
Chair of Communication Networks
Department of Electrical and Computer Engineering
Technical University of Munich

©2020 Technical University of Munich

Software Dependability:

A case study on Software Defined Networks

Carmen Mas Machuca, Petra Vizarreta

Chair of Communication Networks,

Technical University of Munich, Germany

C. Mas Machuca (TUM) | Software Dependability

 Software bugs contribute more than 35% of critical network outages [Google2016]

 Bugs caused more than 33% of customer impacting incidents [Microsoft2017]

Ubiquity and magnitude of software failures

PST: Pacific Standard Time
CET: Central European Time

28.02.2017 09:37 (PST)

S3 Service Disruption in

the Northern Virginia

(US-EAST-1) Region

https://aws.amazon.com/

message/41926/

22.06.19 03:00 to 22.06.2019 05:42 (PST).

A widespread BGP routing leak affected a number of

Internet services and a portion of traffic to Cloudflare.

https://bgr.com/2019/06/24/internet-outage-

2019-google-amazon-reddit-down/

26.03.20 16:14 to 27.03.20 05:55 (PST).

Cloud IAM experienced elevated error rates which caused disruption

across many services for a duration of 3.5 hours, and stale data

(resulting in continued disruption in administrative operations for a

subset of services) for a duration of 14 hours

https://status.cloud.google.com/incident/zall/20003

19.05.20 13:30 to 16:30 (UTC).

A bug caused high resource utilization in the internal cluster service

that is responsible for receiving and executing service management

operations in the East US region. The bug was encountered in all the

service instances of the region leading to failures and timeouts for

management operations

https://status.azure.com/en-us/status/history

2

C. Mas Machuca (TUM) | Software Dependability

 Terms and Taxonomy

 Software Dependability Problem

 Addressed questions applied to SDN:

 How reliable a controller is? Steady-state availability

 How often does software fail? Bug forecasting and Software Maturity evaluation

 What is the impact? User-perceived service

 Conclusions

Outline

3

C. Mas Machuca (TUM) | Software Dependability

Source: IFIP WG10.4 Dependable Computing and Fault Tolerance https://www.dependability.org/wg10.4/

4

Terms and Taxonomy

C. Mas Machuca (TUM) | Software Dependability

Error

- Detected: it has manifestated as failure

- Latent: it has not been detected

 Fault: Adjudged or hypothesized cause of an error.

 Error: Part of a system state which is liable to lead to failure.

 Failure: Deviation of the delivered service according to its specification.

Time

Fault

- Active: it produces an error

- Dormant: it has not produced an error

Design

mistake

embedded in

executable

code

Incorrect state

in the memory

Failure

Manifestation

when data is

used

Fault dormancy Error latency

5

Terms and Taxonomy

C. Mas Machuca (TUM) | Software Dependability

 Availability: The ability of an item to perform its required function, under environmental and

operational conditions at a stated instant of time.

 Reliability: The ability of an item to perform its required function, under environmental and

operational conditions, for a stated period of time.

 Maintenability: the probability of performing a successful repair and maintenance action within a

given time.

 Safety: Ability of an item to provide its required function without the occurrence of catastrophic

consequences on the user(s) and the environment.

Source: ISO 8402 and British Standard BS 4778
6

Terms and Taxonomy

C. Mas Machuca (TUM) | Software Dependability

 Fault prevention is attained by quality control techniques employed during the design and

manufacturing of hardware and software.

 Fault removal is performed both during the development phase (verification, diagnosis, and

correction), and during the operational life of a system (either corrective or preventive

maintenance).

 Fault tolerance is intended to preserve the delivery of correct service in the presence of active faults.

 Fault forecasting is conducted by performing an evaluation of the system behaviour with respect to

fault occurrence or activation: either qualitative (identify, classify, rank the failure modes), or

quantitative (probabilities to which some of the attributes are satisfied).

Source: “Fundamental Concepts of Dependability” A. Avizienis et al.
7

Terms and Taxonomy

C. Mas Machuca (TUM) | Software Dependability

 Software fault = bug

 Types of software faults:

Bohrbugs

(deterministic)

„solid“ logical
faults

Remove

Path Computation
Element (PCE)
able to create

tunnel with
negative

bandwidth

Mandelbugs

(non-deterministic)

„relative“ logical
faults

Retry, replicate

Distributed
database locking

in ONOS

Ageing-related bugs

Degradation with
time

Rejuvenate

Flows still
reported in oper
data store after
they have been

deleted from both
config and
network.

Fault handling

strategies

Description

Example

8

Terms and Taxonomy

C. Mas Machuca (TUM) | Software Dependability

 Software fault = bug

 Types of software faults:

Bohrbugs

(deterministic)

„solid“ logical
faults

Remove

Path Computation
Element (PCE)
able to create

tunnel with
negative

bandwidth

Mandelbugs

(non-deterministic)

„relative“ logical
faults

Retry, replicate

Distributed
database locking

in ONOS

Ageing-related bugs

Degradation with
time

Rejuvenate

Flows still
reported in oper
data store after
they have been

deleted from both
config and
network.

Fault handling

strategies

Description

Example

9

Terms and Taxonomy

C. Mas Machuca (TUM) | Software Dependability

 Software fault = bug

 Types of software faults:

Bohrbugs

(deterministic)

„solid“ logical
faults

Remove

Path Computation
Element (PCE)
able to create

tunnel with
negative

bandwidth

Mandelbugs

(non-deterministic)

„relative“ logical
faults

Retry, replicate

Distributed
database locking

in ONOS

Aging-related bugs

Degradation with
time

Rejuvenate

Flows still
reported in oper
data store after
they have been

deleted from both
config and
network

Fault handling

strategies

Description

Example

10

Terms and Taxonomy

C. Mas Machuca (TUM) | Software Dependability

Limitations of the State of the Art

Source: IFIP WG10.4 Dependable Computing and Fault Tolerance https://www.dependability.org/wg10.4/
11

 Threat analysis focus on independent component

failures

 Focused on hardware failures

 Software related failures neglected or

oversimplified (e.g., as single failure mode)

 Attributes, e.g.,

 reliability, does not precisely describe

software behaviour

 Reliability growth due to maturity

 Reliability degradation due to aging

 Means focus on structural protection

 Fault prevention, removal and forecasting

have been overlooked

C. Mas Machuca (TUM) | Software Dependability

Software Dependability Problem

How often does SW fail?

Failure forecasting and

Software Maturity

• Softwarized networks

• Open source code

Target: Realistic and practical dependability assurance framework

Proposed methodology based on Statistical inference techniques and stochastic dependability

models

How often is the

controller available?

Steady-state availability

12

Do Softwarized networks

age?

Proposed framework

C. Mas Machuca (TUM) | Software Dependability

Software Dependability Problem

How often does SW fail?

Failure forecasting and

Software Maturity

• Softwarized networks

• Open source code

Target: Realistic and practical dependability assurance framework

Proposed methodology based on Statistical inference techniques and stochastic dependability

models

How often is the

controller available?

Steady-state availability

13

Do Softwarized networks

age?

Proposed framework

C. Mas Machuca (TUM) | Software Dependability

Vizarreta et al., Assessing the Software Maturity of SDN Controllers Using Software Reliability Growth Models. TNSM, June 2018
14

Failure Forecasting and Software Maturity

C. Mas Machuca (TUM) | Software Dependability

Failure Forecasting and Software Maturity

15

C. Mas Machuca (TUM) | Software Dependability

Bug detection as Non-Homogeneous Poisson Process (NHPP)

Software Reliability Growth Models: Theory

• Initial number of bugs N is Poisson random
variable with E[N] = a

• Expected number of detected bugs by time t

• The cumulative number of detected bugs

• Probability of detecting a single bug
(manifested SW fault) by time t

• Assuming time to discover every bug is
i.i.d. we have Bernoulli trials

16

C. Mas Machuca (TUM) | Software Dependability 17

Commonly used Non-Homogeneous Poisson Process (NHPP) [Lyu95]

The eight most widely used NHPP models for modelling of the bug detection process are:

P. Vizarreta, et a., An Empirical Study of Software Reliability in SDN Controllers, CNSM 2017

Bug detection as Non-Homogeneous Poisson Process (NHPP)

Software Reliability Growth Models: Model selection

C. Mas Machuca (TUM) | Software Dependability

Software Reliability Growth Models: Model Selection

18

• PCA: Piecewise Constant Approximation is used for fitting instead

• Closed form solution exist only in trivial cases

Bug resolution (R) is a combination of two processes: bug detection (D) and bug correction (C)

C. Mas Machuca (TUM) | Software Dependability 20

Avocet Blackbird

The best fitting models for detected and resolved bugs may be different.

Best model selection

C. Mas Machuca (TUM) | Software Dependability 21

Expected time between detected bugs

Residual bug content

Conditional software reliability

NHPP model is completely described by its mean value function m(t)

Similarly for Bug resolution

𝑅(𝑥|𝑡)

Reliability KPIs

Bug detection

C. Mas Machuca (TUM) | Software Dependability

Based on the selected model

22

Release adoption must be postponed 4 months
for reliability of 0.9

ONOS Junco relase: 28.02.2017

ONOS Kingsfisher release: 31.05.2017

3 months=2160 hours

14 critical
residual bugs

0.0175 bug/h
~ 2.38 days/bug

Management KPIs

C. Mas Machuca (TUM) | Software Dependability

Software Maturity Metric

23

ONOS Kingsfisher final release (FR): June 2017

ONOS Loon release: September 2017

• defined as the scaled gradient of the cumulative number of bugs, i.e.,
𝜆 𝑡

𝑚𝑚𝑎𝑥
.

• measures how far is the software from the stable region at any given moment.

Management KPIs

C. Mas Machuca (TUM) | Software Dependability

Software Dependability Problem

How often does SW fail?

Failure forecasting and

Software Maturity

How often is the

controller available?

Steady-state availability

24

Do Softwarized networks

age?

Proposed framework

C. Mas Machuca (TUM) | Software Dependability

Steady State Availability

Homogeneous Markov Chains

• Single failure modes

• Usual assumptions

• lHW<lSW

• µHW>µSW

• µx>>lx

• Failure shadows

𝐴 =

𝑖𝜖Ω𝑊

ෝ𝑝𝑖 Two independent controllers with a common HW repair facility

One controller

∀𝑖

ෝ𝑝𝑖 = 1

𝑃 = 𝑃. 𝒯

25

C. Mas Machuca (TUM) | Software Dependability

Stochastic Petri Nets/ Stochastic Activity Networks (SANs)

• Single failure modes

• Usual assumptions

• lHW<lSW

• µHW>µSW

Stochastic Petri Net / SAN model for one controller

26

Steady State Availability

C. Mas Machuca (TUM) | Software Dependability

Stochastic Petri Nets/ Stochastic Activity Networks (SANs)

• Single failure modes

• Usual assumptions

• lHW<lSW

• µHW>µSW

Stochastic Petri Net / SAN model with an arbitrary

number # of controllers

27

Steady State Availability

C. Mas Machuca (TUM) | Software Dependability

SRN: A Case Study on SDN Controllers

28
Stojsavljevic, Petra; Heegaard, Poul; Helvik, Bjarne; Kellerer, Wolfgang; Mas Machuca, Carmen: Characterization of Failure Dynamics in SDN Controllers. RNDM, 2017

C. Mas Machuca (TUM) | Software Dependability

SRN: A Case Study on SDN Controllers

29
Stojsavljevic, Petra; Heegaard, Poul; Helvik, Bjarne; Kellerer, Wolfgang; Mas Machuca, Carmen: Characterization of Failure Dynamics in SDN Controllers. RNDM, 2017

1. Software reliability growth

long term variations of software reliability

ONOS v1.0 Avocet

 Model: Jelinski-Moranda with imperfect

debugging

C. Mas Machuca (TUM) | Software Dependability

SRN: A Case Study on SDN Controllers

30
Stojsavljevic, Petra; Heegaard, Poul; Helvik, Bjarne; Kellerer, Wolfgang; Mas Machuca, Carmen: Characterization of Failure Dynamics in SDN Controllers. RNDM, 2017

2. Software aging

short term variations of software reliability

Failure frequency rate depends on

controller state:

 highly robust state sw_ok

 vulnerable state sw_prob

A
g
in

g
ra

te

C. Mas Machuca (TUM) | Software Dependability

SRN: A Case Study on SDN Controllers

31
Stojsavljevic, Petra; Heegaard, Poul; Helvik, Bjarne; Kellerer, Wolfgang; Mas Machuca, Carmen: Characterization of Failure Dynamics in SDN Controllers. RNDM, 2017

3. Nature of failures

Transient failures

 detected by catch-except routine

 mitigated by retrying the operation

Hanging failures

 detected by response timers

 mitigated by bundle restart

Crash failures

 detected by heartbeat messages

 controller software reloaded from the last

checkpointed (saved) state

C. Mas Machuca (TUM) | Software Dependability

SRN: A Case Study on SDN Controllers

32
Stojsavljevic, Petra; Heegaard, Poul; Helvik, Bjarne; Kellerer, Wolfgang; Mas Machuca, Carmen: Characterization of Failure Dynamics in SDN Controllers. RNDM, 2017

4. Operating system

5. General purpose Hardware

C. Mas Machuca (TUM) | Software Dependability

Evaluation of SDN controller

Steady state availability

 At least two controllers are needed to achieve “3-nines” availability

 Identification of the most critical parameters (local sensitivity analysis)

[Ros14] assumed much higher

availability of SDN controller

A > 0.999975

Critical parameters

a) External failure rates

(well studied and documented)

b) Software aging rate

(uncertain, load dependant)

Further study on clustering:

imperfect failover and state

synchronisation

A comprehensive study on

software aging

33

C. Mas Machuca (TUM) | Software Dependability

Software Dependability Problem

How often does SW fail?

Failure forecasting and

Software Maturity

How often is the

controller available?

Steady-state availability

34

Do Softwarized networks

age?

Proposed framework

C. Mas Machuca (TUM) | Software Dependability

Software Aging

35

Detection

Not all are due to bugs (undesired behaviour of the code that should be corrected), but rather a deliberate

design decision

E.g., In ONOS, when flow rules are added and removed, they are not deleted from the controller datastore;

Instead, they are replaced with thumbstones (placeholders), to ensure stability of Gossip protocol. This

also affects other eventually consistent network state primitives which rely on Gossip

C. Mas Machuca (TUM) | Software Dependability

Software Aging

36

Impact evaluation

Aging observed at application level:

 ONOS response time increases linearly at

constant workload

 Response time increases 50% for intent

installation and withdrawal after the first day

of operation

Aging observed at system level:

 Allocated heap (HSZ) and used heap

memory (HUS) continuously grow

 System crashes after HSZ exhausts all 14 GB

of available memory

 Crash happens after 18h at 300 intent/s

C. Mas Machuca (TUM) | Software Dependability

Software Aging

37

Prevention

C. Mas Machuca (TUM) | Software Dependability

Summary

38

More metrics are required to quatify the software dependability:

• Temporal reliability variations due to maturity and aging

• User-perceived service availability

Improved threat analysis to identify and classify software threats

Improved threat models and characterization

Software-aware means:

• (In)efficiency of software redundancy

• Network software rejuvenation

C. Mas Machuca (TUM) | Software Dependability

Questions?

39

C. Mas Machuca (TUM) | Software Dependability

[J1] Vizarreta, Petra; Trivedi, Kishor; Helvik, Bjarne; Heegaard, Poul; Blenk, Andreas; Kellerer, Wolfgang; Mas Machuca, Carmen,

Assessing the Software Maturity of SDN Controllers Using Software Reliability Growth Models. Transactions on Network and Service

Management (TNSM), June 2018

[J2] Vizarreta, Petra; Van Bemten, Amaury; Sakic, Ermin; Abbasi, Khawar; Petroulakis, Nikolaos; Kellerer, Wolfgang; Mas Machuca,

Carmen Incentives for softwarization of wind park communication networks, IEEE Communication Magazine, 2019

[J3] Vizarreta, Petra; Trivedi, Kishor; Mendiratta, Veena; Kellerer, Wolfgang; Mas Machuca, Carmen, DASON: Dependability Assurance

Framework for Imperfect Distributed SDN Implementations, Transactions on Network and Service Management (TNSM), Volume: 17,

Issue: 2, June 2020

[J4] Vizarreta, Petra; Sieber, Christian; Blenk, Andreas; Van Bemten, Amaury; Ramachandra, Vinod; Kellerer, Wolfgang; Mas-Machuca,

Carmen; Trivedi, Kishor., ARES: A Framework for Management of Software Ageing and Rejuvenation in SDN , Transactions on Network

and Service Management (TNSM), October 2020

[C1] Stojsavljevic, Petra; Trivedi, Kishor; Helvik, Bjarne; Heegaard, Poul; Kellerer, Wolfgang; Mas Machuca, Carmen, An Empirical Study

of Software Reliability in SDN Controllers. CNSM, Tokyo, Japan, 2017

[C2] Vizarreta, Petra; Sakic, Ermin; Kellerer, Wolfgang; Mas Machuca, Carmen Mining Software Repositories for Predictive Modelling of

Defects in SDN Controller, In Proc. of IFIP/IEEE International Symposium on Integrated Network Management (IM), April 2019

[C3] tojsavljevic, Petra; Heegaard, Poul; Helvik, Bjarne; Kellerer, Wolfgang; Mas Machuca, Carmen, Characterization of Failure Dynamics

in SDN Controllers. In Proc. of IEEE Int. Workshop on Reliable Networks Design and Modeling, Alghero, Italy, 2017

.

Own related Publications

40

C. Mas Machuca (TUM) | Software Dependability

SDN controllers

[Ros14] F. J. Ros and P. M. Ruiz, “Five nines of southbound reliability in software-defined networks,” in

Proceedings of the third workshop on Hot topics in software defined networking. ACM, 2014, pp. 31–36.

[Onos17] ON.Lab, “ONOS: Open Neetwork Operating System,” http://onosproject.org/, 2017.

[Odl17] Linux Foundation, “Opendaylight.” [Online]. Available: https://www.opendaylight.org/

Modelling approach

[SAN01] W. H. Sanders and J. F. Meyer, “Stochastic activity networks: Formal definitions and concepts,”

in Lectures on Formal Methods and PerformanceAnalysis. Springer, 2001, pp. 315–343.

[Möb00] D. Daly, D. D. Deavours, J. M. Doyle, P. G. Webster, and W. H. Sanders, “Möbius: An extensible

tool for performance and dependability modeling,” in International Conference on Modelling Techniques

and Tools for Computer Performance Evaluation. Springer, 2000, pp. 332–336.

Reliability growth and ageing

[JM72] Z. Jelinski and P. B. Moranda, “Software reliability research,” Statistical Computer Performance

Evaluation, pp. 465–484, 1972.

[Huang95] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuvenation: Analysis, module

and applications,” in Fault-Tolerant Computing, 1995. FTCS-25. Digest of Papers., Twenty-Fifth

International Symposium on. IEEE, 1995, pp. 381–390.

References (I)

41

C. Mas Machuca (TUM) | Software Dependability

Fault mitigation

[Qin05] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx: treating bugs as allergies—a safe method to

survive software failures,” in Acm sigops operating systems review, vol. 39, no. 5. ACM, 2005, pp. 235–

248.

[Gro07] M. Grottke and K. S. Trivedi, “Fighting bugs: Remove, retry, replicate, and rejuvenate,”

Computer, vol. 40, no. 2, 2007.

[Tri10] K. S. Trivedi, M. Grottke, and E. Andrade, “Software fault mitigation and availability assurance

techniques,” International Journal of System Assurance Engineering and Management, vol. 1, no. 4, pp.

340–350, 2010.

Model parameters

[Kim09] D. S. Kim, F. Machida, and K. S. Trivedi, “Availability modeling and analysis of a virtualized

system,” in Dependable Computing, 2009. PRDC’09. 15th IEEE Pacific Rim International Symposium on.

IEEE, 2009, pp. 365–371.

[Nec16] G. Nencioni, B. E. Helvik, A. J. Gonzalez, P. E. Heegaard, and A. Kamisinski, “Availability

modelling of software-defined backbone networks,” in Dependable Systems and Networks Workshop,

2016 46th Annual IEEE/IFIP International Conference on. IEEE, 2016, pp. 105–112.

References (II)

42

