3.20)

with c > 0,ϕ : R→ R continuous, locally Lipschitz, odd and strictly increasing, θ : R→ R
continuously differentiable and strictly positive and g an increasing function; (this last as-
sumption on g is made implicitly in [BGP06] Assumption 2, by imposing a specific functional
structure on the considered means, which turns out to be the Kolmogorov mean structure).
Clearly, the rate factor c 1

dg/dxi
> 0, and ϕ satisfies properties of class MO in Table 3.1, see

also Lemma 2. Hence, we can write (3.20) as pre-metric protocol as in (3.19) with

d ′
p
(x j, x i) = c

1

dg/dx i

dp(x j, x i), where dp(x j, x i) = |ϕ(θ (x j)− θ (x i))|,

where we make use of composition rule Proposition 4 (c).

The two cases of rate-controlled protocols discussed in Example 7 are also interesting,
as they demonstrate the problem in the existing consensus literature that nonlinear proto-
col design is often based on very specific function assumptions which makes it complicated
to relate new work to prior ones: The protocol (3.20) introduced in [BGP06] has been in-
troduced 6 years earlier than protocol (3.18). The requirements on action functions ϕi j in
(3.18) are seemingly different from those of action functions in (3.20), however, as the exam-
ple demonstrates (or Lemma 2), those are identical function descriptions. The gain functions
describing variable rates are also both positive and c 1

dg/dx
is just a special case for a general

positive γ(x).
In the following example, we demonstrate that composition rules as in Proposition 4 in

combination with Theorem 7 can be used to prove the stability of the very general class of
WS type consensus protocols that also include an input nonlinearity.
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3 Metrics and means in the design of dissipative consensus systems

Example 8. Consider the consensus protocol of type WS with additional input nonlinearity,

ẋ i = φi(
∑

j∈N+
i

wi j(t)ϕi j(x j − x i)), i ∈ N . (3.21)

As shown in Theorem 6 ϕi j(x j − x i) = sgn(x j − x i)dp(x j, x i), i.e. the action nonlinearity is
of pre-metric type, with dp = |ϕi j|. Using the time-dependent in-degree function di(t) =∑

j wi j(t) and defining d ′
p
= didp, the protocol (3.21) can be written as pre-metric action

protocol on a normalized digraph

ẋ i = φi(
∑

j∈N+
i

ŵi j(t)sgn(x j − x i)d
′
p
(x j, x i)). (3.22)

Assume φi either being convex or sub-additive, then the r.h.s. of (3.22) can be bounded such
that

ẋ i = φi(
∑

j∈N+
i

ŵi j(t)sgn(x j − x i)d
′
p
(x j, x i)) ≤

∑

j∈N+
i

ŵi j(t)sgn(x j − x i)φi(d
′
p
(x j, x i))

As φi is sign-preserving φi(d
′
p
) =: d

′′

p
, i.e., it leaves the pre-metric function characteristic

invariant. Therefore, a pre-metric consensus protocol bounds the protocol WS with input
nonlinearity from above and below. If the pre-metric version converges to consensus, the
original must converge to an equilibrium state, too.

Besides the pre-metric consensus protocol class, which is motivated by a generalization
of existing nonlinear protocol types, a second approach to the design of nonlinear consen-
sus protocols arises from the study of how the arithmetic mean drives the linear consensus
network via the representation (3.3). This linear approach of control by a neighborhood’s
average is generalized to nonlinear means in the following.

3.5.2 Mean-control consensus protocol and optimality of dynamics

Motivated by the Kolmogorov mean structure we introduce the function

M w
f
(x1, x2, . . . , xn) := g(w1 f (x1) +w2 f (x2) + . . .+wn f (xn)) (3.23)

with functions g and f as in the definition of the Kolmogorov mean (3.13). If
∑

j w j = 1
then (3.23) is indeed a Kolmogorov mean, namely its weighted version. However, for the
sake of generality in consensus system design we shall consider the general function M w

f
in

the following.

Theorem 8. Let G be a time-varying digraph and consider the mean-controlled protocol

ẋ i = −g(di f (x i)) +M w
f
({x j} j∈N+

i
)., i ∈ N , (3.24)

where M w
f

is as given in (3.23), and di is the in-degree. For any initial condition, solutions of

the consensus system governed by (3.24) on G converge with exponential speed to a consensus

value if the time-varying digraph is uniformly connected over time.

66



3.5 Protocol design and convergence results

Proof. The idea is again to transform the system to a linear consensus form on a virtual, time-
varying action graph. Using the fact that g(di f (x i)) = M w

f
({x i}i=1,...,card(N+

i
)) we can re-write

the protocol dynamics (3.24) to obtain

ẋ i = M w
f
({x j} j∈N+

i
)−M w

f
({x i}i=1,...,card(N+

i
)). (3.25)

Next, let us use the vector notation x j for the set {x j} j∈N+
i

and x i for the set {x i}i=1,...,card(N+
i
).

With that, we expand the r.h.s. of (3.25) such that

M w
f
(x j)−M w

f
(x i)

f (M w
f
(x j))− f (M w

f
(x i))

�

f (M w
f
(x j))− f (M w

f
(x i))

�

. (3.26)

The function f is monotonously increasing by definition of the Kolmogorov mean so that the
sign of the nominator and denominator of the fraction in (3.26) are identical, and hence, the
fraction is positive.

If M w
f
(x j) = M w

f
(x i) = x i, then the nominator is zero, the denominator, however, as well,

so that the fraction is indeterminate. For that case, application of the rule de l’Hôpital shows
that

lim
Mw

f
(x j)→xi

M w
f
(x j)−M w

f
(x i)

f (M w
f
(x j))− f (M w

f
(x i))

= lim
Mw

f
(x j)→xi

1− 0

f ′(M w
f
(x j))− 0)

=
1

f ′(x i)
> 0, ∀x i,

as f is strictly increasing.
As long as the arguments are finite, the mean is finite, as well, so that for all possible param-
eterizations,

0<
M w

f
(x j)−M w

f
(x i)

f (M w
f
(x j))− f (M w

f
(x i))

<∞.

Next, let us consider the function difference with which we expanded in (3.26). Using the
definition of Kolmogorov (3.13) with g ◦ f = id we get

f (M w
f
(x j))− f (M w

f
(x i)) = f (g(

∑

j∈N+
i

wi j(t) f (x j)))− f (g (di(t) f (x i)))

=
∑

j∈N+
i

wi j(t) f (x j)− di(t) f (x i) =
∑

j∈N+
i

wi j(t)( f (x j)− f (x i))

=
∑

j∈N+
i

wi j(t)
f (x j)− f (x i)

x j − x i

(x j − x i).

The fraction
f (x j)− f (xi)

x j−xi
=

sgn(x j−xi)| f (x j)− f (xi)|
sgn(x j−xi)|x j−xi | =

| f (x j)− f (xi)|
|x j−xi | > 0 and finite for all parameteriza-

tions.
We eventually can write the protocol as

ẋ i =
M w

f
(x j)−M w

f
(x i)

f (M w
f
(x j))− f (M w

f
(x i))

∑

j∈N+
i

wi j(t)
f (x j)− f (x i)

x j − x i

(x j − x i),
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which defines a linear consensus protocol on a state and time dependent virtual digraph with
branch weight function for each ( j, i) ∈ B(t) given by

w̃i j(x j, x i) :=
M w

f
(x j)−M w

f
(x i)

f (M w
f
(x j))− f (M w

f
(x i))

wi j(t)
f (x j)− f (x i)

x j − x i

.

Both fractions are positive, finite, and bounded positively away from zero so that this virtual
weight function is positive definite and zero only if wi j(t) = 0.

Hence, by application of Proposition 2, the system converges with exponential speed to
a consensus equilibrium for all initial conditions if the weighted digraph is uniformly con-
nected.

For the case of having a normalized digraph, the protocol (3.24) becomes the Kolmogorov-
mean-controlled version

ẋ i = −x i + arg min
x∈R

∑

j∈N+
i

d2
f
(x j, x). (3.27)

Hence, the control input, being representative for interactions across the network, drives
the stable linear dynamics ẋ i = −x i using the neighborhood’s Kolmogorov average being the
solution of a convex optimization problem.
Suppose the time-dependent weighting is Lipschitz continuous over time. An Euler discretiza-
tion of the protocol ODE (3.27) yields the equation for the updated local state

x+
i
= (1−∆t)x i +∆t argmin

x∈R

∑

j∈N+
i

.

d2
f
(x j, x).

As ∆t > 0 and the values x i being constants we have the optimal characterization of an
infinitesimal state update, up to the constant const = (1−∆t)x i,

x+
i
− const = arg min

x∈R

∑

j∈N+
i

.

d2
f
(x j, x)

Put differently, for a time discretization ∆t → 0+, we have const ≈ x i so that the update
differential δx i(t) at time t is optimal in the sense

δx i(t) =∆t arg min
x∈R

∑

j∈N+
i

.

d2
f
(x j(t), x), i ∈ N .

The solution of the optimization problem is independent of the choice of ∆t . However, the
correct mapping from the optimization solution to the infinitesimal state update δx i(t) is
obtained by scaling the optimization solution with the infinitesimal time step.

Hence, the network systems dynamics induced by the mean-control consensus protocol are
optimal at each infinitesimal step in time, w.r.t. the optimality criterion defined by the metric
d f . This optimality of the dynamics differs from the usual optimality characteristics in the
consensus literature, which is concerned about the asymptotically reached static consensus
equilibrium that minimizes sum-of-squares energy as discussed in Section 3.2.
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3.6 Application: The embedding protocol

We introduce an embedding protocol as a particular case of a metric action consensus proto-
col. This consensus network class combines network energy functions serving as Lyapunov
and potential functions in a gradient flow schema, a geometric generalization from consen-
sus on linear to nonlinear spaces, and extends known optimality and invariance properties
of the linear to general nonlinear consensus system case.

3.6.1 Embedding protocol and consensus on nonlinear space

Following Kolmogorov’s idea to generalize means via the arithmetic mean linear structure
through coordinate transformations f : x 7→ f (x) and transforming the aggregate back via
the inverse map g, we propose the embedding protocol as linear consensus protocol with
transformed states and a transformation back to locally linear space for velocities.

ConsiderMe ⊂ Rn a nonlinear configuration space embedded in n-dimensional Euclidean
space such that Rn →Me : x i → e(x i) =: x̂ i,∀i = 1, . . . , n. The scalar embedding function
e is motivated from Kolmogorov’s function f , and we assume it to be increasing, continuous
and such that its first derivative e′(x) = de

dx
exists.

With that, we define the embedding protocol as a metric interaction protocol with positive
gain function given by the protocol differential equation

ẋ i = (e
′(x i))

−1
∑

j∈N+
i

wi j(t)(e(x j)− e(x i)), i ∈ N . (3.28)

From a geometric perspective, the embedding protocol (3.28) can formally be written as

ẋ i = ProjTMe,xi





∑

j∈N+
i

wi j( x̂ j − x̂ i)



 i ∈ N , (3.29)

with TMe,xi
the tangent space at x i, where it becomes apparent that the gain function e′−1

in (3.28) serves as a back projection to local, linear space.

Corollary 2 (Exponential convergence for the embedding protocol). The embedding protocol

(3.28) running on a weighted digraph G(t) converges with exponential speed to a consensus

state if the underlying digraph is uniformly connected.

Proof. Using Lemma 1 it follows that |e(b)− e(a)| = de(a, b), i.e., it is a metric, and as e is
increasing and differentiable we have 1/e′(x)> 0. Hence, using Theorem 7 with composition
rule given in Proposition 4 (a), the embedding protocol (3.28) is an instance of a pre-metric
consensus protocol and hence, when running on a uniformly connected graph, the system
converges exponentially fast to a consensus state.

To better understand the relation between the embedding protocol(3.28) and its geometric
description (3.29) consider as starting point simply the linear consensus protocol ODE in
embedded coordinates

d

dt
x̂ i =

∑

j∈N+
i

wi j(t)( x̂ j − x̂ i), i ∈ N .
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3 Metrics and means in the design of dissipative consensus systems

Solving for the local, linear coordinate velocity ẋ i, the positive gain function (e′(x i))
−1 in the

embedding protocol originates from projecting the velocity of the transformed state compo-
nent d x̂ i/dt back to the velocity of the local, linear coordinate velocity ẋ ; using the chain
rule, we get for the embedded state velocity

d x̂ i

dt
=

de(x i)

dx i

dx i

dt
⇔ ẋ i =

�
de(x i)

dx i

�−1 ∑

j∈N+
i

wi j(t)( x̂ j − x̂ i).

This approach to defining the embedding protocol is identical to the way the famous phase
averaging in the Kuramoto model has been initially derived, whereas there, the embedding
is from the real to the complex numbers, in which the circle as nonlinear configuration space
for angles is defined. The following example demonstrates this embedding from reals to the
circle in the Kuramoto case.

Example 9 (Phase averaging on the circle). Consider the circle S1 being embedded in Eu-
clidean ambient space R2, which can equivalently be expressed as the complex plane C with
coordinates the real and imaginary components of complex numbers. Coordinates on the
circle are angles θ ∈ S1. The embedding of angles into the complex plane leads to the em-
bedding S1→ C : θ → θ̂ = eιθ and the projection back C→ S1 : θ̂ → θ = arg(θ̂ ). Using this
coordinate embedding, the consensus protocol on the circle can be derived for every i ∈ N

from
d

dt
eιθi = eιθi ιθ̇i =

∑

j∈Ni

wi j(e
ιθ j − eιθi )

⇔ ιθ̇i =
∑

j∈Ni

wi j(e
ι(θ j−θi) − 1) =

∑

j∈Ni

wi j(cos(θ j − θi)− ι sin(θ j − θi)− 1),

so that solving for the angle velocity, i.e., taking the imaginary part on both sides, yields

θ̇i =
∑

j∈Ni

wi j sin(θ j − θi), i ∈ N .

This is the famous Kuramoto model for phase averaging dynamics with natural frequencies
all equal (or equivalently zero).

The geometric protocol formulation (3.29) is also result of a geometric consensus frame-
work developed by Sarlette and Sepulchre in the original work [SS09a] and [SS09b], see
also Sarlette’s thesis [Sar09] and Sepulchre’s review [Sep11]. It aims at unifying linear and
nonlinear consensus algorithm design by taking the idea of dynamics that unfolds by repeat-
edly computing updates of the local consensus estimate via arithmetic mean averaging in
Euclidean space to computing means as an update in the direction of a local mean; how-
ever, on nonlinear spaces. A nonlinear configuration space, defined via a Riemannian metric
structure, is their starting point and not a simple coordinate transformation as given here
with the embedding function e.

For nonlinear (Riemannian) configuration spaces denoted M the natural generalization
of computing weighted arithmetic mean via a metric minimization, cf. (3.7), is to consider
the non-Euclidean, metric minimization

meanM (x) = arg min
z∈M

n∑

i=1

dM (z, x i)
2,
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where dM denotes the intrinsic (Riemannian) metric, which is a geodesic distance. The
fundamental problem with this idea of updating a point towards a new point by moving along
the geodesic path connecting them is that the computation of a geodesic is practically not
feasible [Sep11], see also [AMS08] Chapter 4, or [LY73] Chapter 12, as it involves solving
a minimization problem over all paths connecting two points at each time step and in a
distributed manner across the consensus network.

To overcome this computational problem and reach a practical consensus algorithm, the
authors also introduce an "embedding trick": they regard the nonlinear configuration space as
embedded in ambient linear, Euclidean space, and in this extrinsic linear geometry, a simple
linear update is computed, which then is projected back onto the nonlinear space. Replacing
the (intrinsic) geodesic with this (extrinsic) projected approximate allows to derive explicit
nonlinear consensus protocol formulae according to (3.29).

In particular, under the assumption thatM is a connected compact homogeneous mani-
fold, it can be smoothly embedded into a Euclidean (linear) space; here, M be embedded
in Rn, and elements x ∈M are again denoted x̂ when expressed as (vector) embedding in
linear spaceRn. Within the ambient Euclidean geometry the authors make use of the induced
(or projected [Moa02]) weighted arithmetic mean

IAMw(x1, ..., xn) := arg min
x∈M

n∑

i=1

ωi| x̂ i − x̂)|2. (3.30)

Without the requirement of the solution being element of M this squared distance mini-
mization has solution the Kolmogorov mean in non-embedded coordinates, see Theorem 5,
or equivalently, the weighted arithmetic mean, amw( x̂1, . . . , x̂n) =

∑n

i=1ωi x̂ i, in embedding
coordinates. Under the restriction of x ∈M , (3.30) defines the orthogonal projection of this
centroid onto the manifoldM .

Analogous to the linear consensus protocol (2.4) the authors eventually define the non-
linear generalization as differential update rule towards the weighted arithmetic mean in
ambient space, which then is projected to the closest point of the manifold M [Sep11],
leading to the protocol differential equation

ẋ i = ProjTMxi





∑

j∈N+
i

wi j( x̂ j − x̂ i)



 ,

TMxi
again the tangent space at x i.

3.6.2 Coordinate embedding defines gradient descent scheme

A gradient descent scheme of some scalar energy function F : Rn → R in continuous time
typically has the ODE form G(x)ẋ = −∇F(x). The matrix function G : Rn→ Rn×n is positive
definite and defines the infinitesimal metric dx ·G(x)dx , in which the system is a gradient
flow of F .

In the following we transform the embedding protocol (3.28) on time-invariant, connected
graphs with symmetric weighting into gradient systems governed by a particular projected
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3 Metrics and means in the design of dissipative consensus systems

version of the ODE type ẋ = −G−1(x)∇E (x). We consider the energy function E : Rn → R
to be additive and such that

E (x ) =
∑

i

E(x i), with local energy components E : R→ R. (3.31)

The embedding function e defines scalar local energy components E via its anti-derivative
such that

E :∇E = e ⇔ E(x) =

∫

e(x)dx , (3.32)

where, without loss of generality, we have set the integration constant of the indefinite inte-
gral in (3.32) to zero. With this definition, note that e =∇E and e′ =∇e =∇2E.

Now, we can re-write the embedding protocol (3.28) in component ODE as

ẋ i = (∇2E(x i))
−1
∑

j∈N+
i

wi j(∇E(x j)−∇E(x i)), i ∈ N . (3.33)

Introducing the diagonal matrix H(x ) := diag{∇2E(x1), . . . ,∇2E(xn)}, the component ODE
(3.33) in vector matrix notation for the overall system becomes

ẋ = −H(x)−1L∇E (x). (3.34)

Under the assumption of operating on a connected and symmetric graph the Laplacian
matrix can be factorized such that L = VΛV⊤. The matrix V collects the orthogonal eigen-
vectors of the Laplacian with two-norm one and Λ = diag{λ1, . . . ,λn} is the diagonal matrix
of associated eigenvalues, where we remember that λ1 = 0, and λi > 0 for i = 2, 3, . . . , n.
From the presentation in Section 3.2.3 we know that application of the system matrix L on
an n-vector in fact projects this n-vector x onto the n− 1-dimensional subspace of integral
preserving states MI as defined in (3.6). Further, v1 associated to λ1 = 0 is orthogonal to
MI , cf. Figure 3.1, so that {v2, . . . , v n} represents an orthogonal basis forMI .

We formally write this projection for the energy gradient vector ∇E ontoMI

∇MI
E (x) = L∇E (x) =

n∑

i=2

λi

∇E (x) · v i

v i · v i

v i =

n∑

i=2

v iλi v i · ∇E (x).

Now, the system ODE (3.34) represents the gradient dynamics projected onto MI given
by

ẋ = −H(x)−1∇MI
E (x). (3.35)

We can make the following observations and comments:

a) Within the gradient systems framework G(·) = H(·), i.e., the local rate functions 1/e′ of
the embedding protocol define the metric in which the system evolves as non-Euclidean
gradient flow. If the matrix function H(x) varies smoothly in x , then the gradient
system ODE defines a Riemannian gradient flow.
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3.6 Application: The embedding protocol

b) While we consider gradients of E on the linear space given by the simplex MI , the
consensus dynamics is constrained to evolve on the nonlinear spaceMe. Hence, along
trajectories of the gradient system projected ontoMI the usual quadratic gradient dis-
sipation equality

Ė (x) = −∇MI
E (x) ·H(x)−1∇MI

E (x ) = −||∇MI
E (x)||2

H−1

holds, that characterizes exponential convergence speed. The minimum of E however
is achieved under the constraint of being a consensus state lying onMe, where trajec-
tories actually evolve. Hence, the consensus value x̄ can formally be uniquely defined
as the intersection point of the vector c1, c > 0 withMe.

c) With ∇2E(x i) being the components of the metric tensor H and with the particular
additive structure of E , cf. (3.31), the metric tensor in fact represents the Hessian
of the scalar energy field E (x). Hence, the non-Euclidean gradient dynamics do not
follow steepest descent gradient directions on the linear space MI , but they also use
curvature information when approaching a minimum of E .

d) Using the Hessian of a function in scaling the gradient of the same function is reminis-
cent of Newton’s method in optimization. Let ε ∈ (0, 1); for scalar systems a Newton
type update step for finding the minimizer of a function E(x) is such that

∆x = −ε ∇E(x)

∇2E(x)
⇔ x+ = x − ε[∇2E(x)]−1∇E(x), (3.36)

for ε→ 0 : ẋ = −[∇2E(x)]−1∇E(x).

Newton descent algorithms with ε = 1 are known to converge quadratically to an equi-
librium, which is faster than the exponential convergence of a usual gradient descent
system. The ODE formulation in (3.36) is is reminiscent of (3.35).

e) Writing the embedding protocol system equation in component form we observe that
for each i ∈ N ,

ẋ i = −di

∇E(x i)

∇2E(x i)
+

1

∇2E(x i)

∑

j∈Ni

wi j∇E(x j).

Hence, the local, uncontrolled dynamics at each node i indeed represents a Newton
type descent scheme. However, convergence to a stationary local state is decelerated
by the added external, neighborhood input 1

∇2E(xi)

∑

j∈Ni
wi j∇E(x j), which serves to

keep trajectories confined toMe.

With trajectories of the embedding protocol gradient system (3.35) being constraint to
evolve on some nonlinear space Me, the question arises of how this space looks like. The
role of the Hessian H(x) in shaping this space becomes apparent from the geometric protocol
description (3.29) cf. to (3.28). We shall discuss this topic in the next section.
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3 Metrics and means in the design of dissipative consensus systems

3.6.3 Invariance and optimality properties

As presented in Section 3.2.3, for linear consensus systems the simplex MI represents an
invariance property of the linear ODE system. It originates from matrix properties of the
Laplacian system matrix, where the components of π are such that π · L = 0⊤. In the same
manner, by describing an invariance property along trajectories, we can characterize the
nonlinear spaceMe as follows.

Lemma 3. Consider the embedding protocol (3.33), resp. (3.35), on a time-invariant, irre-

ducible graph with embedding function e, associated energy components E according to (3.32),

and metric de(a, b) = |e(a) − e(b)|. For any admissible initial condition z the configuration

space is given as the set of vanishing signed distances

Me =

¨

x ∈ Rn :
n∑

i=1

πisgn(x i − zi)de(x i, zi) = 0

«

.

Along trajectories the quantity
∑

iπi∇E(x i) =
∑

iπi∇E(zi) is invariant.

Proof. Define the quantity
∑

i πi∇E(x i) =: m(x ) and consider the matrix Π =

diag{π1, . . . ,πn}; using the chain rule we get

d

dt
m(x(t)) =∇m(x(t)) · ẋ =∇2E (x) ·Π ·H−1Le(x) = π · Le(x ) = 0.

Here, we make use of the fact that diagonal components of Π ·H−1 are elements πi/∇2E(x i),
so that multiplication with the vector of second derivatives of E yields the left-eigenvector π
of the Laplacian matrix associated to the zero eigenvalue. Hence, the quantity m is a system
invariant along trajectories, so that

∑

i∈N

πi∇E(x i) =
∑

i∈N

πi∇E(zi) = m ⇔
∑

i∈N

πi(∇E(x i)−∇E(zi)) = 0.

Noting that sgn(x i − zi)de(x i, zi) =∇E(x i)−∇E(zi) we obtain
∑

i∈N

πi(∇E(x i)−∇E(zi)) =
∑

i∈N

πisgn(x i − zi)de(x i, ei) = 0.

This completes the proof.

This invariance property is formulated purely based on additive energy associated with the
embedding function e. Associating the embedding function e with the local coordinate trans-
formation f in Kolmogorov’s functional requirement on means, the consensus and gradient
results yield the following dynamic and constrained minimization formulation for general
standards directly.

Theorem 9 (Kolmogorov means: Dynamic and optimization characterization). Let x ∈ Rn

and consider positive reals w1, w2, . . . , wn. Let f : R→ R be a continuous monotonously increas-

ing function that is either strictly convex or concave. The weighted Kolmogorov mean M w
f
(x) is

characterized as the value x∗ obtained as minimizer

x∗1=argminy∈RnE (y), E (y) =
n∑

i=1

wi E(yi)

s.t.

n∑

i=1

wi sgn(x i − yi)d f (x i, yi) = 0, (3.37)
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with E such that ∇E = f . Moreover, x∗ is also the consensus equilibrium obtained from the

embedding protocol with e = f that evolves on an irreducible, time-invariant digraph G, with

left eigenvectorπ corresponding to the zero eigenvalue of the associated Laplacian matrix L, such

that πi = wi.

Proof. First, note that with f being monotonously increasing, f ′ is positive and monotonous,
too, as it is assumed to be either strictly convex or concave. For the case of convexity f ′′ > 0,
so that f ′ is increasing and for concavity, f ′′ < 0 so that it f ′ is monotonously decreasing.

Now, consider the Lagrangian function associated to the constrained optimization problem,

L (y ,λ) = E (y)−λ
�

n∑

i=1

wi( f (x i)− f (yi))

�

.

Here we made use of the identity sgn(x i − yi)d f (x i, yi) = f (x i) − f (yi), see Lemma 1. A
solution of the optimization problem satisfies the first order optimality conditions

d

dλ
L = 0 ⇔

n∑

i=1

wi f (yi) =

n∑

i=1

wi f (x i) (3.38)

d

dyi

L = 0 ⇔ wi f (yi) +λwi f ′(yi) = 0, i = 1, . . . , n. (3.39)

Rewriting (3.39), we get the requirement f ′(yi)

f (yi)
= − 1

λ
for all i = 1, . . . , n. As f ′ is a

monotonous function and so is f , the solution yi satisfying this equation is unique. More-
over, as the r.h.s. is identical for all indices i the solution y1 = y2 = . . . = yn. Hence, the
minimizer candidate reduces to a consensus state y1.

Substituting this candidate state into (3.38), and defining w̄ =
∑n

i=1 wi yields the identity

n∑

i=1

wi f (yi) = w̄ f (y) =

n∑

i=1

wi f (x i) ⇔ y = g

�∑n

i=1 wi f (x i)

w̄

�

= M w
f
(x).

This completes part one of the theorem.
To see that the weighted Kolmogorov mean is also the consensus state asymptotically

reached by the embedding protocol system, note that from Corollary 2 we first know that a
consensus equilibrium is achieved under the existing connectivity assumption. Further, with
Laplacian matrix such that πi = wi, for all i ∈ N , the invariant set is exactly the constraint
(3.37), according to Lemma 3. Hence, the consensus equilibrium must be the weighted
Kolmogorov mean as specified.

Remarkably, only strictly convex or concave local state transformations f = e prove this
result.

3.7 Summary and concluding remarks

In this chapter, we studied the relationship between Kolmogorov mean and metric functions
and derived a framework for the design of consensus protocols that converge exponentially
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fast to a consensus state. Two mean-driven classes of nonlinear consensus protocols are dis-
tinguished: a metric action protocol and a mean-control protocol. The metric action protocol
is simple and generic. It subsumes well-known nonlinear consensus protocol classes by using
the properties of distance functions only – a fundamental mathematical structure. The use
of metrics and properties of these lets us formulate rules to build more complex consensus
protocols from the composition of functions of simple type. The mean-driven protocol class
is interesting, as it extends the optimality properties of the arithmetic mean as an asymptotic
equilibrium state that minimizes a sum-of-squares cost function to optimality of infinitesimal
state updates, hence rendering trajectories themselves optimal. The associated cost function
that is minimized is a sum-of-squared-distances function that follows from the Kolmogorov-
mean-metric relationship we established. Motivated by the structure of Kolmogorov means,
which is a linear one up to local nonlinear coordinate transformations, we introduce the
embedding protocol as a special case of the metric action protocol. We discuss geometric
properties and especially the relation to the consensus on nonlinear space framework of
Sepulchre and Sarlette. We show that the embedding function is naturally associated with
a network energy function, in which the nonlinear embedding-consensus network dynamics
evolve as gradient descent flow in a non-Euclidean metric. This gradient structure is remi-
niscent of a Newton algorithm. Using this dissipation view, we further prove invariance and
asymptotic optimality properties that characterize Kolmogorov means also as equilibrium
solution of a dynamic embedding-consensus network, or equivalently, as the solution of a
constrained minimization problem with the network energy potential as cost-function and
the non-Euclidean configuration space as minimization constraint.

Asymptotic optimality properties of the embedding protocol, its close relation to a dis-
tributed Newton schema, and the infinitesimal optimality of the mean-control consensus
protocol motivate the further study of these systems, e.g., in the context of mechanism de-
sign and distributed optimal control as a protocol design task. The embedding protocol
with its relation to consensus on nonlinear space and gradient descent schemes suggests the
study of non-convex embedding functions or embeddings with complex functions, e.g., as
is the case for the Kuramoto model. The gradient descent scheme we formulated for the
embedding-consensus dynamics is a non-classical gradient system formulation as we use
projected gradients. It would be interesting to understand the relation to the usual gradient
system formulation and further exploit its characteristics and usefulness for the study, e.g.,
of inhomogeneous diffusion systems with state-dependent dominant left-eigenvector. This
study of Laplacian systems allows the treatment of linear and non-linear systems in the same
way. Moreover, it fuses different mathematical concepts in simple ways to analyze dynami-
cal systems, e.g., gradient and Lyapunov systems, metric, and optimization schemes. It has a
physical interpretation as passive electric circuits. The usefulness of Laplacian models raises
the question to what extent and how linear and nonlinear ODE systems can be embedded
into a Laplacian ODE system. While we usually assumed Lipschitz continuity, extensions and
conditions on when a direct extension of the presented results to discontinuous settings are
possible can be an interesting direction of further studies.
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4

Dissipation mechanisms and passive cir-

cuit structure of consensus networks

4.1 Introduction

Consensus networks, or diffusive systems on graphs, are omnipresent in network applica-
tions such as peer-to-peer sensing and gossiping [Boy+06], systems of particles and biologi-
cally motivated interaction [Vic+95], opinion and social evolution systems [Jia+15], image
processing and data filtering [Tau95; TZG96], the electric power grid [DB12], or chemical
reaction systems [vRJ13b], to name a few. The fundamental stability result for the proto-
typical linear time-varying consensus dynamics is due to Moreau in [Mor04] and [Mor05].
It shows a contraction property forward in time, making use of convexity, nested sets, and
set-valued contraction measures. Since that work, a deeper understanding of contraction
mechanics is sought by various authors, introducing novel tools to the study of consensus
network convergence and stability, or highlighting "not-so-linear" behavior of the linear base
system [Sep11] [Ols08]. In this chapter, we build from first principles a dissipative systems
and passive circuit framework for the synthesis of a large class of consensus networks. We
show equivalences to existing abstract, theoretical, and modeling frameworks used in the
study of consensus dynamics.

The fundamental tool in studying convergence and stability of consensus systems is the
span norm Lyapunov function maxi x i−mini x i, where x i denotes state components of the n-
dimensional consensus network system. It has been applied in the analysis of John Tsitsiklis
in his thesis [Tsi84], see also [TBA86], where he studies consensus protocols in the context
of distributed decision making and computation building on Markov chain theory. Earlier,
and less known, is the work of Jan C. Willems [Wil76], where he provides a range of Lya-
punov inequalities for diagonally dominant systems among which systems of diffusive type
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are a particular case. He also highlights the same span norm function as Lyapunov function.
Further, he works out the relationship between the convexity of Lyapunov functions, the
Laplacian matrices as the generators of the transport maps and refers to connections with
RC circuit systems. Moreau in [Mor04; Mor05] uses the same span-norm Lyapunov func-
tion showing convergence using set-valued inclusions and set-valued contraction measures.
Moreau in [Mor04] also refers back to Willems’s work [Wil76] noting that convergence in
consensus systems may have close ties to passivity theory. Sepulchre, Sarlette, and Rouchon
in [SSR10] recover the span norm Lyapunov function, however, in logarithmic coordinates.
It represents a contracting Hilbert distance to the set of consensus states and is a result,
among others, due to Birkhoff from as early as 1957 [Bir57].
The convergence and stability study focusing on spectral properties of the Laplacian matrix
governing the dynamics has gained popularity with [JLM03; SM03a; OSM04]. Murray and
Olfati-Saber in [OSM04] and [OSFM07a] made famous the use of quadratic Lyapunov func-
tions with the multi-agent systems interpretation as collective and group disagreement that
is being reduced along solutions to consensus. For the case of time-invariant and symmetric
graphs, they exhibit a Euclidean gradient structure of the dynamics in the group disagree-
ment serving as potential. Van der Schaft, in [van11], argues that not the group but the sum-
of-squares collective disagreement is the appropriate potential in which consensus systems
evolve as gradient flow. His argument is motivated by an electric circuit and port-Hamiltonian
consideration. Egerstedt in [ME10] also proposes an LTI electric circuit structure for LTI sym-
metric consensus dynamics. For the case of non-symmetric but detailed balance weighting
and in nonlinear situations, gradient and passive circuit structures are exposed in [MDM16].
A new technique in the analysis of consensus networks is proposed in [HT13] based on a
property of the time-varying graph weights called cut-balance. While results do not gener-
alize existing ones, the proof technique is novel. It indicates that sums of state components
have a monotonous behavior over time, leading to convergence to equilibrium points, not
necessarily consensus ones. This property highlights novel dissipation mechanics. It has led
to the introduction of novel differential analysis concepts such as the so-called consensus di-
chotomy [PC17], building on boundedness and the contraction behavior of Laplacian flows.
It also motivates the study of differential Lyapunov functions and novel incremental stability
tools, see [FS14].

Since earliest studies of consensus networks, e.g., by Willems [Wil76], passivity and elec-
tric circuit ideas are every re-occurring but have never been rigorously applied to the context
of consensus networks. In the following, we build a passive circuit setting suited for ana-
lyzing general nonlinear consensus problems. We comment on span-norm approaches and
show equivalence to the cut-balance property by introducing a novel differential passivity
concept motivated by a majorization property. The contribution of this chapter is as follows:

a) We provide a comprehensive dissipative and interconnected systems analysis of gen-
eral, nonlinear consensus systems.

b) We connect classic and hardly noted structure results in network synthesis to modern
problems in network systems.

c) A novel method called graph embedding is proposed to treat linear and nonlinear con-
sensus protocols alike; we provide rigorous proofs for the resulting system properties.
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4.2 Network system representation and dissipation results

d) We derive a realization of nonlinear consensus networks as an interconnection of novel
nonlinear, passive capacitor, and resistor elements.

e) On that basis, we introduce a network gradient flow structure, which we prove irre-
spective of a particular ODE realization but purely based on duality and an energy-
dissipation equality characterizing gradient system solutions.

f) We propose the novel concept of differential majorization and prove equivalences to
the cut-balance property and nonlinear RC network systems realizations.

g) Application of the results yields passive circuit-based derivations of classical informa-
tion inequalities and a novel dynamic electric circuit interpretation of Markov chain
dynamics.

Starting with the introduction of the considered system class, we provide in Section 4.2 a
background and basic definitions on dissipative and network systems, gradient systems, and
introduce a tool that we use and call graph embedding. Then, in Section 4.3 we state and
prove the gradient and passive circuit realization result for nonlinear consensus networks.
Following that, in Section 4.4 we extend gradient and passivity results from the detailed
balanced to a general irreducible dynamics case and provide equivalences to majorization
and cut-balance properties. Before we end this chapter with concluding remarks, we apply
the results to Markov chains.

4.2 Network system representation and dissipation results

We introduce a general class of nonlinear consensus protocols on weighted directed graphs
that are strongly connected. We then provide background on dissipativity theory for open
systems that we use to define (closed) network systems as a neutral interconnection of a pas-
sive memoryless and a passive lossless system with memory. This abstract lossless-dissipative
decomposition is put into the context of structure results for the synthesis of nonlinear passive
electric circuits, due to Hill, Moylan, and Anderson, which are motivated by the classical reac-
tance extraction approach of Youla and Tissi in the LTI setting. A gradient systems definition
is proposed based on trajectory data and a duality structure in which an energy-dissipation
equality serves as a necessary and sufficient constitutive equation. We close this section by
introducing an expansion method and its properties that we call graph embedding. It al-
lows for shifting nonlinearity from nodes to edges and vice versa so that nonlinear consensus
problems can be studied using techniques from linear consensus theory.

4.2.1 Consensus protocols on graphs

Let G = (N , B, w) be a weighted directed graph, where N = {1, 2, . . . , n} is the set of nodes,
B = {1, 2, . . . , b} ⊆ N × N denotes the set of branches, whose elements are ordered pairs
( j, i) denoting an edge from node j to i, and w : B→ R>0 is a weighting function, such that
w(( j, i)) =: wi j , if ( j, i) ∈ B, else wi j = 0. Define the in-neighborhood of a node i as the set of
connected nodes N+

i
:= { j ∈ N : ( j, i) ∈ B}, i ∈ N . Associated to a graph is the graph Laplace

matrix L, defined component-wise as [L]i j = −wi j , [L]ii =
∑

j∈N+
i

wi j.
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4 Dissipation mechanisms and passive circuit structure of consensus networks

For strongly connected graphs, denote the dominant left-eigenvector associated to the
unique zero eigenvalue of the Laplacian by c, and define C := diag{c1, c2, . . . , cn}. This vector
has positive elements and is also called (left-) Perron vector of L.

A graph, respectively the associated Laplacian matrix, is said to be balanced if it has zero
(row and column) excess, i.e.,

∑n

j=1 wi j =
∑n

j=1 w ji , for all i ∈ N , and it is symmetric if for

all ( j, i) ∈ B, wi j = w ji. In vector matrix notation this property is equivalent to 1⊤L = 0 · 1⊤
and L1 = 0 · 1, i.e., the Perron vector and corresponding right-eigenvector associated to
the dominant zero-eigenvalue are proportional to the vector of all ones, see, e.g., [OSM04]
Theorem 6. We say a graph, respectively its Laplacian matrix is irreducible if the underlying
graph is strongly connected. Then, the associated Laplacian matrix L has exactly one zero
eigenvalue with Perron vector c > 0, see, e.g., [OSM04] Theorem 1.

An important generalization of the symmetry condition on Laplacians that L = L⊤ is the
particular type-symmetry that for some C, and i, j ∈ N ,

ciwi j = c jw ji ⇔ CL= L⊤C. (4.1)

Equation (4.1) is known in the literature on Markov chains as detailed balance, or as re-
versibility w.r.t. c, cf., [Nor97] Chapter 2.

We consider the general class of consensus protocols on a graph G described component-
wise by an ODE of the type

ẋ i =
∑

j∈N+
i

wi j φ(x j, x i), i ∈ N , (4.2)

where φ(·, ·) is Lipschitz continuous and sign-preserving in the sense that (a− b)φ(a, b) ≥ 0
for all a, b ∈ R with equality if and only if a = b.

Remark 16. The sign-preservingness property, as stated here, can also be expressed as
φ(a, b) = sgn(a− b)ϕ(a, b), with ϕ being a pre-metric function, i.e., positive definite, with
possible choice ϕ = |φ|, as shown in Chapter 3,

Example 10 (Examples for the consensus class with action function φ). The class (4.2)
includes many known network models: The usual linear consensus system [OSFM07a] is
obtained from setting φ(x j, x i) = x j − x i. If φ(x j, x i) = f (x j − x i)(x j − x i), with the con-
straint f (z) = f (−z)> 0, then, the ODE (4.2) describes a continuous-time opinion dynamic
[CFT12]. For instance, one may choose f (z) = | tanh(p · z)|, p > 0, which is a good choice
for modeling saturation phenomena in the interaction. If φ(x j, x i) = ψ(x j − x i), where
ψ(−z) = −ψ(z), then we recover the nonlinear consensus class introduced by Olfati-Saber
and Murray in [SM03a], with ψ = sin a prominent instance. Beyond the presented known
interaction types, our model also includes couplings of the form φ(x j, x i) = g(x j)− g(x i),
where g is an increasing function, e.g., ln(x), ex , x p, p > 0, on the respective domain of defi-
nition, or φ(x j, x i) = l(x i)− l(x j), where l is a decreasing function, e.g., x p, with p < 0. The
latter interaction types cover a discrete version of an equation system that models the non-
linear diffusion of gas in porous media, see [EM14] (and [V0́7] for the continuous context).
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4.2 Network system representation and dissipation results

4.2.2 Network systems, internal passivity, and Lyapunov stability

We consider network systems as dynamical systems with constituent parts being open sys-
tems, which are interconnected according to a neutral interconnection rule, as laid out in the
axiomatic framework of dissipative systems by Jan C. Willems in [Wil72], see also [PW97],
and [Wil07].

To start with, an open system is a dynamical system governed in continuous time by an ODE
of the type ẋ (t) = f (x), with state x ∈ Rn, which interacts with an environment through
inputs u ∈ Rr and outputs y ∈ Rm, such that the system embedded into an environment
evolves such that

Σ :

�

ẋ (t) = f (x(t), u(t)), x (t = 0) = x 0 ⇔ x(t) = x 0 +
∫ t

0
f (x (τ), u(τ))dτ.

y(t) = h(x(t), u(t))

(4.3)
We emphasize the fact that all dynamical effects, i.e., those phenomena involving memory
[Wil72], are described and attributed to the state, so that the output, or measurement, is
required to be a memoryless map. Also, note that the state is an internal or latent system
variable and therefore not observable from the outside; the system interacts with the outside
only via the (manifest) input and output functions [PW97].

The notion of dissipativeness involves the concept of a supply (e.g., of energy) from the
environment to the system, which is a function of the interaction variables over time; we
denote the supply rate as a function s : Rr ×Rm→ R and assume it to be locally integrable,
i.e.,

∫ T

t
|s(τ)|dτ <∞, with 0 ≤ t ≤ T . With that, the concept of dissipativity and passivity

can be defined, according to [Wil72], as follows.

Definition 5 (Dissipativity, losslessness and passivity ). A system Σ is said to be dissipative
with respect to the supply rate s if for all times t and T , 0≤ t ≤ T , the dissipation inequality

E(x (T ))− E(x (t))≤
∫ T

t

s(u(τ), y(τ))dτ (4.4)

holds. The function E : Rn → R is called storage function. A system Σ is said to be lossless
if (4.4) holds with equality for all times. It is said to be passive, if the dissipation inequality
(4.4) holds with supply rate given by a bilinear form.

We consider network system of typeΣ to be composed of smaller open subsystemsΣi, i ∈ N

that are interconnected to each other. Hence, there is a distinction between inputs and out-
puts that are internal to the overall system Σ and inputs and outputs with which Σ interacts
with the external environment. We refer to internal inputs and outputs associated to system
Σi by u i

int
, y i

int
, and external ones accordingly with subscript ext. Consequently, each subsys-

tem Σi formally is given a supply rate si = sext
i
+ sint

i
. Using these elements, we can define a

network system as a neutral interconnection of open subsystems.

Definition 6 (Neutral interconnection, network system, and internal passivity). Consider a
family of n open systems Σi, i ∈ N . An interconnection of these n systems is said to be
neutral, if the internal supply rates additively nihilate, i.e., if

∑

i∈N sint
i
= 0. A system Σ is

said to be a network system if it is composed of a family of open systems that are neutrally
interconnected. It is said to be internally dissipative, resp. passive, if each subsystem is
dissipative, resp. passive, w.r.t. their associated internal supply rate.
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4 Dissipation mechanisms and passive circuit structure of consensus networks

The interconnection constraint of neutral type does not introduce any new supply or dis-
sipation to the network system. Dissipation properties of the network system hence are a
consequence of dissipation properties of the constituent subsystems and might render the
choice of storage functions even unique, e.g., when subsystems are lossless and supply rates
given from physical considerations. In general, the additional constraint provided by the
neutral interconnection structure constrains the set of possible storage functions, e.g., im-
posing the form of being additive. In addition, when external supply vanishes, the concept
of internal dissipativity results in Lyapunov stability, as the following result shows.

Theorem 10 (Dissipativity and Lyapunov stability for network systems). Consider a network

systemΣ that is comprised of n neutrally interconnected subsystems. Assume that each subsystem

Σi, i ∈ N is dissipative with storage function Ei and associated supply rate si = sext
i
+ sint

i
. Then,

the network system is dissipative w.r.t. the supply rate s(t) =
∑

i∈N sext
i
(t) and with additive

storage E(t) =
∑

i∈N Ei(t). Moreover, suppose the external supply vanishes, so that sext
i
= 0,

for all i ∈ N, and let x ∗ be an equilibrium point of the autonomous network system. Then, the

additive storage E is a Lyapunov function proving the stability of x ∗ in its neighborhood if E is

continuous and attains a strong local minimum at this equilibrium point.

Proof. Adding up local dissipation inequalities yields the network system’s dissipation in-
equality

n∑

i=1

[Ei(T )− Ei(t)]≤
∫ T

t

n∑

i=1

sext
i
(τ) + sint

i
(τ)dτ

⇔ d

dt

n∑

i=1

Ei(t)≤
n∑

i=1

sext
i
(t) + sint

i
(t)

neutral
=

interconnection

n∑

i=1

sext
i
(t).

Therefore, E =
∑n

i=1 Ei is a storage function forΣ. The proof of the Lyapunov part is identical
to the proof of [Wil72] Theorem 6.

In differential form the dissipation inequality (4.4) becomes Ė ≤ s; if the system does not
interact with an environment, i.e., it is isolated from it, then Ė ≤ 0 is the typical Lyapunov
inequality required to prove the stability of an equilibrium state.

While a storage function and supply rate characterize dissipativeness as a systems property
along trajectories, i.e., also and especially in situations away from equilibrium, Lyapunov
functions are a means to characterize the stability of an equilibrium point, in the sense of
convergence of a distance function from any state to the equilibrium state. The relationship in
Theorem 10 between dissipativity and Lyapunov stability is interesting as it allows to identify
equilibrium candidates from local minima of the storage function and provides a divide and
conquer approach to stability analysis through analysis of dissipativity of simpler subsystems.

This setting, where dynamical systems are comprised of interconnected elementary sub-
systems, often arises in physical applications, e.g., in electric circuits or mechanical networks.
There, the overall system is typically described using "local" states, and system energy is re-
quired to be additive. Various structure results on internal dissipation mechanisms are avail-
able for the case that the overall system can be decomposed into a set of lossless systems
with memory that are interconnected with dissipative memoryless systems. In that case, the
storage function is uniquely defined by the lossless subsystems. In contrast, the dissipative
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4.2 Network system representation and dissipation results

part, being memoryless, does not contribute to stored energy, as its state space is the empty
set [Wil72]. Such structure results are introduced in the following section.

4.2.3 Structure results of Youla-Tissi and Hill-Moylan-Anderson

Classical network synthesis is concerned with reproducing a prescribed, resp., an externally
observed, manifest (linear) dynamical behavior of a black-box system, given by, say, a positive
real impedance matrix function Z(s), (i.e., a transfer function matrix, where s is the Laplace
variable), in terms of a finite number of elementary, passive, linear, ideal (lumped) circuit
elements and a scheme for interconnecting them, see, e.g., [AM75], [AV06]. This problem
is illustrated in Figure 4.1a.

D.C. Youla and P. Tissi showed in [YT66] that a synthesized dynamic that solves this prob-
lem is structured as a (negative) feedback system, in which a dissipative and static (i.e.,
memoryless) network controls a lossless and passive MIMO system that is comprised of de-
coupled unit capacitors and inductors. The procedure to obtain this feedback representation
is commonly referred to as reactance extraction, as the reactive, i.e., dynamical network
elements are extracted from the composite system; this scheme is illustrated in Fig. 4.1b
for the case of having only capacitor, inductor, and resistor elements at disposal that are
interconnected by resistors as the only dissipative memoryless elements.

+

−

u

y
Σ

y(s) = Z(s)u(s)

(a) Network synthesis problem

Resistive
Network

+

−

i

v

· · ·
vC

xC

−+ −+ iL

xL

(b) Lossless-dissipative decomposi-
tion

Figure 4.1: LTI network synthesis and Youla-Tissi approach: Indexes C , L denote capacitance
and inductance, xC/L denotes capacitor charge and inductor magnetic flux, vC is
capacitor voltage, iL inductor charge, and i, v represents and input-output pairing
of vector current and voltage.

Example 11 (Linear RC system transfer function description). We consider a two-port RC
circuit comprising two capacitor elements having capacitance C1 and C2 — a standard circuit
example, see, e.g., [CDK87] Chapter 7. The dynamic (output) variables are the capacitor
voltages vC ,1, vC ,2. The external input, u, is current and the output, y , is voltage at the
two capacitor ports. This setting corresponds to the scheme in Figure 4.1b by replacing the
inductor with a second capacitor. The description of the memoryless interconnecting system
for the chosen variable assignments is given by the set of algebraic network equations from
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where the impedance (transfer function) behavior can be constructed, such that






y1

y2

iC ,1

iC ,2






=







0 0 1 0
0 0 0 1
1 0 K11 K12

0 1 K21 K22













u1

u2

vC ,1

vC ,2






⇔ Z(s) =

�

1 0
0 1

��

sI+

�K11

C1

K12

C1
K21

C2

K22

C2

��−1 � 1
C1

0
0 1

C2

�

,

(4.5)
where the matrix K denotes the conductance matrix of the interconnecting resistor network.
The equivalence in (4.5) is a consequence of Youla’s and Tissi’s classical result presented in
[YT66], using Schur’s complement formula together with the capacitor equation svC = iC .
Note that without a resistor network, i.e., K = 0, the transfer function in (4.5) becomes the
integrator equation Z(s) = diag{ 1

sC1
, 1

sC2
}. That is, time-domain trajectories are straight lines

with slope determined by C1,2. The associated controlled ODE for voltage dynamics is

d

dt

�

vC ,1(t)

vC ,2(t)

�

=

�
− K11

C1
− K12

C1

− K21
C2
− K22

C2

��

vC ,1(t)

vC ,2(t)

�

+

�
− 1

C1
0

0 − 1
C2

��

iC ,1(t)

iC ,2(t)

�

. (4.6)

The minus sign in the system matrices arises from noting that a response in capacitor
current (the input of the dynamic part) results from exciting with a voltage source at the
other port through the non-dynamic network, which is in a negative feedback connection.
See [AV06] Chapter 3 for details on this sign convention.

Independent of the linearity or nonlinearity of a system, Hill, Moylan and Anderson in
[AM75] [HM80], see also [Moy14] Chapter 10, proposed a structure result for the realization
of a given passive system Σ by a nonlinear circuit using a lossless-memoryless decomposition
similar to the Youla-Tissi one for linear networks. In particular, in [HM80] Hill and Moylan
show that a passive system governed by a set of equations (4.3) can be synthesized by the
two passive systems

Σ1 :

�

ẋ = u1(t)

y1 = h1(x)
, and Σ2 :

�

y

y2

�

=

�

h(g 2(u2), u)

− f (g 2(u2), u)

�

, (4.7)

together with the neutral interconnection assignment of negative feedback type
�

u1

u2

�

=

�

0 −1
1 0

��

y1

y2

�

⇔
�

u⊤1 u⊤2
�
�

y1

y2

�

= 0. (4.8)

The authors further assume that the internal output and input maps h1 and g 2 are such, that
h1

�

g 2(u2

�

= u2, and g 2 [h1(x )] = x . With ∇E = h1, they put invertibility of ∇E as an
assumption.

Remark 17 (Moylan Conjecture). In [Moy14] Chapter 10 P. Moylan conjectures that convexity
of E is sufficient for this property of an energy gradient being an invertible function to hold.

The following result proves that the strict convexity of E is necessary and sufficient for the
isolated system to have a stable equilibrium point.

Theorem 11. Consider a system Σ that is composed of two passive subsystems as given in (4.7)
with interconnection rule (4.8). Then, Σ is passive with storage function E, such that ∇E = h1.

In addition, assume Σ has an equilibrium point. Then, E is a Lyapunov function for vanishing

inputs and outputs if and only if E is strictly convex.
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Proof. As E is a state function it can only be defined on system Σ1. Passivity of this integrator
system is equivalent to Ė(x ) =∇E(x) · ẋ ≤ u⊤1 y2 = ẋ⊤h1. This inequality can only hold with
equality and with h1(x) = ∇E(x ). As system Σ2 has state space the empty set, no storage
can be defined on it. Hence E is also the storage function of the network system Σ, which
is passive according to Theorem 10, as the negative feedback interconnection is neutral and
Σ2 passive by assumption, (i.e. 0≤ u⊤2 y2).

Next, we show that the decomposition into lossless and dissipative subsystems such that
the overall system is Lyapunov stable is unique if and only if E is strictly convex.
The composition is unique if E is strictly convex, because then, ∇E is an increasing function,
hence, it is monotonous and as such defining a one-to-one correspondence, so that for every
y1 = ∇E(x ), there is a unique inverse function g 2, such that g 2(y1) = ∇E(x). Therefore,
the interconnection uniquely results in (4.3). The composition is unique only if E is strictly
convex, because f (g 2(h1(x )), u) = f (x , u) requires g 2(h1(x)) = x for all admissible x . This
implies that for output function y1 = h1(x) there is a unique inverse function, and hence h1

must be a one-to-one map, i.e., bijective. This is the case if it is a monotonous function, i.e.,
either increasing or decreasing. With the identity h1 = ∇E, and ∇E being either increasing
or decreasing, we equivalently have a storage E to be either strictly convex or concave. A
strictly convex or concave function achieves a unique extremum point, either a minimum or
a maximum. From Theorem 10 we know that E also serves as a Lyapunov function around
an equilibrium point if E attains a minimum at this point. Hence, the second derivative of E

must be positive. This is the case if and only if E is strictly convex.

Remark 18. A particular construction of the inverse of energy gradients in which convexity
plays a key role is given via Legendre transforms and the structure of duality in the sense of
Young, as stated in Remark 19.

Together with Theorem 11, the Hill-Moylan-Anderson analogue of the Youla-Tissi LTI re-
actance extraction approach leads to an output feedback structure as illustrated in Fig. 4.2,
for the case of nonlinear autonomous dynamical systems ẋ = f (x).

1
s

∇E(·)
u1

y2

ẋ x y1

u2−
�

f ◦ (∇E)−1
�

(·)

-

Figure 4.2: Hill-Moylan-Anderson decomposition

Stored energy is entirely defined on the lossless and dynamic integrator system part (blue),
as the feedback system (red) is a memoryless mapping. While the integrator system is lossless
and passive w.r.t. the supply rate u1 · y1, dissipation of stored energy, and Lyapunov stability
of an equilibrium solution of the closed-loop dynamics with Lyapunov function E, is entirely
determined by the characteristics of − f ◦ (∇E)−1.
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4 Dissipation mechanisms and passive circuit structure of consensus networks

Example 12 (Hill-Moylan-Anderson decomposition for an RC dircuit). Consider the RC cir-
cuit discussed in Example 11. The charge of a capacitor is defined as qi = Ci vi, so that
v = C−1q . In each capacitor the electric energy stored is EC ,i =

1
2 Ci v

2
C ,i =

1
2Ci

q2
i
, so that

∇EC(q) = v C . Choosing charge q to be the state and voltage as capacitor output, the voltage
dynamics (4.6) can be written as internal charge (state) dynamics

q̇ = −Ku2 = −K∇EC(q) = K · diag{C−1
1 , C−1

2 }q =
�
− K11

C1
− K12

C2

− K21
G1
− K22

C2

�

q ¬ f (q),

which also confirms that the conductance matrix of the resistor network K ¬ − f ◦∇E−1
C

, as
∇E−1

C
(·) = diag{C1, C2}. That is, the static resistor network description is obtained from the

system matrix by negation and extraction of capacitances.

4.2.4 Duality approach to gradient systems and their representation

In Euclidean space gradient systems have the well-known realization ẋ = f (x) = −∇E(x ),
with scalar energy function E. Along trajectories generated by such a differential equation
system, the dissipation rate is maximal, i.e., the velocity points into the direction of the
steepest descent of the potential field defined by E(x), and the magnitude of both the energy
gradient and of the velocity need to be identical. To see this, we write for the dissipation rate

d

dt
|E(x)|= |∇E(x ) · ẋ | ≤ ||∇E(x)|| · ||ẋ || ≤ 1

2

�

||∇E(x)||2+ ||ẋ ||2
�

. (4.9)

The first inequality in (4.9) follows from the Cauchy-Schwarz inequality, saying that the
scalar product of two vectors is smaller or equal to the product of the induced norms of the
two vectors, with equality if and only if the two vectors are linearly dependent, i.e., they are
aligned. The second inequality is a consequence of Young’s inequality: For a, b ∈ R≥0, and
p, q ∈ R>0 such that 1

p
+ 1

q
= 1,

a · b ≤ ap

p
+

bq

q
and a · b = ap

p
+

bq

q
⇔ a = b

Therefore, the assignment a = ||ẋ ||, b = ||∇E(x)||, and p = q = 2, yields the second inequal-
ity. Moreover, as gradient systems decrease E at maximum rate, i.e., at maximum magni-
tude, the inequalities in (4.9) must hold with equality. This requirement is fulfilled if and
only if ∇E(x) and ẋ are collinear (Cauchy-Schwarz) and satisfy the magnitude constraint
||∇E(x)||= ||ẋ || (Young).

To define gradient flows on general, possibly non-Euclidean spaces, using an energy dissi-
pation equality motivated by (4.9), the concept of Legendre transformations and duality in
the sense of Young are instrumental.

Definition 7 (Legendre transform & Young duality, cf., [Arn89] Chapter 3.14). Let the func-
tion g : V ⊂ Rn→ R be strictly convex, with variable p ∈ V . The Legendre transform of g(p)

is a new function k in a variable q ,

k(q) :=max
p∈V
[q · p − g(p)].

Two functions are said to be dual in the sense of Young if they are the Legendre transforms
of one another.
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Hence, the Legendre transform of a convex function is the maximal deviation of that con-
vex function from a linear function with a prescribed (constant) slope. A property of this
transform, proven for instance in [Arn89] Chapter 3.14, is that it is involutive. The squared
Legendre transform is the identity map, so that if g is the Legendre transform of k, then k

is also the Legendre transform of g. Therefore, there is a point-wise one-to-one correspon-
dence, i.e., a duality, between elements k and g.

Remark 19 (Moylan’s inversion conjecture and Legendre transforms). Moylan conjectured
that convexity is sufficient for invertibility of energy gradients, see Remark 17. The Legendre
transform and Young duality is the tool to identify such inverses. The variable q dual to p

can be expressed in terms of the convex function g(p): from the maximum condition we
obtain ∇p[q · p − g(p)] = 0 ⇒ q = ∇p g(p). Conversely, from involutiveness we obtain
p = ∇q k(q). Therefore, the gradient of a Legendre transform, ∇k(q), is in fact the inverse
of the gradient of the original convex function ∇g.

With this concept of Young duality, we can introduce a characterization of gradient flows
based on trajectory data and a balance of energy with associated dissipation potentials only,
which in fact may serve as a definition of gradient systems, see, e.g., [Ada+13] [Ons31].

Proposition 5 (Energy-dissipation equality defining gradient flows). Let x : [0,∞)→ Rn be

a Lipschitz continuous curve and assume that E : Rn→ R is non-increasing along x (t) forward

in time. Let g : Rn → R≥0 be a strictly convex function and denote by k : Rn→ R≥0 its dual in

the sense of Young, see Definition 7. If for any times t , T ∈ [0,∞), t ≤ T, the energy-dissipation

inequality

E(x (T )) +

∫ T

t

g(ẋ (τ)) + k(∇E(x(τ))dτ≤ E(x(t)), (4.10)

holds with equality, then the curve x (t) defines a gradient flow of E, with primal and dual

dissipation potentials g and k.

Proof. From the chain rule Ė =∇E · ẋ we have

E(x (T )) +

∫ T

t

∇E(x(τ)) · ẋ (τ)dτ= E(x (T )) (4.11)

Subtraction of (4.11) from (4.10) yields
∫ T

t

g(ẋ(τ) + k(∇E(x (τ))−∇E(x(τ)) · ẋ (τ)dτ≤ 0. (4.12)

As both g and k are non-negative, and so is −∇E · ẋ by hypothesis, (because E is assumed to
be non-increasing along the trajectory), this inequality (4.12) can only be true with equality,
which is the case when

Ė(x(t)) = − [g(ẋ(t)) + k(∇E(x (t))] ,

or equivalently, if (4.10) holds. As g and k are dual in the sense of Young, they define
a unique mapping from ẋ to ∇E(x ) and vice versa, via the Legendre transform. Hence,
from Remark 19, there is a gradient structure on the dual dissipation potential ẋ =∇qk(q),
q = ∇E(x), that generates the state trajectory, or equivalently ∇p g(ẋ) = ∇E(x ), p = ẋ ,
with (non-Euclidean) geometry defined by the dissipation potential g.
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4 Dissipation mechanisms and passive circuit structure of consensus networks

Besides the idea that this gradient system characterization according to Proposition 5 does
not require a particular realization of an ODE system, but only data from a trajectory, a
decreasing energy function E and a dissipation function g, resp. its dual k, it also gives
insights into dissipation properties: g is required to be a strictly convex function on the
domain of definition. It furthermore defines the geometry in which the system evolves as a
gradient system. Last but not least, the definition via E, g, and k defines gradient systems
through a duality structure that constitutes energy and dissipation properties.

The choice of the dissipation potential and associated dual dissipation rate variables of-
ten has physical meaning; moreover, for the duality structure to work, the definition of the
dissipation rate in terms of both g and k is essential, as the following example from passive
circuits shows.

Example 13 (Dual dissipation potentials in RC circuits). Consider the dissipation function
Ψ(i, v) = 1

2 i2R+ 1
2 v2K , which represents the dissipated power across a resistor with resistance

R, conductance the reciprocal value of resistance, K = 1
R
, and v, i denoting voltage across and

current through the resistor. Taking the Legendre transform of each quadratic term separately

and adding them yields again the dissipation potential Ψ(v, i) = 1
2R
�

v
R

�2
+ 1

2 K
�

i
K

�2
, and with

the constitutive relation v = Ri, we get Ψ(v, i) = 1
2R

v2 + 1
2K

i2 = 1
2 Kv2 + 1

2Ri2. Therefore,
1
2Ri2 is the Legendre transform of 1

2 Kv2 and resistor voltage and current are dual variables
defining dissipated power. Note that 1

2Ri2 = 1
2 Kv2; however, if we define dissipated power

as usual by the quadratic function without factor one half, Ψ(i) = Ri2, then the Legendre
transform is another function Ψ ′(v) = 1

4K
v2 6= Kv2, i.e., it does not correspond to dissipated

power expressed in resistor voltage as the dual variable.

The classical representation of gradient systems evolving on a smooth manifold M ⊂ Rn is
given by the ODE equivalence

ẋ = f (x) ⇔ G(x)ẋ = −∇E(x) ⇔ ẋ = −K(x)∇E(x), (4.13)

where G(x)K(x) = K(x)G(x ) = I for all x ∈ M , and the symmetric positive semidefinite
operator G(x) : Tx M → T ∗

x
M maps the tangent to the cotangent space of M at x . The

dual matrix K(x ) is the so-called Onsager operator, due to Onsager’s work on symmetries
in irreversible systems [Ons31]. We can identify k(∇E) = 1

2∇E · K∇E, the dual dissipa-
tion potential, and the dissipation potential g(ẋ) = 1

2 ẋ ·Gẋ , so that the constitutive energy
dissipation balance for the gradient system (4.13) becomes

Ė(x) =∇Ė(x) · ẋ = −1

2
(ẋ ·G(x)ẋ +∇E(x)K(x)∇E(x)) = −1

2

�

||ẋ ||2
G(x)
+ ||∇E(x)||2

K(x )

�

.

Any such triple (M ,K, E), resp., (M ,G, E) is said to be a classical gradient system.

4.2.5 Graph embedding: Slopes and equivalent linear consensus form

A key element in the derivation of a linear form from a nonlinear protocol on a graph turns
out to be the concept of slopes, as (discrete) differentials on graphs, with a graph being a
representation of a discrete space. In particular, given a scalar function g, note that we can
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4.2 Network system representation and dissipation results

easily expand the local protocol ODE (4.2) such that for all elements i ∈ N ,

ẋ i =
∑

j∈N+
i

wi j

φ(x j, x i)

g(x j)− g(x i)

�

g(x j)− g(x i)
�

=
∑

j∈N+
i

w̃
g

i j
(x j, x i)

�

g(x j)− g(x i)
�

, (4.14)

where the newly introduced nonlinear differences g(x j)− g(x i) have been absorbed across
edges in newly defined state-dependent edge weightings w̃

g

i j
and g(x j) − g(x i) represents

the new interaction function. In particular, if g = id, the protocol equation (4.14) written
in vector-matrix form has a linear consensus system representation on a dynamic, state-
dependent graph. To show this, we need to assure that the newly introduced edge weights
are positive and define for any given state a Laplacian matrix. As such, properties of the local
slopes given by the fraction in (4.14) determine the stability and convergence properties of
the consensus system.

Lemma 4 (Positivity and symmetry of slopes). Let I ⊂ R be an interval, consider the sign-

preserving interaction function φ : I × I → R, and g : I → R, both being Lipschitz continuous.

The local slope
φ(a,b)

g(a)−g(b)
is positive definite for all a, b ∈ I if and only if g is monotonously

increasing. Moreover, the local slope
φ(a,b)

g(a)−g(b)
is symmetric if and only if φ is anti-symmetric.

Proof. Sign-preservingness of φ allows us to equivalently use φ(a, b) = sgn(a − b)ϕ(a, b),
see Remark 16, where ϕ is a pre-metric function, i.e., it is positive definite on I . We first
prove the positivity property and start with the case a 6= b and then show that for a = b, the
slopes are well-defined, in the sense that they are positive and finite.

(Sufficiency): If g is increasing, then for any two distinct a, b ∈ I , the signed quotient

sgn(a− b)
ϕ(a, b)

g(a)− g(b)
=

sgn(a− b)ϕ(a, b)

sgn(a− b)|g(a)− g(b)| =
ϕ(a, b)

|g(a)− g(b)| > 0,

as ϕ is positive definite, and so is the norm |g(a)− g(b)|.
(Necessity): If g were not (monotonously) increasing, but also decreasing on some sub-
interval on I , then, for a > b such that g(a) < g(b) we would have

sgn(a− b)
ϕ(a, b)

g(a)− g(b)
=

ϕ(a, b)

−|g(a)− g(b)| < 0.

Hence, g cannot be decreasing.
Conversely, if g is constant on some interval on the real line, then g(a)− g(b) = 0, rendering
the quotient indefinite, hence not positive definite.

To see that the local slope is well-defined for approaching arguments let us expand such
that

lim
a→b

φ(a, b)

g(a)− g(b)
= lim

a→b

φ(a, b)

a− b

a− b

g(a)− g(b)
<∞,

where we make use of Lipschitz continuity of both φ and g, so that both fractions remain
finite in the limit a→ b.

Regarding symmetry, note that the function dg := |g(a)− g(b)| is a metric, as for instance
shown in Lemma 1 in Chapter 3, i.e., dg is positive definite, subadditive and symmetric.

Hence, sgn(a− b)
ϕ(a,b)

g(a)−g(b)
=

sgn(a−b)ϕ(a,b)
sgn(a−b)dg(a,b) =

ϕ(a,b)
dg (a,b) is symmetric if and only if ϕ(a, b) is sym-

metric, which equivalently means φ is anti-symmetric.
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4 Dissipation mechanisms and passive circuit structure of consensus networks

This process in (4.14) of defining new edge weights via embedding of local slopes that arise
from the expansion with (nonlinear) differences yields a state-dependent Laplace matrix and
a linear consensus system representation as the following result shows.

Theorem 12. Let G be an irreducible weighted digraph. Consider a consensus system with

interaction nonlinearity φ as defined for the protocol equation (4.2). Let g : R→ R be Lipschitz

continuous and strictly increasing. Then, the matrix

[Lφ
g
(x)]i j :=







−w̃
g

i j
(x i, x j) = −wi j

φ(x j ,xi)

g(x j)−g(xi)
, if ( j, i) ∈ B,

0, if ( j, i) 6∈ B,
∑

j∈N+
i

w̃
g

i j
(x i, x j), if j = i ∈ N.

(4.15)

is an irreducible Laplace matrix, for all admissible x i, x j ∈ R. Moreover, the nonlinear consensus

system governed by (4.2) has the equivalent linear consensus representation

ẋ (t) = −L
φ

id
(x(t))x(t) ⇔ ẋ i =

∑

j:( j,i)∈B

w̃id
i j
(t)(x j − x i), i ∈ N ,

where the weights w̃id
i j
= wi j

φ(x j ,xi)

x j−xi
.

Proof. Note that g = id, so that y = g(x) = x for all admissible x ∈ R is an increasing func-
tion and Lipschitz continuous. It remains to prove that (4.15) indeed defines an irreducible
Laplace matrix, i.e., the weights w̃

g

i j
(x i, x j) need to be positive for all arguments. With the

increasingness assumption on g and using Lemma 4 we have w̃
g

i j
(x i, x j) > 0 and the sys-

tem is also well-defined when it reaches a consensus state x = c1, c ∈ R, where all state
components equal.

The graph embedding approach yields a linear form for the nonlinear protocol (4.2) on a
graph, without using the process of linearization as localizing the dynamics around a partic-
ular state. This allows us to use results derived in consensus protocols as linear time-varying
systems in the context of nonlinear consensus protocols. In the graph-embedding approach,
the character of varying weights over time is hence endogenously determined via the local
slope factors, in addition to potentially time-varying weights given by factors wi j(t), where
the dependence on time is explicit.

For later use in proving dissipation properties, we now introduce the particular class of
slopes given by divided differences of the type f (a)− f (b)

a−b
. These can be seen as a discrete

version of a local gradient f ′(a). Further, functions f representing a local nonlinear state
transformation play an important role for nonlinear consensus dynamics, when f is strictly
convex or concave and monotonously increasing, as seen in Chapter 3. In that case, they are
associated with an additive convex Lyapunov function and define certain optimality prop-
erties of the network system. Strict convexity (or, resp., concavity) of f is equivalent to a
monotonicity property of the divided difference, as the following result shows.

Lemma 5 (Monotonicity of slopes as divided differences). Let I ⊂ R be an interval and the

function f : I → R be differentiable. The slope
f (x1)− f (x2)

x1−x2
is increasing in both arguments if and

only if f is strictly convex.
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4.3 Gradient and passive circuit structure

Proof. Consider points from a real interval, x1, x , x2 ∈ I such that x1 ≤ x ≤ x2. Then, x can
be written as the convex interpolation x = ax1 + (1− a)x2, with parameter a ∈ [0, 1]. By
definition of convexity via Jensen’s inequality,

f (ax1 + (1− a)x2) = f (x)≤ (1− a) f (x2) + a f (x1)

⇔−a f (x1) ≤ (1− a) f (x2)− f (x)

⇔ a[ f (x)− f (x1)]≤ (1− a)[ f (x2)− f (x)], (4.16)

with strict convexity if strict inequality holds. Multiplication of (4.16) with (x2 − x1) yields

a(x2 − x1)( f (x)− f (x1)) ≤ (1− a)(x2 − x1)( f (x2)− f (x)). (4.17)

The expression for x as convex interpolation can be restated as (1− a)(x2 − x1) = (x − x1)

and equivalently a(x2 − x1) = (x2 − x), so that (4.17) becomes

(x2 − x)( f (x)− f (x1)) ≤ ( f (x2)− f (x))(x − x1). (4.18)

Division of both sides in (4.18) with (x2− x)(x − x1) yields

f (x)− f (x1)

x − x1

=
f (x1)− f (x)

x1 − x
≤ f (x2)− f (x)

x2 − x
, (4.19)

where equality follows from symmetry of the slope in both arguments, i.e., it is an even func-
tion. Inequality (4.19) shows that the slope is a monotonous function in the first argument,
and it is increasing with increasing first argument, as x2 > x1, for strictly convex f . Due
to symmetry (the slope is an even function), this monotonicity property is also true in the
second argument. Conversely, if the slope has this monotonicity property in both arguments,
then (4.19) together with symmetry in both arguments implies strict convexity of f .

Remark 20. The result in Lemma 5 can easily be formulated and restated for the case of strict
concavity: The divided difference is decreasing in both arguments if and only if f is strictly
concave.

4.3 Gradient and passive circuit structure

In the following, we synthesize a nonlinear consensus system governed by the protocol equa-
tion (4.2) on an irreducible graph that satisfies the detailed balance condition (4.1) using
passive nonlinear resistor and capacitor elements. The resulting nonlinear RC circuit evolves
as a gradient flow of energy stored in capacitor elements, which is dissipated across passive
resistor elements. Internal, local passivity of the dissipative network, i.e., of each resistor,
turns out equivalent to strict convexity of stored energy in capacitor elements. This is a
specific realization of the Hill-Moylan-Anderson structure result for nonlinear networks. A
discussion on aspects of duality follows. The results are applied in the example of phase-
coupled oscillator networks with application to electric power networks.
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4 Dissipation mechanisms and passive circuit structure of consensus networks

4.3.1 Passive circuit synthesis of consensus gradient systems

The passive circuit realization of the nonlinear consensus network is schematically depicted
in Fig. 4.3a. Node systemsΣi, where i ∈ N , are abstract single-input-single-output, nonlinear
capacitor elements. They are interconnected by branch systems Σi j, where ( j, i) ∈ B, which
model single-input-single-output, nonlinear resistor elements. Figure 4.3b illustrates the
Kirchhoff current-balance at RC-circuit elements and in the network: The black dots are
the internal network terminals, at which current in- and outflows balance. These internal
terminals are represented by nodes i ∈ N of the graph G. The blue arrows represent current
flows across capacitors; the red arrows are current flows across resistors that interconnect
the internal (voltage) terminals i ∈ N .

Σ1

Σ3 Σ2
Σ32

Σ
12Σ

31

(a) Lossless node systems (blue)
and memoryless edge systems
(red)

uN ,3 uN ,2

uN1

yB,31 yB,12

yB,32

(b) Current flows to and from internal termi-
nals (black interconnection points)

Figure 4.3: Schematic of the synthetic structure of a consensus network realized from passive
circuit elements

Every circuit element is required to have two terminals. Resistor elements ( j, i) ∈ B clearly
connect pairwise terminals i, j ∈ N . These graph nodes i ∈ N also represent one terminal of
each capacitor element. The second capacitor terminal (outside of the graph, connecting to
an abstract environment) is assumed to be a ground terminal with voltage equal to zero. Ca-
pacitor and resistor primitives, together with their constitutive signal graph representation,
are depicted in Fig. 4.4.

For each capacitor with capacitance ci > 0, let E : R → R be a storage function with
gradient denoted h. The node and edge open dynamic system equations for capacitors and
resistors are therefore given as

Σi∈N :

�

q̇i(t) = ui(t)

yi(t) =∇E(c−1
i

qi(t))
Σ( j,i)∈B : y( j,i) = ki j u( j,i), ki j := ciwi j

φ(x j, x i)

h(x j)− h(x i)
,

(4.20)
with x i = c−1

i
qi, for all i ∈ N . In view of Fig. 4.4, the abstract inputs ui in (4.20) at nodal

capacitor elements are capacitor currents, and the associated outputs yi are the capacitor
voltages across each capacitor element. With ground terminal potentials equal to zero, the
capacitor outputs yi = vC ,i are the internal terminal voltages at nodes i ∈ N . For resistor
systems, y( j,i) are resistor currents iR,( j,i) through resistor elements at branches ( j, i) ∈ B, and
with u( j,i) = vR,( j,i) the resistor voltages across resistors, the parameter ki j in (4.20) represents
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C

iC

vC

va vb

1
s

iC = q̇C qC
∇EC

vC

(a) Capacitor primitive

R

iR

vR

va vb

iR ∇ΨR

vR

vR
∇ΨK

iR

(b) Resistor primitive

Figure 4.4: Functional relations between input, output, state, energy, and dissipation in RC-
electric circuit elements: EC denotes electric energy, qc is the capacitor charge,
i.e., the state variable, i and v are current, respectively voltage variables at ca-
pacitor and resistor, and ΨR,G denotes a dissipation potential specified by either
resistance R or conductance K .

the resistor conductance, so that k−1
i j

would be the associated resistance, mapping a current
input to a voltage output at the respective resistor element.

Let us turn to the interconnection of systems Σi with the set of branch systems Σ( j,i)∈B.
For that, first we denote with the index e := ( j, i) ∈ B a branch element, and introduce
the vector of branch inputs (i.e., voltages) u⊤

B
:= (u1, . . . , ub) and outputs (i.e., currents)

y⊤
B

:= (y1, . . . , yb) at resistors e ∈ B. In the same manner, we denote by y⊤
N
= (y1, . . . , yn) the

vector of capacitor outputs (i.e., voltages) at, and by u⊤
N
= (u1, . . . , un) the vector of capacitor

currents into the terminal nodes i ∈ N , compare to Fig. 4.3b.
For the algebraic interconnection structure we define B(B) ∈ Rb×n the node-to-edge in-

cidence matrix mapping nodal outputs to output differences across edges, so that, e.g.,
ye := yi − y j, e = (i, j) ∈ B. This matrix is defined by the components

me j :=







1, if the edge e ∈ B enters vertex i ∈ N ,
−1, if the edge e ∈ B leaves node i ∈ N ,

0, if the edge e ∈ B does not touch a node i ∈ N .

With these definitions, B specifies the interconnection such that

uB = −B y N , and uN = B⊤yB. (4.21)

The first identity in (4.21) corresponds to Kirchhoff’s voltage law (KVL) uB + B y N = 0,
i.e., the sum of terminal voltage potential differences around any closed circle is zero. The
second identity in (4.21) corresponds to Kirchhoff’s current law (KCL) in a resistor network,
uN − B⊤y B = 0, i.e., currents flowing through resistors out of a node i ∈ N balance at this
node with the capacitor current flowing into it. The voltage and current balance laws of
Kirchhoff are illustrated by the grey circles in Fig. 4.3b.

To complete the set of circuit laws, we add Ohm’s law that constitutes the edges systems
Σe∈B, as defined in (4.20). Define the diagonal matrix WK ∈ Rb×b collecting conductances
ke, with e ∈ B, as WK = diag{k1, . . . , kb}. With that, yB =WKuB, Kirchhoff’s and Ohm’s laws
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4 Dissipation mechanisms and passive circuit structure of consensus networks

completely specify the memoryless edge system by the input-output relations

y N

(KVL)←→ uB, uB

(Ohm)←→ y B, yB

(KCL)←→ uN .

Together with the constitutive equations for the n lossless and passive systems Σi, i ∈ N ,
see (4.20), Kirchhoff and Ohm’s law can be written compactly as the system of equations

�

W−1
k
(q) B(B)

B⊤(B) 0

��

−yB

y N

�

=

�

0

uN

�

⇔
�

W−1
k
(q) B

B⊤ 0

��

−y B

∇E(q)

�

=

�

0

ẋ

�

. (4.22)

In (4.22), the coefficient matrix containing the graph’s incidence structure and the inverse of
the diagonal edge weight matrix is a KKT (Karush-Kuhn-Tucker) matrix, so that the Kirchhoff-
Ohm network synthesis equations form a saddle-point or KKT system, for reference, see, e.g.,
[BV09] Chapter 10, or [Str10] Chapter 2. From this observation, we can derive the gradient
structure result as follows.

Theorem 13 (Gradient structure and internal passivity equivalence). Let G = (N , B, w) be

a strongly connected, weighted digraph with edge weights satisfying detailed balance (4.1) and

consider the nonlinear consensus protocol

ẋ i =
∑

j∈N+
i

wi jφ(x j, x i), i ∈ N , (4.23)

with action function φ as given in (4.2). We further assume φ to be anti-symmetric, introduce

the variable qi = ci x i, ci the Perron vector components for all i ∈ N and re =
1
ke

for all e ∈ B.

Consider the sum-separable functions

E(q) =
∑

i∈N

ciH(c
−1
i

qi), Ψ(yB) =
1

2

∑

e∈B

re y2
e

(4.24)

where H : R → R is any differentiable function with Lipschitz continuous derivative. If H, or

equivalently E, is strictly convex, then the consensus network evolves as gradient flow of E such

that for all times t ≤ T,

E(T )− E(t) =
1

2

∫ T

t

Ψ(τ) +Ψ⋆(τ)dτ, (4.25)

with dissipation potential Ψ⋆ being dual in the sense of Young to Ψ, according to Definition 7.

Moreover, the system defined by (4.23) is internally, locally passive, i.e., each resistance re > 0
defining the dissipation potential Ψ, if and only if E is strictly convex. Then, the consensus

network has the representation

q̇ = −K(q)∇E(q), (4.26)

with K = CL
φ

h
, and L

φ

h
as defined in Theorem 12, being an irreducible, symmetric graph Laplace

matrix.

Proof. According to Proposition 5 gradient flows are characterized as ODE systems with tra-
jectories satisfying the energy-dissipation equality involving dual dissipation potentials.
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4.3 Gradient and passive circuit structure

Note that the dissipation potential given in (4.24) can be written with internal input and
output vectors as

Ψ(yB) =
1

2

∑

e∈B

re y2
e
=

1

2
y⊤

B
W−1

k
(ρ)yB.

Now let us show that the dual dissipation potential Ψ⋆ satisfies Ψ(yB) = Ψ
⋆(uB) and uB being

the dual variable associated with yB. According to Definition 7 the identity

Ψ
⋆(uB) =maxyB

�

u⊤
B

yB −Ψ(yB)
�

must hold. Equivalently, ∂
∂ ye

�

u⊤
B

y B −Ψ(yB)
�

= ue−re ye = 0 must hold for each e ∈ B. Hence,
we have for the dual variable components ue = re ye. Substituting the correspondence ye =

ue

re

into the equation of Ψ, we obtain the dual as

Ψ(yB) =
1

2

∑

e∈B

re y2
e
=

1

2

∑

e∈B

re

�
ue

r2

�2

=
1

2

∑

e∈B

keu
2
e
= Ψ⋆(uB).

Now, let us show that the dual dissipation potentials are strictly convex, as required in
Proposition 5. For that to be true, re > 0, respectively ke > 0, must be true. We observe that
by the chain rule with c−1

i
qi = x i we get for energy gradients

∂

∂ qi

E(q) = ci

∂ H(x i)

∂ x i

∂ x i

∂ qi

= cih(x i)c
−1
i
= h(x i).

The components re=( j,i) =
1

ci we

h(x j)−h(xi)

φ(x j ,xi)
are positive if and only if E is strictly convex, as shown

in Lemma 4 together with the fact that both ci and wi j are positive. That is, each resistor at
e ∈ B with resistance re, or conductance ke, is passive, i.e., re > 0, if and only if E is strictly
convex. This shows strict convexity and proves the local, internal passivity property.

It remains to show that Ė(t) = 1
2(Ψ(t) +Ψ

⋆(t)) and that Ψ is a function of the consensus
system velocity ẋ and its dual a function of energy gradients ∇E(q).
Kirchhoff’s voltage law (KVL) specifies uB = ByN and y N =∇E(q) according to the capacitor
equation (4.20). As B is a matrix with components 1,−1, 0 only, Ψ⋆(uB) = Ψ

⋆(∇E(q)). The
same argument applies with Krichhoff’s current law (KCL), so that Ψ(yB) = Ψ(ẋ)).

With that, we can write Young’s inequality, cf. [BV09] Chapter 2,

Ψ(ẋ)) +Ψ⋆(∇E(q))≥ ẋ · ∇E(q)

which holds with equality if and only if Ψ and Ψ⋆ are dual in the sense of Young. This, we
have already shown and hence, we have proven the gradient flow property for the consensus
system.

Finally, let us show that the representation (4.26) does indeed hold. The protocol dynamics
(4.23) can be written equivalently for every i ∈ N as

1

ci

ci ẋ i =
∑

j:( j,i)∈B

wi jφ(x j, x i) ⇔ q̇i =
∑

j:( j,i)∈B

ciwi jφ(x j, x i).

Expanding this equation by h(x j)− h(x i) yields the i-th component ODE and vector-matrix
system equation

q̇i =
∑

j:( j,i)∈B

ciwi j

φ(x j, x i)

h(x j)− h(x i)

�

∂

∂ q j

E(q)− ∂

∂ qi

E(q)

�

⇔ q̇ = −CL
φ

h
(x)∇E(q),
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4 Dissipation mechanisms and passive circuit structure of consensus networks

with Laplacian L
φ

h
as in Theorem 12. The off-diagonal components of CL

φ

h
are exactly the

values ke. Conversely, taking the Schur complement of the KKT matrix in (4.22), the saddle-
node equation system becomes

q̇ = −B⊤Wk(q)B∇E(q),

so that we eventually obtain the identity

B⊤Wk(q)B= CL
φ

h
(q) = K(q).

This completes the proof.

The proof of this theorem entirely builds on the local passivity of circuit elements and the
duality approach to the energy-dissipation equality (4.25) as defining equation for gradient
systems. Usual proof techniques to exhibit gradient system structures instead build on vector-
matrix representations of the Onsager type (4.26), as for instance done in [MDM16] for the
same result as in Theorem 13. Without the network synthesis pathway using the introduced
passive circuit primitives of capacitors and resistors, it is not possible to explicitly derive the
dissipation potential Ψ(q̇) = 1

2 q̇ ·G(q)q̇ respecting the connectivity structure of the network.
The matrix function K(·) however, does mirror the network structure, but it is singular, so
that it is not straightforward to compute a structure-preserving G as pseudo-inverse of the
Onsager matrix K.

It is remarkable that this gradient system property can be established for the q-variable
system, with the charge being the state q , instead of the original consensus system state
x . In view of J. Willems’s dissipative systems framework, the state must be internal, i.e.,
it cannot be measured at terminals. In this context, the charges qi occur as appropriate
state definition. For the case that E is quadratic defining electric energy stored in capacitors,
x i = c−1

i
qi are voltages at internal network nodes i ∈ N , and hence are manifest (external)

variables.
To complete this section, we prove convergence to consensus using the introduced dual

dissipation potential

Ψ
⋆(uB) =

1

2

∑

e∈B

keu
2
e
=

1

2

∑

e=( j,i)∈B

ke

�

h(x j)− h(x i)
�2
=

1

2
∇E(q) ·K∇E(q),

as introduced in the proof of Theorem 13.

Corollary 3 (Exponential convergence and arithmetic mean consensus state). Consider the

system as in Theorem 13. The energy function E is a Lyapunov function establishing exponential

stability of the consensus state x̄1, with x̄ =
∑

i ci xi(0)
∑

i ci
the weighted arithmetic mean of the initial

condition.

Proof. Let us show that the consensus state is the only equilibrium state. In equilibrium the
energy E reaches a minimum and the dissipation rate equals zero, i.e.,

Ė(q) = −∇E(q) ·K(q)∇E(q) =
∑

e=( j,i)∈B

ke

�

h(x j)− h(x i)
�2
= 0. (4.27)
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4.3 Gradient and passive circuit structure

As ke > 0 for x j → x i, see proof of Lemma 4, the identity (4.27) holds if and only if we have
h(x j) = h(x i), which is equivalent to x j = x i, as h is strictly increasing, i.e., bijective. There-
fore, the only equilibrium state is a consensus state and furthermore, with 1⊤K(q)∇E(q) = 0,

∑

i∈N

qi(t) =
∑

i∈N

ci x i(t) = x̄
∑

i∈N

ci = const ⇔ x̄ =

∑

i∈N ci x i(0)
∑

i∈N ci

,

which is the weighted arithmetic mean of the initial condition. The function E hence estab-
lishes asymptotic stability of this weighted arithmetic mean consensus state. The quadratic
dissipation rate equation (4.27) further shows that the system evolves with exponential speed
to this consensus equilibrium state.

4.3.2 Hill-Moylan-Anderson structure and duality

Let us discuss this gradient system representation and the internal, local passivity property in
the context of the Hill-Moylan-Anderson structure result. The consensus network synthesized
via Kirchhoff-Ohm laws and the constitutive equation for the capacitor bank results in a
lossless-dissipative decomposition of the consensus system such that

ẋ = −L
φ

id(x)x ⇔







q̇ = uN

y N =∇E(q)

uN = −B⊤K(q)B yN

. (4.28)

This negative feedback interconnection of the two passive systems is illustrated in Fig. 4.5.
The result in Theorem 13 therefore is the application of the abstract Hill-Moylan-Anderson
structure result to nonlinear consensus protocols on graphs.

1
s

∇E(·)
uN q̇ q yN

uByB
BB⊤ WK(q)

-

Figure 4.5: Output feedback representation of network dynamics (4.28) with controller sys-
tem (red) in Kirchhoff-Ohm factorized form and lossless nonlinear integrator sys-
tem (blue): Variables yB,N , uB,N denote internal vector outputs and inputs of the
edge (branch) system (index B) and of the node system (index N).

The expansion method we introduced with our graph-embedding approach in Section4.2.5
is a natural construction method for the abstract Hill-Moylan-Anderson dissipative system
module f ◦ (∇E)−1. For one, we showed that strict convexity of E is necessary and sufficient
for the uniqueness of the inversion, but also for local passivity of the resulting conductances
that define dissipation from the stored energy in the capacitor bank.

Karush-Kuhn-Tucker equation systems occur in convex optimization problems involving
equality constraints. The optimization problem associated to the Kirchhoff-Ohm KKT equa-
tion system (4.22) is:
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4 Dissipation mechanisms and passive circuit structure of consensus networks

minimize Ψ(yB) =
1
2 y⊤

B
W−1

k
(q)yB,

subject to uN = B⊤yB,

where yB is the optimization variable, and q serves as parameter that is fixed. Note that in
Section 4.2.4 gradient systems are defined as systems that maximize the magnitude of the
dissipation rate, while here, it is minimized.

To resolve this, consider the dual problem associated to the constraint minimization in-
volving the Lagrangian function

L
Ψ
(yB, y N) :=

1

2
y⊤

B
W−1

k
y B + y⊤

N

�

uN − B⊤y B

�

,

where the vector y N =∇E(q) represents the vector of Lagrange multipliers, or sensitivities.
The dual problem then is given as

max
yN

min
yB

LΨ(yB, yN ).

A solution to this min-max problem describes a saddle-point. It balances minimization of
dissipation in the edge system across branches indexed in the set B and maximization of the
extraction of Energy E from the capacitor bank with each capacitor indexed in N . The result
is the gradient system structure as proposed.

Remark 21. We observe that the constitutive network system equations in KKT form (4.22)
are recovered from the Lagrangian via the necessary optimality conditions

∂L
Ψ

∂ y B

=W−1
k
(q)yB − ByN = 0

(Ohm)

⇔ (KV L) : uB = ByN

∂L
Ψ

∂ yN

= −B⊤yB + uN = 0 ⇔ (KC L).

For strictly convex Ψ, as is the case here, these conditions are also sufficient for the solution’s
optimality.

In the following, we discuss two examples of nonlinear consensus protocols on graphs that
satisfy detailed balance and discuss their circuit gradient realization and local passivity.

4.3.3 Passive circuit view on coupled oscillator models

A generic model in the study of phase-coupled oscillator networks is given by the ODE system
on a graph G,

θ̇i =ωi +
∑

j:( j,i)∈B

wi j sin(θ j − θi), i ∈ N , (4.29)

whereω = (ω1,ω2, . . . ,ωn) ∈ Rn is the vector of natural (driving) frequencies, and the state
θ ∈ Tn is an n-vector of angles as elements of the n-Torus.

If we set wi j =
K
n
, K > 0 for all ( j, i) ∈ B, then (4.29) represents Kuramoto’s oscillator

model [Ace+05]. If wi j =
|vi ||v j |ℑ(yi j)

Di
, |vi| a voltage magnitude, yi j the complex admittance of

a line ( j, i), and Di > 0 a damping parameter, then (4.29) describes a so-called droop control
setup for frequency stabilization of generators in an electric power grid whose diffusively
coupled voltage angles θi are driven by nominal power inputs ωi, see, e.g., [DB14].
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4.3 Gradient and passive circuit structure

Observe that the detailed balance condition (4.1) naturally applies in this setting, because
ciwi j = c jw ji implies that weights wi j have the form wi j =

1
ri j ci

, ri j = r ji, with r a resistance.

Following this RC circuits view, we may take r−1
i j
= ℑ(yi j) having unit Siemens (one over

Ohm), and c−1
i
= |vi||v j|/Di. Capacitance has unit Farad F =

Ampere·sec
Volt , so that Di should

carry the unit Volt-Ampere-Seconds (an energy), which is similar to a measure of a power
deviation per base frequency. This indeed matches the meaning of the factor Di in the droop
control setting.

Using our reactance extraction approach we can write (4.29) as (driven) gradient system,
with q = Cθ , ωC := Cω, and the gradient h(θ ) =∇E(q),

q̇ =ωC −K(θ )∇E(q), [K]i j = c jwi j

sin(θ j − θi)

h(θ j)− h(θi)
, (4.30)

For instance, if we choose E =
∑

i ciθ
2
i
=
∑

i
1
ci

q2
i
, (electric energy), then, the graph em-

bedding methods yields conductance factors
sin(θ j−θi)

θ j−θi
= sinc(θ j − θi), the sine cardinalis, or

sampling function. We denote the corresponding inverse metric by Ksinc. Let ωC = c1,
c ∈ R, so that without loss of generality we can study the dynamics in a rotating frame
at speed c and set ω = 0 in (4.30) [DB14] [Mor05]. Phase synchronization takes place if
maxi, j∈N |θ j − θi|< π, because in that case sinc(·)> 0, i.e., all nonlinear resistances [Ksinc]

−1
i j

are passive, so that limt→∞ θ (t) → θ∞1, according to Theorem 13. By that we recover a
known phase synchronization result, see, e.g., [DB14], but via a passive circuits approach.
The sine cardinalis together with the interval in which the corresponding resistances are
passive is illustrated in Fig. 4.6.

−3π −π π 3π

0

0.5

1

z

si
nc
(c

z
)

Figure 4.6: Sine cardinalis function with usual normalization c = π (blue), and c = 1 (black).

We can bring the coupled oscillator model (4.29) (in uniform rotating frame) into q-
variable form, when it is mass preserving and hence defining an inhomogeneous Markov
chain dynamic, see also Section 4.5. The fact that the class of information divergences, see
Table 4.1 for examples, are Lyapunov functions, allows to explore mixing time bounds in
Markov chains for convergence bounds in dynamics on a graph, which often are tighter than
usual bounds based on the second largest eigenvalue of a Laplace matrix K, see [MT05] for
an overview.
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4 Dissipation mechanisms and passive circuit structure of consensus networks

Divergence name f (ρ) Collective disagreement form
Kullback-Leibler ρ logρ

∑

i∈N pi log pi

qi

Jeffrey (ρ − 1) logρ
∑

i∈N (pi − qi) log pi

qi

Pearson χ2 ρ2 − 1
∑

i∈N

(pi−qi)
2

qi

(Kolmogorov) total variation distance |ρ − 1|
∑

i∈N |pi − qi|
squared Hellinger (

p
ρ − 1)2

∑

i∈N

p
pi −
p

qi

α-Hellinger (α > 1) ρα
∑

i∈N q1−α
i

pα
i

Tabular 4.1: Examples of f -divergences that are collective disagreement measures. Compo-
nents pi, πi are probabilities and ρi =

pi

qi
is the component of a relative measure,

i.e., a density.

Let us turn to the case when ωC 6∈ span{1}. An open problem for driven systems (4.29) is
to find (closed form) conditions under which frequency-synchronized solutions θ̄ exist, i.e.,
conditions under which the system of equations

ωi =
∑

j:( j,i)∈B

wi j sin(θ̄ j − θ̄i), i ∈ N , (4.31)

can be solved uniquely, also for situations in which angles are further apart than π [DH14].
The problem of existence of solutions is of importance for all power systems studies as it is
directly concerned with the feasibility of the power flow equations [DH14].

We can re-write the equation system (4.31) in the form

ωC = −Ksinc(θ̄ )θ̄ . (4.32)

The problem then is to characterize the vectors θ̄ , for which there exists a G(θ̄ ), such that
G(θ̄ )ωC = −θ̄ . Observe the similarity to the problem of associating the metric G to a non-

invertible inverse metric K. A necessary and sufficient condition is that 1
2 θ̄
⊤
Ksincθ̄ is a strictly

convex function on the simplex of mass preserving vectors. For this to be true, certain angles
may be further apart than π, so that at certain edges sinc(θ j − θi) < 0. The associated G-
matrix is characterized via Young duality, i.e., 1

2ω
⊤
C
G(θ̄ )ωC is a Legendre transform of the

convex potential 1
2 θ̄
⊤
Ksincθ̄ .

Remark 22. An interesting direction of research in this context would be the study of defi-
niteness properties of K by means of passivity of worst-case effective resistance/conductance
[Spi12] [ZB14]. In fact, with K representing a conductance matrix, (4.32) represents a (non-
linear) version of Ohm’s law where ωC is a current vector and θ̄ a vector of voltages.

4.4 Passivity equivalence to majorization and cut-balance

We have seen that the convexity of an additive Lyapunov function for detailed-balance con-
sensus networks is equivalent to the local passivity of virtual resistor elements across which
dissipation of energy stored in a capacitor bank is wholly defined. In the following, we extend
the Lyapunov part of the result to general irreducible consensus networks that are weighted
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4.4 Passivity equivalence to majorization and cut-balance

(arithmetic) average preserving. The proof technique bases on a result by Willems from
1976. We show that this result is equivalent to the passive circuit dissipation principle via a
formulation of the network system via a generalized Hamiltonian realization. We then show
that this Lyapunov property and local passivity is equivalent to the concept of majorization,
or more specifically, to a variant that we introduce and define as differential majorization.
Further, an equivalence to the cut-balance property in linear consensus systems, as proposed
by Hendrickx and Tsitsiklis, is derived based on differential majorization and local passivity.

4.4.1 Invariance and dissipation

According to Theorem 12 the consensus network has linear form on a state-dependent graph.
The associated state-dependent graph Laplacian is the generator of a transfer operator, such
that given an initial state x (0), for any time t > 0,

ẋ(t) = −L
φ

id
(x )x(t) ⇒ x (t) = e−L

φ

id
(x )t x (0).

We write for the transfer operator given by the matrix exponential e−L
φ

id
(x )t =: A(x , t). It has

the following property.

Proposition 6 (Stochastic transfer operator and its generator, [Wil76] Proposition 4). Given

any admissible x ∈ Rn, and t > 0, the transfer operator matrix A(x , t) is a stochastic matrix,

i.e., it has row sums equal one, if and only if the generator L
φ

id
is a matrix with zero row-sums,

i.e., a Laplacian matrix. Matrices A are doubly stochastic, i.e., both row and column sums equal

one, if and only if L
φ

id
(x) is a balanced generator matrix so that both column and row sums

equal zero.

Via the transfer matrix A(·) an equivalence between average preservingness as global sys-
tem invariance property and non-increasingness of network energy functions can be estab-
lished, which together establish Lyapunov stability of the weighted arithmetic mean.

Lemma 6 (Network Lyapunov functions). Let G be an irreducible weighted digraph and con-

sider a consensus protocol according to (4.2) evolving on G. The additive function

E(q) =
∑

i∈N

ciH(c
−1
i

qi)

with convex H : R → R, cf. Theorem 13, is a Lyapunov function for the weighted arithmetic

mean of the initial condition as given in Corollary 3 if and only if

n∑

i=1

ciai j = c j, j ∈ N ⇔ c⊤A(x , t) = c⊤. (4.33)

That is, the invariance of the weighted arithmetic mean along trajectories is necessary and suf-

ficient for the class E to be non-increasing along solutions and also serve as Lyapunov function

class establishing stability of c⊤x (0)1, which is the unique consensus equilibrium state.
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4 Dissipation mechanisms and passive circuit structure of consensus networks

Proof. Sufficiency, i.e., (4.33)⇒ E is non-increasing: Define the output y := Ax . Then,

n∑

i=1

ciH(yi) =

n∑

i=1

ciH

�
n∑

j=1

ai j x j

�

≤
n∑

i=1

n∑

j=1

ciai jH(x j)
(4.33)
=

n∑

j=1

c jH(x j). (4.34)

Here we used Jensen’s inequality for convex functions together with the fact that row-sums
of the transfer matrix given by A add up to one, see Proposition 6.
Necessity, i.e., E is non-increasing⇒ (4.33): Follows from taking any norm as extreme case
of a convex function. Then, e.g., for x ∈ Rn

>0, and f (·) = || · ||2, so that ||x i||2 = x i, the
quantity

∑

i ci x i = const , so that equality must hold in (4.34) and this implies (4.33).

This result is remarkable due to its simplicity. It demonstrates an equivalence between the
network energy function class representing Lyapunov functions and an invariance property
of the system, making use only of Jensen’s inequality for convex functions.

Remark 23 (Admissible action functions for arithmetic mean invariance). For the synthesis
of consensus protocols, it may be useful to know which nonlinearity on φ is admissible to
have transfer operators satisfying (4.33). Anti-symmetry of the action function φ together
with detailed balance is sufficient, as Theorem 13 demonstrates. In that case, the slopes
φ(xi ,x j)

h(xi)−h(x j)
are symmetric functions, see Lemma 4. However, for φ = id, detailed balance is

not required. Hence, it is an open problem to characterize the class of nonlinearity of pairwise
actions, under which the weighted arithmetic mean remains a constant along trajectories of
the nonlinear network dynamics, and as such, for which E is a Lyapunov function class.

Remark 24 (Span-norm Lyapunov functions). Jan C. Willems in [Wil76] also shows that both
maxi x i and −mini x i are Lyapunov functions if and only if the generator of the transfer ma-
trix has zero row excess, i.e., it is a Laplacian matrix associated to a strongly connected graph.
Willems further comments that this non-quadratic Lyapunov function is characteristic of dif-
fusive systems. It therefore is a predecessor of consensus analysis using the non-quadratic
span-norm Lyapunov function maxi x i −mini x i.

In the following, we demonstrate that this Lyapunov property of being non-increasing
along trajectories forward in time is equivalent to local passivity of "virtual" resistor elements,
across which stored energy of a lossless system is dissipated such that there holds quadratic
energy-dissipation equality. Here, this circuit-related local passivity property is proposed for
the class of general irreducible consensus system networks, which is larger than the detailed
balance class considered in the gradient circuit synthesis approach in Section 4.3.

Theorem 14 (Generalized Hamiltonian realization and local passivity). Consider a consensus

network (4.2) that is weighted average preserving, i.e., the condition (4.33) in Lemma 6 holds

and we assume action functions φ to be anti-symmetric. The system has the realization

q̇ = [J(x)−K(x)]∇E(q)

where K is an n× n conductance matrix defined as

K := B⊤R−1(x)B, R−1 = diag

�
φ(x j, x i)

h(x j)− h(x i)

ciwi j + c jw ji

2

�

( j,i)∈B

,
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4.4 Passivity equivalence to majorization and cut-balance

and J is an n× n skew-symmetric matrix function defined as CL
φ

id
− K, with L

φ

id
as in Theorem

12. That is, invariance and validity of the network Lyapunov inequality are equivalent to the

existence of a virtual, locally passive resistor network across which energy stored in a lossless

system is dissipated.

Proof. First, recall that the i-th component of the gradient vector ∇E(q) = h(x i). Using the
graph embedding approach introduced in Section 4.2.5 and the result Theorem 12, the con-
sensus system dynamics can be written as ẋ = −L

φ

h
(x )∇E(q). By assumption, the weighted

arithmetic mean is a system invariant, i.e., c is a left-eigenvector associated to the zero eigen-
value of the state dependent Laplacian L

φ

h
(·). This eigenvalue equation can be written as

c⊤L
φ

h
(x) = 1⊤CL

φ

h
(x) = 0c⊤, (4.35)

where we recall that C is the diagonal matrix with non-zero entries the values ci.
Define the matrix Lb(x ) := CL

φ

h
(x). As L

φ

h
is an irreducible Laplacian matrix, Lb is an

irreducible Laplacian matrix, too. Hence, also Lb1= 0, i.e., 1 is a right-eigenvector associated
to the dominant zero eigenvalue. Moreover, according (4.35), 1 is also left-eigenvector of
the newly defined Laplacian matrix. Therefore, for any admissible x ∈ Rn, the matrix Lb(x )

by definition is a balanced graph Laplace matrix, as the eigenvalue equation shows that it
has zero row and column sums. Balanced graph Laplace matrices have a symmetric / skew-
symmetric matrix decomposition such that

Lb(x) = L
sym

b
(x ) + Lskew

b
(x ) =

1

2

�

Lb(x) + L⊤
b
(x )

�

+
1

2

�

Lb(x)− L⊤
b
(x)

�

.

The matrix L
sym

b
(x ) is a symmetric graph Laplace matrix for all admissible arguments, i.e., it

is a conductance matrix. The matrix Lskew
b

is skew symmetric. Both matrices have left and
right kernel given by c1, c > 0.

Now, let us rewrite the consensus network using the symmetric / skew-symmetric decom-
position to get

ẋ = −L
φ

h
(x)∇E(q) = −C−1CL

φ

h
(x)∇E(q)⇔ q̇ = −Lb(x )∇E(q)

⇔ q̇ = −
�

L
sym

b
(x) + Lskew

b
(x)

�

∇E(q)

With the assignment K = L
sym

b
and J⊤ = Lskew

b
the representation result follows, as for any

skew-symmetric matrix the identity J⊤ = −J holds. The conductance matrix K can be fac-
torized as B⊤R−1B where the diagonal matrix R−1 collects positive conductances as defined,
cf. Theorem 12 together with φ being anti-symmetric, so that the slopes are symmetric
functions. This completes the proof.

Generalized Hamiltonian realizations are defined and studied in, e.g., [LC03], [HHG08].
The network system representation associated to such a realization of an autonomous ODE
system is illustrated in Fig. 4.7. The red loop represents a negative feedback system, where
the memoryless resistor network defined via the conductance matrix K extracts stored energy
from the blue system loop. The blue loop represents a positive feedback system, where skew-
symmetry of J implies that stored energy is conserved. At the same time, it may circulate
within the lossless system being re-allocated among states.
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1
s

∇H(·)
ẋ x

K(x)

J(x )

−

+

Σ

Figure 4.7: Generalized Hamiltonian realization of a dynamical system Σ defined by a dy-
namics ẋ = f (x ): The lossless system part (blue) is controlled by a skew sym-
metric map in positive feedback connection, while the dissipative system part
(red) is controlled by a symmetric non-negative map in negative feedback con-
nection. The two loops define internal flows of supply.

A generalized Hamiltonian realization results in a quadratic energy dissipation equality
along solutions given by

d

dt
E(x) = −∇E(x) ·K(x)∇E(x) +∇E(x) · J(x)∇E(x) = −||∇E(x)||2

K
. (4.36)

Moreover, the dissipation potential ||∇E(x)||2
K

is strictly convex, so that one may define its
dual in the sense of Young and with that a valid energy dissipation equality as in the defining
equation for gradient systems (4.25), see also Proposition 5. However, from such a dual dis-
sipation potential, and for non-vanishing J, one cannot reconstruct the original ODE system
that generates the gradient flow solutions. Hence, (4.36) does not serve as gradient system
characterization.

Remark 25 (Generalized Hamiltonian realization and port-Hamiltonian framework). The
prototypical example of a dynamics in generalized Hamiltonian form results from second
order models describing damped oscillator systems, e.g., classical mechanical and/or electri-
cal systems as they appear in electric power grid dynamics, cf., e.g., [vJ14] and [CT14], but
also in switched systems, e.g., power electronics, see [EvO99]. A generalized Hamiltonian
realization is a particular instance of a negative feedback connection of two port-controlled
Hamiltonian systems, see [van00] Chapter 4. Port-Hamiltonian systems with dissipation
cover systems that admit a generalized Hamiltonian realization and in addition include in-
puts and outputs, see, e.g., [vJ14] for a recent overview.

4.4.2 Majorization dynamics and local passivity

Majorization is a powerful technique in deriving functional inequalities, which by the authors
of [MOA11] is even put at the basis of a "theory of inequalities". We denote with square
bracket index the non-increasingly ordered components of a vector x , such that

x[1] ≥ x[2] ≥ · · · ≥ x[n]. (4.37)
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4.4 Passivity equivalence to majorization and cut-balance

Definition 8 (Majorization). Let y , z ∈ Rn and define the relation

y � z if







∑k

i=1 y[i] ≤
∑k

i=1 z[i], for 1≤ k ≤ n− 1,

∑n

i=1 y[i] =
∑n

i=1 z[i].

If y � z, then y is said to be majorized by z.

Loosely speaking, if a vector y is majorized by a vector z, then y is more "spread out" than
the vector z, i.e., the components are more mixed.

Example 14. Consider n numbers pi ∈ (0, 1), 1 ≤ i ≤ n, such that
∑

i pi = 1. Then,

(
1

n
,
1

n
, . . . ,

1

n
)� (p1, p2, . . . , pn) � (1, 0, . . . , 0).

In this example, 1
n
1⊤ can be thought of as the invariant probability distribution of a Markov

chain with doubly stochastic update law, p⊤ represents a probability distribution at time
t > 0, and (1, 0, . . . , 0) for instance an initial condition. The initial condition is less spread
out, or put differently, probability mass is more concentrated on discrete probability space
than in the two other vectors being majorized by (1, 0, . . . , 0).

The following majorization equivalence result is due to, among others, Weyl, Birkhoff,
Karamata, and Hardy-Littlewood-Polya, see [HLP34], [Kar32], [Mal04], or [MOA11] Chap-
ter 4 for general reference.

Proposition 7 (Majorization equivalences). Let I be a real interval and y , z ∈ I n ⊂ Rn. The

following statements are equivalent:

(i) y � z;

(ii) y ∈ conv ({Πz :Πa permuation matrix});

(iii)
∑n

i=1 f (yi) ≤
∑n

i=1 f (zi) for all continuous convex f on I.

Remark 26 (Birkhoff result and majorization). While a relationship between convexity and
majorization is apparent, the connection to doubly-stochastic matrices, which are transfer
operators in a dynamical system generated from balanced Laplacian matrices, is due to a
result of Birkhoff: Every doubly stochastic matrix is a convex combination of permutation
matrices.

The equivalence in Proposition 7 allows visualizing the concept of majorization via nested
sets, as Fig. 4.8 illustrates: The points defining the polygons of different gray-to-red colors
each have coordinates given by the permutation of one single vector with a constant sum of
components (i.e., constant mass vector). The nested sets define collections of vectors that
are majorized by the elements of sets lying outward and being of identical mass. In blue
depicted is the ray of consensus states. Any convex energy defined as E =

∑

i H(x i) on the
simplex of constant mass vectors decreases along elements taken from nested sets into the
direction of the consensus ray, achieving a minimum at the vector where all components are
equal.
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4 Dissipation mechanisms and passive circuit structure of consensus networks

x1

x3

x2

Figure 4.8: Illustration of the concept of majorization as nested sets

In Lemma 6 and Theorem 14 we have linked the more general class of storage functions E

and the dissipation of E to passivity of (virtual) resistor elements, across which dissipation is
completely defined. Next, we show that the validity of the Lyapunov inequality for E, due to
internal passive resistors, is equivalent to the majorization of state vectors forward in time,
i.e., the past is majorized by the present, which is majorized by the future.

First, assume x(t) to be a differentiable curve and define the k-th sum for k ∈ {0, 1, . . . , n}
of sorted state vector components given by (4.37) and its rate

Sk(t) :=
k∑

i=1

ci x[i](t), Ṡk(t) :=
k∑

i=1

ci ẋ[i](t), (4.38)

where S0(t) = 0; further Sn(t) = const , resp., Ṡn(t) = 0, if and only if ci are components of
the Perron vector.

Theorem 15 (Majorization – local passivity equivalence). Consider a consensus system (4.2)
on a graph G = (N , B, w) that is constant, and strongly connected for all time so that c is the

left Perron vector associated to the graph Laplacian of G. The following two statements are

equivalent:

(i) For all t < T, the majorization inequality Sk(T )≤ Sk(t) holds, with Sn(t) = const.

(ii) The consensus network admits a generalized Hamiltonian realization according to Theo-

rem 14, where dissipation is entirely defined by passive resistors.

That is, majorization of two vectors is equivalent to the existence of a possibly nonlinear, pas-

sive resistor network which, together with constant, but not necessarily identical capacitances

collected in the vector c, connects the two vectors with a trajectory generated by the RC circuit.
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4.4 Passivity equivalence to majorization and cut-balance

Proof. First note that from Theorem 14 the characterization of E(x ) :=
∑n

i=1 ciH(x i) as Lya-
punov function with E decreasing over time is equivalent to the existence of a locally passive
resistor network, across which dissipation dynamics of E is completely characterized. Hence,
we need to show that the decreasingness of E is equivalent to the majorization property along
dynamics as stated in (i).

Consider the k-th sum as defined in (4.38). Note that we can write

ci x[i](t) = S t
[i]
− S t

[i−1], for i > 1. (4.39)

Define the slope of sorted components for 0≤ t < T ,

RH,i =
H(x[i](T ))−H(x[i](t))

x[i](T )− x[i](t)
. (4.40)

For the function E(·) to be a Lyapunov function it is required that

lim
ε→0+

1

ε
(E(x (t + ε))− E(x (t)))

= lim
ε→0+

1

ε

�
n∑

i=1

ci(t)H(x i(t + ε))−
n∑

i=1

ci(t)H(x i(t))

�

≤ 0

holds for all t ≥ 0 everywhere except the set of consensus states span{1}.
Rewriting the strict Lyapunov inequality with sorted components we obtain

0≥ lim
ε→0+

1

ε

n∑

i=1

ci

�

H(x[i](t + ε))−H(x[i](t))
�

(4.40)
= lim

ε→0+

1

ε

n∑

i=1

ciRH,i

�

x[i](t + ε)− x[i](t)
�

= lim
ε→0+

1

ε

n∑

i=1

RH,i

�

ci x[i](t + ε)− ci x[i](t)
�

(4.39)
= lim

ε→0+

1

ε

n∑

i=1

RH,iS[i](t + ε)− S[i−1](t + ε)− S[i](t) + S[i−1](t)

= lim
ε→0+

1

ε

n∑

i=1

RH,i(S[i](t + ε)− S[i](t))−
n∑

i=1

RH,i(S[i−1](t + ε)− S[i−1](t)). (4.41)

Using the fact that Ṡn = 0, i.e., Sn(t + ε)− Sn(t) = 0, and shifting the indexes in the second
sum by one counter, we can write with (4.41) the Lyapunov inequality

0≥ lim
ε→0+

1

ε

n−1∑

i=1

RH,i(S[i](t + ε)− S[i](t))−
n−1∑

i=0

RH,i+1(S[i](t + ε)− S[i](t)). (4.42)

Using S0(t) = 0 leads to

0≥ lim
ε→0+

1

ε

n−1∑

i=1

�

RH,i − RH,i+1

� �

(S[i](t + ε)− S[i](t)
�

= lim
ε→0+

1

ε

n−1∑

i=1

�

RH,i − RH,i+1

�
�

i∑

j=1

c j

�

x[ j](t + ε)− x[ j](t)
�
�

. (4.43)
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4 Dissipation mechanisms and passive circuit structure of consensus networks

By definition of the ordering of the sorted vector x the components satisfy x[i+1] ≤ x[i]. By
Lemma 5, strict convexity of H is equivalent to increasing RH,[i](·, ·) for increasing arguments.
Therefore,

H is strictly convex

⇔ RH,i+1

�

x[i+1](t), x[i+1](0)
�

< RH,i

�

x[i](t), x[i](0)
�

⇔ RH,i − RH,i+1 > 0. (4.44)

As H is strictly convex by assumption, so that (4.44) holds, the inequality (4.43) is true if
and only if each c j x[ j](t +ε)− c j x[ j](t)< 0 for j ∈ {1, . . . , n−1}. Together with the property
Sn = const this completes the proof.

While the concept of majorization (in the finite-dimensional case) is a tool to compare any
two vectors in a particular property, here we provide a simple and profound necessary and
sufficient dynamical perspective and passive circuits context to majorization. This "physics of
majorization" view links the passivity of resistors to the Lyapunov inequality via Theorem 13,
which shows the equivalence of convexity of the network Lyapunov function to local passivity
of virtual resistor elements. In the context of the evolution of continuous distributions, such
a dynamical context to majorization has been given, e.g., in [GCS19].

Instrumental in the proof is (i) the majorization relation according to Definition 8, respec-
tively the weighted vector component sum, and (ii) the definition of the slope as divided
difference forward in time (4.40). We can make the following observations:

(i) While we show majorization for vectors with weighted components ci x[i], this scaling
of the state is only required in the step from (4.41) to (4.42), where Sn = const is used.
That is, the weighting is needed in its role as defining the system invariant. It is not
needed in proving the majorization inequality for indexes j = 1, . . . , n − 1, as (4.43)
shows: here, Ṡ j ≤ 0, due x[ j](t + ε) < x[ j](t), irrespective of the weightings c j. Note
that, while state components x[ j] are ordered, the components c j are not necessarily
in the same non-increasing order. In fact the ordering in the vector c may be chosen
independent from the ordering of x , as the action of a stochastic matrix is invariant to
permutation [Sep11].

(ii) As (4.43) shows, the interplay with convexity of E and the Lyapunov property arises
from the divided differences RH,i as defined in (4.40). These have the functional form
of the nonlinear resistor class that we define, e.g., in Theorem 13. Here, the functions
H are not local energy gradients but local energy itself; however, put into relation
forward in time. The interplay of convexity with decreasingness of E follows, however,
from a spatial context, where at fixed time t sorted energy resistances are compared
(where convexity yields RH,i − RH,i+1 > 0).

The result of Theorem 15 allows us to define the concept of differential majorization,
which may serve helpful in stability studies of dynamical systems, in particular those which
converge to a one-dimensional attractor set, as in consensus networks.
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4.4 Passivity equivalence to majorization and cut-balance

Definition 9 (Differential majorization). Let I be a real interval and x : R → I n ⊂ Rn a
Lipschitz continuous one-parameter curve x(t). We say x (t) is differentially majorized, if
for each t ≥ 0, there is a graph G = (N , B, w), with left-Perron vector c associated to the
corresponding Laplacian matrix such that

Ṡk =

k∑

i=1

ci ẋ[i](t) =

k∑

i=1

ci

 
n∑

j=1, j 6=i

wi j(x[ j](t)− x[i](t))

!

≤ 0, for k = 1, . . . , n− 1, and

Ṡn = 0,

holds.

Intuitively, differential majorization indicates that at time t the velocity vector along a
curve always points into the interior of the n−1-dimensional convex set spanned by permu-
tations of x(t) on the manifold, where invariance Ṡn = 0 holds.

Note that differential majorization does not require differentiability of trajectories. It may
as well be used for switching systems governed by Laplacians L(t).

Remark 27 (Contracting polyhedron and differential majorization). In [CHJ14] and [CHJ17]
the authors use a polyhedral norm to study convergence to consensus. They show that con-
sensus systems contract the polyhedron defined by lines parallel to the 1-vector, each having
a different permutation of the state x an element of the line. Within the definition of dif-
ferential majorization, the velocity vectors point inwards this polyhedron. The constraint
Ṡn = 0, however, further specifies the manifold on which trajectories evolve.

Remark 28. As in Definition 9 the graph and associated Perron vector are assumed constant
over time, equivalently, differential majorization holds if for every convex E as in (4.24),

Ė(x) = −||∇E(x)||2
K

(4.45)

holds, with Onsager matrix K as given in Theorem 14. However, in applications the Laplacian
graph may change over time, e.g., when c is a state-dependent function, as for instance is
the case in the embedding protocol introduced in Chapter 3, or in the case of the reaction
network protocol introduced in Chapter 2. While differential majorization then still holds,
and so does convergence to consensus, the quadratic energy inequality (4.45) may not hold,
or at least turn out to be more challenging to establish, as differentiation of c(x) needs to be
considered in the proof. Hence, the appropriate stored energy function weighting needs to
be derived.

4.4.3 Cut-balance and differential majorization

In [HT13] J.M. Hendrickx and J.N. Tsitsiklis study the classical linear consensus system on a
time-varying graph G(t) = (N , B(t), w),

ẋ(t) =
∑

j∈N+
i

wi j(t)(x j(t)− x i(t)), (4.46)

and introduce the cut-balance property.
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4 Dissipation mechanisms and passive circuit structure of consensus networks

Definition 10 (Cut-balance, acc. to [HT13]). Let K ≥ 1. A consensus system governed by
(4.46) is said to satisfy the cut-balance condition if for any nonempty proper subset M of
N = {1, 2, . . . , n} we have

1

K

∑

i∈M , j 6∈M

w ji(t)≤
∑

i∈M , j 6∈M

wi j(t)≤ K
∑

i∈M , j 6∈M

w ji(t). (4.47)

This condition bears the physics-oriented notion of proportional back-actions, i.e., if a
group of agents influences the remaining ones, the former group is affected by the remaining
ones by at least a proportional amount [HT13].

Remark 29 (Cut-balance and leader-follower networks). Leader-follower networks do not
satisfy cut-balance, as a leader typically does not receive a back-action from the followers.
For instance, consider a two-node leader-follower graph, so that the Laplacian matrix L has
a lower triangular structure. In that case, the graph is not strongly connected, and it does
not satisfy cut-balance, e.g., as w12 = 0, but w21 > 0, so that for any K ≥ 1 the second
inequality Kw21 ≥ w12, but the first one w12 ≥ 1

K
w21 can never be true. The leader-follower

system nevertheless converges to a consensus state, as the graph has a directed spanning
tree, which guarantees convergence to the leader state, cf., e.g., [Mor04].

While this cut-balance condition is hard to verify and does not yield a broader result for
the convergence to consensus; its study is, however, motivated by the use of a different proof
technique as is typically used in convergence proofs, which rely on quadratic or span-norm
contraction properties.

The authors show that consensus protocols (4.46) that satisfy the cut-balance condition
converge to a consensus state if the time-varying graph is uniformly connected (over time).
The dissipation mechanism underlying the cut-balance property uses sorted state vectors and
bases on the rate of change of weighted sums of state components. The following result is
instrumental for the cut-balance convergence proof.

Lemma 7 (Cut-balance property, adapted from [HT13]). Let bi j be non-negative coefficients

that satisfy the cut-balance condition (4.47) as specified in Definition 10. Then,

m∑

i=1

K−i

 
n∑

j=1, j 6=i

bi j(x[ j] − x[i])

!

≤ 0, (4.48)

for every sorted vector x ∈ Rn, and every m ≤ n.

Proof. The proof follows the exact steps as the one of [HT13] Lemma 2, with the following
difference: here, the vector x is sorted non-increasinlgy, such that (4.37) holds, whereas the
authors of [HT13] consider a non-decreasing order, i.e., such that x1 ≤ x2 ≤ · · · ≤ xn. While
in our case, this leads to the inequality (4.48) of being smaller or equal zero, the authors of
[HT13], with their respective vector sorting, obtain inequality (4.48) with the left-hand-side
being greater or equal zero.

Remark 30. In [HT13] the authors proof the inequality (4.48) for the case where weighting
factors K−i are replaced by weights wi > 0, such that w1 > w2 > · · · > wn, i.e., for weights
that are in non-increasing order, as is the case for the vector x in our setting.
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4.4 Passivity equivalence to majorization and cut-balance

Comparison of the cut-balance condition in Lemma 7 with our differential majorization
condition in Definition 9 shows that the two defining inequalities are identical upon associa-
tion of the weights bi j with wi j and the factors K−i, resp. factors wi see Remark 30, with the
components ci in non-increasing order.

Theorem 16 (Cut-balance – differential majorization equivalence). A consensus system that

converges to a consensus state satisfies cut-balance if and only if differential majorization holds

at each t ≥ 0, as specified in Definition 9. That is, cut-balance is equivalent to the existence of

an RC network with locally passive resistor elements.

Proof. To prove (4.48), in [HT13] the authors show that

n∑

i=1

wi

�
n∑

j=1

bi j(x[ j])− x[i])

�

≤ 0, (4.49)

with wi as in Remark 30. For that they rewrite (4.49) as

n∑

i=1

x[i]

�
n∑

j=1

w j b ji −
n∑

j=1

wi bi j

�

=

n∑

i=1

x[i]ei

where the last equality serves as defining equation for ei. The proof works by showing that
∑n

i=1 x[i]ei ≤ 0 if and only if (a)
∑n

i=1 ei = 0 and (b)
∑k

i=1 ei ≤ 0.
Here, using property (a), we show that differential majorization holds, which then estab-

lishes (4.49) directly.
Let bi j be the weights wi j of the Laplacian matrix that generates a consensus flow (which

is by assumption the case) at time t . Assign wi = c[i], with c the left Perron vector of L(t),
where bracket index notation indicates a non-increasing order, i.e., c1 > c2 > · · · > cn > 0.
This re-ordering does not alter the dynamic properties of the consensus system, as consensus
dynamics are invariant to permutations [Sep11]. Hence, without loss of generality one may
permute the rows of L(t) such that the left Perron vector is appropriately ordered.

Observe that condition (a) essentially requires the matrix CL to be balanced. As L is a
Laplacian, it has zero row-excess, i.e.,

∑n

j=1 ciwi j = 0, or in vector matrix form, CL1 = 0.
Therefore,

n∑

j=1

c jw ji =

n∑

j=1

ciwi j = 0 ⇔ 1⊤Lb(t) = 0⊤,

where Lb = CL is a balanced Laplacian matrix, by definition, as it has zero row - and column-
excess.

With that, and using our re-naming of coefficients, the inequality (4.49) is identical to

n∑

i=1

c[i]

�
n∑

j=1

wi j(x[ j])− x[i])

�

=

n∑

i=1

c[i]x[i]) ¬ Ṡn ≤ 0,

where Ṡn is as defined in Definition 9, so that Ṡk ≤ 0, for indexes k < n. This establishes
sufficiency of differential majorization for (4.49) to hold.
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4 Dissipation mechanisms and passive circuit structure of consensus networks

To see the necessity, we need to show that (4.49) implies differential majorization. Follow-
ing the authors of [HT13], if (4.49) holds and the graph is uniformly connected over time,
then a consensus state is reached. Convergence to consensus requires differential majoriza-
tion to hold over uniformly connected graphs, as there must be a stochastic matrix that maps
any state to the consensus equilibrium state; the Laplacian that acts as a generator of this
transfer operator, see Proposition 6, then establishes differential majorization.

The equivalence cut-balance to local passivity follows from Theorem 15, which shows the
local-passivity – differential majorization equivalence.

This majorization context to the cut-balance property links the cut-balance relation on
weights of the generator matrix for the network dynamics, with the concept of passivity and
energy functions serving as Lyapunov functions for the case of convergence to consensus,
see Remark 28. The differential majorization property is also a contraction property, which
originates in the nested set equivalence for majorizing states, see Fig. 4.8. Hence, beyond
the context of Lyapunov functions, the non-increasing character of an energy function, which
is in equivalence with a majorization property, leads to convergence of dynamics, or any two
trajectories resulting from the action of the same transfer operator matrix, independent of
the knowledge of a particular equilibrium state. This relationship may serve as a starting
point for novel differential or incremental stability studies in dynamical systems that do not
rely on linearization approaches but rather a vector field transformation to a Laplacian form.

4.5 Application to Markov chains

The passive circuit formulation of nonlinear consensus networks is applied to Markov chains.
This provides a dynamic RC circuit formulation for Markov dynamics and a passivity-based
proof for information divergences serving as Lyapunov functions. We close this section by
discussing a discrete version of the continuous De Bruijn identity in information theory and
stochastic processes. Our framework also provides the context of passive circuits.

4.5.1 Markov chains in passive circuit formulation

A pillar of the circuit concept is the conservation of total charge, see for instance [Val74]
Chapter 1. In the following, we relate the nonlinear charge dynamics associated with the
consensus class (4.2) to the dynamics of a (spatially) inhomogeneous Markov chain.

With K(·) being a symmetric, irreducible Laplace matrix, ker(K(·)) = span{1}, so that
∑

i∈N qi(t) = const . for all times t ≥ 0, since 1⊤q̇ = 0. This recovers the conservation
principle for charge in our circuit interpretation of Theorem 13. Without loss of generality,
we can choose q(0) ∈ Rn

>0 such that
∑

i qi(0) = 1. The normalized q -vector then also has the
interpretation of a probability mass distribution on a discrete probability space: Each node
i ∈ N is a possible state, and qi(t) is the probability of a random walker on a graph G of
being in state i at time t , see, e.g., [Lov93].

The equation system describing the probability transport associated to the nonlinear av-
eraging dynamics (4.2) in x -variables follows from the gradient formulation in Theorem 13
with the admissible choice H(x) = 1

2 x2, so that ∇E(q) = x :

112



4.5 Application to Markov chains

Define F⊤(·) := K(·)C−1 and observe that F= C−1K is an irreducible (non-symmetric) Laplace
matrix satisfying detailed balance. Then,

q̇ = −K(q)x = −K(q)C−1q = −F⊤(q)q .

where F⊤ is the infinitesimal generator of a (spatially inhomogeneous) Markov chain.
This Markov chain asymptotically reaches the invariant probability measure given by the
normalized capacitances c with

∑

i∈N ci = 1.
This equivalence between passive RC -circuits and Markov chains as dynamical systems

bears the following novelties:

(i) The usual relation between electric circuits and Markov chains in the applied math-
ematics literature restricts to a static equivalence between a resistor network and the
probability transition kernel of the Markov chain, cf., the seminal work [DS84] and ref-
erences therein. In the engineering literature, a dynamical relationship is known only
for LTI symmetric consensus systems, which are equivalent to homogeneous, symmet-
ric Markov chains and unit-capacitance RC-circuits, see, e.g., [ME10] Chapter 3. We
extend those results to dynamical, nonlinear RC -circuits, where we show the relation-
ship between detailed balance and non-unit capacitances.

(ii) With capacitances c such that ||c||1 = 1, stored energy E(q) =
∑

i ciH(c
−1
i

qi), H strictly
convex, corresponds to the class of information-divergences of a probability distri-
bution q to the equilibrium distribution c, introduced by Ali and Silvey [AS66] and
Csiszár, cf., [CS04], and see Table 4.1 for examples. The usual technique to prove de-
creasingness of E is based on Jensen’s inequality [LV06], see also [Wil76]. Theorem 13
and Theorem 14 establish this dissipation inequality for the class of Csiszár’s informa-
tion divergences in a novel way, namely by exhibiting a passive RC circuit structure.

Next, we interpret a well-known information equality for stochastic processes in the dis-
crete context of passive electric circuits realized by interconnecting the proposed nonlinear
capacitor and resistor elements.

4.5.2 Discrete De Bruijn’s identity

Two elementary quantities in information theory are differential entropy, a measure of the de-
scriptive complexity of a random variable, and Fisher information, a measure of the minimum
error in estimating a parameter from a distribution. Let S ⊆ R be the support set of a random
variable X of finite variance, and let x(ξ)> 0, ∀ξ ∈ S, be a probability density distribution1

for X . The differential entropy then is defined as given in [CT91] Chapter 9,

Ent(X ) := −
∫

S

x(ξ) ln x(ξ)dξ.

The Fisher information of the distribution of X can be defined as in [CT91] Chapter 16.6,

J (X ) :=

∫

S

x(ξ)

�∇x(ξ)

x(ξ)

�2

dξ =

∫

S

|∇ ln x(ξ)|2x(ξ)dξ. (4.50)

1i.e., the gradient of the cumulative probability distribution function on S
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4 Dissipation mechanisms and passive circuit structure of consensus networks

This is a special form of the Fisher information, taken with respect to a translation parameter
on the continuous support S, which does not involve an explicit parameter as in its most
general definition [CT91] Chapter 12, see also [PV06].

De Bruijn’s identity provides a relationship between these two quantities: For a process
Y = X +

p
tZ , where Z is a normally distributed random variable,

∂

∂ t
Ent(Y ) =

1

2
J (Y ),

see [CT91] Theorem 16.6.2.
In the context of porous medium equations, Erbar and Maas in [EM14] propose the discrete

version of Fisher information

J(x) :=
1

2

∑

i, j∈N

ciwi jφ(x j, x i)
�

h(x j)− h(x i)
�

,

whereφ(x j, x i) = g(x j)−g(x i), g an increasing function. Note that the gradient of a function
on a discrete space (N , B, w) is given by the (weighted) difference of the function values at
connected nodes.

For instance, if we choose g(x j)− g(x i) = x j− x i, and relative entropy E(q) =
∑

i ciqi ln qi

ci

as energy, so that h= ln, we get

d

dt
E(q) = −J(x) =

1

2

∑

i, j∈N

ciwi j lgm(x j, x i)
�
�ln x j − ln x i

�
�
2
, (4.51)

where lgm(x j, x i) :=
x j−xi

ln x j−ln xi
is the logarithmic mean of two positive variables, and the

squared difference | ln x j − ln x i|2 is the discrete equivalent to |∇ ln x |2 in (4.50).
In the definition of Fisher information this gradient is integrated w.r.t. xdξ. On a discrete

space, gradients live on the set of edges B, while the density vector x is defined for elements
indexed in the set N . The logarithmic mean accounts for this lack of support in the discrete
case: By the mean value theorem, there exists a value x i j ∈ [x i, x j], (where we suppose that
density components satisfy x i < x j), such that

∇ ln x i j =
ln x j − ln x i

x j − x i

⇔ x i j = lgm(x j, x i).

Further, lgm−1
(x i, x j) ≡

∫ 1

0
dξ

xiξ+(1−ξ)x j
[Car72], so that an “edge density” x i j can be seen as

a (convex) interpolation of the density across edges e = ( j, i) ∈ B based on knowledge of
density components x i, x j defined on nodes i, j ∈ N .

Let us consider the discrete De Bruijn inequality for a system 4.2 with coupling defined by
the action function φ(x j, x i = sin(x j − x i). Then,

J(x) =
1

2

∑

i, j∈N

ciwi j

sin(x j − x i)

ln x j − ln x i

�
�ln x j − ln x i

�
�
2
.
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4.6 Summary and concluding remarks

Using a discrete chain rule, x i j =
sin(x j−xi)

x j−xi

x j−xi

ln x j−ln xi
¬ sinc(x j − x i)lgm(x j, x i). This is the

logarithmic mean modulated by a sampling function kernel that takes values between zero
and one (on sets where each edge corresponds to a strictly passive resistor).

As far as we know, this connection between De Bruijn’s identity in information theory and
the dissipation equality (4.51) as a discrete version of it is novel. A discrete version on do-
mains characterized by graphs is natural in applications, where high-dimensional data reside
on nodes of graphs, and (nonlinear) weightings may describe an application’s peculiarity in
terms of the irregularity of the domain. It would be interesting to further understand the
role of discrete instead of discretized continuous information inequalities, as the presented
one of De Bruijn, within the field of signal processing on graphs [Shu+13].

4.6 Summary and concluding remarks

In this chapter, we provided various equivalences of known dissipation mechanisms in con-
sensus theory to the passivity of resistors. When interconnected neutrally with a lossless ca-
pacitor bank, we entirely determine the consensus dynamics’ dissipation behavior. The study
of a passive circuit formulation of nonlinear consensus networks is motivated by the general
structure result for passive nonlinear systems due to Hill, Moylan, and Anderson. It results in
the synthesis of a gradient structure for nonlinear consensus networks using nonlinear pas-
sive resistor and capacitor elements only. The passivity of resistors turns out equivalent to the
strict convexity of stored energy. The gradient and passive circuit formulation of consensus
networks lead us to study majorization and cut-balance techniques in the context of dissi-
pation mechanisms for consensus networks. It motivates the introduction of the concept of
differential majorization, which lays out a physical and passive electric circuit framework for
majorization theory. Cut-balance, too, turns out equivalent to local passivity via differential
majorization. The connection between the cut-balance proof for convergence in consensus
dynamics and majorization is highlighted. We apply the obtained results to Markov chains
and discuss the example of phase-coupled oscillators models in electric power grid dynamics
and control.

The concepts developed in this chapter can be further applied in the context of Markov
chains, e.g., in the study of interconnections of stochastic systems. The difficulty lies in
finding the appropriate state definition for the resulting interconnected system, based on
probability measures serving as state functions for the interconnectants. The discrete setting
of probability spaces represented as graphs in combination with the passive circuit formula-
tion we developed here eases the study, as interconnecting electric circuits is a process that is
well-defined via the concept of terminals and ports. Further, the nonlinear resistor elements
given by the logarithmic mean and entropy as storage function allow studying the limit where
the number of nodes in the graph goes to infinity, as these functions are smooth.
Another fruitful direction is the study of Monge-Kantorovich optimal transport problems via
gradient flows through the setting of de Giorgi’s minimizing movement scheme, see [San15]
for general reference, using the setting of passive electric circuits and information diver-
gences as potential functions. Optimal transport has recently gained strong interest also in
the machine-learning community. It provides rigorous proof and expresses mechanisms for
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evolving and redistributing information from one state to another, as opposed to Bayes theo-
rem, with only an axiomatic foundation, relates prior and posterior distributions to another
without an evolution prescription. Deep learning processes have recently been represented in
a differential equation system framework using a time-discretization scheme, see [Che+18],
which also is reminiscent of de Giorgi’s minimizing movement scheme.
The further development of the concept of differential majorization and application to sys-
tems with state-dependent Perron vectors may be a fruitful next step. It provides a means
of proofing convergence in a dynamical system using a dissipation inequality without the
need to specify an equilibrium point. This situation reminds of dissipativity studies for open
systems, however, in the context of autonomous dynamical systems. Our use of the class
of network systems seems to be a good fit. It further allows studying the stability of 1-
dimensional sets that may be dynamic due to state-dependent or exogenously driven Perron
vector, which specifies asymptotic and invariance properties. As such, the concept of dif-
ferential majorization seems to be related to the recent differential dissipativity studies in
[FS14], without, however, requiring a localization, i.e., linearizing dynamics around states
along trajectories.
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Summary and outlook

We introduce a novel framework for designing and analyzing linear and nonlinear dynami-
cal systems alike that form consensus networks. The significance of this framework results
i) from its capability to comprehend existing application-oriented and more abstract meth-
ods for the design of convergent consensus protocols; ii) it leverages Moreau’s most gen-
eral stability and convergence result for the linear, time-varying consensus case by using
axiomatic function properties of metrics and means as tools to transform large classes of
nonlinear consensus equation systems to linear form with dynamic Laplacian system matrix,
such that it is compatible with Moreau’s result. And iii) we demonstrate that the mathemat-
ical tools and transformations we propose result in a system description based on passive
electric network elements that interact in a lossless-dissipative negative feedback, i.e., RC
loop. The framework we introduce has passivity and network theory at its core, which we
use in deriving a passivity-equivalence to the famous majorization property and to the recent
cut-balance property for convergent consensus systems. The abstract mean-metric consensus
design framework results in three distinct classes of consensus protocols: the metric action
consensus protocol, the mean-driven consensus protocol, and the embedding protocol. The
metric action protocol comprises most large existing consensus design methods, i.e., those
proposed by Hui and Haddad, Wei and van der Schaft, and Murray and Olfati-Saber. The
mean-driven design rule has novel optimality properties characterizing the dynamics of the
consensus network infinitesimally rather than the asymptotically reached equilibrium state.
The embedding protocol derived from a mean-metric generalization of the linear consensus
dynamics is an instance of the more complicated geometric generalization of Sarlette and
Sepulchre on consensus dynamics from linear to nonlinear spaces. We show connections
to gradient flow and algorithmic (Newton-type gradient descent) properties. Application of
the mean-driven design rule to geometric mean-driven consensus networks yields consensus
conditions reminiscent of Wegscheider’s detailed balance condition in chemistry. Based on
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this observation, we study the equation system of mass-action chemical reaction networks
and transform it to a linear Laplacian form, which represents a novel passive circuit and
conductance formulation of this chemical network system. The significance of this formula-
tion stems from the fact that here, other than in other circuit representations, the chemical
potentials directly drive the species dynamics and do so by acting across a resistor element
with conductance formulation that has the form of a classical heat exchanger element across
which chemical potential differences lead to dissipation.

Further research directions can follow application-oriented and more abstract, methods-
oriented pathways. In view of the geometric mean-driven consensus dynamics, it seems
interesting to further analyze the relationship between solutions of elliptic integrals and
the consensus value of the polynomial network protocol and its connection to arithmetic-
geometric mean nested algorithms. The non-equilibrium convergence behavior of the poly-
nomial network protocol serves as an interesting case study for analyzing Laplacian systems
with state-dependent dominant left-eigenvector and as an instance to work on differential
dissipation concepts. The novel passive circuit representation of mass-action chemical re-
action systems seems worth further exploring, e.g., in view of non-equilibrium stationary
states in practice. In general, the highlighted optimality properties of the differential dy-
namics seem to be worth exploring within the gradient formulation using duality and the
KKT formulation with the idea to solve relevant computational problems through dynamic
systems synthesized by nonlinear passive RC circuits. This RC circuits view on computa-
tional problems may serve as a physical and engineering basis to the mathematical theory
of optimal transport, which recently has gained popularity in the machine learning commu-
nity. It serves as a mathematical foundation to the discipline rather than the axiomatic Bayes
theorem. Further, the relationship to Newton’s gradient descent scheme in the embedding
protocol in connection with state-dependent dominant left-eigenvectors might help study ac-
celerated, distributed gradient descent algorithms. A fruitful conceptual direction is the study
of interconnected stochastic (Markov) systems by using the electric circuit equivalence for
which interconnection is well-defined. From there, limits from discrete to continuous state
(i.e., probability) spaces and the effect of external (control) inputs seem interesting. In view
of methods for studying stability and convergence of dynamical systems, the transformation
methods to linear Laplacian form with the passivity view serve as a starting point to derive
novel convergence and differential stability methods using Lyapunov-like energy functions.
A key problem is to consider the flow map of the dynamics and find transformations that lead
to an equivalent form given by a possibly state- and time-dependent stochastic differential
update matrix.
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[Kar32] J. Karamata, “Sŭr une inégalité relative aux fonctions convexes,” fre, Publica-

tions de l’Institut Mathématique, vol. 1, no. 1, pp. 145–147, 1932. [Online].
Available: http://eudml.org/doc/254514.

[KN74] J. M. Kay and R. Nedderman, An Introduction to Fluid Mechanics and Heat

Transfer with Applications in Chemical & Mechanical Engineering, third edition.
Cambridge University Press, 1974.

[Lar16] T. Lara, “On approximate m-convexity of sub-homogeneous functions,” Math-

ematica Aeterna, vol. 6, no. 2, pp. 243–254, 2016.

[LF01] N. E. Leonard and E. Friorelli, “Virtual leaders, artificial potentials and coordi-
nated control of groups,” in IEEE Conference on Decision and Control, 2001.

[LC03] Y. W. W. Li and D. Cheng, “General Hamiltonian realization of time-invariant
nonlinear systems,” Automatica, vol. 39, pp. 1437–1443, 2003.

[LV06] F. Liese and I. Vajda, “On divergences and informations in statistics and in-
formation theory,” IEEE Transactions on Information Theory, vol. 52, no. 10,
pp. 4394–4412, 2006.

[Lov93] L. Lovász, “Random walks on graphs: A survey,” Combinatorics, Paul Erdös is

Eighty, vol. 2, pp. 1–46, 1993.

[Lue98] D. G. Luenberger, Investment Science. Oxford University Press, 1998.

[LY73] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, 4th, C. C. Price,
Ed., ser. International Series in Operations Research and Management Science.
Springer, 1973, vol. 228.

[Mal04] S. M. Malamud, “Inverse spectral problem for normal matrices and the Gauss-
Lucas theorem,” Transactions of the American Mathematical Society, vol. 357,
pp. 4043–4064, 2004.

[MDM16] H. Mangesius, J.-C. Delvenne, and S. Mitter, “Gradient and passive circuit
structure in a class of non-linear dynamics on a graph,” Systems and Control

Letters, vol. 96, pp. 30–36, Oct. 2016.

[Man20] H. Mangesius, “Power law dynamics on graphs and chemical reaction net-
works,” 24th IFAC International Symposium on Mathematical Theory of Net-

works and Systems, 2020 (status: accepted).

123

http://eudml.org/doc/254514


Bibliography

[MXH16] H. Mangesius, D. Xue, and S. Hirche, “Consensus driven by the geometric
mean,” Transaction on Control of Network Systems, vol. 5, no. 1, pp. 251 –261,
2016.

[MOA11] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of Majorization

and Its Applications, P. Bickel, P. Diggle, S. Feinberg, U. Gather, I. Oling, and
S. Zeger, Eds., ser. Springer Series in Statistics. Springer, 2011.

[MB15] I. Matai and J. S. Baras, “The asymptotic consensus problem on convex metric
spaces,” IEEE Transactions on Automatic Control, vol. 60, no. 4, pp. 907 –921,
2015.

[MB10] I. Matei and J. S. Baras, “The asymptotic consensus problem on convex met-
ric spaces,” The Institute for Systems Research, University of Maryland, Tech.
Rep., 2010.

[MMO10] F. McMorries, H. M. Mulder, and O. Ortega, “Axiomatic characterization of the
mean function on trees,” Discrete Mathematics, Algorithms and Applications,
vol. 2, no. 3, pp. 313–329c, 2010, World Scientific Publishing Company.

[ME10] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks.
Princeton University Press, 2010.

[Mit04] D. W. Mitchell, “More on spreads and non-arithmetic means,” The Mathematical

Gazette, vol. 88, no. 511, pp. 142–144, 2004.

[Moa02] M. Moakher, “Means and averaging in the group of rotations,” SIAM Journal

on Marix Analysis and Applications, vol. 24, no. 1, p. 1.16, 2002.

[Moa05] ——, “A differential geometric approach to the geometric mean of symmetric
positive-definite matrices,” SIAM Journal on Marix Analysis and Applications,
vol. 26, pp. 735–747, 2005.

[MT05] R. Montenegro and P. Tetali, “Mathematical aspects of mixing times in Markov
chains,” Foundations and Trends in Theoretical Computer Science, vol. 1, no. 3,
pp. 237–354, 2005.

[Mor04] L. Moreau, “Stability of continuous-time distributed consensus algorithms,” in
43rd IEEE Conference on Decision and Control, 2004, pp. 3998–4003.

[Mor05] ——, “Stability of multiagent systems with time-dependent communication
links,” IEEE Transactions on Automatic Control, vol. 50, pp. 169–182, 2005.

[Moy14] P. Moylan, Dissipative Systems and Stability. 2014. [Online]. Available:
\url{http://pmoylan.org/pages/research/DissBook.html}.
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