Chair of Communication Networks Department of Electrical and Computer Engineering Technical University of Munich

Next generation access network planning

Chair of Communication Networks, Technical University of Munich, Germany

Outline

- Evolution
- Issues for operators

PIP: Physical Infrustucture provider

Ш

Mbps

Evolution

xDSL technology is distance sensitive

How far are you from central office

Source: http://www.unitrek.com.au

Optical fiber (also) in access networks!

- ✓ Huge bandwidth (over 50 Tbps): 3-4 orders of magnitude higher than copper
- \checkmark Low signal attenuation \rightarrow less repeaters required, longer distances
- ✓ Immunity to electromagnetic interference → difficult eavesdropping → security
- ✓ No crosstalk between fibers of the same cable
- Low space requirement

Issues for the operators

Infrastructure

- Huge investment \rightarrow use it as long as possible
- Seamless upgrade/migration

ПШ

Issues for the operators

Diverse user requirements

Investments required Network upgrade

Competitive telecom area

Limited/Conditioned ARPU

Objective: Maximize Profits

Outline

- Evolution and terminology
- Example of FTTB in Munich
- NGOA Architectures
- Converged access networks

Optical Access Networks

Topology

Each cable is laid on demand:

- unefficient,
- time and cost consuming
- no flexibility

Use of flexibility/distribution points \rightarrow Tree topology

Optical Access Networks

Topology

 Feeder Cable
 Easier, faster and less costly to connect new users

Distribution Cable

70% of HH in Munich

HH: Household MDU: Multi-Dwelling Unit C. Mas Machuca (TUM) | Converged access planning ONU/ ONT: Optical Network Unit/Terminal OLT: Optical Line Terminal FTTx: Fiber to the x

Optical Access Networks

FTTB project in Munich

Required cable? ~7.000 km (from Munich to Sydney)

Required fiber? ~260.000 km (6,5 x round-the-globe)

DSLAM: Digital Subscriber Line Access Multiplexer MDU: Multi-Dwelling Unit C. Mas Machuca (TUM) | Converged access planning ONU/ ONT: Optical Network Unit/Terminal OLT: Optical Line Terminal FTTx: Fiber to the x

Towards NGOA

DSLAM: Digital Subscriber Line Access Multiplexer MDU: Multi-Dwelling Unit C. Mas Machuca (TUM) | Converged access planning

ONU/ ONT: Optical Network Unit/Terminal OLT: Optical Line Terminal FTTx: Fiber to the x

Towards NGOA

ПΠ

NGOA architectures

How to increase BW with limited investments? \rightarrow Hybrid PON

AWG: Array Waveguide

ONU/ ONT: Optical Network Unit/Terminal OLT: Optical Line Terminal

NGOA architectures

Achieved goals:

- Sustained bit rate per ONU: 150-500 Mbps
- Peak bitrate per ONU: 1-10 Gbps
- Reduction of central offices \rightarrow node consolidation
- Maximum reuse of existing optical infrastructure \rightarrow low cost migration

AWG: Array Waveguide

ONU/ ONT: Optical Network Unit/Terminal OLT: Optical Line Terminal

Nowadays

Fiber to the Base Station (FTTBS)

Fiber to the Antenna (FTTA)

AWG: Array Waveguide

ONU/ ONT: Optical Network Unit/Terminal OLT: Optical Line Terminal

ПΠ

ТП

ТЛ

Converged access networks

A single converged NGOA can interconnect different users:

- Residential users
- Business users
- Base Stations
- Small cells

Each user gets the required bandwidth

AWG: Array Waveguide

ONU/ ONT: Optical Network Unit/Terminal OLT: Optical Line Terminal

Converged access networks

Case Study: Darmstadt (Germany)

- 9.63 km2
- 6056 buildings
- 32000 households
- Number of base stations: 5 (UMTS) and 37(LTE)

Converged access networks

Converged access networks

ТЛП

Converged access networks

Important aspects to be taken into account:

- Existing infrastructure?
- Locations availability?
- Planning time span (5 years? 10 years?)
- Demands: type, distribution, etc.
- Costs (and time) factors
 - Techniques/expertise/availability/wages/permits...
- Protection?
- Flexibility

Outline

ТШ

Objectives

- Deliver services requested by users
- Deliver acceptable throughput and response times
- Be within budget and maximize cost efficiencies
- Be reliable
- Be expandable without major redesign
- Be manageable by maintenance and support staff
- Be well documented

Methodology

Methodology

- Area
 - Dense Urban? Urban? Rural?
 - Size?

Methodology

- Area
 - Dense Urban? Urban? Rural?
 - Size?
 - Available data?

Raster maps	Vector maps
 based on conventional images files From .gif, .jpg, other image files Details can be observed, low time&money for map acquisition Maps don't scale well, too big files for high resolution 	 based on text files with coordinates describing the various points and curves on a map. The data can be used to generate a map image Maps scale very well and is relatively small Map information can be structured in layers Costly from raster map to vector map Only details that have vectorized can be shown

Methodology

- Area
 - Dense Urban? Urban? Rural?
 - Size?
 - Available data?
 - Information?
 - For fixed access: Street type/size, public transport lines, bridges, etc.
 - For mobile access: Area topography, building high, building access, etc.

Methodology

Existing ducts? Can be resused?

Methodology

Examples of some solutions without protection

Methodology

Examples of some solutions without protection

Methodology

Examples of some solutions without protection
Methodology

- Area
- GF/BF
- Technology
- Architecture
- End users different from requirements: BW, avaiability, max. delay, etc.
- Residential
- Business
- MBS
- SC
- RSU
- Others...

The location is crucial to be known....

Residential	Based on maps. Based on building size and area \rightarrow Number of HH/Building
Business	If no real data available \rightarrow some models: e.g., based on building size and area
MBS	If no real data available \rightarrow some models: e.g., grid. Realignment is required.
SC	If no real data available \rightarrow some models: e.g., based on building type (hospital, shopping mall, etc.)
RSU	Distributed along streets/roads.

Methodology

- End users
- Penetration curves

Impact of the location of new customers

Methodology

Service Management

• ...

Methodology

Fronthaul of MBS and SC (FH WR WDM-PON)

ONU: Optical Network Unit MBS: Macro Base Station AWG: Array Waveguide BBU: Base Band Unit RRU: Radio Remote Unit

Methodology

Methodology

ONU: Optical Network Unit MBS: Macro Base Station AWG: Array Waveguide BBU: Base Band Unit RRU: Radio Remote Unit

Methodology

Methodology

Methodology

Methodology

Converges fast but usually in a local optimum.

Global optimum \rightarrow deterministic annealing and genetic algorithms

How to determine best k in advance?

- Given splitting ratio of RN
- Allowing some spare ports → resilience, new ONUs, etc.
- Minimizing distance to each cluster centroid
- C. Mas Machuca (TUM) | Converged access planning

Methodology

Heuristics

Fiber layout:

Duct is the cost driver compared to fiber

Minimum Spanning tree: Very long paths

Methodology

Heuristics

• Fiber layout:

Duct is the cost driver compared to fiber

Shortest path tree: High costs

Methodology

Heuristics

• Fiber layout:

Duct is the cost driver compared to fiber

- Bounded Radius Minimum Spanning Tree → Trade off between radius and cost
- Steiner Tree→ finds a tree of minimum weight that contains all end nodes (but may include additional vertices).
- Modified Dijkstra (reducing weights –e.g., to 1- when a street segment has a duct)

Methodology

- ILP
- Objective Function to minimize the total infrastructure cost
- Constraints:
 - Every cabinet, SC and BS must be connected to a unique AWG2 :

For every j,
$$\sum_{i=0}^{n*m} e_{ij} = 1$$

For every j, $\sum_{i=0}^{n*m} SC_{ij} = 1$
For every j, $\sum_{i=0}^{n*m} BS_{ij} = 1$

Every AWG1 must be connected to the MCO :

For every j,
$$\sum_{i=0}^{n*m} \mathrm{d}_{ij} = 1$$

 The sum of the connections between one RN and its connected Cabinets, SC and BS must be smaller than the AWG2 capacity (k₂)

For every i, $\sum_{j=0}^{n*m} (e_{ij} + \text{Number_per_SC}_j * SC_{ij} + \text{Number_per_BS*BS}_{ij}) \le k_2$

Methodology

ILP

- Objective Function to minimize the total infrastructure cost
- Constraints:
 - The distances between the MCO and the cabinets must be smaller than the maximal reach : For every i, j, l, v :

$$\mathbf{d}_{ij} * \mathbf{D}_{\mathsf{MCOi}\text{-}\mathsf{AWG1j}} + \mathbf{e}_{12jl} * \mathbf{D}_{\mathsf{AWG1j}\text{-}\mathsf{AWG2l}} + \mathbf{e}_{lv} * \mathbf{D}_{\mathsf{AWG2l}\text{-}\mathsf{Cabv}} \leq \mathbf{D}_{\mathsf{max}}$$

Methodology

Evaluation metrics

- TCO= CAPEX+OPEX(T)
- Yearly Cash Flow
- Payback period
- Net Present Value (NPV)
- Discounted Payback period (DPB)
- Internal Rate of Return (IRR)

Outline

Hybrid PON Analysis

Hybrid PON Analysis

Hybrid PON Analysis

Heuristics https://github.com/EGrigoreva/FixedNetworkPlanningTool

Hybrid PON Analysis

Hybrid PON Analysis

Hybrid PON Analysis

○ First year users, then spread outwards following the adoption curves

Which is the impact of planning according to Bass??

Hybrid PON Analysis

Tutorial Take away

- Strategic planning required by operators but also for manufacturers, regulators and goverments.
- Planning depends significantly on the considered models and approaches
- These studies are useful but ...other aspects must also be considered
- Cost is important:
 - Specially infrastructure!
 - How to take advantage:
 - Converged Networks → More and diverse users sharing same ODN
 - Reuse ducts and fibers for protection
 - Do not understimate OPEX!!!

More information on our tools at https://www.ei.tum.de/lkn/research/dfg-converged-access/ https://github.com/EGrigoreva/FixedNetworkPlanningTool C. Mas Machuca (TUM) | *Converged access planning*

