
©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

Modeling the Cost of Flexibility in Communication
Networks

Alberto Martı́nez Alba∗, Péter Babarczi∗†, Andreas Blenk∗, Mu He∗, Patrick Kalmbach∗,
Johannes Zerwas∗, and Wolfgang Kellerer∗

∗Chair of Communication Networks, Technical University of Munich, Germany
E-mail: {alberto.martinez-alba, andreas.blenk, mu.he, patrick.kalmbach, johannes.zerwas, wolfgang.kellerer}@tum.de

†MTA-BME Future Internet Research Group, Dept. of Telecommunications and Media Informatics,
Budapest University of Technology and Economics (BME), Hungary, E-mail: babarczi@tmit.bme.hu

Abstract—Communication networks are evolving towards a
more adaptive and reconfigurable nature due to the evergrowing
demands they face. A framework for measuring network flexibil-
ity has been proposed recently, but the cost of rendering commu-
nication networks more flexible has not yet been mathematically
modeled. As new technologies such as software-defined network-
ing (SDN), network function virtualization (NFV), or network
virtualization (NV) emerge to provide network flexibility, a way
to estimate and compare the cost of different implementation
options is needed. In this paper, we present a comprehensive
model of the cost of a flexible network that takes into account its
transient and stationary phases. This allows network researchers
and operators to not only qualitatively argue about their new
flexible network solutions, but also to analyze their cost for the
first time in a quantitative way.

Index Terms—cost, flexibility, communication networks, adap-
tation

I. INTRODUCTION

In recent years, increasing the adaptability and scalability
of current communication networks has attracted considerable
research effort. This is due to the evergrowing number of
connected devices and the emergence of new use cases and
applications in all types of networks. For instance, with
the emergence of Internet of Things (IoT), the number of
deployed autonomous devices is estimated to grow from 12
billion in 2015 to hundreds of billions by 2025 [1]. These
devices will cover a large number of IoT use cases, such as
industrial automation, self-driving cars, and smart-city sensors
[2]. Regarding mobile networks, 5G and 6G technologies aim
at accomplishing high resource efficiency while being able to
quickly adapt to changes in user mobility and traffic patterns
[3], [4]. In addition, a major concern for data center network
operators is to increase the agility and programmability of such
networks to face new applications [5].

A popular option among researchers and operators to in-
crease network adaptability is network softwarization, as in

This work is part of a project that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No 647158 - FlexNets ”Quantifying
Flexibility for Communication Networks”). The work of P. Babarczi was
supported by Project no. 134604 that has been implemented with the support
provided by the National Research, Development and Innovation Fund of
Hungary, financed under the FK 20 funding scheme.

software-defined networking (SDN), network function virtual-
ization (NFV), and network virtualization (NV) [6]. Network
softwarization entails replacing hardware with software enti-
ties, which helps to prevent the stiffness of hardware-based
solutions, whose reconfiguration is slow and costly. Instead,
software can be reconfigured and scaled with ease, paving the
way for larger and more flexible communication networks.

Being relatively new, the concept of network softwarization
is still a greenfield in network research. The novel ability of
softwarized networks to quickly respond to demand changes
even spurs dedicated research to measure this ability. Indeed,
recent works even propose new metrics to quantify the re-
sponsiveness of a network under changing demands: the so-
called network flexibility [7]. Regardless of other performance
indicators, the purpose of this new metric is to indicate how
quickly and costly a softwarized network is able to adapt to a
changing demand. This intends to provide a common ground
to compare the effectiveness of alternative solutions whose
performance may be similar in static conditions.

Network flexibility is a desirable characteristic that network
operators want to maximize. Indeed, the high flexibility of a
network not only measures its good responsiveness in case of
demand changes, but it can also be used as advertisement to
attract potential users. In addition, it also serves as an indicator
for the ability of the network to withstand changes in future
demand trends. However, increasing network flexibility does
not come for free. Flexibility is affected by a trade-off that
also applies to many other performance metrics: the higher its
value, the higher the costs, yet the higher the revenue. The
reason why this happens is simple to understand. On the one
hand, in order to increase the flexibility, the operator may need
to invest in better equipment and consume more resources,
which can be costly. On the other hand, a high network
flexibility is linked with increased revenues: more supported
users, less sensitivity to failed links, etc. The combination of
both opposite trends lays out the classical design problems:
maximizing performance while keeping the costs, minimizing
the costs while keeping the performance, or find the best
performance/cost combination of the Pareto frontier.

The conventional approach to model the cost of a commu-
nication network, as well as any other engineering system,
is to divide its total cost of ownership (TCO) into capital

expanses (CAPEX) and operating expenses (OPEX) [8]. For
networks facing slow-varying environments, the OPEX can
be calculated from its expected operating state, i. e., from
the average revenue and rate of resource consumption [9],
[10]. Nevertheless, describing the OPEX of a network that
faces a constantly changing environment is substantially more
challenging. On the one hand, it may be difficult to estimate
the expected operating state, as it is the result of a succession
of changing demands. On the other hand, the adaptation itself
is also costly, and thus is has to be included in the OPEX.

Given this scenario, we envision a more powerful cost
model whose components directly characterize network adap-
tations. This model can be used to accurately predict the total
cost of a network whose adaptations are in the same order of
magnitude as the changes in the environment, thus showing
that adaptation may be worthwhile even in “race conditions”.
Previous work [11], [12] tackles network dynamicity, but, to
the best of our knowledge, no cost model is available to assess
profitability in these conditions. In addition, this cost model
can be used to find out the optimal adaptation strategy, identify
limiting factors, and test for profitability in future scenarios.

In this paper, we use a probability theory framework to
derive a cost model of a flexible network. Since it captures
the internal trade-offs that affect flexibility and cost, it offers
a much richer point of view with respect to the conventional
analysis of the TCO. Moreover, the model can be used to make
predictions or take decisions that affect network design, such
as selecting the least costly deployment option. Although we
tailor this model for communication networks, the model is
provided with mathematical rigor so that it can be extended
to other flexible systems that accept similar definitions.

The rest of the paper is as follows. In Sec. II we introduce
the system model, including a formal definition of network
flexibility. In Sec. III we present the complete cost model.
Sec. IV contains examples of how the model can be applied
to real networks. Finally, Sec. V concludes the paper.

II. SYSTEM MODEL

In this section, we introduce the concepts required to derive
the cost model of a flexible network.

A. Network states and demands

We consider a scenario consisting of a softwarized, con-
figurable communication network managed by a network
operator to achieve a profitable purpose, such as providing
connectivity to users, carrying information within a data
center, or managing virtual network slices. The instantaneous
configuration of the network is referred to as the state s ∈ S of
the network, where S is the set of all possible states that can
be achieved. For example, the routing tables in the network
switches, the location of virtual functions, or the physical
resources allocated to a network slice can be used as the state.

The conditions on which the network operates are modeled
by the demand d ∈ D, where D is the set of all possible
demands. The demand includes all parameters that affect the
network’s profitability but cannot be modified by the network.

These parameters can describe the external environment (such
as the number of connected users or the requested virtual
flows), but they also include any internal configuration that
may change out of the network’s control (such as the topology
graph of active nodes and links in a resilient network).

We say that a demand is satisfied if the network state is
able to fulfill the expectations that this demand generates. For
instance, a demand consisting of a flow request between two
network points is satisfied if the intermediate nodes can for-
ward the packets correctly between these points. Those states
satisfying a given demand are called valid states, whereas any
other state is an invalid state. We define the function V(d) to
relate demand d to its set of valid states:

V(d) : D 7→ ℘(S), (1)

where ℘(S) is the power set of S. If V(d) = ∅, we say that
the demand d is unsatisfiable.

In a flexible network, demands and states are subject to
change over time. From the definition of demand, it follows
that the network cannot accurately predict nor prevent demand
changes. We model a sequence of demands within time
interval (0, τ) as a discrete stochastic process {Di}i∈Z on
the sample space D, where i is an arbitrary time-ordered
integer index. We also define the sequence of states {Si}i∈Z
on the sample space S. We model the duration of each demand
Di = di by the random variable Ti on the sample space R+,
and hence we define the stochastic process {Ti}i∈Z as the
sequence of durations of each demand. Assuming that {Ti}
is stationary, it can be described by its marginal cumulative
distribution function (CDF) FT (t). Processes {Di} and {Ti}
fully describe the demands over time, as every observed
demand Di = di is associated with a duration Ti = ti.

A change in the network state is the result of a conscious
network decision, which is taken to address a demand change.
Hence, the sequence of states is determined by the sequence
of demands. For convenience, we introduce the following no-
tation to represent a demand and a state change, respectively:

d̃i , 〈di, di+1〉 , s̃i , 〈si, si+1〉 . (2)

We consider that an adaptation consists of a demand change
d̃i and its corresponding state change s̃i. From a modeling
point of view, we associate every demand change with a state
change, although in practice it may happen that si = si+1 if
there is no effective state change.

B. The adaptation process

After a noticing a demand change d̃i, a flexible network
needs to perform two tasks. First, it needs to run an adaptation
algorithm to find the most appropriate state si+1 to satisfy the
new demand di+1. Formally, we model the outcome of this
algorithm by means of the adaptation function:

a(d) : D 7→ S, (3)

so that si+1 = a(di+1). Since finding this new state may be
computationally hard, we need to account for the time and cost
required to do this, as they may impact the overall profitability.

Clients NodeServer Firewall

Readiness phase Proaction phase Reaction phase Readiness phase

Time

States sequence

Demands sequence

Time

Fig. 1: Adaptation phases traversed by a flexible network. The network operator is in charge of providing connectivity between
server and clients while ensuring that all packets go through the firewall, whose location can be dynamically chosen.

We refer to the former as proaction time zPi and to the latter
as proaction cost cPi . In addition, once the network has found
the new state, it has to move from the old state to the new
one. We refer to the time and cost required to change the state
as reaction time zRi and reaction cost cRi , respectively.

Overall, the time difference between a demand change
d̃i and its corresponding state change s̃i is the action time
zi = zPi + zRi . As with the sequences of states and demands,
we define the discrete stochastic process {Zi}i∈Z on the
sample space R+ to model the sequence of action times
Zi = zi for every time index i. Assuming stationarity, this
process can be characterized by its marginal CDF FZ(z), i.
e., the distribution of the durations of each adaptation. We
define in the same manner processes {ZPi }i∈Z and {ZRi }i∈Z
for the proaction and reaction times, respectively. Similarly,
we denote the action cost as ci = cPi + cRi , which reflects the
total effort of addressing demand change d̃i and realizing state
change s̃i, and define the discrete stochastic process {Ci}i∈Z
on the sample space R+ to model action times Ci = ci, whose
marginal CDF is FC(c).

If at any time instant τ the network is satisfying the current
demand, we say that the network is in the readiness phase.
The cost per time unit associated with operating the system
at this phase is referred to as the readiness cost kj for an
arbitrary time index j, which can be expressed as a function
of the active demand and state. This is explained in detail
in Sec. III-B. The readiness cost is affected by the amount
of resources consumed in the current state and the revenue
obtained from demand satisfaction. As a result, not being able
to satisfy a demand mainly affects this cost component.

In order to clarify the meaning of the aforementioned
definitions, we present an exemplary adaptation timeline in
Fig. 1. This figure shows the observed demands and the states
implemented by a network providing connectivity between a
server and a set of clients. This connectivity is provided while

enforcing a security policy: any packet between the server and
the clients must go through a virtual firewall, whose location
can be changed during runtime. The optimal firewall location
is the one that minimizes the number of links traversed by
all packets, thus minimizing latency. Between τ3 and τ4, the
network is operating in the readiness phase: demand d0 (clients
blue and green) is being satisfied by state s0 with minimal
latency. The revenue obtained from satisfying this demand and
the cost of using network resources (links, nodes, CPU, etc.) is
reflected by the readiness cost. At time τ4, the demand changes
to d1: the red client connects to the network. After noticing the
demand change, the network realizes that firewall location may
not be optimal anymore. As a result, it triggers the adaptation
algorithm to find out the optimal state for demand d1. The
time during which the adaptation algorithm is running is the
proaction phase, and the additional cost associated to it (due
to higher resource consumption) is the proaction cost. At time
τ5, the adaptation algorithm has converged and returned a
state s1 6= s0 featuring a new firewall location. Therefore,
the network starts the procedure to migrate the firewall, hence
starting the reaction phase, which lasts until the migration is
completed at τ6. Any additional cost associated to this phase is
reflected by the reaction cost. The union of the proaction and
reaction phases is the action phase, during which the active
state is delayed with respect to the current demand.

C. Flexibility measure
The ability of a network to adapt to a changing environment

has been tackled to some extent by previous literature. For
instance, in [13], [14] a mathematical framework for a rigorous
definition of network flexibility is provided. In particular, for a
given demand sequence, network flexibility Φ(z, c) is defined
as the ratio of satisfied demands within time limit z and cost
limit c to the total number of demands. This definition can be
easily connected with the present cost model, resulting in a
more complete mathematical framework.

The intention of defining network flexibility is to measure
the frequency of non-ideal responses to a demand change.
Ideally, every demand change should result in a state change
leading to a valid state. In real life, adaptation algorithms
are not perfect and demands may be unsatisfiable, thus it
could happen that the network cannot find a valid state for
a new demand. As a result, we can split the sequence of
demands {Di} into two non-overlapping sequences of satisfied
demands {D∈i } and unsatisfied demands {D/∈i } based on
whether a(di) ∈ V(di) or not. From these sets, we can define
the maximum flexibility ϕ of the network as

ϕ = lim
i→∞

|{D∈i }|
|{Di}|

, (4)

where the operator |·| yields the total length of a sequence. The
maximum flexibility ϕ is thus the ratio of satisfied demands to
total demands, in the absence of the cost and time constraints.

III. COST MODEL OF A FLEXIBLE NETWORK

In this section, we analyze the components of the total
cost in a flexible network and relate them to the flexibility
framework defined in the previous section.

A. General definitions

As introduced in Sec. II-B, our cost model consists of three
independent components: readiness, proaction, and reaction
costs. These components can be straightforwardly combined
to obtain the total cost of operating a network.

Definition III.1. The total cost Q of operating a flexible
network over a long time interval (0, τ) is

Q = K + CP + CR, (5)

where K, CP , and CR are the mean readiness cost, proaction
cost, and reaction cost.

For notation convenience, these components reflect cost
over time (in arbitrary monetary units per time unit), rather
than absolute cost. Hence, the absolute cost of operating a
network over interval (0, τ) is Qτ .

In order to achieve a more powerful model, the total cost
Q includes not only expenses, but also revenue coming from
providing service to users. This revenue is modeled as negative
cost, hence we say that the network is profitable over interval
(0, τ) if and only if Q < 0. Although a network provider
could charge users when they specifically request a service,
nowadays a subscription-based revenue, in which users pay a
flat rate for a service, is the dominant strategy [15], [16]. Thus,
we model revenue as a part of the readiness cost, resulting in
CP > 0, CR > 0 and K < 0 in a profitable network.

B. Readiness cost

The instantaneous readiness cost k(s, d) is the cost of
operating a network in state s under demand d. Formally:

k(s, d) : S× D 7→ R+. (6)

In words, k(s, d) reflects how well the network is satisfying
demand d. It includes both cost and revenue of operating a

state: resource consumption, user payment via subscriptions,
penalizations for unsatisfied demands, etc. Thus, it is the only
cost component that can take negative values, which implies
that the network operator obtains a profit from operating in the
current state. This fact leads to the definition of the optimal
adaptation function a∗(di), which returns the valid state that
minimizes the readiness cost for demand di:

a∗(di) = arg min
s
k(s, di), (7a)

s.t. s ∈ V(di). (7b)

In real scenarios, however, finding the optimal solution to this
problem may be too time consuming. We thus consider a
more general definition of the adaptation function a(di), which
approximates a∗(di) but may return suboptimal states or may
fail to find a valid state. The ability of the adaptation function
to return a (possibly suboptimal) valid state is captured by the
maximum flexibility ϕ as defined in (4) in Sec. II-C.

When the network adapts to a sequence of demands {Di}
via a sequence of states {Si}, this results in a sequence of
readiness costs that can be modeled as the stochastic process
{Kj}j∈Z for every different demand-state pair. Since {Di} and
{Si} are stationary, it follows that {Kj} is also stationary.
Therefore, the mean readiness cost can be defined as the
expected value of this sequence:

K , E{K}. (8)

Note that we use a different variable to index the elements
of process {Kj} with respect to processes {Di} and {Si}.
This is due to the possible presence of multiple demand-
state combinations that result in different readiness costs. To
explain this, let us consider a system facing demand di by
implementing state si = a(di). The resulting readiness cost in
this situation is kj = k(si, di) (with slight abuse of notation).
When a new demand di+1 is requested, the readiness cost
changes to kj+1 = k(si, di+1), as state si may not satisfy
the new demand, leading to degraded performance and higher
cost. At this point, there are multiple possibilities for the
next readiness cost value. It could happen that the network
finds a valid state si+1 = a(di+1) before the demand changes
again, leading to kj+2 = k(si+1, di+1) after state change s̃i.
Conversely, the system may be unable to find a valid state or a
new demand may appear before the new state is implemented,
leading to a new readiness cost value of kj+2 = k(si, di+2).

In order to model the cost resulting from the offset between
demands and valid states, we define the state delay x(τ)
at time instant τ as the index difference between current
demand d(τ) = di and current state s(τ) = sj , such that
sj = a(di−x(τ)). Similarly to {Si} and {Di}, the sequence
of state delays can be modeled by the discrete stochastic
process {Xj}j∈Z. The instantaneous state delay resulting from
a sequence of demands and states is shown in Fig. 2. We
denote the marginal pmf of {Xj} as fX (x), which yields the
overall probability of the network operating with state delay x.

1 102 3 4 5 6 7 8 9

1 2 3 5 9

Fig. 2: Demands, states, and state delays experienced by an
action-interrupting flexible network. The state delay is the
instantaneous difference between demand and state indices
(numbers in circles).

We define the readiness degradation function KX (x) ,
E{K|X = x} as the mean readiness cost when the state delay
is X = x. This function characterizes the performance of
the network when dealing with delayed states. An example of
such a function is shown in Sec. IV-B. In a properly designed
network, the mean readiness cost is lowest when state delay
is X = 0, that is, when the network implements a valid
state. Moreover, the cost of a state should monotonically grow
with the state delay, reflecting that the demand becomes, on
average, increasingly different from the last satisfied demand.
Formally, this implies that KX (x2) ≥ KX (x1) if and only if
x2 ≥ x1. This leads to the following conclusion.

Lemma III.2. A necessary condition for a network to be
profitable is KX (0) < 0.

The proof for Lemma III.2 is trivial, as it implies that a
profitable network (Q < 0) requires at least that operating
in valid states is profitable. Knowing this fact, the following
lemma provides a method to compute the mean readiness cost.

Lemma III.3. The mean readiness cost K of a flexible
network can be calculated in terms of KX (x) as:

K =

∞∑
x=0

KX (x)fX (x). (9)

Proof. Eq. (9) follows directly from the application of the law
of total expectation [17].

As mentioned before, KX (x) is a characteristic function
of the analyzed network and has to be measured, simulated,
or theoretically derived for each case. The pmf fX (x) can be
obtained from FT (t) and FZ(z), that is, from the distributions
of demand duration and action time. Nonetheless, the resulting
expression for fX (x) is affected by the behavior of the network
when a new demand change appears during the action phase,
that is, while looking for or moving to a new state.

We refer to a network as action-persistent if its action
phases are not interrupted by a change in the demand. That is,
an action-persistent network carries on with the action phase
and realizes the state change even if the new state is already
delayed from the start. Conversely, an action-interrupting
network stops and resets its action phase if a new demand
appears therein. As a consequence, an action-interrupting
network only realizes state changes leading to valid, non-
delayed states. Fig. 2 is an example of an action-interrupting
network behavior. Owing to space limitations, in this work
we only show the derivation of fX (x) for action-interrupting
networks, leaving the analysis of action-persistent networks for
future work. We also argue that action-interrupting networks
are the best option for operators who prefer to implement valid
states rather than not to interrupt adaptations.

In our path to calculate fX (x), we define the random
variable R as the time difference between any instant in
the considered interval (0, τ) and the most recent demand
change. The probability density function (pdf) of this variable
is provided in the following lemma.

Lemma III.4. The pdf fR(r) of R is

fR(r) =
1− FT (r)

T
, (10)

where T , E{T }.

Proof. We introduce the intermediate random variable T ′ to
model the duration of the active demand at any uniformly-
selected instant. By the law of the total expectation:

fR(r) =

∫ ∞
0

fR|T ′(r|t)fT ′(t)dt, (11)

where fT ′(t) is the pdf of T ′ and fR|T ′(r|t) is the conditional
pdf of R when the most recent demand is known. The proba-
bility of randomly selecting a demand is directly proportional
to its duration. From this fact and the law of total probability
it follows that

fT ′(t) =
t · fT (t)∫∞

0
ξ · fT (ξ)dξ

=
t · fT (t)

E{T }
. (12)

The conditional pdf fR|T ′(r|ti) yields the probability density
of selecting an instant that is r time units after the start of
demand di, given that the active demand is di. Since there
must be no bias when selecting these instants, it is clear that
fR|D′(r|ti) = 1

ti
if 0 ≤ r < ti and fR|D′(r|di) = 0 otherwise.

Combining (12) with this fact results in:

fR(r) =

∫ ∞
r

fT (t)

E{T }
dt, (13)

which directly leads to (10).

Using Lemma III.4 we can directly calculate an expression
for fX (x), as shown in the following lemma.

Lemma III.5. The pmf fX (x) of the state delay of an action-
interrupting network is

fX (x) =

{
αϕ if x = 0,

(1− αϕ)(1− βϕ)x−1βϕ if x > 0,
(14)

where
α ,

1

T

∫ ∞
0

FZ(t) (1− FT (t)) dt (15)

and
β ,

∫ ∞
0

FZ(t)fT (t)dt. (16)

Proof. An action-interrupting network resets its action phase
every time the demand changes. Hence, for any instant, the
probability of operating with state delay X = 0 is the
probability of being able to find a valid state and surpassing
the action time for the most recent demand. The probability
of the former event is given by the maximum flexibility ϕ,
whereas the latter event is derived as follows [18]:

fX (0) = ϕPr{Z ≤ R} = ϕ

∫ ∞
0

FZ(r)fR(r)dr, (17)

which leads to the first case of (14) after substituting (10). If
this is not the case, with probability (1−αϕ), the probability
of reaching a state delay x > 0 is the probability of being
able to find a valid solution after x unsuccessful attempts.
This event follows a geometric distribution of parameter p:

p = ϕPr{Z ≤ T } = ϕ

∫ ∞
0

FZ(r)fT (r)dr, (18)

which is the probability of obtaining a valid solution within
an action phase that is shorter than the duration of a demand.
Given the pmf of a geometrically-distributed random variable
as p(1− p)x−1 (for x > 0), (14) is finally obtained.

With an expression for fX (x), we calculate the resulting
mean readiness cost in the following theorem.

Theorem III.6. The mean readiness cost K of an action-
interrupting network is

K = αϕKX (0) + (1− αϕ)βϕK̂β , (19)

where

K̂β ,
∞∑
x=1

KX (x)(1− βϕ)x−1. (20)

Proof. Eq. (19) is the result of combining (9) and (14).

The expression in Theorem III.6 allows us to calculate the
mean readiness cost of an adaptive system from its demand
duration distribution, action time distribution, readiness degra-
dation function, and maximum flexibility. In order to find out
if a network is profitable, the following corollary can be used.

Corollary III.6.1. A necessary condition for a flexible network
to be profitable is

α

(αϕ− 1)β
<

K̂β

KX (0)
. (21)

given that KX (0) < 0.

Proof. A profitable network must fulfill K < 0, which implies
that KX (0) < 0 (Lemma III.2). After applying these relations
in (19), we reach (21).

Corollary III.6.1 provides us with a simple method to
rule out non-profitable network configurations. The left side
of (21) reflects the frequency of demand changes and the
swiftness and effectiveness of the adaptation, whereas the
right side is influenced by the quality of the solutions. As a
result, it delimits a border for finding profitable configurations
within the speed-quality tradeoff. An example application of
Theorem III.6 and Corollary III.6.1 is presented in Sec. IV-B.

C. Proaction cost

The proaction cost cP (d̃i) of a flexible network can be
formally defined as a function mapping a demand change to
a cost value:

cP (d̃i) : D2 7→ R+. (22)

The exclusive dependency on d̃i implies that this cost is
present every time there is a demand change, even if there is
no eventual state change. We identify two factors contributing
to the proaction cost. On the one hand, a demand change may
imply an instantaneous time-independent cost CP0 , for instance
resulting from the activation of new capabilities to solve the
adaptation problem. On the other hand, while the adaptation
problem is being solved, additional resources (CPU, memory,
etc.) are consumed during the proaction phase, incurring in a
cost of CPz monetary units per time unit. As a result, we can
express the proaction cost as a function of the proaction time
of an action-interrupting network as follows:

cP (d̃i) ,
1

ti+1

(
CP0 + CPz ·min(zPi , ti+1)

)
, (23)

where the minimum operator guarantees that the proaction
phase is stopped if the demand changes and the term 1

ti+1

normalizes the cost to the duration of the demand. From (23)
and the sequence of proaction times {ZPi } we define a new
stochastic process {CPi }i∈Z to model the sequence of proaction
costs, such that:

CPi =
1

Ti+1

(
CP0 + CPz ·min(ZPi , Ti+1)

)
. (24)

The mean of the variable above is presented in the following.

Theorem III.7. The mean proaction cost CP of an action-
interrupting network is:

CP =
CP0
T

+

(
βPZP

T
+ 1− βP

)
CPz , (25)

where
βP ,

∫ ∞
0

FZP (t)fT (t)dt, (26)

and ZP , E{ZP }.

Proof. After applying the expectation operator to (24), we
need to calculate E{min(ZPi , Ti+1)}. The random variable
within the brackets takes the same values as ZPi when
ZPi ≤ Ti+1. From stationarity and the law of total expectation:

E{min(ZP , T)} = Pr{ZP ≤ T } · ZP

+ (1− Pr{ZP ≤ T }) · T (27)

The probability Pr{ZP ≤ T } is derived in the same way as
(16) to yield (26).

In Sec. IV-C, we show an example network where we apply
Theorem III.7 to find out the optimal number of CPU cores
to be used during the proaction phase.

Corollary III.7.1. A necessary condition for an action-
interrupting network to be profitable is

CPz <
TK + CP0

(βP − 1)T − βPZP
. (28)

Proof. This relation follows directly from the fact that a
profitable network must fulfill K + CP < 0.

Corollary III.7.1 provides us with an upper bound on
the maximum number of additional resources that a flexible
network is allowed to utilize in order to cope with demand
changes before it turns unprofitable.

D. Reaction cost

The reaction cost cR(s̃i) reflects the effort of performing
the state change required for an adaptation, after this has been
selected in the proaction phase. Therefore, we define it as a
function of the state change s̃i:

cR(s̃i) : S2 7→ R+. (29)

Note that cR(s̃i) = 0 if the demand change d̃i results in no
adaptation, that is, if si+1 = si. This can happen either if si is
already optimal, or if the adaptation algorithm could not find
a better state which satisfying dj .

Based on the same rationale as with the proaction cost, we
identify two factors contributing to the reaction cost. First, an
instantaneous time-independent cost CR0 models the activation
of state-changing procedures (such as memory allocation for
virtual migrations [19], for instance). Second, we define a con-
stant rate of CRz monetary units per time unit to characterize
the usage of additional resources when changing the network
state. Consequently, we formulate the reaction cost as:

cR(s̃i) ,
1

ti+1

(
CR0 + CRz ·min(zRi , ti+1 − zPi)

)
(30)

whenever ti+1 ≤ zPi and the demand is satisfiable. Otherwise,
cR(s̃i) = 0 as no new state has been generated. We define the
stochastic process {CRi }i∈Z to model a time-ordered sequence
of reaction costs as:

CRi =
1

Ti+1

(
CR0 + CRz ·min(ZRi , Ti+1 −ZPi)

)
, (31)

for every index i whenever Ti+1 ≤ ZPi and CRi = 0 otherwise.

Theorem III.8. The mean reaction cost CR of an action-
interrupting network is:

E{CR} =
ϕβP

T

(
CR0 + CRz

(
βZ(1− β)T − ZP

))
. (32)

Proof. The equality (31) occurs when ZPi ≤ Ti+1 with
probability βP . By the law of total expectation, we just need to
figure out the value of E{min(ZRi , Ti+1−ZPi)}. The random

Fig. 3: Topology of the example network implementing ran-
dom flow requests. The topology is that of AT&T North
America [20] taken from the Internet Topology Zoo [21].

variable within the brackets takes the same values as ZRi
when Zi ≤ Ti+1, that is, with probability β. After some
straightforward algebra, (32) is obtained.

IV. APPLICATION EXAMPLE

In this section, we show an example application of the cost
model. Namely, we present a network design problem, lay
out several alternatives to solve it, and use the presented cost
model to figure out the best implementation options.

A. Network description

We consider a communication network with the topology
shown in Fig. 3. The purpose of the network is to embed
flow requests between any two nodes, that is, to configure
its links so that connection between a pair of nodes can be
established. The network operator wants to provide this service
with the minimum operational cost while ensuring that flows
are implemented on single paths, i. e., without fractional flows.

Each flow request consists of a source-destination pair and
a required throughput. We can thus define the demand d at
any time as the set of currently requested flows. As a result,
every time a new flow is requested or finishes, the demand
changes. The instantaneous network state s is defined by the
state of each link (active or inactive) and its assignment to
an active flow, if any. When a link is active, multiple flows
can be assigned to it as long as the capacity of the link is not
exceeded. For simplicity, we set all link capacities to 1 and
the throughput requested by each flow is uniformly chosen
between 0 and 1. We consider that a demand is satisfied when
the network state allows the embedding of all flows contained
in the demand.

The duration of the demands T (in seconds) follows a Pareto
Type II distribution (also called Lomax distribution [22]):

FT (t) = 1−
(

1 +
t

λ

)σ
, (33)

for t ≥ 0 with parameters λ = 10 and σ = 2.25 such that
the mean demand duration is T = λ

σ−1 = 8 seconds. We
select this distribution since it is frequently observed in the
interarrival time between internet bursts, file sizes, transfer
times, etc [23]. In addition, we choose a low demand duration,
comparable to the action time, so that it would be unclear

whether a network can operate profitably in this situation when
using conventional cost models. Nonetheless, other parameters
or distributions, such as the exponential distribution, can be
used without affecting the effectiveness of the model.

The problem of providing the intended connectivity can
be formulated as an instance of the integer min-cost mul-
ticommodity flow problem [24]. This problem is known to
be NP-Hard [25], thus the network operator relies on an
approximation algorithm rather than on an exact approach.
In our example, the operator uses a genetic algorithm as the
adaptation algorithm [26]. In a nutshell, the operation of the
genetic algorithm is as follows [27]. First, a certain number of
random solutions, called the population size π, are generated.
Each solution contains a flag per link indicating if this link
is active or not. Then each solution is evaluated to assess
how close it is to satisfy the current demand and how many
links it uses. After all solutions have been evaluated, the worst
ones are discarded whereas the best ones are kept for the
next generation. These are then combined to each other and
randomly modified to produce the next generation. These steps
are repeated until a convergence criterion is satisfied, which in
our case is the absence of improvements after 25 generations.

B. Selection of a profitable population size

Given the high number of parameters in a genetic algorithm,
the operator is interested in finding the right ones so that the
network is profitable. For example, they want to select the
population size π. Selecting the right π is not trivial, since
it affects the speed-accuracy trade-off of the algorithm. On
the one hand, a large π increases the probability of eventually
finding an optimal solution with minimum readiness cost. On
the other hand, the higher π, the more solutions have to be
evaluated, which increases proaction time and cost.

The readiness cost kj at any point is the combination of
three factors. First, subscribed users provide a constant revenue
of 71 monetary units per second (mu/s). Second, active links
have a cost of 11 mu/s, whereas inactive links do not cost
anything. Finally, whenever a requested flow is not being
satisfied, the operator has to pay a compensation of 10 mu/s
to each affected user. Thus, the average readiness cost of state
s and demand d is:

k(s, d) = −71 + 11l(s) + 10v(s, d) mu/s, (34)

where l(s) is the number of used links in state s and v(s, d)
is the number of unsatisfied flows for demand d and state s.

The operator is considering to use a population size in the
set Π = 〈250, 750, 1250, 1750, 2250, 2750〉. After evaluating
the performance of the genetic algorithm in a dedicated
simulator, we observe that the action time can be modeled
by a uniform distribution such that Z ∼ U(0, Ẑ), where
Ẑ = 0.016 · π. We also measure the maximum flexibilities
Φ = 〈0.35, 0.55, 0.64, 0.7, 0.73, 0.75〉 for each π in the same
order as Π, representing the frequency of demand-satisfying
solutions. Finally, we measure the readiness degradation func-
tion KX (x) for state delays 0 ≤ x ≤ 30 for each population
size π, which is shown in Fig. 4. We observe that the mean

Fig. 4: Readiness degradation function KX (x) of a network
employing a genetic algorithm to implement integer multicom-
modity flows for six different population sizes.

Fig. 5: Graphical representation of inequality (21) for testing
the profitability of different population sizes.

readiness cost steadily increases with the state delay, as a
result of higher compensations due to unsatisfied flows and
unnecessarily active links. It is also clear that the evolution
of the cost for the different population sizes is very similar,
although low population sizes lead to higher link usage, which
increases the cost.

From the above measurements and the distributions of T
and Z , we are able to compute parameters α and β as shown in
(15) and (16). With this and the readiness degradation function
KX (x), we can apply Corollary III.6.1 to figure out if any
of the considered population sizes may lead to a profitable
network. A graphical representation of the result is shown in
Fig. 5, where left and right sides of inequality (21) are depicted
as horizontal and vertical axes, respectively. We observe that
three of the considered population sizes (π = 1250, 1750,
2250) lie on the profitable region. An interesting behavior is
captured by the model, as those populations that are lower than
1250 or greater than 2250 lead to unprofitable networks. The
explanation is that, when the population is small, the quality
of the states yielded by the genetic algorithm is not good
enough to properly address the demands. Conversely, when
the population is large, the action time is so high that the
network cannot properly cope with frequent demand changes.

C. Optimal parallelization level

Let us now consider that the network operator has the ability
to dedicate multiple CPU cores to solving the adaptation
problem in the proaction phase. Increasing the number of cores
reduces the proaction time, thus decreasing the state delay,
which may lead to higher revenue. Nevertheless, utilizing more

Fig. 6: Reduction factor of the proaction time for different
parallelization levels. The dashed line has unit slope.

cores also increases the proaction cost, which may counter the
revenue increase and result in higher total cost. In order to
find out the optimal level of parallelization, we can combine
Theorems III.6 and III.7 to predict the evolution of readiness
and proaction costs as the number of cores assigned to the
adaptation algorithm increases.

Let us denote the parallelization level, i. e., the number of
additional CPU cores used in the proaction phase, as γ. For
simplicity, let us assume that the reaction cost and time are
negligible so that ZP ≈ Z , hence ZP ∼ U(0, Ẑ). Clearly, the
value of Ẑ is a decreasing function of γ. Namely, we define
it as Ẑ = Ẑ0

η(γ) , where Ẑ0 is the maximum proaction time
with a single core and η(γ) is the time reduction factor for γ
cores. Ideally, η(γ) = γ if the load can be perfectly shared
among all cores. Nonetheless, in real scenarios it is observed
that η(γ) grows linearly at first, but eventually saturates due
to imperfections in load division [28], [29]. To capture this,
we use the η(γ) depicted in Fig. 6.

Regarding the proaction cost components, let CP0 = 0 (no
additional cost for starting the proaction cost) and CPz = 1 · γ
mu/s, where γ is the number of assigned CPU cores, that is, the
parallelization level. This value of CPz means that the network
consumes 1 mu/s per used CPU core during the proaction
phase, in addition to the readiness cost. Finally, based on the
previous results, we select a population size of π = 1750,
which implies a maximum flexibility of ϕ = 0.7 and Ẑ0 = 28.

We can calculate the relationship between the mean proac-
tion cost CP and the parallelization level γ by feeding the
aforementioned expressions into (25), in Theorem III.7. The
result is shown in Fig. 7, where an interesting behavior can
be observed. Up to around γ = 8, the proaction cost increases
rapidly, since the duration of the proaction phase is limited
by the demand duration. Indeed, when γ = 1, the average
demand duration is T = 8 s, whereas the mean proaction
time is, ZP = Ẑ0

2 = 14 s. As a consequence, the network is
almost always in the proaction phase, and thus increasing γ
only increases the proaction cost without affecting the duration
of the proaction phases. Nevertheless, as γ grows, eventually
the proaction time becomes lower than the demand duration,
thus allowing the network to leave the proaction phase and
leading to a less steep cost increase.

Finally, in Fig. 8 we show the combined readiness and

Fig. 7: Mean proaction cost CP as a function of the paral-
lelization level.

Fig. 8: Combined mean readiness and proaction costs K+CP

as a function of the parallelization level.

proaction cost for this scenario, which can be achieved via
Theorems III.6 and III.7. We clearly observe a minimum point
at γ = 7 cores, which is thus the optimal parallelization level.
Before this value the proaction cost is lower, but the network
cannot cope with demand changes fast enough, resulting high
readiness cost due to large state delays. For γ > 7 the readiness
approaches its minimum value but the proaction cost increases,
resulting in higher combined cost.

V. CONCLUSION

Current communication networks need to be able to eas-
ily adapt to a changing environment in order to face the
evergrowing demands and the myriad of different network
applications. In order to accomplish this, the concept of net-
work softwarization proposes to replace hardware equipment
with software entities. This facilitates network reconfiguration,
allowing faster and less costly adaptations. However, these
adaptations have multiple cost factors associated with them,
which are difficult to capture using conventional models.

In this paper, a comprehensive cost model for a flexible
network is proposed. The mathematical tools designed for
flexibility analysis are used and extended to provide a deep
understanding of all the factors affecting the cost. We identify
three main cost components related to adaptations: readiness,
proaction, and reaction cost, which have to be combined to
calculate the total cost. We provide expressions and relation-
ships that can be used to accurately predict cost and take
design decisions. Finally, we apply the cost model to realistic
examples to show how this can be done.

REFERENCES

[1] Cisco, “Prepare to succeed with the internet of things,” White Paper,
2017.

[2] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of IoT:
Applications, challenges, and opportunities with China perspective,”
IEEE Internet of Things journal, vol. 1, no. 4, pp. 349–359, 2014.

[3] NTT DOCOMO, “5G evolution and 6G,” White Paper, 1 2020.
[4] A. Martı́nez Alba and W. Kellerer, “A dynamic functional split in

5G radio access networks,” in 2019 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2019, pp. 1–6.

[5] B. Casemore, “How network disaggregation facilitates datacenter and it
modernization,” IDC, White Paper, June 2018.

[6] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling technolo-
gies, and solutions,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 3, pp. 2429–2453, 2018.

[7] W. Kellerer, A. Basta, P. Babarczi, A. Blenk, M. He, M. Klugel, and
A. Martı́nez Alba, “How to measure network flexibility? a proposal
for evaluating softwarized networks,” IEEE Communications Magazine,
vol. 56, no. 10, pp. 186–192, 2018.

[8] M. Bettner, S. Haka, J. Williams, and J. Carcello, Financial & Manage-
rial Accounting. McGraw-Hill Education, 2017.

[9] R. Huelsermann, M. Gunkel, C. Meusburger, and D. A. Schupke, “Cost
modeling and evaluation of capital expenditures in optical multilayer
networks,” Journal of Optical Networking, vol. 7, no. 9, pp. 814–833,
2008.

[10] J. Zander, “On the cost structure of future wideband wireless access,”
in 1997 IEEE 47th Vehicular Technology Conference. Technology in
Motion, vol. 3. IEEE, 1997, pp. 1773–1776.

[11] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[12] J. L. Higle and S. Sen, “Stochastic decomposition: An algorithm for
two-stage linear programs with recourse,” Mathematics of operations
research, vol. 16, no. 3, pp. 650–669, 1991.

[13] M. Klügel, M. He, W. Kellerer, and P. Babarczi, “A mathematical
measure for flexibility in communication networks,” in 2019 IFIP
Networking Conference (IFIP Networking). IEEE, 2019, pp. 1–9.

[14] P. Babarczi, M. Klügel, A. Martı́nez Alba, M. He, J. Zerwas, P. Kalm-
bach, A. Blenk, and W. Kellerer, “A mathematical framework for
measuring network flexibility,” Computer Communications, vol. 164, pp.
13–24, 2020, Special Issue on IFIP Networking 2019 Conference.

[15] L. Zhang, W. Wu, and D. Wang, “Time dependent pricing in wireless
data networks: Flat-rate vs. usage-based schemes,” in IEEE INFOCOM
2014-IEEE Conference on Computer Communications. IEEE, 2014,
pp. 700–708.

[16] G. Kesidis, A. Das, and G. de Veciana, “On flat-rate and usage-based
pricing for tiered commodity internet services,” in 2008 42nd Annual
Conference on Information Sciences and Systems. IEEE, 2008, pp.
304–308.

[17] P. Billingsley, Probability and Measure, ser. Wiley Series in Probability
and Statistics. Wiley, 1995.

[18] R. Durrett, Probability: Theory and Examples, ser. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press,
2010.

[19] A. Martı́nez Alba, J. H. Gómez Velásquez, and W. Kellerer, “An
adaptive functional split in 5G networks,” in IEEE INFOCOM 2019-
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2019, pp. 410–416.

[20] ATT North America. Next-generation IP MPLS backbone. [On-
line]. Available: https://www.att.com/Common/merger/files/pdf/wired-
network/Domestic 0C-768 Network.pdf

[21] The Internet Topology Zoo. Accessed on 01/14/2021. [Online].
Available: http://www.topology-zoo.org/

[22] K. S. Lomax, “Business failures: Another example of the analysis of
failure data,” Journal of the American Statistical Association, vol. 49,
no. 268, pp. 847–852, 1954.

[23] A. B. Downey, “Lognormal and pareto distributions in the internet,”
Computer Communications, vol. 28, no. 7, pp. 790–801, 2005.

[24] J. Tomlin, “Minimum-cost multicommodity network flows,” Operations
Research, vol. 14, no. 1, pp. 45–51, 1966.

[25] S. Even, A. Itai, and A. Shamir, “On the complexity of time table
and multi-commodity flow problems,” in 16th Annual Symposium on
Foundations of Computer Science (sfcs 1975). IEEE, 1975, pp. 184–
193.

[26] N. Farrugia, J. A. Briffa, and V. Buttigieg, “Solving the multi-commodity
flow problem using a multi-objective genetic algorithm,” in 2019 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2019, pp. 2816–
2823.

[27] K. Man, K. Tang, and S. Kwong, Genetic Algorithms: Concepts and
Designs, ser. Advanced Textbooks in Control and Signal Processing.
Springer London, 2001.

[28] G. Glockner, “Parallel and distributed optimization with gurobi opti-
mizer,” 2015.

[29] D. Bergman, A. A. Cire, A. Sabharwal, H. Samulowitz, V. Saraswat,
and W.-J. van Hoeve, “Parallel combinatorial optimization with decision
diagrams,” in International Conference on AI and OR Techniques in
Constriant Programming for Combinatorial Optimization Problems.
Springer, 2014, pp. 351–367.

