
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

TUMKolleg Forschungsarbeit

Parallel Evaluation of Adaptive Sparse Grids
with Application to Uncertainty Quantification

of Hydrology Simulations

Jonas Treplin

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

TUMKolleg Forschungsarbeit

Parallel Evaluation of Adaptive Sparse Grids
with Application to Uncertainty Quantification

of Hydrology Simulations

Parallele Evaluierung von adaptiven dünnen
Gittern mit Anwendung für

Unsicherheitsquantifikation von Hydrologie
Simulationen

Author: Jonas Treplin
Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz, Markus Stöckle
Advisor: Tobias Neckel, Ivana Jovanovic, Michael Obersteiner
Submission Date: 1.12.2020

Abstract

In this work we implement parallel evaluation of an arbitrary problem function for integration-
based operations using the sparseSpACE framework. We apply this implementation to
Uncertainty Quantification using the LARSIM hydrology model as problem function and
compare the sparseSpACE solution to the result of a Monte-Carlo simulation.
Testing the limitations and scalability of our work on Sparse Grid and Adaptive Refinement
techniques shows that on small to medium problems a parallelisation can be profitable. Our
parallel evaluation is best suited for functions with a medium execution time of seconds to
minutes. We suspect a number of difficulties could arise when applying our technique to
problems with longer execution time or a high amount of required evaluation points. Other
possible architectures of parallelisation and their advantages and disadvantages over this
work are discussed in the end.

ii

Kurzfassung

In dieser Arbeit wird eine parallele Evaluierung einer willkürlichen Funktion für integra-
tionsbasierte Operationen des sparseSpACE Framework implementiert. Wir nutzen diese
neue Implementation in der Uncertainty Quantification und wenden sie auf das Hydrologie-
simulationsmodell LARSIM an. Die Ergebnisse von sparseSpACE werden mit denen einer
Monte-Carlo Simulation verglichen. Tests der Limitationen und Skalierbarkeit unserer Arbeit
auf dünnen und adaptiven Gitter-Methoden zeigen, dass kleine bis mittelgroße Anwendun-
gen von einer Parallelisierung profitieren können. Unsere Parallelisierungsmethode ist für
Funktionen mit einer mittleren Ausführungszeit in der Größenordnung von Sekunden bis
Minuten geeignet. Wir vermuten, dass mehrere Schwierigkeiten auftreten könnten, wenn
unsere Methode auf Probleme mit längerer Ausführungszeit oder einer hohen Anzahl an
benötigten Evaluationspunkten angewandt wird. Andere mögliche parallele Architekturen
und deren Vor- und Nachteile gegenüber dieser Arbeit werden am Ende diskutiert.

iii

Contents

Abstract ii

Kurzfassung iii

1. Introduction 1

2. Forward Uncertainty Quantification 2
2.1. Monte-Carlo Methods . 2
2.2. Uncertainty Quantification using Polynomial Chaos Expansion 3
2.3. Integration Techniques for Uncertainty Quantification 5

2.3.1. Examples of Single-Dimensional Quadrature Rules 5
2.3.2. Full Grid Quadrature . 7
2.3.3. Sparse Grids . 7
2.3.4. Spatially Adaptive Grids . 10
2.3.5. Boundary Points . 10

3. Simulation Software 12
3.1. sparseSpACE . 12

3.1.1. General Architecture . 12
3.1.2. Uncertainty Quantification with sparseSpACE 12

3.2. LARSIM . 13

4. Implementation of parallel evaluation of LARSIM in Python 14
4.1. Parallelisation of sparseSpACE Integration . 14
4.2. Embedding Larsim . 15

5. Tests 17
5.1. Testing the parallelisation . 17
5.2. Error Calculation . 18

6. Discussion and Future Work 26

A. General Addenda 28

List of Figures 29

Bibliography 31

iv

1. Introduction

Conventional scientific models take parameters they assume are correct and calculate a
deterministic output which also is presumably exact. In reality however we can’t have this
kind of infinite fidelity into the parameters and model output. Aside from a numerical error
the input values often are not deterministic but have to be regarded as a random variable. A
measurement for example may be a sample from a random variable with normal probability
distribution. Uncertainty introduced in the parameters is propagated through the model into
the output.
In Uncertainty Quantification one wants to determine how uncertain this output is. Multiple
techniques exist to achieve this. Monte-Carlo methods use the law of large numbers to build
an output distribution with a high amount of samples. Another common technique is to
determine statistical moments directly through weighted integration. A third option is to
use a Polynomial Chaos Expansion (gPCE) approach. The latter two both require numerical
integration of a multidimensional function whereas Monte-Carlo relies on a large amount of
samples. To perform the quadrature efficiently Sparse and Adaptive Grids can be used to
reduce the number of function evaluations.
The sparseSpACE framework [1] provides implementations of different adaptive refinement
techniques for Sparse Grids and supports Uncertainty Quantification using gPCE as well as
direct methods.
The model used for this work is LARSIM [2], a hydrology model. Since it has a considerable
execution time of around half a minute for a single run, parallel evaluation of integration
nodes could drastically improve the computation time. The sparseSpACE framework had
limited capabilities for parallel evaluation. Since Uncertainty Quantification relies on the
quadrature facilities our application can profit from parallel evaluation.
Similar work was done in [3] where the sparseSpACE framework has been used to quantify
uncertainty. Also a pedestrian simulation model was executed in parallel. However it focused
on the comparison of different integration techniques and its parallel evaluation scheme was
not generally applicable.
Our goal is to provide a function independent approach to parallel evaluation in sparseSpACE
and apply its Uncertainty Quantification facilities to another model. Additionally we specifi-
cally benchmark and test the limitations of our parallel evaluation engine and compare the
three different Uncertainty Quantification techniques described earlier with regard to their
parallelizability using the LARSIM model as test function.

1

2. Forward Uncertainty Quantification

A scientific model usually operates on presumably exact inputs and computes a deterministic
output. However, the input values are often uncertain and are more accurately described by a
probability distribution. Forward Uncertainty Quantification is concerned with describing
the output of the model in a probabilistic sense. There are multiple techniques to perform an
Uncertainty Quantification. Here we only focus on the non-intrusive ones which regard the
model as a black box and do not require code modification in the model. Additionally we
also limit ourselves to determine only expectation and variance of the output distribution.
For a random variable X with probability density function (PDF) ρ(x) expectation and
variance of the output of a function f are defined as.

E[f (x)] =
∫

X
f (x)ρ(x)dx (2.1)

Var[f (x)] = E[(f (x)− E[f (x)])2] (2.2)

A straightforward approach to determining them would be to directly evaluate these weighted
integrals. In this case the error convergence depends on the used integration technique.
However other techniques exist which have different effects on error convergence rates.

2.1. Monte-Carlo Methods

Another way to perform forward Uncertainty Quantification is through the Monte-Carlo
Method. This section is based on a summary in section 2.8 of [4].
Suppose we want to calculate the expectation of the output of an arbitrary function f which
depends on an uncertain parameter ω with a known distribution. Using the Monte-Carlo
approach we sample N samples {θ1, θ2, . . . , θN} from the distribution of ω. The expectation
of f (ω) is then estimated by:

E[f (ω)] ≈ 1
N

N

∑
i=0

f (θi) (2.3)

This can also be generalized to the variance:

Var[f (ω)] = E[(f (ω)−E[f (ω)])2] ≈ 1
N

N

∑
j=0

(f (θj)−
1
N

N

∑
i=0

f (θi))
2 (2.4)

It can be shown that the error on the estimation of expectation for this technique is in
O(1√

N
). Although it converges relatively slow its convergence rate is independent of the

dimensionality of the problem function. This is an important advantage over the integration
based techniques whose convergence rates depend on the number of dimensions.

2

2. Forward Uncertainty Quantification

2.2. Uncertainty Quantification using Polynomial Chaos Expansion

Many techniques of Uncertainty Quantification rely on generalized Polynomial Chaos Expan-
sion (gPCE). This section provides a quick overview of gPCE and is based on chapter 10 of
[5] and chapter 5 of [6].
A gPCE approximates a function f (ω) that depends on the uncertain parameter ω as a
weighted sum of orthogonal polynomials similar to a Fourier Transform.

f =
∞

∑
i

f̂iΦi (2.5)

Orthogonal polynomials Φ are families of polynomials whose inner product is 0. The
weighted integral of two functions is used as the inner product.

〈 f , g〉ρ =
∫

f (x)g(x)ρ(x)dx (2.6)

We also note that
E[f (ω)g(ω)] = 〈 f , g〉ρ (2.7)

where ρ is the probability density function (PDF) of the random variable ω.
A family of polynomials Φ is orthogonal if the following holds:〈

Φi, Φj
〉

ρ
= γiδij (2.8)

γi = 〈Φi, Φi〉ρ (2.9)

The polynomials Φ are only orthogonal with respect to a certain weighting function ρ. Some
often used families for common PDFs are:

• The Hermite polynomials Hi for Normal distributions (X ∼ N(0, 1)):

ρ(x) =
1√
2π

e−x2/2

The first four polynomials:

H0(X) = 1

H1(X) = X

H2(X) = X2 − 1

H3(X) = X3 − 3X

• The Legendre polynomials Li for Uniform distributions (X ∼ U(−1, 1))

ρ(x) =
1
2

3

2. Forward Uncertainty Quantification

The first three polynomials:

L0(X) = 1

L1(X) = X

L2(X) =
2
3

X2 − 1
2

For other weighting functions the polynomials can be numerically computed. Orthogonal
polynomials are used as a basis to approximate a function f (ω). Where ω is a random
variable. The polynomials have to be chosen with respect to the PDF of ω. Similar to a Fourier
series the function is then approximated up to a level N by:

f ≈
N

∑
i

f̂iΦi (2.10)

f̂i =
1
γi
〈 f , Φi〉ρ (2.11)

The coefficients can be used to gain information about the distribution of f (ω). Using the
following derivation for the calculation of the expectation:

E[f (ω)] = E[∑
n

f̂nΦn(ω)]

= ∑
n

f̂nE[1 ∗Φn(ω)]

= ∑
n

f̂nE[Φ0(ω) ∗Φn(ω)]

Because of the orthogonality E[Φ0 ∗Φn] is always 0 except for n = 0. So it follows that:

E[f (ω)] = f̂0 (2.12)

To compute the variance we use a similar approach:

Var[f (ω)] = E[(f (ω)−E[f (ω)])2] (2.13)

= E[(∑
n

f̂nΦn(ω)− f̂0)
2] (2.14)

= E[(∑
n=1

f̂nΦn(ω))2] (2.15)

Because of orthogonality we can simplify the squared sum, terms with mixed polynomials
are 0. Then the following can be used to determine the Variance:

Var[f (ω)] = ∑
n=1

f̂ 2
nE[Φn(ω)2] = ∑

n=1
f̂ 2
n γn (2.16)

4

2. Forward Uncertainty Quantification

For proof and further explanation see chapter 10 of [5].
To use this framework for a multivariate function f (~ω) for the vector ~ω of mutually indepen-
dent variables we use multidimensional polynomials.

Φ~i =
d

∏
j=1

Φ~ij
(2.17)〈

Φ~i, Φ~j

〉
= γ~iδ~i~j (2.18)

γ~i = γ~i1 γ~i2 . . . γ~id
(2.19)

δ~i~j = δ~i1~j1 . . . δ~id~jd
(2.20)

To truncate at some user-given level N we use all polynomials with 1-norm less than N
(|~i|1 ≤ N; |~i|1 = i1 + i2 + . . .). The following expansion then approximates f .

f ≈ ∑
|~i|1≤N

f̂~iΦ~i (2.21)

f̂~i =
1
γ~i

〈
f , Φ~i

〉
(2.22)

The expectation and variance are then determined by:

E[f (~ω)] = f̂~0 (2.23)

Var[f (~ω)] ≈ ∑
1≤|~i|1≤N

f̂ 2
~i

γ~i (2.24)

In the following section we describe methods of numerical integration to obtain the coefficients
needed for the PCE.

2.3. Integration Techniques for Uncertainty Quantification

To perform the integration required to determine the coefficients of the PCE described in
equation 2.11 efficiently, an understanding of numerical integration schemes is required. The
first subsection introduces important one-dimensional numerical integration techniques. The
latter subsections provide a quick overview over Sparse Grids and Adaptive Grids. They are
loosely based on chapter 11 of [5] and Section 2 of [7].
In general a quadrature rule Q is a weighted sum which approximates the Integral I:

I f ≈ Q f = ∑
i<n

wQ
i f (pQ

i) (2.25)

Where pQ are the points where the function f is evaluated, also called nodes, wQ are their
corresponding weights and n is the number of points.

2.3.1. Examples of Single-Dimensional Quadrature Rules

This section provides a quick explanation of some of the single dimensional quadrature rules
used in section 5.2.

5

2. Forward Uncertainty Quantification

Figure 2.1.: This figure shows the linear interpolation of a polynomial as well as the resulting trapezes
used for integration.

Trapezoidal rule A simple approach to integrate a one-dimensional function is to linearly
interpolate it and integrate the surrogate. This ultimately leads to evaluating multiple trapezes.
Figure 2.1 illustrates the resulting area. The integral can then be estimated by:

∫ b

a
f (x)dx ≈

N−2

∑
i=0

h
f (ih + a) + f ((i + 1)h + a)

2
(2.26)

Because every point except the ones on the boundary is evaluated twice we can simplify this
expression a bit. Rephrasing into nodes and weights we have the following for N points:

p = {i ∗ |b− a|
N
|i ∈ 1, 2, . . . , N} (2.27)

w = {1
2

, 1, 1, . . . , 1,
1
2
} (2.28)

This approach is simple and flexible because of its equispaced points. It is often used for
more complicated refinement strategies. However an accurate result with this technique
requires that relatively many points have to be evaluated. Furthermore it is highly similar to
the definition of the Riemann integral being the average of the lower and upper sums.

Gaussian Quadrature Named after Gauss and invented in its current form by Jacobi this
technique is especially suited to evaluate weighted integrals of the form

∫ b
a f (x)w(x)dx. They

can correctly integrate polynomials up to degree 2n− 1 with n points. Multiple variants
specific to different a, b and w exist but all follow the same scheme. For further explanation
we refer to [8].
The general rule is to take a family of polynomials p0, p1, p2 . . . pn which are orthogonal with

6

2. Forward Uncertainty Quantification

respect to w in the interval between a and b. Take the roots x0, x1, . . . xn of the n-th polynomial
as points to get n nodes. The i-th weights are then the integral of the Lagrange polynomial
for the i-th point.

wi =
∫ b

a

n

∏
j=0j 6=i

x− xj

xi − xj
dx (2.29)

This integrates the polynomial interpolation of f (x)w(x). Important variants of Gauss
Quadrature include the Gauss-Hermite Quadrature which uses the Hermite polynomials,
integrates from −∞ to ∞ and uses the PDF of a standard distribution as weighting function.
Another example is Gauss-Legendre using the before mentioned Legendre polynomials with
a Uniform distribution on the interval between −1 and 1. In Uncertainty Quantification we
often have to evaluate weighted integrals of the form

∫ b
a f (x)w(x)dx. Gaussian Quadrature is

an efficient way to numerically estimate these.

2.3.2. Full Grid Quadrature

We can generalize an arbitrary one-dimensional quadrature rule to a multidimensional
problem function f (x1, x2, . . . , xn). The points of the single dimension quadrature rules have
to be combined with each other to form multidimensional coordinates. Equation 2.30 shows
how to construct a quadrature rule Q for higher dimensions from one-dimensional rules.

Q = Q⊗Q⊗ · · · ⊗Q (2.30)

(Q⊗Q) f = ∑
i

∑
j

wQ
i wQ

j f (pQ
i , pQ

j) (2.31)

This tensor product formulation leads to them often being called full tensor grids. Standard
full grids use O(nd) grid points where n is the number of grid points for a single dimension
and d the dimensionality of the function. This means to obtain the same error in a d + 1
dimensions as in d dimensions one has to multiply the number of points evaluated by N.
This exponential growth is also called the curse of dimensionality.

2.3.3. Sparse Grids

Because of this exponential growth, Full Grids are not viable for problems with a higher
number of dimensions, therefor more efficient methods have been invented. The goal of
Sparse Grids is to remove a large portion of nodes while maintaining a reasonable error
convergence rate. To integrate functions of medium dimensionality (d < 20) they provide a
more optimal solution.
The first step for a Sparse Grid is to split the full grid into hierarchical subsets of points. The
following is an example of a hierarchization of a Trapezoidal Grid.
Consider this slightly different formulation for the points of the trapezoidal quadrature rule:

ΦN = {i ∗ (N + 1)−1 | i ∈ 1, 2, . . . N + 1} (2.32)

7

2. Forward Uncertainty Quantification

A hierarchical subset φl of level l is defined by

φl = {
i
2l | i ∈ 1, 2, . . . 2l , i odd } (2.33)

It contains 2l−1 points. Figure 2.4 shows subspaces of the levels 1 to 4.

In general this hierarchization can be performed via a telescopic sum.

∆l f = (Ql −Ql−1) f (2.34)

Ql f = ∑
i<l

∆i f (2.35)

To combine points for a number of multiple dimensions d into a multidimensional grid Q~l
the tensor product is used.

Q~l = Q~l1
⊗Q~l2

⊗ · · · ⊗Q~ld
(2.36)

A multidimensional Full Grid quadrature QN can be obtained by adding all multidimensional
subsets together whose maximum norm of their level is less than or equal to a user defined
level N. This combines a hypercube of subsets.

Q f ull
N =

⊕
|~l‖∞≤N

Q~l (2.37)

One can observe that higher level spaces have drastically more points and therefore a higher
computation cost than the lower level spaces. They also contribute less to the accuracy
in comparison to their cost. The number of evaluated points can be severely reduced by
eliminating the higher level subspaces. We restrict the sum of the single dimension levels
instead of their maximum to be below a user defined value N. This can be interpreted as
cutting the hypercube on a diagonal hyperplane.

Qsparse
N =

⊕
|~l|1≤N+d−1

∆~l (2.38)

An often used variant of Sparse Grids is the combination technique. Instead of a hierarchical
set of subspaces one uses anisotropic Full Grids. The combination technique Quadrature
Qcombi

N then follows:

Qcombi
N f = ∑

l≤|~l|1≤N+d−1

(−1)N+d−|~l|1−1
(

d− 1
|~l|1 − N

)
Q~l f (2.39)

Figure 2.2 shows a tableau of full grids used and Figure 2.3 the resulting Sparse Grid for
N = 4 and d = 2.

8

2. Forward Uncertainty Quantification

Figure 2.2.: The anisotropic full grids used for the standard combination technique with N = 4. The
green grids have a positive weight while the orange ones are subtracted. The plot has been
produced by the sparseSpACE framework [1].

Figure 2.3.: The resulting grid points for the combination technique with the subspaces used in Figure
2.2. The plot has been produced by the sparseSpACE framework [1].

9

2. Forward Uncertainty Quantification

Figure 2.4.: The hierarchical subsets of a equispaced grid from level 1 to 4.

2.3.4. Spatially Adaptive Grids

Static Sparse Grids perform well on smooth functions but come at a higher error cost if the
function is not smooth. To overcome this limitation Sparse Grids can be adaptively refined at
runtime. There are multiple strategies to refine a Sparse Grid. This section discusses simple
spatially Adaptive Grids.
Spatially adaptive refinement schemes are able to improve accuracy in certain areas without
adding more points in other areas of the grid. They allow the user to initially choose a
relatively low level and only focus the computation cost on non smooth parts of the function
such as discontinuities.
To motivate a primitive refinement strategy we notice that the hierarchical nodes each have
2d child nodes which are adjacent to them and contained in the subsets that are one level
higher than their parents. Refining a point adds his child nodes to the grid. The added nodes
can have other parent nodes which have to be added to the grid in a recursive way. Figure
2.5 shows an example of two possible refinement steps including adding additional parent
nodes.
Multiple refinement criteria exist to decide at which points more nodes have to be added.
A straightforward one is to take the points with the highest surpluses, meaning the points
which currently contribute the most to the result. This criterion has the advantage that
it only relies on already available information and does not require additional function
evaluations. This is especially important in scenarios where a function evaluation is costly
and/or time-consuming.

2.3.5. Boundary Points

When selecting a grid on which to integrate, it is an important decision if one includes
nodes on the boundary of the integrated interval. This choice usually depends on the
evaluated function. Including them results in drastically more grid points that are particularly

10

2. Forward Uncertainty Quantification

Figure 2.5.: The Figure shows two steps of refinement. The black points are already evaluated, the red
are the points that are to be refined and the gray ones are additional parent points that
have to be added. The figure was taken from [7].

concentrated on the boundary which leads to a higher integration cost. To demonstrate
this consider the case of a d-dimensional space. When excluding the boundary, the level 1
grid has only a single point to evaluate, whereas including them there are already 3d nodes.
Furthermore this decision does not change the asymptotic convergence rate. Also Figure 2.3
shows the boundary points. It can be observed that in two dimensions these already make up
for a very significant portion of nodes.

11

3. Simulation Software

In this chapter we describe the software used to perform the Uncertainty Quantification as
well as the hydrology simulation model LARSIM (Large Area Runoff Simulation Model).

3.1. sparseSpACE

The Sparse Grid Spatially Adaptive Combination Environment (sparseSpACE) [1] is a python
framework to perform different operations optimized with Sparse and Adaptive Grid schemes.
These operations include Integration, Interpolation and Uncertainty Quantification. It also
supports different grids and refinement techniques together with multiple error estimators.

3.1.1. General Architecture

This section is a summary of the authors own understanding that has been acquired with the
tutorials provided by [1]. SparseSpACE uses a Function object that the operation is applied to.
The Function class defines an abstract eval method which has to be implemented in custom
applications. The object includes a cache of previously evaluated nodes and their results. This
enables sparseSpACE to evaluate nodes multiple times at the cost of only one evaluation.
A Grid object defines a Full Grid that is later used by the Sparse or Adaptive Grid Scheme.
It also defines the interval on which the function is evaluated. Implemented grids include
Gauss-Hermite and Gauss-Legendre-Grids as well as Trapezoidal Grids. The Operation

object specifies which operation should be performed on the Function object. It needs at
least the Function and the Grid instances as parameters. The operation object also handles
the evaluation of the function. Some of the possible operations are Integration, Interpolation
and Uncertainty Quantification. The final piece is the Sparse Grid Scheme which can also be
adaptive. It needs the Operation object to initialize. It is responsible for creating the nodes at
which the instance of Function is evaluated. Some Schemes only work with specific kinds of
grids. For example the adaptive schemes do not accept the Gaussian Grids.

3.1.2. Uncertainty Quantification with sparseSpACE

In [9] Uncertainty Quantification for sparseSpACE was implemented. Its corresponding
Operation is the UncertaintyQuantification.
This operation only works with weighted trapezoidal, HighOrder and Langrage Grids,
which is important because using another grid may not cause an error but will produce
a wrong result. After an adaptive refinement has been performed the Operation can
use the method calculate_expectation_and_variance to calculate the expectation and

12

3. Simulation Software

variance directly through the weighted integration approach. Alternatively we can use
get_expectation_and_variance_PCE after calling calculate_PCE to use PCE method de-
scribed in 2.2. The operation was originally described for the single dimension refinement
technique introduced in [10].
We can decide which method we want to use to determine the expectation and variance.
Either we choose to calculate the expectation and variance directly using the weighted inte-
gration or we decide to make use of the gPCE technique. The UncertaintyQuantification

operation itself is based on the Integration class which means, it uses its integration facilities
to calculate the statistical moments and from there the expectation and variance. It relies on
the grid-specific Integrator to perform the actual evaluation and weighting of the nodes.

3.2. LARSIM

For this work we use the Large Area Runoff Simulation Model (LARSIM) as the application
model for the Uncertainty Quantification. This section is not an accurate description of the
mathematical model but focuses on the input and output data. It is based on the English
documentation [2].
LARSIM is a conceptional hydrology simulation model. It can be used to describe the
current state of the system, to simulate a hypothetical system or to make forecasts. Larsim
models multiple processes including storage in soil as well as lakes, snow accumulation
and melt, evapotranspiration and runoff of stored water. These are applied to a discrete
approximation of a landscape which is divided into cells. The landscape data includes
for example specifications for land use, runoff connections to other parcels and vegetation.
LARSIM has two different kinds of parameters, first meteorological data like precipitation
and temperature and secondly terrain specific data like area type. Furthermore constants
used for modeling can be modified as well. The Leaf Area Index (LAI) models the amount of
precipitation that can be intercepted by plants. Some of these parameters have constraints
originating from their physical background. For example The EQI parameter which models
the retention of interflow, has to be always smaller than EQB which models the retention for
groundwater storage. For this work we are only interested in the former kind of parameters
which are passed to the model in a CSV format. The output we focus on is the time series of
the runoff at a single station.
To use the model which is written in FORTRAN, in Python we use the Larsim_Utility_Set [11].
It wraps calling of the LARSIM executable and writes parameters into the correct input files.
It also transforms the given parameters to fit the previously described constraints. To do this
only an offset from the dependent value is passed to the utility function which is then scaled
and added/subtracted to its dependency. Therefor, we can only perform an Uncertainty
Quantification with respect to offsets for these constrained parameters.
The Larsim_Utility_Set framework does not support meteorological and terrain-specific
parameters at the time of writing. Therefor we can only perform experiments with the
modelling constants.

13

4. Implementation of parallel evaluation of
LARSIM in Python

Since each evaluation of LARSIM takes about half a minute of time, a parallel evaluation
could save a tremendous amount of time. When we started this project sparseSpACE had
no general way to evaluate a function in parallel. A parallelisation done by the user of the
framework is almost impossible because its top-level interface does not leave much control to
him. Implementing it in the framework itself also turned out to be a difficult task. Function
evaluations can be triggered at a multitude of points. One would have to rewrite a large
portion of the framework to execute them in parallel.
A small exception exists: a grid evaluates its points for integration using an Integrator

object which receives an area it has to integrate, generates the necessary evaluation nodes
and executes the function with the corresponding parameters. This integrator can be turned
into a parallel execution engine in a straightforward way. However this engine is limited to
operations which use the Integrator to evaluate the function.

4.1. Parallelisation of sparseSpACE Integration

We parallelised integration on the Integrator level to be as low level as possible and there-
fore keep the implementation general. A new variant of the IntegratorArbitraryGrid,
IntegratorParallelArbitraryGrid, has been introduced. To use it one has to set the
integrator attribute of the used grid to an instance of IntegratorParallelArbitraryGrid
which requires the grid itself as an argument. However it requires that the function can run
in parallel. This may mean that one has to setup separate working directories for different
processes.
We use a multiprocessing approach which is more flexible and will work on different architec-
tures; it also circumvents the global interpreter lock of CPython. To communicate between the
processes we used the Message Passing Interface (MPI) standard for which bindings where
provided by the mpi4py library [12].
The IntegratorParallelArbitraryGrid works by collecting all nodes on the master process
and use the MPI gather/scatter idiom to distribute them onto each process. After the evalua-
tion is done the results are gathered on the master process which then performs a weighted
summation to calculate the integration result.
To prevent that each process works with a different fraction of the cache, they have to be
updated. This is done by gathering them on the master process, merging and broadcasting
them back to all processes which then update the cache of their respective function with the
new global one.

14

4. Implementation of parallel evaluation of LARSIM in Python

Pseudocode of the whole procedure is shown in Algorithm 1. However this naive version

Algorithm 1 Pseudocode of the parallel integration function executed by the
IntegratorParallelArbitraryGrid for N processes

function integrate(...)
if currentprocess == masterprocess then

nodes← collect all points and weights to be evaluated
packets← split them into N evenly large packets

end if

packet← MPI_Scatter(packets)
result← weighted sum of evaluated nodes in packet
results← MPI_Gather(result)

if currentprocess == masterprocess then
total← sum results

end if

caches← MPI_Gather(cache)
if currentprocess == masterprocess then

globalcache← merge caches
end if

cache← MPI_Bcast(globalcache)
return MPI_Bcast(total)

end function

does not necessarily distribute an even amount of work to each process. Some processes
could get more cached nodes whereas others have to do more evaluation work. This leads
to the latter processes taking substantially more time while the former just wait for them
which means that resources are not used efficiently. Especially in steps with a large amount
of nodes these imbalances could cause a significant waiting time. To prevent this, one has
to distribute packets with the same ratio of cached and uncached nodes. We implemented
IntegratorParallelArbitraryGridOptimized which solves this problem by distinguishing
between cached and uncached nodes, builds packets of evaluated and unevaluated nodes for
each process and concatenates them so that each have a roughly equal amount of uncached
nodes.

4.2. Embedding Larsim

The Larsim_Utility_Set [11] provides the necessary functions to call the LARSIM executable
from the python code. To work with the sparseSpACE framework we have to wrap the

15

4. Implementation of parallel evaluation of LARSIM in Python

LarsimModel object of the Utility Set into a Function class. Therefore we have to implement
a call method. The array of parameters has to be converted to a named dictionary for the
LarsimModel, which then returns a pandas dataframe. Another utility function is used to
pick out values for only one station. These are then converted to a numpy ndarray so that
sparseSpACE can work with them.
Since the sparseSpACE framework may want to evaluate the function on relatively precise
points the pandas library [13] may export them in a csv using the exponent format (e.g.
"0.123e-9"). This format is not understood by the LARSIM model. We had to modify the
Larsim_Utility_Set library to specifically instruct pandas to format floating point numbers
using ten decimal digits and never use the exponent alternative.

16

5. Tests

We performed all of our experiments on a LCX Linux container hosted on a Proxmox Virtual
Environment providing 32 CPUs (Xeon E5-2630 v4 @ 2.20GHz), 32 GByte of RAM and 100
GByte disk space. We used the configuration_larsim_updated_lai.json configuration file
which is provided with [11]. It assumes the uniform distribution over different Leaf Area
Index (LAI) parameters. The LAI is specific to different area types and months. Our setup
uses four area type, month pairs as uncertain parameters. The Quantity of Interest was the
"Abfluss Messung".

5.1. Testing the parallelisation

One of the first weaknesses we noticed was a rapidly growing memory usage, which even-
tually lead to out-of-memory faults. However we also observed a small but considerable
growth when using a single-processed unmodified application. This effect was scaled by
the multi-process environment and it caused a lack of resources in a shorter amount of
time. Through experimentation we could isolate the effect. It was only present when using
the gPCE approach for Uncertainty Quantification. When calculating the expectation and
variance directly memory usage was stable. We also observed that more disk IO actions
were performed when we disabled the gPCE interpolation. Since LARSIM relies heavily on
external configuration files we suspect that the gPCE method also produced a considerable
overhead. All following experiments used the direct way of calculation.
It is possible that the Integrator only receives a smaller portion of the total amount of grid
points to be evaluated. This occurs for example when applying the combination technique:
For each of the anisotropic subgrids integration is performed once, which results in only a
fraction of the total workload being known to the integrator at a single call. On lower levels
this means that the IntegratorParallelAbitraryGrid may not be able to make full use of
system resources due to there being less nodes than processes. Also adaptive refinement
techniques may add only a small number of points at a time. Therefore it is important to
measure how many points can be evaluated in parallel to determine the value gained by
parallel evaluation for a specific method.
Therefor, we log how many points are gathered at each call of the Integrator and how many
of them are yet uncached, meaning the true work that has to be done. We compare a static
Sparse Grid approach with an increasing maximum level and an Adaptive Grid technique.
For the Sparse Grid case we can also regard the average amount of points evaluated per call at
different levels. We expect to observe more points per call at a higher level since the subgrids

17

5. Tests

will contain more nodes at higher levels.
For a static Sparse Grid measurement we use the Gauss-Legendre Grid as basis and count the
work packets for each increasing level. We finished computations up to level 5 and included
partial results for level 6. In Figure 5.1 we show histograms which count work packets
grouped by their length at different levels. One can observe a very large growth of work
packet size with increasing level and at smaller levels the packets are already considerably
large. The adaptive technique only uses the combination scheme to set a basis for later
refinement and a comparison by level is not really sensible since most of the work should be
done during refinement. In Figure 5.2 we can see a count work packets consisting of nodes an
integrator had to evaluate at once grouped by their length. We also determined how many of
them were already cached in order to determine the real work done. We can clearly observe
that large parts of the calculation have already been cached and usually only less than 30
points have to be evaluated. This is however not universally applicable to every function and
dimensionality. We strongly advice to make own measurements to determine the optimal
assignment of physical resources.
Measuring the communication overhead on the adaptive technique we found that the longest
a process has to wait until all others have finished evaluating is on average 6.893747679794891s.
This considerable overhead is probably caused by some threads receiving less workload than
others. This is confirmed by Figure 5.3 which shows how the waiting times were distributed.
One can clearly observe small groups of outliers around 30 and 50 seconds which roughly
correspond to multiples of a single runtime.

5.2. Error Calculation

The theoretical error convergence rates of different integration techniques presume certain
properties of the function f that is evaluated. Some of these are for example smoothness
or Riemann integrability. Therefor, we have to evaluate and compare different integration
techniques to be able to make any meaningful statement about their effectiveness.
This is usually done by comparing the result of a simulation to a measured reference solution.
We would compare the errors of multiple techniques at different numbers of evaluated nodes.
This would allow us to compare their real convergence rates.
Although single measured values can be obtained to calculate an error estimate for a de-
terministic forward pass, no such reference solution exists for the probabilistic results of a
Forward Uncertainty Quantification. The variance for example cannot be observed from a
single data point.
Another approach has to be chosen. To verify our solution is correct we compare it to the
result of a simulation using the Monte-Carlo method (N=2025). Figure 5.5 shows the 2-norm
of expectation and variance with respect to the number of samples calculated by the Monte-
Carlo simulation. We can see the Monte-Carlo approach converges quite cleanly. We also plot
the expectation and variance result of a Sparse Grid simulation that used a Gauss-Legendre
Grid as basis (Figure 5.4). This approach also converges but to slightly different values. Figure
5.6 shows the error in dependence of the number of points evaluated using a Sparse Grid with

18

5. Tests

a Gauss-Legendre Grid as basis. Using this visualization we cannot confirm a convergence
towards the Monte-Carlo result. The deviation however is relatively small.
Since we compute a time series of means and variances the error is normalized using the
2-norm. This is a measure of multidimensional distance from the reference to the current
solution.
We also tested an Adaptive Grid approach using a Trapezoidal Grid as basis. In this run we
did not take the result at different numbers of evaluated points. In the end we obtained an
2-norm-reduced error of 1.6998841230065735 in the expectation and of 1.4722099789459928
at 573 evaluated points. If we divide the error by the mean of the respective value before
applying the norm we get 0.005958529231525151 for expectation and 23.571891082425328
for the error in variance. We note that this approach converges to the same values as the
standard combination technique. When comparing the results of the Adaptive Grid to the
high-level Sparse Grid estimates the 2-norm reduced error is considerably smaller at only
0.3907605946223124 in expectation and 0.24071648764009526 in variance.
Therefor, we suspect a small numerical error introduced by the sparseSpACE framework or
our custom implementation of the Monte-Carlo approach which used the chaospy library
[14] and did not rely on sparseSpACE.
The results we obtained from each of the different techniques is shown in Figure 5.7.

19

5. Tests

Figure 5.1.: The top plot shows work packet count grouped by their total length at different levels. We
note that level 6 is not a finished computation but has been included for additional insight.

20

5. Tests

Figure 5.2.: The top plot shows work packet count grouped by their total length for the adaptive
technique. The bottom plot shows work packet count group by the number of uncached
nodes.

Figure 5.3.: A count of waiting times grouped by their lengths.

21

5. Tests

Figure 5.4.: This figure shows the expectation and variance results produced by the Monte-Carlo
simulation in dependence of the number of evaluated points. Both have been reduced
using the 2-norm.

22

5. Tests

Figure 5.5.: This figure shows the expectation and variance results produced by a Sparse Grid approach
with a Gauss-Legendre basis in dependence of the number of evaluated points. Both have
been reduced using the 2-norm.

23

5. Tests

Figure 5.6.: A visualization of the convergence of the combination techniques using a Gauss-Legendre
grid as basis. It show the error reduced by the 2-norm using the Monte-Carlo result at
N = 50000 as reference solution.

24

5. Tests

Figure 5.7.: We show the result of our three different simulations which where time series with an
interval of 1-hour increments. The top one shows the simulated expectation. Only a single
line is visible since the deviations are so small they overlap. The bottom figure shows the
estimation of variance where some divergence exists.

25

6. Discussion and Future Work

We have shown a promising way to parallelize the execution of a single model within a
Sparse Grid framework and apply it to Uncertainty Quantification. The results of small test
calculations are within reasonable error margins which confirms that we did not introduce any
considerable error. However a small numerical difference in results between the sparseSpACE
and custom Monte-Carlo implementation exists. Although it is almost negligible for this
application it could scale and introduce a more considerable error for others.
Although a speed-up is definitely recognizable no quantitative measurements have been
made regarding the total required time. Theoretically we can imagine that the only limit of
speed is the execution time of the model if the system resources can match the number of
points in each work packet. In this scenario however we neglect overhead that might be worth
measuring by logging the amount of idling time or more specifically the time that processes
generally spent waiting for blocking MPI calls.
The total overhead should also have been measured since the current architecture is very
symmetrical. Almost all processes have to execute the same steps. An asymmetrical master-
slave architecture could be implemented where the master process determines grid points
and computes results while worker processes are only responsible for function evaluations.
This method has the potential to reduce redundant computation and therefore RAM and
energy usage. We do not think it would lead to a large reduction of computation time because
worker processes would have to wait until the master gives them new instructions.
However there are still ways to optimize the current implementation. One of its flaws is
for example its limitation to integration based operations. Other operations like density
estimation and interpolation are still only available in serial execution models.
A possible solution to this would be a centralized evaluator which receives all points that
have to be evaluated. Another advantage could be a buffering mechanism that implements a
lazy evaluation system which only triggers execution of the model once a result is specifically
requested. This would allow the evaluator to store as many points as possible before executing
them in parallel and maximize the use of all system resources. An implementation in the
sparseSpACE framework would be difficult because it requires refactoring of large portions
of the codebase to fully make use of a buffering mechanism.
Another possible way to solve this problem could be a parallelisation on the subgrid level.
Each subspace of nodes could be evaluated separately and in parallel. This method is not
limited to any specific operation. However when the maximum level and/or the number of
dimensions is low only a small amount of subgrids will exist which is possibly lower than
the number of processes available.
For our tests we only used the LARSIM model with a relatively short execution time. In this
case we did not have to worry too much about waiting times which arise from parameter

26

6. Discussion and Future Work

dependent evaluation time. On lower levels the overall time is sufficiently small to make
slight imbalances negligible and on on larger levels the imbalances should cancel out because
of a higher number of nodes per work packet. When using a model with considerably larger
execution time, significant waiting times could arise.
A potential drawback of using sparseSpACE is the growing memory usage when using the
gPCE approach with sparseSpACE, which added about 1 MB for every evaluation of the
problem function.
Specific to our implementation there might also be a problem when scaling the size of the
cache. Since the entire cache has to be transmitted to the master process for merging a
significant overhead could be introduced when evaluating a large number of nodes especially
with a long time series as output.
Considering the amount of complications when dealing with parallel evaluation in sparseSpACE
one might consider using the Monte-Carlo approach that we originally intended as reference
solution. We noticed it is in comparison to sparseSpACE easy to parallelise and introduces
less overhead. Furthermore its only restriction for scaling up the parallel evaluation is the
overall number of points which we want to evaluate. Additionally it has also shown a
significantly faster and cleaner convergence specifically for the LARSIM application.

27

A. General Addenda

The digital appendix contains the Python scripts which where used to perform the experi-
ments:

• larsim_chaospy.py contains the code used for the Monte-Carlo simulation.

• larsim_adaptive.py uses sparseSpACE to perform an Adaptive Grid Integration.

• larsim_combi.py uses sparseSpACE to perform a Standard-Combination Sparse Grid
Integration.

To execute the scripts one has to install the Larsim_Utility_Set as well as sparseSpACE. Also
the Data required for LARSIM and its exectuable have to be present.
The file parallel_integrator.py contains both versions of our new parallel integrator. Our
changes are also implemented in the jonas-treplin-experimental branch of the sparseS-
pACE Github project.
The configuration file configuration_larsim_updated_lai.json describes the configuration
we used for our experiments
We also provide a git repository with all the files described here. It is accessible under
https://github.com/Xnartharax/forschungsarbeit-appendix.git.

28

List of Figures

2.1. This figure shows the linear interpolation of a polynomial as well as the
resulting trapezes used for integration. 6

2.2. The anisotropic full grids used for the standard combination technique with
N = 4. The green grids have a positive weight while the orange ones are
subtracted. The plot has been produced by the sparseSpACE framework [1]. . 9

2.3. The resulting grid points for the combination technique with the subspaces
used in Figure 2.2. The plot has been produced by the sparseSpACE framework
[1]. 9

2.4. The hierarchical subsets of a equispaced grid from level 1 to 4. 10
2.5. The Figure shows two steps of refinement. The black points are already

evaluated, the red are the points that are to be refined and the gray ones are
additional parent points that have to be added. The figure was taken from [7]. 11

5.1. The top plot shows work packet count grouped by their total length at different
levels. We note that level 6 is not a finished computation but has been included
for additional insight. 20

5.2. The top plot shows work packet count grouped by their total length for the
adaptive technique. The bottom plot shows work packet count group by the
number of uncached nodes. 21

5.3. A count of waiting times grouped by their lengths. 21
5.4. This figure shows the expectation and variance results produced by the Monte-

Carlo simulation in dependence of the number of evaluated points. Both have
been reduced using the 2-norm. 22

5.5. This figure shows the expectation and variance results produced by a Sparse
Grid approach with a Gauss-Legendre basis in dependence of the number of
evaluated points. Both have been reduced using the 2-norm. 23

5.6. A visualization of the convergence of the combination techniques using a
Gauss-Legendre grid as basis. It show the error reduced by the 2-norm using
the Monte-Carlo result at N = 50000 as reference solution. 24

5.7. We show the result of our three different simulations which where time series
with an interval of 1-hour increments. The top one shows the simulated
expectation. Only a single line is visible since the deviations are so small
they overlap. The bottom figure shows the estimation of variance where some
divergence exists. 25

29

List of Figures

30

Bibliography

[1] M. Obersteiner. sparseSpACE. url: https://github.com/obersteiner/sparseSpACE.

[2] K. Ludwig and M. Bremicker. “The Water Balance Model LARSIM – Design, Content
and Applications”. In: Freiburger Schriften zur Hydrologie 22 (2006).

[3] A. Liatsetskaya. “Adaptive Quadrature with the Combination Technique for UQ Appli-
cations”. Bachelorarbeit. Technical University of Munich, June 2020.

[4] I.-G. Farcas. “Context-aware Model Hierarchies for Higher-dimensional Uncertainty
Quantification”. Dissertation. München: Technische Universität München, 2020.

[5] R. C. Smith. Uncertainty Quantification: Theory, Implementation, and Applications. USA:
Society for Industrial and Applied Mathematics, 2013. isbn: 161197321X.

[6] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach. USA:
Princeton University Press, 2010. isbn: 0691142122.

[7] D. Pflüger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. address: München
URL: http://www5.in.tum.de/pub/pflueger10spatially.pdf. München: Verlag Dr. Hut,
Aug. 2010.

[8] T. Neckel. Algorithms for Uncertainty Quantification Lecture 5: Aspects of Interpolation and
Quadrature. Lecture Slides. 2019.

[9] F. Hofmeier. “Applying the Spatially Adaptive Combination Technique to Uncertainty
Quantification”. Bachelorarbeit. Technical University of Munich, Sept. 2019.

[10] H. Möller. “Dimension-wise Spatial-adaptive Refinement with the Sparse Grid Combi-
nation Technique”. Bachelorarbeit. Department of Informatics, Technische Universität
München, Oct. 2018.

[11] I. Jovanovic Buha. Larsim_Utility_Set. 2020. url: https://github.com/ivanajovanovic/
Larsim_Utility_Set.

[12] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo. “Parallel distributed computing
using Python”. In: Advances in Water Resources 34.9 (2011). New Computational Methods
and Software Tools, pp. 1124–1139. issn: 0309-1708. doi: https://doi.org/10.1016/
j.advwatres.2011.04.013. url: http://www.sciencedirect.com/science/article/
pii/S0309170811000777.

[13] T. pandas development team. pandas-dev/pandas: Pandas. Version latest. Feb. 2020. doi:
10.5281/zenodo.3509134. url: https://doi.org/10.5281/zenodo.3509134.

31

https://github.com/obersteiner/sparseSpACE
https://github.com/ivanajovanovic/Larsim_Utility_Set
https://github.com/ivanajovanovic/Larsim_Utility_Set
https://doi.org/https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/https://doi.org/10.1016/j.advwatres.2011.04.013
http://www.sciencedirect.com/science/article/pii/S0309170811000777
http://www.sciencedirect.com/science/article/pii/S0309170811000777
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134

Bibliography

[14] J. Feinberg and H. P. Langtangen. “Chaospy: An open source tool for designing methods
of uncertainty quantification”. In: Journal of Computational Science 11 (2015), pp. 46–
57. issn: 1877-7503. doi: https://doi.org/10.1016/j.jocs.2015.08.008. url:
http://www.sciencedirect.com/science/article/pii/S1877750315300119.

32

https://doi.org/https://doi.org/10.1016/j.jocs.2015.08.008
http://www.sciencedirect.com/science/article/pii/S1877750315300119

Ich erkläre hiermit, dass ich die Forschungsarbeit ohne fremde Hilfe angefertigt und nur die
im Literaturverzeichnis angeführten Quellen und Hilfsmittel benützt habe.

Munich, 1.12.2020 Jonas Treplin

	Abstract
	Kurzfassung
	Contents
	Introduction
	Forward Uncertainty Quantification
	Monte-Carlo Methods
	Uncertainty Quantification using Polynomial Chaos Expansion
	Integration Techniques for Uncertainty Quantification
	Examples of Single-Dimensional Quadrature Rules
	Full Grid Quadrature
	Sparse Grids
	Spatially Adaptive Grids
	Boundary Points

	Simulation Software
	sparseSpACE
	General Architecture
	Uncertainty Quantification with sparseSpACE

	LARSIM

	Implementation of parallel evaluation of LARSIM in Python
	Parallelisation of sparseSpACE Integration
	Embedding Larsim

	Tests
	Testing the parallelisation
	Error Calculation

	Discussion and Future Work
	General Addenda
	List of Figures
	Bibliography

