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We are driven by self-interest, it is necessary to

survive. But we need wise self-interest that is gen-

erous and co-operative, taking others’ interests into

account.
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Abstract

Autonomous Driving counts as one of the current largest technological challenges. Its

breakthrough reveals a huge potential to increase the safety, efficiency, and comfort of

daily transportation. The main source to achieve these properties is the possibility of

sharing driving intentions through wireless inter-vehicle communication. Such a setup is

a natural way to share the large computational load for making vehicle-network-wide op-

timized decisions and thus coordinate vehicles in a distributed manner. Furthermore, it

paves the way to find more efficient solutions to manage traffic flow, currently tackled

using traffic lights, signs, and rules. Computing control decisions for highly dynamic and

uncertain environments in a distributed autonomous car setting is a challenging and un-

solved problem. It requires a meaningful distribution of a large-scale control problem to

fulfill application-specific requirements, such as safety, real-time compatibility, and pri-

vacy. The induced unreliability through the wireless inter-vehicle communication poses an

additional challenge for the distributed control system, which must be considered during

the algorithm development phase.

This thesis addresses the question of distributed control design in a multi-vehicle context

using optimization-based control methods. It covers the control design process from mod-

eling multi-vehicle coordination problems through algorithm design to testing methods for

multiple autonomous vehicles. Thereby, requirements from real applications are considered

that take into account limited information sharing and real-time computation capabilities.

Furthermore, a suitable decomposition between on-board vehicle computations supported

by central coordination decisions leading to close-to-optimal results is discussed.

The contributions of the thesis are twofold. First, it presents an iterative distribution

method of a large constrained coordination problem. The problem is decomposed into local

dynamical control optimizations with any-time feasibility guarantee of the iterations and

decoupled integer decisions for vehicle ordering. Thereby, the distribution complies with

safety conditions, while limiting the amount and type of information exchanged between

vehicles plays a crucial role to fulfill applicability requirements. Second, an implementation

approach for the above discussed multi-vehicle problems is presented on the use case auto-

mated valet parking. The implementation is embedded in an automated test platform to

efficiently validate these problems, where relevant scenarios and corner cases can be tested

in simulation with increased speed. The pure virtual tests are extended with mixed-reality

testing, which contains a real vehicle, and enables additional validation of the proposed

algorithms.
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Zusammenfassung

Autonomes Fahren gilt als eine der aktuell größten technologischen Herausforderungen.

Sein Durchbruch birgt ein hohes Potenzial, um die Sicherheit, die Effizienz und den Kom-

fort im Straßenverkehr zu erhöhen. Eine wichtige Grundlage dafür ist, Fahrabsichten

durch drahtlose Kommunikation zwischen den Fahrzeugen zu übermitteln. Dadurch wird

es möglich die hohe Rechenlast von netzwerkweit optimierten Entscheidungen zu verteilen

und so die Fahrzeuge zu koordinieren. Darüber hinaus ebnet es den Weg für einen effizi-

enteren Verkehrsfluss, was derzeit durch Ampeln, Verkehrszeichen und -regeln beeinflusst

wird. Die Berechnung von Regelungsentscheidungen für hochdynamische und unsichere

Umgebungen mit autonomen Fahrzeugen ist ein anspruchsvolles und ungelöstes Problem.

Es erfordert eine sinnvolle Aufteilung eines großskaligen Regelungsproblems, um anwen-

dungsspezifische Anforderungen wie Sicherheit, Echtzeitkompatibilität und Datenschutz

zu erfüllen. Die aus der drahtlosen Kommunikation zwischen den Fahrzeugen resultierende

Unzuverlässigkeit, stellt eine zusätzliche Herausforderung für die verteilte Regelung dar,

welche bei der Algorithmenentwicklung berücksichtigt werden muss.

Diese Arbeit befasst sich mit der Fragestellung des verteilten Regelungsentwurfs im

Multi-Fahrzeug-Kontext unter Verwendung optimierungsbasierter Regelungsmethoden. Sie

deckt den Reglerentwurfsprozess von der Modellierung von Multi- Fahrzeug- Koordina-

tionsproblemen über den Algorithmenentwurf bis hin zu Testverfahren für Multi-Fahr-

zeugszenarien ab. Dabei werden Anforderungen aus realen Anwendungen berücksichtigt,

die den begrenzten Informationsaustausch und die Echtzeit- Berechnungsmöglichkeiten

berücksichtigen. Darüber hinaus wird eine geeignete Dekomposition der fahrzeuginternen

Berechnungen hergeleitet, welche durch zentrale Koordinationsentscheidungen unterstützt

wird und dadurch zu nahezu optimalen Ergebnissen führt.

Die Arbeit liefert zwei wissenschaftliche Beiträge. Erstens wird eine iterative Methode zur

Verteilung eines umfangreichen Koordinationsproblems behandelt. Dieses Problem wird in

lokale Optimierungsprobleme bezüglich der Fahrzeugdynamiken mit Lösungsgarantie für

jeden Iterationsschritt und kombinatorischen Entscheidungen für die Fahrzeugreihenfol-

ge aufgeteilt. Dabei müssen Sicherheitesanforderungen erfüllt werden, während zugleich

die Limitierung der zwischen den Fahrzeugen ausgetauschten Informationen eine entschei-

dende Rolle spielt, um die Anforderungen an die Anwendbarkeit und die Privatsphäre

zu erfüllen. Zweitens wird ein Implementierungsansatz für die oben diskutierten Multi-

Fahrzeug-Probleme am Anwendungsfall von automatisiertem Valet-Parken vorgestellt. Die

Implementierung ist in eine automatisierte Testplattform eingebettet, um diese Probleme

effizient zu validieren. Dadurch können relevante Szenarien in der Simulation schneller als

in der Realität getestet werden können. Darüber hinaus werden die rein virtuellen Tests um

Mixed-Reality-Tests erweitert, die ein reales Fahrzeug enthalten und somit eine zusätzliche

und realitätsnahe Validierung der diskutierten Algorithmen ermöglichen.
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1

Introduction

Autonomous driving is considered to be among the most challenging technical develop-

ments after the first crewed moon landing. Its promising advantages prompt all major

automakers, suppliers, and tech-giants to invest in this field. Autonomous vehicles are

expected to significantly reduce the amount and severity of accidents and save many lives

from around 3,000 road fatalities in Germany, 5,000 in Japan, and almost 40,000 in the US

in 2016 [Wor18]. Besides the safety argument, the increased efficiency of automated ve-

hicles will contribute to smoother traffic flows, reducing congestion in dense metropolitan

areas and leading to reduced energy consumption. Finally, increased passenger comfort

and stress relief are important boosters for advancements in the automated vehicle segment

[SKBB+18].

Currently available advanced driver assistant systems (ADAS) in serial production ve-

hicles are the first step toward fully autonomous driving. However, the human driver is

still fully accountable and has to take over the system as a fall-back option at any time.

Known examples are adaptive cruise control, emergency braking, lane-keeping or change

assistance, automatic parking, and pedestrian protection systems, to name a few from a

long list. These systems are classified as Level 1 and Level 21 systems, according to the

SAE (society of automotive engineers) classification of autonomous driving levels [Soc16].

First systems with conditional and high automation (Level 3 and Level 4), such as traffic

jam assist, highway assist, and automated valet parking, are expected to enter the market

shortly [ERT19].

Automated vehicles’ connectivity is an essential feature to contribute to the safety,

efficiency, and comfort. Data exchange through vehicle-to-vehicle (V2V) or vehicle-to-

infrastructure (V2I) communication supports vehicles in their decision-making such that

1The SAE levels indicate the degree of automation ranging from Level 0 ‘only passive driver support’ to

Level 5 ‘fully autonomous driving without a required driver interaction in all possible scenarios’.
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smarter actions can be performed compared to isolated vehicles. Potential content of

shared data ranges from static information such as semantic maps, dynamically updated

maps , through cooperative perception systems, to cooperative driving maneuvers. The

latter describes the case where vehicles share real-time trajectory information to enable

efficient coordination of a vehicle cluster. The infrastructure support levels for automated

driving (ISAD) suggest a possible classification of shared information content [ERT19].

While current serial production vehicles’ connectivity mainly enhances comfort features

such as dynamic congestion avoidance or free parking spot information, recently also safety

systems start using out-of-vehicle information. These will warn the driver in unexpected

safety-critical situations such as accidents on a highway or behind a curve. The used com-

munication technology builds on either the dedicated short-range communication (DSRC)

based on the IEEE 802.11p protocol [JD08] or the 3GPP LTE standard [MSMCP+09].

A major drawback of these communication technologies is the limited bandwidth, which

becomes a bottleneck if many vehicles interact. The mentioned protocols are thus mainly

suitable for particular and seldom safety warning broadcasts. However, the recently es-

tablished 5G communication technology is a promising candidate for increased vehicle

interaction [IEE17]. Its high throughput, long-range, high reliability, and low latency

might pave the way to exchange real-time trajectory information in V2V or V2I scenarios.

Given this background, there is a need for new network control methods that coun-

teract a significant decrease in its effectiveness and, most of all, avoid safety incidents if

communication dropouts occur in cooperative vehicle maneuvers [EKM19]. All in all, the

development of such control systems will play a key role in future cooperative autonomous

vehicle scenarios.

This thesis aims at deriving control strategies suitable for distributed cooperative driving

scenarios. Figure 1.1 illustrates an exemplary cooperative scenario with V2V and V2I

communication.

Methods and developments in this thesis are presented in the light of autonomous cars.

Thus, the term multi-vehicle coordination refers to connected and automated automobiles

and their coordination on roads, i.e., intersections, parking areas, lane merging situations,

etc. While the presented strategies are applicable to any transportation or logistic appli-

cation, the functional requirements and assumptions throughout the thesis are tailored to

the field of connected and autonomous cars.

Similar problem settings, such as in cooperative autonomous driving, can be applied

to logistic warehouse robots, often referred to as automated guided vehicles (AGVs)

[LADK06]. Here, multiple robot platforms solve designated tasks, such as transporting

goods, while relying on each other’s cooperative decisions to avoid collisions and allocate

shared resources. An alternative application could be coordinated aircraft surface taxi-

ing, which describes the airplanes’ process of moving between their park position and

the runway [BJ07; JHM+10]. This process requires safe and efficient coordination in a

multi-vehicle setup. Each stop-and-go action of an aircraft poses a significant energy con-

sumption. Certainly, safety violations can lead to dangerous and costly damages. Also,

the coordination of vessels suggests a similar problem setup where collision free distributed

trajectory computation methods are investigated [Zhe16; FNKAM18].
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Figure 1.1: Exemplary autonomous and cooperative driving scenario2.

1.1 Challenges and Requirements in Cooperative

Autonomous Driving

This section discusses important challenges in the software development of autonomous

driving functions and resulting requirements for distributed control design. The introduced

categories will be used throughout the thesis to classify and discuss related work and

presented methodologies.

Safety The foremost goal - and maybe the biggest challenge - in developing autonomous

vehicles is to guarantee their safe functioning with sufficient confidence. Safety must be

reflected in all levels of the autonomous driving algorithms. In this thesis, we focus on

the challenge of finding feasible solutions in the space of involved decision-makers for

distributed multi-vehicle scenarios. In this context, feasibility refers to safe solutions such

that inter-vehicle collisions are avoided while traffic flow is ensured.

Scalability A distributed algorithmic implementation, with safety and privacy-related

decisions computed in each vehicle locally, is preferred over centralized architectures. This

requires control laws, which are computable on automotive hardware, and scalable such

that a large number of vehicles can be considered in coordination scenarios.

Validation and Implementation The challenge of validating a safe and reliable func-

tionality of conventional automobiles is mainly ensured through extensive software-in-

2Figure adapted from https://upload.wikimedia.org/wikipedia/commons/a/a5/

The_intersection_of_North_Bridge_Road_and_Rochor_Road._February_2019.jpg,

accessed Dec, 19 2020.
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the-loop (SiL), hardware-in-the-loop (HiL), and real-world vehicle testing. However, the

amount of required test kilometers to guarantee autonomous vehicles’ safety is far beyond

the practicability with state of the art validation methods. Therefore, the development of

suitable virtual test systems and test scenarios is under investigation to accomplish the

safety argumentation within a feasible time horizon. Thus, proposing suitable implementa-

tion strategies becomes relevant, particularly if a fleet of connected and automated vehicles

running a distributed coordination algorithm is considered. For an efficient validation pro-

cess, it is required to ensure tested scenarios’ reproducibility and a seamless adjustment of

implemented algorithms and scenarios.

Efficiency Autonomous vehicles are expected to increase transportation systems’ ef-

ficiency through smoother driving maneuvers with better predictions than conventional

human-driven cars. This counts in particular for connected automated vehicles as they

can share intentions and react with efficient plans to other vehicles’ decisions. Different

vehicles will have different interests, and local vehicle interests might differ from global

traffic coordination objectives. The challenge is to find solutions, which result in a mean-

ingful trade-off between actors in a coordination scenario. Efficiency has to be considered

for several coordination layers. Particularly, a reduced energy consumption for individual

vehicles, and a high vehicle throughput from a traffic network perspective.

Cooperation Autonomous vehicles have to be able to resolve conflicts such that dead-

locks can be avoided. In traffic situations, a deadlock means that two or more vehicles

cannot move any further without exchanging information. The challenge is to define inter-

vehicle communication such that deadlocks can be avoided in a cooperative way. In dis-

tributed control, the definition of cooperative systems commonly refers to systems with

coupled objective functions (cf. Section 2.1). For cooperative autonomous vehicles, this

should be understood in a wider context, meaning that vehicles are cooperative if they

i) follow commanded instructions from upper hierarchies and ii) share information with

other vehicles while making efforts to adjust to their decisions.

Privacy Privacy can be defined as: “Assurance that the confidentiality of, and access

to, certain information about an entity is protected” [BSBC13, p. 108]. While an entity

often refers to persons, the definition also covers vehicle-related data confidentiality, such

as algorithmic or model information. There is a confined acceptance to disclose certain,

e.g., technologically relevant, data. Considering that, in general, cooperative autonomous

driving contains vehicles from different manufacturers interacting with each other. To

achieve a cooperative behavior, it will be necessary to share information between different

vehicles. The challenge is to design coordination algorithms, which keep the amount and

type of shared information limited and appropriate.

1.2 Control for Autonomous Vehicle Coordination

This thesis deals with control strategies based on numerical optimization. The optimization

problems are characterized by a cost function that describes the systems’ interests. Ad-
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ditionally, these problems consider constraints representing system dynamics and environ-

mental limitations. Note that the formulation of constraints makes it generally impossible

to solve these problems analytically, and thus, numerical optimization is applied.

A widely used optimal control method is model predictive control (MPC). MPC pre-

dicts the future system behavior for a defined prediction horizon and is formulated as a

finite horizon optimization problem. It is repeatedly computed in each time step with

updated initial conditions to account for changing environmental conditions. The success

of MPC comes from its ability to abstract the optimization problem sufficiently to be real-

time applicable while leading to (close-to-)optimal and robust solutions with constraint

satisfaction.

In the following, we review literature dealing with control for multi-vehicle coordination

– in particular in the field of optimization-based control:

1. Related publications for the major autonomous driving use cases, i.e., vehicle pla-

tooning, merging, and intersection crossing are discussed, and their challenges are

highlighted.

2. Literature in the field of distributed MPC, which can solve multi-vehicle coordination

problems, is reviewed.

3. The state of the art of automated valet parking (AVP) systems, which is the appli-

cation use case of this thesis, is introduced, and validation strategies using virtual

testing for autonomous driving are discussed.

The related literature is assessed according to challenges and requirements formulated

in Section 1.1.

Vehicle Coordination Scenarios and Approaches

First attempts at controlling multiple autonomous vehicles were proposed in the frame of

automated highway systems [Fen70]. Thereby, forming platoons is a widely studied au-

tomation strategy, which requires longitudinal control of involved vehicles [KC11]. This can

be achieved without vehicle interaction, i.e., through decentralized control architectures,

using adaptive cruise control (ACC) systems [VE03], or with vehicle-to-vehicle communi-

cation, in a distributed fashion, called cooperative adaptive cruise control (CACC). Both

methods reveal a large potential for increasing traffic efficiency through higher vehicle

throughput and lower fuel consumption than standard highway traffic. This has been

investigated for heavy-duty vehicles using ACC [AAGJ], and highway experiments with

CACC showed the potential of doubling the vehicle throughput [RS01]. However, authors

of [VAVDV06] argue that around 60% of vehicles have to be equipped with CACC systems

to achieve traffic flow benefits and improved efficiency. The main control goal of platoon-

ing is to maintain a constant inter-vehicle distance with certain robustness [XG10] and a

stable platoon behavior, referred to as string stability [DC12]. To maximize the efficiency

of platooning while ensuring safety, the minimum safe inter-vehicle distance has to be

computed. Reachable set theory is a candidate to compute the latter, which has been pro-

posed in [GAAJT11] through the formulation of a pursuer-evader game. To achieve string
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stability, a PD control method is proposed for controlling a constant time gap [MSS+14].

Alternatively, distributed MPC can be utilized for an intuitive constraint formulation that

guarantees string stability [KAE+12], while [ZLL+16] derives a terminal constraint set,

ensuring stability for heterogeneous vehicle models and an unknown setpoint. Research

on platooning reveals important aspects of control architectures and concepts for vehicle

interaction of multi-vehicle coordination. However, in platooning problems, inter-vehicle

relations are clearly defined, which is not the case for general coordination scenarios.

Therefore, an extension is a merging scenario, where a moving platoon opens a gap

in which one or several vehicles from a neighboring lane can merge into. Commonly,

inter-vehicle communication between an existing platoon and the merging vehicle(s) is

utilized [UST99; LH03; LTSH04]. Besides designing a safe and stabilizing control law,

the merging maneuvers require a decision about the position of the gap to be opened.

To make this decision in an effective and optimized way, authors of [Ath68] formulate a

cost function and design a linear quadratic regulator (LQR). Alternatively, a cooperative

MPC formulation has been proposed by [CMK+15]. These approaches suggest solutions

to determine required sequence decision between vehicles while taking control objectives

into account for efficient solutions. However, these solutions cannot ensure applicability

and scalability for large multi-vehicle coordination problems.

The coordination of vehicles through intersections is considered one of the most challeng-

ing tasks of autonomous vehicle coordination from a control perspective. In addition to

ensuring safe inter-vehicle coordination considering vehicle dynamics, a crossing sequence

decision must be determined. Part of the intersection problem can be treated as an ex-

tension to the merging scenario. Instead of considering one vehicle merging to one lane,

multiple merging lanes assigned to multiple vehicles need to be considered for the intersec-

tion case together with additional constraints for collision avoidance at intersecting lanes.

Comprehensive summaries on intersection coordination with different control architectures

and strategies are given in [RTM16; CE15]. Dresner and Stone [DS08] presented an early

proposal to solve the intersection crossing problem. They introduce a protocol where ap-

proaching vehicles send a reservation request to an intersection manager. If the access is

granted, they cross according to the plan while resubmitting a request else. This proto-

col ensures deadlock-free crossing, but vehicle dynamics are not considered directly in the

reservation scheme. However, the latter is important to ensure the Safety requirement.

Optimal control is a frequently applied control strategy for intersection problems. It can

consider dynamic feasibility and safety guarantees through constraint formulations and

efficiency objectives through cost functions. An LQR-related control law in [MG12] ensures

a deadlock-free crossing order. The work is extended in [MG13] with collision avoidance

constraints formulated within an MPC law with softened constraints. Solving the MPC

problem with soft constraints ensures an efficient computation, which is also achieved

through analytic solutions of Hamiltonian functions in [ZMC16]. Nevertheless, the Safety

requirement cannot be guaranteed by these approaches. Hard constraints in optimal control

problems, to formulate, for example, collision avoidance, require numerical optimization

strategies to solve the problem. However, hard constraints can cause feasibility issues

in a distributed setup. Campos et al. [CFW+14] derive a distributed MPC (DMPC)

setup for conflict resolution at intersections, which they solve sequentially between vehicles
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to achieve network-wide feasibility. Using primal decomposition, Hult et al. [HZGF16]

compute optimal intersection occupancy time-slots with a similar DMPC formulation. As

an extension, a feasibility guarantee for asynchronous information exchange is derived with

a distributed sequential quadratic programming (SQP) formulation in [ZGWF17]. These

approaches rely on iterative information exchange between vehicles, limiting the Safety

guarantees if convergence cannot be achieved timely.

To increase the throughput of an intersection area and reduce the conservatism, it has

been proposed to distinguish between several geometrical regions when designing the co-

ordination law [NRTT97; NRT98]. This is also taken into account in [KKJ17], where the

points of crossing vehicle paths serve as coordination reference. Resulting non-convex dis-

tance safety constraints are solved through semi-definite relaxations (SDR), which enable

an iteration-free and parallel computation of DMPC decisions. An introduced non-zero

velocity constraint, however, prevents the fulfillment of the Safety requirement.

The vehicle crossing sequence through the intersection area is often assumed to be pre-

defined, or heuristic solutions are used to keep optimal control problems computationally

feasible. Conversely, scheduling algorithms have been investigated to compute a sequence

decision in an upper intersection-wide management layer. For intersection scenarios, it has

been proposed to minimize the problem’s makespan, i.e., the time it takes for coordinating

all considered vehicles through the intersection area [WATEM12; BVDEG16]. In order to

maintain the computational feasibility of such central formulations, only high-level traffic

dynamics or simplified vehicle dynamics can be used for the problem formulation [LZ17;

ADV16].

For general coordination problems, extending a single intersection coordination problem

to several connected intersections is required. Some approaches can be directly extended,

such as the reservation protocol in [DS08], which is applied to a multi-intersection scenario

in [HAS11]. Alternatively, in [TBS14], a two-level approach is suggested for an intersection

network. The first level controls a local single intersection, and in the second level, the

flow between intersections in the network is optimized using information from the first

level. Furthermore, scheduling approaches can be applied to coordinate the vehicle flow

in traffic networks. Authors of [YDM11] suggest a machine scheduling formulation with

high-level traffic dynamics models. Sadraddini and Belta [SB16] also use high-level traffic

link models combined with a finite horizon MPC law to guarantee a safe coordination

behavior through the design of appropriate control invariant sets.

To conclude, it remains an open problem to propose control strategies for multi-vehicle

coordination problems that can: i) capture sufficiently detailed vehicle dynamics to ensure

Safety, ii) take the combinatoric nature of coordination problems into account to ensure

Efficiency, and iii) ensure Scalability considering large-scale coordination spaces.

Distributed MPC

Besides the above-discussed literature for coordination scenarios, we review distributed

control literature that supports the fulfillment of requirements from Section 1.1.

MPC and in particular DMPC is a widely used control method for multi-vehicle co-

ordination [ZLL+16; KK14; DM06; KSSP19; ZMC16; HZG+20; QGDLFM15; KAE+12;

WLZL15; MG13]. The success of MPC is related to its trade-off between computational
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effort and (close-to-)optimal solution and the ability to consider constraints in the opti-

mization formulation, which is particularly important for ensuring the safety of vehicle

coordination problems. The predictive nature of MPC plays an important role in multi-

vehicle coordination.

A possible method of using MPC for multi-vehicle coordination is to couple cost func-

tions between agents to achieve a desired formation [DM06]. Pure coupling in the cost

functions, however, cannot guarantee inter-vehicle collision avoidance. Therefore, a brake-

safe distance can be formulated as constraints in the MPC formulation with decoupled

local control problems [QGDLFM15]. While such decentralized setups ensure Safety, they

do not fulfill the Cooperation requirement.

Therefore, it is beneficial to introduce inter-vehicle communication, i.e., a distributed

control setup. Still, it is challenging for constraint coupled distributed systems to en-

sure network-wide feasibility of optimization problems [KK14]. A commonly used method

to solve this issue is robust MPC (RMPC), which takes the worst-case actions of neigh-

boring agents into account when computing a local control solution. This enables the

use of RMPC both in decentralized (without inter-vehicle communication) and in dis-

tributed (with inter-vehicle communication) setups. Richards and How [RH04] ensure

vehicle collision avoidance with feasible optimization problems through sequential com-

putations. Their decentralized RMPC problem models decoupled vehicle dynamics with

coupling constraints. Coupled dynamics and coupling constraints are assumed in [FS12],

where an RMPC law ensures feasibility with neighbor-to-neighbor communication, i.e., dis-

tributed RMPC. Schildbach et al. [SSB16] suggest an RMPC law for collision avoidance of

an autonomous vehicle, which accounts for possible maneuvers of manually driven vehicles

in an intersection scenario. The main drawback of RMPC solutions is that they tend to

deliver conservative solutions as they assume worst-case maneuvers of other participants,

resulting in a significant loss of Efficiency.

Different from RMPC, many distributed algorithms rely on an iterative process to de-

termine a solution. This is commonly implemented through inter-sampling iterations or,

in other words, nested iterations. It means that information is exchanged several times

between two consecutive sampling time steps. Iterative methods have the ability to find

closer-to-optimal, i.e., less conservative solutions compared to non-iterative approaches.

For multi-vehicle scenarios, where inter-sampling iterations mean an information exchange

via a wireless communication channel, it is essential to limit the number of iterations

to ensure real-time applicability. Reasons are that the nature of wireless communica-

tion induces transmission delays and package drop-outs to the networked control system.

Doan [DKDS11] proposes an iterative constraint tightening method to ensure feasibility for

constraint-coupled DMPC within a finite number of iteration. The method is applicable in

hierarchical control architectures. For a similar architecture, Steward et al. [SVR+10] dis-

cuss a Jacobi overrelaxation (JOR) algorithm for input constraint DMPC problems, which

is feasible after each iteration and converges to an optimal solution. This approach has

been extended in [DDKDS17] to general constraint optimization problems with optimality

guarantee if constraints remain inactive. While these are promising control candidates,

they are not directly applicable to trajectory computation of multi-vehicle problems. Fur-

thermore, they require a centralized update step, which limits their Scalability.
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In summary, DMPC solutions have a large potential for multi-vehicle coordination prob-

lems, particularly in ensuring the Safety and Cooperation requirements. However, the

discussed approaches make either too conservative decisions to ensure Safety or too few

restrictions on the vehicle interaction, which can pose a Safety risk, lead to a loss of Privacy

or Scalability.

Automated Valet Parking and Validation Methodologies

Automated valet parking (AVP) is expected to be among the first commercially available

Level 4 autonomous driving application. Reasons are that i) vehicles move at low speed,

which helps to provide safety guarantees, ii) vehicles operate in a limited area (parking

lots), which can be well observed by infrastructure sensors, and iii) the uncertainty of the

environment can be mitigated, e.g., by blocking out pedestrians.

A survey of AVP is provided in [BNKZ17]. Within the project V-Charge, AVP strategies

with close-to-market sensors (camera and ultrasonic) were developed [Sch+16], and [MC13]

proposes a software and control architecture. In both studies, the single-vehicle case is

considered. [Kle+16] presents a fully integrated AVP demonstrator with an electric vehicle

navigating in a multi-story parking garage and automatically docking to a charging station.

A major benefit of AVP is the reduction of consumed parking space, which has been

investigated in [TFBW15] using k-stack models for space optimization, and k-deques with

an upper-bounded number of shunting operations in [BQN+17]. The main focus of AVP

literature is the implementation of a single vehicle or the parking spot organization. The

consideration of multi-vehicle coordination in parking environments is still a rarely studied

topic. Exceptions are discussed in the following.

Strategies for the coordination of multiple vehicles have been suggested in [KK17].

The authors propose a trajectory planning algorithm based on mixed-integer-linear-

programming (MILP), where the optimization problem chooses between a set of trajecto-

ries taking other vehicles’ decisions into account. Real-time computability and, therefore,

the requirement of Scalability cannot be guaranteed. Differently, in [LJM19], a Jacobi-

based DMPC with cost coupling considering lateral motions between neighboring vehicles

is discussed. The cost coupling enables an efficient computation, and mixed-traffic can be

considered through an observer unit in an upper hierarchical layer. Pure cost coupling,

however, cannot ensure safe vehicle coordination. Moreover, a hierarchical coordination

method is discussed in [SZB20]. Collisions and deadlocks are avoided through a parallel

and decentralized control law, in which each vehicle reserves its reachable area in a shared

occupancy grid map. While the control laws can be computed in parallel, the decentralized

implementation lacks the guarantee of Efficiency, and the update of a shared map limits

the Scalability of the coordination procedure.

To pave the way for autonomous driving toward application, providing appropriate vir-

tual testing strategies is essential due to the unfeasible amount of required test kilometers

[KP16; Wac17; SSSS17]. Virtual testing outperforms field testing for early development

phases as it has the potential to deliver scalable, safe, low-cost, and reproducible test

results. The survey on virtual testing in [SZS+15] highlights the difference between test-

ing for advanced driver assistance systems (ADAS) and autonomous driving (AD) and

the taxonomy of virtual testing. Additionally, [HWLZ16] surveys different simulators,
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testing methods, and test system architectures. An essential part of test architectures is

high fidelity simulation environments, which can be implemented as co-simulation plat-

forms connecting an environment simulation with vehicle dynamics simulation modules

[SHA+18; SBA19]. Most efforts for AD simulations consider the case with a single vehicle

in the loop (ViL). An open challenge is to enable a seamless Implementation and Validation

by such simulation platforms once they are extended toward multi-ViL. This argumenta-

tion excludes large-scale traffic simulators, which apply too coarse vehicle models for AVP

scenarios.

To bridge the gap from purely virtual testing toward real-word testing, mixed testing

strategies have been investigated. Some parts are tested with real hardware, while the

remaining setup is tested in simulators. This enables reproducibility of specific test sce-

narios. For example, testing a real communication system and real radar sensors together

with remaining system parts in a virtual environment is exploited in [LHX+18]. It ensures

safe testing, as discussed by Zofka et al. [ZEF+18]. They augment a virtual lidar scan

with real obstacle information such as pedestrians, which move in reality in an empty en-

vironment. Considering multiple vehicles, mixed-reality testing enables the Scalability of

the control algorithm validation. Authors of [QAZ+10] and [GDGK14] implemented a real

test vehicle moving on a proving-ground and is projected as an avatar in a virtual scenario

where it potentially interacts with other simulated vehicles. An open problem remains

to ensure the tested scenarios’ reproducibility and seamless integration to different test

scenarios and environments.

To summarize, both the application of multi-vehicle approaches for AVP and validation

methodologies for multi-vehicle setups are rarely investigated fields. In AVP applications,

proposed coordination methods either do not comply with the Safety requirement or cannot

ensure Scalability. It is an open problem how to efficiently and seamlessly validate multi-

vehicle scenarios using virtual validation.

1.3 Contributions and Outline

This thesis aims at developing optimization-based control strategies for vehicle coordina-

tion, considering a multi-vehicle setup with communication capabilities. The algorithms

shall be real-time applicable and fulfill requirements discussed in Section 1.1 and, therefore,

close important gaps in the literature discussed in the previous section.

The main contributions can be summarized as follows. The presented cooperative tra-

jectory computation method results in feasible, and thus safe, coordination scenarios at

anytime of the inter-vehicle communication process. The coordination problem is decom-

posed into a trajectory computation method and a vehicle sequence computation. Both

layers are coupled to account for the problems’ feasibility and the trade-off between each

layer’s efficiency interests. An implementation strategy for an efficient validation of multi-

vehicle scenarios is presented and evaluated.

The thesis is split into two parts. Part I (Chapter 2 - Chapter 4) discusses the method-

ological design of distributed coordination algorithms that ensure a safe and cooperative

vehicle interaction to compute privacy-preserving, efficient, and scalable solutions. To test

such methods appropriately, Part II (Chapter 5 - Chapter 6 ) suggests a implementation
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Part I: Methodology

Part II: Application and Evaluation
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Figure 1.2: Relation between chapters.

and validation setup for multi-vehicle algorithms in the context of automated valet park-

ing. In the following, we summarize each chapter’s content and contribution. Figure 1.2

illustrates the relation between the chapters.

Chapter 2: Model and Architecture Setting

In this chapter, control strategies and a coordination model suitable for multi-vehicle sce-

narios are introduced. Model predictive control (MPC) and distributed control classifica-

tions are discussed. The coordination model relies on defining conflict zones, representing

areas in the coordination space where vehicles can enter from different directions and thus

are potential collision regions. We specify a hierarchical architecture for computing the

presented vehicle coordination problem. An upper-level is responsible for global control de-

cisions, while on a lower-level, optimization problems are distributed between local vehicle

units.

Models in this chapter have been partially published in [KMM+20] and have been sub-

mitted in [KMEH20]. The coordination and vehicle motion models, as well as the system

architecture, have been partially published in [KMEH18; KMEH19; KDM+20; KMK+20].

Chapter 3: Distributed Trajectory Computation

This chapter discusses an algorithm for distributed trajectory negotiation. Each vehicle

locally computes its desired trajectory taking decisions from surrounding vehicles into ac-

count. The proposed algorithm presents a holistic multi-vehicle coordination approach

with rear-end and side collision avoidance for vehicles on a road network. The iterative

negotiation process based on distributed model predictive control (DMPC) with Jacobi

updates, which we refer to as distributed Jacobi over-relaxation (DJOR), is any-time fea-

sible, i.e., can be interrupted after each iteration with a guaranteed network-wide feasible
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solution. It scales independently of the number of participating vehicles and iterates fully

distributed. At the same time, it is independent of a vehicle’s prediction horizon length,

and safe maneuvers are prioritized over the coordination process.

The contribution of this chapter is based on publications [KMEH19; KMEH20].

Chapter 4: Vehicle Sequence Computation

This chapter presents a methodology to compute the vehicle sequence at conflicting areas

where a combinatoric sequence decision is required. To this end, the overall multi-vehicle

coordination problem is decomposed in quadratic programs (QP) (discussed in Chapter 3),

and an integer program (IP). A resource-constrained project scheduling problem (RCPSP)

is discussed as a concrete instance of the IP. It allows a seamless consideration of multi-

vehicle coordination constraints and finds deadlock-free precedence relations. The method-

ology in this chapter is discussed with application to the use case of automated intersection

crossing. Simulations show the combined performance of the distributed control negotia-

tion from Chapter 3 and the proposed scheduling strategy.

The results presented in this chapter have been partly published in [KMK+20] and have

been submitted for publication [KMEH20].

Chapter 5: Integration Platform

This chapter provides an architecture and the integration of a virtual validation framework

for distributed control applications on the example of automated valet parking (AVP). It

can be seamlessly integrated into an automated test system. The modular integration of the

components into the simulation framework with defacto standard formats and interfaces

enables the exchange of modules and contributes to future seamless test platforms.

We propose extending the virtual test-platform for multi-vehicle simulation with a real

vehicle in the loop (ViL), which replaces one of the virtual vehicles. With the resulting

mixed-reality tests, one can conclude the correctness of models and algorithmic behavior

incorporating a real vehicle. Thus, it enables the validation of the multi-vehicle behavior

with reasonable time and cost effort.

This chapter is based on methods from [KMM+20; KDM+20].

Chapter 6: Experimental Assesment

This chapter illustrates the evaluation results of the integrated test platform introduced

in Chapter 5 with applied algorithmic methodologies introduced in Chapters 3 and 4.

The additional introduction of layered path planning and lateral steering control laws

completes the control procedure and the distributed coordination control strategies from

previous chapters. Consequently, safe-by-design coordination of multiple autonomous ve-

hicles in parking environments is achieved, and a distributed computation of the planning

and control functions is enabled. The chapter outlines the modularity of the proposed

coordination concept and models. The algorithmic performance is evaluated and discussed

in comparison with different coordination strategies.

This chapter is based on results from [KMM+20; KDM+20].
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Distributed Coordination

Methodology
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2

Control Architecture and Model Set-

ting

The field of distributed optimal control suggests a natural solution for the problem of

coordinating multiple vehicles. This is because, in a multi-vehicle setup, several vehicles

have computation and communication capabilities, which enables the formation of a global

inter-vehicle network. Within such a network, safe and efficient vehicle trajectories can be

found by solving constrained optimization problems.

An essential challenge to apply such distributed control strategies to multi-vehicle coordi-

nation is the formulation of appropriate models. In particular, vehicle models, coordination

models, and architectures must be defined in a modular way and a suitable level of details

to balance applicability and validity for real systems.

Modeling multi-vehicle coordination can be tackled on different levels. A common dis-

tinction is macroscopic and microscopic coordination problems. High-level traffic control

deals traditionally with macroscopic properties such as traffic density, average speed, and

traffic flow. Traffic control aims to improve the flow or throughput in a considered traffic

network, such as a city district or highway network. Thus, the goal is optimizing global

(traffic) interests in large areas while possibly neglecting single vehicles’ interests in the

network. Frequently applied models are the Lighthill-Whitham-Richards (LWR), [LW55;

Ric56], and the Payne-Whitham, [Pay71; Whi11], models.

In contrast, single vehicles are considered in microscopic models, aiming for smaller areas

such as a particular vehicle platoon. These models take each vehicle’s local interests into

account and often model the states position, velocity, and acceleration [PSSF19].

This thesis proposes a connection of the two often separately investigated fields by

deriving distributed control methods for microscopic models while taking macroscopic-

driven decisions into account.

15



2 Control Architecture and Model Setting

The models in this chapter have been introduced in [KMM+20] and [KMEH20]. Fur-

thermore, the coordination model, the vehicle motion models, and the system architecture

have been applied in [KMEH18; KMEH19; KDM+20; KMK+20; EKM+20].

Outline

Section 2.1 introduces the concept of distributed optimal control in general and the model

predictive control (MPC) framework, which is used throughout the thesis. We introduce

longitudinal vehicle motion models for local vehicle control in Section 2.2. Those models

are also a part of the multi-vehicle coordination strategy. Section 2.3 presents an intro-

duction of the coordination model concept, which serves as a baseline for the multi-vehicle

coordination scenarios. Finally, Section 2.4 discusses a control architecture description

that combines local vehicle controllers with a global control that seeks to optimize traffic

properties.

2.1 Distributed Optimal Control

This section briefly describes an general optimal control problem, the class of model predic-

tive controllers, and classifications for the distribution of these problems. Optimal control

and model predictive control notations are aligned with [RM09, Ch. 2], and the distributed

control classifications with [NNC19]. In this section, we make no claim to completeness,

but the goal is to provide the reader an overview of the used concepts and terms in the

further course of this thesis.

Optimal Control

Let an infinite horizon constrained optimal control problem be described in continuous

time τ by

min
up¨q

ż 8

0

V
`

xpτq, upτq
˘

dτ (2.1a)

s.t. 9x “ fc
`

x, u
˘

, (2.1b)

xp0q “ x0 (2.1c)
`

xpτq, upτq
˘

P Xˆ U, τ P r0,8q. (2.1d)

Here, V : Rnx`nu Ñ R describes a scalar objective function, which depends on the system

states x P Rnx and the control input vector u P Rnu with up¨q denoting its trajectory, x0

is the initial condition, X and U describe state and input constraints sets, respectively.

Ideally, one wants to determine a closed-loop control law for Problem (2.1). This can be

for example achieved with dynamic programming. However, it is usually impractical for

real applications given large state dimensions, an infinite horizon, as well as state and

input constraints in (2.1).

A commonly used method to overcome the above discussed drawbacks are model pre-

dictive controllers (MPC), which make several simplifications to determine the optimal

feedback control law of (2.1).
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2.1 Distributed Optimal Control

Model Predictive Control

First and foremost, MPC solves an open-loop optimization problem in every sampling time

step with an updated initial state for each solution. Only the first element of the open-loop

trajectory is then applied to the plant. This procedure results in an implicit control law,

considering only current measurements, rather than an offline computed closed-loop control

law for an arbitrary state. The determination of an implicit control law significantly reduces

the computational load and is one of the main drivers to make MPC practically appealing.

Additionally, an MPC optimization problem usually approximates the time continuous

differential equation (2.1b) with a discrete time difference equation. Furthermore, the

semi-infinite time interval r0,8q is replaced by a finite interval r0..M s, with M called

horizon, and a terminal condition to mimic the cut interval remainder pM,8q. These

simplifications lead to a discrete time finite horizon optimization problem of the following

form:

min
up¨q

M´1
ÿ

t“0

V
`

pxptq, uptq
˘

` V M
`

xpMq
˘

(2.2a)

s.t. xpt` 1q “ f
`

xptq, uptq
˘

, t P r0..M´1s (2.2b)

xp0q “ x0 (2.2c)
`

xptq, uptq
˘

P Xˆ U, t P r0..M´1s (2.2d)

xpMq P XM , (2.2e)

where t is the discrete time, the time difference equation (2.2b) represents the dynamical

system model. V Mp¨q is a terminal cost term, and XM describes a constraint set for the ter-

minal system states. Remaining parts are defined as in (2.1). The MPC optimization (2.2)

is then applied at each time step t in a receding horizon fashion according to Algorithm 1.

Algorithm 1 Model Predictive Control Procedure

1: clock Ð t

2: Initialization: xp0q Ð x0 Ź measure current system state

3: Computation: solve (2.2) Ź numerically solve optimization problem

4: Application: apply up0q to plant Ź apply only first control action

5: clock Ð t` 1

Figure 2.1 conceptually illustrates the predictive nature of an MPC strategy and the

applied input at the current time step.

Note that for a reasonable choice of M (dependent on computation platform) Step 3

of Algorithm 1 can be solved fast enough for real-time applications even for nonlinear

systems. Moreover, the introduction of an implicit control law in Step 4 (and the following

re-computation) induces a certain robustness against uncertainties by-design.

For a detailed discussion about MPC and its properties the interested reader is referred

to [RM09].
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Figure 2.1: Illustration of model predictive control strategy.

Remark 2.1 (Condensed MPC). The formulation of (2.2) is referred to as condensed

formulation. This implies that the decision variable solely depends on the control input

u, and state x is eliminated through expressing it as dependency of u given the dynamics

equation (2.2b). This leads to a reduced size of the optimization problem’s decision

variable but a dense Hessian matrix of the optimization problem. Alternatively, in a

non-condensed formulation, the decision variable contains both state and input vectors,

i.e., z “ px, uq. This leads to a larger decision variable but a sparse Hessian matrix, which

can be exploited by certain numerical solvers and consequently lead to a computation

speed compensation compared to a condensed formulation.

Remark 2.2 (Terminal condition). A terminal condition in the MPC formulation is

required to provide stability guarantees of the finite horizon problem. It can be achieved

by choosing the terminal constraint set to be control-invariant, i.e., a set for which a

stabilizing control law exits that keeps the system within this set. The hard constraint

set (2.2e) can either be replaced with terminal cost term V M , or co-exist. Also, in certain

cases, system stability can be guaranteed without terminal conditions if the prediction

horizon is chosen sufficiently long [PN00].

Distributed Optimization in Control

In several applications it is of interest to solve an optimal control problem in a distributed

manner. Driving reasons for this are, for example, that the control system is distributed

in nature, i.e., the system consists of entities with different locations, or the problem is

too large and requires a decomposition to ensure computational feasibility. A distributed

control problem consists of N subsystems, often referred to as agents, processors, or units,

which cooperatively solve a complex and large control task. Each control agent is as-

sumed to have local computation capability and is able to communicate with other entities.

Thereby, the term ‘cooperative’ means that each agent contributes through its local com-

putation and the communication-based information exchange to the solution of the overall

control task. In contrast, in a decentralized setup the different agents are not capable of
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Figure 2.2: Decomposition architectures for large scale control problems. Dashed lines

indicate communication flows.

communicating with other entities but solely solve a sub-problem of the overall control

task in an isolated manner. A centralized problem consists of a single master unit, which

would solve the overall global control problem. Note that each distributed and decentral

control problem could theoretically be formulated as a central problem, which is in gen-

eral not desirable or not even realizable for computational, safety, and privacy reasons.

Lastly, a hierarchical structure can be defined to be a combination of a distributed and

centralized architecture in which parts of the overall decision are commanded from a mas-

ter unit to respective distributed agents. Figure 2.2 illustrates the above discussed control

architectures.

In the sequel, we classify different problem structures, which commonly appear in large

optimization problems. Assume an optimization problem of the following form, which can

describe an overall large-scale control problem:

min
z

V pzq (2.3a)

s.t. z P C. (2.3b)

Note that an optimal control problem, such as described in (2.1) or (2.2), fit into this

formulation. Thereby, z P Rnz is the optimization variable with a large dimension nz,

V pzq : Rnz Ñ R describes the problem’s scalar objective function, and z is subject to

constraints C Ă Rnz . If an optimization problem models a naturally distributed system,

the relation between subsystems can be reflected in the problem’s structure. Following

problem structures are commonly distinguished [NNC19]:

• cost coupling

The overall objective (2.3a) reads as a sum of local costs but all depend on the global

optimization variable, i.e. V pzq “
řN
i“1 Vipzq, and the constraint set (2.3b) is shared

by all agents.

• common cost

Objective (2.3a) is the same for all agents and the constraint set is a composition of

local constraints, i.e. (2.3b) becomes z P
ŞN
i“1 Ci, where Ci is a constraint set that

refers only to the variables of a local subsystem i.

• constraint coupling

The objective (2.3a) becomes a decoupled sum of local objectives, such that V pzq “

19



2 Control Architecture and Model Setting

řN
i“1 Vipziq holds, with local optimization variables zi P Rni and dimension ni. The

constraint set (2.3b) is composed from local constraints, i.e., z P
ŞN
i“1 Ci, but the

constraints are coupled through a coupling function described by
řN
i“1 gipziq ď 0,

with gi : Rni Ñ Rnc and a number of nc coupling constraints.

The problem of multi-vehicle coordination can be interpreted as an constraint-coupled

distributed optimal control problem, because each vehicle is interested in optimizing its

local behavior, e.g., fuel consumption or arrival time, but is subjected to constraints, which

are coupled with other vehicles through sharing a common resource (road). Therefore, this

problem structure will be applied and discussed in more detail in the remainder of the

thesis. Before that, we will introduce modeling schemes for multi-vehicle coordination.

Remark 2.3 (Cooperative agents). While we use the term cooperative in a general

understanding to indicate that multiple agents contribute through local decisions to

the solution of an overall complex and distributed problem setting, in the literature, it

is sometimes also aligned to the notation of game theory. This means that agents are

cooperative if they solve a task in a common cost setting and non-cooperative if decoupled

local objectives are modeled.

2.2 Longitudinal Vehicle Motion Modeling

Autonomous vehicles often drive on defined lane structures, e.g. on a road network, in

an intersection, or in parking areas. Lateral adjustments might not be possible or not

desirable in many of such scenarios. Therefore, the multi-vehicle coordination problem

becomes a matter of coordinating the vehicles by adjusting their longitudinal trajectories.

Dynamic Model

Longitudinal vehicle dynamics can be modeled using the following differential equation

representation [Raj11, Ch. 4]:

9ppτq “ vpτq (2.4a)

9vpτq “
1

mveh

`

Ftirepτq ´ Faeropτq ´ Frollpτq ´ Fgravpτq
˘

, (2.4b)

where τ is the continuous time, ppτq and vpτq are the vehicle’s position and velocity,

respectively, mveh the vehicle mass, Ftyrepτq represents the longitudinal tire forces, Faeropτq

the aerodynamic drag forces, Frollpτq the rolling resistance, and Fgravpτq gravitational

forces. Ftirepτq moves the vehicle forward while the remaining forces are resistances. Thus,

Ftirepτq is influenced by the control input, which depends on the vehicle’s powertrain

dynamics. Powertrains can be modeled as a chain of engine dynamics, torque converter

dynamics, transmission dynamics, and lastly wheel dynamics.

It is common do distinguish between low-level and high-level controllers to overcome

the non-linearity in (2.4b) and ensure scalability. A high-level controller computes the

target velocity or acceleration of a vehicle. The low-level controllers track these targets by

computing respective powertrain commands.
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2.2 Longitudinal Vehicle Motion Modeling

Extended Kinematic Model

For high-level controllers, powertrain and vehicle dynamics (2.4) can be simplified in a

kinematic model of the form

9ppτq “ vpτq (2.5a)

9vpτq “ apτq (2.5b)

9apτq “
1

Tlow
padespτq ´ apτqq , (2.5c)

where apτq is the actual longitudinal vehicle acceleration state and adespτq is the desired

or commanded acceleration from a higher level and represents the control input. Thus,

(2.5c) accounts for low-level powertrain and vehicle dynamics with the time constant Tlow
modeling a time constant of low-level control. Note that (2.5) is a linear model which

can be handled in a computationally scalable way. Examples for low-level control units

in vehicles are adaptive cruise control (ACC) embedded control units (ECU) or electronic

power steering (EPS) ECUs. Details on the integration of high- and low-level controllers

are discussed in Chapter 5.

Kinematic Model

Often, model (2.5) is further simplified to a double-integrator model,

9ppτq “ vpτq (2.6a)

9vpτq “ apτq, (2.6b)

where the longitudinal acceleration apτq is the control input. As this model is in the same

model class as (2.5) – a linear model – we use (2.6) to derive the coordination methodologies

in the following chapters. For implementation in Part II we will then switch to the more

realistic model (2.5), what requires only minor adjustments.

Lateral Influence

In general, longitudinal vehicle motions cannot simply be separated from lateral influences

as both are coupled to each other. Different strategies take this into consideration. First,

for low speed maneuvers a longitudinal-lateral decomposition becomes valid. It is shown in

[Pol18, Ch. 4] that kinematic bicycle model for steering, i.e., lateral control with constant

speed assumption, is sufficiently accurate compared to high-fidelity driving models if

vpτq ď

d

alatmax
κpτq

, (2.7)

where vpτq is the longitudinal velocity, alatmax is the maximum lateral acceleration, and κpτq

is the driven curvature. Thereby, alatmax is the boundary value before the vehicle would loose

traction.
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Figure 2.3: Coordination Scenario.

For higher velocities the consistency of above proposed models can be ensured through

limiting the longitudinal velocity with respect to lateral forces considering a so called

friction ellipse. This enables to relate longitudinal and lateral acceleration according to

ˆ

apτq

alongmax

˙2

`

ˆ

κpτqvpτq2

alatmax

˙2

ď 1, (2.8)

with an upper bound on the longitudinal acceleration alongmax and remaining parameters as

introduced above [HZGF19].

In summary, the lateral influence on longitudinal dynamics can be neglected for either

low speed or low curvature scenarios, given by (2.7). For other scenarios longitudinal

acceleration and velocity can be constrained according to (2.8). Applying this within

linear models requires appropriate linearization strategies.

2.3 Coordination Model

Assume a set of vehicles

V “ tv1, v2, ..., vNvu, (2.9)

with Nv vehicles moving along pre-defined paths on a road network. The path of vehicle

vi P V is described by a set of NWi
discrete waypoints

Wi “
 

pp1
x, p

1
yq
T , ..., pp

NWi
x , p

NWi
y q

T
(

, (2.10)

with positions in the 2D x´ y´plane. The reference point piptq of the vehicle is assumed

to be located at the center front of the vehicle. Let πi : I Ñ R2, with interval I “ r1, NWi
s,

describe a C1-curve which connects all waypoints Wi. Furthermore, assume the following:
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2.3 Coordination Model

Assumption 2.1. Suppose that piptq P Wi, @t hold, which ensures that a path can be

perfectly tracked by a vehicle.

Figure 2.3 illustrates the coordination scenario for two vehicles, as introduced in the

following. We represent a vehicle by a rectangular bounding-box Bippiptq, Li,x, Li,yq with

parameters piptq Ă πi, which is the vehicle’s time-dependent position on its path, as well

as Li,x and Li,y are the length and width of the box, respectively. By variable t P Z` we

denote the discrete time scale. Given the path and vehicle representation, we define vehicle

vi’s distance state dni ptq with the arc-length from a curve segment of πi, such that

dni ptq “

$

’

’

&

’

’

%

ż n

m

›

›

›

πipsq

ds

›

›

›

2
ds, if m

πi
ÝÑ n

´

ż n

m

›

›

›

πipsq

ds

›

›

›

2
ds, if n

πi
ÝÑ m,

(2.11)

with πipmq “ piptq, and πipnq P Wi a target reference waypoint on the curve. Notation

m
πi
ÝÑ n means that πipmq is located before πipnq following the curve in driving direction

and vice versa for n
πi
ÝÑ m.

2.3.1 Conflict Zones

In general, collisions between vehicles are avoided if

Biptq X Bjptq “ H, @t, i, j P V , i ‰ j. (2.12)

For coordinating vehicles on a road network areas where vehicle paths intersect, merge,

and diverge are essential. This is the case at intersections, where condition (2.12) leads to

areas which can be accessed only exclusively by a single vehicle at a time. We refer to these

zones as conflict zones CZ i Ă R2, for i P I1:Ncz with a total number of conflict zones Ncz

in the coordination space. These conflict zones will serve as reference areas to guarantee a

safe multi-vehicle coordination. Let vehicle vi cross CZk before vehicle vj, then a collision

avoidance condition with regard to the vehicles’ distance states is

dbiptq ` Li,x ` dj,s ď daj ptq. (2.13)

Here, dj,s is a safety distance for vehicle vj, d
b
iptq is the distance of vehicle vi to the exit

of CZk, defined according to (2.11), with b describing the first waypoint of Wi outside of

CZk in driving direction, i.e.,

b “ min
qPI1:Nwi

q (2.14)

s.t. q̂ ď q ď NWi

ppqx, p
q
yq
T
R CZk

ppq̂x, p
q̂
yq
T
P CZk.
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Figure 2.4: Conflict zone example cases.

Similarly, daj ptq is the distance of vehicle vj to the entrance of CZk, i.e.,

a “ max
qPI1:Nwi

q (2.15)

s.t. 1 ď q ď q̂

ppqx, p
q
yq
T
R CZk

ppq̂x, p
q̂
yq
T
P CZk.

We assume the following:

Assumption 2.2. Suppose the conditions

dbiptq ` Li,x ď 0 ñ Biptq X CZk “ H

and

dai ě 0 ñ Biptq X CZk “ H

hold.

In this notation, we neglect the possibility that a vehicle enters or leaves a zone skewed.

The simplification can be compensated by adding a buffer to the length Li,x of each vehicle

vi, or by imposing to have an appropriate minimal size of CZk.

Conflict Zone Examples

Figure 2.4 illustrates different cases in which the above defined critical zone concept can

be applied for multi-vehicle coordination. Starting from the left, the first plot shows an

exemplary intersection scenario with five critical zones and possible paths leading through

the intersection area. The second plot shows an extension to a road network scenario where

the single intersection area is repeated several times. The third plot sketches a scenario in

which two vehicles are coordinated with respect to a conflict zone, as one vehicle has to

leave its own lane due to an obstacle ahead. Lastly, the right most plot shows a parking

maneuver scenario. One of the vehicles wants to park backwards. Therefore, the zone in

from of the parking bay is reserved for it.
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Remark 2.4 (Conflict zones). Conflict zones are a commonly used concept for ensuring

collision avoidance between robots [GBDLF14]. They are a powerful modeling tool for

coordinating vehicles through intersections, especially when applied with optimal control

methods, e.g., [ZMC16; HZGF16]. To increase efficiency, the distinction of several zones

in one intersection area has been proposed by [ADV16; HZGF18]. Similar to this chap-

ter, a microscopic vehicle modeling approach with conflict zones and collision avoidance

conditions for intersection crossing scenarios are discussed in [Hul19, Ch. 3].

2.3.2 Coordination Graphs

In distributed control it is common to model the relation between distributed entities by

means of graph theory. In the frame of multi-vehicle coordination it is convenient to distin-

guish two different types of graphs for describing the coordination scenario. The physical

route of vehicles in the coordination scene is described by Groute and is mainly invoked to

determine the crossing order of vehicles for a given set of critical zones. Communication

between vehicles is encoded in the graph Gcom, which determines the structure of informa-

tion exchange for the distributed control laws computing the vehicles’ trajectories. Both,

Groute and Gcom, are time-dependent graphs, as multi-vehicle coordination is a time-varying

problem with moving vehicles which can enter or leave the coordination scene. For rea-

sons of readability, we skip the notation of time dependency as the investigation of time

transient behavior is not subject of this thesis.

We define the route graph as

Groute :“ pVroute, Erouteq , (2.16)

with a set of (possibly time-varying) vertices Vroute “ tCZ1, CZ2, ...u, which contains the

conflict zones in the coordination scenario. Directed edges Eroute Ď VrouteˆVroute describe

the route for each vehicle in the scenario. Each edge is labeled with the vehicle ID whose

route is modeled with the respective edge. We allow several edges to connect the same set

of vertices, which makes Groute a directed multigraph.

The inter-vehicle communication structure is represented by

Gcom :“ pV , Ecomq , (2.17)

with a vertex set V , which is the vehicle set (2.9), and directed edges Ecom Ď V ˆ V
labeled with the conflict zone ID they are referring to. Given Gcom, a set of neighbors

Ni “ tPi,Siu, i P V is known. Neighbors can be classified as predecessor vehicles Pi and

successor vehicles Si through the direction of edges.

Finally, the relation between Groute and Gcom is given through the adjacency matrix

Aadj “ paijq
|V|ˆ|V|, with aij describing n-tuples with passed conflict zones relative to vehicle

IDs. Figure 2.5 illustrates the relation between above introduced graphs and Chapter 6

discusses an exemplary setup of them in a multi-vehicle coordination scenario.
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Figure 2.6: Distribution of the coordination problem.

2.4 Distributed Coordination Architecture

We describe a multi-vehicle coordination problem by the following constrained optimization

problem:

min
z1,...,zNv
m1,...,mNv

Nv
ÿ

i“1

Vipziq

s.t. zi P Xi ˆ Ui, i P V
Nv
ÿ

i“1

gipzi,miq ď 0, i P V

mi P Z`, i P V .

(2.18)

Thereby, zi describes a continuous optimization variable referring to a local vehicle i P V ,

which is constrained by the set Xi ˆ Ui Ă Rni with a variable dimension ni. The function

gi : Rni ˆ ZÑ Rnc models inter-vehicle coupling constraints, which depends on zi and

integer variables mi. The dimension of coupling constraints is defined by nc. Continuous

variables zi refer to local vehicle dynamics, while the integer variables mi mirror the com-

binatoric nature of a multi-vehicle coordination problem. The sum of objective functions

Vi : Rni Ñ R, which shall be minimized, represents the respective vehicles’ interests.

Figure 2.6 illustrates how the overall optimization problem (2.18) is decomposed into
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two different distributed computation problems. The hierarchical architecture contains

local optimization problems - one for each vehicle - in the lower layer. They are computed

in a distributed fashion while local vehicle interests and safety constraints are considered

for a provided integer decision. This layer refers to microscopic models and is covered in

Chapter 3.

In contrast, the upper layer is responsible for computing the integer solution of problem

(2.18) distributed from the remaining problem in the lower layer. It represents the interests

from a global traffic perspective, i.e., from a macroscopic point of view. A solution of it

is introduced in Chapter 4. Note that both layers may operate on different time scales, as

problems have different complexity, sizes, and necessity of updating results.

2.5 Summary and Discussion

In this chapter, control methods and models that are suitable for multi-vehicle coordination

scenarios are formulated. The proposed models enable to use longitudinal vehicle dynamics,

which can be controlled by linear methods. This contributes to a scalable implementation

of the distributed coordination problem. The introduction of the conflict zone framework

to model the coordination space enables the derivation of safety definitions for inter-vehicle

coordination scenarios. Lastly, the proposed hierarchically distributed control architecture

serves as the baseline for developed control concepts, which bridge global traffic interests

with local vehicle interests.

The validity of linear longitudinal vehicle dynamics is limited to low vehicle speeds. A

(non-linear) coupling to the lateral dynamics has to be considered to apply to more general

scenarios. This is taken into account by the constraint (2.8), limiting the longitudinal

acceleration and velocity with respect to lateral dynamics. Alternatively, it is possible

to constrain the lateral steering capability, as in (2.7), which is proposed in [PANLF18]

for an MPC framework. Using these relations in the proposed control setting requires a

linearization method.

Problem (2.18) describes the multi-vehicle coordination problem as an optimization

problem with coupling constraints between locally separated sub-units. The following

chapters introduce distributed solution approaches to this problem according to the archi-

tecture given in Figure 2.6.
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The trajectory of an automated vehicle shall be computed in real-time and it must ensure

a safe driving decision. At the same time, it shall provide efficient and comfortable maneu-

vers. In the case of multiple automated vehicles, the decision of a single-vehicle depends

on the other vehicles’ decisions. This interdependency makes it challenging to ensure safe

trajectory decisions for each local vehicle, and to still ensure efficient and comfortable ma-

neuvers. The fact that vehicles have to communicate via a wireless channel to exchange

information, e.g., with vehicle-to-everything (V2X) communication, poses an additional

challenge to the system design. A crucial property of multi-vehicle coordination for real-

world implementations is to guarantee safety not only for nominal driving scenarios but

also in the case of unforeseen events. The challenge is that even if a brake-safe distance

is considered, a violation of a coupling-constraint due to an unforeseen event can lead to

infeasibility of the optimization problems.

Safety is commonly ensured through the formulation of constraint optimization prob-

lems, while predictive control methods target achieving efficient maneuvers. Model predic-

tive control (MPC) is a powerful trade-off methodology for computing trajectories in real-

time. It enables the combined consideration of dynamical vehicle and safety constraints,

as well as global coordination performance interests, and has therefore been widely applied

in the literature, e.g., [ZLL+16; KK14; DM06].

In a multi-vehicle setting, MPC can either be used in a decentralized manner

[QGDLFM15], i.e., without neighbor communication, or in a distributed setup using robust

control formulations [FS12]. While these two approaches consume little or no communica-

tion effort, they tend to result in conservative solutions. Iterative negotiation approaches,

which exchange information between vehicles several times during one sampling time step,

can be applied to achieve increased efficiency. It can be realized by sequential computations

[CFW+14; RH04] or parallel iterations [ZGWF17; KMEH18]. This, in turn, can lead to

high utilization of the communication channel with the risk of losing real-time guarantees.
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In this chapter, trajectories are computed in an iterative and distributed MPC setup

while solutions are guaranteed to fulfill constraints after each iteration step. This is re-

ferred to as any-time feasibility. It means that iterations can be stopped after each iteration

with a resulting safe solution. This preserves real-time properties while in case of enough

communication resources, further iterations lead to improved, i.e., more efficient, trajec-

tories. The chapter covers the lower negotiation of local vehicle interests, as illustrated in

Figure 2.6. The methodology is extended such that it can deal with emerging unplanned

events. This enables the consideration of long prediction horizons, leading to efficient

solutions. Moreover, the vehicles can safely react to uncertainties that have not been con-

sidered in the nominal planning phase. Overall, the approach prioritizes safety reactions,

such as emergency braking, over the nominal driving behavior.

The chapter is based on publications [KMEH19; KMEH20].

Outline

At the beginning of the chapter, collision avoidance conditions are stated, which must be

met during the distributed trajectory computation process in Section 3.1. This is followed

by a decomposition of the central coordination problem into local optimization problems

in Section 3.2. Section 3.3 introduces the distributed algorithm and its properties, which

is extended toward uncertainty consideration in Section 3.4. Lastly, the chapter provides

numerical results in Section 3.5 and concluding remarks in Section 3.6.

3.1 Collision Avoidance Conditions

Recapitulating the collision avoidance condition from Section 2 leads to areas, which can

only be accessed by a single vehicle. They are labeled CZ i with a unique identifier i. In

relation to these zones, we introduced the inequality condition (2.13), which guarantees

collision avoidance between vehicles sharing a common CZ i.
Given the fact that vehicles move on pre-defined lanes on a road network, the validity

of (2.13) can be specified in more details if we are able to distinguish between different

maneuvers. Therefore, we define the following cases, distinguishing the directions in which

vehicles vi and vj approach CZk (in-lane) and in which they leave it (out-lane):

• c1: from same in-lane to same out-lane,

• c2: from same in-lane to different out-lane,

• c3: from different in-lane to same out-lane,

• c4: from different in-lane to different out-lane.

Figure 2.3 illustrates Case c3 as an example. Let tbi be the time-instant just after vehicle

vi leaves CZk (exit-time), such that

dbipτ
b
i q “ ´Li,x and tbi “

Q τ bi
Ts

U

(3.1)

30



3.2 Control Model Decomposition

holds, where τ bi P R`0 is the exact solution in continuous time and Ts the discrete sampling

time. This enables a time-dependent validity definition according to cases c1-c4 such that

(2.13) holds for

c1: @t (3.2a)

c2: t ă tbi (3.2b)

c3: t ě tbi _ daj ptq ą dj,s for t ă tbi (3.2c)

c4: daj ptq ą dj,s for t ă tbi . (3.2d)

3.2 Control Model Decomposition

In this section, the centralized optimization problem is introduced as a mixed integer

quadratic program (MIQP). Thereafter, the centralized problem will be decomposed into

a distributed MPC setup with local quadratic programming (QP) problems and a given

vehicle crossing sequence. For a single vehicle, we assume the time-discrete dynamics to

be:

ˆ

di
vi

˙`

loomoon

xipt`1q

“

ˆ

1 ´Ts
0 1

˙

looooomooooon

AiPR2ˆ2

ˆ

di
vi

˙

loomoon

xiptq

`

ˆ

´T 2
s

Ts

˙

looomooon

BiPR2ˆ1

ai
loomoon

uiptq

, (3.3)

with distance state di “ d
NWi
i (according to (2.11)) representing the distance to the end

of vehicle vi’s path with a number of NWi
discrete waypoints, vi its velocity, and ai its

acceleration input.

3.2.1 Centralized MPC

The centralized system is achieved by concatenating individual vehicle models, such that

we achieve the system and input matrix

A “ diag
`

A1, A2, . . . , ANv

˘

, B “ diag
`

B1, B2, . . . , BNv

˘

, (3.4)

and the state and input vectors

xptq “
`

xT1 ptq, . . . , x
T
Nv
ptq

˘T
and uptq “

`

uT1 ptq, . . . , u
T
Nv
ptq

˘T
, (3.5)
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respectively, with Nv vehicles in the scenario. Now, we formulate the centralized coordi-

nation task as a finite horizon optimization problem

V ˚ “ min
x̄,ū,m

Nv
ÿ

i“1

Vi
`

xiptq, uiptq
˘

(3.6a)

s.t.

xpk ` 1|tq “ Axpk|tq `Bupk|tq k P It:t`M´1 (3.6b)

xpt|tq “ xptq (3.6c)

xpk|tq P X k P It`1:t`M (3.6d)

upk|tq P U k P It:t`M´1 (3.6e)

daj pk|tq ´ dj,s ě 0

#

c3,c4

pi, jq P Tm
(3.6f)

dbipk|tq ` Li,x ` dj,s ´ d
a
j pk|tq ď 0

#

c1-c3

pi, jq P Tm
(3.6g)

m P I1:|T |, (3.6h)

where the optimization variables are defined by

x̄ “
`

xpt` 1|tqT , ..., xpt`M |tqT
˘

, (3.7)

and

ū “
`

upt|tqT , ..., upt`M ´ 1|tqT
˘

, (3.8)

for prediction horizon M . The objective function (3.6a) is the sum of the local vehicle

objectives

Vi
`

xiptq, uiptq
˘

“
›

›xipM |tq ´ x
ref
i

›

›

2

Pi
`

t`M´1
ÿ

k“t

´

›

›xipk|tq ´ x
ref
i

›

›

2

Qipkq
`
›

›uipk|tq
›

›

2

Ripkq

¯

, (3.9)

with constant state references xrefi and positive semi-definite weighting matrices Pi P S0

and Qipkq P S2ˆ2
0 , as well as a positive definite input weighting matrix Ripkq P S. No-

tation xpk|tq describes the prediction of the state vector for time step k computed at time

t, and similar for the control input u. Constraint (3.6b) is the central model containing all

individual vehicle dynamics, (3.6c) is the initial state, X and U are polyhedral constraint

sets. Let T be a given tree in which a node is defined by a tuple pi, jq describing the order

of two vehicles (vi before vj) and each path from the root to a leaf node, Tm, describes a

feasible crossing order through a conflict zone, i.e.,

Tm “
`

pi, jq, pj, kq, pk, lq, ...
˘

, i, j, k, l P V . (3.10)

Thus, optimizing over the integer variable m determines the best tree path with respect to

(3.6a). Let, with a slight abuse of notation, |T | be the number of paths (feasible crossing

orders) of T for a given scenario.

Distance constraints (3.6f)–(3.6g) are valid for certain time intervals which are defined

according to Cases c1-c4 and listed in Table 3.1. Figure 3.1 illustrates the feasible di´ dj
configuration space according to these distance constraints for a crossing tuple pi, jq.
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3.2 Control Model Decomposition

Table 3.1: Time intervals for distance constraints.

k P ... (3.6g),(3.13i) (3.13j) (3.6f) (3.13h)

c1: It`1:t`M It`1:t`M - -

c2: It`1:tbi
It`1:tbj

- -

c3: Itbi :t`M Itbj :t`M It`1:tbi
It`1:tbj

c4: - - It`1:tbi
It`1:tbj

djptq

diptq

CZk

Li,x`dj,sc1

d
bi “

0

d
ai
“

0

dbj“0

daj“0

vi vj

djptq

diptq

d
bi “

0

CZk

d
ai
“

0

dbj“0

daj“0

Li,x`dj,sc2

Li,x

vi vj

djptq

diptq

CZk

Li,x`dj,s

c3
dj,s

d
bi “

0

d
ai
“

0

dbj“0

daj“0

vi
vj

djptq

diptq

CZk

c4

Li,x

dj,s

d
bi “

0

d
ai
“

0

dbj“0

daj“0

vi
vj

Figure 3.1: Top row: feasible di ´ dj configuration space (blue shaded area) of coordina-

tion problem (3.6) for crossing order pi, jq. Bottom row: exemplary vehicle

constellation at an intersection.

Note that if a case distinction is not possible, application of Case c1 leads always to

a safe vehicle coordination scenario. Moreover, the above optimization problem (3.6) is

formulated for a single conflict zone for simplicity of notation. The consideration of several

zones, however, can be obtained by extending the problem with several decision trees T ,

one for each zone.

As (3.6a) is quadratic, (3.6b)–(3.6g) are linear, and (3.6h) in an integer, (3.6) is a

mixed integer quadratic program (MIQP). There are evident reasons why this problem is

impractical to be solved online in real applications. First, the problem is computationally

hard to solve, as scalability cannot be guaranteed through the central formulation, and the

integer decision introduces a further computational burden. Additionally, the time intervals

in Table 3.1 depend implicitly on the solution of (3.6) that requires the computation of a

multi-level optimization problem. Solving such problems exactly is infeasible on real-time

platforms [HZGF18]. Second, (3.6) requires central knowledge of all individual vehicle

models, what is undesirable considering the Privacy of vehicle data requirement. Third,

trajectories are safety-relevant decisions, which are preferred to be computed on-board of a

vehicle in order to guarantee a safe behavior even in the case of communication disruptions.

To overcome the drawbacks discussed above, we propose a decomposition of (3.6) into

local optimization problems solved separately by each individual vehicle which is connected,

and sharing resulting information with neighboring vehicles. The decomposition is designed
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3 Distributed Trajectory Computation

to achieve computationally feasible sub-problems, where vehicle models are kept private

and trajectories can be verified locally to fulfill necessary Safety criteria.

3.2.2 Distributed MPC

The diagonal structure of (3.4) immediately suggests a decomposition of (3.6a) and (3.6b)

into local sub-problems. However, constraints (3.6f)–(3.6g) contain inter-vehicle rela-

tions. To decompose these, we repeat respective coupling constraints in each coupled

local sub-system and move the integer decision (3.6h) to the central infrastructure node.

A scheduling-based method where m is computed in an approximate way given vehicles’

trajectories is introduced in Chapter 4. In the following, we will assume a given integer

decision m, i.e., a path from the root to a leaf node of T and thus the order in which ve-

hicles cross CZk. The crossing order can be represented with a directed graph, as defined

in Subsection 2.3.2,

Gcom “ pV , Ecomq , (3.11)

where the set of vehicles V are the vertices and directed edges pi, jq P Ecom, with i, j P V ,

meaning that vehicle vi crosses CZk before vehicle vj. Given Gcom, we define the set of

neighbors of vehicle vi,

Ni “ tPi,Siu, (3.12)

where the set of predecessors Pi contains nodes connected via incoming edges to node i P V
and similarly successors Si nodes from outgoing edges.

Now, (3.6) can be decomposed into local quadratic programming (QP) problems with

coupling constraints. Thus, a local QP problem of vehicle vi has the form

V ˚i “ min
x̄i,ūi

Vipxiptq, uiptqq (3.13a)

s.t.

xipk`1|tq “ Aixipk|tq `Biuipk|tq k P It:t`M´1 (3.13b)

xipt|tq “ xiptq (3.13c)

xipk|tq P Xi k P It`1:t`M (3.13d)

uipk|tq P Ui k P It:t`M´1 (3.13e)

xipt`M |tq P XM (3.13f)

uipt`M ´ 1|tq P UM , (3.13g)

dai pk|tq ´ di,s ě 0 c3,c4, j P Pi (3.13h)

dbipk|tq ` Li,x ` dj,s ´ d
a
j pk|tq ď 0 c1-c3, j P Si (3.13i)

dbjpk|tq ` Lj,x ` di,s ´ d
a
i pk|tq ď 0 c1-c3, j P Pi, (3.13j)

with local optimization variables

x̄i “
`

xipt` 1|tqT , ..., xipt`M |tq
T
˘

, (3.14)

ūi “
`

uipt|tq, ..., uipt`M ´ 1|tq
˘

, (3.15)

and local polyhedral constraint sets (3.13d) and (3.13e). The definition of terminal con-

straints (3.13f) and (3.13g) will be discussed in Subsection 3.3.2.
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Figure 3.2: Distributed architecture and signal flow.

To solve decomposition (3.13) efficiently, two remaining challenges need to be taken into

account. The coupling constraints (3.13i)-(3.13j) are shared resources, i.e., vehicle vi opti-

mizes the distance state with respect to information from vehicle vj and vice versa. Solving

such problems in parallel requires awareness to guarantee feasibility of the distributed sys-

tem. Additionally, the distance constraints are still implicit functions of the time vehicles

exit CZk. In the following section we present a solution to guarantee feasibility for the

shared constraints while conducting parallel computations. We apply an approximation to

remove the implicit time dependency in order to provide computationally viable problems.

3.3 Iterative Jacobi Negotiation

Every vehicle runs a local MPC unit, where in each iteration step the local distributed finite

horizon QP problem (3.13) is solved. Figure 3.2 illustrates the distributed computation

architecture. The MPC law locally determines its control input and shares the optimization

result with neighboring vehicles. In the next time step, (3.13) is solved again with updated

state measurements in a receding horizon fashion.

In the following, we present the detailed distributed MPC computation in form of a dis-

tributed Jacobi over-relaxation (DJOR) algorithm related to [BT89, Ch. 2.4]. To simplify

notation, we state the equivalent problem of (3.13) as

z˚i “ argmin
zi

Vi pziq (3.16a)

s.t. Aizi ´ bi ď 0 (3.16b)

Adijzi ` Cdijzj ´ bdij ď 0, j P Ni, (3.16c)

with zi “ px̄i, ūiq, constraints (3.13b)-(3.13h) collected in (3.16b), and coupling constraints

(3.13i)-(3.13j) in (3.16c). Observe that coupling between system variables occurs only in
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coupling constraints and only in bilateral form, i.e., a constraint between system variable

of the vehicle vi and a neighboring vehicle vj. Similarly, the centralized problem can be

written as

pz˚,m˚
q “ argmin

z,m

Nv
ÿ

i“1

Vi pziq (3.17a)

s.t. Az ´ b ď 0 (3.17b)

Admz ´ bdm ď 0 (3.17c)

m P I1:|T |, (3.17d)

for (3.6) with z “ px̄, ūq, (3.17b) representing (3.6b)–(3.6e), and (3.17c) containing (3.6f)–

(3.6g).

3.3.1 Distributed Over-Relaxation Algorithm

The DJOR algorithm iteratively negotiates between vehicles vi P V towards a solution,

while an interruption after each iteration results in a feasible solution. Therefore, let z
plq
i

be the solution of the l-th inter-sampling iteration between t and t` 1, ẑi a feasible initial

candidate at the beginning of iterations, and z˚i the result of a local optimization problem

(3.16). Algorithm 2 summarizes the DJOR procedure, in which the update variable ωi

Algorithm 2 Distributed Jacobi Over-Relaxation

1: clock Ð t

2: Initialization:

3: l Ð 0

4: @i P V : receive z
plq
j “ ẑj, j P Ni

5: repeat

6: Computation:

7: @i P V in parallel: compute z˚i

ˆ

!

z
plq
j

)

jPNi

˙

8: determine next iterate with ωi ě 0, ωi ` ωj “ 1:

z
pl`1q
i “ ωiz

˚
i

ˆ

!

z
plq
j

)

jPNi

˙

` p1´ ωiqz
plq
i (3.18)

9: Synchronization:

10: share z
pl`1q
i with Vehicles j P Ni

11: l Ð l ` 1

12: until l ą lmax _ Vi

´

z
pl´1q
i

¯

´ Vi

´

z
plq
i

¯

ă γ @i P V
13: apply uipt|tq, @i P V to local vehicle systems

14: clock Ð t` 1

defines the degree of over-relaxation and γ a termination condition. The signal flow is

illustrated in Figure 3.2. Solving the optimization problems and the iterative updates can

be conducted fully distributed with trajectory exchange between neighboring vehicles after
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each iteration. To illustrate this, compare (3.18) with

zpl`1q
`

ωi, z
˚
i , z

plq
˘

, i P V , ωi ě 0,
Nv
ÿ

i“1

ωi “ 1, (3.19)

which states the structure of the standard Jacobi over-relaxation (JOR) update step. It

requires central knowledge of z and depends on the total number of vehicles Nv.

Remark 3.1 (Over-relaxation concept). Let two vehicles, vi and vj, negotiate about

their inter-vehicle distance dinter P R during a platooning scenario. Figure 3.3 illustrates

the negotiation process example with a safety distance constraint dj,s. Then, dinter is

a shared resource between both vehicles since longitudinal control actions from both

vehicles influence this resource. This inter-vehicle distance is a convex space as it lies in

R. At iteration step l both vehicles know the other vehicle’s state and state predictions.

Now, both vehicles make a new control decision in parallel for iteration step l ` 1 while

based on the given state knowledge from step l they decide how much of the shared

resource shall be consumed by each vehicle. Due to the parallelism, it cannot be ensured

that this limited resource is distributed between the two vehicles without exceeding the

resource amount. Thus, the convex update (3.18) between each vehicle’s decision from

step l and l ` 1 is applied, respectively, which ensures that the resource cannot be

overused with ωi ` ωj “ 1 and ωi, ωj ě 0.

An interesting aspect of this concept is that decisions can be made without knowing the

other vehicle’s dynamics. This supports the Privacy requirement stated in Chapter 1,

since there is no need to exchange vehicle models. Moreover, Safety with respect to the

shared resource dinter is guaranteed as it can never be overused, Scalability is ensured as

(3.18) updates only local variables, and the iterative procedure targets at an increased

Efficiency of the resulting trajectory through negotiating about the consumption of the

shared resource dinter.

Originally, the iterative Jacobi over-relaxation (JOR) algorithm has been introduced in

[BT89, Ch. 2.4], which discusses the important property that each iteration results in

a network-wide feasible solution. A JOR decomposition for input-constraint distributed

MPC problems is discussed in [SVR+10], which has been extended towards general

constraint optimization problems in [DDKDS17]. An essential novelty in this thesis is

that the update step can be conducted fully distributed, while in the above-discussed

references, a global update step is required.

In the next subsection, we present the construction of initial candidates ẑj, an essential

point to guarantee feasibility. Thereafter, we discuss the properties feasibility, scalability,

and convergence of Algorithm 2.

3.3.2 Feasible Initial Guess

At the beginning of a time step, each vehicle suggests a feasible initial candidate ẑi for

the inter-sampling iterations, which will be shared with its neighboring vehicles vj P Ni.
In general, it is difficult to determine candidates which preserve feasibility among the

complete distributed system. This is because, in the given setup, local vehicles do not
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vivj dj,sdinter

ωjdinter ωidinter
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vivj dj,s

worst case
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9vi ă 09vj ą 0

Figure 3.3: Illustration of the over-relaxation concept. Vehicles vi and vj negotiate in

parallel about the shared distance space dinter. The shared space cannot be

overused and a minimum safety distance dj,s has to be ensured.

have information about their neighbors’ dynamical capabilities. To resolve this, authors

of [SVR+10; DDKDS17] propose using the system’s steady-state as a terminal constraint

since they handle stabilizing problems such as spring-damper systems. In order to be

applicable in a multi-vehicle scenario, this idea requires adjustments. Therefore, we use a

stand-still condition as terminal constraints (3.13f) and (3.13g), such that

XM
“
 

xi|vi “ 0
(

Ă Xi and UM
“ 0 Ă Ui. (3.20)

Now, we suggest the following initial candidate for the upcoming time step t` 1

ẑip: |t`1q “
´

z
plq
i pt`1: t`M |tq,

`

x
1T
i , u

1T
i

˘

¯

, (3.21)

with the last negotiation result z
plq
i from time step t and the stand-still extension

`

x
1T
i , u

1T
i

˘

“
`

dipt`M |tq, 0, 0
˘

.

However, it is not the actual target to bring all vehicles to stand-still. To this end, the

terminal condition will be solely used to guarantee system-wide feasibility, while stand-still

is not desired to be applied during a nominal coordination scenario. For that reason, we

propose the following method.

3.3.3 Performance Compensation

In order to emulate the behavior of a trajectory which is not required to come to a full stop,

time-dependent objective weights can be applied. Therefore, we introduce two planning

phases within the horizon length M of a local MPC problem (3.13). The first one is

referred to as nominal-planning, for 1 ď k ă kbrake, and the second as planning-to-full-

stop, for kbrake ď k ďM . Accordingly, we define the weights

Qipkq
“

Ripkq
‰

“

#

Qno
i

“

Rno
i

‰

for 1 ď k ă kbrake

0 for kbrake ď k ďM,
(3.22)

where Qno
i P S2ˆ2

0 is a constant weight for the nominal-planning phase and similar for

Rno
i P S. 0 describes a zero matrix with appropriate dimensions. The point kbrake is
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the prediction step from which onward the trajectory shall be planned to a full-stop of

vehicle vi, which is achieved by applying (3.22) in the local MPC objectives (3.13a). The

trajectories are re-computed in each sampling time step in a receding horizon fashion, and

only the first sample will be tracked by the respective vehicle. Thus, the goal is to move the

planning-to-full-stop phase as far back in the prediction horizon as possible, and therefore

achieve an actual driving behavior which is not affected by the planning-to-full-stop phase.

In what follows, we find the latest possible kbrake, i.e.,

kbrake “ max K, (3.23)

with

K “
 

k̃ | Duipk|tq “ u˚i pk|tq, k P I0:k̃´1,^

uipk|tq P Ui, k P Ik̃:M´1, such that (3.13b)´ (3.13g),with k̃ P I1:M´1

(

.

Here, u˚i pk|tq results from the solution of problem (3.13a) - (3.13c).

Let the backward reach-set

XA
i pt

r
i q “

 

xipt
r
i |tq | Dzipk|tq, k P Ir:M , such that (3.13b)´ (3.13g)

(

(3.24)

be the set of admissible states at time step tri for which a trajectory exists that fulfills the

problem constraints. Now, we apply the following method to find kbrake:

Algorithm 3 Brake point kbrake

1: Compute the desired trajectory zdesi , with respective state values xdesi , by solving

(3.13) without (3.13f) and (3.13g). Set tri ÐM´1.

2: Compute the backward reach-set XA
i pt

r
i q. If xdesi pt

r
i |tq P XA

i pt
r
i q, then kbrake “ tri and

continue with Step 3, else tri Ð tri´1 and repeat Step 2.

3: Compute (3.13) using (3.22) and including (3.13f) as well as (3.13g). Apply the result

in the Jacobi negotiation scheme of Algorithm 2.

Figure 3.4 illustrates the process in Algorithm 3 for an exemplary 2-state system.

An essential point is the computation of XA
i prq in Step 2 of Algorithm 3. To

solve this, we apply the set-projection-algorithm presented in [KG87]. The resulting

admissible set XA
i pt

r
i q is a polyhedral of the form XA

i “
 

xipt
r
i |tq|Exipt

r
i |tq ` ξ ď 0

(

,

E P Rniqˆ2 and ξ P Rniq , as we assume an LTI model with linear constraints. Most parts

of the set-projection-algorithm are computationally simple. However, the resulting matrix

E, describing the set XA
i with niq inequality constraints is a redundant representation, i.e.,

there exists a XA1

i “ txipt
r
i |tq|E

1xipt
r
i |tq ` ξ

1 ď 0u, E 1 P Rn1iqˆ2 and ξ1 P Rn1iq , with n1iq ă niq,

such that XA
i “ XA1

i . To keep the computational burden low during the recursive determi-

nation of XA
i pt

r
i q, it is required to find a XA1

i representing the minimal, or close-to-minimal

representation. Efficient methods for that exist, as it is a well studied problem in the

field of linear programming [PS10]. A possible method, which we apply, is presented in

[BBR+87].
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xdesi pt1q

XA
i pt1q

xdesi pt2q

XA
i pt2q

xdesi pt3q

XA
i pt3q

xdesi pt4q

XA
i pt4q

Figure 3.4: Example of a backward reach-set computation for a 2-state system. A refer-

ence trajectory is shown by the solid black line with respective states at time

steps t1 ´ t4. t4 is the first time step for which the the state lies inside the

backward reachable set XA
1 and thus a braking maneuver has to start at latest

at kbrake “ t4.
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Figure 3.5: Velocity state of example trajectory comparing solutions with no terminal state,

proposed method of terminal-state-less emulation, and terminal state without

time-varying objective weights.

For the computation of kbrake, we assume that a vehicle’s trajectory can be planned to

full-stop during its horizon length, what results in a solution guarantee for Algorithm 3.

Assumption 3.1. The horizon M of vehicle vi’s MPC problem (3.13) is large enough to

guarantee Xi Ď XA
i p1q.

Lemma 3.1. Let the system be described by dynamics (3.3) and the applied MPC control

problem by (3.13). Let Assumption 3.1 hold. Then, Algorithm 3 terminates for problem

(3.13) with a solution for kbrake.

Proof. Termination is guaranteed if Step 3 is reached. Step 2 is always reached after Step 1

and it continues to Step 3 if state xdesi pr|tq P XA
i prq, which is at the latest ensured for r “ 1

due to Assumption 3.1.

Figure 3.5 exemplary illustrates the difference between planning methods by plotting

the predicted velocity state of a vehicle vi. The solid line represents a solution without the
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3.3 Iterative Jacobi Negotiation

terminal condition of coming to full-stop at the end of the prediction horizon. This would

be the case in the centralized solution (3.6) extracted for a single vehicle. The method

proposed in Algorithm 3 and plotted with the dashed line, shows a similar behavior to

the terminal-state-less solution until kbrake. When using a terminal state without the

emulation procedure, however, the resulting trajectory shows a significant divergence from

the respective solution without terminal constraint (solid-dotted line).

3.3.4 Algorithmic Properties

First, we provide algorithmic properties for Algorithm 2 with respect to Case c1 where

vehicles arrive at a conflict zone CZk from the same in-lane and also leave it on the same

out-lane. We will, thereafter, generalize the results to Cases c2–c4 in Subsection 3.3.5.

Feasibility The following paragraph shows that each iteration in Algorithm 2 results in

a recursive feasible solution for local vehicle problems (3.13).

Lemma 3.2. Let Case c1 (Section 3.1) hold. Let the system be described by dynamics

(3.3) and the applied MPC optimization problem by (3.16). Given a feasible initial solution

z
p0q
i and feasible candidates z

plq
j , the iterations (3.18) are locally feasible for vehicle vi.

Proof. To prove this lemma, it is utilized that a convex combination of two vectors in

a convex set remains within this set. As (3.16) is a QP problem, there exists a unique

solution. z
plq
j , l ě 0 are feasible for the problem (by assumption) and thus z˚i pz

plq
j q is a

feasible (and optimal) solution. Sets Xi and Ui define polyhedral constraints with convex

subsets XM Ă Xi and UM Ă Ui. Consequently, (3.16b) and (3.16c) are linear constraint

sets which are also convex in zj. A convex combination of z˚i pz
p0q
j q and z

p0q
i , conducted

in (3.18), remains in the set defined by (3.16b) and (3.16c) and is thus again a feasible

solution to (3.16). The feasibility guarantee for l ą 0 follows by induction.

In Lemma 3.2 we showed that the inter-sampling iterations of the DJOR algorithm lead

to feasible solutions for local problems vi. Next, we derive a guarantee that the solutions

are also feasible for neighboring vehicles vj.

Lemma 3.3. Let Case c1 (Section 3.1) hold. Let the system be described by dynamics

(3.3) and the applied MPC optimization problem by (3.16). Given feasible candidates z
plq
i

and z
plq
j at iteration step l, the solution of (3.18) is feasible for neighbor Vehicles j P Ni.

Proof. This proof makes use of the fact that decisions from neighboring subsystems (vi
and vj) are coupled through the global property ωi ` ωj “ 1. By assumption, we are

given globally feasible solution vectors z
plq
i , i P I1:Nv . Based on these solutions, suppose all

subsystems conducted a local optimization and compute the combination in (3.18). Select
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any vehicle vi and any coupled constraint in (3.16c) for vj P Ni, then it holds that

˜

z
pl`1q
i

z
pl`1q
j

¸

“

˜

ωiz
˚
i ` p1´ ωiqz

plq
i

ωjz
˚
j ` p1´ ωjqz

plq
j

¸

“

˜

ωiz
˚
i ` ωjz

plq
i

ωjz
˚
j ` ωiz

plq
j

¸

“ ωi

˜

z˚i
z
plq
j

¸

` ωj

ˆ

z
plq
i

z˚j

˙

.

Both solution vectors in the last line are feasible with respect to the coupled constraint.

This is because in the first vector z˚i is feasible as argued in Lemma 3.2 and z
plq
j by assump-

tion, and similar for the second vector. Due to linearity of the constraints with respect to

zj and zi, the convex combination with ωi ` ωj “ 1 is also a feasible solution for (3.16c).

This completes the proof.

Algorithm 2 iterates in between two sampling time steps. At the beginning of each

iteration it requires initial candidates which are feasible solutions for the local optimization

problems (3.16). Therefore, the following lemma proves feasibility for a time step transition

t` 1 by using trajectory candidates (3.21).

Lemma 3.4. Let Case c1 (Section 3.1) hold. Let the system be described by dynamics (3.3)

and the applied MPC optimization problem by (3.16). The trajectory candidate ẑip: |t` 1q

from (3.21) is feasible for (3.16) at iteration l “ 0 and time step t` 1.

Proof. The idea of this proof is that at time t all vehicles plan to reach a full-stop. Thus,

in time step t` 1 the plan (prediction trajectory) to remain at full-stop will be a feasible

candidate solution.

The last iteration of time step t, z
plq
i pk|tq with k P It:t`M was feasible according to

Lemma 3.2 and Lemma 3.3. Thus, z
plq
i pk|tq with k P It`1:t`M will be feasible at time step

t`1 as model uncertainty is neglected. It holds that zipt`M |tq P XMˆUM . Furthermore,

the final element of ẑip: |t ` 1q, px
1T
i , u

1T
i q P XM ˆ UM , extends the stand-still condition.

This concludes that (3.21) is feasible for (3.16).

For Case c1 we make the following assumption on the inter-vehicle distance to simplify

presentation:

Assumption 3.2. If vehicle vj is driving on the same lane behind vehicle vi, they are

traveling with an inter-vehicle distance dinterpk|tq ą dj,s ` d
b
i ´ d

a
i , k P It:t`M .

Definition 3.1. An MPC problem computed with (3.13) is recursive feasible if

xipk|tq P Xi, k P It:t`M ^ xipt`M |tq P XM
^ uipk|tq P Ui, k P It:t`M´1

ñ Duipk|t`1q P Ui, k P It`1:t`M such that

xipk|t`1q P Xi, k P It`1:t`M`1 ^ xipt`1`M |t`1q P XM .
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t t` 1

Xi

XM

Xi

XM
Dui P Ui

xi
xi

Figure 3.6: Recursive feasibility. There exists a control input ui that keeps the trajectory

inside the state constraint set Xi and the terminal state inside the terminal set

XM at the consecutive time step.

Figure 3.6 illustrates the Definition 3.1. Note that the trajectory can have a varying

shape as long as the state constraints Xi and the terminal condition xipt`1`M |t`1q P XM

are fulfilled.

Theorem 3.1. Let Case c1 (Section 3.1) hold. Let the system be described by dynamics

(3.3) and the applied MPC optimization problems by (3.16). Let Assumption 3.2 hold.

Then, each iteration of Algorithm 2 leads to a recursive feasible solution, according to

Definition 3.1, for all vehicles vi in Gcom.

Proof. This proof argues that combining findings from Lemmas 3.2–3.4 results in recursive

feasibility.

From Assumption 3.2 we know that there exist feasible solutions z
p0q
i and z

p0q
j for vi, vj P

V . Following inter-sampling iterations remain feasible for local problems according to

Lemma 3.2 together with Lemma 3.3. Moreover, following the reasoning in Lemma 3.4,

feasible trajectories exist for time step transitions tÑ t` 1. Consequently, Definition 3.1

is fulfilled for all vehicles vi P V with problems (3.16) interacting according to Algorithm 2.

Scalability The standard JOR algorithm requires a centralized update step (3.19). Even

though this is computationally not demanding, it is required to gather all trajectories at

a central point [SVR+10; DDKDS17]. Moreover, with condition
řNv

i“1 ωi “ 1 the speed of

convergence depends on the number of vehicles in network Gcom.

Applying (3.13) with Algorithm 2 enables a scalable and fully distributed computation,

as guaranteed by the following theorem.

Theorem 3.2. Let Case c1 (Section 3.1) hold. Let the system be described by dynamics

(3.3), the MPC optimization problem by (3.13), and the control law be applied according Al-

gorithm 2. Then, ωi “ 0.5, @vi P V is a valid choice for the step size in (3.18) independent

of Gcom.

Proof. To prove this theorem it is utilized that a distance constraint is shared at most by

two vehicles.

By construction of the coordination problem, it holds for the central inter-vehicle dis-

tance constraints Adm “ pαijq P t´1, 0, 1upˆq and thus

‖ Adm ‖8“ max
iPI1:p

ÿ

jPI1:q

| αij |“ 2,
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3 Distributed Trajectory Computation

for matrix dimensions p and q. Consequently, each constraint, i.e., each row in (3.17c), is

shared between a vehicle vi P V and at most one other vehicle vj P Ni in the distributed

setup. For such a setup, we know from Lemma 3.3 that the DJOR update (3.18) between

vehicles vi and vj is feasible. For any neighbor permutation vi, vj P V and vi ‰ vj
(where indices may mutually vary), ωi “ ωj “ 0.5 thus fulfills the convexity condition

ωi ` ωj “ 1.

Remark 3.2 (Inter-vehicle relation). Knowing that vehicle vi is a predecessor of vehi-

cle vj and at the same time vehicle vj is a successor of vehicle vi for all pairs pvi, vjq P Ecom
and all prediction time steps k, enables the relaxing of condition ωi “ ωj “ 0.5 to the

more general condition ωi ` ωj “ 1, ωi ą 0, ωj ą 0. Compare the illustration in

Figure 3.3.

Convergence Convergence for the overall system is guaranteed by the fact that local

cost functions are decoupled as well as the following proposition.

Proposition 3.1. Let the central coordination problem be described by (3.17) and assume

a given vehicle sequence decision m. Let the central problem be distributed into local op-

timization problems (3.13) with local dynamics (3.3), and let the distributed system be

applied according to Algorithm 2. Then, the DJOR iterations (3.18) converge for l Ñ 8.

Proof. Convergence is guaranteed since the cost functions are monotonically decreasing

between optimization steps and locally decoupled costs.

First, we show monotonicity between two iteration steps of individual decoupled vehicle

costs:

Vi

´

z
pl`1q
i

¯

“ Vi

´

ωiz
˚
i ` p1´ ωiqz

plq
i

¯

ď ωiVi pz
˚
i q ` p1´ ωiqVi

´

z
plq
i

¯

ď ωiVi

´

z
plq
i

¯

` p1´ ωiqVi

´

z
plq
i

¯

“ Vi

´

z
plq
i

¯

.

This holds for all vehicles vi P V . The first line applies (3.18), the second line follows

from convexitiy of the cost functions, and the third line follows from optimality of local

problems (3.16). As all individual quadratic cost functions Vi are bounded below, the

overall system cost V “
řNv

i“1 Vi in (3.17a) is also bounded, and thus convergence can be

guaranteed system-wide as l Ñ 8.

3.3.5 General Fulfillment of Coordination Conditions

This subsection discusses the extension of the feasibility results from Algorithm 2 to the

coordination Cases c2-c4. In the first step, we present an approximate solution to compute

the crossing time steps.
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Crossing time approximation

To avoid the computation of a multi-level optimization problem, we utilize the receding

horizon nature of MPC. This enables an approximation of the exit time defined in (3.1)

by referring to the trajectory computed at the previous time step t´ 1 such that

t̃bi :“

$

’

&

’

%

8, if dbipt`M |t´ 1q ` Li,x ą 0

argmin
dbi pk|t´1qď´Li,x

dbipk|t´ 1q, else.
(3.25)

In the following, we substitute tbi “ t̃bi with its approximation.

Remark 3.3 (Crossing time computation). The exit time, i.e., the time a vehicle predicts

to leave the respective conflict zone is approximated in (3.25) using the MPC trajectory

computed in the previous time step. The approximation error can be expected to be

negligible given that the MPC optimization is recomputed in each sampling time step

with updated initial conditions and assuming that only small changes occur between

two sampling steps. The latter assumption is also supported by relatively slow vehicle

dynamics, which suppress fast changes for a small sampling time step. This simplification

is an important contribution to fulfill the Scalability requirement (Chapter 1).

Alternatively, [ZMC16] proposes to compute analytic solutions to vehicles’ exit times of

intersection areas using Hamiltonian functions. Authors of [HZGF16] compute occupancy

time slots using constraint optimal control problems. This means crossing times are

solved with a separate optimization problem (separated from the original multi-level

optimization problem).

Case distinction

For Case c2, where vehicles vi and vj approach from the same lane (vehicle vi driving in

front of vehicle vj) but leave CZk on different lanes, Theorem 3.1 is still valid, as the initial

conditions do not change. The difference is solely that constraints (3.13i) and (3.13j) are

not formulated for the complete prediction horizon, but only from time step t ` 1 until

time step tbi .

In Case c3 vehicles approach from different lanes and merge onto the same lane in CZk.
Thus, coupling constraints are not required until the time of merging, i.e., only from tbi
until t ` M (assuming vehicle vi crosses before vehicle vj). Constraint (3.13h) ensures

consistency of the vehicle order by guaranteeing that a vehicle remains in front of the

conflict zone CZk until its predecessor has predicted to have crossed it, in what we assume

to be a feasible solution:

Assumption 3.3. dbjpt0 `M |t0q ě dj,s is feasible for vehicle vj, with t0 being the time of

starting the negotiation according to Algorithm 2 with its neighbor vehicles.

This enables the feasibility guarantee for Case c3.
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3 Distributed Trajectory Computation

Theorem 3.3. Let Case c3 (Section 3.1) hold. Let the system be described by dynamics

(3.3), the MPC optimization problems by (3.13), and the control law be applied according

to Algorithm 2. Let Lemma 3.4 and Theorem 3.1 be given, and let Approximation (3.25),

as well as Assumption 3.3 hold. Then it holds that, a partial coupling along the horizon,

Itbi :t`M , of constraints (3.13i)–(3.13j) results in feasible solutions for vehicles vi and vj.

Proof. This proof argues that a coupling between two vehicles (potentially a partial cou-

pling along the horizon) becomes only activated if a feasible solution with respect to the

coupling constraints exists.

Let vehicle vi cross CZk before vehicle vj. For the case tbi “ 8, i.e., the horizon of

vehicle vi does not yet predict to cross the conflict zone CZk, the set Itbi :t`M “ H is empty

and problems (3.13) of vehicles vi and vj are not coupled through (3.13i) and (3.13j).

Without coupling, it follows feasibility for the local problem (3.13a)–(3.13g) of the first

vehicle vi. Given Assumption 3.3 we can also guarantee feasibility for vehicle vj with

problem (3.13a)–(3.13h).

If the prediction of vehicle vi crosses CZk at time step t ´ 1, i.e., tbi ď t `M according

to (3.25), it follows with Lemma 3.4 that the same solution will be a feasible candidate at

time step t. Before vi and vj become coupled, (3.13h) was feasible for vehicle vj. Now, for

vi’s problem we know from (3.13i):

dbipt
b
iq ` Li,x

looooomooooon

ď0

ď daj pt
b
iq ´ dj,s

looooomooooon

ě0

, (3.26)

where the left side of the inequality follows from the condition that vehicles become cou-

pled and the right side from vj’s constraint (3.13h). The same argumentation holds from

vj’s perspective referring to constraint (3.13j). The feasibility of activated coupling con-

straints for prediction steps Itbi :t`M between vehicles vi and vj follows from the reasoning

in Theorem 3.1.

The discussion for the scenario where vehicle vj crosses CZk before vehicle vi, follows

analogously.

Feasibility for Case c4 follows directly from Assumption 3.3.

3.4 Uncertainty Handling using Exact Penalty

Functions

In Section 3.3 we proposed a distributed negotiation algorithm for multi-vehicle coordi-

nation which guarantees a feasible, and thus safe solution after each iteration step. The

algorithmic guarantees are provided in absence of model and environmental uncertainties.

Long prediction horizons are desirable for increasing the performance of the coordination

procedure as, e.g., the approximation (3.25) will become more accurate with longer hori-

zons. However, predicting the environment of an autonomous vehicle with the required

confidence will only be possible for shorter horizons. Reacting to uncertain events in the

environment, such as a pedestrian appearing in a vehicle’s sensor view, might require de-

viating from the plan with respect to the long horizon which has been agreed on with

46



3.4 Uncertainty Handling using Exact Penalty Functions

other vehicles in the network. This can cause infeasiblity in the network due to a possible

violation of the coupling constraints (3.13i)–(3.13j). However, it does not mean that such

a violation of the long horizon plan leads to an unsafe behavior, as vehicles travel with a

safety distance di,s between each other and they can still react locally to unforeseen events.

We propose to induce this local reaction behavior by relaxing the coupling constraints

in the form of exact penalty functions. If possible, vehicles will fulfill the formulated

inter-vehicle coupling constraints and conduct the long horizon plan negotiated with its

neighboring vehicles. Whenever unforeseen events occur and no feasible agreement with

the neighboring vehicles can be found, vehicles can violate the coupling constraints to

conduct, for example, an emergency braking maneuver. Thus, a prioritization of safety

over coordination is achieved. After such a local reaction the vehicles automatically recover

from the coupling constraint violation and return to a network-wide feasible solution.

In the following, we introduce the concept of exact penalty functions and thereafter

describe how they are integrated into the DJOR algorithm.

3.4.1 Exact Penalty Functions

First, we recast the local QP problem (3.16) in an optimization problem with soft con-

strained inter-vehicle distances:

z
1˚
i “ argmin

zi

Vi pziq ` δi
∥∥ ÿ

jPNi

`

Adijzi ` Cdijzj ´ bdij
˘` ∥∥

1
(3.27a)

s.t. Aizi ´ bi ď 0, (3.27b)

with penalty weight δi P R and
”

`

Adijzi ` Cdijzj ´ bdij
˘`
ı

n
:“ max

´

“

Adijzi ` Cdijzj ´ bdij
‰

n
, 0
¯

, (3.28)

where index n indicates the n-th element of vector Adijzi ` Cdijzj ´ bdij. Let λ˚i be the

Lagrangian vector corresponding to the feasible and optimal solution z˚i of (3.16).

Theorem 3.4. If δi ą }λ
˚
i }8, then the minimizers z˚i and z

1˚
i are identical.

Proof. See [Fle87, Theorem 14.3.1]

How to compute apropriate values of δi in an MPC setting is discussed in [KM00; Hov11].

The non-smoothness of the 1-norm in Problem (3.27) ensures its exactness with respect

to the original Problem (3.16), but a non-smooth optimization problem cannot be com-

puted using standard algorithms. Therefore, an equivalent problem is formulated using

the slack variables vector εi to achieve a QP problem again which can be efficiently solved

[OB94; SR99]:

z
1˚
i “ argmin

zi,εi

Vi pziq ` δi}εi}1 (3.29a)

s.t. Aizi ´ bi ď 0 (3.29b)

Adijzi ` Cdijzj ´ bdij ď rεisl, j P Ni, l P I1:|Ni| (3.29c)

´εi ď 0. (3.29d)
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Figure 3.7: Exact penalty example. In an nominal scenario (constraints can be fulfilled) a

constrained optimization delivers the same result an exact penalty optimization

formulation. If a constraint is violated (here: inter-vehicle distance dj,s) only

the exact penalty method finds a solution.

Remark 3.4 (Exact penalty concept). Exact penalty functions are one form of con-

straint softening. The basic idea behind constraint softening is to move (hard) con-

straints of an optimization problem to its objective function, i.e., softening them. A high

penalty weight on the softened constraints in the objective function shall ensure that the

resulting optimized solution fulfills the original constraint formulations. The benefits of

this procedure are that i) the resulting unconstrained optimization problem can be solved

efficiently, for example, by analytic solutions, and ii) the optimization problem cannot

become infeasible, e.g., due to numerical errors or system noise; thus, it always delivers

a solution. Note that the latter is an important property for real-world implementations

of optimization-based control systems.

Rather than achieving an increase in computational efficiency, the proposed constraint

softening targets using exact penalties to avoid infeasibilities of the networked optimiza-

tion problem due to changing environmental conditions. An essential benefit of the

discussed exact penalty functions is that the result coincides with the respective hard

constraint formulation if a solution exists. If no solution to the hard constraint problem

exists, i.e., it is infeasible, the penalty softens the problem and results in a close-to-

feasible solution. We utilized this property to compute control solutions that fulfill the

desired inter-vehicle safety distance constraint dj,s in nominal scenarios (whenever possi-

ble). However, the problem also delivers a solution if the constraint (distance dj,s) cannot

be satisfied, e.g., in emergency braking maneuvers. Figure 3.7 illustrates the described

setup. The standard constraint optimization problem loses feasibility if the inter-vehicle

distance dj,s is violated, e.g., due to unexpected environmental changes. However, the

exact penalty method results in a braking maneuver.

In summary, the method prioritizes the reaction to uncertain maneuvers over a nominal

driving behavior, i.e., keeping the safety distance, while the latter is performed whenever

possible. This addresses the Safety requirement (Chapter 1).

The idea is applicable to a wide range of scenarios, as, e.g., shown in [FBEG16], where

inter-vehicle collision avoidance is prioritized over vehicle stabilization control through

the application of exact penalty functions.
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3.4.2 Integration into Jacobi Negotiation

If a solution to (3.16) exists, then this solution will be (exactly) found by (3.29). If no

solution exists, (3.29) will compute the closest possible solution, i.e., the solution with

the least possible constraint violation. This means it will attempt to keep the coupling

distances to its neighbor vehicles, represented by (3.29c), whenever possible and violates

it only if necessary due to, e.g., environmental uncertainties.

Given the responsibility of a vehicle to avoid a collision with its preceding vehicle and

the fact that the predecessor’s dynamics are not known locally by the following vehicle, a

collision can be avoided if the inter-vehicle distance is larger than the required stopping

distance. This means, we can compute the safety distance by finding the required stopping

distance of vehicle vi, such that it holds

di,s “ min
zi,tstop

diptstopq (3.30a)

s.t. (3.13b), (3.13d), (3.13e) (3.30b)

tstop P I0:M (3.30c)

vipt̄q “ 0 t̄ P Itstop:M (3.30d)

vip0q “ viptq (3.30e)

dip0q “ 0, (3.30f)

where tstop is the time step at which the vehicle comes to full stop, and we assume that the

horizon is large enough, such that the optimization problem has a solution. In a simplified

but more conservative way di,s can be determined offline by considering a maximum velocity

such that vip0q “ vmax and choosing zi with uiptq “ minuPUi
u, until the vehicle stops.

A potential constraint violation needs to be considered in the DJOR negotiation to

guarantee collision avoidance between vehicles. A slack variable unequal to zero, εi ą 0,

after the local optimization (Line 7 in Algorithm 2) indicates that the coupling constraints

need to be violated. If this is the case, the negotiation step (3.18) has to be modified by

choosing ωi “ 1 to ensure the validity of the stopping distance di,s.

After an unexpected event, (3.29) will automatically recover by computing a solution

which fulfills the coupling constraints again as soon as possible. Once εi “ 0 holds, the

recovery is completed and the negotiation can be switched back to ωi “ 0.5.

Remark 3.5 (Constraint softening). Constraint softening, such as exact penalty func-

tions, is commonly applied to all constraints and used to avoid infeasibilities of the

optimization problem triggered through model uncertainties or sensor noise. Here, how-

ever, we soften the coupling constraints solely to emphasize the methodology of avoiding

coordination infeasibilities.

3.5 Numerical Illustration

Numerical simulations were conducted to illustrate the functionality of the methodolo-

gies introduced in this chapter. Methods of this chapter will be extended with sequence
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3 Distributed Trajectory Computation

Table 3.2: Simulation Parameters in Subsec. 3.5.1

Param.
Vehicle ID

1 2

xrefi,v 7m{s 8.5m{s

Qn
i diag(0, 5) diag(0, 5)

Rn
i 1 1

Ui r´7m{s2, 4m{s2s r´7m{s2, 4m{s2s

Xi,v r0m{s, 9m{ss r0m{s, 9m{ss

XM
i , UM

i (3.20) (3.20)

di,s 2m 2m

ωi 0.5 0.5

lmax 4 4

decisions in Chapter 4. Therefore, Section 4.4 discusses numerical simulations for the com-

bined methodologies and compares the results with alternative approaches. The used PC

contains an Intel Core i5 double core processor with 2.5GHz and 8GB RAM memory.

Simulations were implemented with MATLAB and its quadprog() solver to compute the

QP problems.

3.5.1 DJOR Evaluation

In the first step, we evaluate the influence of the prediction horizon length M on the

coordination procedure. Therefore, two vehicles are simulated to cross a common CZk in

a scenario setup as shown in Figure 2.3 with local MPC laws (3.13) and the negotiation

according to Algorithm 2.

Table 3.2 summarizes the applied simulation parameters for this example, where xrefi,v is

the state reference value referring to the velocity state, and similar for the constraint set

Xi,v. The sampling time is Ts “ 0.1s.

Figure 3.8 illustrates the resulting vehicle distance state in the d1 ´ d2 configuration

space for Cases c3 and c4 with horizon lengths M “ 30, 50, 100 and vehicle v1 crossing

CZk before vehicle v2. For each horizon length the distributed optimization results in a

feasible and safe coordination. However, increasing M leads to a smoother coordination

result, since the exit time tbi in (3.25) can be evaluated earlier than that with shorter

horizons. This becomes visible through the dots in Figure 3.8 which show the terminal

states for respective planning steps.

Next, we simulate a negotiation process of Nv “ 6 vehicles stimulated by a changing

reference value. Figure 3.9 illustrates the influence of the inter-sampling iterations in the

same simulation setup as above by varying the parameter lmax. Given a reference change

from vi,ref “ 4m{s Ñ 9m{s, the trajectory approaches the centralized solution (dashed

line) with increasing inter-sampling iterations lmax.
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Table 3.3: Simulation Parameters in Subsec. 3.5.2

Param.
Vehicle ID

1 2 3

M 50 50 50

xrefi,v 7m{s 8m{s 9m{s

Qn
i diag(0, 5) diag(0, 10) diag(0, 50)

Rn
i 10 10 10

Ui r´7m{s2, 4m{s2s r´7m{s2, 4m{s2s r´5m{s2, 4m{s2s

Xi,v r0m{s, 10m{ss r0m{s, 10m{ss r0m{s, 10m{ss

XM
i , UM

i (3.20) (3.20) (3.20)

di,s 2m 2m 2m

ωi 0.5 0.5 0.5

lmax 4 4 4

δi 4e3 4e3 4e3

Remark 3.6 (Optimality). In general, convergence to the centralized solution is not

guaranteed for a dynamical-decoupled decomposition, as applied in this case. Due to

the homogeneous vehicle models, however, the iterations approach to the centralized

solution. We use this effect to illustrate the best possible solution for the distributed

Jacobi negotiation algorithm.

3.5.2 Uncertainty Simulation

This subsection illustrates simulation results with exact penalty functions on the inter-

vehicle coupling constraint.

Table 3.3 summarizes the applied simulation parameter, where xrefi,v is the state reference

value referring to the velocity state, and similar for the constraint set Xi,v. The sam-

pling time is Ts “ 0.1s. We model three vehicles moving in a platoon with the order:

v1 Ñ v2 Ñ v3. At time t “ 5s vehicle v2 conducts an emergency braking maneuver with

a2 “ a2,min “ ´7m{s2, which is shown in the top middle plot of Figure 3.10. Before this

maneuver, vehicles v2 and v3 drive with minimum inter-vehicle distance d3,s “ 2m (lower

plot of Figure 3.10). Lower braking capability of vehicle v3, i.e., a3,min “ ´5m{s2, would

lead to infeasible solutions of the distributed optimization without softened constraints due

to an inter-vehicle constraint violation. Figure 3.11 shows how the respective slack vari-

able ε3 becomes active during the braking phase and the automatic recovery after t “ 7.9s.

Once the distributed system has recovered into a feasible area, the negotiation continues

as it would in the nominal case (with hard coupling constraints) due to the exactness of

the penalty function.
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3.6 Summary and Discussion

This chapter proposes a trajectory computation methodology for a multi-vehicle setup, in

which vehicles are capable of exchanging information between each other through V2X com-

munication. With the proposed approach, conservative solutions can be avoided through

iterative inter-vehicle negotiations. However, if communication resources become limited,

a single exchange of trajectories with neighboring vehicles is sufficient for a solution that

fulfills the optimization constraints network-wide what is consequently a safe trajectory

solution. Thus, the approach exploits both the iterative nature to find close-to-optimal

solutions whenever possible and any-time feasibility to cope with the Safety requirement.

The methodology uses a primal decomposition method based on Jacobi over-relaxations

and ensures Scalability of the implementation. To enable a safe trajectory planning and

privacy of vehicle models, each vehicle locally computes a model predictive control (MPC)

law to determine its own trajectories. The resulting optimization solutions are shared

with relevant vehicles in the coordination network. Moreover, the distributed optimization

method is extended with the concept of exact penalty functions that enable considering

unforeseen events in the coordination scenario while the above-discussed properties remain

valid. In summary, this chapter addresses the requirements Safety, Efficiency, Privacy,

Cooperation, and Scalability (introduced in Chapter 1).

For the baseline Jacobi over-relaxation (JOR) algorithm, it has been shown that it

iterates to an optimal solution if no coupling state constraints are modeled [LJM19], or if

coupling constraints remain inactive [DDKDS17]. In scenarios where coupling constraints

become active, only a sub-optimal solution can be found. The degree of sub-optimality did

not show a relevant impact for applications considered in this thesis. However, it might be

a relevant criterion for other applications.

The advantage of iterative computation in this chapter is that the initially found solution

can be improved towards its optimum. On the other hand, considering iterative solutions

introduces challenges when implementing them and an additional load to the communica-

tion network. If these aspects are crucial, iterations free concepts are a valid alternative,

for example, proposed for distributed MPC approaches in [KKJ17], and [KSSP19] in the

case of multi-vehicle coordination scenarios.

Several approaches can consider safety by-design – in the sense of inter-vehicle collision

avoidance. These include decentralized approaches where a brake-safe distance is sufficient

to ensure safety and feasibility of the optimization problems [QGDLFM15]. Additionally,

robust control methods, such as robust MPC [SSB16], can be used to account for worst-case

actions of other vehicles. Distributed systems, in turn, require additional considerations.

In this chapter, inter-vehicle safety (and feasibility of optimization problems) is ensured

through an exact penalty formulation of coupling constraints. However, a frequent acti-

vation and deactivation of the exact penalty constraint in highly uncertain environments

potentially leads to non-smooth driving behaviors. The derivation of a sufficiently large

penalty weight generates further computational effort [KM00].

This chapter derives a trajectory computation strategy for a fixed inter-vehicle sequence

graph. The vehicle sequence is a challenging decision for general multi-vehicle coordination

problems. This challenge is addressed in the following chapter.
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Vehicle Sequence Computation

In the previous chapter, a distributed trajectory computation strategy has been derived as-

suming a given crossing sequence of vehicles. The proposed method is based on distributed

MPC optimization problems. However, a general multi-vehicle coordination problem in-

cludes among such dynamical optimization problems a combinatorial decision to determine

the vehicle sequence at intersecting paths. This decision induces non-convexity into the

optimal control problems and makes them prohibitively difficult to solve to optimality

when real-time requirements are given. Therefore, it is desirable to decompose the overall

problem rather than solving it in a centralized way. Considering requirements from Chap-

ter 1 raises the need for a meaningful decomposition that takes properties such as Safety,

Scalability, Efficiency, and Privacy into account.

A commonly used strategy to simplify computations is heuristic solutions, which approx-

imate the optimal combinatorial decision [ZMC16; KK14]. However, heuristics that are

too simple risk leading to an overall significantly sub-optimal solution to the intersection

coordination problem, e.g., if the dynamic differences between vehicles are not consid-

ered. Alternatively, scheduling problems are candidates to determine sequences required

in multi-vehicle coordination problems [LZ17; YDM11; WATEM12; BVDEG16]. Never-

theless, they rely on simplistic dynamics models if problems have to be computable on a

fast time scale, which can be insufficient for highly dynamic tasks such as automated driv-

ing. Unlike the above-discussed approximation strategies, the overall coordination problem

can be formulated as a mixed-integer program (MIP). This can be distributed using de-

composition methods such as optimal branch-and-bound and dynamic programming (DP)

[GK95], or genetic algorithms, simulated annealing, and greedy randomized search, which

are heuristic methods [PPMR95]. These parallelized methods lack the capability to ensure

the Privacy of vehicle models and fulfilling Safety requirements.

Counteracting the drawbacks, this chapter proposes a hierarchical decomposition ap-

proach aligned with the multi-vehicle coordination architecture in Figure 2.6. The central
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coordination problem is decomposed such that the integer decision (vehicle sequence) can

be computed in an upper hierarchical layer and the remaining dynamics optimization

locally in the vehicles. This bridges safety assurance for local vehicle decisions with suffi-

ciently accurate dynamics models (discussed in Chapter 3) and efficient sequence decisions

using a scheduling method in the upper layer (discussed in this chapter).

The chapter is based on publications [KMK+20; KMEH20].

Outline

Section 4.1 presents how to detach the integer optimization problem from a central

MIQP coordination problem. It is followed by a resource-constrained scheduling problem

(RCPSP) setup derived on an intersection crossing example and its solution in Section 4.2.

Section 4.3 relates the scheduling solution to the lower level distributed optimization prob-

lems for trajectory computation. Feasibility of the vehicle sequence scheduling decision for

the multi-vehicle coordination problem is discussed, and an event-triggered re-computation

law is presented. Section 4.4 illustrates the numerical simulation results, and a discussion

in Section 4.5 concludes the chapter.

4.1 Integer-Continuous Variables Decomposition

Be reminded that we formulated the central and optimal solution to the multi-vehicle

coordination problem as an MIQP of the form:

pz˚,m˚
q “ argmin

z,m

Nv
ÿ

i“1

Vi pziq (4.1a)

s.t. Az ´ b ď 0 (4.1b)

Admz ´ bdm ď 0 (4.1c)

m P I1:|T |, (4.1d)

where the objective (4.1a) is the sum of local vehicle costs, (4.1b) contains vehicle dynam-

ics constraints, (4.1c) inter-vehicle distance constraints, and (4.1d) is an integer decision

representing the vehicle crossing order.

As previously discussed, solving (4.1) is in general not desirable. This is because the

problem does not fulfill Scalability with respect to growing number of vehicles which makes

it computationally infeasible, Privacy of vehicle information cannot be ensured, and Safety

requirements might be not be fulfilled through a central implementation, to name a few

reasons.

In order to comply with requirements stated in Section 1.1, we propose a hierarchical de-

composition of (4.1) such that the central problem is separated in a lower layer distributed

QP optimization network and an upper layer integer optimization problem (compare Fig-

ure 2.6).

This results in solving distributed problems for a given vehicle order decision, i.e., a
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4.1 Integer-Continuous Variables Decomposition

pre-defined neighbor set Ni:

z˚i “ argmin
zi

Vi pziq (4.2a)

s.t. Aizi ´ bi ď 0 (4.2b)

Adijzi ` Cdijzj ´ bdij ď 0, j P Ni, (4.2c)

which has been discussed in Chapter 3. In the upper layer it remains to determine the

vehicle sequence through an integer program (IP) of the form:

m˚
“ argmin

m
Ṽ pz̃, mq (4.3a)

s.t. Tm P T (4.3b)

m P I1:|T |, (4.3c)

with an objective function Ṽ pz̃, mq discussed in the paragraph below, and a tree T defin-

ing possible crossing decisions. The tree T consists of |T | paths from the root to leaf

nodes such that each individual path Tm represents a feasible crossing order through a

conflict zone in a coordination scenario (see Remark 4.1 and Figure 4.1 for an exam-

ple). Thus, a path is defined as an ordered set of tuples, Tm “ ppi, jq, pj, kq, pk, lq, ...q,

i, j, k, l P V , where a tuple pi, jq describes that vi crosses the respective conflict zone

before vj. Consequently, a decision m˚ allows an unambiguous conclusion about the cross-

ing order ok “ pvi, vj, ...q, vi, vj P V through a conflict zone CZk and consequently the

neighbor sets Ni, vi P V , can be determined.

Remark 4.1 (Decision tree concept). In this thesis, a decision tree defines a tree struc-

ture such that each path starting at the root represents a feasible decision of a vehicle

sequence. The challenge in multi-vehicle coordination problems lies in the fact that not

all vehicle sequence permutations result in feasible sequences. This is because the lane

structure of a road network and the vehicle positions therein play a role in the sequence

decision. Additionally, certain vehicle types, e.g., emergency vehicles, need to be pri-

oritized over others. Figure 4.1 illustrates a simplistic example in which three vehicles

v1, v2, and v3 cross a common conflict zone CZ. All cases where v3 crosses before v2 are

infeasible.

The decision space increases exponentially with growing number of vehicles and conflict

zones. Therefore, to ensure Scalability, seamless methodologies to determine feasible se-

quences in a coordination scenario are required. Section 4.2 discusses such a methodology,

which is based on scheduling theory.

The separation of continuous and integer variables in the optimization problem (4.1)

can result in a loss of optimality. This is because the interdependent decision variables

z and m are solved separately in (4.2) and (4.3) by assuming a given (fixed) decision of

the respective other variable. However, the optimality gap is expected to remain small

through a meaningful choice of the objective function Ṽ pz̃, mq in (4.3) for the consid-

ered multi-vehicle coordination scenarios. Note that the objective Vi pziq in (4.2) can be

extracted directly from (4.1), but Ṽ pz̃, mq needs to be designed to mimic the implicit

57



4 Vehicle Sequence Computation

infeasibleinfeasible

v2

v1

v3

CZ v1

v2

v3

v3

v2 v3

v1

v2

v3

v1 v2

v1 v2

v1

v3

T

p1, 2q

p2, 3q

p2, 1q

p1, 3q

p3, 1q

p1, 2q

p1, 3q p2, 3q p3, 2q

p3, 1qp3, 2q p2, 1q

T1 T2 T3

Figure 4.1: Decision tree example showing possible sequences through a conflict zone CZ.

The scenario is shown on the left side. Vehicle v3 is driving behind v2 and

overtaking is not possible, which leads to infeasible decisions in the tree T .

inter-dependency of z and m from the original problem (4.1). On the one hand, Problem

(4.3) offers a guaranteed feasible order solution according the decision tree T . On the

other hand, it reveals the possibility to balance between the optimality of the decision

and a less granular formulation leading to simpler computations through the choice of the

objective function. A strategy to achieve a system-wide close-to-optimal solution is to

align the choice of Ṽ pz̃, mq toward the centralized objective
řNv

i“1 Vi pziq. Alternatively, the

choice of Ṽ pz̃, mq also allows to consider other interests than the local vehicle objectives

(as stated in the central optimization problem (4.1)). The latter often is the case in real

system applications and in particular in hierarchical architectures, because an upper hi-

erarchy decision unit might consider different objectives as lower level local control units.

Consider for example a traffic coordinator which is interested in a high vehicle throughput

while the vehicles are strictly interested in optimizing their local energy consumption.

To address the above problem, we propose to design the optimization objective (4.3a)

such that the problem optimizes toward the maximum vehicle throughput while it con-

siders the global overpass solution and thus aligns the problem at the same time with

local vehicles’ dynamical capabilities. The overpass solution is the result of problem (4.2)

without coupling (4.2c) for each vehicle vi P V , i.e.,

z˚i “ argmin
zi

Vi pziq (4.4a)

s.t. Aizi ´ bi ď 0. (4.4b)

It represents the fictitious case where each vehicle moves on a separate lane and all lanes

overpass each other at intersections. This case results in the lower optimality bound since

each vehicle is able to move optimally with respect to its local objective and dynamics

constraints. Additionally, we allow the possibility of a time-scale abstraction to address

the scalability requirement. To this end, the local primal solutions z˚i will be gathered

and projected onto a less granular time scale with resulting z̃. The degree of granularity

is a design parameter with a lower granularity resulting in a reduced dimension of the

optimization problem (4.3). Last but not least, we introduce an elegant and structured

way of formulating the constraint set (4.3b)-(4.3c) without explicitly stating the complete
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decision tree T , which is a nontrivial problem itself.

4.2 Integer Decision using Scheduling

This section discusses a method to hierarchically decompose an IP as described in the

previous section. We apply a scheduling method to determine a feasible integer decision

based on dynamics approximation received from a distributed MPC implementation in the

lower layer. The use of scheduling methods in this architecture comes with several benefits:

i) scheduling theory is a well studied and understood problem in computer science, ii)

constraints, which ensure feasibility of the integer decision, can be seamlessly considered,

iii) there exist efficient solution strategies for scheduling problems.

4.2.1 Intersection Scenario

We derive the scheduling decision for multiple vehicles in an intersection crossing use

case. This use case contains essential aspects of multi-vehicle coordination what makes

its generalization straight forward. An important aspect is the fact that several vehicles

argue about shared conflict zones, while rash decisions can lead to deadlock situations.

We model the intersection scenario consisting of a set of Nv connected automated vehi-

cles (CAV) vi, i P I1:Nv , with local control units and an intersection management (IM) unit

with which the CAVs exchange information via vehicle-to-infrastructure (V2I) communi-

cation. Figure 4.2 illustrates the introduced intersection setup. We distinguish between a

scheduling area and an intersection area. Vehicles approaching the intersection enter the

scheduling area in which, based on their local control computations, the IM determines a

crossing order for the inner intersection area and shares this information with the vehi-

cles. Assume that the vehicles cross the intersection along pre-defined paths with accurate

tracking, where all possible paths are drawn in the figure. Conflict zones, CZj, j P I1:6,

divide the intersection area into zones for potential rear-end, front and side collisions

(CZ1, ..., CZ5), and rear-end collisions on approaching lanes (CZ6). Note that, in general,

the concept of conflict zones and the negotiation process presented in this thesis are ap-

plicable to arbitrary scenarios in which several vehicles share a common area and where

collision conflicts can occur, e.g., obstacle avoidance scenarios.

Finally, we define a multi-graph Groute “ pVroute, Erouteq describing the given vehicles’

routes through the intersection. The set of vertices Vroute “ tCZ1, ..., CZ6u contains all

conflict zones and Vroute,i Ă Vroute all conflict zones that vehicle vi passes. Directed edges

ejk P Eroute are connections between consecutive conflict zones, which indicates that a

vehicle crosses these zones and the driving direction, i.e. ejk “ pCZj Ñ CZkq, j, k P I1:6.

4.2.2 Scheduling Problem Formulation

To formulate the scheduling problem, we first introduce the standard notation of a resource-

constrained project scheduling problem (RCPSP) as classified in [BDM+99]. Following

this, we map this notation to the intersection problem. Finally, we solve it by formulating

an integer linear problem (ILP).
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Figure 4.2: Intersection crossing scenario.

General RCPSP Definition

The RCPSP is defined by the tuple

pΛ, η,Γ,Υ, σ,Ωq , (4.5)

where Λ “ tα0, ..., αn`1u is a set of activities and the sub-set Λ1 “ tα1, ..., αnu Ă Λ with

n non-dummy activities; η P Nn`2 is a vector describing the duration of each activity and

we set the dummy activities’ duration to rηs0“rηsn`1“0; matrix Γ P Nlˆ2 contains l P N
precedence relations where each row in Γ with elements pαi, αjq P Λ1, i ‰ j, means that

activity αi precedes activity αj; Υ “ tρ1, ..., ρmu is the set of renewable resources with

m P N; σ P Nm is a vector describing the amount of available resources with the respective

identifier; finally the matrix of demands is given by Ω “ pωirq
pn`2qˆm , ωir P N, with

elements describing the amount of consumed resources ρr P Υ for each activity αi P Λ.

Formulation for Multi-vehicle Coordination

The mapping into the intersection framework is proposed as follows. Each non-dummy

activity αi P Λ1, i P I1:n, indicates a vehicle’s route through the scheduling and intersection

zone, i.e.,

αi “ pejk, ..., elmq,where ejk, elm P Eroute. (4.6)

We distinguish two types of activities. The first one, drive to, models the vehicle driving

in the scheduling zone towards the beginning of the intersection. The second one, cross,

passing through the intersection. For clarification, consider the following demonstrative

example.

Example 4.1. Assume vehicle v1 in Figure 4.2 driving from E to S, then its route is

CZ6 Ñ CZ2 Ñ CZ1 Ñ CZ4. Vehicle v1’s drive to activity corresponds to “driving in

CZ6” and its cross activity corresponds to “driving through CZ2, CZ1, and CZ4”.
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Figure 4.3: Precedence graph representing the vehicles’ routes through the intersection by

distinguishing the activity types drive to and cross, as well as a priory known

inter-vehicle relations as illustrated between α4 and α2.

Duration ηi of an activity αi P Λ1 models the expected time a vehicle consumes to

perform the respective activity, i.e., to drive to the intersection or to cross it. The activity

duration vector η represents the interface to the local vehicle control problems. Here several

candidates for suitable heuristics exist. We propose an MPC-related duration measure in

order to achieve a close link to the local vehicles’ control decisions. Therefore, let us define

ηi “ fjpẐjq, (4.7)

with activity αi’s duration ηi given by vehicle vj’s MPC optimization Ẑj (see Section 4.3).

We introduce a precedence relation in Γ for the routes of a vehicle, i.e., the drive to activity

precedes the cross activity. A precedence relation is also added if we a priori know a certain

crossing order, e.g., if two vehicles approaching the intersection on the same lane and the

first cannot been taken over by its follower (rear-end collision avoidance) such as illustrated

in the following example.

Example 4.2. Assume vehicle v2 in Figure 4.2 driving from N to S and vehicle v3 from

N to E. Let αi “ pCZ6 Ñ CZ3, CZ3 Ñ CZ4q be the intersection crossing activity of

vehicle v2, and αj “ pCZ6 Ñ CZ3, CZ3 Ñ CZ1, CZ1 Ñ CZ5q of vehicle v3. Then a pair

pαi, αjq in Γ ensures that v2 enters the intersection before v3.

The resources represent the set of conflict zones in the scenario, i.e., Υ “ tCZ1, ..., CZ6u

in our intersection setup. The availability of the respective resources at a certain time-

instant is defined by σ “ p1, 1, 1, 1, 1, Nvq
T and elements of the demand matrix Ω are

ωir “

#

1 if CZr P αi
0 else

. (4.8)

Figure 4.3 illustrates the construction of a precedence graph according to the definition of

Γ and Υ, while Table 4.1 summarizes the scheduling taxonomy related to the intersection

model.
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Table 4.1: Intersection scheduling taxonomy.

Scheduling Intersection

meaning param. model param. meaning

non-dummy activity αi “ pejk, ..., elmq, route through intersection

ejk, elmPEroute
duration ηi “ fjpzjq crossing duration prediction

precedence relations εk,: “ pαi, αjq vehicles on same lane

resources Υ “ tCZ1, ..., CZ6u conflict zones

availabilities σ “ p1, ..., 1, Nvq
T # respective conflict zones

demands ωir “

#

1 if CZr Pαi
0 else

passed CZs

4.2.3 Solution of the RCPSP

Problem (4.5) can be solved by formulating it as ILP. We suggest a modified version of

the discrete-time ILP formulation introduced by [PWW69].

Let βi,t1 be a binary decision variable with βi,t1 “ 1 if activity i starts at time t1 and

βi,t1 “ 0 otherwise, then (4.5) can be formulated as the following ILP:

β˚ “ argmin
β

ÿ

iPI1:|Λ|

ÿ

t1PI0:Msched

t1βi,t1 (4.9a)

s.t.
ÿ

t1PI0:Msched

t1βj,t1 ě
ÿ

t1PI0:Msched

t1βi,t1 ` ηi pi, jq P Γ (4.9b)

n
ÿ

i“1

˜

ωik

t1
ÿ

m“t1´ηi`1

βi,m

¸

ď Ωk t1 P I0:Msched
, k P Υ (4.9c)

ÿ

t1PI0:Msched

βi,t1 “ 1 i P Λ (4.9d)

βi,t1 P t0, 1u i P Λ, t1 P I0:Msched
, (4.9e)

with scheduling horizon Msched, scheduling sampling time

Tsched “ nschedTs, (4.10)

with nsched P Z`zt0u, such that it holds

MschedTsched ąMTs, (4.11)

and the optimization variable β “ pβ1,1, ..., βi,t1 , ..., βn`2,Tschedq, i P I1:|Λ|, t
1 P I0:Msched

.

Note that (4.9a) is formulated such that it minimizes the problem’s makespan as well as

each activity’s makespan, i.e., finds the solution with the shortest overall and individual

vehicles’ time consumption. This objective is chosen because the infrastructure’s goal is

to maximize the vehicle throughput in the intersection area.
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Figure 4.4: Exemplary scheduling result indicating time and duration of execution for each

modeled activity, while for vehicles vi activities drive to the intersection area

and cross the intersection are distinguished. For each activity the consumed

resources are illustrated with j, k P t1, ..., 5u.

continuous time τ

control time t

scheduling time t1

τ0 “ t0 “ t10

Ts

Tsched “ nschedTs

Figure 4.5: Time-scale relation between control and scheduling problems.

The scheduling result can be conveniently illustrated by a Gantt-chart as exemplary

shown in Figure 4.4.

Given the result of (4.9) and the respective consumed resources of each activity αj P Λ1,

we are able to extract a crossing order oi for each critical zone CZ i, i P I1:5. This is

achieved by neglecting the actual scheduling time t1 and solely extract the order in which

vehicles vj, j P I1:Nv are scheduled to cross a certain conflict zone CZ i. Consequently, we

achieve a set of orders

O “ toi “ pvj, vk, ...q | i P I1:5; j, k P I1:Nvu. (4.12)

Note that (4.10) and (4.11) enable the allocation of different time-scales between the

scheduling problem (4.9) and the control problem (3.13), as illustrated in Figure 4.5.

Remark 4.2 (Crossing order). Modeling the scheduling such that activities reserve the

complete intersection area (cross) does not mean that in the end, only a single vehicle

can be in the intersection, as we only extract the order decision and pass this information

to the local control units, as discussed in the following section.
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4.3 Scheduling-Control Interaction

In this section, we first discuss the distributed control law and its connection to the schedul-

ing decision. Thereafter, we argue why the proposed RCPSP results in a deadlock free

decision and thus enables a guaranteed feasible control negotiation.

4.3.1 Connection to the Distributed MPC Problem

Given the orders (4.12), computed with the scheduling law, the local vehicles can receive

a set of neighbors. Based on this information the vehicle trajectories will be computed

using distributed MPC laws with respective neighbor predictions. After formulating this

distributed MPC setup we introduce how to predict the vehicles’ activity duration (4.7).

The MPC laws, solved locally in each vehicle vi, i P I1:Nv , are given by the problem

definition from Section 3.2.2:

Z˚i “ argmin
Zi“px̄i,ūiq

Vi pxiptq, uiptqq (4.13a)

s.t.

xipk`1|tq “ Aixipk|tq `Biuipk|tq k P It:t`M´1 (4.13b)

xipt|tq “ xiptq (4.13c)

xipk|tq P Xi k P It`1:t`M (4.13d)

uipk|tq P Ui k P It:t`M´1 (4.13e)

xipt`M |tq P XM
i (4.13f)

uipt`M ´ 1|tq P UM
i , (4.13g)

dai pk|tq ´ di,s ě 0 c3,c4, j P Pi (4.13h)

dbipk|tq ` Li,x ` dj,s ´ d
a
j pk|tq ď 0 c1-c3, j P Si (4.13i)

dbjpk|tq ` Lj,x ` di,s ´ d
a
i pk|tq ď 0 c1-c3, j P Pi, (4.13j)

Thereby, Zi is the local optimization vector which defines the trajectory of vehicle vi,

(4.13b), (4.13d), and (4.13e) describe dynamics, state, and input constraints, respectively,

(4.13c) is the initial condition, and the terminal constraints (4.13f) and (4.13g) contribute

to the recursive feasibility guarantee of the distributed computations (see Section 3.3.4).

For a given scheduling decision (4.12) we are able to formulate the distance constraints

(4.13h) - (4.13j) distinguishing between cases c1-c4 according to the vehicle configuration

at a conflict area. Note that all feasible combinations Tm P T are replaced by these

local constraints for a single combinatoric decision. This reduces the computational effort

significantly because the integer decision vanishes. The set of predecessors,

Pi “ t vj | j P I1:Nv ^ vj
ok
ą vi, CZk P V iroutezCZ6u, (4.14)

contains all vehicles crossing before vehicle vi on its route through the intersection.

Similar, we achieve the set of successors,

Si “ t vj | j P I1:Nv ^ vj
ok
ă vi, CZk P V iroutezCZ6u. (4.15)
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We find that local problems (4.13) are convex as (4.13a) is quadratic and (4.13b) - (4.13j)

are linear constraints. These problems are thus QPs and can be solved efficiently.

Above, we described how the global scheduling decisions are incorporated in the local

control problems. Now, it remains to discuss the reverse link between local control decisions

and the scheduling problem. This link is represented by (4.7). Solving (3.13) is conducted

in a distributed and iterative manner where neighbor intentions are shared in each iteration

step as discussed in Chapter 3. During iterations in the procedure each vehicle computes

a nominal trajectory Z̃i, obtained by neglecting (4.13f) - (4.13j) from (4.13), and Z˚i , i.e.,

the full problem (4.13) to provide the feasibility guarantee. In what follows we will refer

to the states from the nominal optimization vector Z̃i.

For a given vehicle v1is activity αj, we extract CZs P Vroute and CZe P Vroute which are

the first zone in the intersection of v1is route and the zone after leaving the intersection

area, respectively. We estimate the duration of activity αj by

ηj “ ttend ´ tstartu, (4.16)

which is computed distinguishing the following cases:

tend “

$

’

&

’

%

min
´

pt`MqTs `
d̃CZe
i pt`M |tq

vipt`M |tq
, tTs `MschedTsched

¯

if d̃czei pt`M |tq ě 0

kendTs, if d̃czei pt`M |tq ă 0,

(4.17)

with

kend “ argmin
k

|d̃czei pk|tq| (4.18)

s.t. k P It:t`M .

Similarly, tstart is computed by substituting kend with kstart and d̃czei with d̃czsi in (4.17)

and (4.18). Here, d̃czei refers to the distance state achieved through the computation of

Z̃i with the superscript cze describing the distance to the waypoint where the last zone of

the intersection is left, and czs to the last waypoint before the intersection is entered (cf.

Section 2.3)

Finally, Algorithm 4 gives a summary of the combined scheduling-control coordination

procedure.

Algorithm 4 Combined Scheduling-Control Procedure

1: Vehicles:

2: compute distributed MPC problems (4.13) without (4.13f) - (4.13j)

3: IM:

4: compute activity duration estimation (4.16)

5: solve (4.9) and determine (4.12)

6: Vehicles:

7: negotiate distributed intersection crossing using (3.13) according to Algorithm 2
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Figure 4.6: Control-scheduling interaction.

Remark 4.3 (Layer interaction concept). A key idea of the separation between the

upper layer sequence decision (scheduling method) and the lower layer trajectory con-

trol (distributed MPC from Chapter 3) is separating their time-scales. The upper layer

computes the scheduling problem on a course time-scale while the lower layer computes

safety-related trajectory decisions using short sampling intervals. This improves the

Scalability of the upper layer decision. The expected loss of optimality through the time

abstraction is compensated because only the vehicle order is extracted and passed to

the lower trajectory control layer from the scheduling solution. Consider, for example,

an intersection crossing scenario. Then, switching the vehicle order is a rather “coarse”

decision compared to fine changes of the acceleration profile to adjust the desired trajec-

tory, e.g., to increase the inter-vehicle distance at the intersection. Figure 4.6 illustrates

that the received vehicle trajectories are mapped onto the coarse scheduling time-scale.

After computing the scheduling solution, the timed information is discarded to extract

the sequence information solely.

Similarly, authors of [SDJ16] apply a hierarchical decomposition to a power system op-

timal control problem, where a binary integer decision, which determines the generator

on-off status, can be solved on a different (slower) time scale as the lower layer (fast)

generator dynamics.

4.3.2 Feasibility of the Integer Decision

This section discusses the deadlock free scheduling solution using an example and how it

relates to dynamic feasibility of local control decisions.

Assume two vehicles, v1 and v2, conduct a left turn in an intersection, described in

Section 4.2.1, from opposite directions. Then, in the d1ptq-d2ptq-configuration-space there

are unfeasible areas due to commonly passed CZ is, as illustrated by the red boxes in

Figure 4.7. As the cross activity of the RCPSP (4.5) groups all passed CZs of a vehi-

cle, a consistent order solution is computed. Compare the blue shaded area in the left

plot of Figure 4.7, which indicates the possible d1ptq-d2ptq-trajectory space if v1 has to

cross before v2. This space is a connected set and thus there exists a homotopy class of

d1ptq-d2ptq-trajectories [GBDLF14]. On the contrary, the right plot in Figure 4.7 shows a
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G “ pd1p8q, d2p8qq
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d1ptq

S “ pd1p0q, d2p0qq

v1 ąv2
G

Sv2 ąv1

D

D “ pd1p8q, d2p8qq

Figure 4.7: Feasible trajectory space (blue shaded area) in the d1-d2-configuration-space for

two vehicles on a left turn from opposite directions. Left: consistent scheduling

decision with v1 ą v2 for all commonly passed CZs; Right: non-consistent

scheduling decision (v1 ą v2 and v1 ă v2) leading to a deadlock situation.

non-consistent order decision where the trajectory ends in deadlock configuration D and

thus the goal configuration G cannot be reached.

In summary, ensuring the existence of a connected homotophy class in the trajectory

configuration space results in the existence of a dead-lock free solution of the coordination

problem.

In general, Theorem 3.1 guarantees feasibility of local problems which ensure feasible

dynamics decisions through the formulation of constraints. To be valid, this theorem

requires that i) Assumption 3.2 is fulfilled, which specifies the inter-vehicle distance for

vehicles traveling on the same lane, and ii) that a vehicle which joins the negotiation

process has a distance to the respective conflict zone greater than its braking distance,

i.e., dai ě di,s. By implication, a sequence decision for vehicle vi can be changed as

long as the previous inequality is met. If the inequality is violated, the previously found

sequence needs to be fixed for the following sequence optimization problem (4.9), which

can be ensured through the formulation of additional precedence constraints γ P Γ. Thus,

this procedure leads to sequence decisions for which a dynamical feasible solutions, in the

context of the distributed problems (4.13), exist.

4.3.3 Event-triggered Re-Computation of the Integer Decision

Algorithm 4 has to be repeated continuously in order to account for dynamic changes in

the scenarios such as newly entering vehicles. While the underlying trajectory negotiation

(Line 7 of Algorithm 4) has to be re-computed on a frequent basis since its decision can

be safety critical, the upper level integer decision (Lines 1–5 of Algorithm 4) might act on

a different re-computation law (compare also Figure 2.6 and Figure 4.5). In the following,

we introduce such a re-computation law which acts according to an event-based fashion

rather than commonly used time-triggered updates.

The re-scheduling strategy triggers a new computation of the vehicle order only if vehicles

deviate to a certain extend from their previous plan. Thus, computation resources are
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di,s

dj,s

∆T

CZ1

Figure 4.8: Illustration of trigger set (yellow region).

spared as in nominal scenarios no re-computation is required. Moreover, communication

resources are less demanded compared to a time-triggered realization. To this end, assume

that a first set of trajectories has been found at time step t1 following the vehicle sequence

vi
o1
ą vj, i.e., vi crosses CZ1 before vj. Then, we define the trigger set as

Tij “
"

pdi, djq P R2
| dj ´ d

CZ1
j ď di ´ d

CZ1
i ^ di ě di,s ^ dj ě dj,s^

ľ

kPIt1:t1`M´2

dj ´ pdjpk|t1q ´∆Tq ď
djpk|t1q ´ djpk ` 1|t1q

dipk|t1q ´ dipk ` 1|t1q
pdi ´ pdipk|t1q `∆Tqq

*

,

(4.19)

with ∆T being the offset to the initially predicted trajectory in both di, and ´dj direction.

Variable ∆T is a design parameter of the triggering mechanism and can be potentially

individual for each vehicle. It needs to balance how quickly a re-scheduling should be

triggered and needs to incorporate the amount of uncertainty in the system behavior.

The set Tij must be checked at each time step k against all predicted trajectory points

pdipk|tq, djpk|tqq, k P It:t`M´1, i.e., if there exists
`

dipk|tq, djpk|tq
˘

P Tij (4.20)

for some k P It:t`M´1, then re-scheduling is triggered. For vehicle vi, to evaluate if re-

scheduling is to be triggered, the above check needs to be done considering respective

neighbor vehicles in the sets Pi and Si.
An illustration of the trigger set (4.19) is given in Figure 4.8 through the yellow region

on the right side.

Remark 4.4 (Event-triggering concept). Given predictive driving trajectories, it is not

required to adjust the vehicle sequence in a coordination scenario if vehicles can accu-
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rately follow their planned trajectories. Therefore, the event triggering scheme in this

section causes a re-computation of the vehicle sequence only if any of the vehicles devi-

ate from its plan to a certain extent. Consider an intersection crossing scenario where

a vehicle has to brake due to a crossing pedestrian that was not considered in its pre-

vious predictions. It might be desirable to re-compute the crossing sequence as other

vehicles, which are not affected by the crossing pedestrian, can cross the intersection

first. This can significantly save computational resources in nominal driving behaviors

and support the Scalability challenge (Chapter 1). The proposed triggering set can also

exclude safety-critical sequence adjustments, e.g. if a vehicle is already too close to a

conflict zone and cannot stop anymore before crossing it. The latter is an important

contribution to the Safety requirement.

An alternative event-triggered approach focusing on safe decisions for CAVs is presented

in [SHZ+18]. It is proposed to design an infrastructure unit that schedules vehicles to

submit their trajectories considering entering a bad set, which would lead to an inter-

vehicle collision.

4.4 Numerical Examples

This subsection discusses numerical simulation results of Algorithm 4 and, therefore, a

combined implementation of the proposed scheduling approach from this chapter and the

DJOR trajectory negotiation (Algorithm 2) from Chapter 3.

The simulation examples are conducted using the intersection scenario described in Sub-

section 4.2.1 with a simulation setup introduced in the following. Thereafter, we demon-

strate an example trial in which the use of the RCPSP method leads to a significantly

coordination performance increase compared to a first-come-first-served (FCFS) decision

strategy. This is followed by a simulative illustration of the event-trriggered recomputa-

tion strategy from Section 4.3.3. Lastly, a comprehensive simulation and evaluation of

randomly generated intersection scenarios is presented.

4.4.1 Simulation Setup

The simulation were conducted on a PC equipped with an Intel Core i5 double core proces-

sor with 2.5GHz and 8GB RAM memory. QP problems were implemented in MATLAB

and solved with quadprog(), and the scheduling problem was solved with intlinprog(). Ta-

ble 4.2 lists the applied parameters.

4.4.2 Results

Scheduling Performance

The following evaluation illustrates an example where the proposed RCPSP clearly outper-

forms a rule-based sequence decision in the intersection example. The rule-based decision

is made using a FCFS principle which sorts the crossing sequence of approaching vehicles

according to their distance to the intersection area. That means the closest vehicle crosses
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Table 4.2: Simulation parameters

Param.
Vehicle ID

1, 4 2, 5 3, 6

M 50 50 50

xri,v 5m{s 6m{s 7m{s

Qn
i diag(0, 5) diag(0, 5) diag(0, 5)

Rn
i 12 12 12

Ui r´7m{s2, 4m{s2s r´7m{s2, 4m{s2s r´5m{s2, 4m{s2s

Xi,v r0m{s, 9m{ss r0m{s, 9m{ss r0m{s, 9m{ss

XM
i , UM

i (3.20) (3.20) (3.20)

di,s 2m 2m 2m

ωi 0.5 0.5 0.5

N

E

S

W

CZ3 CZ2

CZ4 CZ5

CZ1

v1, l v2, r v3, s

v4, lv5, lv6, l

Figure 4.9: Intersection simulation scenario with 6 vehicles approaching the intersection

from two different lanes.
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Figure 4.10: Example trial comparing the proposed scheduling method with a first-come-

first-served decision strategy.

first, second closest second, etc. Figure 4.9 introduces the vehicle setups of the simulated

scenario. The plot shows the vehicle IDs, vi, i P I1:6 and their respective maneuvers in the

intersection, with right turn r, left turn l, and straight crossing s.

The result of Algorithm 4 applied in the previously introduced scenario is plotted in

Figure 4.10. The top plot shows the resulting trajectories from the drive to activities.

The distributed MPC laws (DJOR) are applied given a computed crossing order from

the RCPSP solution. The lower plot represents the implemented FCFS strategy, again

with the DJOR trajectory method. The bars in the middle part indicate the actual cross

duration, i.e., the time spent in the intersection area, of the vehicles for RCPSP and FCFS,

respectively.

Snapshots of the scenario in Figure 4.11 support the illustration by showing the coor-

dination progress at time instances t “ 4.0s, t “ 7.5s, and t “ 10.0s for the RCPSP and

FCFS methods, respectively.

Now, we evaluate the scenario using two performance criteria, which are i) the time

to complete the scenario (until all vehicles have crossed the intersection) and ii) the ac-

celeration effort. The later is computed by summing all applied absolute acceleration

values during the scenario for all vehicles. Figure 4.12 illustrates the performance increase

through the RCPSP method compared to a FCFS decision for the given scenario. The

completion time of intersection crossing scenario reduces 43.2% through the application

of the scheduling strategy and the acceleration effort is 49.2% lower as with the FCFS

decision.
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Figure 4.11: Snapshots of simulation scenario.
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Figure 4.12: Evaluation of the scheduling performance in an example scenario.
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Figure 4.13: Illustration of the resulting vehicle coordination in the d1-d2-configuration-

space for both vehicles for Scenario 1 (re-scheduling) and Scenario 2 (no

rescheduling). It shows the feasible configurations (positions of both vehi-

cles), and the resulting joint distance profile from start to end.

Re-Scheduling Illustration

The following numerical example illustrates the functionality and benefit of the re-

scheduling law presented in Subsection 4.3.3. We simulate two vehicles, v1 and v2, which

approach an intersection from different directions, pass the intersection, and merge towards

a common lane. In this example the intersection consists of a single conflict zone CZ1. For

illustrative reasons, we apply a simplified triggering set of the form

T̃ij “
 

pd1, d2q P R2
| dj ´ d

CZ1
j ď di ´ d

CZ1
i

(

, (4.21)

and re-scheduling is triggered if

`

dipt|tq, djpt|tq
˘

P T̃ij. (4.22)

The setting is depicted in Figure 4.13 by the conflict zone CZ1, the triggering manifold, and

feasibility borders which depend on the scheduling decision (keep safety distance between

the vehicles). We consider two differing scenarios:

• Re-scheduling: v1 precedes v2 until the event-trigger is activated to re-schedule the

vehicles. In this case, v2 shall precede v1 at the intersection. (Scenario 1)

• No re-scheduling: v1 precedes v2 during the complete run. (Scenario 2)

Both vehicles have different characteristics in that v1 has a reference velocity of 2.0m{s,

and v2 has a reference velocity of 3.5m{s, see also Figure 4.14.

The performance of Scenario 1 and Scenario 2 is evaluated according to its time duration

and cost performance in Figure 4.15. The time duration of both vehicles to pass the
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Figure 4.14: Evaluation of velocity and acceleration of vehicles v1 and v2 for Scenario 1

and 2. v1 has a reference velocity of 3.5m{s, v2 has a reference velocity of

2.0m{s. The rescheduling trigger appears at t “ 3.3s.
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Figure 4.16: Evaluation of the intersection performance simulation.

intersection results in an improvement of 20% in Scenario 1. Moreover, the cumulative

costs decrease by 80%. This is mainly due to the inability of vehicle v2 to attain its

reference speed of 3.5m{s, which is also reflected in its cost function.

Overall, the improvement depicted in Figure 4.15 reveals clearly the benefits of the

event-based approach.

Control-Scheduling Evaluation

To make a more general statement about the performance, we simulate 200 randomly

generated scenarios in an intersection scenario according to Figure 4.2. In each scenario 6

vehicles are placed on incoming lanes E and W towards the intersection (vehicles v1, v2, v3

on lane E, vehicles v4, v5, v6 on lane W) with random initial distances, between 15m and

65m, to the intersection zones and a minimum initial inter-vehicle distance of 5m, as

well as stand-still initial conditions. The maneuvers, i.e., right turn, straight, left turn,

are determined randomly for each vehicle and scenario. For each of the 200 test cases

five different control methods are simulated: (i) overpass, where no interaction between

vehicles is required; (ii) centralized: the result of (3.6) with a given decision m; (iii) Jacobi

4´iter, applying problems (3.13) with Algorithm 2 and lmax “ 4; (iv) Jacobi 1´iter, the

same as (iii) with lmax “ 1; and (v) traffic rules, where vehicles have to yield the right-of-

way which in these scenarios is the case for left turns (if two vehicles want to turn left at

the same time lane E is prioritized). The crossing order sequence in (ii), (iii), and (iv) is

computed according the scheduling method described in this chapter.

The overall evaluation of the 200 test cases is summarized in Figure 4.16. The left plot

shows the average percentage increase of the control methods (ii)-(v) (bars from left to

right) compared with the overpass method (i), which is the lower bound for the performance
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measures. As performance measures the average crossing time, i.e., the time it takes until

all vehicles have crossed the intersection area, and the average cumulative acceleration

effort, i.e., the sum of all absolute acceleration values from all vehicles, are evaluated. The

right plot illustrates the average computation time of the centralized computation (ii) and

methods (iii) and (iv), where each sub-stack (in 4-iter and 1-iter) corresponds to the mean

computation time of a single vehicle.

The crossing time evaluation shows similar results for methods (ii)–(iv). The crossing

time itself is not the foremost optimzation objective, which becomes visible as the average

central methods (ii) finds longer results than (iii), the 4-iter method. However, methods

(ii)–(iv) result in significantly shorter crossing times than the traffic rule method (v). The

acceleration effort is the lowest for the central computation result (ii) which is about 20%

less than in the traffic rule simulation (v). Also, a performance improvement effect of

increased inter-sampling iterations of the Jacobi approach becomes visible by comparing

method (iii) and (iv). Investigating the computation time reveals a significant benefit from

using distributed optimization. While a centralized computation consumes on average

480ms, 4 inter-sampling iterations require between 30ms and 40ms, and a single iteration

between 8ms and 9ms for each vehicle. Remember that the solution for each vehicle in

methods (iii) and (iv) can be computed in parallel. The low computation times of the

distributed implementations leave significant room for the inter-vehicle communication

within a sampling time interval of Ts “ 100ms.

4.5 Summary and Discussion

This chapter discusses a decomposition of the central MIQP coordination problem into

an integer optimization problem (upper layer), which determines the vehicle sequence,

and optimization problems with continuous variables (lower layer) that have been solved

in Chapter 3. Moreover, a concrete solution instantiation is presented. It is based on

the formulation of a resource-constrained project scheduling problem (RCPSP), which is

derived aligned to the example of an intersection crossing scenario.

The decomposition ensures a scalable implementation of the non-convex overall coordina-

tion problem. This argument is further supported by introducing event-triggered decision

updates, which reduce computation and communication effort, while the computation ef-

fort can be adjusted through a time-scale abstraction mechanism. The scheduling-based

sequence decision’s interaction with the underlying distributed control scheme is discussed

and shown to be feasible for the lower control layer. Thus, it contributes to the Safety

requirement. Efficiency is targeted through the objective of a high vehicle throughput

representing a traffic coordination unit’s interest. The Privacy requirement is considered

since pure trajectory data needs to be exchanged but no detailed model information.

A notable strength of scheduling strategies is the seamless consideration of precedence

constraints, which is often challenging in classical optimal control formulations [ZGWF17;

KMEH18]. The central formulation in the upper layer requires approximative adjustments

to remain scalable for large coordination problems. Therefore, the proposed time-scale

separation enables to adjust the problem size of the central upper layer sequence decision.

Nevertheless, choosing the upper layer time-scale too coarse leads to the risk of losing
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coordination performance. Additionally, changing upper layer decisions can lead to non-

smooth scenarios in the lower control layer, which correlates with the loose dynamical

coupling between the layers. Tighter coupling of layers is proposed in [HZGF18], where

authors approximate the sequence decision of the original non-linear problem with an

MIQP. This can lead to smoother coordination scenarios, but the MIQP limits the problem

scalability.
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Integration Platform

Giving guarantees for autonomous vehicles’ safe operation is not feasible through real-world

testing, as millions of test kilometers would be required. To overcome this, a large portion

of the testing effort has to be moved to virtual test environments, where system safety

and performance can be evaluated using scenario-based approaches. An important goal –

and at the same time a major challenge – is to ensure reproducibility of the test scenarios,

automation of the test process, as well as modularity such that a seamless integration to

different test scenarios and environments is enabled. It is an open problem in the field

of autonomous driving (AD) testing to extend single-vehicle testing to the validation of

multi-vehicle scenarios, including distributed coordination control with vehicle-to-vehicle or

vehicle-to-infrastructure (V2X) interaction (cp. Validation and Implementation challenge

from Chapter 1).

A detailed co-simulation setup to test autonomous driving algorithms in high-fidelity

simulation environments is presented in [SBA19; SHA+18]. Such virtual environments

were used to investigate safety guarantees in the projects PEGASUS [WLFM19] and

ENABLE-S3 [LWIG19], which tackled the unification of scenario-based testing and the

automation of the testing process, respectively. To make predictions about the real-world

behavior of functions tested in simulation, the first step can be algorithms in miniature

vehicles [FHG+12]. However, finally, it will still be necessary to conduct real vehicle tests.

This, in turn, is too expensive and time consuming for a complete multi-vehicle setup.

Therefore, mixed-reality test frameworks have been proposed in [QAZ+10] to verify an

autonomous intersection crossing protocol using one real vehicle and virtual opponents.

This strategy represents a scalable testing method to make conclusions about the control

strategies’ real-world behavior given a complete vehicle fleet under test. It remains an open

problem to ensure reusability for other use cases and the modularity of the integration.

In this chapter, we present a platform for automated high-fidelity simulation of cooper-

ative driving scenarios. Rather than being tailored to a single autonomous vehicle, it can
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test distributed control algorithms for multi-vehicle setups. Thereby, agents can be added

or removed from the distributed system in a dynamic and plug-and-play manner. Further-

more, changes in the environmental setup can be considered flexibly. We extend the virtual

test platform for multi-vehicle simulation with a real-vehicle, i.e., a mixed-reality vehicle-

in-the-loop (ViL) test. Essential is the modular integration, which contributes to future

seamless test-platforms using (defacto) standards for interfacing and scenario description.

It is, thus, a cost and time-efficient way for validating multi-vehicle systems.

Control strategies developed in this thesis will be applied and evaluated in Chapter 6

using the presented platform from this chapter. The application will be demonstrated on

the use case automated valet parking (AVP), which is introduced and discussed regarding

its significance for multi-vehicle coordination in the following section.

This chapter is based on results published in [KMM+20; KDM+20; EKM+20].

Outline

Section 5.1 describes the AVP use case. Section 5.2 introduces the test architecture of the

virtual test platform and its implementation. This architecture is extended in Section 5.3

toward mixed-reality testing. The chapter is concluded in Section 5.4.

5.1 Use Case Automated Valet Parking

An automated valet parking (AVP) scenario describes the use case where a driver drops

off his/her car in front of a parking area or drop-off zone and authorizes a parking area

management (PAM) infrastructure system to take control in order to autonomously guide

the vehicle through the parking area and into a designated parking bay. Similarly, the

vehicle is coordinated back to a pick-up zone after a respective user request. Figure 5.1

illustrates an AVP scenario. The system ensures safe and efficient vehicle coordination and

storing through collaborative maneuvers, computed in a distributed fashion in vehicles and

the infrastructure unit. Such implementations are expected to be available at airports,

shopping malls, and large parking areas next to places of interest. As the driver exited

the vehicle already before starting the process, vehicles can be parked closer to each other,

which increases the vehicle capacity of parking areas. Additionally, the user saves the time

of finding an empty parking bay and maneuvering into it.

From a control perspective, the size of a typical coordination space in an AVP scenario

makes it relevant to apply modeling strategies that consider both local vehicle-level and

traffic coordination aspects. Algorithms applied in AVP systems need to fulfill the Safety,

Privacy, Cooperation, and Scalability requirement from Chapter 1. Safety to avoid ac-

cidents in parking areas, Privacy as vehicles from different manufacturers will interact,

Cooperation to avoid deadlock situations in the parking area, and Scalability to take large

parking areas into account.

Autonomous vehicles without a driver on board have to fulfill the SAE (society of auto-

motive engineers) Level 4 safety requirements, which means they can operate under certain

environmental conditions, referred to as the operational design domain (ODD). AVP is a

strong and representative use case for current AD development since it is possible to de-
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Figure 5.1: Automated valet parking (AVP) scenario with parking area management

(PAM) infrastructure and distributed multi-vehicle coordination.

fine and influence a clear ODD definition, which is difficult for general AD scenarios. For

example, in an AVP environment, pedestrians can be allowed or restricted to enter. Man-

ual driven vehicles can be considered to interact with autonomous parking vehicles or be

restricted to separated parking areas. Alternatively, manual driven vehicles can be trans-

ported by robotized platforms that interact with other automated vehicles. Environmental

details can be known a priori, such as a detailed map of the parking lot or constant weather

conditions in indoor lots. Moreover, the low-speed restriction in parking environments sup-

ports providing safety guarantees and will contribute to a faster homologation procedure

than high-speed AD scenarios. Finally, there is a close relation between AVP scenarios and

other applications, such as automated guided vehicles (AGVs) in warehouses or airplane

taxiing at airports. This makes the developed methodologies applicable to a wide range of

industry-relevant use cases.

5.2 Integration in Virtual Test System

The multi-vehicle coordination algorithms are integrated into a test system to tackle the

Validation and Implementation challenge from Chapter 1. This virtual test system is

capable of automatically conducting and evaluating virtual experiments of AVP scenarios.

It represents the baseline architecture used in the ENABLE-S3 project [LWIG19]. In the

following, the test architecture and its components are introduced. Figure 5.2 illustrates

the architecture setup.
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Figure 5.2: Architecture of automated test system.

5.2.1 V&V and Test Automation

The topmost level, i.e., the verification and validation (V&V) management, contains

databases with test scenarios, requirements that have to be fulfilled, and a set of real-

world scenes.

These databases are accessed and potentially modified by the underlying test automation

layer responsible for conducting the test in an automated manner. It generates synthetic

scenarios by using the scenario database, then it passes the scenarios one by one to the

test platform and triggers its start. The resulting scenario data contains information

about the generated valet parking environment and a set of initial conditions. During the

tests, an observer records the scenario, and after completion, the traces are evaluated in

the scenario evaluation module. This evaluation checks the fulfillment of defined safety

requirements. The test is passed if all the requirements were met by the system-under-test

(SUT), i.e., the implemented algorithms in the test platform layer. A final evaluation

classifies the conducted test run according to its degree of reality by comparing it with

real-world scenes. Note that the non-passed test cases can be stored and used to evaluate,

re-develop, or adjust the SUT algorithms. They can also be used for an adaptation of the

scenario requirements. The main target of this procedure is to accelerate the development

process.

Remark 5.1 (Test system capabilities). An essential goal of testing strategies described

in this section (cp. Figure 5.2) is to conduct scenario-based testing to achieve a required

test case coverage and an increased test speed. This procedure shall support the safety

argumentation for AD functions. This thesis’s focus lies in the derivation and integration

of multi-vehicle coordination strategies such that they are applicable in such automated

test systems.

5.2.2 Virtual Test Platform Architecture and Implementation

The bottom layer of the test system defines the test platform, which is responsible for

simulating the parking processes for the provided scenarios. Its detailed architecture is
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Figure 5.3: Virtual test platform.

presented in Figure 5.3. It consists of a high-fidelity simulation environment and the

SUT, a combination of the PAM system and the distributed autonomous vehicle control

systems. The high-fidelity virtual environment simulates all vehicles’ behavior and possibly

other moving objects based on their respective dynamics models. The simulation uses

an environment model, which is provided by the scenario generation tool and consists

of map data and a visual database. The virtual simulator provides a visualization of

the tested scenario and the option of modeling sensor behaviors, e.g., LIDAR sensors in

the environment. The components of the SUT with their respective functions will be

discussed in Chapter 6. To test the growing complexity of distributed systems, it is crucial

to use a systematic way of integrating the system functions. It should be possible to

test any changes in the distributed system seamlessly. Changes may, for example, occur

in the test environment or the system components. To account for this, we propose the

implementation method described below, utilizing emerging standards for road network

topology descriptions and a variable amount and type of sub-systems.

The system components in Figure 5.3 are embedded in a Robotic Operating System

(ROS) [Qui+09] network. The PAM unit and each vehicle controller are realized as separate

ROS-nodes. We used the VTD1 tool to simulate the parking scenario, and implemented a

VTD-to-ROS unit to read data from and a ROS-to-VTD unit to send data to the virtual

environment. The scenario generation unit in Figure 5.2 provides a map in the de facto

standard format openDRIVE [DSG10], populated with a certain number of vehicles and a

scenario file, which contains initial scenario conditions. The generated openDRIVE map

1https://vires.com/vtd-vires-virtual-test-drive/
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Figure 5.4: Simplified overview of the ROS network integration with connection to the

simulation environment VTD, and the scenario generator output.

is interpreted by the VTD environment and is at the same time used by the PAM ROS-

node. The scenario file specifies the vehicles’ IDs and distinguishes between each vehicle’s

status, i.e., dropped-off, parked, or pick-up-requested. If a vehicle has the status parked,

it is not handled by the PAM, whereas dropped-off and pick-up-requested vehicles will be

controlled by the SUT during the test scenario. The PAM ROS-node is programmed in

C++ such that it can handle an arbitrary number of vehicles according to the scenario

file. We used MATLAB and Simulink to design and develop the vehicle control unit,

i.e., the lateral control and the longitudinal MPC. The MPC law is converted into a

quadratic programming (QP) formulation and passed to the integrated qpOASES solver

[FKP+14]. The controller setup is then exported as a standalone C++ ROS-package

using MATLAB’s Robotics System Toolbox and Embedded Coder. In order to achieve the

simulation of several vehicles, we use the ROS-launch concept. Thereby, several ROS-nodes

with varying names and parameters can be launched using the same ROS-package. The

necessary extensible markup language (XML) based launch-file is automatically generated

based on the scenario-file information. This method enables the simulation of a varying

number of vehicles in different simulation scenarios. Figure 5.4 illustrates the described

setup and presents a simplified structure of the ROS network, as well as its connection to

the simulator and the test management layer. Table 5.1 lists the used message types and

explains details for the most important messages transferred within the test platform. The

first four messages in the table are defined using standard ROS-message types, whereas

the coordination message is a user-defined ROS message tailored to the proposed MPC

problems. For communication with VTD (VTD bus), internal runtime data bus (RDB)

messages are used. Note that all ROS messages in the table are published separately in

the namespace of each vehicle.
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Table 5.1: Explanation of the most important ROS messages in the multi-vehicle control

framework.

Signal name in Figure 5.4 Message type Explanation

pose geometry msgs/Pose position and heading

measurements
std msgs/Float64

std msgs/Float64

velocity

heading rate

path nav msgs/Path waypoints from path planner

driving command
ackermann msgs/

AckermannDrive
steering and acceleration input

coordination ctrl/Ctrl msg
dist. predictions of predecessor,

refs. and constraints for MPC

VTD bus Runtime Data Bus (RDB) VTD interaction at run-time

5.3 Mixed-Reality Testing

This section extends virtual test system from the previous section to a mixed-reality sys-

tem. This means that a real test vehicle, driving on a testing-ground, will interact with the

remaining virtual simulated vehicles. This testing method enables conclusions of the al-

gorithmic behavior, including real (vehicle) hardware, without the necessity to implement

the complete multi-vehicle setup in a real test environment. To this end, the Scalability of

the implementation can be preserved.

5.3.1 Real Vehicle Integration

The virtual test platform is modified by removing one of the virtual vehicles in the scenario

and integrating a real test vehicle, that becomes part of the SUT control loop, instead.

Figure 5.5 demonstrates the extension with a real vehicle. This real vehicle will operate

on an empty test ground while its environment is modeled in the high-fidelity simulator.

Therefore, the position of the real vehicle will be projected into the virtual environment.

This requires a sensing and localization module, which we explain in Section 5.3.2. The

planning and control unit corresponds to the virtual opponents’ implementation, which

implies a collaborative interaction between real and virtual vehicles.

In the following, we provide an overview of the real vehicle integration into the test

setup.
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Figure 5.5: Mixed-reality test architecture.

Test-Vehicle Hardware

An Audi A4 car is used to provide a base platform for the real vehicle. All modifications

have been implemented as modules attached to the baseline series production vehicle.

Required low-level control functions are already available, embodied by electric power

steering (EPS), brake actuation by the electronic stability program (ESP), and acceleration

through the adaptive cruise control (ACC) electronic control unit (ECU). Parking brake

and drive mode selector are also realized in a “by-wire” implementation. The vehicle setup

is illustrated in Figure 5.6.

The communication and handling of signals between the virtual simulation and the real

vehicle are enabled via a dSPACE MicroAutoBox II (MABXII), which is connected to

the vehicle’s FlexRay and controller area network (CAN bus). A Simulation PC, running

the virtual simulation and executing the planning for the vehicle’s trajectory, is interfaced

through a network router with the MABXII to access the vehicle hardware. To precisely

localize the vehicle in the parking environment, a LIDAR delivers positioning data to the

PC.

The communication topology is split into different levels. Starting from the vehicle,

FlexRay, CAN, and analog lines are connected to a switching box. These connections

can be interrupted by an emergency switch, which cuts all connections and sends an ana-

log command to activate an emergency braking maneuver. From the switching box, two

FlexRay devices are connected to the FlexRay bus and the CAN bus, one for controlling

the lateral movement via the electric power steering (EPS) and one to control the longitu-

dinal movement via the adaptive cruise control (ACC). Furthermore, a CAN-Log device is

attached to the vehicle. It can access the CAN bus and provides D/A-converters to con-
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Figure 5.6: Schematic network diagram of the vehicle integration.

trol body and auxiliary functions such as the indicator lights, brake light, gear selection,

and parking brake. The MABXII acts as a translator between the vehicle interfaces and

the simulation PC via an ethernet connection. The same safety functions as in the series

production car are used since the access to the vehicle is a manipulation of existing ECU

signals. Every signal can be overridden by the driver’s commands in the same way as a

driver would counter an unwanted behavior of the factory-installed assistance systems.

Test-Vehicle Software

The software to operate the vehicle is built to mimic a ROS node as a simulated car

in the virtual world. Therefore, a ROS bridge handles the communication between the

simulation PC and the MABXII. This is performed by sending UDP packages to exchange

data. Within the MABXII, these values are converted to the control parameters of the

vehicle. Since the control parameters are unique to the specific vehicle, the translation

is implemented as abstract as possible in the toolchain. This enables the ROS bridge

to be reused for other test vehicles. As the simulated vehicles’ operation is simplified in

comparison to a real car, the MABXII takes over several macro functions. While simulated

vehicles react directly to certain signals such as the acceleration, the MABXII has to

conduct more complex actions for the real vehicle, e.g., the corresponding drive mode

selection or switching between the throttle and brake actuation.
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5.3.2 Sensing and Localization

For virtual vehicles, the ground truth position is available from the simulator. In contrast,

for the real vehicle, the position has to be measured by on-board sensors to be projected

into the virtual environment. We briefly sketch the applied set-up and implementation to

provide a complete picture of the test system integration.

The real vehicle’s localization algorithm is based on an Extended Kalman Filter (EKF,

[TBF05]) that fuses odometry measurements with LIDAR data. The odometry informa-

tion consists of vehicle speed and steering angle, captured from the real vehicle’s CAN

bus. These values are used as inputs for a kinematic bicycle model, which is integrated

numerically to estimate the vehicle’s position and orientation on the driving plane at 40Hz.

This step is usually called model update. The kinematic bicycle is considered accurate for

low-velocity applications, which is the case in parking lots.

The model updates tend to drift as time advances. Therefore, LIDAR data is used

to correct the position estimate, commonly referred to as measurement update. A SICK

NAV245 LIDAR sensor performs a 2-D scan and produces a list of detected landmarks,

which have been mounted at the parking area and have been previously mapped. The

constellation of detected landmarks is compared to the pre-existing map to deduce the

vehicle’s position and orientation, which would produce the observed constellation. Finally,

the EKF uses a weighted average between the two estimates (model-based and landmark-

based) to produce the corrected localization estimate of the vehicle in the parking lot.

5.4 Summary and Discussion

To automatically test multi-vehicle coordination scenarios, this chapter introduces a multi-

level test architecture for virtual scenario simulation and evaluation. An upper-level man-

agement layer can automatically generate AVP test scenarios based on several databases

and simulate them in a lower-level test platform containing the AD algorithms. Each unit

of this test platform is implemented as a separate node to obtain the modularity required

for multi-vehicle problems. A ROS middleware is suggested to connect these nodes in the

test platform. The platform can be seamlessly extended with a real vehicle to achieve

mixed-reality testing. This enables a scalable and cost as well as time-efficient safety and

performance evaluation of control algorithms for multi-vehicle coordination applications.

Modularity is an essential feature for the reusability of test platforms in other use cases

and entities. Moreover, the reproducibility of results is important for a test case evalu-

ation. The robot operating system (ROS) middleware concept is a flagship example for

algorithmic interfacing between several (control) units. It lacks, however, reliability what

might lead to a loss of reproducibility. Extensions toward middlewares with reliable com-

ponent communication, e.g., ROS2, has to be considered for next-generation platforms.

Modularity can be improved by standard interfaces such as functional mockup units/in-

terfaces (FMUs/FMIs) [BOA+11; BOA+12], e.g., for dynamics and simulator modules.

To support the standardization and, consequently, modularity, open-source efforts such as

openADx2 will play a key role in future AD platform development.

2wiki.eclipse.org/OpenADx
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Test platforms, such as introduced in the previous chapter, play an essential role for vali-

dating multi-vehicle algorithms. Additionally, developed algorithms need to be applicable

to such platforms to reach the state of production (cp. Validation and Implementation

challenge from Chapter 1). Therefore, this chapter presents the algorithmic implemen-

tation and experimental evaluation using the test-platforms introduced in the previous

Chapter 5, both for virtual and mixed-reality testing. We discuss the distributed multi-

vehicle coordination control design applied to the automated valet parking (AVP) use case.

Concepts for longitudinal control have been derived in Chapters 3 and 4 by assuming per-

fect lateral path tracking capabilities. To enable the implementation into high-fidelity

simulation platforms and real test vehicles, extensions and adaptations to previously dis-

cussed concepts are required. First, it remains to discuss path planning and lateral control

strategies to cope with the perfect tracking assumptions (cp. Assumption 2.1 and 2.2).

Second, limitations on inter-module communication for platforms described in Chapter 5

have to be considered.

For parking environments, Dolgov et al. [DTMD08; DTMD10] introduce graph-guided

(semi-structured) path planning, which rewards the planner staying close to the given

structure in the parking area. Additionally, planning and control for AVP have been

proposed hierarchically in [KMM+20; LJM19]. We extend these ideas toward a layered

semi-structured path planner, where an infrastructure-located layer determines drivable

areas and a vehicle-located layer determines a feasible path within respective areas and

control signals for lateral path tracking. Moreover, we discuss the implementation of the

distributed control concept – with central control coordination and local vehicle control

functions – on the example of AVP. It contains a seamless extension of the conflict zone

coordination concept from Chapters 2 – 4 towards a multi-intersection scenario in the AVP

environment.

This chapter is based on results published in [KMM+20; KDM+20].
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Figure 6.1: Semi-structured path planning for parking environments.

Outline

Section 6.1 introduces the applied algorithms for the AVP experiments. These are path

planning, distributed coordination control, and lateral tracking control. In Section 6.2, we

discuss the experimental setups for virtual and mixed-reality testing, as well at the results,

respectively. Section 6.3 discusses concluding remarks.

6.1 Distributed Planning and Control for AVP

Referring to system-under-test (SUT) components from Figure 5.3, mission planning is not

within this thesis’s scope. Its decisions can be computed independently of the proposed

control strategies. Therefore, in what follows, we assume a given mission decision, which

is - from a control perspective - reducible to the target positions for each coordinated

vehicle. In the hierarchical design, the path planning decision is also decoupled from the

longitudinal control coordination and could, in that sense, be an assumed component.

However, its result is relevant for enabling the collision avoidance guarantees derived in

the methodological part of the thesis. Therefore, we introduce the applied path planning

conceptually in the following.

6.1.1 Semi-structured Path Planning

The layered semi-structured approach uses a routing algorithm to extract a drivable cor-

ridor from the openDRIVE defacto map standard [DSG10]. Next, it computes a feasible

path within this corridor, applying a path planner that takes the non-holonomic vehicle

model into account. The guarantee that a vehicle operates solely in its allocated corridor

will be utilized by the parking area management (PAM) infrastructure to ensure the valid-

ity of longitudinal safety guarantees. Figure 6.1 illustrates the hierarchical path planning

concept.
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Infrastructure-supported Planning

After receiving the automated vehicle’s initial and goal pose, the path planning module of

the PAM first computes the shortest path based on the lane network topology stored by

the infrastructure. This topology encodes drivable lanes, including their length, direction,

and their interconnection with each other. Due to the limited size of parking lots, we

apply a Dijkstra algorithm to find the optimal solution (with respect to the route length)

in this planning step [Dij+59]. The obtained shortest abstract path results in a sequence

of lanes and intersections. These are then refined into an occupancy grip map that encodes

the assigned drivable area of an automated vehicle (cp. Figure 6.1). It is computed by

taking into account the geometric data of the lanes and intersections. The drivable area

for the automated vehicle is potentially enlarged at intersections and in the parking bay’s

vicinity to facilitate parking maneuvers. This means that, wherever the vehicle potentially

leaves its own driving lane, conflict zones CZs are defined. Thus, longitudinal coordination

can be applied for these areas, and derived safety guarantees become valid. The obtained

occupancy grid map (OGM) is then forwarded to the local planning module.

Local Vehicle Planning

In the second planning phase, an unstructured path planner computes a feasible reference

path within the provided corridor (in the OGM). As a vehicle model is utilized for this, it

is desirable to compute this locally in the vehicle.

The commonly used conventional A* search algorithm connects two points in an OGM

without colliding and in the shortest way by linking together the center of cells [DTMD08].

Here, we apply the hybrid A* algorithm, an extension of the A* algorithm to deal with non-

holonomic behavior and continuous path generation [DTMD10]. The algorithm utilizes the

provided OGM together with start and goal coordinates, i.e., pxs, ys, θsq and pxg, yg, θgq,

respectively, where x and y refer to the vehicle’s global position and θ its heading. First,

the planner inflates the provided OGM (i.e., shrinks the drivable corridor) to take the

vehicle’s dimension into account. Next, it searches through the map by extending the

current node using possible steering angles until the final point is reached. The algorithm

is guided by multiple costs, represented by V pnq, and a heuristic, hpnq, to obtain desirable

path quality and fast exploration. The costs include computed cost from the start to the

current node and the objectives path length and steering effort. The heuristic is used to

drive the search towards the goal. The algorithm considers the vehicle’s non-holonomic

behavior so that the vehicle steers to the goal with a proper heading. Consequently, the

hybrid A* algorithm selects the next node to expand by solving the following problem

min
nPOpenSet

hpnq ` V pnq, (6.1)

where OpenSet is the set of feasible candidate nodes in the drivable area of the OGM.

Moreover, h and V are their heuristic and costs values, respectively. As can be seen, there

is a compromise between the heuristic and the cost in expanding the node, influencing the

path’s quality and computation time.
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Remark 6.1 (Support for safe coordination). Section 3.3.4 and Section 3.3.5 discuss

a safe coordination guarantee for vehicles crossing shared conflict zones using the co-

ordination model from Section 2.3 and Algorithm 2. Collision avoidance is ensured for

perfect path tracking capabilities and negligence of the vehicle skew when entering a con-

flict zone, stated in Assumption 2.1 and Assumption 2.2, respectively. In real systems,

both assumptions might be violated. A violation of Assumption 2.2 can be compensated

through an enlargement of the considered conflict zone or an increased vehicle length pa-

rameter. The semi-structured path planning strategy in this section mitigates the effect

of a potential tracking error and therefore preserves the safe coordination guarantees.

The infrastructure planer determines drivable tubes. It defines conflict zones where such

tubes intersect, and the local vehicle planning modules determines a kinematically feasi-

ble path according to the private vehicle model within allocated driving tubes. Thus, it

shall be ensured that the vehicle actually remains within the allocated drivable tube and

that the tracking error can be kept small, which enables a safe inter-vehicle coordination

procedure according to Section 3.3.4 and Section 3.3.5.

6.1.2 Infrastructure Control Coordination

This section describes the control coordination implementation of the AVP system. Fig-

ure 6.2 summarizes the functionality of the sub-components and illustrates the signal flow

between them.

Based on predefined vehicle paths and trajectory predictions from local vehicle control

units the vehicle adjacency will be determined with the support of a route graph. This

information is used to construct distance constraints for vehicles which will result in a

safe overall coordination procedure. It is achieved by the following steps:

Conflict Zone Detection

An essential class of conflict zones are located at all intersection areas in the parking

environment. Figure 6.3 shows possible paths in an intersection area and an exemplary

conflict zone distribution. It is divided into five areas by grouping nearby points, where the

vehicle paths either cross, merge, or diverge, thus forming potential collision points. These

areas are labeled CZ i with i P I1:5. The conflict zones of all intersections are gathered

in the set Iinter “ tCZ1, ..., CZ5NI
u, where NI is the total number of intersections in the

parking environment. In addition to the intersection areas, we define a set of conflict zones

Iend at the end of each vehicle’s path where vehicles conduct either the final maneuvering

into the parking bay or the hand over to the user. Thereby, the cardinality of the set Iend
is |Iend| “ Nv and Nv indicates the total number of moving vehicles in a coordinated

parking scenario. Lastly, we gather all these conflict zones in the set

I “ Iinter Y Iend. (6.2)

The previous steps are carried out before the start of the coordination procedure and the

locations of the conflict zones in the set Iinter depend on the geometry of the parking

environment. We assume that paths are tracked accurately such that a vehicle’s bounding
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Mission Planning Path Planning

Conflict Zone Detection and Graph Construction:

Parking Area Management (PAM)

Adjacency Definition:

Coupling Constraint Construction:

conflict zones based on map and path data;
graph representing vehicles’ routes in current scenario

seq. of vehicles in each conflict zone; dependencies
between vehicles based on the crossing sequence

closest dependent vehicles from adjacency matrix in
distance-based coupling constraint

map, start, goal
map
path @vi P V

graph Groute
pose @vi P V

adjacency matrix Aadj

pose @vi P V

Control Coordination

Planning

Vehicle Control

v1 v2 ...

Uplink:
distance predictions to end of own path:
dip: |tq “ pdipt` 1|tq, ..., dipt`M |tqq

Downlink:
coupling constraint for local distance state:
cipdipt`k|tqq

vNV

Vehicle Control Vehicle Control

Figure 6.2: Distributed control system architecture and signal flow of the automated valet

parking system.

CZ4

CZ3CZ2

CZ5

CZ1

Figure 6.3: Intersection area with all possible paths and conflict zones tCZ1, ..., CZ5u.
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box does not laterally pass a conflict zone other than its allocated path. The elements in

I will serve as reference zones for coordinating the vehicles passing through a zone. This

enables coordinating the vehicles approaching from different sides (intersection scenario)

and vehicles coming from the same lane (vehicle following scenario) towards a critical zone

CZ i P I.

Remark 6.2 (Conflict zones). The set in (6.2) can be extended by further zones, CZ is,
at arbitrary positions where collisions between vehicles can occur. For example, this is

the case if a vehicle crosses an accommodating lane in tight areas or due to obstacles.

The coordination procedure is not affected by this action.

Graph Representation

The set

V “ tv1, v2, . . . , vNvu (6.3)

contains all vehicles that are coordinated by the PAM, where each vehicle vi P V is labeled

with a unique ID. Now, we can define a multigraph Groute “ pVroute, Erouteq with vertices

Vroute P I and edges Eroute “ Vroute ˆ Vroute, labeled with vi. An edge-vertices pair in

Groute indicates that a vehicle’s path connects two conflict zones, while the edge direction

represents the driving direction of vehicle vi between those zones. Every time a vehicle

has passed a conflict zone CZj P I the corresponding edge is removed from Groute. During

execution time, the sets I,V , and Groute are continuously updated to cope with changes,

such as vehicle poses and picked-up or newly dropped-off vehicles. This implies that the

sets are time-varying.

Adjacency Definition

The resulting Groute is used to determine a set of crossing orders

O “ toi “ pvj, vk, ...q | @i P I1:|I|; j, k P I1:Nv

(

. (6.4)

It represents the logical sequence in which vehicles must cross the respective conflict zone,

while the actual timing, i.e. the resulting trajectory, will be determined by the distributed

longitudinal control laws.

Lastly, we determine the adjacency matrix Aadj “ paijq
NvˆNv , with aij P Z, and

Z “
 

pm1, ...,mp, ...,mqq Y H |q P N, @mp P I
(

. (6.5)

This implies, aij defines a dependency between two vehicles vi and vj if vi is a successor

of vj in any scheduling order ok, where i, j P I1:Nv , i ‰ j, and k P I1:|I|. Thus, an element

aij “ CZk of Aadj is labeled with the conflict zone both vehicles will pass through. In

those cases where vehicle vi is a successor of vj for several conflict zones, for example if vi’s

route partially overlaps with that of vj, aij becomes an n-tuple, i.e. aij “ pCZk, CZ l, ...q
with k, l P I1:|I|. In the following we refer to the first element of a non-empty n-tuple by

using the notation aij, which is the closest conflict zone vi and vj have in common.
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Figure 6.4: Example scenario with six vehicles and pre-computed paths. Labels at inter-

sections are the conflict zone IDs. Scheduling orders for affected conflict zones

are shown on the right.

Example 6.1. In Figure 6.4 we present an example of a coordination scenario with the

vehicle set

V “ tv1, v2, . . . , v6u (6.6)

and four intersections leading to the conflict zones

I “ tCZ1, CZ2, . . . , CZ20u. (6.7)

The example illustrates the states of the coordination process at a certain time instant.

The paths, provided by the path planning unit, are marked with black lines and the

resulting route graph Groute is shown in Figure 6.5. Each conflict zone CZ i P I that a

vehicle will pass is represented by a vertex and the vehicles’ paths are represented by

labeled edges. The scheduling unit determines an order oi for each vertex. The resulting

ordering is shown in Figure 6.4 and finally, the scenario’s adjacency matrix is given as

follows:

Aadj “

v1 v2 v3 v4 v5 v6
¨

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‚

´ CZ8 CZ19,15 v1

´ v2

´ v3

CZ17 CZ20 ´ v4

CZ20 ´ CZ17 v5

CZ17 ´ v6

.

Remark 6.3 (Vehicle sequence decision). The resulting adjacency matrix is determined

based on the crossing order set (6.4). This set results from methods discussed in Chap-

ter 4, where a scheduling formulation is applied to find a close-to-optimal and feasible

crossing sequence. It can be considered in parking areas to introduce separated clusters
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Figure 6.5: Graph representation of the vehicles’ routes (Groute) with all conflict zones,

that will be passed, represented as vertices in the set Vroute and path segments

between connecting vertices as edges in Eroute labeled with the respective vehicle

ID. Scheduled orders oi are defined in Figure 6.4.
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such that one cluster groups several conflict zones. Thus, a sequence decision can be

computed in parallel for each cluster. In Figure 6.4, each intersection can be a separate

cluster, which ensures that the computation remains scalable also for large areas.

Considering parking areas where vehicles drive with low speed and have similar dynamics,

even pure heuristic-based sequence decision can deliver sufficiently performant results.

However, it has to be ensured that deadlock situations are avoided, which is ensured

by-design in the scheduling solutions from Chapter 4.

Coupling Constraint

Given the adjacency definition Aadj, coupling constraints for each vehicle’s MPC problem

are determined by the PAM. During the coordination, each vehicle, vi P V , shares the

prediction vector of its distance state,

dip: |tq “
`

dipt` 1|tq, dipt` 2|tq, ..., dipt`M |tq
˘

P RM , (6.8)

with the PAM. The state di is the vehicle’s distance to the end of its path, and M is the

prediction length. Transformation T pCZj, iq defines the distance from the position where

vi’s path enters a conflict zone CZj to the end of its path. Now, the coupling constraint

ci for each vehicle vi P V is calculated by determining the most critical predecessor vehicle

with

j˚k “ argmin
jPI1:Nv

!

dipt` k|t´ 1q ´
“

T paij, iq ` djpt` k|t´ 1q ´ T paij, jq
‰

)

, (6.9)

where k P I1:M´1, and aij refers to the conflict zone at row i and column j of Aadj. Given

Equation (6.9), the coupling constraint is given by

ci
`

dipt`k|tq
˘

“ dipt` k|tq ´
“

T paij˚k , iq ` dj
˚
k
pt` k|t´ 1q ´ T paij˚k , j

˚
k q
‰

, (6.10)

with k P I1:M´1.

For each predicted time step t ` k, ci
`

dipt`k|tq
˘

is the closest distance of all prede-

cessor vehicles of vi with respect to their common conflict zone and information from

the previous time step, t ´ 1. To account for the one-step time shift from t ´ 1 to t,

ci
`

dipt`M |tq
˘

“ ci
`

dipt`M´1|tq
˘

is kept constant at the end of the horizon. Figure 6.6

illustrates the coupling constraint formulation in (6.9) and (6.10) for a predecessor vj of

vehicle vi with respect to the conflict zone aij at time step t` k. Note that the procedure

is the same if vehicles approach the conflict zone from the same lane.

Remark 6.4 (Privacy of coordination procedure). Assuming that the PAM is a trust-

worthy unit, Privacy can be ensured by the proposed coordination procedure. Vehicles

share their local predictions (6.8) with the PAM and receive a constraint vector (6.10)

containing relevant predictions from other vehicles. However, a vehicle does not need to

know which neighboring vehicle the information originates from exactly as the necessary

transformation is done in the PAM unit. Lastly, (6.10) can be a composition of varying

neighbor vehicles limiting the possibility to conclude about a certain vehicle’s behavior.
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aij “ CZ‚

vi

djpt`k|t´1q´T paij, jq

T paij, iq

dipt` k|tq

vj

Figure 6.6: Illustration of the coupling constraint formulation using an example with one

conflict zone CZ i, and two vehicles approaching from different directions.

6.1.3 Longitudinal Motion Model and Control Design

The longitudinal control is in line with derivations from Chapter 3. Remark 6.5 below will

discuss adjustments with regard to the DJOR strategy from Chapter 3.

A vehicle vi is modeled using the states di, vi, and ai. The distance state di is as defined

in the previous section, and states vi and ai are the velocity and acceleration of vehicle

vi, respectively. The continuous linear-time-invariant (LTI) dynamics of the longitudinal

vehicle motion is summarized as:
¨

˝

9di
9vi
9ai

˛

‚

loomoon

9xlgc,i

“

¨

˝

0 ´1 0

0 0 1

0 0 ´ 1
Tact
i

˛

‚

looooooooomooooooooon

Alg
c,i

¨

˝

di
vi
ai

˛

‚

loomoon

xlgc,i

`

¨

˝

0

0
1

Tact
i

˛

‚

loomoon

Blg
c,i

ui, (6.11)

where T acti is a time constant for throttle and brake actuation, and ui is an exogenous

control input, which represents the desired acceleration.

The longitudinal MPC law is computed solving the following optimization problem

L˚i “ min
ui

M
ÿ

k“1

}∆refx
lg
i pt` k|tq}

2
Qi
`

M´1
ÿ

k“0

}uipt` k|tq}
2
Ri

(6.12a)

s.t.

xlgi pt` k ` 1|tq “ Algi x
lg
i pt` k|tq `B

lg
i uipt` kq k P I0:M´1 (6.12b)

xipt|tq “ xiptq (6.12c)

vmin ď vipt` k|tq ď vmax k P I1:M (6.12d)

ai,min ď aipt` k|tq ď ai,max k P I1:M (6.12e)

ci
`

dipt` k|tq
˘

ě ds k P I1:M . (6.12f)

Here, xipt` k|tq is the state prediction for time t` k at the current discrete time step t.

The model (6.12b) is attained by discretizing (6.11) using a sampling time T lgs . The
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optimization variables vector is of the form ui “
`

uiptq, uipt ` 1q, ..., uipt `M ´ 1q
˘

P RM

with the horizon length M . After optimizing (6.12) in each time step t, the control input

uiptq is applied to the vehicle, and the procedure is repeated in consecutive time steps

in a receding horizon fashion. The objective function in (6.12a) consists of a state error

cost and a control input cost. The longitudinal reference vector in the state error vector,

∆refx
lg
i pt` k|tq “ xlgi pt` k|tq ´ x

lg
i,ref , is of form

xlgi,ref “ pdi,ref , vref , 0q
T , (6.13)

with the reference velocity vref and the reference distance

di,ref “

#

0 if vi has no predecessor

ds ` dslack if vi has a predecessor.
(6.14)

If the reference distance in (6.14) is considered in the optimization problem, we add an

additional slack value dslack to the inter-vehicle safety distance ds in order to avoid a

reference at the constraint bound. The weighting matrices in (6.12a) are

Qi “

¨

˝

qi,11 0 0

0 qi,22 0

0 0 qi,33

˛

‚P S3ˆ3
0 , and Ri P S, (6.15)

with S3ˆ3
0 describing the space of 3-by-3 dimensional positive semi-definite matrices and S

positive definite matrices, accordingly.

Among the model-based equality constraint (6.12b) problem (6.12) considers inequality

box constraints to limit the vehicle’s velocity (6.12d) and acceleration (6.12e). Lastly,

(6.12f) represents the coupling constraint, which ensures that vehicle vi keeps a minimum

safety distance ds to its predecessor vehicles. It thus forms the interface between the local

vehicle control and the global PAM coordination decisions.

Remark 6.5 (Relation to DJOR). The longitudinal control problem (6.12) is imple-

mented in the local vehicle control unit (cp. Figure 6.2) and represents the lower nego-

tiation layer illustrated in Figure 2.6. The negotiation procedure following a distributed

Jacobi over-relaxation (DJOR) approach has been discussed in Chapter 3, using the

MPC problem (3.13). Because of the real vehicle integration, the following adjustments

have been considered: i) the longitudinal motion model has been extended with an inte-

grator state of the acceleration to account for dynamics of real vehicle hardware [SD93;

Raj11; SSS00], ii) the distance coupling constraint (6.12f) is only considered for pre-

decessor vehicles and only exchanged once per sampling step, iii) measurement noise

and uncertainties in the real implementation are considered through an additional slack

distance dslack in (6.14) to keep the optimization problem feasible. Since the extension

in i) does not change the model class, it can be seamlessly integrated into the DJOR

approach. In general, the communication flow modification in ii) leads to a loss of formal

safety guarantees as derived in Chapter 3. This is counteracted by the assumption of

homogeneous vehicles (vehicle dynamics), a reasonable assumption for parking environ-

ments. The additional slack distance dslack poses an additional buffer to preserve safe
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Figure 6.7: Single track vehicle model, showing the vehicle model variables [Pac05] and

the lateral distance and heading angle errors with respect to the path reference

[KG15].

coordination. Note that problem (6.12) serves to investigate the performance increase

through a coordination procedure compared to non-coordinated approaches, as discussed

in Section 6.2. An alternative solution for the approach in iii) is the formulation of soft

constraints, as discussed in Section 3.4.

6.1.4 Lateral Motion Model and Control Design

We use the following continuous time matrix equation, modeling the lateral vehicle move-

ment [KG15; Pac05]:

9xltc “ Altc x
lt
c `B

lt
1,cδ `B

lt
2,cκ`B

lt
3,cβ, (6.16)

where

xltc “

´

dle, θhe, 9ψ
¯T

, (6.17)

Altc “

¨

˚

˝

0 vx 0

0 0 1

0 0
´pl2fCf`l

2
rCrq

Jzvx

˛

‹

‚

, (6.18)

Blt
c “

¨

˝

0 0 vx
0 ´vx 0

lfCf

Jz
0

lrCr´lfCf

Jz

˛

‚. (6.19)

Here, Blt
1,c, B

lt
2,c, and Blt

3,c are the first, second, and third column of Blt
c , respectively, dle

is the lateral distance error, θhe is the heading angle error, 9ψ is the yaw rate, vx is the

longitudinal velocity, Cf and Cr are the cornering stiffness of the front and rear axle,

respectively, Jz is the moment of inertia around the yaw axis, lf and lr are the distances

between the center of gravity (CoG) and the front and rear axle, respectively. Figure 6.7

illustrates the model parameters of the bicycle model. The path reference curvature κ,

and vehicle sideslip angle β are not control inputs, whereas the steering angle δ is a control

input. Therefore, the pair
`

Altc , B
lt
1,c

˘

is used to design the controller. The vehicle sideslip

angle is not used as a system state as its estimation results in considerable error.

The simplified lateral model 9xltc “ Altc x
lt
c ` Blt

1,cδ is discretized using the sampling time

T lts and then the MATLAB command dlqr() is used to design the discrete-time linear

102



6.2 Experimental Evaluation

quadratic regulator (DLQR) gains. The weighting matrices

Qlt
“

¨

˝

qlt11 0 0

0 qlt22 0

0 0 qlt33

˛

‚P S3ˆ3
0 , and Rlt

P S. (6.20)

are used to calculate the DLQR gains.

The model linearization, discretization, and DLQR gain calculations are done at three ve-

hicle speeds v1, v2, and vmax. Using these DLQR gains, a velocity dependent gain schedul-

ing is used so that the controller is robust to variations in the nonlinear velocity state. The

gain scheduling uses a convex summation of the DLQR gains, as shown below:

Gdlqr “

$

’

’

’

’

&

’

’

’

’

%

G1 if vmin ď vx ď v1

pvx ´ 1qG1 ` p2´ vxqG2 if v1 ă vx ď v2

pvx ´ 2qG2 ` p3´ vxqG3 if v2 ă vx ď vmax

G3 if vx ą vmax.

(6.21)

The lateral control input δ is generated using the following equation:

δ̂ “ Gdlqrx
lt
c (6.22)

δ “

$

’

&

’

%

δ̂ptq if ´δmax ď δ̂ ď δmax

´δmax if δ̂ ă ´δmax

δmax if δ̂ ą δmax,

(6.23)

where ´δmax and δmax are the lower and upper limits of the vehicle steering angle, respec-

tively. The vehicle yaw rate and speed, which are required to calculate the control input,

are measured by the vehicle sensors.

6.2 Experimental Evaluation

In the following, we demonstrate and discuss results from virtual and mixed-reality ex-

periments, which are conducted on the test platforms introduced in Chapter 5 and using

control algorithms summarized at the beginning of this chapter. We introduce the test

setup before discussing the evaluation results of the virtual experiments, and similar for

the mixed-reality experiments.

6.2.1 Virtual Test Setup

To run the tests, we distribute the test architecture of Figure 5.4 on two PCs, as shown

in Figure 6.8. The Simulation PC runs the test management system (cp. Figure 5.2), the

VTD simulation environment, and the PAM ROS-node. It is equipped with an Intel Core

i7´ 6700K 4 core processor and 32 GiB of RAM memory. The vehicle control ROS-nodes

are launched on a separate Control PC with an Intel Core i7´4790K 4 core processor and

32 GiB of RAM memory. We allocate each control process (ROS-node) to a designated

core of the CPU, such that two processes share one core. This guarantees the real-time

computation of the MPC optimization problem, with an average solving time of 5ms. The

two PCs are connected via an Ethernet connection.
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Figure 6.8: Distributed implementation of the test system in our lab.
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Figure 6.9: A randomly generated test scenario.

In Figure 6.9, we give insights into the test platform visualization during a trial. Fig-

ure 6.9a shows the visualization of the VTD environment. The plot in Figure 6.9b visu-

alizes all objects (moving and parked vehicles) in the scenario using the ROS-rviz tool,

and displays the paths provided by the PAM path planning unit. Figure 6.9c illustrates a

randomly generated openDRIVE map of the trial from the scenario generation tool.

6.2.2 Virtual Results

Now, we illustrate the functionality of the control coordination method, and highlight the

benefits compared to an uncoordinated scenario by evaluating the simulation results.

Table 6.1 introduces the control parameters used for the evaluations. Note, for the

velocity constraint, that the actual maneuvering into/out of the parking bay may also

require backward driving and thus the constraint should also allow vmin ă 0. However, as

this evaluation focuses on the coordination procedure within the parking area, we avoid

backward driving.

First, the longitudinal coordination control is investigated. We thus illustrate the step-

response of a single vehicle in Figure 6.10. The vehicle starts from standstill and receives

a reference velocity of 1.1m{s, which increases to 2.9m{s and then steps back to 1.1m{s.

The weights Qi and Ri of the MPC problem in (6.12) are chosen such that we avoid an
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Table 6.1: Control parameters in virtual tests.

Name Parameter Value

longitudinal sampling time T lgs 0.1s

longitudinal time constant T acti 0.1s

MPC horizon length M 50

reference velocity vref 1.8m{s

slack distance dslack 1m

safety distance ds 3m

velocity constraints pvmin, vmaxq p0m{s, 3m{sq

acceleration constraints pamin, amaxq p´4m{s2, 1m{s2q

longitudinal state weights pqi,11, qi,22, qi,33q p1, 60, 30q

longitudinal input weight Ri 30

lateral sampling time T lts 0.01s

lateral state weights pqlt11, q
lt
22, q

lt
33q p100, 10, 1q

lateral input weight Rlt 20

velocity intervals pv1, v2q p1m{s, 2m{sq

steering constraint δmax 0.48rad

ac
ce

le
ra

tio
n
`

m
{
s2
˘

ve
lo

ci
ty

(m
{
s)

time (s)

acceleration

velocity

ref. velocity

0

1

2

3

´1

0 5 10 15

Figure 6.10: Step-response of velocity and acceleration from a single vehicle.
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Figure 6.11: Measured vehicle position for tracking a given path and the resulting tracking

error.

overshoot in the vehicle’s velocity, enabling a safe inter-vehicular distance from possible

successor vehicles.

In the next step, we evaluate the lateral tracking control. Figure 6.11 shows a reference

path in the global coordinate system and the measured positions of a vehicle, while tracking

this path. We find good tracking performance for kinematically feasible curves (segments

A and E in Figure 6.11) and accurate path following for straight segments (segment C).

To test the tracking control performance, we feed the system with an infeasible reference

path. The evaluation shows still a stable and adequate tracking behavior for such references

(segments B and D).

In order to illustrate the coordinated behavior of several vehicles in the distributed con-

trol framework, we simulate a platoon of homogeneous vehicles in the scenario introduced

in Figure 6.9. Four vehicles (v1, v2, v3, v4) start from standstill in the area marked with a

single ˚ in Figure 6.9c. The resulting acceleration and velocity profiles of vehicles v1,v2 and

v4 are plotted in Figure 6.12. At the intersection, marked with ˚˚, vehicle v3 leaves the

platoon by turning right (t “ 27s) to possibly park at a different location. In the further

course, the vehicle adjacencies change in the PAM algorithm and thus vehicle v4 has the

incentive to reduce the distance to vehicle v2. The bottom plot of Figure 6.12 shows an

approximately constant inter-vehicle distance of « 4m between vehicles v1 and v2. The

upper line in the same plot illustrates the inter-vehicle distance between vehicles v2 and

v4, which is « 9m (chassis dimensions excluded), when vehicle v3 is in between them, and

reduces after v3 leaves the platoon.

Now, we evaluate the performance of the proposed distributed coordination control by

simulating the coordinated parking processes. Vehicles V “ tv1, v2, ..., v7u are randomly

placed in the map as illustrated in Figure 6.9c, and the PAM algorithm randomly allo-

cates a free parking spot to each vehicle, as well as a respective path. We simulate a set

of five trials with different initial positions. Each trial runs with three different control

methods. First, a solo-driving method is tested, where only one vehicle moves at a time.

Second, an uncoordinated scenario is simulated. Each vehicle moves in an uncoordinated
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Figure 6.12: Coordinated driving in a platoon, where vehicle v3 leaves the platoon t “ 27s.

manner, and if a collision at an intersection would occur, the right-of-way is granted to

the vehicle that arrives first. All other vehicles involved in the conflict have to stop. This

method is supposed to mimic the behavior of human-driven cars in parking environments.

The third method represents the coordinated control method proposed in this chapter.

The vehicle sequence decisions (6.4) are computed using a first-come-first served (FCFS)

heuristic based on the vehicles’ distances to the respective conflict zones. The FCFS law is

adapted such that infeasible sequences are detected and sorted out. The implementation

of FCFS sequence decision is motivated by the low driving speeds in parking environments

and the fact that no uncertainties are modeled in the presented simulations. Coordination

messages, (6.8) and (6.10), between vehicles and the PAM unit are shared once in each

sampling time step. As performance measures, we evaluate the required acceleration for

each vehicle in a trial. To do so, we integrate the positive acceleration values of each

vehicle over time (Σtaiptq ą 0). Furthermore, we analyze the duration of the parking pro-

cess, referred to as time to park (TTP ). Figure 6.13 shows five trials and compares the

acceleration effort of the three methods described above. Vehicles start from standstill at

the beginning of each trial. The left bar of a set of three shows the solo-driving results,

the middle bar is the uncoordinated scenario, and the right bar is the coordinated method.

As the solo-driving method does not require any interaction, it has the lowest acceleration

effort for each trial. We find that the coordinated method outperforms the uncoordinated

method in most cases. In some cases, the coordinated algorithm is outperformed by the

uncoordinated one if vehicles are granted the right-of-way (e.g. v1 in trial 2 and v7 in

trial 5). However, the overall performance of all vehicles in the respective trial shows bet-
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Figure 6.13: Performance comparison of different control coordination methods for 7 vehi-

cles and 5 trials with different initial conditions.
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Table 6.2: Number of required vehicle stops during simulation with the uncoordinated

control method.

trial 1 trial 2 trial 3 trial 4 trial 5

# stops 11 9 10 6 3

Table 6.3: Overall performance evaluation of the parking process with different control

methods.

control method

solo-driving uncoordinated coordinated

TTP psq Σacc TTP psq Σacc TTP psq Σacc

trial 1

Σ 334.33 1166.1 68.47 4257.5 52.82 2155.5

avg. 41.791 145.76 51.386 532.19 43.656 269.44

trial 2

Σ 366.08 1118 61.97 3782.7 61.4 2694.6

avg. 45.76 139.75 47.404 472.84 47.991 336.83

trial 3

Σ 385.67 1041.9 66.15 4318.1 62.91 2506.4

avg. 48.209 130.24 52.455 539.76 51.465 313.29

trial 4

Σ 391.27 1179.3 70.69 3134.7 62.64 2033.7

avg. 48.909 147.41 48.587 391.84 45.748 254.21

trial 5

Σ 280.86 1127.5 57.07 2482.9 51.88 2481

avg. 35.108 140.94 36.48 310.36 35.566 310.12

ter results using the coordinated method. In trial 5, the performance of the coordinated

and uncoordinated methods is similar. This is due to the vehicles’ initial positions, which

only require a small amount of vehicle interaction. To evaluate the amount of interaction,

Table 6.2 lists the number of vehicle stops during a simulation of the uncoordinated sce-

nario. A higher number of stops using the uncoordinated control method requires a higher

interaction amount using the coordinated control method.

Table 6.3 presents an overall evaluation for each trial, considering both the acceleration

effort and the parking duration. Rows labeled Σ sum the acceleration integrals of all ve-

hicles in columns with Σacc, and list the total time of the parking maneuvers in columns

with TTP . The total time is the summation of the parking duration of all vehicles in

the solo-driving method, as the vehicles are driven one by one. On the contrary, it is
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Table 6.4: Control parameters in mixed-reality tests.

Longitudinal Lateral

Param. Value Param. Value

T lgs 0.1s T lts 0.01s

τ 0.8s Cf 81kN{rad

M 50 Cr 104kN{rad

vref 1.4m{s Jz 581kgm2

ds 1.8m lf 1.1m

pvmin, vmaxq p0m{s, 3m{sq lr 1.7m

pamin, amaxq p´4m{s2, 1m{s2q tva, vbu t1m{s, 2m{su

Qlg diagp8, 6, 30q Qlt diagp100, 10, 1q

Rlg 30 Rlt 400

the maximum value of the parking process duration among all simulated vehicles for the

uncoordinated and coordinated methods, as the vehicles are driven simultaneously. Rows

with avg. list the average values of all vehicles in the respective scenario. Due to its exten-

sive total time to park, the solo-driving method is unrealistic for real-world application.

Aditionally, we find that the uncoordinated method is outperformed by the coordinated

method in terms of parking duration and acceleration effort. This underlines the strength

of the coordinated method, resulting in an optimized acceleration effort as well as a low

time consumption.

6.2.3 Mixed-Reality Test Setup and Scenario

The mixed-reality experiments were conducted using a virtual model of a real parking

garage, as well as parking lot with appropriate dimensions. In the scenario, we modeled

three vehicles driving in the parking area, namely v1, v2, and v3. The test scenario and

start positions are illustrated in Figure 6.14. Vehicle v1’s goal is to park in the empty

bay marked by the yellow box, while the other vehicles’ routes are illustrated by the green

paths in the figure. We find three resulting conflict zones (CZs) in the scenario, i.e., two

intersections and one maneuvering zone. The conflict zones are used by the coordination

procedure to ensure safe movements of the vehicles.

Table 6.4 summarizes the model parameters used for the experiments.

6.2.4 Mixed-Reality Results

In the first experiment we conduct a pure virtual simulation of the introduced parking

scenario. This means the dynamics of all three vehicles are modeled by the virtual simula-

tor. The coordination procedure decides a crossing order such that the right intersection

in Figure 6.14 is first crossed by v1 and then by v2, while v1 crosses the left intersection

after v3. In the same figure, we illustrate the result of the semi-structured path planning
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Figure 6.14: Mixed-reality test scenario.
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Figure 6.15: Longitudinal and lateral vehicle signals of vehicle v1 for virtual simulation

(left) vs. mixed-reality testing (right) in scenario of Figure 6.14. Top plots:

acceleration control signals and resulting velocity; bottom plots: steering angle

control input and actual applied steering signal for the real-vehicle case.
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simulation (bottom) w.r.t. the entrance of the left intersection area in Figure

6.14, as well as crossing times of vehicles through that intersection area.
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Figure 6.17: Planned reference path (solid) and actual tracking position (dashed) for ve-

hicle v1 of the scenario in Figure 6.14. Left: virtual simulation; right: mixed-

reality simulation.

algorithm introduced in Section 6.1.1 for v1. Here we restrict the planner to forward park-

ing maneuvers only (without reversing) as the main validation target is the functionality

of the coordination procedure. The unstructured planning result for v1 is illustrated by

the purple lane in the top right plot of Figure 6.14 and in more detail in the left plot of

Figure 6.17. The control signals and vehicle measurements of v1 are plotted in the left

plots of Figure 6.15 for the acceleration control command and measured velocity, as well

as the steering commands. In the top left plot of Figure 6.15 we recognize a slightly noisy

acceleration signal, which vanishes after 28s. This is where the inter-vehicle coupling is

disbanded as vehicle v1 has crossed the last intersection shared with other vehicles on its

route. The noisy acceleration signal is expected as a result of the noisy inter-distance

measurements (compare Figure 6.16). The lateral path-tracking performance is shown in

the left plot of Figure 6.17. Finally, in the top plot of Figure 6.16, we investigate the rela-

tive vehicle distance of v1 and v2 with respect to the entrance of the left intersection area

(Figure 6.14). This figure indicates the crossing intervals of the respective vehicles in the

left intersection area. After a vehicle has left a common intersection area, the interaction

with its following neighbor vehicle is cut, if vehicles continue on different lanes after the

intersection.

In the second experiment, two vehicles are simulated virtual (v2 and v3), while one

vehicle is a real test vehicle (v1). This real vehicle is operating in a real-world parking lot

which has similar dimensions to parts of the virtual model. By applying a self-localization,

the real vehicle’s poses can be projected into the virtual model, where the movements are

displayed using a virtual twin of the real-vehicle. Start and goal positions are the same as

described above. The control signals and vehicle measurements of the real vehicle v1 are

plotted on the right of Figure 6.15 for the acceleration control command and measured
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Figure 6.18: Measured velocity tracking performance for reference velocities vref “ 1.7m{s

and vref “ 4.7m{s.

velocity, as well as the commanded and actual applied steering commands in the bottom

right of Figure 6.15. The lateral path-tracking performance for the real vehicle is shown on

the right of Figure 6.17. The bottom plot of Figure 6.16 shows the relative vehicle distance

of v1 and v2 for the mixed-reality test.

We find that the longitudinal acceleration signal in Figure 6.15 has a higher fluctuation

compared to its virtual counterpart. The reason is an induced time-delay from opening

and closing the vehicle’s clutch, which occur at the tested reference speed and is not con-

sidered by the model (6.11). However, this also illustrates the capability of the distributed

coordination system to react to such disturbances, as the other vehicles in the scenario

react accordingly (cf. Figure 6.16). Figure 6.18 validates the longitudinal MPC (6.12) for

tracking the reference velocities vref “ 1.7m{s and vref “ 4.7m{s. Increasing the reference

velocity show that the clutch effects vanish, and that the proposed longitudinal vehicle

model suffices for accurate velocity tracking.

In lateral tracking the right plot of Figure 6.17 shows a gap between the path reference

and the actual tracked path, which results from a non modeled heading-rate limitation of

the real vehicle’s steering controller. This is visualized in the end of the bottom right plot

of Figure 6.15.

In summary, we find that the distributed control system is able to robustly compensate

for non-modeled disturbances. At the same time, the mixed-reality testing setup pro-

vides a powerful environment to quickly judge the required accuracy of virtual models by

comparing them to the real-world results.

6.3 Summary and Discussion

This chapter evaluates virtual and mixed-reality test results by applying distributed coor-

dination methodologies into the test platforms from Chapter 5. A seamless Implementation

and Validation process is demonstrated on the automated valet parking (AVP) use case.

Results indicate a significant benefit through the coordinated control methods compared to

non-coordinated scenarios. We apply a conflict zone coordination concept for the control

coordination layer for automated intersection crossing by viewing the AVP scenario as a
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multi-intersection scenario. The property that the coordination procedure is not limited to

the local MPC controllers’ prediction horizon, while it automatically reduces the number

of coupling constraints between vehicles to a minimal set of safety conditions, enables its

seamless extension from a single to a multi-intersection scenario. The coordination pro-

cedure has been implemented for a single information exchange per sampling time step.

While in Chapter 3, it has been shown that multiple iterations within one sampling time

step can improve the coordination performance, this would require additional synchroniza-

tion effort by the applied middleware system. This cannot be seamlessly implemented in

a ROS system and poses the need for alternative middleware implementations for such

test-platforms.

Additionally, algorithms for layered and semi-structured path planning as well as lat-

eral tracking control are introduced. The path planning methodology ensures a feasible

realization regarding vehicle kinematics, enabling accurate tracking, and ensuring a safe

coordination procedure in parking environments. The safety of the maneuvers, however,

relies also on the tracking performance. The applied LQR controller has been tuned to

fulfill the safety criteria in the tested scenarios. However, it cannot provide guarantees

to meet the required tracking accuracy for all cases. Therefore, the extension to MPC

tracking for longitudinal and lateral steering control could be considered in future work.

However, the non-linearity of the steering kinematics and dynamics poses a challenge to

obtain scalable computation problems.
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Conclusions and Future Work

The increasing autonomy of cars toward fully autonomous driving is a tremendous chal-

lenge, but at the same time it poses the chance to improve current transportation cir-

cumstances significantly. Expected benefits of automated driving are safer systems with

improved efficiency and comfort. One essential enabler of this technology will be the

collaboration between vehicles. While the collaboration through wireless communication

between vehicles is an important feature for efficiency, comfort, and safety, it imposes a

non-neglectable risk for malfunctioning. Therefore, distributed control systems must pre-

serve safety and privacy of the multi-vehicle coordination system, while maximizing the

benefits of the connectivity.

7.1 Summary

This thesis aims to develop inter-vehicle collaboration strategies using distributed opti-

mal control methods for the safe and efficient coordination of multiple vehicles. Essen-

tial emphasis is put on distributing the overall coordination problem to reduce the re-

quired inter-vehicle communication while considering further challenges and requirements

of multi-agent systems. The challenges considered are Safety, Scalability, Validation and

Implementation, Efficiency, Cooperation, and Privacy. In the following, each chapter is

summarized.

Chapter 2

The first part discusses distributed control methodologies for the above-mentioned chal-

lenges. As a baseline, a modeling framework for multi-vehicle coordination is introduced.

It suggests distinguishing different zones on a road network that gather areas of potential
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vehicle collisions. These zones are used as system-wide common reference areas to relate

optimization decisions of the distributed problems to each other. Vehicle trajectories are

modeled concerning their longitudinal motions along pre-defined paths. Consequently, the

common geometrical zone understanding can be applied in local optimization decisions to

ensure inter-vehicle collision avoidance formally. Besides ensuring safe inter-vehicle deci-

sions, a hierarchical envelope is defined on top of the distributed optimization framework.

There are two resulting layers such that the lower bottom layer contains the distributed

trajectory computation and the upper hierarchical optimization computes combinatoric

decisions of the coordination problem. The combinatoric decision relates to the vehicle

crossing order through the system-wide synchronized reference areas.

Chapter 3

The distributed trajectory computation in the lower layer is designed to be suitable for

V2X (vehicle-to-everything) applications. A distributed Jacobi algorithm is modified such

that it becomes applicable for multi-vehicle coordination problems. In an iterative proce-

dure, primal trajectories resulting from distributed quadratic programs (QP) – one solved

in each vehicle – are exchanged between neighboring vehicles. Each QP is formulated as

a model predictive control (MPC) problem in which a set of hard constraints ensure the

satisfaction of inter-vehicle safety distances. Finding a feasible solution to the local MPC

problems results in safe network-wide coordination. A challenge for feasibility in the pre-

sented setup is that constraints between sub-systems are coupled. The proposed algorithm

ensures feasibility for each sub-problem and each inter-sampling iteration step. The abil-

ity to stop the iterative process with a feasible solution after each step is an important

property to enable distributed V2X applications. Another distinct feature of the proposed

algorithm is that it can be fully distributed without requiring a central update step. To

extend the results toward uncertain events, exact penalty functions are introduced on the

coupling constraints. On the one hand, this leads to exact distributed trajectory solutions

in nominal driving cases, and on the other hand safe and network-wide feasible maneuvers

if unexpected events occur.

Chapter 4

The above described lower hierarchical layer ensures the feasibility of trajectories for ve-

hicle networks with coupling constraints. The formulation of these constraints depends

on how vehicles access shared zones on the road network and pose non-convexity in the

optimization formulation. To overcome non-convexity, this decision is computed in the

upper hierarchical layer in a central infrastructure located node. The overall knowledge of

the central decision enables us to find deadlock-free sequence solutions. Simultaneously,

a bidirectional coupling between layers ensures a feasible sequence decision. Technically,

the upper layer decision can be formulated as an integer program (IP) that searches for an

optimized solution for the overall problem. Through the bidirectional coupling, the IP’s

objective can be aligned with local MPC decisions to find close-to-optimal solutions. A

resource-constrained project scheduling problem (RCPSP) formulation is proposed to cast

multi-vehicle coordination problems into an IP formulation intuitively. To counteract the
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scalability degradation through a centralized IP, the problem can be computed at a slower

time-scale. Additionally, an event-triggered update rule is discussed, which intervenes only

if previously proposed trajectory plans are violated according to a deviation measure.

Chapters 5 and 6

Virtual testing will be one of the key enablers to prove the safety of autonomous driving

functions. Given this fact, the second part presents how methodologies from the first

part can be seamlessly integrated and validated using virtual and semi-virtual simulation

strategies. A modular platform for multi-vehicle scenarios is developed to enable the testing

of distributed control algorithms. The components are connected to a high-fidelity virtual

simulator. A test-management is utilized by generating random corner cases to achieve a

fast failure elimination in the distributed coordination algorithms. Methodologies from the

first part are tested on the use case of automated valet parking (AVP). Results show a safe

and robust coordination procedure and an efficiency improvement through the proposed

coordination algorithms compared to state-of-the-art parking procedures.

Lastly, the virtual system is extended toward a mixed-reality test system. One of the

virtual simulated vehicles is synchronized with the movements of an avatar vehicle, which

is a real test car driving on an empty test ground. Thus the real vehicle is interacting with

simulated neighbor vehicles. This procedure poses an elegant way of testing the algorithmic

behavior, including real vehicle dynamics, without automating the complete vehicle fleet.

Challenges and Requirements

In the following, it is summarized how the defined challenges are addressed throughout the

thesis.

Safety is considered through the formulation of hard and coupling constraints in dis-

tributed optimization problems. The any-time feasibility guarantee of computations and

the prioritization of safety over cooperation through exact penalty functions present im-

portant aspects for a safe multi-vehicle coordination procedure.

Scalability is guaranteed by the fully distributed DJOR computations, which are small

enough to be embedded in local vehicle control units. Additionally, the upper hierarchical

central sequence computation allows an adjustment of its sampling time such that an

increasing computational burden can be counteracted. This problem is reduced to an IP,

which additionally reduces the computational burden. Lastly, the test system development

presents a scalable method for algorithmic validation, which is further supported by the

idea of mixed-reality testing.

Validation and Implementation are demonstrated in the second part by implement-

ing and evaluating the control algorithms on the use case automated valet parking applied

into an automated and modular test platform.
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Efficiency is addressed by formulating optimization objectives in both the local MPC

problems and the central sequence decision problem. Thus, resulting trajectories present an

efficiency trade-off between local vehicle interests and global traffic coordination interests.

Cooperation is considered because vehicles share trajectory intentions, negotiate in the

frame of the distributed Jacobi over-relaxation procedure considering solutions of other

vehicles, and adhere to sequence decisions from an upper hierarchical layer.

Privacy is ensured because local vehicle models are not required to be shared with

other entities and that the proposed approach aims to keep the signal exchange at a

low level. To this end, in the coordination architecture, only trajectory data from the

vehicles is disclosed. Moreover, these trajectories are primarily shared with a “trustworthy”

infrastructure node that enables the anonymization of transferred information.

7.2 Outlook

This thesis suggests distributed optimal control strategies that are in particular suitable

for safety-critical scenarios with wireless inter-agent communication. The proposed deriva-

tions, e.g., the reduced inter-sampling iteration effort, play a key role in applying real-

world multi-vehicle coordination tasks. However, several open research questions shall be

addressed in order to extend and generalize presented methodologies.

Uncertainty effects

A strategy of accounting for unexpected events is proposed through exact penalty functions.

Nevertheless, a useful extension is to consider uncertainties in a generalized way. Potential

candidates for incorporating uncertainties in local control laws are scenario-based and

robust control methods. An important direction is the consideration of uncertain prediction

models in the distributed framework to consider “non-cooperative” agents such as human-

driven vehicles. This requires adaptations in both the local control methods and the

negotiation framework.

Improvements towards optimality

Through the Jacobi over-relaxation methodology, any-time feasibility of the inter-agent

negotiation can be ensured. Moreover, the convergence of the iterative process can be guar-

anteed. However, the networked-system might converge toward a local minimum (Nash

equilibrium) rather than the global optimal solution. An advantageous extension would

be to research abilities to guide the distributed iterative process toward a globally optimal

solution. The proposed architecture decomposition, where safety-relevant trajectory deci-

sions in a lower-layer are decoupled from upper hierarchical sequence decisions, offers to

apply learning-based methods in the upper-layer. This could enable us to make closer-to-

optimal sequence decisions while reducing the online computational effort and preserving

safety-guaranteed decisions.
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Modeling extensions

In this thesis, linear models for vehicle control and coordination are used. Therefore,

longitudinal and lateral models are separated, which is valid for low-velocity scenarios.

An extension toward high-velocity coordination requires the consideration of coupled non-

linear models. A potential candidate to apply this into the proposed MPC framework

while preserving real-time applicability is sequential quadratic programming (SQP). This,

in turn, requires an adaptation of the negotiation process and its guarantees. Additionally,

time-invariant models have been applied. It would be worth investigating the performance

gain through time-variant models within the coordination process.

Standardization efforts

There exists a wide range of different multi-vehicle coordination strategies. To make a

step toward real-world applicability, it is required to provide necessary standards for col-

laborative autonomous driving. On the one hand, the vehicle data exchange formats on a

trajectory level for multi-vehicle scenarios have to be standardized to enable the interplay

between different entities from different manufacturers. On the other hand, a common

understanding of spatial relation must be ensured between entities (conflict zones in this

thesis). Who shall provide this information for different locations and settings, and in

which format, are important questions to be answered through standardization efforts.

Given a clear framework will, in turn, open further research questions from an algorith-

mic point of view. This thesis hopes to offer stimulating input for such standardization

activities.

121





List of Figures

1.1 Exemplary autonomous and cooperative driving scenario . . . . . . . . . . 3

1.2 Relation between chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Illustration of the model predictive control strategy . . . . . . . . . . . . . 18

2.2 Decomposition architectures for large scale control problems . . . . . . . . 19

2.3 Coordination scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Conflict zone example cases . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Exemplary graph representations and relation . . . . . . . . . . . . . . . . 26

2.6 Distribution of the overall coordination problem . . . . . . . . . . . . . . . 26

3.1 Feasible configuration space of a coordination problem . . . . . . . . . . . 33

3.2 Distributed architecture and signal flow . . . . . . . . . . . . . . . . . . . . 35

3.3 Illustration of the over-relaxation concept . . . . . . . . . . . . . . . . . . . 38

3.4 Example of a backward reach-set computation for a 2-state system . . . . . 40

3.5 Illustration of terminal-state-less emulation method . . . . . . . . . . . . . 40

3.6 Recursive feasibility concept . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Illustration of an exact penalty example . . . . . . . . . . . . . . . . . . . 48

3.8 Illustration of trajectories for varying horizon lengths . . . . . . . . . . . . 51

3.9 Effect of varying number of inter-sampling iterations . . . . . . . . . . . . 51

3.10 Emergency braking maneuver in distributed vehicle setup . . . . . . . . . . 53

3.11 Value of slack variable during emergency braking maneuver . . . . . . . . . 53

4.1 Decision tree example showing possible sequences through a conflict zone . 58

4.2 Intersection crossing scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Precedence graph representing the vehicles’ routes through the intersection 61

4.4 Exemplary scheduling result indicating time and duration of execution for

each modeled activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Time-scale relation between control and scheduling problems . . . . . . . . 63

4.6 Control-scheduling interaction . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 Feasible trajectory space within the configuration space . . . . . . . . . . . 67

4.8 Illustration of trigger set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.9 Intersection simulation scenario with 6 vehicles . . . . . . . . . . . . . . . . 70

4.10 Example trial comparing the proposed scheduling method with a first-come-

first-served decision strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.11 Snapshots of simulation scenario . . . . . . . . . . . . . . . . . . . . . . . . 72

4.12 Evaluation of the scheduling performance in an example scenario . . . . . . 72

123



List of Figures

4.13 Illustration of the resulting vehicle coordination with and without re-

scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.14 Evaluation of velocity and acceleration using the event-triggered re-

scheduling setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.15 Evaluation of time duration and overall costs . . . . . . . . . . . . . . . . . 74

4.16 Evaluation of the intersection performance simulation . . . . . . . . . . . . 75

5.1 Automated valet parking (AVP) scenario . . . . . . . . . . . . . . . . . . . 83

5.2 Architecture of automated test system . . . . . . . . . . . . . . . . . . . . 84

5.3 Virtual test platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Overview of the ROS network integration with connection to the simulation

environment and the scenario generator . . . . . . . . . . . . . . . . . . . . 86

5.5 Mixed-reality test architecture . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Schematic network diagram of the vehicle integration . . . . . . . . . . . . 89

6.1 Path planning concept for parking environments . . . . . . . . . . . . . . . 92

6.2 Distributed control system architecture and signal flow of the automated

valet parking system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Intersection area with all possible paths and conflict zones . . . . . . . . . 95

6.4 Example scenario with six vehicles and pre-computed paths . . . . . . . . . 97

6.5 Graph representation of the vehicles’ routes . . . . . . . . . . . . . . . . . 98

6.6 Illustration of the coupling constraint formulation . . . . . . . . . . . . . . 100

6.7 Single track vehicle model . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.8 Distributed implementation of the test system . . . . . . . . . . . . . . . . 104

6.9 A randomly generated test scenario . . . . . . . . . . . . . . . . . . . . . . 104

6.10 Step-response of velocity and acceleration from a single vehicle . . . . . . . 105

6.11 Measured vehicle position for tracking a given path and the resulting track-

ing error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.12 Coordinated driving in a platoon . . . . . . . . . . . . . . . . . . . . . . . 107

6.13 Performance comparison of different control coordination methods . . . . . 108

6.14 Mixed-reality test scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.15 Longitudinal and lateral vehicle signals for virtual simulation vs. mixed-

reality testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.16 Relative inter-vehicle distances for virtual simulation and mixed-reality sim-

ulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.17 Planned reference path and actual tracking position for virtual simulation

and mixed-reality simulations . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.18 Measured velocity tracking performance for reference velocities . . . . . . . 114

124



List of Tables

3.1 Time intervals for distance constraints . . . . . . . . . . . . . . . . . . . . 33

3.2 Simulation parameters in Subsec. 3.5.1 . . . . . . . . . . . . . . . . . . . . 50

3.3 Simulation parameters in Subsec. 3.5.2 . . . . . . . . . . . . . . . . . . . . 52

4.1 Intersection scheduling taxonomy . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Most important ROS messages in the multi-vehicle control framework . . . 87

6.1 Control parameters in virtual tests . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Number of required vehicle stops during simulation with the uncoordinated

control method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Overall performance evaluation of the parking process with different control

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Control parameters in mixed-reality tests . . . . . . . . . . . . . . . . . . . 110

125





Bibliography

[ADV16] H. Ahn and D. Del Vecchio, “Semi-autonomous intersection collision avoid-

ance through job-shop scheduling,” in Proc. 19th Int. Conf. Hybrid Sys-

tems: Computation and Control, 2016, pp. 185–194.

[AAGJ] A. Al Alam, A. Gattami, and K. H. Johansson, “An experimental study

on the fuel reduction potential of heavy duty vehicle platooning,” in 2010

13th Int. IEEE Conf. Intelligent Transportation Systems (ITSC), pp. 306–

311.

[Ath68] M. Athans, “A unified approach to the vehicle-merging problem,” Mas-

sachusetts Institute of Technology, Electronic Systems Laboratory, Tech.

Rep. ESL-P-336, 1968.

[BJ07] H. Balakrishnan and Y. Jung, “A framework for coordinated surface oper-

ations planning at dallas-fort worth international airport,” in AIAA Guid-

ance, Navigation and Control Conference and Exhibit, 2007, p. 6553.
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