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Abstract—The architecture of the radio access network (RAN)
in 5G features a functional split between centralized and dis-
tributed units, which can be leveraged to reduce inter-cell inter-
ference. Recent work proposes to dynamically adapt this split in
accordance with the instantaneous interference situation experi-
enced by all users. However, it is unclear whether performing
this flexible adaptation is actually feasible, since the interference
situation changes continuously as users move. In this work, we
investigate the impact of mobility on the problem of dynamically
selecting the optimal functional split. We employ a mobility
simulator based on real street layouts and trace-derived traffic
patterns to generate continuously varying interference situations.
Then, we analyze how frequently the optimal functional split
changes and how much the performance of previous splits differs
from the new, optimal one. The results allow us to estimate the
time required for a viable flexible functional split adaptation.

Index Terms—5G, flexible, adaptation, functional, split

I. INTRODUCTION

The numerous improvements proposed for 5G mobile net-
works are commonly classified into three use cases: Ultra-
Reliable Low-Latency Communications (URLLC), massive
Machine-Type Communications (mMTC) and enhanced Mo-
bile Broadband (eMBB). While the first two use cases aim at
novel objectives for new markets, eMBB is directed towards
a crucial selling point for current markets: increasing the user
data rate. It is expected that the peak data rate in 5G will
surpass 1 Gb/s, an order of magnitude higher than that of 4G.

There are three possible strategies to increase data rates in
a mobile network: additional spectrum, improved spectral ef-
ficiency, or higher cell density. Since spectrum is a scarce and
expensive resource, operators cannot rely on using new bands
as their only strategy. Similarly, increasing spectral efficiency
is limited by Shannon’s law, to which 5G modulation schemes
are already very close [1]. Thus, operators have to increase cell
density to improve user data rates.

The main disadvantage of increasing cell density is that
users are exposed to stronger interference from neighbor cells.
Therefore, a method to prevent or cancel these interference is
required in order to leverage the benefits of high cell density.
Several interference mitigation techniques have been proposed
for 4G and 5G networks, such as Inter-cell Interference
Coordination (ICIC) and Joint Transmission and Reception (JT
and JR). These techniques require some level of information

exchange between the interfering cells. For instance, in JT the
whole physical signal needs to be shared by the coordinated
cells at every transmission interval. This requirement hinders
the application of these techniques in 4G deployments, since
the architecture of its Radio Access Network (RAN) makes it
difficult for the cells to coordinate quickly.

In 5G, base stations (gNodeBs) are divided into a Cen-
tralized Unit (CU), which hosts a subset of the RAN func-
tions, and Distributed Units (DUs), which host the remaining
functions. This division, known as the 5G functional split [2],
allows for centralized functions to quickly coordinate with one
another, thus enabling advanced interference mitigation tech-
niques. Its main disadvantage, however, is the high capacity
required for the fronthaul network connecting CU and DUs, as
function centralization may require very high throughput [3].

Decreasing the number of centralized functions relaxes the
fronthaul capacity requirements, but reduces the interference
mitigation opportunities. Thus, for a fixed fronthaul capacity
and a given interference situation of all users, we can define
the functional split selection problem (FSSP) as the problem
of optimally selecting the functional split for each gNodeB.
Previous works have tackled the offline FSSP, whose solution
is used in the RAN design. This provides a better average
performance with respect to identical functional splits for all
gNodeBs, but performance may be far from optimal when the
instantaneous interference situation deviates from the mean.

A more advanced approach is to address the online FSSP,
that is, the problem of dynamically adjusting the functional
split to the instantaneous conditions of the network. However,
solving the online FSSP entails an additional difficulty with
respect to the offline FSSP: the mobility of the users and
the changing traffic patterns lead to potentially short-lived
solutions. The time during which these solutions are valid
is hard to estimate, as the problem changes continuously.
Nonetheless, it is crucial to know how much time is available
to solve the FSSP and to implement the solution, as solutions
may have expired by the time they are put into operation.

In this work, we present a comprehensive study on the
validity of the solutions of the online FSSP, focusing on
how frequently and how much its solutions change. For this,
we model a dense urban scenario, formulate the FSSP to
maximize the proportionally-fair user data rate, and present



an algorithm to solve it. Then, we use a simulator to produce
realistic user behavior, based on available mobility models
and traces, and solve the online FSSP in different mobility
scenarios. We record the dynamics of the solution changes and
the performance degradation of old solutions. The analysis and
results presented here contribute to decide on the viability of
implementing an adaptive functional split.

The remaining of this paper is structured as follows. Sec. II
summarizes the related work on solving the FSSP. In Sec. III
we introduce the system model and the FSSP formulation.
Sec. IV describes the experimental setup. In Sec. V we present
the simulation results. Finally, Sec. VI concludes the paper.

II. RELATED WORK

The problem of adapting the functional split to the static or
dynamic conditions of a 5G network has attracted considerable
attention in the recent years. The foundations of the FSSP
are established in [2], whose authors envision a 5G RAN
supporting multiple functional splits. Similarly, in [4], the
authors propose a 5G RAN architecture that simultaneously
supports different functional splits for each DU in the network.

The offline FSSP is tackled in [5], where an algorithm
to select functional split during the deployment phase is
presented, according to the average traffic expected in each
cell. The authors of [6] also address the optimal selection of
the functional split, as part of the network design.

The online FSSP is suggested in [7], where a platform for a
partially centralized RAN is presented, although the problem is
not fully addressed. In [8] the online FSSP is tackled within the
scope of a virtualized RAN scenario, as the optimal functional
split is recalculated whenever a new virtual network request
arrives. However, none of these works consider the possibility
to adapt the functional split to the instantaneous interference
situation. This is first mentioned in [9], where the authors
present a novel gNodeB implementation that is able to change
its functional splits at runtime. Based on this platform, the
FSSP is fully addressed in [10], where the authors describe
multiple algorithms to dynamically adapt the functional splits
of a 5G RAN according to the instantaneous user position.
Moreover, this work includes a preliminary study on the time
that is available to solve the problem.

III. SYSTEM MODEL

In this section we describe the general characteristics of the
network under consideration, for which the FSSP is defined.

A. Network description

We focus on highly populated scenarios such as city centers
or entertainment areas, as the variable activity in these zones
motivates the interest in dynamic adaptations. Our area of
interest is the coverage area of all DUs (including macro and
small cells) that are connected to the same CU. DUs and CU
are connected by means of a fronthaul network, whose limited
capacity prevents full centralization for all cells. We denote the
number of gNodeBs, and hence DUs, as G, and the number of
active user equipments (UE) within the area of interest as U .
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Fig. 1: Chain of gNodeB functions and possible functional
splits (depicted with dashed lines).

The total number of connected users may be larger by U , but
since inactive users do not influence the interference situation,
they can be ignored.

The considered use case is eMBB. The goal of the network
operator is to maximize the data rate of the users, while also
ensuring proportional fairness. We focus on the downlink and
assume that active UEs are always receiving.

B. Functional split

Each gNodeB in the network hosts a chain of RAN func-
tions as depicted in Fig. 1, where each function corresponds
to a processing layer: PHY, MAC, RLC, and PDCP layers.
An alternative, more granular definition of layers can also be
used, e.g., by dividing each layer into two sublayers, although
this does not affect the overall formulation of the problem. For
simplicity, we assume that each gNodeB can select between
two functional splits: one requiring low fronthaul capacity
(such as PDCP-RLC) and one capable of performing interfer-
ence mitigation (such as MAC-PHY or C-RAN). In addition,
we consider that those gNodeBs implementing the latter split
(centralized split) are able to fully cancel the interference they
cause to one another, whereas this is not possible with the
former (distributed) split (distributed split).

C. FSSP formulation

Given a network whose DUs can switch between the afore-
mentioned splits, the objective of the online FSSP is to find the
split option for each gNodeB such that the proportionally-fair
data rate of all UEs is maximized. If there were no restrictions,
this would be accomplished by using the centralized split for
all gNodeBs. However, the number of gNodeBs implementing
the centralized split is limited by the fronthaul network.

We use the binary variable cg to indicate whether gNodeB
g is implementing the distributed split (cg = 0) or centralized
split (cg = 1) at any given time. Therefore, the objective is
to find the optimal vector c = 〈c1, ..., cG〉. We borrow the
formulation of the online FSSP from [10]:

max
c

U∑
u=1

log (γu (c)) , (1a)

s. t.
G∑
g=1

cg ≤ C, cg ∈ {0, 1} (1b)



where, C is the maximum number of centralized gNodeBs
that the fronthaul can support and γu (c) is the downlink
spectral efficiency achieved by UE u with the split vector c.
In this case, maximizing for spectral efficiency is equivalent
to maximize for data rate, as the allocated bandwidth does not
depend on c. Note also that the objective in (1) is to maximize
the sum of the logarithm of the spectral efficiencies, which is
done to ensure proportional fairness [10].

We can express γu(c) as a function of the received signal
and interference powers by means of the Shannon’s law:

γu(c) = log2

1+
Pu,su

N +
∑
u6=su

(1− cgcsu)Pu,g

 , (2)

where, Pu,g denotes the power received by UE u from gNodeB
g, su is the index of the gNodeB serving UE u, and N is the
noise power (assumed constant for simplicity).

Equation (2) reflects the spectral efficiency for constant
parameters Pu,g and su. Nevertheless, for the online FSSP
these parameters change over time. Hence, we can consider
them as time-dependent functions: Pu,g(t) and su(t). As a
result, this time dependence is transmitted to the spectral
efficiency, which we denote as γu(c, t).

D. FSSP solving

After combining (1) and (2), we can formulate an instance
of the FSSP as a function of the powers received by each UE
in the network. As shown in [10], the FSSP is, in general, NP-
Hard, which implies that there is not an efficient (polynomial)
exact algorithm to solve it. Four algorithms are proposed in
[10] to provide near-optimal solutions to the FSSP: a genetic
algorithm, a branch-and-bound algorithm, a greedy algorithm
that centralizes those pairs of gNodeBs producing the highest
interference, and simpler greedy algorithm that centralizes the
gNodeBs with the highest number of active connected users.
It is shown that the genetic algorithm yields the best solutions
out of them. Thus, we select it for our experiments. The
summarized operation of our genetic algorithm is as follows:

1) An initial generation {c1, ..., c100} of 100 candidate
solutions is generated from random 0 − 1 vectors, the
solutions provided by the aforementioned greedy algo-
rithms, and the solution found for the previous instance.

2) The value of each solution in the population is eval-
uated according to the objective function in (1) and a
penalization value for constraint violation.

3) The best solutions are kept and mutated in order to create
the next generation. Then, the process is repeated until
no new best solution is found in 50 generations.

The population size, mutation rate, and elite count, and other
parameters are experimentally adjusted and/or set to those
values recommended in [11] for each problem instance.

Although the solutions provided by this genetic algorithm
may not be strictly optimal, in order to simplify the notation
we henceforth refer to them as optimal and denote them as
c∗. Indeed, given the complexity of the FSSP and the limited

time to solve its online version, aiming to find strictly optimal
solutions would be unrealistic.

IV. EXPERIMENTAL DESIGN

The objective of this work is to evaluate whether dynami-
cally selecting the functional split is feasible in a realistic 5G
network or, conversely, whether the scenario from which the
FSSP is defined changes too abruptly. In simple scenarios, an
analytical evaluation may be considered. However, the NP-
Hardness of the FSSP, as well as the complexity of modeling
the UE mobility and the radio propagation effects, render the
analysis intractable for all but the simplest scenarios. Owing to
this, we utilize a simulator to generate the FSSP parameters
according to a predefined scenario, solve the problem, and
record the performance and validity of the solutions.

A. Simulator description
In order to generate the time-dependent parameters Pu,g(t)

and su(t) for a realistic 5G eMBB scenario, we use a MAT-
LAB simulator with the following characteristics:

1) Simulated area: The coverage area is simulated via a
street layout that is fed to the simulator as an undirected graph.
These graphs can be generated either manually or automati-
cally from services like OpenStreetMap. For our experiments,
we use the city centers of Munich, London, Madrid, and
Chennai, which yielded areas ranging from 1.25 to 1.46 km2.

2) Cell layout: We use parameters provided in the 3GPP
dense urban model [12] to generate the cell sites. Macro cells
are arranged in a hexagonal grid with an inter-site distance of
200 meters, whereas small cells are randomly positioned.

3) Path loss model: We use the log-distance path loss
model for urban scenarios as described in [13].

4) User distribution and mobility: We follow the recom-
mendations of the 3GPP dense urban model [12] with 50%
mobile users (80% pedestrians and 20% vehicles) and 50%
static users. With the intention of simulating mobility as
realistically as possible, mobile users can only move within
streets. This creates random, temporary clusters in streets and
intersections, which may affect the problem solving.

5) Zones of interest: In order to model the popularity of
certain places, which may cause the appearance of UE clusters,
we implement a slightly modified version of the opportunities
model [14], in which the probability of a UE being attracted
to a zone of interest (ZOI) is not only affected by the amount
of population but also by a manually-defined value. This is
done to allow the manual creation of zones of interest.

B. Validity indicators
The aforementioned simulator is able to provide a time

sequence of power parameters Pu,g(t) and su(t), which in turn
can be translated to a time sequence of FSSP instances. We are
interested in knowing for how long a solution to the instance
defined at time t remains valid. The concept of time of validity
of a solution is subjective, but it can be intuitively understood
as the time during which the performance of the solution
does not differ substantially from the optimal performance. We
propose the following two indicators to reflect this intuition.
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(a) Simulated area showing the position of the UEs at time t = 0
min (red dots), t = 8 min (blue dots).

(b) Geometric mean of the spectral efficiency achieved by the three
solutions that are optimal during the interval 0 ≤ t ≤ 8. The dots
represent the instants at which γ̃(c, t) is evaluated by the simulator,
whereas the squares represent the values of γ̃∗(t) at those times.

Fig. 2: Variation of γ̃(c, t) and γ̃∗(t) in a simple scenario.

1) Delayed spectral efficiency: We evaluate the perfor-
mance of “old” optimal solutions for every new problem
instance, in order to measure the impact of delayed solution
implementations. With the intention of providing meaningful
performance units, we reformulate (1a) as follows:

U∑
u=1

log (γu (c, t)) = log

(
U∏
u=1

γu (c, t)

)
= U log(γ̃(c, t)),

(3)
where γ̃(c, t) is the geometric mean of the spectral efficiency
γu(c, t) over all UEs. Therefore, problem (1) is equivalent to
maximizing γ̃(c, t) at a given instant t. For the optimal spectral
efficiency function, we use the following notation.

γ̃∗(t) = γ̃(c∗(t), t). (4)

The usage of these functions in an example scenario is
depicted in Fig. 2. Fig. 2a shows the movement of the UEs
from time t = 0 to t = 8 minutes, as well as the position of
the DUs. In Fig. 2b, the value of γ̃(c, t) is shown over time,
with the points registered by the simulator marked as dots. It
can be seen that the spectral efficiency achieved by the blue
and red solutions decay over time, as the green solution raises.

In order to denote the spectral efficiency at time t+τ of the
solution obtained for time t, we use the following function:

γ̃t(τ) = γ̃(c∗(t), t+ τ). (5)

Note that γ̃t(τ) = γ̃∗(t) when τ = 0 and whenever c∗(t) =
c∗(t + τ). From these formulations, we propose the delayed

spectral efficiency Γt(τ) as:

Γt(τ) = γ∗
γ̃t(τ)

γ̃∗(t+ τ)
, (6)

where, γ∗ = E{γ̃∗(t)}t is used as a scaling factor, so that
Γt(τ) reaches γ∗ when γ̃t(τ) yields the optimal value. This is
done to prevent the compression of all indicators to the range
[0, 1], which would hinder the comparison of scenarios. Within
a single scenario, Γt(τ) can be treated as a random process
of index t for each value of τ , and thus its mean, variance,
range, and other statistics can be computed.

2) Time between solution changes: Apart from Γt(τ),
which measures how much a solution degrades with respect to
the optimal value, we also measure the time between changes
in the solution. That is, for each t such that c∗(t−∆τ) 6= c∗(t),
∆τ being the time increment of the simulator, we store the
following value as a realization of the random variable Θ:

Θ = inf
θ
{θ | c∗(t+ θ ·∆τ) 6= c∗(t), θ > 0}. (7)

V. SIMULATION RESULTS

In this section we evaluate the performance and time be-
tween changes of the solutions of the FSSP in three types of
scenarios. First, we consider a stationary scenario, in which
the UE density remains constant during the whole simulation.
Second, we simulate a change of UE density in accordance
to several possible region types. Finally, we study the case
in which the overall UE density remains constant but their
distribution changes between two ZOIs. The time increment
of the simulations is always ∆τ = 1 second.

A. Stationary scenario

In a stationary scenario, a constant number of UEs move
uniformly, that is, without ZOIs, within the simulated area.
This represents an area in which the population is approxi-
mately constant and uniformly distributed, such as residential
or office regions during the morning or afternoon on a week
day. This scenario serves as a baseline for the rest.

In Fig. 3 we show the delayed spectral efficiency1 for two
different UE densities: 5 times and 20 times the number of
gNodeBs in the network (according to the 3GPP dense urban
model [12], the reference value is 10 times). From these
figures, we can see that the performance of old solutions barely
degrades over time, especially when the number C of gNodeBs
that can be centralized is large. We can also see that, the larger
the number of UEs, the less degradation in the old solutions.
This is a consequence of the law of large numbers: the more
UEs, the closer the scenario is to a static scenario of uniformly
distributed UEs. In conclusion, in this scenario old solutions
converge to an spectral efficiency that is between 85% and
95% that of the optimal ones.

In Fig. 4, the cumulative distribution functions (CDF) of the
times between changes in the solutions for multiple uniform
scenarios are shown. We can see that, although the delayed

1The range of spectral efficiencies shown in these figures may seem lower
than expected for 5G. This is because Γt(τ) is a geometric average, thus it
is biased towards low values.



(a) U = 5 ·G (5 UEs per gNodeB on average)

(b) U = 20 ·G (20 UEs per gNodeB on average)

Fig. 3: Evolution of E{Γt(τ)}t for the stationary scenario. The
lower and upper dashed lines represent the 2.5th- and 97.5th-
percentiles, respectively, so that 95% of the values of Γt(τ)
are contained in the shaded area.

Fig. 4: Time between solution changes for a uniform scenario.

spectral efficiency seems to suggest that this scenario is mainly
static, solutions do change frequently, being very unlikely that
the same optimal solution is kept for more than 60 s.

B. Tide scenario

In a tide scenario, the number of UEs increases from a
valley to a peak value (or vice-versa) while roaming uniformly
over the considered area. This reflects the tidal effect that is
observed in residential, business, and transport regions in the
early morning or late afternoon hours. Accordingly, we set
the initial and final UE densities, along with the duration of
the simulations, for four different region types as described in
[15]. These parameters are shown in Table I.

In Fig. 5 we show the delayed spectral efficiency for these
regions. It can be seen that the spectral efficiency of all regions,
decays in approximately the same way as in the stationary
scenario. This suggests that the performance of solutions are
not severely affected by changes in the UE density.

Fig. 6 depicts the CDFs of the time between changes in
the solutions for the multiple regions in a tide scenario. These

Region type Initial U Final U Simulation time T

Residential 1.7 ·G 11.7 ·G 4 hours
Office 0.8 ·G 7.5 ·G 4 hours
Transport 0.1 ·G 4.2 ·G 2 hours
Entertainment 0.8 ·G 6.7 ·G 4 hours

TABLE I: Simulation parameters for different tide scenarios.

Fig. 5: Evolution of E{Γt(τ)}t for the tide scenario, for U =
10 · G and C = 0.4 · G. The lower and upper dashed lines
represent the 2.5th- and 97.5th-percentiles, respectively, so that
95% of the values of Γt(τ) are contained in the shaded area.

distributions are similar to one another and show once again
that solutions tend to change rapidly. In over 90% of the cases,
a solution change occurred in less than 15 seconds.

C. Event scenario

In the event scenario, a constant number of UEs move from
being distributed around an initial ZOI to being distributed
around a final ZOI. This represents the internal movement of
UEs within a coverage area that includes more than one region
type (such as UEs moving from a residential to a business
region), or the movement of UEs as they gather to attend an
entertainment event.

In Fig. 7, we show the delayed spectral efficiency for
the event scenario, given randomly positioned initial and a
final ZOIs with an attraction radius of 100 m. We evaluate
three different transition speeds: the attraction between ZOIs
changes continuously within 30, 60, and 120 minutes. We
can see that the delayed spectral efficiency stays high for a
longer time compared to the previous scenarios, which may
seem counter-intuitive. This is because the UEs tend to be
clustered when they move between two ZOIs, which allows
for a more effective interference cancellation. Conversely, the
delayed spectral efficiency does not converge quickly to a
low value, but it keeps decreasing even after 15 minutes,
reaching, on average, less than 70% of the optimal geometric
spectral efficiency at that point. This is indeed expected, as
old solutions optimize for disappearing UE clusters.

Fig. 8 shows the CDF of the time between changes in the
solution for this scenario. Solutions last slightly longer than
those of the previous scenarios, although the probability of a
solution holding for longer than 30 seconds is below 5%.

VI. CONCLUSION

Adapting the functional split in 5G networks is a promis-
ing strategy to improve interference mitigation and, hence,



Fig. 6: Time between solution changes for a tide scenario, for
U = 10 ·G and C = 0.4 ·G.

Fig. 7: Evolution of E{Γt(τ)}t for the event scenario, for U =
10 · G and C = 0.4G. The lower and upper dashed lines
represent the 2.5th- and 97.5th-percentiles, respectively, so that
95% of the values of Γt(τ) are contained in the shaded area.

increase user data rates. However, the variability of mobile
scenarios may render a dynamic adaptation useless, as the
performance of a solution may have changed too much by
the time it is put into operation.

In this work, we study the influence of this variability
on the dynamics of the optimal functional split. We show
that the optimal functional split changes frequently over time,
even when UEs are distributed and moving uniformly over
the considered area. Indeed, the mean time between solution
changes is below 10 seconds for all simulated scenarios.

Nonetheless, the swiftness in the change of solutions does
not imply that the performance of previous solutions decays
rapidly. For the stationary and tide scenarios, it is observed
that the delayed spectral efficiency drops quickly, reaching its
lowest point in approximately 5 minutes, but the final spectral
efficiency is between 85% and 95% of the optimal value. For
the case of UEs moving between two clusters, the spectral
efficiency achieved by old solutions decays more slowly than
in the other scenarios, but it steadily decreases over time,
reaching, on average, less than 70% of the optimal geometric
spectral efficiency after 15 minutes.
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